当前位置: 仪器信息网 > 行业主题 > >

靛藍四磺酸

仪器信息网靛藍四磺酸专题为您提供2024年最新靛藍四磺酸价格报价、厂家品牌的相关信息, 包括靛藍四磺酸参数、型号等,不管是国产,还是进口品牌的靛藍四磺酸您都可以在这里找到。 除此之外,仪器信息网还免费为您整合靛藍四磺酸相关的耗材配件、试剂标物,还有靛藍四磺酸相关的最新资讯、资料,以及靛藍四磺酸相关的解决方案。

靛藍四磺酸相关的资讯

  • 生态环境部关于公开征求《水质 全氟辛基磺酸和全氟辛基羧酸的测定 固相萃取/液相色谱-三重四极杆质谱法》等四项国家生态环境标准意见
    各有关单位:为贯彻《中华人民共和国环境保护法》,规范生态环境监测工作,我部组织编制了《生态遥感地面观测与验证技术导则》等四项国家生态环境标准征求意见稿,现征求各有关单位意见。标准征求意见稿及其编制说明,可登录我部网站(http://www.mee.gov.cn)“意见征集”栏目检索查阅。其他各有关单位和个人也可提出意见和建议。请于2022年1月10日前将意见建议书面反馈我部,并注明联系人及联系方式,电子文档同时发送至联系人邮箱。联系人:生态环境部监测司 曹 宇电话:(010)65646228传真:(010)65646236邮箱:zhiguanchu@mee.gov.cn地址:北京市东城区东安门大街82号邮编:100006附件:1.征求意见单位名单2.生态遥感地面观测与验证技术导则(征求意见稿)3.《生态遥感地面观测与验证技术导则(征求意见稿)》编制说明4.固定污染源废气 烟气黑度的测定 林格曼望远镜法(征求意见稿)5.《固定污染源废气 烟气黑度的测定 林格曼望远镜法(征求意见稿)》编制说明6.水质 全氟辛基磺酸和全氟辛基羧酸的测定 固相萃取/液相色谱-三重四极杆质谱法(征求意见稿)7.《水质 全氟辛基磺酸和全氟辛基羧酸的测定 固相萃取/液相色谱-三重四极杆质谱法(征求意见稿)》编制说明8.土壤和沉积物 全氟辛基磺酸和全氟辛基羧酸的测定 液相色谱-三重四极杆质谱法(征求意见稿)9.《土壤和沉积物 全氟辛基磺酸和全氟辛基羧酸的测定 液相色谱-三重四极杆质谱法(征求意见稿)》编制说明生态环境部办公厅2021年12月9日(此件社会公开)附件1征求意见单位名单生态环境部各流域海域生态环境监督管理局监测与科研中心各省、自治区、直辖市生态环境监测站(中心)新疆生产建设兵团生态环境第一监测站各环境保护重点城市生态环境监测站(中心)中国科学院生态环境研究中心中国环境科学研究院中国环境监测总站生态环境部环境发展中心生态环境部南京环境科学研究所生态环境部华南环境科学研究所国家环境分析测试中心河北环境工程学院
  • 国家市场监督管理总局对《表面活性剂 工业烷烃磺酸盐 直接两相滴定法测定烷烃单磺酸盐含量》等130项拟立项国家标准项目公开征求意见
    各有关单位:经研究,现对《涤棉混纺色织布》等130项拟立项国家标准项目公开征求意见,征求意见截止时间为2024年8月4日。请登录请登录标准技术司网站征求意见公示网页http://std.samr.gov.cn/gb/gbSuggestionPlan?bId=10001901,查询项目信息和反馈意见建议。