当前位置: 仪器信息网 > 行业主题 > >

位变异烟碱

仪器信息网位变异烟碱专题为您提供2024年最新位变异烟碱价格报价、厂家品牌的相关信息, 包括位变异烟碱参数、型号等,不管是国产,还是进口品牌的位变异烟碱您都可以在这里找到。 除此之外,仪器信息网还免费为您整合位变异烟碱相关的耗材配件、试剂标物,还有位变异烟碱相关的最新资讯、资料,以及位变异烟碱相关的解决方案。

位变异烟碱相关的资讯

  • 美国环保署修改烟碱类农药标识规定
    据美国环保署(EPA)消息,2013年8月15日美国环护署发布最新农药标识规定,对农药添加蜜蜂保护标识,禁止在蜜蜂栖息地使用某些烟碱类农药(吡虫啉,呋虫胺,噻虫胺,噻虫嗪)。   蜂群衰竭失调(CCD)导致的蜜蜂传粉能力下降已经成为美国的重要环境问题,对美国自然生态环境及作物生产产生影响。2013年5月,美国农业部与EPA共同发布关于蜜蜂健康的科学报告,表示蜜蜂健康受栖息地减少、寄生虫、致病菌、遗传多样性缺失、蜂群养殖管理不足、营养不良、农药暴露多方面影响。EPA蜜蜂保护战略计划包括1)推进机构科学研究,开展农药对蜜蜂健康风险评估 2)开发风险管理工具,减少蜜蜂潜在风险 3)加强与公众、政府组织、非政府组织的合作交流三方面的目标。   2013年8月16日,美国环境保护组织食品安全中心(CFS)表示,EPA承认蜜蜂保护过程中需要严格的烟碱类农药标签规定的行为"令人鼓舞",但新标签规定仍未能有效保护蜜蜂健康。CFS认为,在缺乏烟碱类农药对蜜蜂等传粉动物影响的研究数据的前提下,EPA无法完成关于烟碱类农药对蜜蜂的风险评估,在烟碱类农药完整风险评估完成前应禁止烟碱类农药的使用。   原文链接:http://www.centerforfoodsafety.org/press-releases/2455/epa-admits-safety-labels-fail-to-protect-pollinators-vital-to-food-supply
  • 2022年盐碱地普查重点范围确定205个县
    5月21日,农田建设管理司采取线上会议形式组织召开全国盐碱地普查工作推进会,河北、内蒙古、吉林、山东、新疆等承担2022年盐碱地普查任务的14个省(区、市),新疆兵团,北大荒集团以及相关耕地质量保护推广体系,中国科学院南京土壤所、东北地理与农业生态所、新疆生态与地理所,中国农业大学,部耕地质量监测保护中心,中国农科院资源区划所等相关技术支撑单位共300多人参会。会议强调,要认真贯彻落实习近平总书记重要指示精神,把全国盐碱地普查作为今年土壤普查的重点工作来抓。开展盐碱地普查,摸清盐碱地“家底”,分析评价盐碱地开发利用潜力,是推进“以种适地”、提升盐碱地综合利用水平的重要基础,对保障国家粮食安全具有重要意义。 会议明确,今年盐碱地普查重点范围确定205个县,包括盐碱耕地、盐碱荒草地等,各地要结合实际尽快编制盐碱地普查实施方案,有序、高效、保质地推进盐碱地普查,年底前基本摸清我国重点区域盐碱地类型、分布、程度、成因以及改造开发利用情况。 会议要求,各地要把盐碱地普查与第三次全国土壤普查其他各项工作结合起来,统筹谋划、统一布局,多途径、多方式解决资金、人员等问题,防止出现盐碱地普查和第三次全国土壤普查“两张皮”以及重复性调查采样等问题。
  • 共建盐碱地土壤检测与评价中心 | 实朴检测与国家盐碱地综合利用技术创新中心签署战略合作协议
    3月8日,在全国着力推进盐碱地综合治理和高效利用的关键时期,国家盐碱地综合利用技术创新中心考察了实朴检测(301228)技术(上海)股份有限公司,并举行了战略合作签约仪式,宣布双方将共建盐碱地土壤检测与评价中心。这一战略合作的达成,为未来农业的可持续发展和生态环境保护迈出了坚实的一步。  此次签约仪式在实朴检测上海总部举行,莅临考察的有:国家盐碱地综合利用技术创新中心副主任张建峰、条件平台部部长刘志鑫、条件平台部副部长李林波、条件平台部张浩。实朴检测技术(上海)股份有限公司董事长杨进、上海洁壤环保科技有限公司总经理尹炳奎、实朴检测技术(上海)股份有限公司市场总监李娟、技术经理胡佩雷、研发总监刘绿叶等接待了考察团。  双方领导分别发表了讲话,强调了盐碱地土壤检测与评价中心对于提升我国盐碱地治理水平、推动农业可持续发展的重要意义。双方将围绕盐碱地产能提升与可持续综合利用,针对盐碱地土壤问题识别与诊断、作物适用性、改良材料安全性、长效性评价等问题,按照“精准诊断-核心技术应用-效果评估-长效机制”的总体设计思路,联合开展识别、检测、诊断、验证技术攻关,创建分类分级盐碱地土壤改良技术综合评价体系,为我国构建盐碱地土壤改良科技体系提供技术和数据支撑。  国家盐碱地综合利用技术创新中心副主任张建峰表示,双方签约是落实习近平总书记关于盐碱地综合利用系列讲话精神的重要举措。国家盐碱地中心将进一步整合资源,协助开展标准制定、科研项目申报,与实朴公司共同加快推动盐碱地土壤改良、产能提升领域科技创新发展及示范推广工作。  实朴检测技术(上海)股份有限公司董事长杨进也表示,本次战略合作是公司在土壤检测领域迈出的一大步,实朴检测将充分发挥企业在环境检测领域的技术优势,为盐碱地的科学管理和高效利用提供有力支撑。  国家盐碱地创新中心与实朴检测将共同投入资源,未来在开展盐碱地土壤监测数据动态研究、盐碱地改良技术适用性综合评价应用示范和盐碱地土壤技术赋能与模式输出等方面开展合作。盐碱地土壤检测与评价中心的建立,将进一步提升盐碱地治理的科学化经验和精准化水平。不仅是科技创新与产业应用的强强联合,也是对国家盐碱地治理战略的有力支持。  在未来,随着土壤检测与评价中心的建立和运行,将为实现盐碱地的可持续发展和生态文明建设贡献重要的经验和力量。国家盐碱地中心和实朴检测将继续深化合作,共同推动盐碱地土壤检测与评价技术的创新发展,为我国的环境保护和农业可持续发展做出更大的贡献。
  • 广东省环境科学学会公开征求《水质 新烟碱农药的测定 固相萃取-高效液相色谱-串联质谱法》等三项团体标准意见
    各分支机构、各会员单位和有关单位:由广东省生态环境监测中心、华南师范大学等单位共同提出并主持编制的《水质 新烟碱农药的测定 固相萃取-高效液相色谱-串联质谱法》《水质 16种有机磷酸酯的测定 固相萃取-高效液相色谱-串联质谱法》《水质 15种酚类内分泌干扰物的测定 固相萃取-高效液相色谱-串联质谱法》三项团体标准已编制完成并形成征求意见稿。根据《团体标准管理规定》(国标委联〔2019〕1号)《广东省环境科学学会标准管理办法(试行)》要求,为保证标准的科学性、严谨性和适用性,现公开征求意见。请各有关单位及专家提出宝贵建议和意见,并于2024年9月20日前以邮件的形式将《广东省环境科学学会标准意见反馈表》反馈至邮箱gdhjxh@126.com,逾期未回复视为无意见。该标准的征求意见稿已登载在全国团体标准信息平台(网址为:http://www.ttbz.org.cn/)和广东省环境科学学会网站(网址为:https://www.gdses.org.cn/)。 联系人:陈诚 严辉联系电话:020-83224979邮箱:gdhjxh@126.com 附件:1.《水质 新烟碱农药的测定 固相萃取-高效液相色谱-串联质谱法》(征求意见稿)2.《水质 新烟碱农药的测定 固相萃取-高效液相色谱-串联质谱法》(征求意见稿)编制说明3.《水质 16种有机磷酸酯的测定 固相萃取-高效液相色谱-串联质谱法》(征求意见稿)4.《水质 16种有机磷酸酯的测定 固相萃取-高效液相色谱-串联质谱法》(征求意见稿)编制说明5.《水质 15种酚类内分泌干扰物的测定 固相萃取-高效液相色谱-串联质谱法》(征求意见稿)6.《水质 15种酚类内分泌干扰物的测定 固相萃取-高效液相色谱-串联质谱法》(征求意见稿)编制说明7.广东省环境科学学会标准征求意见反馈表 广东省环境科学学会2024年8月19日关于征求《水质 新烟碱农药的测定 固相萃取-高效液相色谱-串联质谱法》等三项团体标准意见的函.pdf附件1:《水质 新烟碱农药的测定 固相萃取-高效液相色谱-串联质谱法》(征求意见稿).pdf附件2:《水质 新烟碱农药的测定 固相萃取-高效液相色谱-串联质谱法》(征求意见稿)编制说明.pdf附件3:《水质 16种有机磷酸酯的测定 固相萃取-高效液相色谱-串联质谱法》(征求意见稿).pdf附件4:《水质 16种有机磷酸酯的测定 固相萃取-高效液相色谱-串联质谱法》(征求意见稿)编制说明.pdf附件5:《水质 15种酚类内分泌干扰物的测定 固相萃取-高效液相色谱-串联质谱法》(征求意见稿).pdf附件6:《水质 15种酚类内分泌干扰物的测定固相萃取-高效液相色谱-串联质谱法》(征求意见稿)编制说明.pdf附件7:广东省环境科学学会标准征求意见反馈表.doc
  • 新烟碱类物质“噻虫胺和噻虫嗪”在欧盟的最大残留限量降低
    关于噻虫胺和噻虫嗪 噻虫胺和噻虫嗪属于新烟碱类农药活性物质。早在2005年,欧盟就以良好农业规范(GAPs)为基础,设定了噻虫胺和噻虫嗪的最大残留限量。后由于对蜜蜂等授粉昆虫的不利影响,自2018年起二者就被欧盟禁止在室外使用。因此,噻虫胺和噻虫嗪的批准已分别于2019年1月31日和2019年4月30日到期,现处于禁用状态。 降低最大残留限量 近几年,授粉昆虫的减少越来越受到全世界的关注,该问题已经影响到了全球生物多样性和环境的可持续发展,并且严重威胁农业生产力和粮食安全。联合国粮食及农业组织(FAO)呼吁采取行动,解决授粉昆虫减少的现状,以实现全球粮食生产的可持续发展。此外,所有含有噻虫胺和/或噻虫嗪的植物保护产品在欧盟的授权已被撤销。 因此,根据欧盟法规Regulation (EC) No 396/2005附件II第17条和第14(1)(a)条的规定,可以合理删除相应的MRLs。在征求了实验室和欧盟贸易伙伴的意见下,欧盟做出决定,将噻虫胺和噻虫嗪的最大残留限量降低至检测限(LOD)。 部分常见食品的最大残留限量(mg/kg):食品类别噻虫胺噻虫嗪水果0.01*0.01*块根类蔬菜0.01*0.01*草本植物及食用花卉0.02*0.02*豆类蔬菜0.01*0.01*油籽0.01*0.01*茶叶及咖啡豆0.05*0.05*动物来源的大宗商品0.02*0.02* *表示检测能力的下限(LOD) 为了保证产品的正常销售和顺利进口,欧盟给予了两季的过渡期:该规定将于2026年3月适用于欧盟生产及进口的产品。
  • 海南省市场监督管理局发布《水质 新烟碱类农药的测定 液相色谱-串联质谱法》(征求意见稿)
    各有关单位和个人:根据《海南省市场监督管理局关于下达海南省2022年第一批地方标准制订项目计划的通知》要求,由海南省生态环境厅提出,海南省生态环境监测中心等单位完成了《水质 新烟碱类农药的测定 液相色谱-串联质谱法》地方标准征求意见稿。现按照市场监管总局《地方标准管理办法》有关规定,面向社会公开征求该地方标准的相关意见。请各有关单位和个人于2023年5月13日前将修改意见填入征求意见表(见附件5),反馈至我局标准化处邮箱bzh65310955@163.com。联系人:王旭日,电话:65313709。海南省市场监督管理局2023年4月13日
  • NanoTemper用户之声 | 探访中国农业大学-植物应答盐碱胁迫的分子机制
    引 言2023年,NanoTemper正式开通了用户之声系列活动,目的是为了分享更多用户的实际应用案例和心得体会,希望能帮助到更多的研究者解决问题。在生命科学领域,微量热泳动(MST)技术已被广泛及高度应用到各项行业,而Monolith分子互作检测仪凭借其优异表现,不断助力科研人员在CNS上发表优质的重磅文献近百篇。本期,我们采访到了来自中国农业大学的杨永青副教授,针对他们的植物应答盐碱胁迫的分子机制这个研究方向进行了深入采访。如果您在分子互作方面同样遇到一些问题,不妨试试MST技术,希望带给大家给多的启发和帮助。来自用户的反馈 NanoTemper 用户介绍 中国农业大学姓名:杨永青 副教授在用仪器:Monolith分子互作检测仪Q1用户背景介绍杨永青副教授从2001-2006年在北京林业大学读博士。2006-2010年在北京生命科学研究所做博士后,2010年进入中国农业大学工作。主持和参与国家自然科学基金重点项目,面上项目,国际合作项目,国家科技部973项目和农业部转基因专项等。获得授权专利4项。在Mol Plant,Nat Commun,Plant Cell,New Phytol和JIPB等高水平学术期刊上发表SCI论文30余篇。Q2请介绍一下您的研究内容我们长期从事植物应答盐碱胁迫的分子机制。盐碱胁迫会引起离子胁迫和渗透胁迫。离子胁迫是影响植物产量的主要因素。植物通过SOS途径将细胞内盐离子外排出去,SOS蛋白的转运依赖于质子ATPase建立的质子梯度,但具体如何调控机制不清楚。因此,我们主要研究的方向是植物应答盐碱胁迫下离子平衡调控的具体机制,并取得了突破性进展。我从2013年左右了解到Monolith,大概统计了一下,近几年发表的文章中,至少有7篇用到了MST技术进行互作研究。在进行抗盐碱机制研究中,会涉及到质子泵,离子运输和信号传递等,进行的互作检测的分子类型也很丰富,包括蛋白质与蛋白质,蛋白质和有机小分子,蛋白与无机离子等,这些互作都可以在Monolith上完成快速检测。Q3请问Monolith分子互作检测仪如何满足您的研究需求?在盐碱胁迫的机制研究中,会涉及到很多类型的分子,如蛋白和蛋白,蛋白和小分子,甚至是蛋白和无机离子的互作,都可以使用MST技术完成检测,而且MST的样品用量少,可以大大减少实验时蛋白提取的工作量。比如说在进行Ca2+蛋白传感器SCaBP3蛋白参与碱胁迫响应的分子机制文章投稿时,The plant cell的reviewer提出需要证明SCaBP3与质膜H+-ATPase AHA2的互作,并且推荐ITC的方法。我们在进行ITC检测尝试时发现,该方法需要大量的蛋白,但每次蛋白的提取量为1-2mg,只可以做1-2次ITC实验,且无法进行重复。而MST方法检测的蛋白用量少,进行一次MST实验,仅需要18ng AHA2和200μg SCaBP3,节约大量样本和时间成本,因此我们采用了MST完成了该组互作实验,并顺利发表文章。使用MST检测SCaBP3和AHA2 C的互作https://doi.org/10.1105/tpc.18.00568Q4您认为Monolith分子互作检测仪有哪些优点?分子互作检测方法对蛋白用量非常少,比如在进行蛋白SCAB和磷脂分子PI3P的Kd检测2时,MST实验仅需要10nM, 160μL的SCAB-蛋白,也就是130ng。这组研究同时进行了PLO(Protein-lipid overlay assay)实验,但该实验流程较为复杂:需要1小时进行干膜,1小时进行SCAB蛋白孵育, 然后通过进行2小时的免疫印迹的方法检测,操作熟练的情况也需要4小时。但每次MST检测也只要15min,这项研究中涉及到两组,也就是检测只需要30min即可完成。因此,MST这种方法极大的提高了实验效率。MST检测SCAB1与磷脂分子PI3P的亲和力https://doi.org/10.1093/plcell/koab264Q5您对NanoTemper售后服务的印象?NanoTemper技术团队一直能与我们进行快速地交流,及时解答问题。每年都会有线上和线下不同专题的培训活动,能够让实验室一届届学生快速掌握MST的实验流程,迅速开展相关实验,我们十分满意。
  • 严峻!俄女子体内18种变异新冠病毒,拉曼光谱能否助力新冠快检?
