当前位置: 仪器信息网 > 行业主题 > >

木素磺酸铵

仪器信息网木素磺酸铵专题为您提供2024年最新木素磺酸铵价格报价、厂家品牌的相关信息, 包括木素磺酸铵参数、型号等,不管是国产,还是进口品牌的木素磺酸铵您都可以在这里找到。 除此之外,仪器信息网还免费为您整合木素磺酸铵相关的耗材配件、试剂标物,还有木素磺酸铵相关的最新资讯、资料,以及木素磺酸铵相关的解决方案。

木素磺酸铵相关的资讯

  • Detelogy应用分享:化工产品中全氟辛烷磺酸(PFOS)的测定的前处理方案
    全氟辛烷磺酸类物质(PFOS)作为一种重要的全氟化表面活性剂,因其具有疏油疏水的特性,被广泛用于民用和工业产品生产的多个领域,如我们日常熟悉的一次性饭盒,食品塑料包装袋、不粘锅、纺织品、皮革、地毯、油墨行业、消防泡沫、影像材料和航空液压油等产品中都含有它。在生产和使用过程中,PFOS会释放到环境中,研究发现各种环境介质都有PFOS的存在,是最难降解的污染物之一。同时PFOS还被发现能在生物体中蓄积,并可对肝脏、神经和免疫等系统造成一定的损伤。鉴于PFOS具有POPs的这些特征,2009年,PFOS被列入《关于持久性有机污染物(POPs)的斯德哥尔摩公约》,成为受控POPs之一,PFOS污染已成为全球性的环境污染问题。下面以SN/T 2392-2009《进出口化工产品中全氟辛烷磺酸的测定液相色谱-质谱/质谱法》Detelogy提供化工产品中全氟辛烷磺酸的测定的实验方案实验流程01 石蜡样品称取试样约2g(半固体样品需加入约1g硅藻土,搅拌均匀)。放入iQSE-06智能快速溶剂萃取仪萃取池中,池内样品的上下两层均用专用滤膜保护,轻轻压实至池底部,按下面条件进行提取。提取完毕后,将提取液转移至200mL浓缩管中,置于FlexiVap-12全自动平行浓缩仪在40℃水浴中进行浓缩,用甲醇定容至20mL,取1mL溶液用0.2μm滤膜过滤,滤液供LC-MS/MS测定。02 溶剂性涂料及胶粘剂样品称取2g试样于50mL离心管中,加入30mL甲醇,用MultiVortex多样品涡旋混合器振荡提取30min,再超声提取20min。置离心机中,以4000r/min离心10min。吸取上清液于200mL浓缩管中。重复上述提取步骤,合并提取液,置于FlexiVap-12全自动平行浓缩仪在40℃水浴中进行浓缩。用甲醇定容至20mL,取1mL溶液用0.2μm滤膜过滤,滤液供LC-MS/MS测定。03 润滑油样品称取2g,于50mL离心管中,加入5mL甲醇,用MultiVortex多样品涡旋混合器混匀,置离心机中,4000r/min离心10min。上清液待净化。将C18柱固定于iSPE-864全自动智能固相萃取仪。洗脱液置于FV32Plus全自动高通量智能平行浓缩仪于40℃水浴中旋转浓缩。用甲醇定容至20mL,取1mL溶液经0.2μm滤膜过滤,滤液供LC-MS/MS测定。上述智能方案中使用到的仪器
  • 国家市场监督管理总局对《表面活性剂 工业烷烃磺酸盐 直接两相滴定法测定烷烃单磺酸盐含量》等130项拟立项国家标准项目公开征求意见
    各有关单位:经研究,现对《涤棉混纺色织布》等130项拟立项国家标准项目公开征求意见,征求意见截止时间为2024年8月4日。请登录请登录标准技术司网站征求意见公示网页http://std.samr.gov.cn/gb/gbSuggestionPlan?bId=10001901,查询项目信息和反馈意见建议。2024年7月5日相关标准如下:#项目中文名称制修订截止日期1玻璃制品 玻璃容器内表面耐水侵蚀性能 用滴定法测定和分级修订2024-08-042表面活性剂 工业烷烃磺酸盐 直接两相滴定法测定烷烃单磺酸盐含量修订2024-08-043洗涤剂中无机硫酸盐含量的测定 重量法修订2024-08-044首饰 镍释放量的测定 光谱法修订2024-08-045玩具及儿童用品材料中总铅含量的测定修订2024-08-046纸、纸板和纸浆 水抽提液电导率的测定修订2024-08-047瓦楞芯(原)纸修订2024-08-048瓦楞芯纸 实验室起楞后平压强度的测定修订2024-08-049瓦楞纸板修订2024-08-0410瓦楞纸板 边压强度的测定(边缘补强法)修订2024-08-0411瓦楞纸板 厚度的测定修订2024-08-0412医用电气设备 剂量面积乘积仪修订2024-08-0413纸、纸板、纸浆及相关术语修订2024-08-0414纸、纸板和纸浆 包装、标志、运输和贮存修订2024-08-0415造纸原料和纸浆 多戊糖的测定修订2024-08-0416纸板 耐破度的测定修订2024-08-0417纸和纸板 不透明度(纸背衬)的测定(漫反射法)修订2024-08-0418纸和纸板 厚度的测定修订2024-08-0419纸和纸板 孔径的测定修订2024-08-0420纸和纸板 伸缩性的测定修订2024-08-0421纸和纸板 撕裂度的测定修订2024-08-0422纸和纸板 颜色的测定(C/2°漫反射法)修订2024-08-04
  • 日本:牛磺酸被列为不影响人体健康的物质
    2009年6月23日,日本厚生劳动省发布食安发第0623002号通知:近日,日本厚生劳动省对食品卫生法第11条第3项中所规定的不对人体健康造成影响的物质(厚生劳动省大臣所指定的物质)进行了部分修改。具体情况如下:   第1 修改的摘要   在食品卫生法(1947年法律第233号)第11条第3项的规定的不对人体健康造成影响的物质(厚生劳动省大臣所指定的物质)中追加牛磺酸。   第2 实施、应用日期   自公布之日起开始实施   第3 其他   根据有关确保饲料安全性以及改善质量的法律(1953年法律第35号),由农林水产部指定牛磺酸及制定其标准、规格。
  • 再度出击,聊聊亚硝胺类和磺酸酯类遗传毒性杂质检测方案
    遗传毒性(Genotoxicity)是指遗传物质中任何有害变化引起的毒性,而不参考诱发该变化的机制,又称为基因毒性。遗传毒性杂质(Genotoxic Impurities, GTIs)是指能引起遗传毒性的杂质,包括致突变型杂质和其他类型的无致突变性杂质。致突变型杂质(Mutagenic Impurities)指在较低水平时也有可能直接引起DNA损伤,导致NDA突变,从而可能引发癌症的遗传毒性杂质[1]。目前遗传毒性列表中有1574种致癌物质,亚硝胺类、磺酸酯类和苯并芘类等属于高遗传毒性物质。近年来,出现多起已上市的药品中发现遗传毒性,继而被召回的案例。  例如某制药企业在欧洲推出的抗艾滋药物Viracept(nelfinavir mesylate),EMA在2007年7月暂停了它在欧洲的所有市场活动,因为在其产品中发现甲基磺酸乙酯超标。经自查,发现存储罐中乙醇残留,放置3个月导致甲磺酸乙酯达到2300ppm,去掉存储罐,增加对甲磺酸乙酯的控制要求低于0.5ppm,EMA对新工艺重新评估,对工厂进行现场检查,2007年10月重新获得上市许可。2018年7月,欧盟药品管理局报道在其对某企业含有ARB药物缬沙坦原料药的药物抽查汇总发现了杂质NDMA,其平均含量达66.5ppm,超过欧盟标 准0.3ppm。随后全球已有包括美国,加拿大,挪威,德国等22个国家召回共2300批该企业的含有沙坦类原料药的降压药。相关药企沙坦原料药中的NDMA经推断疑似来源于药物合成过程中使用的溶剂N,N-二甲基甲酰胺(DMF)与亚硝酸钠在酸性条件下反应产生的微量副产物,即NDMA。随后FDA发布了GCMS测定NDMA和NDEA的方法。2019年3月,又一种亚硝胺类杂质(NMBA)在ARB药物氯沙坦中被发现,但是该物质不能直接被GCMS测定。 9月FDA发表声明,在雷尼替丁中发现NDMA,但是不适用于GCMS方法测定。原因是雷尼替丁结构中,硝基和二甲胺在高温下从母核解离,结合成NDMA,对GCMS法测定产生干扰。  岛津中国创新中心,不仅致力于科研领域,同时时刻关注各行业的发展和社会的需求,秉承着以科学技术向社会做贡献的宗旨不断前行。本项目针对部分亚硝胺类和磺酸酯类遗传毒性杂质在药品原料药中的测定提供检测方法,为行业客户提供参考。针对客户比较关心的几种遗传毒性杂质分别建立了方法,并完成完整的方法学验证。  2019年6月,创新中心率先推出遗传毒性杂质NMBA(N-亚硝基-N-甲基-4-氨基丁酸)LC-MS/MS解决方案。与此同时,对NDMA和NDEA的研究也已在《分析试验室》2020年39卷2期上发表杂质上发表;关于NMBA的研究已在《中国药学杂志》2020年55卷3期上发表。如下将上述研究报告分别简述,供行业客户参考。 1. HS-GC-MS检测原料药厄贝沙坦中N-亚硝基二甲胺和N-亚硝基二乙胺   本文利用岛津公司GCMS-QP2020 NX气相色谱-质谱联用仪结合HS-20顶空进样器,建立了原料药厄贝沙坦中N-亚硝基二甲胺和N-亚硝基二乙胺的同时测定方法。在10~500ng/mL浓度范围内各组分线性关系良好,相关系数均达到0.999以上,100ng/mL标准品溶液连续进样6针,各组分峰面积RSD均小于2.40%。阴性空白样品在40,80,160ng/mL加标浓度时,回收率为100.6%-104.6%,阳性空白样品回收率为101.8%-108.7%。该方法简单方便,顶空进样不污染气化室,能够有效的检测原料药厄贝沙坦中N-亚硝基二甲胺和N-亚硝基二乙胺的含量。 2. 岛津中国推出氯沙坦钾中N-亚硝基-N-甲基-4-氨基丁酸(NMBA)解决方案   本文利用岛津公司LCMS-8050高效液相色谱-三重四极杆质谱联用仪,建立了原料药中氯沙坦钾中NMBA的测定方法。该方法中NMBA在0.1 ~ 50.0 ng/mL范围内线性关系良好,日内和日间的精密度保留时间和峰面积的重复性良好(RSD均小于1.10%,n = 6和n = 18),在低中高3个浓度的平均回收率在94.40 ~ 98.04%之间。该方法简单方便,能够快速有效的检测氯沙坦钾原料药中NMBA的含量。 3. GC-MS内标法测定甲磺酸中甲磺酸甲酯、甲磺酸乙酯、甲磺酸异丙酯   本文利用岛津公司GCMS-QP2020 NX气相色谱-质谱联用仪,参照《欧洲药典》9.0和ICH指导原则,建立了以甲磺酸丁酯(BMS)为内标测定甲磺酸中甲磺酸甲酯(MMS)、甲磺酸乙酯(MES)和甲磺酸异丙酯(IMS)的方法并完成方法学验证。在1~10000ng/mL浓度范围内甲磺酸甲酯线性关系良好,在1~100ng/mL内甲磺酸乙酯和甲磺酸异丙酯线性关系良好,相关系数均达到0.999以上,样品平行测定6次,计算各组分含量RSD均小于3.33%。样品在650,850,1000ng/mL加标浓度时,MMS回收率为91.85%-103.09%,在10ng/mL加标浓度时,EMS、IMS回收率为92.21%-105.93%。该方法灵敏度和准确度高,能够有效的检测甲磺酸中MMS、EMS和IMS的含量。 4. GC-MS内标曲线法测定甲磺酸中甲磺酰氯   本文利用岛津公司GCMS-QP2020 NX气相色谱-质谱联用仪,参照《欧洲药典》9.0和ICH指导原则,建立了以甲磺酸丁酯(BMS)为内标测定甲磺酸中甲磺酰氯的方法并完成方法学验证。在1~5000ng/mL浓度范围内甲磺酰氯线性关系良好,相关系数达到0.999,样品平行测定6次,计算组分含量RSD为1.19%。样品在320,400,480ng/mL加标浓度时,甲磺酰氯回收率为100.09%-109.84%。该方法灵敏度和准确度高,能够有效的检测甲磺酸中甲磺酰氯的含量。 5. HS-GC-MS法测定甲磺酸倍他司汀中甲磺酸甲酯、甲磺酸乙酯、甲磺酸异丙酯   本文利用岛津公司GCMS-QP2020 NX气相色谱-质谱联用仪结合HS-20顶空进样器,参照《欧洲药典》9.0和ICH指导原则,建立了以甲磺酸丁酯(BMS)为内标,通过碘化钠衍生化,测定甲磺酸倍他司汀原料药中甲磺酸甲酯(MMS)、甲磺酸乙酯(MES)和甲磺酸异丙酯(IMS)的方法并完成方法学验证。在1~250ng/mL浓度范围内MMS和EMS线性关系良好,在1.5~250ng/mL内IMS线性关系良好,相关系数均达到0.999以上,样品加标平行测定6次,计算各组分含量RSD均小于2.40%。样品在80,100,120ng/mL加标浓度时,MMS、 EMS和IMS回收率在93.86%~112.21%之间。该方法操作简单,灵敏度和准确度高,能够有效的检测甲磺酸倍他司汀中MMS、EMS和IMS的含量。 6. HS-GC-MS法测定甲苯磺酸舒他西林中甲苯磺酸甲酯、乙酯、异丙酯   本文利用岛津公司GCMS-QP2020 NX气相色谱-质谱联用仪结合HS-20顶空进样器,参照《欧洲药典》9.0和ICH指导原则,建立了以甲磺酸丁酯(BMS)为内标,通过碘化钠衍生化,测定甲苯磺酸舒他西林原料药中甲苯磺酸甲酯(MTS)、甲苯磺酸乙酯(ETS)和甲苯磺酸异丙酯(ITS)的方法并完成方法学验证。在1.5~250ng/mL浓度范围内MTS和ETS衍生化后的碘甲烷(MeI)和碘乙烷(EtI)线性关系良好,在3~250ng/mL内ITS衍生后的(iPrI)线性关系良好,相关系数均达到0.998以上,样品加标平行测定6次,计算各组分含量RSD均小于4.50%。样品在20,40,60ng/mL加标浓度时,MTS、 ETS和ITS回收率在92.50 %~108.13%之间。该方法操作简单,灵敏度和准确度高,能够有效的检测甲苯磺酸舒他西林中MTS、ETS和ITS的含量。 7. HS-GC-MS法测定苯磺酸氨氯地平中苯磺酸甲酯、乙酯、异丙酯   本文利用岛津公司GCMS-QP2020 NX气相色谱-质谱联用仪结合HS-20顶空进样器,参照《欧洲药典》9.0和ICH指导原则,建立了以甲磺酸丁酯(BMS)为内标,通过碘化钠衍生化,测定苯磺酸氨氯地平原料药中苯磺酸甲酯(MTS)、苯磺酸乙酯(ETS)和苯磺酸异丙酯(ITS)的方法并完成方法学验证。在1.5~250ng/mL浓度范围内MBS和EBS衍生化后的碘甲烷(MeI)和碘乙烷(EtI)线性关系良好,在3~250ng/mL内IBS衍生后的(iPrI)线性关系良好,相关系数均达到0.999以上,样品加标平行测定6次,计算各组分含量RSD均小于5.46%。样品在5,10,15ng/mL加标浓度时,MBS、 EBS和IBS回收率在85.4 %~104.70%之间。该方法操作简单,灵敏度和准确度高,能够有效的检测苯磺酸氨氯地平MBS、EBS和IBS的含量。 [1] 《中国药典》2020年版四部通则增修订内容:遗传毒性杂质控制指导原则审核稿(新增)