2024年7月5日相关标准如下:#项目中文名称制修订截止日期1玻璃制品 玻璃容器内表面耐水侵蚀性能 用滴定法测定和分级修订2024-08-042表面活性剂 工业烷烃磺酸盐 直接两相滴定法测定烷烃单磺酸盐含量修订2024-08-043洗涤剂中无机硫酸盐含量的测定 重量法修订2024-08-044首饰 镍释放量的测定 光谱法修订2024-08-045玩具及儿童用品材料中总铅含量的测定修订2024-08-046纸、纸板和纸浆 水抽提液电导率的测定修订2024-08-047瓦楞芯(原)纸修订2024-08-048瓦楞芯纸 实验室起楞后平压强度的测定修订2024-08-049瓦楞纸板修订2024-08-0410瓦楞纸板 边压强度的测定(边缘补强法)修订2024-08-0411瓦楞纸板 厚度的测定修订2024-08-0412医用电气设备 剂量面积乘积仪修订2024-08-0413纸、纸板、纸浆及相关术语修订2024-08-0414纸、纸板和纸浆 包装、标志、运输和贮存修订2024-08-0415造纸原料和纸浆 多戊糖的测定修订2024-08-0416纸板 耐破度的测定修订2024-08-0417纸和纸板 不透明度(纸背衬)的测定(漫反射法)修订2024-08-0418纸和纸板 厚度的测定修订2024-08-0419纸和纸板 孔径的测定修订2024-08-0420纸和纸板 伸缩性的测定修订2024-08-0421纸和纸板 撕裂度的测定修订2024-08-0422纸和纸板 颜色的测定(C/2°漫反射法)修订2024-08-04
  • 再度出击,聊聊亚硝胺类和磺酸酯类遗传毒性杂质检测方案
    遗传毒性(Genotoxicity)是指遗传物质中任何有害变化引起的毒性,而不参考诱发该变化的机制,又称为基因毒性。遗传毒性杂质(Genotoxic Impurities, GTIs)是指能引起遗传毒性的杂质,包括致突变型杂质和其他类型的无致突变性杂质。致突变型杂质(Mutagenic Impurities)指在较低水平时也有可能直接引起DNA损伤,导致NDA突变,从而可能引发癌症的遗传毒性杂质[1]。目前遗传毒性列表中有1574种致癌物质,亚硝胺类、磺酸酯类和苯并芘类等属于高遗传毒性物质。近年来,出现多起已上市的药品中发现遗传毒性,继而被召回的案例。  例如某制药企业在欧洲推出的抗艾滋药物Viracept(nelfinavir mesylate),EMA在2007年7月暂停了它在欧洲的所有市场活动,因为在其产品中发现甲基磺酸乙酯超标。经自查,发现存储罐中乙醇残留,放置3个月导致甲磺酸乙酯达到2300ppm,去掉存储罐,增加对甲磺酸乙酯的控制要求低于0.5ppm,EMA对新工艺重新评估,对工厂进行现场检查,2007年10月重新获得上市许可。2018年7月,欧盟药品管理局报道在其对某企业含有ARB药物缬沙坦原料药的药物抽查汇总发现了杂质NDMA,其平均含量达66.5ppm,超过欧盟标 准0.3ppm。随后全球已有包括美国,加拿大,挪威,德国等22个国家召回共2300批该企业的含有沙坦类原料药的降压药。相关药企沙坦原料药中的NDMA经推断疑似来源于药物合成过程中使用的溶剂N,N-二甲基甲酰胺(DMF)与亚硝酸钠在酸性条件下反应产生的微量副产物,即NDMA。随后FDA发布了GCMS测定NDMA和NDEA的方法。2019年3月,又一种亚硝胺类杂质(NMBA)在ARB药物氯沙坦中被发现,但是该物质不能直接被GCMS测定。 9月FDA发表声明,在雷尼替丁中发现NDMA,但是不适用于GCMS方法测定。原因是雷尼替丁结构中,硝基和二甲胺在高温下从母核解离,结合成NDMA,对GCMS法测定产生干扰。  岛津中国创新中心,不仅致力于科研领域,同时时刻关注各行业的发展和社会的需求,秉承着以科学技术向社会做贡献的宗旨不断前行。本项目针对部分亚硝胺类和磺酸酯类遗传毒性杂质在药品原料药中的测定提供检测方法,为行业客户提供参考。针对客户比较关心的几种遗传毒性杂质分别建立了方法,并完成完整的方法学验证。  2019年6月,创新中心率先推出遗传毒性杂质NMBA(N-亚硝基-N-甲基-4-氨基丁酸)LC-MS/MS解决方案。