    据俄罗斯《消息报》12日报道,俄罗斯学者们在一位免疫力低下的女子体内发现了18种变异新冠病毒,部分变种与英国出现的新型变异病毒相同,还有2种同丹麦水貂所携带的变异新冠病毒相吻合。西伯利亚联邦大学基因组学与生物信息学系教授康斯坦丁克鲁托夫斯基指出,这项研究工作首次确认了一个事实,即“新冠病毒在一个生物体内长期存在即会导致大量突变的出现”。同时,他指出,现在判定“俄罗斯”菌株的传播速度为时尚早,因为只出现了这一个案例。新型冠状病毒感染肺炎(COVID-19)疫情已成为全球突发公共卫生事件。目前,疫情发展呈现出长期化、复杂化态势,我国保持疫情防控成果、防止疫情反弹的任务十分艰巨。自新冠疫情爆发以来,国内外抗疫的经验和教训已充分说明,快速、准确的诊断病情对疫情防控有重要作用。目前,新型冠状病毒(SARS-CoV-2)的检测主要基于实时荧光聚合酶链反应(RT-PCR)核酸检测法,上机检测与结果分析约需5小时。已报道的快速检测方法主要基于免疫色谱试纸,利用胶体金标记生物大分子,制成检测试纸,可检测病毒抗原或患者血液里的IgM抗体,该方法可将检测时间缩短至约20分钟,但准确度和灵敏度有限,误判率较高。奥谱天成科研级显微拉曼光谱仪系列表面增强拉曼光谱(SERS)技术是一种新兴的表面光谱分析技术,它能将分析物的拉曼信号放大百万倍以上。这种放大作用主要源自金属纳米结构的局域表面等离激元共振所造成的局部电磁场的增强。SERS技术具有高灵敏度、高指纹识别性、高分辨率以及无损、快速等诸多优点,非常适合以分子识别和探测为基础的研究领域。目前,国内外已经成功运用SERS技术实现了对登革热病毒(DENV),流感病毒H1N1等的直接非标记检测,表明SERS技术可成为一种非常有前景的病毒检测手段。刺突蛋白(S蛋白)是新型冠状病毒感染人体的关键蛋白,因此可将S蛋白作为新型冠状病毒检测的标志物之一。近期中国工程物理研究院激光聚变研究中心利用SERS技术对人体唾液中的痕量新型冠状病毒S蛋白进行了检测。新冠病毒S蛋白拉曼光谱检测结果实验结果表明,将等体积的浓度为 10*10﹣9 g/mL的S蛋白混入人体唾液中后,可清晰地从SERS拉曼光谱中分辨出10根S蛋白的拉曼谱线,SERS技术可快速准确地识别人体唾液中的痕量SARS-CoV-2病毒S蛋白,检测限可低至10﹣9 g/mL量级。该结果为后续SERS技术在SARS-CoV-2病毒快速检测方面的应用奠定了坚实基础。
  • 何念鹏、潘俊等研究人员揭示森林-农田长期转化对土壤微生物呼吸温度敏感性及空间变异的影响
    2018年,由北京普瑞亿科科技有限公司研发的PRI-8800全自动变温培养土壤温室气体在线测量系统,一经推出便得到了广泛关注。该系统在土壤有机质分解速率、Q10及其调控机制方面提供了一整套高效的解决方案,为科研人员提供室内变温培养模拟野外环境的条件,让科研可以更广、更深层次地开展。目前以PRI-8800为关键设备发表的相关文章已达27篇。 今天与大家分享的是何念鹏、潘俊等研究人员在森林-农田长期转化对土壤微生物呼吸温度敏感性及空间变异的影响方面取得的进展。在该项研究中,研究团队利用PRI-8800测定土壤样品的Rs和Q10,为研究结果提供了有力的数据支撑。 土壤是陆地生态系统中最大的碳库,所含碳量相当于大气和植被的总和。土壤微生物呼吸(Rs)是重要的碳循环过程,控制着陆地生态系统向大气的碳释放。此外,全球变暖会加速土壤中碳的分解,增加大气二氧化碳(CO2)浓度,从而导致土壤碳循环与气候变暖之间的正反馈。这种反馈的方向和强度在很大程度上取决于Rs的温度敏感性(Temperature sensitivity, Q10)。 土地利用变化是当前生物圈碳循环的主要人为驱动因素之一(也是全球变化的重要组成要素),土地利用变化将促进/抑制土壤碳释放到大气中,被认为是仅次于化石燃烧的第二大人为碳源,累计约占人为二氧化碳排放量的12.5%。由于人口的增长和对农产品需求的增加,全球范围内大量森林生态系统已被转化为农业生态系统。这些与农业相关的森林砍伐,不仅会导致生物多样性丧失,改变土壤碳循环过程,还可能削弱生态系统应对气候变化的能力。由于土壤微生物呼吸对温度变化的响应异常敏感,土壤Q10对土地利用变化的潜在响应(提升或压制),可能会对未来气候产生重大影响。因此,为了提高人们关于土地利用变化对土壤碳循环的影响及其对气候变化反馈的认识,确定Q10对土地利用变化响应的生物地理格局及其调控因素至关重要(图1)。图1 不同区域森林转变为农田对土壤微生物呼吸温度敏感性(Q10)潜在影响 为了更好地阐明土地利用变化对土壤Q10的影响及其空间变异机制,研究人员收集了中国东部从热带到温带的19个“森林转变为农田”配对地块的土壤样品,采用由普瑞亿科研发的PRI-8800全自动变温土壤培养温室气体分析系统,在5~30 °C进行室内培养,并测量Rs和计算了Q10,此数据的获取为该项研究提供了有力的数据支撑。 图 2 中国东部土壤微生物呼吸Q10的空间变异模式 研究结果表明: 森林土壤Q10的纬度模式主要受到气候因素的驱动。类似的,农田土壤Q10随纬度而升高,气候因素、pH、粘粒和SOC共同调节了耕地土壤Q10的空间变化(图2)。总体而言,森林和耕地之间的Q10值随着纬度的增加趋于一致;DQ10从热带地区(9.23~3.58%)到亚热带地区(0.58~1.93%)和温带地区(–0.97~1.11%)显著下降。DQ10的空间变化受到气候因子、DpH、DMBC及其相互作用的影响。此外,研究还发现森林转变为农田土壤Q10呈现了明显的阈值现象(约1.5),受到pH和MBC的共同调控(图3)。图3 长期的森林转化为农田导致Q10出现不同方向的偏离(阈值约1.5) 预计全球气温升高2.0 °C的情景下,与生物地理可变的Q10相比,使用固定的Q10平均值将导致土壤CO2排放量估算产生偏差:森林为–0.93%~3.66%,农田为–0.71%~2.05%,森林-农田转换的偏差范围为–5.97~2.14%(表1)。表1 中国东部不同生物群落在2.0°C升温情景下表土(0-20 cm)CO2排放预测 总的来说,相关研究结果凸显了与长期土地利用变化相关的生物地理变化对土壤微生物呼吸温度响应的潜在影响,并强调了将长期土地利用对土壤温度敏感性的影响纳入陆地碳循环模型以改进未来碳-气候反馈预测的重要性。 研究论文近期在线发表于土壤学著名期刊《Soil Biology and Biochemistry》。第一作者为北京林业大学博士研究生潘俊、通讯作者为东北林业大学何念鹏教授和北京林业大学的孙建新教授;其他重要的合作作者还包括密歇根州立大学刘远博士、中央民族大学李超博士、中国科学院地理资源所李明旭博士和徐丽博士。该研究受到国家自然科学基金项目(32171544,42141004, 31988102)、中国科学院稳定支持基础研究领域青年团队计划(YSBR-037)等资助。原文链接:Pan J, He NP, Li C, Li MX, Xu L, Osbert Sun JX. 2024. The influence of forest-to-cropland conversion on temperature sensitivity of soil microbial respiration across tropical to temperate zones. Soil Biology and Biochemistry, doi:10.1016/j. soilbio.2024.109322. 截至目前,以PRI-8800为关键设备发表的相关文章已达26篇,分别发表在10余种影响因子较高的国际期刊上——数据来源:https://sci.justscience.cn/ 很荣幸PRI-8800可以为这些高质量学术研究贡献一份力量,感谢各位老师对普瑞亿科产品的支持和信任。即日起,如果您成功发表文章,并且在研究过程中使用了普瑞亿科的国产仪器设备,请与我们公司联络,我们为您准备了一份小礼物,以感谢您对国产设备以及普瑞亿科的信任和支持! 为响应国家“双碳”目标,针对国内“双碳”行动有效性评估,普瑞亿科全新升级了PRI-8800 全自动变温培养土壤温室气体在线测量系统,结合了连续变温培养和高频土壤呼吸在线测量的优势,模式的培养与测试过程非常简单高效,这极大方便了大量样品的测试或大尺度联网的研究,可以有效服务科学研究和生态观测。PRI-8800的成功推出,为“双碳”目标研究和评价提供了强有力的工具。 土壤有机质分解速率(R)对温度变化的响应非常敏感。温度敏感性参数(Q10)可以刻画土壤有机质分解对温度变化的响应程度。Q10是指温度每升高10℃,R所增加的倍数;Q10值越大,表明土壤有机质分解对温度变化就越敏感。Q10不仅取决于有机质分子的固有动力学属性,也受到环境条件的限制。Q10能抽象地描述土壤有机质分解对温度变化的响应,在不同生态类型系统、不同研究间架起了一个规范的和可比较的参数,因此其研究意义重大。 以往Q10研究通过选取较少的温度梯度(3-5个点)进行测量,从而导致不同土壤的呼吸对温度变化拟合相似度高的问题无法被克服。Robinson最近的研究(2017)指出,最低20个温度梯度拟合土壤呼吸对温度的响应曲线可以有效解决上述问题。PRI-8800全自动变温土壤温室气体在线测量系统为Q10的研究提供了强有力的工具,不仅能用于测量Q10对环境变量主控温度因子的响应,也能用于测量其对土壤含水量、酶促反应、有机底物、土壤生物及时空变异等的响应。PRI-8800为Q10对关联影响因子的研究,提供了一套快捷、高效、准确的整体解决方案。可设定恒温或变温培养模式;温度控制波动优于±0.05℃;平均升降温速率不小于1°C/min;307 mL样品瓶,25位样品盘;一体化设计,内置CO2 H2O模块;可外接高精度浓度或同位素分析仪。 为了更好地助力科学研究,拓展设备应用场景,普瑞亿科重磅推出「加强版」PRI-8800——PRI-8800 Plus全自动变温培养土壤温室气体在线测量系统。 1)原状土冻融过程模拟:气候变化改变了土壤干湿循环和冻融循环的频率和强度。这些波动影响了土壤微生物活动的关键驱动力,即土壤水分利用率。虽然这些波动使土壤微生物结构有少许改变,但一种气候波动的影响(例如干湿交替)是否影响了对另一种气候(例如冻融交替)的反应,其温室气体排放是如何响应的?通过PRI-8800 Plus 的冻融模拟,我们可以找出清晰答案。 2)湿地淹水深度模拟:在全球尺度上湿地甲烷(CH4)排放的温度敏感性大小主要取决于水位变化,而二氧化碳(CO2)排放的温度敏感性不受水位影响。复杂多样的湿地生态系统不同水位的变化及不同温度的变化如何影响和调控着湿地温室气体的排放?我们该如何量化不同水位的变化及不同温度的变化下湿地的温室气体排放?借助PRI-8800 Plus,通过淹水深度和温度变化的组合测试,可以查出真相。 3)温度依赖性的研究:既然温度的变化会极大影响土壤呼吸,基于温度变化的Q10研究成为科学家研究中重中之重。2017年Robinson提出的最低20个温度梯度拟合土壤呼吸对温度响应曲线的建议,将纠正以往研究人员只设置3-5个温度点(大约相隔5-10℃)进行呼吸测量的做法,该建议能解决传统方法因温度梯度少而导致的不同土壤的呼吸对温度变化拟合相似度高的问题,更能提升不同的理论模型或随后模型推算结果的准确性。而上述至少20个温度点的设置和对应的土壤呼吸测量,仅仅需要在PRI-8800 Plus程序中预设几个温度梯度即可完成多个样品在不同温度下的自动测量,这将极大提高科学家的工作效率。 除了上述变温应用案例外,科学家还可以依据自己的实验设计进行诸如日变化、月变化、季节变化、甚至年度温度变化的模拟培养,通过PRI-8800 Plus的“傻瓜式”操作测量,将极大减少科学家实验实施的周期和工作量,并提高了工作效率。 PRI-8800 Plus除了具有上述变温培养的特色,还可以进行恒温培养,抑或是恒温/变温交替培养,这些组合无疑拓展了系统在不同温度组合条件下的应用场景。 