  • 欧盟将全面禁用全氟己烷磺酸
    近日,欧盟委员会在其官方公报上发布法规(EU)2023/1608,对关于持久性有机污染物法规(EU)2019/1021进行修订,正式将全氟己烷磺酸和盐类及其相关物质列入欧盟持久性有机污染物法规禁用物质清单。新法规于官方公报发布后的第20天起生效。全氟己烷磺酸及其盐此前已经于2017年7月7日列入SVHC候选物质清单。现在此类物质被加入《斯德哥尔摩公约》,日后将在全球范围内淘汰。2023年3月,欧洲化学品管理局已经公布了针对超过1万种全氟或多氟烷基类物质的REACH法规限制提案,相关企业必须做好市场评估和化学品替代的准备。全氟和多氟烷基化合物由数千种物质组成,由于其含有极其稳定的碳氟键,使得此类物质具有很强的化学稳定性和表面活性、优良的热稳定性和疏水疏油性,被广泛应用于工业生产和生活消费领域。但此类物质具有蓄积性、生殖毒性、诱变毒性、发育毒性、神经毒性、免疫毒性等多种毒性,是一类具有全身多脏器毒性的环境污染物,目前各国已经在逐步管控此类化合物。
  • 麦克仪器给力科学研究-用于脂化生物柴油合成中游离酸的超高交联聚苯乙烯磺酸催化剂
    随着美国麦克仪器的市场份额的逐步壮大,美国麦克仪器已经成为行业科学研究必备仪器,日前英国哈德斯菲尔德大学教授发表了一篇题为&ldquo 用于脂化生物柴油合成中游离脂肪酸的超高交联聚苯乙烯磺酸催化剂 &rdquo 学术文章,已经被Applied Catalysis B: Environmental(115&ndash 116 (2012) 261&ndash 268)收录,在该项研究中,美国麦克仪器ASAP 2020与DVS Advantage仪器成为表征催化剂最强有力的工具,为其研究提供了最具可信度的分析结果。以下列举该文章的摘要以及链接供参考: 链接:http://www.sciencedirect.com/science/article/pii/S0926337311006102 标题:Hypercrosslinked polystyrene sulphonic acid catalysts for the esterification of free fatty acids in biodiesel synthesis 摘要: New sulphonic acid catalysts supported on hypercrosslinked polystyrene have been studied in the esterification of oleic acid with methanol and in the rearrangement of &alpha -pinene to camphene and limonenes. The catalysts have been characterised in terms of specific surface areas and porosities, affinities for water and for cylcohexane vapours, and both concentrations and strengths of acid sites. They have been compared with conventional macroporous polystyrene sulphonic acids (Amberlysts 15 and 35) and SAC-13, a composite between Nafion and silica. The results show that the hypercrosslinked polystyrene sulphonic acids, despite exhibiting relatively low concentrations of acid sites and acid site strengths below those of Amberlysts 15 and 35, are very much more catalytically active than conventional resins in reactions such as the esterification in which high acid site strengths are not required. It is thought that this is due to the highly accessible acid sites throughout the catalyst particles. Reusability studies are reported and it appears that the temperature at which the catalyst is used is important in controlling and minimising catalyst deactivation. 美国麦克仪器公司是世界上第一家将自动表面积分析仪、压汞仪以及沉降式粒度分析仪投放市场的公司。公司主营产品为研究级全自动比表面积与孔隙度分析仪、多站比表面积与孔隙度分析仪、快速比表面积与孔隙度分析仪、流动气体法比表面分析仪、程序升温化学吸附仪、化学吸附仪、压汞仪、高压吸附气体吸附仪、蒸汽吸附仪、密度测量、颗粒技术和颗粒形态分析仪等各种材料表征仪器。 美国麦克仪器产品在1979年进入中国市场,成为中美建交后最早进入中国市场的分析仪器。在为中国用户服务30多年后,于2011年3月在上海成立了麦克默瑞提克(上海)仪器有限公司,专业为中国市场提供美国麦克仪器公司的产品。公司总部设在上海,并在北京、广州、西安分别设有办公室,并设有应用实验室提供各类仪器的演示与操作培训并提供对外做样服务,为广大用户提供完整的实验室解决方案与疑难样品的分析。
  • 生态环境部关于公开征求《水质 全氟辛基磺酸和全氟辛基羧酸的测定 固相萃取/液相色谱-三重四极杆质谱法》等四项国家生态环境标准意见
    各有关单位:为贯彻《中华人民共和国环境保护法》,规范生态环境监测工作,我部组织编制了《生态遥感地面观测与验证技术导则》等四项国家生态环境标准征求意见稿,现征求各有关单位意见。标准征求意见稿及其编制说明,可登录我部网站(http://www.mee.gov.cn)“意见征集”栏目检索查阅。其他各有关单位和个人也可提出意见和建议。请于2022年1月10日前将意见建议书面反馈我部,并注明联系人及联系方式,电子文档同时发送至联系人邮箱。联系人:生态环境部监测司 曹 宇电话:(010)65646228传真:(010)65646236邮箱:zhiguanchu@mee.gov.cn地址:北京市东城区东安门大街82号邮编:100006附件:1.征求意见单位名单2.生态遥感地面观测与验证技术导则(征求意见稿)3.《生态遥感地面观测与验证技术导则(征求意见稿)》编制说明4.固定污染源废气 烟气黑度的测定 林格曼望远镜法(征求意见稿)5.《固定污染源废气 烟气黑度的测定 林格曼望远镜法(征求意见稿)》编制说明6.水质 全氟辛基磺酸和全氟辛基羧酸的测定 固相萃取/液相色谱-三重四极杆质谱法(征求意见稿)7.《水质 全氟辛基磺酸和全氟辛基羧酸的测定 固相萃取/液相色谱-三重四极杆质谱法(征求意见稿)》编制说明8.土壤和沉积物 全氟辛基磺酸和全氟辛基羧酸的测定 液相色谱-三重四极杆质谱法(征求意见稿)9.《土壤和沉积物 全氟辛基磺酸和全氟辛基羧酸的测定 液相色谱-三重四极杆质谱法(征求意见稿)》编制说明生态环境部办公厅2021年12月9日(此件社会公开)附件1征求意见单位名单生态环境部各流域海域生态环境监督管理局监测与科研中心各省、自治区、直辖市生态环境监测站(中心)新疆生产建设兵团生态环境第一监测站各环境保护重点城市生态环境监测站(中心)中国科学院生态环境研究中心中国环境科学研究院中国环境监测总站生态环境部环境发展中心生态环境部南京环境科学研究所生态环境部华南环境科学研究所国家环境分析测试中心河北环境工程学院
  • 美国公布食品中全氟烷基磺酸盐检测结果及检测方法改进情况
    2023年5月31日,美国食药局(FDA)公布了一般食品供应中的PFAs(全氟烷基磺酸盐)检测结果、海产品相关检测工作的进展以及检测方法改进情况,主要内容如下:   (1)FDA称在2 个鳕鱼和2个虾样本中检测到PFAS,在罗非鱼、鲑鱼和碎牛肉各1个样本中检测到 PFAS.FDA认为在7个样本中检测到的PFAS 暴露水平不太可能对幼儿或一般人群造战健康问题;   (2)对于进口自中国的给蜊罐头,因PFAS问题两家公司发布了自愿召回令,FDA正在继续对边境的有限数量的进口货物和市场上的国内产品进行检测。滤食性动物,如给蜊以及其他双壳克类软体动物(包括牡蛎、贻贝和扇贝),比其他海产品类型有可能积累更多的环境污染物。因此,FDA正在对进口和国产双克类软体动物进行额外采样,以更好地了解商业海产品中的PFAS情况;   (3)FDA将采用高分辨率质谐分析方法进行检测,以测定食品中PFAS情况。
  • 中关村材料试验技术联盟立项《多钒酸铵分析方法 第1部分:五氧化二钒含量测定 过硫酸铵氧化硫酸亚铁铵滴定法》等9项团体标准
    经中国材料与试验标准化委员会(以下简称:CSTM标准化委员会)标准化领域委员会审查,CSTM标准化委员会批准(具体标准如下,详细公告内容请至CSTM官网查看),特此公告。序号标准名称标准立项号所属委员会1多钒酸铵分析方法 第1部分:五氧化二钒含量测定 过硫酸铵氧化硫酸亚铁铵滴定法CSTM LX 2000 01429.1—2024FC202多钒酸铵分析方法 第2部分:硅含量测定 电感耦合等离子体原子发射光谱法CSTM LX 2000 01429.2—2024FC203多钒酸铵分析方法 第3部分:铁、磷 硫含量测定 电感耦合等离子体原子发射光谱法CSTM LX 2000 01429.3—2024FC204多钒酸铵分析方法 第4部分:氧化钾、氧化钠含量测定 电感耦合等离子体原子发射光谱法CSTM LX 2000 01429.4—2024FC205多钒酸铵分析方法 第5部分:烧得率的测定 高温煅烧法CSTM LX 2000 01429.5—2024FC206民用大型客机 热固性液体垫片材料 热循环稳定性测试方法CSTM LX 6600 01430—2024FC667泵组碳足迹核算与碳标签评价规范CSTM LX 9500 01431—2024FC958零碳建造评价规范CSTM LX 9500 01432—2024FC959水质 急性毒性现场快速监测 发光细菌法CSTM LX 9803 01433—2024FC98/TC03联系方式如有单位或个人愿意参与该标准项目的工作,请与项目牵头单位联系。CSTM标准化委员会秘书处联系方式联系人:陈鸣,范小芬办公电话:010-62187521手机:13011072266,13426028810邮箱:chenming@ncschina.com,fanxiaofen@ncschina.com通讯地址:北京市海淀区高梁桥斜街13号钢研集团新材料大楼1020邮编:100081
  • 江苏检出15批次不合格食品,有海蜇、香蕉、梭子蟹等