与此同时,对NDMA和NDEA的研究也已在《分析试验室》2020年39卷2期上发表杂质上发表;关于NMBA的研究已在《中国药学杂志》2020年55卷3期上发表。如下将上述研究报告分别简述,供行业客户参考。 1. HS-GC-MS检测原料药厄贝沙坦中N-亚硝基二甲胺和N-亚硝基二乙胺   本文利用岛津公司GCMS-QP2020 NX气相色谱-质谱联用仪结合HS-20顶空进样器,建立了原料药厄贝沙坦中N-亚硝基二甲胺和N-亚硝基二乙胺的同时测定方法。在10~500ng/mL浓度范围内各组分线性关系良好,相关系数均达到0.999以上,100ng/mL标准品溶液连续进样6针,各组分峰面积RSD均小于2.40%。阴性空白样品在40,80,160ng/mL加标浓度时,回收率为100.6%-104.6%,阳性空白样品回收率为101.8%-108.7%。该方法简单方便,顶空进样不污染气化室,能够有效的检测原料药厄贝沙坦中N-亚硝基二甲胺和N-亚硝基二乙胺的含量。 2. 岛津中国推出氯沙坦钾中N-亚硝基-N-甲基-4-氨基丁酸(NMBA)解决方案   本文利用岛津公司LCMS-8050高效液相色谱-三重四极杆质谱联用仪,建立了原料药中氯沙坦钾中NMBA的测定方法。该方法中NMBA在0.1 ~ 50.0 ng/mL范围内线性关系良好,日内和日间的精密度保留时间和峰面积的重复性良好(RSD均小于1.10%,n = 6和n = 18),在低中高3个浓度的平均回收率在94.40 ~ 98.04%之间。该方法简单方便,能够快速有效的检测氯沙坦钾原料药中NMBA的含量。 3. GC-MS内标法测定甲磺酸中甲磺酸甲酯、甲磺酸乙酯、甲磺酸异丙酯   本文利用岛津公司GCMS-QP2020 NX气相色谱-质谱联用仪,参照《欧洲药典》9.0和ICH指导原则,建立了以甲磺酸丁酯(BMS)为内标测定甲磺酸中甲磺酸甲酯(MMS)、甲磺酸乙酯(MES)和甲磺酸异丙酯(IMS)的方法并完成方法学验证。在1~10000ng/mL浓度范围内甲磺酸甲酯线性关系良好,在1~100ng/mL内甲磺酸乙酯和甲磺酸异丙酯线性关系良好,相关系数均达到0.999以上,样品平行测定6次,计算各组分含量RSD均小于3.33%。样品在650,850,1000ng/mL加标浓度时,MMS回收率为91.85%-103.09%,在10ng/mL加标浓度时,EMS、IMS回收率为92.21%-105.93%。该方法灵敏度和准确度高,能够有效的检测甲磺酸中MMS、EMS和IMS的含量。 4. GC-MS内标曲线法测定甲磺酸中甲磺酰氯   本文利用岛津公司GCMS-QP2020 NX气相色谱-质谱联用仪,参照《欧洲药典》9.0和ICH指导原则,建立了以甲磺酸丁酯(BMS)为内标测定甲磺酸中甲磺酰氯的方法并完成方法学验证。在1~5000ng/mL浓度范围内甲磺酰氯线性关系良好,相关系数达到0.999,样品平行测定6次,计算组分含量RSD为1.19%。样品在320,400,480ng/mL加标浓度时,甲磺酰氯回收率为100.09%-109.84%。该方法灵敏度和准确度高,能够有效的检测甲磺酸中甲磺酰氯的含量。 5. HS-GC-MS法测定甲磺酸倍他司汀中甲磺酸甲酯、甲磺酸乙酯、甲磺酸异丙酯   本文利用岛津公司GCMS-QP2020 NX气相色谱-质谱联用仪结合HS-20顶空进样器,参照《欧洲药典》9.0和ICH指导原则,建立了以甲磺酸丁酯(BMS)为内标,通过碘化钠衍生化,测定甲磺酸倍他司汀原料药中甲磺酸甲酯(MMS)、甲磺酸乙酯(MES)和甲磺酸异丙酯(IMS)的方法并完成方法学验证。