4)水分依赖性的研究:多数研究表明,在温度恒定的情况下,Q10很容易受土壤含水量的影响,表现出一定的水分依赖特性。PRI-8800 Plus可以通过手动调整土壤含水量的做法,并在PRI-8800 Plus快速连续测量模式下,实现不同水分梯度条件下土壤呼吸的精准测量,而PRI-8800 Plus的逻辑设计,为短期、中期和长期湿度控制条件下的土壤呼吸的连续、高品质测量提供了可能。 5)底物依赖性的研究:底物物质量与Q10密切相关,这里的底物包含不限于自然态的土壤,如含碳量,含氮量,易分解/难分解的碳比例、土壤粘粒含量、酸碱盐度等;也可能包含了某些外源底物,如外源的生物质碳、微生物种群、各种肥料、呼吸促进/抑制剂、同位素试剂等。通过PRI-8800快速在线变温培养测量,能加速某些研究进程并获得可靠结果,如生物质炭在土壤改良过程中的土壤呼吸研究、缓释肥缓释不同阶段对土壤呼吸的持续影响、盐碱土壤不同改良措施下的土壤呼吸的变化响应等等。 6)生物依赖性的研究:土壤呼吸包含土壤微生物呼吸(90%)和土壤动物呼吸(1-10%),土壤微生物群落对Q10影响重大。通过温度响应了解培养前后的微生物种群和数量的变化以及对应的土壤呼吸速率的变化有重要意义。外源微生物种群的添加,或许帮助科学家找出更好的Q10对土壤生物依赖性的响应解析。1.Li C, Xiao C, Li M, et al. The quality and quantity of SOM determines the mineralization of recently added labile C and priming of native SOM in grazed grasslands[J]. Geoderma, 2023, 432: 116385.2.Ma X, Jiang S, Zhang Z, et al. Long‐term collar deployment leads to bias in soil respiration measurements[J]. Methods in Ecology and Evolution, 2023, 14(3): 981-990.3.He Y, Zhou X, Jia Z, et al. Apparent thermal acclimation of soil heterotrophic respiration mainly mediated by substrate availability[J]. Global Change Biology, 2023, 29(4): 1178-1187.4.Mao X, Zheng J, Yu W, et al. Climate-induced shifts in composition and protection regulate temperature sensitivity of carbon decomposition through soil profile[J]. Soil Biology and Biochemistry, 2022, 172: 108743.5.Pan J, He N, Liu Y, et al. Growing season average temperature range is the optimal choice for Q10 incubation experiments of SOM decomposition[J]. Ecological Indicators, 2022, 145: 109749.6.Li C, Xiao C, Guenet B, et al. Short-term effects of labile organic C addition on soil microbial response to temperature in a temperate steppe[J]. Soil Biologyand Biochemistry, 2022, 167: 108589.7.Jiang ZX, Bian HF, Xu L, He NP. 2021. Pulse effect of precipitation: spatial patterns and mechanisms of soil carbon emissions. Frontiers in Ecology and Evolution, 9: 673310.8.Liu Y, Xu L, Zheng S, Chen Z, Cao YQ, Wen XF, He NP. 2021. Temperature sensitivity of soil microbial respiration in soils with lower substrate availability is enhanced more by labile carbon input. Soil Biology and Biochemistry, 154: 108148.9.Bian HF, Zheng S, Liu Y, Xu L, Chen Z, He NP. 2020. Changes in soil organic matter decomposition rate and its temperature sensitivity along water table gradients in cold-temperate forest swamps. Catena, 194: 104684.10.Xu M, Wu SS, Jiang ZX, Xu L, Li MX, Bian HF, He NP. 2020. Effect of pulse precipitation on soil CO2 release in different grassland types on the Tibetan Plateau. European Journal of Soil Biology, 101: 103250.11.Liu Y, He NP, Xu L, Tian J, Gao Y, Zheng S, Wang Q, Wen XF, Xu XL, Yakov K. 2019. A new incubation and measurement approach to estimate the temperature response of soil organic matter decomposition. Soil Biology & Biochemistry, 138, 107596.12.Yingqiu C, Zhen Z, Li X, et al. Temperature Affects new Carbon Input Utilization By Soil Microbes: Evidence Based on a Rapid δ13C Measurement Technology[J]. Journal of Resources and Ecology, 2019, 10(2): 202-212.13.Cao Y, Xu L, Zhang Z, et al. Soil microbial metabolic quotient in inner mongolian grasslands: Patterns and influence factors[J]. Chinese Geographical Science, 2019, 29: 1001-1010.14.Liu Y, He NP, Wen XF, Xu L, Sun XM, Yu GR, Liang LY, Schipper LA. 2018. The optimum temperature of soil microbial respi
  • 广东省环境科学学会立项《水质 7种新烟碱类农药和4种转化产物的测定 固相萃取-高效液相色谱-串联质谱法》等3项团体标准项目
    各分支机构、会员及有关单位:根据《广东省环境科学学会标准管理办法(试行)》的有关规定,《水质 7种新烟碱类农药和4种转化产物的测定 固相萃取-高效液相色谱-串联质谱法》《水质 15种酚类内分泌干扰物的测定 固相萃取-高效液相色谱-串联质谱法》《水质 16种有机磷酸酯的测定 固相萃取-高效液相色谱-串联质谱法》通过专家立项论证,并在广东省环境科学学会网站完成公示,公示无异议,符合立项要求,现予以立项。请标准起草单位严格按照有关规定和要求组织开展该标准制定工作,严把标准质量关,广泛听取意见,增强标准的适用性和有效性,按时完成标准制定任务。欢迎与立项标准有关的高校、科研院所、企事业单位参与该标准的起草制定工作。 联系人:严辉 陈诚联系电话:020-83224979E-mail:gdhjxh@126.com 广东省环境科学学会2023年5月4日
  • 核酸质谱快速检测新型冠状病毒变异株
    新型冠状病毒肺炎(Coronavirusdisease2019,COVID-2019)是由严重急性呼吸系统综合征冠状病毒(SARS-CoV-2)所引起的高传染性病毒疾病,对世界人口造成了灾难性影响,导致全球380多万人死亡,成为继1918年流感大流行以来影响最大的全球卫生危机。 新冠病毒不断变异的RNA病毒 作为单链结构的RNA病毒,新型冠状病毒的一大特点就是极其容易变异。随着感染人数的增加和疫情的持续,新型冠状病毒不断进化和变异,陆续产生多种新冠病毒变异株。世界卫生组织(WHO)根据新冠病毒变异株的传播力、致病力等将其分为VOCs(Variant of concern)和VOIs(Variant of interest)。新冠病毒VOCs的分类 新冠病毒VOIs的分类 目前市场对新冠病毒筛查主要采用荧光 PCR 方法,该方法检测灵敏度高,但成本也相对较高,并且单机通量小,容易被污染,制约了大规模病毒检测速度,对当前不同变异毒株区分荧光PCR方法存在一定难度。随着病毒感染多元化和疫情防控常态化的推进,市场急需一种更快速、准确、高通量的检测方法,用于满足大样本量的检测、基层的日常防控筛查,以及不同变异株的区分。 基质辅助激光解吸电离飞行时间质谱(MALDI-TOF MS)主要用于分析包括蛋白质及核酸在内的生物大分子,该技术应用于核酸检测具有高通量、高灵敏、高准确率的特点。其主要工作原理是结合延伸分析法和碱基特异裂解分析法,将扩增后的核酸产物通过离子源使样品离子化,产生不同质荷比的离子,再经过质量分析器测定该样品中不同种类离子的分子量,按照从小到大的顺序依次排列从而得到一幅质量图谱,并根据检测项目不同给出相应的检测报告。该技术在遗传病筛查、肿瘤变异检测、甲基化检测、用药指导、病原体检测及功能医学健康管理等多个领域的应用日益深入,已经成为精准医学不可或缺的分子诊断技术。MALDI-TOF MS检测新型冠状病毒方法为通过特定引物扩增目标基因片段,再通过靶向位点探针特异性单碱基延伸,然后通过质谱技术检测延伸位点的碱基,判断病毒种类和变异类型。该方法灵敏度高、操作简单、成本低廉、人员需求低、通量高,可实现6小时384样本出报告,以后每1小时出384份样品报告。新冠病毒流行初期,Autof ms1000系统建立了完成病毒检测检测体系,对病毒毒株进行了精准检测(图3)。随着研究深入,Autof ms1000检测核酸的体系也日渐成熟,针对当前多变异毒株情况,研究人员通过合理设计扩增引物和探针,可实现单个样品,单芯片位点检测,一次区分当前所有可认知的新冠病毒变异株。随着疫情斗争的持续进行,病毒变异也不断发生,后续可能出现更多更复杂的病毒变异株,MALDI-TOF MS技术基于其检测原理,在大样本多病毒变异株检测方面的优势将日渐突出。随着人们对该技术的认知度的日渐加深,未来该技术在核酸检测方向的应用将出现更多的思路和方法,MALDI-TOF MS在临床应用领域中将会发挥更大的作用。
  • 变异链球菌的菌落特征与使用范围及培养方法!