    4月4日,江苏省市场监督管理局发布2023年第6期通告,检出其中餐饮食品、炒货食品及坚果制品、调味品、酒类、肉制品和食用农产品等6大类食品15批次样品不合格。不合格食品涉及农兽药残留、食品添加剂、质量指标、微生物污染、重金属污染、其他污染等问题。   4批次食品检出农兽药残留问题   4批次食品检出农兽药残留问题,分别为徐州市邳州市长江路超市销售的香蕉,吡虫啉不符合食品安全国家标准规定;盐城市江苏雅家乐集团有限公司大丰分公司销售的长豆角(豇豆),灭蝇胺和水胺硫磷不符合食品安全国家标准规定;徐州市铜山区世纪佰联百货超市销售的韭菜,腐霉利不符合食品安全国家标准规定;扬州市江都中心农贸市场蒋桂云销售的黑鱼,恩诺沙星不符合食品安全国家标准规定。   吡虫啉属内吸性杀虫剂,具有触杀和胃毒作用。少量的残留不会引起人体急性中毒,但长期食用吡虫啉超标的食品,对人体健康可能有一定影响。《食品安全国家标准 食品中农药最大残留限量》(GB 2763—2021)中规定,吡虫啉在香蕉中的最大残留限量值为0.05mg/kg。香蕉中吡虫啉残留量超标的原因,可能是为快速控制虫害,加大用药量或未遵守采摘间隔期规定,致使上市销售的产品中残留量超标。   腐霉利是一种低毒内吸性杀菌剂,具有保护和治疗双重作用。主要用于蔬菜灰霉病防治。《食品安全国家标准 食品中农药最大残留限量》(GB 2763-2021)中规定,韭菜中腐霉利残留限量值不得超过0.2 mg/kg。腐霉利对眼睛、皮肤有刺激作用。   恩诺沙星属于喹诺酮类合成抗菌药。《食品安全国家标准 食品中兽药最大残留限量》(GB 31650-2019)中规定,恩诺沙星在鱼的皮+肉中最大残留限量值为100μg/kg。恩诺沙星超标的原因,可能是养殖户在养殖过程中违规使用相关兽药。长期摄入恩诺沙星超标的食品,可能会引起头晕、头痛、睡眠不良、胃肠道刺激或不适等症状。   4批次食品检出食品添加剂问题   4批次食品检出食品添加剂问题,分别为南通市如东吴限熟食店销售的凉拌海蜇,铝的残留量(以即食海蜇中Al计)不符合食品安全国家标准规定;扬州市仪征市刘集镇金诚大润发玛特超市加盟店销售的标称盐城丰裕园食品有限公司生产的丰裕园黄豆酱,苯甲酸及其钠盐(以苯甲酸计)和防腐剂混合使用时各自用量占其最大使用量的比例之和不符合食品安全国家标准规定;镇江新区丁卯周家二小姐的菜餐厅销售的老醋海蜇,铝的残留量(以即食海蜇中Al计)不符合食品安全国家标准规定;泰州市靖江市郭信和美食店销售的油条,铝的残留量(干样品,以Al计)不符合食品安全国家标准规定。   含铝食品添加剂,比如硫酸铝钾(又名钾明矾)、硫酸铝铵(又名铵明矾)等,在食品中作为膨松剂、稳定剂使用,使用后会产生铝残留。含铝食品添加剂按标准使用不会对健康造成危害,但长期食用铝超标的食品对人体健康可能有一定影响。《食品安全国家标准 食品添加剂使用标准》(GB 2760—2014)中规定,油炸面制品中铝的最大残留限量值(干样品,以Al计)为100mg/kg,腌制水产品(仅限海蜇)中铝的最大残留限量值(以即食海蜇中Al计)为500mg/kg。   防腐剂是常见的食品添加剂,指天然或合成的化学成分,用于延缓或抑制由微生物引起的食品腐败变质。长期食用防腐剂超标的食品可能会对人体健康造成损害。《食品安全国家标准 食品添加剂使用标准》(GB 2760—2014)中规定,防腐剂在混合使用时各自用量占其最大使用量的比例之和不应超过1。   3批次食品检出微生物污染问题   3批次食品检出微生物污染问题,分别为标称南京礼拜几食品有限公司生产的手剥种籽葵(烘炒类炒货),霉菌不符合食品安全国家标准规定;宿迁市泗洪县福德家超市销售的标称郑州华成食品有限公司委托四川陈小妞食品有限公司生产的糊辣翅尖(辐照食品),菌落总数不符合食品安全国家标准规定;无锡市梁溪区沈家大院饮食店使用的标称梁溪区亚商餐具清洗服务部生产的餐具,大肠菌群不符合食品安全国家标准规定。   霉菌是评价食品卫生质量的指示性指标。食品中霉菌数是指食品检样经过处理,在一定条件下培养后,计数所得1g或1mL检样中所形成的霉菌菌落数。如果食品中的霉菌严重超标,将会破坏食品的营养成分,使食品失去食用价值,还可能产生霉菌毒素;长期食用霉菌超标的食品,可能会危害人体健康。霉菌数超标的原因,可能是原料或包装材料受到霉菌污染,也可能是产品在生产加工过程中卫生条件控制不到位,还可能与产品储运条件不当有关。   菌落总数是指示性微生物指标,不是致病菌指标,反映食品在生产过程中的卫生状况。如果食品的菌落总数严重超标,将会破坏食品的营养成分,使食品失去食用价值;还会加速食品腐败变质,可能危害人体健康。菌落总数超标的原因,可能是企业未按要求严格控制生产加工过程的卫生条件,也可能与产品包装密封不严或储运条件不当等有关。   大肠菌群是国内外通用的食品污染常用指示菌。食品及食品相关产品中检出大肠菌群,存在被致病菌(如沙门氏菌、志贺氏菌、致病性大肠杆菌)污染的风险。《食品安全国家标准 消毒餐(饮)具》(GB 14934-2016)中规定,餐(饮)具中大肠菌群应不得检出。餐(饮)具中检出大肠菌群的原因,可能是产品消毒方式不符合要求,清洗消毒不彻底未达到消毒灭菌效果,也有可能是产品经消毒后存放条件不当或操作不规范而被二次污染造成的。   2批次餐饮具检出其他污染问题   2批次餐饮具检出其他污染问题,分别为苏州集思餐饮管理有限公司使用的筷子,阴离子合成洗涤剂(以十二烷基苯磺酸钠计)不符合食品安全国家标准规定;镇江市京口区茂源餐饮店使用的复用餐碟,阴离子合成洗涤剂(以十二烷基苯磺酸钠计)不符合食品安全国家标准规定。   阴离子合成洗涤剂,即我们日常生活中经常用到的洗衣粉、洗洁精、洗衣液、肥皂等洗涤剂的主要成分,其主要成分十二烷基磺酸钠,是一种低毒物质,在消毒企业中广泛使用。《食品安全国家标准 消毒餐(饮)具》(GB 14934-2016)中规定,采用化学消毒法的餐(饮)具的阴离子合成洗涤剂应不得检出。餐(饮)具中检出阴离子合成洗涤剂,可能是部分单位使用的洗涤剂不合格或使用量过大,未经足够量清水冲洗或餐具漂洗池内清洗用水重复使用或餐具数量多,造成交叉污染,进而残存在餐(饮)具中。   此外,还有2批次食品分别检出重金属污染、质量指标问题,分别为宿迁家得福商贸有限公司销售的梭子蟹,镉(以Cd计)不符合食品安全国家标准规定;南京人觉非常文化传媒有限公司(淘宝网)销售的标称睢县颐生堂酒业有限公司委托商丘天润饮品有限公司生产的野格咆哮者水蜜桃利口酒,酒精度不符合产品明示标准及质量要求。   针对抽检中发现的不合格食品,江苏省市场监督管理局已责成相关设区市市场监管部门立即组织开展处置工作,查清产品流向,督促企业采取下架召回不合格产品等措施控制风险,依法处理违法违规行为,及时将企业采取的风险防控措施和核查处置情况向社会公开。 不合格产品信息(来源:江苏省市场监督管理局)
  • 听说抄袭我们的都火了?今天带来原创的杂质分离方法开发过程
    zui近月旭科技除了产品以外,我们发布的内容也越来越受到大家的喜爱,遭到了多家公众号的自主发布,热度也颇高,我们十分“欣慰”。我们的内容能够得到大家的喜欢,真的是我们zui高兴的事情。但是其发表的内容因为水印等问题,谱图截取并不完整,影响大家的观看体验。所以小编就来以正视听,将完整的谱图,以及zui完整的杂质分离方法开发过程分享给大家,我们一起变得更强!首先来看看需要分离的三个物质的结构式:01 分析目的要求开发一种合适的分析方法,使上述3种化合物在浓度1.0mg/mL的情况下分离度大于1.50。开始方法开发之前,di一件该做的事是什么呢?当然是去了解这几个物质的性质,尽可能的得到有关这些物质的信息,这样可以为后面工作节省zui多的时间。而对这三个物质得到的信息大致如下:三种物质极性比较强,水溶性比较好,在常规C18色谱柱保留太弱,基本上与溶剂峰重叠。结构式上主要是官能团的差异,分别为-NH2,-Br,-COOH,差异性很大。综合考虑,有两种方案:一是加离子对试剂,用反相C18色谱柱增强保留,进行分离;二是使用离子交换色谱柱进行分离。首先由于个人的习惯,离子交换色谱被我直接排除(离子色谱平衡比较慢,而且离子交换色谱柱非常容易出现重现性问题)。所以本实验采用C18添加离子对试剂的方法。考虑的实验过程中需要使用离子对试剂,且流动相pH需要大范围调整(可能用到碱性流动相),所以色谱柱选择月旭Xtimate ® C18(4.6×250mm,5μm)色谱柱,流速:1.0mL/min,柱温30℃,检测波长220nm。02 流动相优化及测试结果图谱2.1 初步尝试流动相:0.05mol/L庚烷磺酸钠+0.05mol/L磷酸二氢钾,PH=4.60。结果:化合物3保留时间2.6min,化合物1不出峰。估计是化合物1保留太强未洗脱下来。接下来,调整pH并增加有机相的比例,来加大洗脱能力。2.2流动相:缓冲液(1.00g辛烷磺酸钠,10mM磷酸二氢钾至500mL水中,用磷酸调pH=2.30):甲醇=60:40。混合对照图谱如下:实验中将庚烷磺酸钠改为辛烷磺酸钠,增加有机相(甲醇)比例,结果三个物质分离良好,但是化合物1(19.9分钟)峰型太差,下一步优化化合物1的峰型。2.3 流动相:缓冲液(1.00g辛烷磺酸钠,10mM磷酸二氢钾至500mL水中,用磷酸调pH=2.30):乙腈=80:20。化合物1图谱:基于上一次实验,将有机相甲醇变为乙腈,通过改变选择性看是否峰型会有改善。结果发现并没有任何改善,而且发现这个方法中有机相只提供洗脱能力,不提供选择性改变作用。2.4 流动相:缓冲液(缓冲液:1.00g十二烷基磺酸钠,50mM氯化铵至500mL水,用磷酸调pH=1.80):甲醇=60:40。混合对照图谱:当时换成这个流动相的主要思路是,加十二烷基磺酸钠使保留更强,加氯化铵提高离子浓度,调pH至1.80强酸性使化合物1中-NH2官能团作用更弱,达到优化峰型的目的,但是效果很差。回头总结发现我们所有的目光都聚焦在三种物质的不同官能团上,导致越走越偏离分离的轨迹,这里,三个物质共同含有的官能团可能也是影响分离的主要因素,换了个角度后,豁然开朗了。推翻了之前的方案,将离子对试剂换为四丁基氢氧化铵,从头开始。2.5 流动相:缓冲液(4mL 10%四丁基氢氧化铵水溶液,1.36g磷酸二氢钾至500mL水中,用三乙胺调pH=9.30):乙腈=80:20。混合对照图谱:流动相中添加三乙胺和并将pH调成9.3目的是抑制化合物1的拖尾,但是结果发现三种物质没有分开。继续优化条件将pH值降低。2.6 流动相:缓冲液(4mL 10%四丁基氢氧化铵水溶液,1.36g磷酸二氢钾至500mL水中,用三乙胺调pH=7.00):乙腈=80:20。混合对照图谱:看到这结果是不是项目就OK了。但是既然是方法开发,方法重现性实验实验是必不可少的,需要用一根新色谱柱重现该色谱条件。结果问题就来了.....化合物1图谱:化合物1峰型一直分叉,zui终发现应该是色谱柱使用多种离子对试剂,造成色谱柱改性,新色谱柱不能重现结果。好吧,再开始。然后又是继续摸索。不得不说有时候运气也是成功的一部分,在一次流动相配置过程中,看到四丁基氢氧化铵试剂旁边还有一瓶四丁基溴化铵,突然我就冒出想法,用四丁基溴化铵试试,不知道结果会怎么样,说做就做。2.7 流动相:缓冲液(1.00g四丁基溴化铵,1.36g磷酸二氢钾,1.0mL三乙胺至500mL高纯水。用磷酸调节pH=7.10):乙腈=80:20。混合对照图谱:03 结果
  • 美丽新卫士:电雾式检测器应用于化妆品检测
    美丽新卫士:电雾式检测器应用于化妆品检测熊亮 胡金盛 冉良骥 金燕引言:随着经济的快速发展,人们生活水平的提高,化妆品已从早期的奢侈品转变为大众日常的消费品,美丽经济规模日渐壮大。近年来随着电商的广泛应用、各大美妆博主的时尚引导、短视频平台的直播带货,化妆品的种类不断丰富,化妆品的消费逐年递增,随之而来引起的化妆品纠纷也逐年上升。化妆品中致癌致敏成分检出、铅汞重金属含量超标、糖皮质激素非法添加、微生物污染等安全问题, 使得化妆品质量监督管理及化妆品检验的科学性受到了人们的关注和重视。 2021年3月2日,国家药品监督管理局发布2021年第17号通告,将《化妆品中防腐剂检验方法》、《化妆品中硼酸和硼酸盐检验方法》、《化妆品中对苯二胺等32种组分检验方法》、《化妆品中维甲酸等8种组分检验方法》等7项检验方法纳入《化妆品安全技术规范(2015年版)》,作为该规范修订或新增的检验方法。 此次新增和修订,对原技术规范“第四章 理化检验方法4防腐剂检验方法”整个分析方法的框架结构进行了调整,变更尺度非常之大。在修订的《化妆品中防腐剂检验方法》中,新增了4.3 已脒定二(羟乙基磺酸)盐等7种组分的检验方法。 随着政府通告的发布,《规范》修订的检验方法,自2021年5月1日起施行,因此众多具有化妆品注册和备案检验机构资质的实验室开始了实验室扩项的准备工作。然而有多个客户实验室在实际方法开发过程中发现,参照“4.3 已脒定二(羟乙基磺酸)盐等7种组分”标准方法,采用0.1%三氟乙酸溶液作为流动相,检测波长为210nm,虽然可以提高部分低紫外吸收待测物的响应,但由于210nm为三氟乙酸的截止波长,在梯度分析过程中产生剧烈的基线波动,可能会影响低含量待测物的峰型以及检测灵敏度。 飞飞有妙招针对这一情况,飞飞协助客户开发了一套全新的含量测定方法。新方法采用了Acclaim Surfactant Plus表面活性剂专用色谱柱分离,并配合赛默飞独有的电雾式检测器(以下简称CAD,如图1所示)测定。图1 电雾式检测器(CAD)(左:Vanquish CAD系列,右:Corona Veo系列)由于待测物经色谱柱分离后,在CAD内部先进行雾化再进行检测,可完全消除挥发性流动相对基线的干扰,而且相对原标准方法,飞飞发现“十二烷基三甲基溴化铵”的检测灵敏度也有大幅提升,如图2所示。图中7种组分的浓度分别为:己脒定二(羟乙基磺酸)盐40 μg/mL、氯己定60 μg/mL、十二烷基三甲基溴化铵(DTAB)800 μg/mL、十二烷基二甲基苄基氯化铵200 μg/mL、苄索氯铵200 μg/mL、十四烷基二甲基苄基氯化铵200 μg/mL、十六烷基二甲基苄基氯化铵200 μg/mL。图2 7种组分混标CAD色谱图 随后飞飞对这套全新方案进行了方法学考察,结果当然也是妥妥哒!图3 混标最低点连续进样6次重叠色谱图 结论本方法基于赛默飞新一代Vanquish Core高效液相色谱系统,Acclaim Surfactant Plus表面活性剂专用色谱柱配合赛默飞特有的电雾式检测器(CAD),开发了一个全新的针对化妆品中已脒定二(羟乙基磺酸)盐等7种防腐剂的含量测定方法。本方法中7种防腐剂的分离度和灵敏度均优于国标方法,重复性好,线性范围宽,给化妆品中限量使用组分的分析提供了一种新思路,拓展了化妆品行业的分析手段。 “码”上下载扫码立即免费下载【采用电雾式检测器(CAD)分析化妆品中已脒定二(羟乙基磺酸)盐等7种防腐剂的含量】