在1~250ng/mL浓度范围内MMS和EMS线性关系良好,在1.5~250ng/mL内IMS线性关系良好,相关系数均达到0.999以上,样品加标平行测定6次,计算各组分含量RSD均小于2.40%。样品在80,100,120ng/mL加标浓度时,MMS、 EMS和IMS回收率在93.86%~112.21%之间。该方法操作简单,灵敏度和准确度高,能够有效的检测甲磺酸倍他司汀中MMS、EMS和IMS的含量。 6. HS-GC-MS法测定甲苯磺酸舒他西林中甲苯磺酸甲酯、乙酯、异丙酯   本文利用岛津公司GCMS-QP2020 NX气相色谱-质谱联用仪结合HS-20顶空进样器,参照《欧洲药典》9.0和ICH指导原则,建立了以甲磺酸丁酯(BMS)为内标,通过碘化钠衍生化,测定甲苯磺酸舒他西林原料药中甲苯磺酸甲酯(MTS)、甲苯磺酸乙酯(ETS)和甲苯磺酸异丙酯(ITS)的方法并完成方法学验证。在1.5~250ng/mL浓度范围内MTS和ETS衍生化后的碘甲烷(MeI)和碘乙烷(EtI)线性关系良好,在3~250ng/mL内ITS衍生后的(iPrI)线性关系良好,相关系数均达到0.998以上,样品加标平行测定6次,计算各组分含量RSD均小于4.50%。样品在20,40,60ng/mL加标浓度时,MTS、 ETS和ITS回收率在92.50 %~108.13%之间。该方法操作简单,灵敏度和准确度高,能够有效的检测甲苯磺酸舒他西林中MTS、ETS和ITS的含量。 7. HS-GC-MS法测定苯磺酸氨氯地平中苯磺酸甲酯、乙酯、异丙酯   本文利用岛津公司GCMS-QP2020 NX气相色谱-质谱联用仪结合HS-20顶空进样器,参照《欧洲药典》9.0和ICH指导原则,建立了以甲磺酸丁酯(BMS)为内标,通过碘化钠衍生化,测定苯磺酸氨氯地平原料药中苯磺酸甲酯(MTS)、苯磺酸乙酯(ETS)和苯磺酸异丙酯(ITS)的方法并完成方法学验证。在1.5~250ng/mL浓度范围内MBS和EBS衍生化后的碘甲烷(MeI)和碘乙烷(EtI)线性关系良好,在3~250ng/mL内IBS衍生后的(iPrI)线性关系良好,相关系数均达到0.999以上,样品加标平行测定6次,计算各组分含量RSD均小于5.46%。样品在5,10,15ng/mL加标浓度时,MBS、 EBS和IBS回收率在85.4 %~104.70%之间。该方法操作简单,灵敏度和准确度高,能够有效的检测苯磺酸氨氯地平MBS、EBS和IBS的含量。 [1] 《中国药典》2020年版四部通则增修订内容:遗传毒性杂质控制指导原则审核稿(新增)
  • 日本:牛磺酸被列为不影响人体健康的物质
    2009年6月23日,日本厚生劳动省发布食安发第0623002号通知:近日,日本厚生劳动省对食品卫生法第11条第3项中所规定的不对人体健康造成影响的物质(厚生劳动省大臣所指定的物质)进行了部分修改。具体情况如下:   第1 修改的摘要   在食品卫生法(1947年法律第233号)第11条第3项的规定的不对人体健康造成影响的物质(厚生劳动省大臣所指定的物质)中追加牛磺酸。   第2 实施、应用日期   自公布之日起开始实施   第3 其他   根据有关确保饲料安全性以及改善质量的法律(1953年法律第35号),由农林水产部指定牛磺酸及制定其标准、规格。
  • 欧盟将全面禁用全氟己烷磺酸