    变异链球菌的菌落特征与使用范围及培养方法! 变异链球菌属于甲型溶血性链球菌类,菌体较小,呈圆形或卵圆形,常成双或以短链状排列,革兰染色呈阳性。它在胰蛋白胨培养基中和含有95%氮气及5%二氧化碳混合气体的环境下生长良好。 一、菌种简介平台编号:Bio-53150规格:冻干物拉丁属名:Streptococcus Mutans菌株名称:变异链球菌其他编号:ATCC700610培养基编号:116或114,5% CO2 or 厌氧培养温度:37培养时间:48 小时用途:对红霉素、利福平、利福霉素AMP、壮观霉素、链霉素敏感。血清型C。注意事项:仅用于科学研究或者工业应用等非医疗目的不可用于人类或动物的临床诊断或治疗,非药用,非食用(产品信息以出库为准)保藏条件:斜面菌种和安瓿瓶冻干菌种应在 2-8°C 保存。西林瓶菌种请置于-20°C 保存。甘油请置于-80°C。 二、培养基TSA+5%脱纤维蛋白羊血(血琼脂平板) 三、菌落特征变异链球菌在血平板培养基上呈旺溶血,菌落较小,呈灰白色、圆形,表面突起,菌落质地较硬,有嵌入培养基内生长的趋势。 四、菌种的培养1、菌种是指食用菌菌丝体及其生长基质组成的繁殖材料。菌种分为母种(一级种)、原种(二级种)和栽培种(三级种)三级。工业发酵的有用菌种,其筛选步骤包括菌种分离、初筛和复筛。2、挑选具有某种能力的有用菌种,也称种子制备,是指菌种在一定条件下,经过扩大培养成为具有一定数量和质量的纯生产菌种的制备过程。以作接入发酵罐中进一步扩大菌体量及合成产物之用。3、种子制备包括孢子制备和菌丝体制备 菌种制备。4、保存在沙土管或冷冻管中的生产菌种,用无菌手续挑取少许,接入琼脂斜面培养基上,在25℃(或较高温度)下培养5~7天(或较长时间。所得孢子还需进一步用较大表面积的固体培养基以获得更多孢子(对于霉菌类孢子制备,多数采用大米、小米之类的天然培养基)。5、将培养成熟的斜面孢子制成悬浮液,接种到扁瓶固体培养基上,于25~28℃培养14天。将成熟的扁瓶孢子于真空中抽干,使水分降至10%以下,并放入 4℃冰箱中备用。一次制得的孢子瓶可在生产上延续使用半年左右。6、如果有些生产菌种不产孢子,如赤霉素产生菌或产孢子不多的,则可采用摇瓶液体培养制得菌丝体,作种子罐的种子。种子罐的目的是使接入有限的孢子或菌丝体迅速发芽、生长、繁殖成大量菌体。其中的培养基组分应是易于被菌体利用的碳源(如葡萄糖)和氮源(如玉米浆),及无机盐(如磷酸盐)等。作为发酵罐的种子应生命力旺盛、染色深、菌丝粗壮,无杂菌及异常菌体。接种量一般在10%~20%。 五、使用范围(1)合成培养基。合成培养基的各种成分完全是已知的各种化学物质。这种培养基的化学成分清楚,组成成分精确,重复性强,而且微生物在这类培养基中生长较慢。如高氏一号合成培养基、察氏(Czapek)培养基等。 (2)天然培养基。由天然物质制成,如蒸熟的马铃薯和普通牛肉汤,前者用于培养霉菌,后者用于培养细菌。这类培养基的化学成分很不恒定,也难以确定,但配制方便,营养丰富,培养效果好,所以常被采用。 (3)半合成培养基。在天然有机物的基础上适当加入已知成分的无机盐类,或在合成培养基的基础上添加某些天然成分,如培养霉菌用的马铃薯葡萄糖琼脂培养基。这类培养基能更有效地满足微生物对营养物质的需要。 六、注意事项1)冻干首次活化,干粉要全部用完,不能预留,用无菌吸管吸取 0.3ml 的培养液(即以上建议的培养基配方,不加琼脂)或者无菌水,滴入冻干管中,轻轻振荡至其溶解。吸取全部菌悬液,接种在培养基上(建议不超过 2 支平板);2)经过冷冻干燥保藏,菌种处于休眠状态,复苏培养时可能会延迟生长,这时需较长的培养时间; 若您收到的是已复苏的培养物(非冻干菌),则可以直接用于您的实验,或根需要转接培养;如有不明白之处,请务必先咨询我单位技术人员,避免不必要的损失;二次接种量要多,固体斜面培养基水分要少才能让菌体长得比较明显,液体培养要静止培养;3)微生物菌种应保藏于低温、清洁干燥的地方,室温放置时间过长会导致菌种衰退;4)菌种操作应在无菌条件下进行;转种完毕,应经灭菌再做丢弃处理;5)应根据菌种状况及时转接,冻干菌种保藏时间通常为2-25 年;6)菌种使用过程中如出现杂菌污染或菌种生产性能下降,应及时和微生物菌种查询网联系;7)如若有菌种复苏不活或者污染等情况,请在收到菌钟后 2 个月内联系,逾期不予受理;8)打管操作需由专业微生物技术人员在相应的防护设备中进行,生物危害程度为三类的菌种应在生物安全柜中操作,打管时冻干管应远离面部,保护眼睛;9)安瓿瓶开封:用浸过 75%酒精的脱脂棉擦净安瓿管,用火焰加热其顶端,滴少量(2-3滴)无菌水至加热顶端使之破裂,用锉刀或者镊子敲下已破裂的安瓿管顶端并将冻干管开口处在火焰上过一遍,并保持在火焰旁操作;10)甘油管使用:使用本甘油菌时可以不用完全融解,在甘油菌表面蘸取少量涂板或进行液体培养即可。也可以完全融解后使用,但随着冻融次数的增加,细菌的活力会逐渐下降。 欢迎访问微生物菌种查询网,本站隶属于北京百欧博伟生物技术有限公司,单位现提供微生物菌种及其细胞等相关产品查询、咨询、订购、售后服务!与国内外多家研制单位,生物医药,第三方检测机构,科研院所有着良好稳定的长期合作关系!欢迎广大客户来询!
  • 专家:中国主流核酸检测试剂可以应对奥密克戎变异株
    中国疾病预防控制中心病毒病预防控制所所长许文波30日在北京表示,中国主流的核酸检测试剂可以应对奥密克戎变异株的输入。  中国国务院联防联控机制当日就进一步做好新冠病毒疫苗接种有关情况举行新闻发布会。许文波在发布会上作上述表示。  针对目前使用核酸检测试剂是否可以有效检测出奥密克戎变异株,许文波指出,奥密克戎变异株突变位点主要集中在新冠病毒刺突蛋白上,中国主流的核酸检测试剂引物和探针靶标是在ORF1ab基因和N基因,这两个靶标区域是比较稳定的。“因此中国主流的核酸检测试剂敏感性和特异性没有变化,可以应对奥密克戎变异株的输入。”  许文波进一步介绍说,中国第八版《新型冠状病毒肺炎防控方案》公布的核酸检测试剂盒的引物和探针靶标区域,也是中国疾控中心病毒病预防控制所于2020年1月21日在网站向全球公布共享的,在新冠病毒流行的两年来都是有效的,“很多试剂盒都应用这个靶标”。  与此同时,关于奥密克戎变异株是否会影响现有抗新冠病毒药物的有效性,中国医学科学院病原生物学研究所研究员钱朝晖在发布会上表示,药物是否受到影响,仍需要进一步研究和确认。  钱朝晖指出,现有新冠病毒的抗病毒治疗药物主要包括中和抗体药物和小分子药物。中和抗体药物主要通过阻断刺突蛋白跟其受体ACE2的结合或者阻断刺突蛋白的构象变化来抑制病毒入侵,而奥密克戎突变株在病毒刺突蛋白上存在大量突变。  “基于已发表文献和新冠S蛋白和不同中和抗体的结构,其中一些突变可能会对相当一部分中和抗体药物的治疗效果带来影响,但具体到某个抗体的影响程度,还需要通过实验进行验证。”  钱朝晖介绍说,现有小分子药物主要靶标是病毒复制酶和蛋白酶,而相关药物结合靶标蛋白的关键位点在奥密克戎上并没有发生突变,因而对这些小分子药物的影响可能不大,“但考虑到病毒复制酶和蛋白酶仍然存在突变,药物是否受到影响,仍需要进一步研究和确认”。  此外,许文波表示,中国针对奥密克戎变异株已经做好了包括灭活疫苗、蛋白疫苗、载体疫苗等多条技术路线的前期技术储备和研究,部分企业相关前期设计已经开始。
  • 中国主流核酸检测试剂可以应对奥密克戎变异株
    中国疾病预防控制中心病毒病预防控制所所长许文波30日在北京表示,中国主流的核酸检测试剂可以应对奥密克戎变异株的输入。  中国国务院联防联控机制当日就进一步做好新冠病毒疫苗接种有关情况举行新闻发布会。许文波在发布会上作上述表示。  针对目前使用核酸检测试剂是否可以有效检测出奥密克戎变异株,许文波指出,奥密克戎变异株突变位点主要集中在新冠病毒刺突蛋白上,中国主流的核酸检测试剂引物和探针靶标是在ORF1ab基因和N基因,这两个靶标区域是比较稳定的。“因此中国主流的核酸检测试剂敏感性和特异性没有变化,可以应对奥密克戎变异株的输入。”  许文波进一步介绍说,中国第八版《新型冠状病毒肺炎防控方案》公布的核酸检测试剂盒的引物和探针靶标区域,也是中国疾控中心病毒病预防控制所于2020年1月21日在网站向全球公布共享的,在新冠病毒流行的两年来都是有效的,“很多试剂盒都应用这个靶标”。  与此同时,关于奥密克戎变异株是否会影响现有抗新冠病毒药物的有效性,中国医学科学院病原生物学研究所研究员钱朝晖在发布会上表示,药物是否受到影响,仍需要进一步研究和确认。  钱朝晖指出,现有新冠病毒的抗病毒治疗药物主要包括中和抗体药物和小分子药物。中和抗体药物主要通过阻断刺突蛋白跟其受体ACE2的结合或者阻断刺突蛋白的构象变化来抑制病毒入侵,而奥密克戎突变株在病毒刺突蛋白上存在大量突变。  “基于已发表文献和新冠S蛋白和不同中和抗体的结构,其中一些突变可能会对相当一部分中和抗体药物的治疗效果带来影响,但具体到某个抗体的影响程度,还需要通过实验进行验证。”  钱朝晖介绍说,现有小分子药物主要靶标是病毒复制酶和蛋白酶,而相关药物结合靶标蛋白的关键位点在奥密克戎上并没有发生突变,因而对这些小分子药物的影响可能不大,“但考虑到病毒复制酶和蛋白酶仍然存在突变,药物是否受到影响,仍需要进一步研究和确认”。  此外,许文波表示,中国针对奥密克戎变异株已经做好了包括灭活疫苗、蛋白疫苗、载体疫苗等多条技术路线的前期技术储备和研究,部分企业相关前期设计已经开始。
  • 清华站回顾 | 眼见为“实”的深度光谱应用课堂圆满结束!
    6月26日,复享光学深度光谱应用课堂清华篇在清华大学材料学院成功举办!本次活动由清华大学材料学院与复享光学联合主办,针对复享光学自主研发的显微角分辨光谱仪的原理和应用,以线下交流、线上同步答疑的形式为学校师生进行培训宣讲,并由复享光学应用专家提供设备操作教学,吸引了北京诸多著名高校老师学生前来交流学习。独出机杼,别出心裁;复享光学应用专家孙沛智博士以独到的见解和生动的比喻为大家阐述了显微角分辨光谱技术的科学背景及应用案例,大家纷纷表示“秒懂”、“已get”,并引发了在场师生们的广泛交流,针对复享光学显微角分辨光谱仪的强大功能产生了浓厚的兴趣,且对其广阔的应用领域进行了深入探讨。眼见为实,精密测量;在午后的上机演示环节,复享光学应用专家姜自敏博士详细介绍并演示了仪器的操作方法,系统性的讲述了相关应用的实验范例,让ARMS不再是学生们眼中“高冷”的测量仪器,许多同学对ARMS测量结果纷纷表示认可,相约测样。轻松驾驭,相约“顶刊”;复享光学一直以来致力于关注光子技术前沿,积极探索光谱技术的应用场景,通过结合多维光场的感知与关键物质特性的计算重构,再融合先进的深度学习技术,构建AI时代的全面深度光谱分析框架,为诸多先进制造应用场景提供强劲的光学分析引擎,并使之在科研创新、先进制造、薄膜光电和光子集成场景中得到应用普及。未来,复享光学将走进更多高校,与老师、学生们探讨各种专业光谱技术问题,交流最前沿的信息和成果,敬请期待我们的下一站吧~
  • 超强新冠变异毒株来势汹汹,天隆新冠核酸检测方案强势应对!