  • 高纯试剂中杂质检测专题——工业甲醇中铵离子的测定
    01 引言 离子色谱法测定甲醇中铵离子 监测甲醇中铵离子含量在煤基合成甲醇工艺中具有重要作用。在煤基合成甲醇过程中,会产生一系列杂质气体 ,如 CO 、NH3 以及有机硫化物、氮的氧化物、煤焦油等,而铵离子会引起合成过程中的催化剂中毒失效,致催化剂效率严重下降;同时铵离子含量较高时会降低低温甲醇洗脱硫效率、对工艺设备有严重影响。因此,通过控制甲醇中铵离子的含量 ,可以防止催化剂中毒,提高转化率,降低成本。工艺控制中工业用甲醇中铵离子含量不得大于0.05mg/L.制定工业用甲醇中铵离子测定方法,是为工业甲醇的杂质检测提供一个试验方法,对指导甲醇为原料的相关生产过程的检测具有重要意义。目前甲醇中NH4+的测定都是采用离子色谱法,2022年3月1日开始实施国标《工业用甲醇中铵离子的测定离子色谱法》,下面小编分享下甲醇中NH4测定的离子色谱法。02 相关标准 GB/T 40395-2021《工业用甲醇中铵离子的测定离子色谱法》03 皖仪科技应对方案 皖仪仪器设备 试剂耗材 甲醇:色谱纯;铵根离子:ρ=1000mg/L;一次性注射器(0.5-2mL);有机系针式过滤器(0.22μm) 测试结果 标曲线性测试NH4+标曲重叠谱图NH4+线性说明:由于所有胺类物质一次线性范围均较窄,本次按照标准要求配置的标准曲线系列梯度范围较宽,因此,标准曲线采用二次曲线拟合,本次测试铵离子线性相关系数为R2=0.99996,线性良好。------ 重复性测试 ------ NH4+0.05mg/L连续3针测试谱图NH4+0.2mg/L连续3针测试谱图NH4+2.0mg/L连续3针测试谱图 ------ 重复性结果 ------ 说明:根据谱图及测试结果可见,所有组分定量重复性均小于1%,定性重复性均小于0.2%,测试重复性良好。------ 检出限 ------ 注:标准中规定,在进样体积为50μL下,测定下限为0.01mg/L,本测试以NH4+0.05mg/L进样,考察其峰高,取测试最大噪声,以3倍信噪比对应峰高为检出限。------ 测试结果 ------ 经计算,本次测试 NH4+检出限为 0.434μg/L,小于标准要求的 0.01mg/L。04 总结 结果表明 本文采用离子色谱法,对甲醇中 NH4+进行测定,准确度高,灵敏性好,精密度好,该法可用于甲醇中 NH4+的测定。05 注意事项 — END —扫描二维码 |
  • 2022年4月份将要实施的那些标准
    2022年4月份将要实施的标准2022年4月份将要实施的科学仪器及检测相关的国家标准仅有8条。但将要实施的行业标准较多,一共有99条,其中主要包括轻工、气象、环境、机械、化工、卫生医药等。另外还有20条与仪器及检测相关的团体标准也将实施。需要相关标准的,点击链接即可下载收藏↓国家标准GB/T 41072-2021 表面化学分析 电子能谱 紫外光电子能谱分析指南 GB/T 10782-2021 蜜饯质量通则 GB/T 19702-2021 体外诊断医疗器械 生物源性样品中量的测量 参考测量程序的表述和内容的要求 GB/T 10781.1-2021 白酒质量要求 第1部分:浓香型白酒 GB/T 39849-2021 无损检测仪器 超声衍射声时检测仪 性能测试方法 GB/T 39948-2021 食品热力杀菌设备热分布测试规程 GB/T 10781.11-2021 白酒质量要求 第11部分:馥郁香型白酒 GB/T 39945-2021 罐藏食品热穿透测试规程 行业标准交通标准JT/T 1386.10-2022 海事电子证照 第10部分:危险化学品水路运输从业资格证书 JT/T 316-2022 货运挂车产品质量检验评定方法 JT/T 1411-2022 天然气营运货车燃料消耗量限值及测量方法 气象标准QX/T 636—2022 气候资源评价 气候生态环境 QX/T 637—2022 气候预测检验 热带气旋 QX/T 638—2022 气候预测检验 热带大气季节内振荡 QX/T 639—2022 中国雨季监测指标 东北雨季 QX/T 640—2022 气象业务综合监视数据要求 QX/T 641—2022 称重式电线横向积冰自动观测仪 QX/T 642—2022 自动标准气压发生器技术要求 QX/T 643—2022 气象用水电解制氢设备操作规范 QX/T 644—2022 气象涉氢业务设施建设要求 QX/T 645—2022 风电机组测风资料质量审核与订正 QX/T 646—2022 雷电防护装置检测资质认定现场操作考核规范 QX/T 41—2022 空气质量预报 食品 轻工标准JJF 1070.3-2021 定量包装商品净含量计量检验规则 大米 QB/T 5636-2021 品牌培育管理体系实施指南 食品行业 QB/T 2968-2021 口腔清洁护理用品 牙膏中锶含量测定的方法 QB/T 2623.10-2021 肥皂试验方法 肥皂中甘油含量的测定 QB/T 5638-2021 口腔清洁护理用品 牙膏中叶绿素铜钠盐含量的测定高效液相色谱法 QB/T 1915-2021 阳离子表面活性剂 脂肪烷基三甲基卤化铵及脂肪烷基二甲基苄基卤化 铵 QB/T 5656-2021 油墨中苯类溶剂含量测定方法 QB/T 5637-2021 口腔清洁护理用品羟基磷灰石 牙膏用 QBT 5636-2021品牌培育管理体系实施指南 食品行业(报批征求意见稿) 有色金属YS/T 3042-2021 氰化液化学分析方法 金量的测定 YS/T 3041.1-2021 火试金法测定金属矿石、精 矿及相应物料中银量的 校正方法 第 1 部分:全流程回收率法 YS/T 3041.2-2021 火试金法测定金属矿石、精 矿及相应物料中银量的校正 方法 第 2 部分:熔渣和灰 皿回收法 YS/T 3041.3-2021 火试金法测定金属矿石、精 矿及相应物料中银量的校正 方法 第 3 部分:熔渣回收 和灰吹校准法 环境标准HJ 1230—2021 工业企业挥发性有机物泄漏检测与修复 技术指南 HJ 1189-2021 水质 28种有机磷农药的测定 气相色谱-质谱法 HJ 1190-2021 水质 灭菌生物指示物(枯草芽孢杆菌黑色变种)的鉴定 生物学检测法 HJ 1191-2021 水质 叠氮化物的测定 分光光度法 HJ 1192-2021 水质 9种烷基酚类化合物和双酚A的测定 固相萃取/高效液相色谱法 化工标准HG/T 5912-2021 导电胶粘剂 HG/T 5911-2021 LED 照明器件用加成型有机硅密封胶 HG/T 5913-2021 高分子防水卷材用热熔压敏胶粘剂 HG/T 5914-2021 无衬纸铝箔压敏胶粘带 HG/T 5915-2021 热成像银盐打印胶片 HG/T 5916-2021 照相化学品 防灰雾剂2,5-二羟基-5-甲基-3-(4-吗啉基)-2-环戊烯-1-酮 HG/T 5918-2021 电池用硫酸钴 HG/T 5919-2021 电池用硫酸镍 HG/T 5920-2021粗碳酸锰 HG/T 5931-2021 肥料增效剂 腐植酸 HG/T 5932-2021 肥料增效剂 海藻酸 HG/T 5933-2021 腐植酸有机无机复混肥料 HG/T 5934-2021 黄腐酸中量元素肥料 HG/T 5935-2021 黄腐酸微量元素肥料 HG/T 5936-2021 腐植酸碳系数测定方法 HG/T 5937-2021 腐植酸与黄腐酸含量的快速 测定方法 HG-T 5938-2021 腐植酸肥料中氯离子含量的 测定自动电位滴定法 HG/T 5917-2021 黑白感光材料涂层溶解测定方法 HG/T 5921-2021 碳化法工业重铬酸钠 HG/T 2427-2021 肥料级氰氨化钙 HG/T 5939-2021 肥料级聚磷酸铵 HG/T 5941-2021 稳定同位素13C标记的辛酸 HG/T 5942-2021 稳定同位素15N标记的氨基 酸 HG/T 5943-2021 C.I.分散红152 HG/T 5944-2021 液体C.I.直接红254 HG/T 5945-2021 液体C.I.直接蓝290 HG/T 5909-2021 美罗培南合成催化剂化学成分分析方法 HG/T 5910-2021 双金属负载型聚醚多元醇合成催化剂化学成分分析方法 HG/T 4701-2021 电池用磷酸铁 HG/T 4133-2021 工业磷酸二氢铵 HG/T 4132-2021 工业磷酸氢二铵 HG/T 2568-2021 工业偏硅酸钠 HG/T 5922-2021 工业氰氨化钙 HG/T 5923-2021 化纤用二氧化钛 HG/T 5924-2021 废(污)水处理用生物膜载体 HG/T 3926-2021 水处理剂 2-羟基膦酰基乙酸(HPAA) HG/T 5925-2021 水处理用生物药剂 硝化菌剂 HG/T 5926-2021 水处理用生物药剂 反硝化菌剂 HG/T5927-2021 生物化学试剂 L-白氨酸(L-亮氨酸) HG/T 5928-2021 生物化学试剂 L-胱氨酸 HG/T 5929-2021 化学试剂 色谱用一水合庚 烷磺酸钠 HG/T 5930-2021 化学试剂 色谱用一水合辛烷磺酸钠 HG/T 5946-2021 1-(3-磺酸苯基)-3-甲基-5-吡唑酮 HG/T 5947-2021 1-(4-磺酸苯基)-3-甲基-5-吡唑酮 HG/T 5948-2021 1-(4-甲基苯基)-3-甲基-5-吡唑啉酮 HG/T 5949-2021 红色基KD(3-氨基-4-甲氧基-苯甲酰替苯胺) HG/T 5950-2021 色酚AS-IRG(4-氯-2,5-二甲氧基乙酰乙酰苯胺) HG/T 5951-2021 邻甲氧基乙酰乙酰苯胺 HG/T 5952-2021 邻氯乙酰乙酰苯胺 HG/T 5953-2021 纺织染整助剂 涤棉一浴皂洗剂 净洗效果的测定 HG/T 5954-2021 纺织染整助剂产品中异噻唑啉酮类化合物的测定 机械交通标准JB/T 14223-2021 无损检测仪器充电式交流磁轭探伤仪 JB/T 14155-2021 偏轴菲涅尔透镜 JB/T 14156-2021 投影光学非球面超短焦物镜 JB/T 14140-2021 食品机械 化糖设备 JB/T 14141-2021 食品机械 调配设备 JB/T 14142-2021 淀粉降解母粒生产线 JB/T 14144-2021 夹心软糖生产线 JB/T 14145-2021 全自动花色硬糖生产线 JB/T 4297-2021 泵产品涂漆 技术条件 JT/T 1393—2021 船舶压载水指示性分析取样与检测要求 卫生医药标准WS/T 787-2021 国家卫生信息资源分类与编码管理规范 WS/T 788—2021 国家卫生信息资源使用管理规范 WS/T 789—2021 血液产品标签与标识代码标准 YY/T 1416.5—2021 一次性使用人体静脉血样采集容器中添加剂量的测定方法 第5部分:甘氨酸 YY/T 1416.6—2021 一次性使用人体静脉血样采集容器中添加剂量的测定方法 第6部分:咪唑烷基脲 YY/T 1465.7—2021 医疗器械免疫原性评价方法 第7部分:流式液相多重蛋白定量技术 YY/T 1735-2021 丙型肝炎病毒抗体检测试剂(盒)(化学发光免疫分析法) YY/T 1771-2021 弯曲-自由恢复法测试镍钛形状记忆合金相变温度 YY/T 1772-2021 外科植入物 电解液中电偶腐蚀试验方法 YY/T 1775.1-2021 可吸收医疗器械生物学评价 第1部分:可吸收植入物指南 YY/T 1776-2021 外科植入物聚乳酸材料中丙交酯单体含量的测定 团体标准DB12/T 3027-2022 液氨贮存使用单位环境风险防控技术规范 T/CSTM 00470-2022生物炭膨润土复合污水处理剂 T/CSTM 00469-2022 生物炭凹凸棒石土壤重金属钝化剂 T/CPCIF 0168-2021 水中亚硝酸盐、硝酸盐、氨氮的快速检测试剂盒 T/GZSXH 02-2022 饮用天然泉水 T/CIESC 0033-2022 工业用四氢糠醇 T/CIESC 0032-2022 工业用丙二酸二乙酯 T/CIESC 0031-2022 工业用氰乙酸乙酯 T/CIESC 0030-2022 工业用N-乙基吡咯烷酮 T/CIESC 0029-2022 工业用原甲酸三乙酯 T/CIESC 0028-2022 工业用羟乙基甲基纤维素 T/CIESC 0027-2022 工业用乙基纤维素 T/JATEA 001-2022 农田地膜残留量调查与监测DB11/T 374-2021 水生动物疫病检测实验室管理规范 DB11/T 455-2021 动物疫病紧急流行病学调查技术规范 DB11/T 456-2021 动物防疫员防护技术规范 DB11/T 1000.2-2021 企业产品标准编写导则 第2部分:主要技术内容 DB51/T 2874-2022 检验检测机构保护客户秘密实施指南 DBS33/ 3013-2022 食品安全地方标准 酥饼生产卫生规范 DB31 2026-2021 食品安全地方标准 预包装冷藏膳食生产经营卫生规范 Get√小技巧:在仪器信息网APP里,可以免费下载上述标准→↓扫码到APP免费下载目前仪器信息网资料库 有近70万篇资料,内容涉及检测标准、物质检测方法/仪器应用、仪器操作/仪器维护维修手册、色谱/质谱/光谱等谱图。资料库每月有近20万人访问,上万人下载资料,诚邀您分享手头上的资源,与人分享于己留香!
  • 岛津二维液相色谱新应用|流动相含离子对试剂的化药杂质质谱鉴定方法
    离子对试剂:极性药物分析绕不开的话题 液相色谱是药物杂质含量测定和有关物质分离分析最常用的技术手段。对一个陌生的化合物,ODS反相色谱柱通常方法开发条件会选择酸性pH流动相。然而,总有些化合物,它们或含氨基、或含羧基、磺酸基团、磷酸基团,极性较强在反相色谱柱上没有保留。打开2020版《中国药典》第二部,不难发现这些品种,名称中常含有“马拉酸”、“盐酸”、“碱”、“酸”等关键词。对于这类强极性化合物的分析,药典给出的答案是:流动相中添加离子对试剂。例如丁溴东莨菪碱、贝敏伪麻的有关物质流动相条件中含有十二烷基硫酸钠;马来酸曲美布汀的流动相含有戊烷磺酸钠;盐酸头孢吡肟的流动相含有辛烷磺酸钠;叶酸、头孢美唑和对氨基水杨酸钠的流动相含有四丁基氢氧化铵。离子对试剂的添加,增强了极性化合物的保留,改善了药物与杂质的分离,是极性药物分析的杀手锏。 离子对试剂:“质谱不能承受之重” 辛烷磺酸钠和四丁基硫酸氢铵等常用离子对试剂,属于不挥发盐类,质谱响应强且信号经久不衰,持续抑制目标化合物的电离。一旦误操作进入质谱端,需要清洗整个离子通路才能恢复质谱的正常状态。常规二维液相在线除盐系统仅能去除无机盐,无法去除离子对试剂。这是因为无机盐(如磷酸盐)在二维反相色谱柱上无保留,在死时间将其切至废液从而实现在线除盐。然而离子对试剂具有较强的疏水性,在常规ODS色谱柱上强烈吸附显著拖尾,因此不能被常规二维液相系统去除。 上图是辛烷磺酸钠在ESI离子源上的响应。可生成簇离子,质谱响应强且持久,对ESI正负模式均可产生抑制。 上图是四丁基硫酸氢铵在ESI离子源正模式的响应,质谱响应强且持久。四丁基硫酸氢铵与固定相强烈作用,色谱上呈现显著拖尾。 ReDual:一款可以同时分离无机、有机、阴、阳离子的“神柱” ReDual系列色谱柱,是岛津公司最新推出的离子交换反相混合键合相色谱柱,共分为三款: ReDual™ SCX-C18 强阳离子交换+反相ReDual™ CX-C18 弱阳离子交换+反相ReDual™ AX-C18 强阴离子交换+反相 下图是采用ReDual AX-C18 (4.6 mm I. D. × 150 mm L., 5 µm,货号426-45415)分析磷酸二氢钠、四丁基硫酸氢铵和卡络磺钠混合样品的色谱图。该款色谱柱表面键合叔胺基团,在pH 2-7范围内色谱柱表面带阳离子。除疏水作用外,其对阴离子具有离子交换作用,对阳离子具有离子排斥作用。为分离极性类似的阳离子和阴离子型化合物提供了条件。下图中四丁基氨根离子峰型对称,不拖尾无残留,可以通过阀切换导入废液实现在线去除。 ReDual AX-C18色谱柱NQAD检测器同时分离无机有机阴阳离子(1:Na+ 2:四丁基氨根离子;3:H2PO3- 4:卡络磺酸根离子) 应用案例:卡络磺钠参比制剂中杂质结构鉴定 本应用采用常规中心切割二维液相系统,无需改造仪器;馏分转移过程配有紫外检测器监控,不存在检测盲区;离子对试剂的去除未使用强酸或强碱性试剂;方法耐用性好。一维使用C18反相色谱柱,流动相添加磷酸二氢钠(含四丁基硫酸氢铵,pH 3.0);二维使用ReDual AX-C18色谱柱,在线去除四丁基硫酸氢铵和磷酸二氢钠,实现目标化合物的质谱鉴定。 卡络磺钠杂质2的质谱鉴定结果 总结岛津中国创新中心搭载的特色中心切割二维色谱杂质鉴定系统,二维使用岛津公司最新推出的ReDual™ AX-C18强阴离子交换反相混合键合相色谱柱,成功实现一维流动相中离子对试剂和无机盐的在线去除,并对卡络磺钠参比制剂中未知杂质进行了质谱鉴定。
  • 《水质 黄磷的测定 钼酸铵分光光度法》等两项国家生态环境标准公开征求意见
    为贯彻《中华人民共和国环境保护法》,规范生态环境监测工作,生态环境部组织编制了《水质 黄磷的测定 钼酸铵分光光度法(征求意见稿)》、《固定污染源废气 丙烯酸和甲基丙烯酸的测定 液相色谱法(征求意见稿)》两项国家生态环境标准征求意见稿,现公开征求意见。《水质 黄磷的测定 钼酸铵分光光度法(征求意见稿)》(点击下载)为贯彻《中华人民共和国环境保护法》《中华人民共和国水污染防治法》,防治生态环境污染,改善生态环境质量,规范水中黄磷的测定方法,制定本标准。本标准规定了测定地表水、地下水、生活污水、工业废水和海水中黄磷的钼酸铵分光光度法。本标准适用于地表水、地下水、生活污水、工业废水和海水中黄磷的测定。本标准是对《水质 单质磷的测定 磷钼蓝分光光度法(暂行)》(HJ 593-2010)的 修订,本次为第一次修订。主要修订内容如下:——标准的名称由《水质 单质磷的测定 磷钼蓝分光光度法》改为《水质 黄磷的 测定 钼酸铵分光光度法》; ——修订了方法的适用范围; ——修订了方法测定的目标组分; ——修订了方法的检出限、方法原理、试剂和材料、仪器和设备、样品采集和分析步骤; ——增加了术语和定义、结果表示、准确度、质量保证和质量控制等条款。《固定污染源废气 丙烯酸和甲基丙烯酸的测定 液相色谱法(征求意见稿)》(点击下载)为贯彻《中华人民共和国环境保护法》《中华人民共和国大气污染防治法》,防治生态环境污染, 改善生态环境质量,规范固定污染源有组织排放废气和无组织排放监控点空气中丙烯酸和甲基丙烯酸的测定方法,制定本标准。 本标准规定了测定固定污染源有组织排放废气和无组织排放监控点空气中丙烯酸和甲基丙烯酸的 液相色谱法。本标准适用于固定污染源有组织排放废气和无组织排放监控点空气中丙烯酸和甲基丙烯酸的测定。
  • 饮用水臭氧消毒后,如何检测臭氧的残余量?
    一、背景介绍臭氧,化学式为O3,因其类似鱼腥味的臭味而得名。臭氧是一种强氧化剂,具有很强的杀菌消毒、漂白、除味等特性,因此广泛应用于饮用水消毒、食品加工杀菌净化、医疗卫生和家庭消毒等方面,但是过量的臭氧会使水中溴化物绝大部分被氧化成对人体有害的溴酸盐。《生活饮用水卫生标准》GB 5749-2006中,对水质中的臭氧有明确的限值,下面我们将具体介绍臭氧含量检测的标准要求、测试方法、具体测试过程及结果。 二、方法及限值臭氧分析主要有光谱分析和电化学分析。常用检测方法主要为碘量法、靛蓝二磺酸钠分光光度法、紫外吸收法和化学发光法。分光光度法不仅体积小巧,测试性价比高,易于携带保管,比较适合于在农村或县级实验室推广使用。靛蓝二磺酸钠分光光度法是在酸性条件下,臭氧迅速氧化靛蓝,使之褪色,吸光率的下降与臭氧浓度的增加呈线性。 表1臭氧的检测标准及限值标准编号标准名称限值GB 5749-2006GB5749-XXXX征求意见稿生活饮用水卫生标准出厂水和末梢水限值≤0.3mg/L末梢水余量≥0.02mg/L 三、臭氧含量测定1、检测仪器:DGB-480型多参数水质分析仪2、检测试剂:臭氧试剂包:(臭氧)测定试剂(粉剂组分)、(臭氧)测定试剂(溶液组分)3、检测流程及结果:参数方法号方法检出限mg/L测量范围mg/L重复性测量误差臭氧18靛蓝二磺酸钠分光光度法0.020.02-2.002.00%±0.1mg/L图 1 臭氧含量测定流程 图2 臭氧含量测定显色图(从左到右0mg/L、0.4mg/L、1.0mg/L、1.6mg/L和2.0mg/L) 图3 臭氧含量测定曲线图4、结果总结:● 对0mg/L、0.4mg/L、1.0mg/L、1.6mg/L和2.0mg/L的臭氧标准溶液进行检测,测量误差≤0.008mg/L,结果良好。● 采用DGB-480型多参数水质分析仪测定水中臭氧含量,测量方法为国家标准方法。测试仪器体积小巧,配套有臭氧检测试剂,测试方便,测试性价比高。 四、检测仪器介绍DGB-480型多参数水质分析仪,采用8波长光学测量系统和90度光散射浊度检测光路,内置浊度、色度、臭氧、亚硝酸盐氮、尿素、六价铬、总铬、锰、总氮、 硝酸盐氮、硝酸盐、甲醛、水硬度、锌、亚硝酸盐、余氯、总氯、 二氧化氯、高锰酸盐指数、低浓度 CODCr、高浓度 CODCr、镉、 氨氮、铵离子、总磷、总磷酸盐、镍、亚铁离子、铁、亚硫酸盐、 过氧化氢、铝、铅、铜、钙、汞、硼、砷、氟、阴离子洗涤剂、 银、溴酸盐、硫酸盐、钼、铍、钴、钡、氯化物等40多种检测项目和方法,直接调用,测量快速、简便。既可以配套雷磁专用试剂盒检测也可以自制试剂检测,使用灵活。主要应用于生活饮用水、地表水、自来水、污水、游泳池水等水质的现场测定或者实验室分析。
  • 吉林省卫生健康委员会对废止《食品安全地方标准 面制食品中十二烷基苯磺酸钠的测定高效液相色谱-荧光检测器法》等7项食品安全地方标准征求意见
    各有关单位:根据《中华人民共和国食品安全法》和《国家卫生健康委办公厅关于进一步加强食品安全地方标准管理工作的通知》(国卫办食品函〔2019〕556号)的规定,经吉林省食品安全专家委员会议通过,我委将废止以下食品安全地方标准,具体废止标准号及标准名称如下:DBS22/010-2013 《食品安全地方标准 面制食品中十二烷基苯磺酸钠的测定高效液相色谱-荧光检测器法》DBS22/013-2013 《食品安全地方标准 植物源性食品中α-玉米赤霉烯醇和赤霉烯酮的测定 液相色谱-质谱/质谱法》DBS22/017-2013 《食品安全地方标准 柑橘类水果及其饮料中橘红 2 号的测定高效液相色谱法》DBS22/018-2013 《食品安全地方标准 鲜(冻)畜肉中鸭源性成分的定性检测PCR 方法》DBS22/003-2012《食品安全地方标准 生牛乳中雄激素的测定气相色谱-质谱法》DBS22/004-2012 《食品安全地方标准 植物油中胆固醇的测定气相色谱-质谱法》DBS22/008-2012 《食品安全地方标准 乳与乳制品中 L-羟脯氨酸的测定》现公开征求意见,如有意见建议请于2023年9月23日前书面反馈我委。联系人:省卫生健康委员会食品安全标准与监测评估处 邢立新联系电话:0431-88906887电子邮箱:1047810177@qq.com吉林省卫生健康委员会2023年9月13日
  • 上海安谱科学仪器有限公司HPLC级乙腈促销活动
    由于乙腈原材料国际市场价格大涨,导致实验室用乙腈的价格也大幅上升,为了应对国内实验室用HPLC级乙腈供需紧张的情况,我司CNW HPLC级乙腈(CAEQ-4-003306-4000)备货充足,可以为您提供稳定的供货,促销信息如下: Merck HPLC级乙腈 货号CAAH-1-00030-4000 12瓶以下 促销价700.00元/瓶 12-19瓶 促销价650.00元/瓶 20瓶以上 促销价600.00元/瓶 CNW乙腈价格促销 8瓶以下 促销价600.00元/瓶 8-19瓶 促销价550.00元/瓶 20瓶以上 促销价500.00元/瓶 Merck HPLC级甲醇 货号CAAH-1-06007-4000 4瓶及以上促销价为225.00元/瓶 CNW HPLC级甲醇 货号CAEQ-4-003302-4000 4瓶及以上促销价为170.00元/瓶 说明:上述促销价格不含运费在内。 另外,我司对于其他品种实验室常用试剂均长期备有现货: (1)HPLC高效液相色谱溶剂,如HPLC级叔丁基甲醚、正己烷、环己烷、四氢呋喃、乙酸乙酯、异丙醇、正丙醇、N,N-二甲基甲酰胺、正丁醇、正戊烷、正庚烷、苯、吡啶、二甲基亚砜、二氯甲烷、异辛烷等; (2)HPLC级缓冲溶液添加剂,如甲酸、乙酸、磷酸、三氟乙酸、三乙胺、甲酸铵、甲酸钠、乙酸铵、乙酸钠、碳酸铵、碳酸氢铵、磷酸氢二钠、磷酸二氢钠二水化合物、磷酸氢二钾、磷酸二氢钾等; (3)HPLC级离子对试剂,如1-戊烷磺酸钠、1-己烷磺酸钠、1-庚烷磺酸钠、1-辛烷磺酸钠等。 产品详细信息及其他产品查询请登陆我公司网址:www.anpel.com.cn。
  • HPLC级乙腈促销活动
    HPLC级乙腈促销活动 安谱现备有大量的德国Merck和CNW两个品牌的实验室用HPLC级乙腈,为答谢各位新老客户对我公司业务的支持,现对Merck和CNW HPLC级乙腈推出如下促销活动,如有价格变更,我们会在公司网站www.anpel.com.cn上另行通知。 Merck HPLC级乙腈 货号CAAH-1-00030-4000 12瓶以下 促销价700.00元/瓶 12-19瓶 促销价650.00元/瓶 20瓶以上 促销价600.00元/瓶 CNW HPLC级乙腈 货号CAEQ-4-003306-4000 8瓶以下 促销价600.00元/瓶 8-15瓶 促销价550.00元/瓶 16瓶以上 促销价500.00元/瓶 Merck HPLC级甲醇 货号CAAH-1-06007-4000 4瓶及以上促销价为225.00元/瓶 CNW HPLC级甲醇 货号CAEQ-4-003302-4000 4瓶及以上促销价为170.00元/瓶 说明:上述促销价格不含运费在内。 另外,我司对于其他品种实验室常用试剂均长期备有现货: (1)HPLC高效液相色谱溶剂,如HPLC级叔丁基甲醚、正己烷、环己烷、四氢呋喃、乙酸乙酯、异丙醇、正丙醇、N,N-二甲基甲酰胺、正丁醇、正戊烷、正庚烷、苯、吡啶、二甲基亚砜、二氯甲烷、异辛烷等; (2)HPLC级缓冲溶液添加剂,如甲酸、乙酸、磷酸、三氟乙酸、三乙胺、甲酸铵、甲酸钠、乙酸铵、乙酸钠、碳酸铵、碳酸氢铵、磷酸氢二钠、磷酸二氢钠二水化合物、磷酸氢二钾、磷酸二氢钾等; (3)HPLC级离子对试剂,如1-戊烷磺酸钠、1-己烷磺酸钠、1-庚烷磺酸钠、1-辛烷磺酸钠等。 产品详细信息及其他产品查询请登陆我公司网址:www.anpel.com.cn。