    近日,南非等国新发现了新冠病毒变异株Omicron(奥密克戎),引起全球关注。当地时间2021年11月26日中午11点,世界卫生组织发布声明表示:最新的Omicron变异毒株B.1.1.529比其他变异株具有更高的再次感染风险。B.1.1.529共有50个突变,刺突蛋白上有32个突变,突变数量是德尔塔病毒的两倍之多。近几周,南非感染病例急剧增加,大多数病例检测出B.1.1.529变异株,并已迅速传播至亚洲、欧洲地区。德尔塔毒株与奥密克戎毒株刺突蛋白突变对比图(图片来自罗马儿童医院)当出现Omicron变异毒株时,检测结果更多出现ORF1ab基因单阳性,导致不能及时发现Omicron变体感染,无法及时阻断传播。天隆科技自主研发的系列新冠核酸检测试剂检测靶标覆盖ORF1ab/RdRp、E、N基因,在检测Omicron变异毒株时,能有效避免脱靶及漏检的风险,40分钟左右即可完成核酸检测,更快阻止病毒的蔓延。现有天隆新冠检测试剂也能覆盖常见的新冠突变毒株,如Delta变异毒株(即印度B.1.617.2)及英国B1.1.7等,极大减少漏检的可能性。此外,面对形式严峻的新冠疫情,天隆科技可提供新冠核酸检测整体解决方案,涵盖从样本采集、核酸提取、核酸检测及实验室建设等全套设备、试剂及整体方案,并在全球70多个国家和地区得到应用。方案产品也已获得欧盟CE权威认证,美国FDA、荷兰、乌克兰、哈萨克斯坦、印度尼西亚等国家注册认证,是辅助诊断新冠肺炎的有效“利器”。天隆科技将持续关注国际新冠病毒变异情况,确保检测试剂对目前主要流行病毒株的检出能力,同时保障试剂特异性、准确性和灵敏度,为国际疫情防控贡献有力支撑。
  • 在线多维液相色谱-质谱法对单抗电荷变异的深度表征
    大家好,本周为大家分享一篇发表在Analytical Chemistry的文章,In-Depth Characterization of mAb Charge Variants by On-Line Multidimensional Liquid Chromatography-Mass Spectrometry[1]。本文的通讯作者是中国复宏汉霖生物制品有限公司的刘卓宇博士。  重组单克隆抗体(mAbs)正成为肿瘤和自身免疫性疾病最成功的治疗方法之一。与传统的小分子药物不同,抗体在电荷、大小和糖型上都非常不均匀。单克隆抗体的电荷异质性通常是由细胞培养、纯化和储存过程中发生的翻译后修饰(PTM)引起的。电荷变异由于其对单克隆抗体的安全性和有效性的潜在影响而引起了人们的注意。CEX通常用于组分收集,以收集纯化的变体进行结构征,然而,在CEX分离中使用的非挥发性离子试剂与MS检测器直接耦合时,往往会造成电离抑制和污染。为了避免这些问题,CEX馏分应在进一步LC-MS分析之前进行脱盐和浓缩。传统的峰收集、纯化和随后的组分表征方法是劳动密集型和耗时的,组分在这么长的时间里不稳定。此外,传统CEX-MS在分析分子量变化较小PTMs时难以进行表征。 在最近的研究中,基于CEX和MS的多维液相质谱技术,已经在研究电荷变异体上展现了诸多优点。通过CEX的组分收集和MS的分析,多维液相质谱实现了对电荷变异体的实时表征,在缩短了检测时间的同时,也减少了由于传统手工方法诱导的人工PTMs,并且能够得到之前无法检测到的不稳定的中间体。该技术具有较好的重现性和灵敏度,对PTM的序列可实现高覆盖率的表征。在所开发的方法中,在1D CEX上分离的11种电荷变体在自动进样器中被收集到96孔板中。随后,通过多次进样,将单个馏分装入二维柱上进行预浓缩,以收集适当的量。这种新方法能够自动收集低丰度的多种电荷变体,然后通过不同的在线过程进行彻底的表征,包括分子量分析、肽图谱和Fc-γ-RIIIa受体亲和力评估。  图1. mAb-A1和mAb-A2的CEX谱。通过优化的纯化工艺去除mAb-A1中的B5-B8峰,以消除信号肽相关变异,命名为纯化抗体mAb-A2。  如图1所示,mAb-A的CEX图谱显示出较高的电荷异质性,PTM引起的mAb-A1电荷异质性可能对产品的安全性和有效性构成潜在风险。虽然不需要的电荷变体可以通过下游净化过程消除,但变体的去除会显著降低产量,从而增加成本。因此,需要对mAb-A1电荷变体进行深入研究,以确定其对产品质量的影响,并为工艺优化提供信息。研究中,先通过2DLC(CEX × RP-C4)-MS分析鉴定了11个mAb-A1电荷变体,包括2个AP (A1和A2), 1个MP和8个BP (B1-B8)。一方面,2DLC(CEX × RP-C4)-MS方法具有时间效率,每个峰只需40分钟。另一方面,2DLC(CEX × RP-C4)-MS法省力。省去了传统脱机分析所需的超滤、预富集、脱机还原等人工操作。  变体在亚单位水平上通过高分辨率质谱初步鉴定。如图2所示,重链的TIC图谱在所有电荷变体中是一致的 通过对HC1和HC2峰的质谱分析,确定了HC上的PTMs,这些PTM是常见的,已报道对抗体的安全性和有效性影响不大。去卷积质谱显示,B5、B6、B7和B8的LC1峰被RVHS-LC2 (Arg-Val-His-Ser-LC2, MWLC2 + 479.5 Da)和TRVHS-LC2 (Thr-Arg-Val-His-SerLC2, MWLC2 + 580.6 Da)的信号肽相关变体所覆盖。由于这些物种在精氨酸残基位点易被色氨酸切割,因此可能在肽图谱中被错误地识别为含有VHS的变异。通过2DLC(CEX × RP-C4)-MS分析,可以很容易地在亚基水平上获得mAb-A1未截断的RVHS和TRVHS变体。  图2. 2DLC(CEX × RP-C4)-MS分析mAb-A1及其电荷变体的降低分子量。(A)总离子色谱图。(B) LC1的去卷积质谱。在mAb-A1的B5-B8变体中,LC1与未截断的RVHS和TRVHS分离。  通过4DLC(CEX × RP-C4 × Trypsin×RP-C18)-MS分析鉴定出7个mAb-A2的电荷变体,包括3个ap、1个MP和3个bp。在变体中获得的PTMs包括脱酰胺(图4B)、Pyro Q(图4C)、c端Lys截断/Pro酰胺化(图4D)和Met氧化(图4E)。所有ap均发现HC N55脱酰胺。据报道,HC N55的脱酰胺会影响抗原-抗体结合活性据报道,Fc氧化会影响FcRn结合,对药代动力学(PK)产生负面影响。4DLC(CEX × RP-C4 × Trypsin×RP-C18)-MS的数据采集在1天内完成,以小于0.5 mg的样品表征了mAb-A2的7个变体。mAb-A2的肽图谱序列覆盖率达到90%。  图3. 4DLC(CEX × RP-C4 × Trypsin×RP-C18)-MS在线肽图谱。(A)经鉴别的重叠色谱图mAb-A2主峰的肽段。(B)所有mAb-A2变异的HC N55脱酰胺。(C) N端谷氨酰胺环化成在所有mAb- A2变异体中HC Q1的焦谷氨酸。(D)在所有mAb-A2变体中,C端HC K450的赖氨酸截断和HC P448的脯氨酸酰胺化。(E) HC M255下蛋氨酸氧化。  由于Fc-γ-RⅢa的结合亲和力一般与ADCC效价具有良好的相关性,且Fc-γ-RⅢa的结合能力可以反映在Fc-γ-RvⅢa柱上,通过2DLC(CEX × Fc-γ-RⅢa)分析间接监测了mAb-a的电荷变体的生物活性。APs中峰3的丰度高于MP和bp,表明酸性峰具有更好的Fc-γ-RⅢa亲和力。对Fc-γ-RⅢa色谱中mAb-A2的三个峰进行分离,并进行离线N-聚糖分析,以获得准确的糖型分布结果。在峰1、峰2和峰3中观察到聚焦化和半乳糖基化的含量逐渐增加。集中化已被广泛报道可增强ADCC的活性有趣的是,观察到半乳糖基化对Fc-γ-RⅢa亲和力的积极影响,这与先前的研究一致。  图4 (A)Fc-γ-RⅢa亲和谱图2DLC(CEX×Fc-γ-RⅢa)分析。(B)mAb-A2的N-聚糖谱及其Fc-γ-RⅢa亲和组分 (峰1、峰2、峰3)。  综上,利用MDLC-MS系统深入表征电荷变体的结构和生物活性,包括分子量、PTMs和Fc-γ-RⅢa亲和力。该过程可以在发现和工艺开发阶段对单克隆抗体进行电荷变异分析。MDLC-MS可以在研发中发挥重要作用,使从DNA序列到新药研究(IND)申请的时间流程缩短。  撰稿:李孟效  编辑:李惠琳  文章引用:In-Depth Characterization of mAb Charge Variants by On-Line Multidimensional Liquid Chromatography-Mass Spectrometry  李惠琳课题组网址www.x-mol.com/groups/li_huilin  参考文献  1. Liu, Z., Y. Cao, L. Zhang, Y. Xu,Z. Zhang.(2023).In-Depth Characterization of mAb Charge Variants by On-Line Multidimensional Liquid Chromatography-Mass Spectrometry. Analytical chemistry.
  • QIAcuity数字PCR如何实现拷贝数变异的精准检测
    拷贝数变异 (Copy Number Variation, CNV) 是由基因组发生重排而导致的,一般指长度为1kb以上的基因组大片段的拷贝数增加或者减少[1]。拷贝数变异是人类许多疾病(如肿瘤、遗传性疾病、神经系统和自身免疫疾病等)的重要致病因素之一,作为疾病的一项生物标志,染色体水平的基因序列重复、缺失等变化已成为许多疾病研究的热点[2]。相较于基因芯片、荧光定量PCR等传统的拷贝数变异检测方法,数字PCR通过对样品的离散化处理及分子计数的检测手段,摒弃了通过标准曲线和Ct值计算的间接定量方式,直接获取目标基因的绝对拷贝数,为CNV研究提供更高的检测精度和分辨率[3]。数字PCR技术已经发展了十几个年头,无论是传统的液滴式数字PCR或是芯片式数字PCR,均可实现靶标基因的绝对定量。在日趋成熟的众多数字PCR平台基础上,QIAGEN突破样本分区技术壁垒,推出了更独特的纳米微孔板式数字PCR系统—QIAcuity Digital PCR。更稳定的样本分区、多重检测通道的配置、更简单的操作流程、更快速的结果获取,结合更高效的Assay,助力基因组拷贝数变异的精准快速检测。更稳定的样本分区CNV研究需要极高的定量精度以区别不同拷贝数之间的微小差异。相关研究表明[4-5],对于肿瘤来源的非整倍数样品和微量血浆游离核酸的拷贝数变异检测时,需要精准定量到一倍以内的微小变化,以精准判断待测样本的拷贝数变异情况,准确定量这些微小差异是确定其生物学意义的关键。根据数字PCR技术原理,分区体积越均一稳定,目标分子的分布规律越符合泊松公式,越易精准区分拷贝数间的微小差异。此外,当有效分区数接近8000时,可以精准分辨拷贝数10和拷贝数11,并且微反应单元体积越均一稳定、数量相对越多,定量的整体精度就越高。QIAcuity数字PCR采用固相分割的纳米微孔板来实现样本反应液的分区,确保每个微反应单元大小均一、稳定。使用26000分区纳米微孔板的有效分区数均在25400以上,可以更精准区分差值小于10%的非整倍数间微小拷贝数变化,进而准确分析其生物学意义。五重检测通道配置基因组拷贝数变异的精准检测,需依赖参照基因的准确标注以及内部质控,其中参照基因的选择是检测拷贝数变异的关键环节。对于非整倍数的样品检测,需要使用多个参照基因来判断检测结果的稳定性和精准性。此外,拷贝数变异的精准检测还依赖于内部质控,所以多个检测通道的配置是必要条件,以确保在同一实验中,目标基因拷贝数变异获得精准鉴别。QIAcuity数字PCR配置有5个检测通道,可在单管实验中同时实现目标基因、参照基因和内部质控的定量分析,以精准鉴别目标基因相较于参照基因的微小变化差异。此外,该系统还内置有1个参比通道,可精准识别最终被用于计算的样本分区数均为有效分区数,避免由于无效分区的引入而造成检测结果的偏差,对于微小拷贝数变化的精准鉴别尤为适用。左图为实际检测到的阳性反应孔信号 右图为参比荧光通道检测到的有效分区数更简单的操作流程在基因组拷贝数变异检测实验中,相较于传统荧光定量PCR,数字PCR无需标准曲线即可实现绝对定量,简化了构建标准曲线的繁琐步骤,同时规避了由于标准曲线精准度不足而导致的结果偏差。QIAcuity数字PCR系统采用集成式一体化设计,真正意义上实现了“从样本进到结果出”的全自动化检测流程,操作流程的简化,可最大程度降低由于人工操作而引入的实验误差;在规避外界因素影响的同时,整个实验流程可在2小时内完成,确保拷贝数变异实验结果的快速获取,加速实验进程。 QIAcuity数字PCR工作流程更高效的CNV Assay可重复展现稳定结果的数字PCR系统和优化设计的PCR引物探针缺一不可。然而在设计拷贝数变异的引物探针时,需考虑SNP和引物探针特异性等影响因素,一定程度上增加了实验设计的难度。为简化实验设计,QIAGEN基于QIAcuity数字PCR平台开发了200组经锁核酸技术修饰和湿实验验证的CNV检测Assay。通过锁核酸修饰的引物增强了对互补序列的亲和力和特异性,更易鉴别微小拷贝数变化差异。参照基因也不可或缺,除常用RPP30外,QIAGEN还开发了AP3B1、TERT、R6和R10参照基因,对于不同样本和不同的拷贝数变异类型可针对性的选择,以确保其适用性。对于高拷贝数 (≥6)的变异检测,R6和R10参照基因可以提升检测结果的归一化程度,进而提高检测精准度。参照基因适用性检测R6和R10提升多拷贝变异检测准确性高灵敏度QIAcuity数字PCR系统搭配dPCRCopy Number Assay以TERT为参照对HER2、MYC、EGFR、MET四种基因的拷贝数变化进行了检测。数据显示:WT和SK-BR3(1:1) 混合样本中,TERT拷贝数接近等量,可作为参照基因进行量化;实验中HER2发生了3.35倍的变化;EGFR发生了1.75倍的变化;MYC发生了5.85倍的变化;MET发生了3.4倍的变化。数据表明QIAcuity数字PCR可实现10%内的微小变化的精准检测。SK-BR3细胞系中的4种癌基因拷贝数检测高精准度通过对MCF-7细胞系进行不同程度的梯度稀释,QIAcuity数字PCR系统检测到目标基因和参照基因结果都呈现出对应的线性关系,并且与预期值一致性良好。对于基因组变异的检测,QIAcuity数字PCR表现出精准的分辨率。&ensp MCF-7细胞系的不同浓度中MYC和NRAS拷贝数检测参考文献:[1] Redon, R., et al., Global variation in copy number in the human genome. Nature, 2006. 444(7118): p. 444-54.[2] International Schizophrenia, C., Rare chromosomal deletions and duplications increase risk of schizophrenia. Nature, 2008. 455(7210): p. 237-41.[3] Alexander Brik, Daniel G. Weber, Swaantje Casjens, Peter Rozynek, Swetlana Meier, Thomas Behrens, Georgios Stamatis, Kaid Darwiche, Dirk Theegarten, Thomas Brüning, Georg Johnen, Hubertus Himmerich. Digital PCR for the Analysis of MYC Copy Number Variation in Lung Cancer[J]. Disease Markers,2020,2020.[4] Nivedita Majumdar, Thomas Wessel, Jeffrey Marks. Digital PCR modeling for maximal sensitivity, dynamic range and measurement precision.[J]. PLoS ONE,2017,10(3).[5] SuzanneWeaver, Simant Dube, Alain Mir, Jian Qin, Gang Sun, Ramesh Ramakrishnan, Robert C. Jones, Kenneth J. Livak. Taking qPCR to a higher level: Analysis of CNV reveals the power of high throughput qPCR to enhance quantitative resolution[J]. Methods,2010,50(4).
  • 新算法可早期检测废水中新冠病毒变异株|国际战“疫”行动
    据近日发表在《自然》杂志上的论文,美国加州大学圣地亚哥分校和斯克利普斯研究所联合开发了一种名为“Freyja”的算法,用于在早期检测废水中的新冠病毒变异株,只需两茶匙未经处理的污水,就可准确测定新冠病毒变异株。加州大学圣地亚哥分校在数十个地点通过自动采样机器人收集了废水样本,加州大学圣地亚哥分校的实验室分析了这些样本中的新冠病毒RNA水平,并在斯克利普斯研究所实验室做进一步的计算分析。图片来源:埃里克杰普森/加州大学公共艺术委员会 斯克利普斯研究所研究人员开发了一个“条形码”库,可根据每个变异株特有的短RNA片段来识别新冠病毒变异株,并编写了一种新算法,通过筛选废水中的大量遗传信息来匹配这些条形码。由此生成的免费程序Freyja,已经被美国公共卫生机构广泛用于废水监测。  研究人员表示,在实验室对废水样本进行测序后,只需运行Freyja,20秒就可得到结果。当研究人员将Freyja应用于废水样本并将结果与圣地亚哥市的临床数据进行比较时,他们发现该工具在临床报告前14天就在废水中检测出了“值得关切的变异株”,包括阿尔法、德尔塔和奥密克戎变异株。  2021年7月27日,研究人员在加州大学圣地亚哥分校的废水中检测到缪变异株9(B.1.621),这是在校园首次临床检测的4周前检测出来的。同年11月27日,该团队还在圣地亚哥首次临床报告前11天检测到废水中的奥密克戎变异株。
  • 多种疫苗对新冠病毒Lambda变异株的免疫有效性考察,斯微生物的疫苗表现较为良好
    本文节选自中国食品药品检定研究院的研究人员发表的文章《Reduced sensitivity of the SARS-CoV-2 Lambda variant to monoclonal antibodies and neutralizing antibodies induced by infection and vaccination》,由于水平有限,详细内容,请参考原文。COVID-19的大流行,在First报道之后短短几个月时间内,短时间就造成了前所未有的全球性公共健康危机。多种治疗策略已经用于COVID-19,如抗病毒疗法、抗传染治疗、抗促炎细胞因子疗法,被动免疫,单克隆抗体等。其中最有效的方法仍然是安全有效的疫苗途径。Spike蛋白是COVID-19病毒包膜上主要的受体结合蛋白,新冠病人超过90%的中和性抗体靶向Spike蛋白的受体结合区RBD。SARS-CoV-2 Lambda变异,首先在秘鲁被发现,截至2021年9月22日已经在42个国家被检测到。此变异株除S蛋白D614G骨架外,产生的突变位点包括G75V, T761, Del246-252, D253N, L452Q, F490S和T859N。其中Del246-252是位于N端结构域的特有突变。L452Q和F490S是位于抗体识别区域的抗原突变位点。L452R突变被报道增强了病毒的感染能力、融合性,和复制能力。F490L突变导致病毒对某些中和抗体产生耐药性,F490S突变可能会影响现存疫苗的有效性。图1:SARS-CoV-2-Lambda变异株的Spike蛋白结构细胞感染性实验显示相比D614G突变株,Lambda变异株显著增强(P图2:Lambda变异株的感染性分析单克隆抗体中和实验显示,12种单克隆抗体中5种抗体对Lambda变异株的中和保护效应降低或消失。其中,mAb 9G11的保护效应下降了41.7倍,mAb AM180的保护效应几乎消失下降了243倍,mAbs R126, X593和AbG3分别降低了7.7倍、129.2倍、16.9倍。抗体中和效应的降低主要归因于L452Q和F490S的突变。图3:中和抗体用于Lambda变异株的抗原性分析 康复期患者血清的中和实验显示,14份不同患者来源的血清对Lambda的中和能力与D614G相比略有下降(1.3倍)没有显著差异(P图4:康复期患者血清用于Lambda变异株的抗原性分析进一步,疫苗免疫血清对Lambda变异株的中和保护效应被检测。疫苗来源为:mRNA疫苗(斯微生物,艾博生物),灭活疫苗,Ad5腺病毒载体疫苗。mRNA疫苗结果显示:针对Lambda的变异株,斯微、艾博的免疫效应分别降低1.5倍、2倍;针对RBD区域的L452Q和F490S突变假病毒,斯微、艾博的疫苗免疫效应分别降低1.5倍和1.6倍、3.2倍和3.5倍;针对L452Q+F490S联合氨基酸突变假病毒,斯微、艾博的免疫效应分别降低1.9倍、3.8倍。针对G75V突变位点,斯微的疫苗免疫效应增强了1.5倍;针对T761突变位点,艾博的疫苗免疫效应增强了1.5倍。灭活疫苗、腺病毒载体疫苗对Lambda变异株的中和能力分别下降了2倍、2.5倍。图5:疫苗免疫血清用于Lambda变异株的抗原性分析最近,2种假病毒相关的研究显示BNT162b2疫苗对Lambda的中和能力分别下降了3.0倍和1.5倍,mRNA-1273疫苗下降了2.3倍。来自中国的疫苗与BioNTech和Moderna的疫苗对Lambda变异株有相当水平的保护力度,而其中斯微生物的疫苗表现较为良好。同时,虽然疫苗免疫的血清对Lambda变异毒株中和能力有所下降,但抗体滴度仍然较高,因此Lambda变异病毒对现行疫苗的免疫效力没有显著的影响。原文链接:https://doi.org/10.1080/22221751.2021.2008775
  • 首个国产新冠特效药对“最糟糕变异株”有效!
    “昨天刚刚拿到的结果,安巴韦单抗/罗米司韦单抗联合疗法对奥密克戎变异株BA.4和BA.5展现了很好的病毒抑制效果。”7月8日,我国首个自主研发的新冠病毒治疗药物安巴韦单抗/罗米司韦单抗联合疗法举行上市发布会,深圳市第三人民医院院长卢洪洲教授在会上介绍,实验室假病毒研究表明,该药物抑制90%BA.4或BA.5病毒所需要的抗体浓度非常低(16.61μg/ml),可以达到FDA规定的有效标准。图源:视觉中国此外,在过往的临床救治中,安巴韦单抗/罗米司韦单抗联合疗法也展现了不俗的成绩。中国工程院院士钟南山在会上表示,基于临床医生的观察,该联合疗法能够在比较短的时间(2~3天)内让高病毒负荷快速下降,因此,该联合疗法用于治疗病毒负荷量高的病人非常有效。那么,首个国产新冠特效药如何做到“历久弥新”?最佳“抗体对”新冠病毒仍在不断变异,变异出的奥密克戎BA.5免疫逃逸能力强,被美学者称为迄今见过变异株中最糟糕的版本。对中和抗体药物而言,最担心的是病毒变异后发生病毒逃逸。由于中和抗体药物是针对病毒S蛋白的特定靶点设计的,新冠病毒发生变异时如果正好变异在药物靶点上,药物将会完全失效。“此前,已有多个跨国药企研发的中和抗体药物失去对于奥密克戎变异株的抑制活性,被停止临床使用。”卢洪洲说,而首个国产中和抗体药物在抑制奥密克戎变异株时都经受住了考验,不仅在最新的体外实验中展现了抑制奥密克戎BA.4和BA.5的能力,也在临床实践中展现了对于奥密克戎BA.1和BA.2的抑制效果。为什么国产中和抗体药物历经新冠病毒的“巨变”仍持续有效呢?研发团队负责人、清华大学医学院教授张林琦在会上介绍了诀窍:大家都用筛选“抗体对”的方式避免被病毒逃逸,但是筛选“抗体对”有讲究。“两个抗体必须是相互配合、能打出组合拳的,例如要识别病毒的不同位置。”张林琦说,筛选时非常纠结,但基于对整个病毒、抗体相互作用过程的精细化研究,最终从206个候选抗体中筛选出能够对病毒抑制的时间、空间上均相互协调“抗体对”,找到了“最佳搭档”。几个用药优势在用药方面,该联合疗法在起效时长、用药时间、持续有效等方面都有着显著的优势。“起效非常快。”张林琦介绍,团队通过研究找到最佳给药剂量,使得两个抗体在注射到体内几小时内达到非常高的水平,因此药物起效速度非常快。“注射一次可以在体内维持很长时间。”张林琦说,由于在抗体研发方面有着多年的经验和教训,团队特别对抗体进行了一系列优化,使得它在体内的半衰期延长了3~4倍。与小分子药物5~7天的疗程相比,中和抗体注射后3周仍在体内保持杀灭病毒的足够浓度。此外,该联合疗法的使用时间相对宽松。“新冠病毒复制在早期比较明显,小分子抗病毒药物越早用效果越好,一般阳性5天内使用,而我们在6~10天内使用这两个抗体药物依然可以起到很好效果,因此患者的临床适应的范围相对较广。”卢洪洲说。当天,腾盛博药及其旗下控股公司腾盛华创宣布,其长效新冠中和抗体安巴韦单抗和罗米司韦单抗联合疗法在中国商业化上市。该联合疗法于 2021 年 12 月 8 日获得国家药品监督管理局上市批准,2022年3月纳入《新型冠状病毒肺炎诊疗方案(试行第九版)》。
  • 国产抗新冠病毒的广谱单抗 可应对各种变异株
    8月19日,记者从中科院微生物研究所获悉,来自该所等单位的研究人员合作研发出一种能够靶向多种冠状病毒入侵受体ACE2的阻断型单克隆抗体h11B11。该抗体能够有效预防和治疗新型冠状病毒及其突变株感染宿主细胞及模式动物,并在非人灵长类动物中展现出良好安全性。同时,作为新冠肺炎病毒入侵宿主的受体的拮抗剂,该抗体表现出优越的广谱性和中和活性,可应对目前流行的各种变异株。相关成果在线发表于《自然通讯》杂志。新型冠状病毒变异株不断出现,且传播速度越来越快。这给新冠病毒的预防控制带来了巨大挑战,亟需研发出可以应对病毒各种变异株的有效疗法。中和抗体疗法已被证明有效,但变异株的出现,则单一位点的单抗必然失效,广谱中和抗体的研发必须提上日程。幸运的是,近日我国科学家已经成果分离出一株人源化的基因工程单克隆抗体(h11B11),该抗体针对人血管紧张素转化酶 2 (ACE2) 受体。所谓单克隆抗体,是一种免疫球蛋白分子,属于生物药物。新冠肺炎疫情暴发后,靶向病毒表面蛋白的单克隆中和抗体成为潜在的有效治疗新冠肺炎的手段,它通过与新冠病毒结合,抑制病毒的活性,保护细胞免受侵害。相比小分子药物,单抗药物机理清晰,对靶点的选择性高、特异性强。好的单抗药物可以高效率击中靶点,减少副作用。该研究成果对新冠肺炎病毒的抗体治疗,尤其针对目前多种变异株具有重大临床应用价值。经过多种冠状病毒的假病毒和真病毒中和评价,该抗体被证实对新冠病毒及其突变株病毒均具很好的抑制活性。同时,该抗体与微生物研究所早期开发的新冠治疗性抗体CB6联合使用能协同提高中和活性。CB6治疗性抗体是一款靶向新冠肺炎病毒S蛋白RBD的抗体,由微生物研究所高福院士团队和严景华研究员团队联合研发,目前已在美国、欧盟、印度等国家获得紧急使用授权。华中科技大学生命学院杜艳芸博士、中国科学院微生物研究所博士后史瑞、北京大学张莹博士为论文的共同第一作者;中国疾病预防控制中心谭文杰研究员、中国食品药品检定研究院王佑春研究员、华中科技大学生命学院王晨辉教授和中国科学院微生物研究所严景华为本文共同通讯作者。
  • 辽宁省印发《关于做好第三次全国土壤普查的通知》:抓好试点和盐碱地普查
    为深入贯彻落实《国务院关于开展第三次全国土壤普查的通知》(国发〔2022〕4号)要求和全国土壤普查动员部署电视电话会议精神,切实做好第三次全国土壤普查工作,辽宁省人民政府印发《关于做好第三次全国土壤普查的通知》(以下简称《通知》)。《通知》提出要准确把握普查工作要求,认真对照国家明确的普查对象与内容、时间安排、工作要求等,抓紧组织开展普查工作。具体时间安排如下:(一)科学编制实施方案。按照“2022年开展试点、2023—2024年全面开展、2025年完成总结报告”的总体进度安排,科学制定实施方案,合理制定时间表、路线图,明确责任分工。(二)强化技术服务支撑。加强专业技术人员配置,组织专家、科研人员为普查工作提供技术指导与支持,有计划地开展技术培训、业务练兵,提高土壤普查人员队伍专业素养,确保普查工作符合“专业化、标准化、规范化”要求。(三)严格普查质量控制。建立普查工作质量管理体系和普查数据质量追溯机制,层层压实责任。各级普查机构及其工作人员必须严格按要求普查数据,确保数据真实、准确、完整,并按要求报送普查数据。任何地区、部门(单位)和个人都不得虚报、瞒报、拒报、迟报,不得弄虚作假和篡改普查数据。(四)抓好试点和盐碱地普查。沈阳苏家屯区、大连瓦房店市2个试点地区普查工作任务以及全省盐碱地普查工作要按照2022年底前全面完成的要求,统筹当前疫情防控实际,积极创新工作机制,为全省普查工作提供经验。辽宁省第三次全国土壤普查领导小组人员名单  组 长:王明玉  副省长  副组长:孙繁柏  省政府副秘书长      陈 健  省农业农村厅厅长      刘兴伟  省自然资源厅厅长  成 员:王 鹏  省发展改革委副主任      杨 枫  省财政厅副厅长      吕雪峰  省生态环境厅副厅长      王福东  省水利厅副厅长      冀登义  省农业农村厅副厅长      江永平  省统计局副局长      姜生伟  省林草局副局长      马越红  中科院沈阳分院副院长      孙占祥  省农科院副院长      马殿荣  沈阳农业大学副校长  领导小组办公室主任由省农业农村厅副厅长冀登义兼任。
  • 疫情不容乐观,美国49个州检测出新冠变异病毒缪毒株
    传染病专家安东尼福奇博士表示,新冠变异病毒缪毒株也许能够逃避某些抗体的保护。  据《新闻周刊》报道,加州感染缪毒株的病例最多,至少有384例。洛杉矶县公共卫生部门的一份声明中写道,“缪毒株的传染性更强,并具有能逃避某些抗体保护的潜力。然而仍需更多的研究来确定缪毒株是否比其他变异毒株更具传染性、更致命或对疫苗和治疗的抵抗力更强。”  当前,美国新冠肺炎累计确诊病例已经超过4000万例。
  • 药物研发与时间赛跑,新冠病毒变异株恐让疫苗失效?