  • 2013 BCEIA 天美中国展前新品预览(三)——UH5300
    UH5300双光束分光光度计高通量定量分析废水中的磷酸根离子 概要 日立最新推出UH5300 双光束分光光度计,光源采用脉冲氙灯,能耗低,环保;C-T型的双光束光学系统,实现1nm光谱带宽,超高的扫描速度(6000nm/min)与全波段范围内0.3nm的波长准确性,确保用户快速获得高精准的结果。非常具有特色的是可以实现远程的无线操作(iPad、笔记本、PC)。用户界面非常简单,具有前所未有的操作便捷性。在进行多个样品测试和长时间的时间动力学测试时、可远程实时进行数据确认。根据分析结果或者状态,我们可以准备下一个样品的检测,因此可以提高工作效率。在此,我们检测了废水中的磷酸离子浓度,为了确定其浓度,需要进行多份样品分析对照。当校正曲线在0.01~2.0 mg/L范围内生成时,其可获得良好的线性关系,相关系数(R2)为 0.9997。 方法 分析对象 : PO43- 检测方法 : 钼蓝(抗坏血酸还原)法 JIS K0102 46.1.1 定量范围 : 0.01 ~ 2.0 mg/L 分析条件 仪器 : UH5300 狭缝 : 1 nm 扫描速度 : 400 nm/min 检测波长 : 880 nm 触摸屏的简单操作流程 关键词 环境分析相关、废水、环境化学、环境、废水、PO43-、磷酸盐离子、吸收光谱、校准曲线、着色试剂、 磷酸, UV, UH5300, U-5100, U-2900 分光光度计 UV Sheet No. UV120004-01 分析方法 钼酸铵-抗坏血酸混合溶液的制备方法 样品:25mL │&larr 加反应试剂(*1) 2mL 搅拌 │&larr 放置25 min 测量溶液 温度 : 室温 *1 钼酸铵-抗坏血酸混合溶液 溶液1: 钼酸铵溶液 称取七钼酸六铵四水和物6g、双[(+)-酒石酸盐]二锑酸(III)二钾三水和物0.24 g 、加水溶解,最终体积300mL | &larr 硫酸(2+1)120mL 混合 | &larr 氨基磺酸铵 5g 混合、加水至500mL 溶液2 : L(+)-抗坏血酸溶液 称取L(+)-抗坏血酸7.2 g 、加水溶解,最终体积100mL 将溶液1和溶液2按5 :1的比例混合制备钼酸铵-抗坏血酸混合溶液 (测量时混合) 测量结果 废水的添加回收试验 废水 废水 + 0.5 mg/L 回收率 ND 0.48 ± 0.003 95.2 ± 0.7 % ND : Not detected, n = 3 UH5300 会在天美展台展出,欢迎您前来关注。 时间:2013.10-23-10.26 地址:北京展览馆 天美展台:2090-2093,2020-2027(2号馆主席台旁)
  • 铸造分析仪 钢铁元素分析仪 金属元素分析仪所需的化验方法
    铸造分析仪 钢铁元素分析仪 金属元素分析仪所需的化验方法 一、硅之测定(亚铁还原硅钼蓝光度法) 1、方法提要 试样溶于稀硝酸,滴加高锰酸钾氧化,硅酸离子全部转化成正硅酸离子,在一定酸度下与钼酸铵作用,生成硅钼杂多酸。然后在草酸存在下用亚铁还原成硅钼蓝,借此进行硅的光度测定。 2、试剂 (1)稀硝酸(1+5) (2)高锰酸钾溶液(2%) (3)碱性钼酸铵溶液: A、钼酸铵溶液(9%) B、碳酸钾溶液(18%) A、B两溶液等体积合并,贮于塑料瓶中备用。 (4)草酸溶液(2.5%) (5)硫酸亚铁铵溶液(1.5%) 称硫酸亚铁铵15g,先将稀硫酸(1+1)1ml湿匀亚铁盐,然后以水稀释至1L,溶解后摇匀备用。 3、分析步骤 称取试样30mg,加至高型烧杯(250ml)中,杯内有预热之稀硝酸(1+5)10ml,样品溶清,逸去黄色气体,加高锰酸钾(2%)2-3滴,继续加热至沸,立即加入碱性钼酸铵溶液10ml摇动10秒钟,再另入草酸(2.5%)40ml,硫酸亚铁铵(1.5%)40ml摇匀以水作参比,扣除空白倾入比色杯,在JSB系列或JQ系列分析仪器上测定,直读含量。 4、注意事项 溶解样品时应低温溶解。 二、锰之测定(过硫酸铵银盐光度法) 1、方法提要 钢铁试样,在耨、磷介质是,以银离了为催化剂,用过硫酸铵氧化将低价锰子变成高锰酸,借此进行锰的光度测定。 2、试剂 (1)定锰混合液 硝酸450ml,磷酸72ml,硝酸银7.2g,用水稀释至2L,摇匀,贮于棕色瓶中备用。 (2)过硫酸铵溶液(15%)或固体。 3、分析步骤 称样50mg,置于高型烧杯(250ml)中,溶于预热定锰混合液15ml,等试样溶解毕,加入过硫酸铵溶液(15%)10ml(联测时加固体过硫酸铵约1g)继续加热于沸并出现大气泡10秒钟后,加入40ml倾入比色杯中,在JSB系列或JQ系列分析仪器上测定,直读含量。 4、注意事项 (1)过硫酸铵加入后,需要控制煮沸10秒。 (2)记取含量时,要等少量小气泡逸去后读取。 三、磷之测定(氟化钠-氯化亚锡磷) 1、方法提要 试样在硝酸介质中,以高锰钾氧化,使偏磷酸氧化成正磷酸,与钼酸铵生成磷钼杂多酸,以氯化亚锡还原成磷钼蓝进行光度测定。酒石酸离子消除硅的干扰。氟化钠络合铁离子,生成无色络合物,并抑制硝酸分子的电离作用。 2、试剂 (1)稀硝酸(1+2.5) (2)高锰酸钾溶液(2%) (3)钼酸铵-酒石酸钾溶液 取等体种的钼酸铵溶液(10%)与酒石酸钾钠(10%)混合备用。 (4)氯化钠(2.4)-氯化亚锡(0.2%)溶液: 氯化钠24g溶于800ml水,可稍加热助溶,氯化亚锡2g,以稀盐酸(1+1)5ml,加热至全部溶清;加入上述溶液稀释至1L,必要时可过滤。当天使用,经常使用时,配大量氟化钠溶液,使用时取出部分溶液加入规定量之氯化亚锡。 3、分析步骤 称试样50mg,置于高型烧杯(250ml)中,加入预热稀硝酸(1+2.5)10ml,加热至试样溶解,逸去黄色气体,滴加高锰酸钾溶液(2%)2-3滴。再加氟化钠-氯化亚锡溶液40ml。水作参比,倾入比色杯。在JSB系列或JQ系列分析仪器上测定,读取含量。 4、注意事项 (1)氧化时应使溶液至沸,并保持5-10秒钟。 (2)分析操作手续相对保持一致致,以保证分析结果重现性和准确度。 (3)含量高至0.050%以上,色泽稳定时间较短,读数不就耽误,在0.080%时更短,要即刻读取。
  • 各厂商请注意——全球拉响“孔雀石绿”警报
    英国再拉食品安全警报 6月5日,英国食品标准局在英国一家知名的超市连锁店出售的鲑鱼体内发现一种名为“ 孔雀石绿”的成分,有关方面将此事迅速通报给欧洲国家所有的食品安全机构,发出了继“苏丹红1号”之后的又一食品安全警报。英国食品标准局发布消息说,孔雀石绿是一种对人体有极大副作用的化学制剂,任何鱼类都不允许含有此类物质,并且这种化学物质不应该出现在任何食品中。 相继出现孔雀石绿 就在许多消费者还认为只有鲑鱼才含有这种成分时,随之出现在国内的报道让许多爱吃鱼的人感到惊心。有媒体调查后发现,在我国很多地方,尤其是河南、湖北等地的水产养殖业和水产品贩运中,孔雀石绿仍在被普遍使用。重庆市执法部门在某水产交易市场查获600多只含有孔雀石绿的甲鱼。有些地区则在鳗鱼制品中检出孔雀石绿。 针对这一情况,农业部办公厅7月7日下发《关于组织查处“孔雀石绿”等禁用兽药的紧急通知》,在全国范围内严查违法经营、使用“孔雀石绿”的行为。通知提到,鉴于湖北等地水产品大多销往北京、天津、上海、河南、江西等地,上述地区渔业行政主管部门要积极会同工商行政管理等职能部门对水产品市场实施执法监督检查,查清进货渠道,对滥用禁用兽药重点地区的产品,要实施残留检测。 由于此前“孔雀石绿”不属于常规检测项目,因此中国很多相应的检测机构虽然有检测设备、检测标准,却因为缺乏试剂、标样等必需品而暂时无法进行检测。因此本网在此大声向各参展厂商呼吁,立刻行动起来,如果贵公司有相关的试剂、标样等产品,请立刻发布在本网的“耗材配件(http://www.instrument.com.cn/Quotation/)”栏目,大家一起努力,共同捍卫食品安全。 附录(相关试剂、标样)1、孔雀石绿及无色孔雀石绿标准品:孔雀石绿纯度≥90%,无色孔雀石绿纯度≥90%2、乙腈:色谱纯3、二氯甲烷:分析纯4、盐酸羟胺溶液:0.25g/mL5、二甘醇:分析纯6、乙酸铵溶液:0.1mol/L(pH4.5),0.125mol/L(pH4.5)7、对甲苯磺酸溶液:0.05mol/L8、碱性氧化铝:分析纯,粒度0.071mm~0.1501nrn9、中性氧化铝:分析纯,粒度0.07mm~0.150mm 10、丙基磺酸阳离子树脂:PRS(propylsulfonic acid),40μm11、二氧化铅:分析纯12、硅藻土:精制工业硅藻土
  • LC-MS/MS直接进样法高灵敏度分析大米中草甘膦和草铵膦等极性农药
    高灵敏度分析 草甘膦和草铵膦是广泛使用的叶面除草剂中的活性成分。近年来,草甘膦的产量和销售额一直占据世界除草剂品种的前列。当在土壤和水中降解时,草甘膦会产生代谢产物氨甲基膦酸 (AMPA)。 各国标准对于农产品中草甘膦的最大残留限量大多介于0.05mg/kg-50mg/kg之间。如GB2763-2021《食品安全国家标准食品中农药最大残留限量》中规定,草甘膦在不同食品中的最大残留限量从0.05mg/kg-7mg/kg不等。 一直以来,高极性农药的检测都是液质分析的难点之一。草甘膦、草铵膦和AMPA都是高极性化合物,很难在反相模式下使用液相或液质进行分析。因此,对于草甘膦的液质分析通常采取FMOC衍生化的方法。本文[1]介绍了一种无需复杂预处理或耗时衍生化的草甘膦、草铵膦和AMPA的高灵敏度直接分析方法。 01样品前处理 本方法基于欧盟制定的食品中高极性农药快速分析方法(QuPPe),使用含有甲酸的甲醇:水 (50:50) 作为最终提取溶剂。将1g均质大米样品称入 50 mL离心管中,加入9 mL水和100 μL混标溶液,然后将样品静置15 min。之后,加入10 mL含有1%甲酸的甲醇,振摇1min。加入1 mL 10% EDTA水溶液,在振荡器上混合15min并离心。取上清液用0.22 μm尼龙滤膜过滤,取2mL滤液转移到含有2mL乙腈的试管中,涡旋1分钟,使用3 kDa的超滤管离心并将滤液转移至聚丙烯塑料瓶中。02色谱图 2.5ng/mL混标样品在纯溶剂(a)和大米基质(b)中的MRM色谱图 从左到右分别为0.5、1.0和2.5ng/mL样品的MRM色谱图(上:AMPA、中:草铵膦、下:草甘膦)利用岛津三重四极杆液质联用仪,基于QuPPe的样品前处理方法,无需衍生化、直接进样定量分析大米基质中的草甘膦、草铵膦和 AMPA。并对线性、准确度、精密度、基质效应和回收率等方法学进行了考察,结果良好。 03高极性农药分析的小诀窍 1、选用HILIC或混合模式色谱柱以获得良好峰形,可参考欧盟QuPPe方法中推荐的色谱柱型号。2、为避免高极性化合物被玻璃瓶吸附,建议使用聚丙烯塑料材质的样品瓶、离心管等用于样品和标准品的制备和储存。3、高极性化合物可能会吸附在金属表面,LC自动进样器和色谱柱之间的不锈钢管路用 PEEK材质管路替换。推荐使用Nexera XS inert生物惰性液相系统作为质谱前端。 Nexera XS inert生物惰性液相系统本文中涉及的分析仪器:三重四极杆液相色谱质谱联用仪LCMS-8060NX请访问以下链接,了解更多信息https://www.shimadzu.com.cn/an/lcms/lcms-8060nx/index.html 04其他相关应用 LCMS-8050直接分析饮料中草甘膦 复制链接前往查看:https://www.an.shimadzu.com/direct_analysis_of_glyphosate_glufosinate_and_ampa_in_beverages_using_a_tq_lcmsms.html LCMS-8060 在线衍生化分析啤酒中草甘膦 复制链接前往查看:https://www.an.shimadzu.com/glyphosate_glufosinate_and_ampa__uhplcmsms.html 参考文献:1.Zhe Sun and Zhaoqi Zhan, Quantitative Determination of Residual Glufosinate, Glyphosate and AMPA in Rice Matrix by Direct LC-MS/MS Method,Shimadzu Application News 本文内容非商业广告,仅供专业人士参考。
  • 黎巴嫩首都发生特大爆炸 2750吨硝酸铵威力有多大?
    p   当地时间8月4日下午6时左右,黎巴嫩首都贝鲁特港口区发生巨大爆炸,爆炸接连发生两次,导致多栋房屋受损,玻璃被震碎,天上升起红色烟雾。据黎巴嫩卫生部公布,爆炸目前已造成至少78人死亡,4000多人受伤。黎巴嫩总理宣布5日为国家哀悼日。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202008/uepic/eaec7772-baee-4513-a7bf-e559b6fa3430.jpg" title=" 图1.jpg" alt=" 图1.jpg" / /p p   当地时间18时左右,贝鲁特港口发生第一起爆炸事故,随后的第二起爆炸事故破坏力要比第一起强得多。有视频显示,爆炸现场狼藉一片,冲击波对周围建筑物造成严重破坏,瓦砾遍布街道,天空被灰尘笼罩,浓烟遮住了夕阳,当地有人惊呼“这就像世界末日。”黎巴嫩卫生部长称,当地医院急诊已人满为患,伤者目前已被送往其他医院进行救治。目前,黎巴嫩武装部队已被派往现场协助救援。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202008/uepic/8aff3b9a-6892-4758-abf9-b551ce92b4bf.jpg" title=" 图2.jpg" alt=" 图2.jpg" / /p p   黎巴嫩安全部门负责人阿巴斯· 易卜拉欣表示,港口仓库中储存着可燃化学物质。黎巴嫩总理证实,2750吨硝酸铵发生了爆炸。他强调,一批重达2750吨的硝酸铵在没有采取任何预防措施的条件下停在仓库里长达六年之久,这是不能被接受的。 /p p   据了解,硝酸铵(NH4NO3)是一种铵盐,呈无色无臭的透明晶体或呈白色的晶体,极易溶于水,易吸湿结块,溶解时吸收大量热。受猛烈撞击或受热爆炸性分解,遇碱分解。硝酸铵主要用作肥料及工业用和军用炸药,还可用于杀虫剂、冷冻剂、氧化氮吸收剂,制造笑气、烟火等。 /p p   纯硝酸铵在常温下是稳定的,对打击、碰撞或摩擦均不敏感。但在高温、高压和有可被氧化的物质(还原剂)存在及电火花下会发生爆炸,硝酸铵在含水3%以上时无法爆轰,但仍会在一定温度下分解,在生产、贮运和使用中必须严格遵守安全规定。 /p p   2750吨硝酸铵发生爆炸的威力到底有多大? /p p   我国2015年发生的“8· 12天津滨海新区爆炸事故”爆炸总能量约为 450 吨 TNT 当量,给我国造成了巨大损失。2750吨硝酸铵爆炸产生的能量相当于将近2000吨左右TNT当量,危害可想可知! /p p   此外,“8· 12天津滨海新区爆炸事故”调查结果显示对事故中心区及周边局部区域大气环境、水环境和土壤环境造成了不同程度的污染。事故发生后,我国相关部门紧急调集多方力量开展了环境应急监测,对事故中心区及周边大气、水、海洋环境实行24小时不间断监测,对事故中心区外土壤进行了网格化抽样监测;对受污染水体进行了处理处置;严格规范了废物转移处置工作。 /p p   黎巴嫩此次特大爆炸事件对环境造成的污染也是不可避免的,政府只能争取及时疏散人群以及做好防护措施,在最短时间内清理危险物品,才能将损失降到最低! /p
  • 反相离子对试剂什么时候使用?
    在介绍反相离子对试剂之前,我们先回忆一下离子对色谱法(Ion-pair chromatography,IPC),离子对色谱法可被看作是以分离离子样品为目的的反相色谱法(Reversed-phase chromatography,RPC)的改良形式。IPC与RPC唯yi不同的条件是IPC在流动相中添加了离子对试剂,这些试剂能在平衡过程与酸性化合物的A-或者碱性化合物的BH+发生相互作用。“ 关于离子对试剂 ”离子对试剂是由强亲水离子形成,反作用于样品分子的中性离子对。因此,可用于同时分离带电分子和非带电分子。反相离子对色谱法是把离子对试剂加入到含水流动相中,被分析的组分离子在流动相中与离子对试剂的反离子生成不带电荷的中性离子,从而增加溶质与非极性固定相的作用,使分配系数增加,改善分离效果。”一般情况下,在建立HPLC分离方法的时候,我们推荐由RPC开始,接着添加离子对试剂(仅当有需要时)。举个例子,当我们已知某个峰是对应一个酸性物质、碱性物质或中性物质时,我们便能准确地预测出添加的IPC试剂对溶质保留的影响。因此,当改变RPC的其他条件仍不能达到合适的分离度时,我们可以通过使用IPC试剂不断改变酸性溶质和碱性溶质的保留行为从而改善他们的分离效果。那么,IPC在什么时候或者应用于什么物质的分离会是比较合适的分离方法呢?在样品出现以下特点时我们就可以考虑使用离子对试剂:(1)在反相色谱柱上不保留或保留弱;(2)化合物带有强离子官能团,如羧基、铵基、氨基等;(3)化合物在反相体系流动相中有足够的溶解度。使用离子色谱法可令样品的保留行为产生类似于改变流动相的pH的变化,但是离子对色谱法能更好的控制酸性溶质或碱性溶质的保留行为,而且无须使用极端的流动相pH(如,pH<2.5或pH>8.0)。“常见的离子对试剂”常见的离子对试剂主要包括如下几类:阴离子对试剂:四丁基氢氧化铵、四丁基溴化铵等碱性试剂,适用于结构式中含磺酸基、羧基等的极性化合物。阳离子对试剂:甲烷磺酸钠、戊烷磺酸钠、己烷磺酸钠、庚烷磺酸钠、辛烷磺酸钠、癸烷磺酸钠、十二烷基磺酸钠、十二烷基硫酸钠等,适用于结构式中含铵基、氨基等的极性化合物。其他离子对试剂:高氯酸钠、三氟乙酸、七氟丁酸等。
  • 浅谈离子对色谱法
    小伙伴们在做日常检测,会发现有些项目,测试标准上使用的流动相中加入了像庚烷磺酸钠、四丁基氢氧化铵、四丁基溴化铵等试剂,这类试剂我们称为离子对试剂,它可以用来改善分离和峰形、缩窄样品的保留范围等。离子对试剂可以看成是在高效液相色谱法中引入了离子色谱方法的一种表现。今天小编和小伙伴们聊聊离子对色谱法的保留基本原理和一些特殊问题。离子对色谱法(IPC)可被看做是以分离离子样品为目标的反相色谱法的改良形式。IPC和RPC唯yi不同的条件是IPC在流动相中添加了离子对试剂R+或R-,这些试剂能在平衡过程中,与酸性化合物的A-或碱性化合物的BH+发生相互作用: 离子化溶质 离子对(酸)A-+R+ ⇔ A-R+(碱)BH++R- ⇔ BH+R- 亲水性溶质 疏水性离子对(在RPC保留较少) (在RPC保留较多)使用IPC可令样品的保留行为产生类似于改变流动相pH的变化,但是IPC能更好地控制酸性溶质或碱性溶质的保留行为,而且无需使用极端的pH(如pH8)。典型的离子对试剂包括烷基磺酸盐R-SO3-(R-)和四烷基铵盐R4N+(R+),以及强羧酸(通常是离子化的)(四氟乙酸、TFA;七氟丁酸酐、HFBA(R-)),还有所谓的离液剂(BF4-、ClO4-、PF6-)。有关IPC的保留机理目前有两种说法。一种说法是离子对在溶液中形成,然后被保留在色谱柱上,溶质保留平衡过程如下(以离子化的酸性溶质A-和四烷基铵盐R+形成离子对为例):A-R+(流动相) ⇔ A-R+(固定相)根据这个说法,溶质保留由以下因素决定:① 溶质分子A在流动相中已电离的部分(取决于流动相pH和溶质的pKa);② IPC试剂的浓度和它形成离子对的趋势;③ 离子对复合物A-R+的k值。另一种说法则认为,IPC试剂先被固定相保留,然后溶质的保留是离子交换的过程,例如,离子化的酸性流动相A-和IPC试剂R+X-:A-(流动相)+ R+X-(固定相) ⇕ A-R+(固定相)+ X-(流动相) 即是,离子对试剂 R+X-先吸附到固定相上,然后样品离子A-代替固定相上的反离子X-。这两种IPC的保留过程都可能在任一个给定的分离中占优势,但是哪一种机制起着更为重要的作用既不容易确定,对实际操作也不重要。在IPC中,可以用于控制选择性的分离条件包括:➩ pH;➩ IPC试剂的类型(磺酸盐、季铵盐、离液剂);➩ IPC试剂的浓度;➩ 溶剂强度(B%);➩ 溶剂类型(甲醇、乙腈等);➩ 温度;➩ 色谱柱类型;➩ 缓冲溶液的类型和浓度。无机试剂(或“离液剂”)如ClO4-、BF4-和PF6-可用于代替常用的烷基磺酸盐作为IPC试剂。无机试剂在固定相上的保留较少,它的保留机理更接近上述的di一种说法,在流动相中形成离子对。离液剂能更好地用于梯度洗脱(有较小的基线噪音和漂移),且当B%较高时也能较好的溶解在流动相中。但是使用离子对试剂也有一些特殊问题,在某些情况下需要严格控制流动相pH;温度控制的重现性必须较高(比RPC更需要),此外,IPC中的某些问题不会在RPC分离中出现或与其他RPC有所不同。还有就是出现伪峰、改变流动相周柱平衡缓慢、有不明原因造成的糟糕的色谱峰型等。首先是伪峰。当把样品溶剂(不含样品)注入到IPC中(即空白实验),我们有时会观察到正峰和负峰同时出现的情况。导致伪峰的原因通常是由流动相和样品溶剂的组成之间存在差异引起的。而使用不纯的IPC试剂、缓冲液或其他的流动相添加剂都会使伪峰的问题更为严重。其次是缓慢的柱平衡。当使用新的流动相时,必须用足够体积的流动相冲洗色谱柱以使色谱柱达到平衡。在IPC中,IPC试剂在色谱柱上的吸附和解吸附在某些情况下非常缓慢,这会造成色谱柱不能被新的流动相完全平衡。所以,无论是旧的流动相还是新的流动相含有IPC试剂时,我们必须确定改变流动相后样品的保留具有重现性(需要以新的流动相进行几小时的冲洗色谱柱才能达到完全平衡)。更换IPC试剂时,先用特殊的洗脱剂把先前吸附在色谱柱上的IPC试剂洗脱下来,再用新的流动相对色谱柱进行平衡。阴离子试剂(如烷基磺酸盐)能用组成为50%~80%甲醇-水的洗脱剂洗脱下来;季铵盐需要使用50%甲醇-缓冲液(如,pH为4~5的100mmol/L的磷酸氢二钾溶液,加入磷酸氢二钾是为了减少季铵基团与固定相上离子化的硅醇基间的相互作用)。任一情况下,首先应使用至少等于20倍柱体积的洗脱剂来冲洗色谱柱,然后再使用新的流动相进行柱平衡。另外,像较弱的离子对缓冲液三氟乙酸(TFA)以及离液剂,不会减缓柱平衡的过程,通常用10~20倍的含TFA或离液剂的流动相冲洗色谱柱足以达到柱平衡。用含IPC试剂的流动相进行色谱柱的初始平衡,则平衡过程可能会非常缓慢。为了避免在开展常规实验的每个新系列之前都要进行12h的平衡,我们建议在完成每个系列的实验后把色谱柱浸泡在流动相(含IPC试剂)里储存。这个权宜的方法使得以IPC做含量测定时能更快的达到柱平衡;假如需要每天或每两天重复一次,我们也建议使用这个办法,然而,当以这种方式储存时,其使用寿命可能会缩短。由于IPC试剂与色谱柱的缓慢的平衡过程,即使用较剧烈的洗脱程序,也不可能把IPC试剂完全从色谱柱上洗脱下来。基于这个原因,我们建议已用IPC分离的色谱柱不要再用于开展不含IPC试剂的RPC分离(TFA和离液剂例外)。假如在IPC中观察到糟糕的峰型和(或)柱塔板数的N值较低时,可以考虑改变柱温。以上就是离子对色谱法的保留原理,和一些特殊问题的解决方法,希望对小伙伴们以后用离子对色谱法能有所帮助。
  • 赛默飞发布针对左乙拉西坦中四丁基铵的检测方案
    2015年8月20日,北京——科学服务领域的世界领导者赛默飞世尔科技(以下简称:赛默飞)近日发布针对左乙拉西坦中四丁基铵的检测方案。左乙拉西坦是一种新型吡咯烷酮衍生物型抗癫痫药物。左乙拉西坦的结构和作用机制均与已上市的其他抗癫痫药物不同,具有较强的抗癫痫作用。四丁基溴化铵是在左乙拉西坦的合成过程中作为相转移催化剂使用,原料药的合成工艺准则要求必须要严格控制其残留量。赛默飞发布的测定左乙拉西坦原料药中四丁基胺的离子色谱方法,采用Thermo ScientificTM DionexTM ICS-900 基础型离子色谱系统,样品中基体不影响待测物质的准确分析。ICS-900配备SCS1柱容量较小的分析柱,采用MSA+35%乙腈作为淋洗液,采用抑制电导的方式检测,四丁基胺的检出限可以做到8 ug/L,待测物四丁基胺在SCS1上的峰形很对称,方法分析速度快,操作简便,灵敏度等均可完全能够满足左乙拉西坦中残留的四丁基胺根离子的检测要求。ICS-900基础型离子色谱系统检测方案下载地址:www.thermoscientific.cn/content/dam/tfs/Country%20Specific%20Assets/zh-ch/CMD/Chrom/pharma/documents/Suppressed-Conducitivity-Ion-Chromatography-Method-Determination-Tetrabutyl-Ammonium-Levetiracetam.pdf----------------------------------------------------关于赛默飞世尔科技赛默飞世尔科技(纽约证交所代码:TMO)是科学服务领域的世界领导者。公司年销售额170亿美元,在50个国家拥有约50,000名员工。我们的使命是帮助客户使世界更健康、更清洁、更安全。我们的产品和服务帮助客户加速生命科学领域的研究、解决在分析领域所遇到的复杂问题与挑战,促进医疗诊断发展、提高实验室生产力。借助于首要品牌Thermo Scientific、Applied Biosystems、Invitrogen、Fisher Scientific和Unity Lab Services,我们将创新技术、便捷采购方案和实验室运营管理的整体解决方案相结合,为客户、股东和员工创造价值。欲了解更多信息,请浏览公司网站:www.thermofisher.com赛默飞世尔科技中国赛默飞世尔科技进入中国发展已有30多年,在中国的总部设于上海,并在北京、广州、香港、台湾、成都、沈阳、西安、南京、武汉、昆明等地设立了分公司,员工人数约3700名。我们的产品主要包括分析仪器、实验室设备、试剂、耗材和软件等,提供实验室综合解决方案,为各行各业的客户服务。为了满足中国市场的需求,现有8家工厂分别在上海、北京和苏州运营。我们在全国共设立了6个应用开发中心,将世界级的前沿技术和产品带给国内客户,并提供应用开发与培训等多项服务;位于上海的中国创新中心结合国内市场的需求和国外先进技术,研发适合中国的技术和产品;我们拥有遍布全国的维修服务网点和特别成立的中国技术培训团队,在全国有超过2000名专业人员直接为客户提供服务。我们致力于帮助客户使世界更健康、更清洁、更安全。欲了解更多信息,请登录网站:www.thermofisher.com
  • 南极雪样惊现微塑料!新污染物治理拉开序幕!