    “战疫”是一场人类与病毒的较量,也是一场科研与时间的赛跑。新冠病毒出现至今,截至北京时间2021年1月26日7时,全球新冠肺炎累计确诊病例已经超过1亿例,达到100203700例。累计死亡病例超过214万例,达到2147411例(worldometer)。在疫苗研发与新冠病毒争分夺秒“赛跑”的过程中,病毒变异株的出现,更有雪上加霜之势。目前,在英国、南非、美国、澳大利亚、日本、中国等几十个国家都相继发现了新冠病毒变异株所引发的感染。那么,新冠病毒变异株是否会影响病毒的传播?是否会导致感染后的病情加重?是否会影响疫苗的效力、导致阻碍抗疫进程?下面我们通过新冠病毒的进化历程、病毒变异株的研究情况及疫苗的防控情况来解答这些疑惑。1、新冠病毒的进化历程2020年2月,欧洲出现新的变异毒株(D614G)。7月,美国洛斯阿拉莫斯国家实验室研究表明,这种第614位氨基酸发生点突变的新冠病毒突变株正在成为全球主要新冠病毒毒株。2020年8月,非洲尼日利亚出现了新的变异毒株(B.1.1.207),研究表明,这种变异毒株和新冠原毒株比没有明显的变化。2020年10月,英国的病毒专家们对之前保存的一份新冠病毒样本进行检测后,惊讶地发现,这个样本的多处基因片段都发生了突变。研究表明,这种毒株就是后来12月份在英国蔓延传染开的“新冠英国变异毒株”(B.1.1.7)。同月,又一种新的的新冠变异毒株(501.V2)在南非被发现,2020年11月初起成为当地流行的主要毒株。2020年11月,丹麦的日德兰半岛上发现了变异毒株,代号为“Cluster 5”,专家们研究后认定,它是从养殖场的水貂传播到人类身上的。2021年1月,日本国家传染病机构(NIID)从巴西亚马逊州飞抵东京后被隔离的乘客身上,检测出了一种新的的新冠变异毒株(P.1)。研究认为,新冠病毒每月平均发生1-2次突变,这些新突变,可能使新毒株的危险系数直线上升。目前,主要在全球传染的变异毒株为欧洲D614G变异株、英国B.1.1.7变异株,南非501.V2变异株。2、病毒变异株的研究情况D614G变异株D614G突变指的是新冠病毒的第614氨基酸位点 D(天冬氨酸)到 G(甘氨酸)的突变,位于S蛋白。D614G突变的病毒株常伴有5' UTR中的C到T突变(相对于MN908947.3基因组的241位),3037位的C到T突变;在14408位的C到T突变。包含这4个遗传连锁突变的单倍型现已成为全球优势形式,根据GISAID数据库公布的新冠病毒测序结果,发现携带该突变的病毒株主要归类于G型、GR型和GH型。D614G变异株基因突变位点有研究结果表明,携带S蛋白D614G的SARS-CoV-2突变株已成为全球大流行中最普遍的形式,变异后的病毒被证明更具有传染性。D614G变异毒株感染细胞实验不过,目前许多疫苗和疗法重点针对刺突蛋白的受体结合区域(RBD),D614G并不位于RBD区域。同时,自然感染含有D614或G614的病毒产生的抗体可以交叉中和,因此,D614G突变不太可能对目前正在研制的疫苗疗效产生重大影响。B.1.1.7变异株B.1.1.7变异株在D614G突变毒株基础上又多了17个突变,包括14个氨基酸置换突变和3个框内缺失突变。B.1.1.7变异株有8个突变发生在刺突蛋白(S蛋白)上,其中两个值得高度关注。一个是N501Y突变,它会增强新冠病毒与人体细胞ACE2受体的亲和力。另一个则是69-70氨基酸删除突变,会导致两个氨基酸缺失,可能有助于病毒免疫逃逸。B.1.1.7变异株在S蛋白上的突变位点1月21日,《自然》杂志对从英国传播开的新冠病毒变异毒株B.1.1.7进行了探讨。文章称,关于一种新变种的早期数据表明,与病毒的其他谱系相比,它对儿童的传染力相对更强。22日,英国首相约翰逊表示,目前有证据表明,英国的变异病毒株比普通新冠病毒,至少增加了30%的致死率。BioNTech公布的研究显示,对模拟B.1.1.7毒株的“假病毒”进行测试,疫苗接种后的抗血清能够阻止病毒感染细胞,疫苗仍对其有效。501Y.V2变异株501.V2变异株的刺突蛋白上,出现了9个新突变,分为两组,一组突变在NTD区域((L18F, D80A, D215G, Δ242-244, R246I),另外一组在受体结合区(RBD)(K417N,E484K,N501Y)。受体结合区(RBD)是病毒刺突蛋白与人细胞表明的受体ACE2结合的关键部位,这3个关键位点在发生突变之后,可能导致病毒结合受体的能力增强,更容易侵入人体细胞。疫苗介导产生的多抗体在新冠病毒受体结合域上的作用位点1月19日,南非国家传染病研究所(NICD)发表研究, 501Y.V2变异株不但让三类抗新冠病毒单克隆抗体失效,还能躲过新冠康复者血清中的中和抗体。也就是说,其可能会让血浆治疗失效,甚至会降低疫苗效力,接种疫苗可能会再次感染。3、疫苗的防控情况面对病毒不断进化的严峻局势,现有新冠疫苗对新的变异毒株能否起效,决定着全球疫情防控局势的走向。据公开资料显示,新冠病毒通过其表面的刺突蛋白(Spike蛋白,S蛋白)与宿主细胞表面的ACE2受体结合,进而入侵细胞。目前主要的mRNA疫苗能够诱导产生中和抗体,进而抑制新冠病毒的刺突蛋白与人类细胞表面的ACE2受体的结合,从而阻断新冠病毒感染。新冠病毒感染机理有明确数据表明,疫苗对各种变异株都有一定的预防作用。灭活疫苗免疫以后,对包括英国突变的毒株和以往全球分离到的大概八九株的不同的变异株都有中和效果。因此,我国的新冠病毒灭活疫苗是广谱保护的,对来自全球不同地区的毒株都有很好的交叉中和。虽然南非毒株在核心位点E484K发生关键突变,导致mRNA疫苗产生的部分中和抗体效力大打折扣,但影响是有限的。因此,疫苗接种依然对于南非毒株有效果,扩大疫苗接种至关重要。关于人们最关注的疫苗升级问题,日前邵一鸣接受环球时报采访时表示,如未来真的出现需升级疫苗应对病毒的逃逸,我国企业在拿到变异毒株后,只需要更换病毒发酵罐中的种子病毒即可,其他工序不需要做任何调整,预计2个月即可完成升级更新。所以,面对新冠病毒的不断进化,我们不必感到恐慌,国家研发机构在最早开始设计新冠疫苗,就已经为可能发生的最坏结果做了充足的准备!
  • 全球首个!钟南山团队首次精确描绘德尔塔变异株的完整传播链
    南京、扬州的疫情还没过去多久,这几天福建疫情又刷爆了热搜,让人们稍微平静的心再次悬了起来。经检测,此次疫情仍是因德尔塔变异毒株感染引起的,那么德尔塔变异株的完整传播链到底是怎样的?  近日,钟南山院士联合广州医科大学附属市八医院的相关科研学家给出了答案,他们在《柳叶刀》子刊《EClinical Medicine》发表了一篇题为“Transmission, viral kinetics and clinical characteristics of theemergent SARS-CoV-2 Delta VOC in Guangzhou, China”的文章,将流行病学和病毒基因组测序技术相结合,针对此前德尔塔病毒在广州引起的“521新冠肺炎疫情”进行深入分析,首次追踪并完整报道了这起疫情的清晰传播链,并结合临床资源,多方位描绘了这次疫情中感染者的临床特征及病毒的动力学特征。  据悉,此次“521新冠肺炎疫情”的起因是一名75岁女性因意外暴露感染,并通过密切的家庭接触或聚餐又感染其他3人,然后该变异病毒传播6代,致使159人感染。此外,研究人员观察到,该疫情中病毒的传播途径主要是通过直接和间接近距离接触,其中30.8%的感染者是用餐传播,30.13%的感染者是家庭接触传播、18.59%的感染者是社区传播、19.87%的感染者是包括工作和社交接触在内的其他传播途径。  为了了解德尔塔变异毒株的主要特点,研究人员提取了2021年5月21日至6月18日期间七个传播代的159例德尔塔感染病例相关的流行病学和临床信息,并将病毒载量动力学和临床特征与广州第八人民医院2020年收治的野生型感染队列进行多方位分析比较。  研究结果显示,与普通新冠毒株相比,德尔塔变异株的潜伏期短,传播速度快,在10天内可传播4代,中位潜伏期只有4.7天,其中最快的代际传播不超过24小时。不仅如此,德尔塔变异株感染者的病毒载量也更高,感染后核酸转阴的时间明显延长。  除此之外,感染德尔塔变异株是预测病情转为危重症的危险因素,在60岁及以上老年患者中,感染德尔塔变异株出现危重症的风险是感染野生株的1.65倍,发展为危重症的速度比野生株快2.98倍。这说明快速追踪、隔离以及时发现病毒感染者,对重点场所实施及时管控和在特殊情况下实施局部地区全员核酸筛查均非常重要。  (图注:德尔塔毒株的流行病学传播网络)  总而言之,这项研究揭示了德尔塔变异毒株具有潜伏期短、传播速度快、病毒载量高、核酸转阴时间长、更易发展为危重症的特点。但值得注意的是,这里的一项“潜伏期”数据似乎与近日发生的“莆田疫情”不符,据了解,莆田疫情源头疑似出现了“38 天”的潜伏期。为此,有专家分析可能有3种原因。  其一是检测结果出现“假阴性”。但德尔塔毒株病毒载量较高,理论上应该可以轻松检测出来,出现这种现象的概率极小。而另一种推测是患者出现了所谓的超长潜伏期,相关专家表示,不排除个别病例存在超长潜伏期的可能性。超长潜伏期或者长期病毒携带者在其他一些病毒感染中曾被发现过,比如在脊髓灰质炎中,有些免疫缺陷患者感染后会长期排毒,甚至长达数年。因此尽管还不清楚新型冠状病毒是否也能在特殊人群中长期携带,但这种风险也需要考虑。此外,还有最后一种可能就是隔离过程中的暴露感染。  对此,相关专家表示,“外防输入、内防反弹”的任务依然艰巨,防控须臾不可放松,没有发生疫情时关键在“防”,发生疫情后处置措施要“快”要“细”,核酸检测、流调溯源、风控管理、场所和物资准备等每一个环节都要责任到人、精准到位,只有做好“万无一失”的准备,才能避免“一失万无”的后果。
  • 植物功能性状种内种间变异与环境响应机制获揭示
    植物功能性状对于探讨全球变化背景下植物的响应和适应、生态系统功能和过程,以及生物多样性监测等至关重要。近日,广东省科学院广州地理研究所粤港澳大湾区城市群生态系统观测研究站生态系统保护修复团队王智慧博士利用高光谱遥感技术,研究揭示了植物功能性状种内种间变异与环境响应机制。相关研究发表于《新植物学家》(New Phytologist)。据介绍,以往的性状研究主要采用野外采样和室内分析,针对大区域尺度多种植物叶片性状的同步观测非常稀缺。同时,研究大多只针对性状的物种平均值进行研究,忽略了物种内部存在的较大变异,且主要局限于“叶片经济型谱”性状,而对结构、防御和压力承受等多维性状关注较少。植物性状之间的协同权衡关系以及性状-环境因子的相关关系,在物种内部和物种之间是否呈一致性变化,尚未得到明确的答案。在该项工作中,研究人员利用高光谱遥感技术,同步获取跨生态气候梯度32个野外站点1103个植物个体的14种关键叶片性状,探讨性状的协同权衡关系、性状-环境因子相关关系在种内和种间水平的表现和差异,揭示植物在环境变化条件下的最优生长和适应策略。研究发现,在物种水平,叶片经济型谱与防御和压力承受性状关系很弱,但在物种内部关系明显变强;环境因子对跨物种叶片性状变异的解释很低,但对某些物种个体表现出显著强相关。结果表明,叶片性状呈独特性变化,不同物种采取多样化性状组合以达到适合度。高光谱遥感能够提供刻画多种关键植物叶片功能性状的全新高效手段,可在大尺度量化种内种间性状变异以及与环境因子的关系,有助于推动生态学相关领域的发展。上述研究得到国家自然科学基金、广东省自然科学基金和广东省科学院建设国内一流研究机构行动专项等项目的支持。
  • Nature Genetics重磅|中国研究团队发现鼻咽癌高风险EBV变异亚型