    据今日央视网报道,科研人员从南极洲最大的冰架——罗斯冰架沿线的不同地点采集了19个雪样本,在每个样本中都发现了微塑料,这可能意味着塑料污染对生态环境的破坏在加速,即便是被科研人员称为地球上“最干净”的地方——南极洲也无法幸免。科学家曾在该地区的深海沉积物、海洋和地表水中发现过微塑料,但在雪样中发现微塑料尚属首次。渐入人心的“微塑料”微塑料(Microplastics, MPs)是指粒径小于5 mm的塑料碎片,被认为是一类新污染物。微塑料这一概念早在2004年由英国普利茅斯大学的理查德汤普森(Richard Thompson)在《Science》上发表文章时提出。随后,由于其在海洋环境中的广泛存在以及对生物产生的各种确定的以及不确定的危害,得到了各界的广泛关注。近几年,随着科学家不断深入的研究,大气、土壤、陆地环境乃至生物体中相继检出微塑料,研究人员已开始尝试对微塑料样品进行更进一步的定性和定量分析。据相关媒体报道,不久前,南京医科大学夏彦恺教授团队联合中国科学院南京土壤研究所骆永明教授团队,首次在人体血栓样本中发现了一定数量和不同类型的微塑料和染料颗粒。据文献,这是第一次检测血栓中的微塑料,尽管只有一种颗粒被鉴定为LDPE(主要用于农用薄膜,医疗器械,药品和食品包装材料等)。随着微塑料的“渐入人心”,更多的新污染物逐渐走进大众视野。新污染物治理,蓄势待发9月27日,生态环境部发布了关于公开征求《重点管控新污染物清单(2022年版)(征求意见稿)》意见的通知。通知指出,按照《新污染物治理行动方案》(国办发〔2022〕15号)关于“2022年发布首批重点管控新污染物清单”的要求,生态环境部组织编制了《重点管控新污染物清单(2022年版)(征求意见稿)》,并公开征求意见。该《清单》共分为四大类,主要包括 14 种类新污染物:分类二级分类持久性有机污染物类1.全氟辛基磺酸及其盐类和全氟辛基磺酰氟(PFOS 类)2.全氟辛酸及其盐类和相关化合物1(PFOA 类)3.十溴二苯醚4.短链氯化石蜡5.六氯丁二烯6.五氯苯酚及其盐类和酯类7.三氯杀螨醇8.全氟己基磺酸及其盐类和相关化合物3(PFHxS 类)9.得克隆及其顺式异构体和反式异构体14.已淘汰类 (六溴环十二烷、氯丹、灭蚁灵、 六氯苯、滴滴涕、α六氯环己烷、β-六氯环己烷、林丹、硫丹原药及其相关异构体、多氯联苯) 有毒有害污染物类10.二氯甲烷11.三氯甲烷 环境内分泌干扰物类12.壬基酚 抗生素类13.抗生素 ACCSI同期会议——新污染物监测新技术论坛为了进一步助力我国新污染治理行动的进行,仪器信息网联合珀金埃尔默,将于ACCSI2022期间举办新污染物检测与监测新技术发展论坛,邀请了5位报告专家聚焦新污染物检测新技术,分享新污染物最新研究进展和检测技术!ACCSI2022 线下到场参会,实现与专家面对面互动交流!年会报名链接:https://www.instrument.com.cn/accsi/2022/嘉宾报告1:海洋环境中微塑料检测技术报告嘉宾:孙承君嘉宾简介:孙承君,2001年12月于美国加州大学圣芭芭拉分校获得博士学位,现任自然资源部第一海洋研究所研究员,主要从事海洋环境科学、海洋生物化学等方面的研究工作,获评山东省泰山学者海外创新人才和自然资源部科技领军人才。承担和完成包括国家重点基础研究计划973计划课题、国家自然科学基金等在内的多项国家和省部级项目,多次参与我国大洋和极地科考,近五年发表高水平学术论文60余篇,其中SCI论文50余篇,目前团队研究工作以海洋微塑料和海洋生物材料为主,在微塑料研究领域又较好的积累。嘉宾报告2:“eXXpedition环球航行”:全球海洋中的塑料污染状况研究报告嘉宾:Dr. Winnie Courtene-Jones嘉宾简介:Dr. Winnie Courtene-Jones是一位塑料污染研究方面的专家,2019年完成博士学位(深海生态系统中的微塑料),就职于普利茅斯大学国际海洋垃圾研究小组,曾以“eXXpedition环球航行” 组织科学项目领队的身份,开展全球海洋微塑料污染的研究,目前正参与“BIO PLASTIC RISK”生物塑料风险研究项目,调查研究可生物降解塑料的环境归趋,以及它们对生物和生态系统功能的相关影响。她的科学研究遍布各种陆地、海洋环境中的塑料污染情况,从海岸线到地球上一些最偏远的地方,包括深海和海洋环流。Dr Winnie Courtene-Jones在其研究领域发表了大量论文和技术报告,并在国际会议、英国和欧洲学术议会上发表演讲。嘉宾报告3:新污染物的转化与毒理报告嘉宾:曲广波嘉宾简介:研究员、博士生导师,现任职于中国科学院生态环境研究中心。主要研究方向为“新型污染物的转化与毒理”。研究成果以第一/通讯作者在Chemical Reviews、Chemical Society Reviews、Chem、Angewandte Chemie International Edition、Environmental Health Perspectives、ACS Nano、Environmental Science & Technology等期刊上。国家优秀青年基金获得者、中国科学院青年创新促进会优秀会员。2018年获第五届中国毒理学会优秀青年科技奖、2018年获“The 16th International Symposium on Persistent Toxic Substances Young Scientist Award”、 2021年获中国分析测试协会特等奖(排名第1)。中国毒理学会分析毒理专业委员会委员、中国环境诱变剂学会毒性测试与替代方法专业委员会委员、《环境化学》青年编委。嘉宾报告4:人体生物组织中PFAS的检测与研究报告嘉宾:Dr. Sabra Botch-Jones嘉宾简介:Sabra Botch-Jones是波士顿大学医学院—生物医学法医学研究生课程的法医毒理学家和助理教授,长期从事于法医毒理学和分析化学方面的研究,Sabra担任美国科学院标准委员会毒理学共识机构副主席,美国法医学会毒理学分会主席。她被州长查理贝克(Charlie Baker)任命为马萨诸塞州法医监督委员会成员。 嘉宾报告5:纳米材料检测和职业风险防护标准示例及应用研究报告嘉宾:郭玉婷嘉宾简介:郭玉婷,国家纳米科学中心中国科学院纳米标准与检测重点实验室高级工程师,全国标准化教育标准化工作组(筹)委员,从事纳米技术标准化及电感耦合等离子体质谱检测研究工作,主持制定五项国家标准,参编《纳米技术标准》书籍,发表多篇科技论文,参与两项国家重点研发计划和一项中科院战略性先导科技专项项目。报名现场,赢取珀金埃尔默定制礼品!
  • CATO药物杂质微信公开课结束!错过的你还有机会,课程干货为你打包奉上!
    药物杂质标准品的选择是一致性评价工作中的重要环节,快速准确地选择合适的标准品可以为一致性评价工作节省很多时间,cato为了提高各大药企研究人员之间相互交流学习,12月21日晚,cato联合丁香园成功举办了一堂药物杂质谱和基因毒性杂质的微信公开课,共吸引了180多位药企人员参加。李雪明博士,cato技术总监,2011年获得中山大学药学院有机化学博士学位,至今已有5年药物研发相关经验,所负责的新药研发项目已成功找到有明确体内生物活性的化合物,正在进行临床前毒理研究。在加入cato之前,李博士曾任职成都先导药物开发有限公司和桂林南药股份有限公司等知名药企,深知药企工作的重点和难点。期间在oragnic letters, chemical communications等学术期刊上发表多篇研究论文,申请国内外专利6项;曾参与863、973、国家自然科学基金等重点项目的研究工作,作为主要参与人员,完成两项国家自然科学基金。 李雪明博士本次演讲主题是「药物杂质谱及基因毒性杂质介绍」,主要为各大在药物一致性评价工作任然处于迷茫的药企人员进行疑问解答。如果你错过了本次精彩的微信公开课,请不用担心,我们为你准备了完整的ppt讲义(关注“cato标准品”关注号直接下载课程讲义),现在就跟随李雪明博士一起开始观看学习吧。课后大家也结合自身情况提出了一些与药物杂质相关的问题。我们在课后选择了一些代表性的问题进行了整理,现分享给大家,相信可以为你带来一些收获。 问题一:毒性杂质问题:除常规的苯胺类,卤代烷烃类,甲磺酸酯类等,比较明显判断为毒性杂质或潜在毒性的结构,有没有其他比较直接(或者说成本较低)的方法确认物质结构是否有潜在毒性,避免遗漏。答:拿到一个结构很难一眼看出是很明确的有基因毒性的杂质,下面是两个查询方法:查询cpdb数据库,利用化合物毒性预测软件。做仿制药项目,最好的方法就是拿原研的产品制剂,原研产品中存在的杂质那一定是没有问题的。问题二:我们在申报药物时碰到的情况,中间体结构是基因毒性警示结构,而该中间体是最终产品结构的一部分,最终产品是通过了各种毒性评价,显示没有基因毒性!该中间体是否还是需要按照基因毒性杂质来控制还是直接按普通杂质来控制?答:问题中提到的杂质属于第四类:具有警示结构、与api有关、基因毒性(突变性)未知的杂质,而且api是明确没有基因毒性的,这类的杂质就按照普通杂质来控制。问题三:有一中间体,从结构看,含有羟基,后续步骤用到甲磺酰氯!因此,可能存在磺酰基类基因毒性问题!但是,该中间体的磺酸酯稳定性不好!在进行气相和质谱~质谱时分解了!因此,要说明很困难!是否能够通过该中间体磺酸酯的溶解性,反应性!(该离最后中间体还有十多步呢),说明该杂质底?还有,在该中间体前使用了甲醇,而我们控制多批次甲磺酸酯在限度以内,上述杂质是否进行这样说明就可以?还有其他办法吗?答:对于高活性物质,特别是在工艺早期引入的,后续的操作一定会把这些高活性物质给消耗掉的,一般通过对工艺的说明就可以了。问题四:大部分药物的起始原料及起始原料的中间体都含有苯胺类似物和硝基苯类似物,这些都是潜在基因毒性,该如何控制,都需要控制吗?答:硝基后面是需要转化的,氢化效率很高会转化为铵,铵后面会再进行缩合。如果是在起始物料中的基因毒性杂质,可以在其转化后一两步反应产物进行控制,并说明对该中间体进行控制可以确保api中不会超过ttc的限度。另外,潜在基因毒性这个说法是不对的,潜在基因毒性是指在潜在杂质。(mq)问题一:请问edc和其水解产物edu按照基因毒性杂质控制吗?以前申报是按基因毒性控制的。答:这个问题比较具体,需要去查一下资料。其实可以去查查有没有现在还在市场上试用的药物工艺里是用了edc的。如果有条件控制,那就不用纠结了。(叶子)问题二:所有根据工艺分析出的潜在杂质都需要合成出对照品并做全套结构确证吗?答:这样做当然是最保险的,但是成本很高。先用警示结构和文献的数据进行一个判断,再对杂质进行说明。有些拿不准的有条件就用对照品验证一下。(老豆芽)问题三:请问辅料与主成分发生反应反应生成的杂质,以及制剂中的辅料生成的杂质如何研究和控制?答:辅料与主成分发生反应生成的杂质是需要进行评估的。制剂中的辅料生成的杂质,这个是指降解杂质吗?对于目前市面上的辅料是不需要进行研究的,只有对于新的化学合成的辅料才需要。(老豆芽)问题补充:这里是指辅料的降解杂质。您说的对于目前市面上的辅料是不需要进行研究的,只有对于新的化学合成的辅料才需要的。这个有法规方面的依据吗?答:ich m7有明确的规定,我的ppt里也有,其实你可以理解成为这些辅料已经被很多公司用过多年,已经证明里面没有基因毒性杂质。(立方研究所 汪泉)问题五:对于基因毒性杂质,有些品种在ep里面有着明确的控制方案,但其限度标准与我国现行标准不同,感觉自12版药典发布以后,我国现行标准很多都比ep8.0要高出不少,请问我们如何去应对现行的申报要求下的基因毒性杂质控制策略。答:对于仿药来说,先看看参比制剂里的杂质情况,如果参比制剂的杂质都高于15版药典,那评审老师那边应该也是没有问题的。(陶海波)问题六:有个问题,就是第三象限杂质问题。杂质未知,没有方法检测?用多少种柱子,多少种方法尝试才能说明问题?没有判断方法,不能用穷尽啊?答:当然不是穷尽的,有两种明显区分的互补方法会好很多。(陶海波):感谢李博士,用两种方法确实能够大大降低未检出的风险。答:杂质研究是一个风险评估的过程,首先要说服自己,对自己的产品有信心。(半日军拯救世界)问题七:原料药研发中所有的物料都需要进行杂质研究吗?还是只要研究关键物料的杂质即可?我一个项目中用了氯甲酸苄酯,该物料遇水分解,不够稳定,参与最后一步反应(除粗品精制外),合成人员没有将其定为关键物料,是否需要对其进行研究?答:如果是最后一步反应使用的,那肯定是要考虑的,你可以通过数据来说明现有的合成工艺条件下,该杂质的残留量是符合限度标准的,就可以不用制订在最终的质量标准里。(晴天娃娃summer)问题八:杂质谱分析究竟是分析工艺还是分析样品呢 ?我们现在按照药典方法检测的时候,我们的工业杂质小于0.05%,工艺杂基本是未检出,如果是分析样品的话,我们认为根本不需要进行工艺杂质的杂质谱的分析。答:我认为你的申报的申报文件里最好有对工艺杂质的说明,分析这些杂质里是没有高毒性的杂质,对于微量杂质来说,常规的检测方法不能保证。今后cato也会开展更多线上及线下杂质标准品讲座,为国内药物研究人员提供相关的标准品方面的讲座指导。欢迎大家关注cato,了解更多课程资讯。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制