    p style=" text-align: left line-height: 1.5em text-indent: 2em margin-bottom: 10px " & nbsp EBV (Epstein–Barr virus)感染在世界各地普遍存在,它与鼻咽癌在内的多种癌症的发生发展相关,其中就包括鼻咽癌(nasopharyngeal carcinoma,NPC)。但EBV病毒基因变异在NPC病程发展及其在华南地区广泛流行中的重要作用尚不清楚。来自中山大学、新加坡基因组研究院等单位的研究团队通过对270个EBV分离株进行大规模全基因组测序和关联分析,成功鉴定BALF2基因上的两个非同义突变SNP与华南地区鼻咽癌高风险相关,与83%华南地区鼻咽癌高风险人群有关,对于鼻咽癌的早期发现和预防具有重大意义,该成果于2019年6月17日发表在顶级期刊《Nature Genetics》上。 /p p style=" text-align: center line-height: 1.5em text-indent: 0em margin-bottom: 10px " span id=" _baidu_bookmark_start_142" style=" line-height: 0px display: none " ? /span span id=" _baidu_bookmark_start_148" style=" line-height: 0px display: none " ? /span /p p style=" text-align: center " img width=" 600" height=" 311" title=" 微信图片_20190620094717.jpg" style=" width: 600px height: 311px max-height: 100% max-width: 100% " alt=" 微信图片_20190620094717.jpg" src=" https://img1.17img.cn/17img/images/201906/uepic/cc70be6e-b209-4619-8b19-f58af5cab939.jpg" border=" 0" vspace=" 0" / /p p style=" line-height: 1.5em margin-bottom: 10px "   值得一提的是, Agena MassARRAY核酸质谱技术作为验证性技术参与了该项研究,在全基因组测序结果验证和全基因组关联分析发现的重要SNP扩大样品验证中起着举足轻重的作用,接下来请跟随小编一探究竟吧。 /p p style=" line-height: 1.5em margin-bottom: 10px "   一、EVB全基因组测序及结果验证 /p p style=" line-height: 1.5em margin-bottom: 10px "   作者通过高通量测序技术对270个EBV分离株进行了全基因组测序,并通过不同的技术对测序结果及变异calling准确性进行了验证,结果显示,Agena MassARRAY与WGS结果的一致性最高,达99.99%。 /p p style=" text-align: center line-height: 1.5em text-indent: 0em margin-bottom: 10px " /p p style=" text-align: center " img width=" 600" height=" 272" title=" 转载1.jpg" style=" width: 600px height: 272px max-height: 100% max-width: 100% " alt=" 转载1.jpg" src=" https://img1.17img.cn/17img/images/201906/uepic/0311ad5d-f4a2-49c1-a1e0-3585a0f2b807.jpg" border=" 0" vspace=" 0" / /p p style=" line-height: 1.5em margin-bottom: 10px "   二、SNP与鼻咽癌全基因组关联分析 /p p style=" line-height: 1.5em margin-bottom: 10px "   作者从270个分离株中选取了203株(Case :156,Control:47)来自鼻咽癌高发区的广东、广西两地的病人及健康对照,通过multi-SNP对全基因组测序结果进行分析,发现了3个具有显著差异的SNP位点,分别为162215C& gt A,SNP162476T& gt C和SNP163364C& gt T,并通用MassARRAY在扩大样品中进行验证。  /p p style=" text-align: center " & nbsp span id=" _baidu_bookmark_start_119" style=" line-height: 0px display: none " ? /span /p p style=" text-align: center " img width=" 600" height=" 313" title=" 2.jpg" style=" width: 600px height: 313px max-height: 100% max-width: 100% " alt=" 2.jpg" src=" https://img1.17img.cn/17img/images/201906/uepic/cc8bfc6b-acfa-4df8-8595-63d5527c608e.jpg" border=" 0" vspace=" 0" / /p p style=" text-align: center line-height: 1.5em margin-bottom: 10px " & nbsp /p p style=" line-height: 1.5em margin-bottom: 10px "   结果展示:通过 EBV变异体全基因组关联分析鉴定的3个与鼻咽癌高风险相关SNP /p p style=" text-align: center " img title=" 3.jpg" style=" max-height: 100% max-width: 100% " alt=" 3.jpg" src=" https://img1.17img.cn/17img/images/201906/uepic/9942c0d2-fd43-4ac4-8962-9f5b0ec7e915.jpg" / /p p style=" line-height: 1.5em margin-bottom: 10px "   这些鼻咽癌高危型EBV毒株的发现对减少NPC的发生可能具有非常重要的理论和应用价值,特别是在华南地区的NPC高发区,通过检测这些EBV高危亚型能够更早识别出高危个体,以便有针对性地尽早实施常规临床监测,尽早发现鼻咽癌,通过开发针对高危EBV突变体毒株的疫苗,有望在华南地区大大减少癌症的发病率。 /p
  • 我国对强传染性变异病毒开始国家保藏与共享!
    连日来,变异病毒迅速扩散,据英国媒体称,已有70余个国家出现变异病毒。近日,非洲流行病学专家宣布南非境内首次发现新冠变异病毒,并已于2020年底鉴定为501Y.V2变异病毒,传染力比此前发现的集中更强。1月6日,广东省疾控中心成功从一例京外输入南非籍新冠肺炎病例的咽拭子中分离出501Y.V2南非突变株。中国疾病预防控制中心网站消息,日前,在国家卫生健康委科教司大力推动和具体指导下,中国疾控中心迅速启动了由广东省疾控中心分离的501Y.V2南非突变株(下称突变株)国家保藏与共享工作。通过国家病原微生物保藏中心(国家病原微生物资源库)与广东省疾控中心密切合作,经复核,并给予国家保藏唯一标号NPRC 2.062100001入库后,中国疾控中心随即向中国医学科学院、中国科学院等相关科研单位,以及国家病毒资源库、国家人类疾病动物模型资源库等国家科技资源共享服务平台共享毒株。相关单位在最短时间内获得突变株,为迅速启动全国科研联合攻关,评价现有诊断试剂、疫苗研发、动物模型,并为调整疫情防控策略可能性提供了支撑。“十三五”期间,在国家卫生健康委部署规划下,我国病原微生物保藏网络基本形成,国家病原微生物保藏中心建立健全了国家保藏和对外提供共享协议、国家保藏编号规则等国家保藏制度。2020年1月24日,国家病原微生物保藏中心(国家病原微生物资源库)发布全球首株新冠病毒保藏信息后,这次组织协调任务再次发挥了国家病原微生物保藏中心职能作用,使得国家保藏与共享工作又向前迈出了坚实一步,促进了国家保藏与共享工作更加规范、有序。《中华人民共和国生物安全法》将于2021年4月15日正式实施。做好菌(毒)种等生物安全国家战略资源平台建设,建立共享利用机制,是贯彻落实生物安全法的重要任务。下一步,国家病原微生物保藏中心将通过“十四五”规划等顶层设计,进一步加强设施设备条件建设,健全完善国家病原微生物保藏中心制度体系和工作机制,不断增强我国病原微生物资源质量和自我保藏能力、夯实国家生物安全基础,为生物安全科技创新提供战略保障和支撑。
  • 使用共价标记质谱区分组氨酸互变异构体
    大家好,本周为大家分享一篇发表在Anal Chem.上的文章,Distinguishing Histidine Tautomers in Proteins Using Covalent Labeling-Mass Spectrometry [1]。该文章的通讯作者是来自马萨诸塞大学阿默斯特分校的Richard W. Vachet教授。组氨酸是人体蛋白质结构中的重要组成氨基酸,研究发现,组氨酸具有Nδ-H和Nε-H两种互变异构体,通过两种互变异构体的转换,可以在蛋白质中介导质子转移。目前常使用2D NMR技术进行区分,但操作相对繁复。共价标记质谱是一种研究蛋白质结构的有力方法,具有操作简单,灵敏度高,结构分辨率高等优点。在本文中,作者尝试以焦碳酸二乙酯(DEPC)为标记试剂,采用共价标记质谱区分组氨酸互变异构体。组氨酸侧链的咪唑上具有两个氮原子,其中一个氮上的孤电子对参与芳香环π键的组成,而另一个氮原子仍保留孤对电子,更容易与DEPC等亲电子试剂反应。而组氨酸的两个互变异构体中都只有一个保留孤对电子的氮原子,且该氮原子位置不同,Nδ-H互变异构体中的Nε2与DEPC反应,而Nε-H互变异构体中的为Nδ1。因此以DEPC标记组氨酸以区分两个互变异构体的方法是可行的(图1)。图1. DEPC 结构及其与两种不同组氨酸互变异构体的反应 为了测试DEPC 标记区分两种互变异构体的能力,作者以几种含组氨酸的肽,在确保DEPC仅标记组氨酸条件下进行实验。以Fmoc-DGHGG-NH2为例子,该肽在N端包括一个Fmoc基团以确保仅标记组氨酸。采用等度洗脱来最大限度地利用LC分离两种异构体,并确保流动相组成不影响肽段电离效率,从而可以更好地量化每个互变异构体的比率。结果发现,在11.4和13.6分钟洗脱的峰具有相同的m/z值(图2)。根据串联MS数据,发现这两个峰代表着组氨酸上成功标记DEPC的单一物质(图3)。并且,这些同量异位离子的串联质谱不同,表明这两种物质为带有不同组氨酸互变异构体的物质。作者将先洗脱出的物质命名为修饰物质1,后洗脱出的为修饰物质2。根据MS/MS数据,两者的主要区别为修饰物质2具有更加丰富的羧基化a3离子(a3*)。图2. 未标记(蓝色迹线)和 DEPC 标记(红色迹线)肽 Fmoc-DGHGG-NH 2的提取离子色谱图。DEPC浓度比肽浓度高10倍,反应1分钟图3. 两种修饰的His异构体的串联质谱。(a)来自图2中的色谱图的修饰物质 1 的串联质谱。(b)来自图2中的色谱图的修饰物质2的串联质谱。标有星号 (*) 的产物离子包含羧基化产物此外,在重复实验中,作者发现物质2与物质1的丰度比为3.9± 0.2。而研究发现,在中性pH条件下,游离氨基酸Nε-H 互变异构体与 Nδ-H 互变异构体的比接近于4:1。因此,两物质的峰面积比表明物质1可能为 Nδ-H 互变异构体,而物质2可能为 Nε-H 互变异构体。结合以上发现,并考虑肽解离途径等因素,作者对两物质质谱图谱差异做出推测。当物质2为Nε-H互变异构体侧链时,DEPC 标记在Nδ1上,有利于肽通过bx-yz途径解离,随后通过bx-ax途径损失CO,因此物质2富含a3*离子。当物质1为Nδ-H 互变异构体时,DEPC 标记在Nε2上,肽通过组氨酸途径解离,并形成了稳定五元环,因此优先形成更稳定的b3*离子(图4)。以上发现进一步证明了Fmoc-DGHGG-NH2中物质1为 Nδ-H 互变异构体,物质2为 Nε-H 互变异构体。根据丰度比以及肽解离途径不同,作者在其他模型肽标记实验中也成功区分两互变异构体。由于组氨酸的pKa在一定程度上会影响互变异构体的比例,因此两互变异构体的丰度比可能会略有变化。总之,以上结果表明,DEPC共价标记质谱可以识别两个组氨酸互变异构体。图4. DEPC 标记的含组氨酸肽 CID 过程中两种异构体的肽片段化途径。左侧通路为物质1(Nδ-H互变异构体),右侧通路为物质2(Nε-H互变异构体)之后,作者还进一步研究了不同DEPC浓度对实验的影响。结果发现,在 DEPC 浓度范围超过一个数量级时,Fmoc-DGHGG-NH2的两种修饰形式的比率基本在4左右保持恒定,其他模型肽的比率略有不同(图5),但随着 DEPC 浓度的增加,给定肽的标记比率保持不变。在质谱可以确认互变异构体结构的肽中,Nε-H互变异构体总是丰度相对更高,洗脱相对较晚。此外,作者发现当组氨酸不是位于N末端残基时,Nε-H 互变异构体的an */bn *比率总是比Nδ -H 互变异构体的更高。但是,若组氨酸残基位于肽的N末端时,在质谱中观察不到b1和a1离子,将对结果造成影响。图 5. 在 DEPC 浓度增加时选择肽的两种修饰形式的标记比率。(a) Fmoc-DGHGG-NH2;(b) Ac-IQVYSRHPAENGK(Ac);(c) Ac-VEADIAGHGQEVLIR;(d) Ac-LFTGHPETLEK(Ac)。MS/MS 用于通过测量an /bn离子的比率来确认每个互变异构体总而言之,作者成功使用DEPC共价标记质谱区分肽与蛋白质中的组氨酸互变异构体,利用丰度比与洗脱时间,以及CID期间的肽解离模式,区分两种互变异构体。利用该方法,作者团队已经确定了几种蛋白质组氨酸互变异构体比率,并且相对于2D NMR方法,该方法更简单、更快、更精确,有利于探索蛋白质中组氨酸残基周围的局部结构,提供高分辨率的结构信息。[1]Pan X, Kirsch ZJ, Vachet RW. Distinguishing Histidine Tautomers in Proteins Using Covalent Labeling-Mass Spectrometry. Anal Chem. 2022 Jan 18 94(2):1003-1010.
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制