    近日,欧盟委员会在其官方公报上发布法规(EU)2023/1608,对关于持久性有机污染物法规(EU)2019/1021进行修订,正式将全氟己烷磺酸和盐类及其相关物质列入欧盟持久性有机污染物法规禁用物质清单。新法规于官方公报发布后的第20天起生效。全氟己烷磺酸及其盐此前已经于2017年7月7日列入SVHC候选物质清单。现在此类物质被加入《斯德哥尔摩公约》,日后将在全球范围内淘汰。2023年3月,欧洲化学品管理局已经公布了针对超过1万种全氟或多氟烷基类物质的REACH法规限制提案,相关企业必须做好市场评估和化学品替代的准备。全氟和多氟烷基化合物由数千种物质组成,由于其含有极其稳定的碳氟键,使得此类物质具有很强的化学稳定性和表面活性、优良的热稳定性和疏水疏油性,被广泛应用于工业生产和生活消费领域。但此类物质具有蓄积性、生殖毒性、诱变毒性、发育毒性、神经毒性、免疫毒性等多种毒性,是一类具有全身多脏器毒性的环境污染物,目前各国已经在逐步管控此类化合物。
  • Detelogy应用分享:化工产品中全氟辛烷磺酸(PFOS)的测定的前处理方案
    全氟辛烷磺酸类物质(PFOS)作为一种重要的全氟化表面活性剂,因其具有疏油疏水的特性,被广泛用于民用和工业产品生产的多个领域,如我们日常熟悉的一次性饭盒,食品塑料包装袋、不粘锅、纺织品、皮革、地毯、油墨行业、消防泡沫、影像材料和航空液压油等产品中都含有它。在生产和使用过程中,PFOS会释放到环境中,研究发现各种环境介质都有PFOS的存在,是最难降解的污染物之一。同时PFOS还被发现能在生物体中蓄积,并可对肝脏、神经和免疫等系统造成一定的损伤。鉴于PFOS具有POPs的这些特征,2009年,PFOS被列入《关于持久性有机污染物(POPs)的斯德哥尔摩公约》,成为受控POPs之一,PFOS污染已成为全球性的环境污染问题。下面以SN/T 2392-2009《进出口化工产品中全氟辛烷磺酸的测定液相色谱-质谱/质谱法》Detelogy提供化工产品中全氟辛烷磺酸的测定的实验方案实验流程01 石蜡样品称取试样约2g(半固体样品需加入约1g硅藻土,搅拌均匀)。放入iQSE-06智能快速溶剂萃取仪萃取池中,池内样品的上下两层均用专用滤膜保护,轻轻压实至池底部,按下面条件进行提取。提取完毕后,将提取液转移至200mL浓缩管中,置于FlexiVap-12全自动平行浓缩仪在40℃水浴中进行浓缩,用甲醇定容至20mL,取1mL溶液用0.2μm滤膜过滤,滤液供LC-MS/MS测定。02 溶剂性涂料及胶粘剂样品称取2g试样于50mL离心管中,加入30mL甲醇,用MultiVortex多样品涡旋混合器振荡提取30min,再超声提取20min。置离心机中,以4000r/min离心10min。吸取上清液于200mL浓缩管中。重复上述提取步骤,合并提取液,置于FlexiVap-12全自动平行浓缩仪在40℃水浴中进行浓缩。用甲醇定容至20mL,取1mL溶液用0.2μm滤膜过滤,滤液供LC-MS/MS测定。03 润滑油样品称取2g,于50mL离心管中,加入5mL甲醇,用MultiVortex多样品涡旋混合器混匀,置离心机中,4000r/min离心10min。上清液待净化。将C18柱固定于iSPE-864全自动智能固相萃取仪。洗脱液置于FV32Plus全自动高通量智能平行浓缩仪于40℃水浴中旋转浓缩。用甲醇定容至20mL,取1mL溶液经0.2μm滤膜过滤,滤液供LC-MS/MS测定。上述智能方案中使用到的仪器
  • 美国公布食品中全氟烷基磺酸盐检测结果及检测方法改进情况
    2023年5月31日,美国食药局(FDA)公布了一般食品供应中的PFAs(全氟烷基磺酸盐)检测结果、海产品相关检测工作的进展以及检测方法改进情况,主要内容如下:   (1)FDA称在2 个鳕鱼和2个虾样本中检测到PFAS,在罗非鱼、鲑鱼和碎牛肉各1个样本中检测到 PFAS.FDA认为在7个样本中检测到的PFAS 暴露水平不太可能对幼儿或一般人群造战健康问题;   (2)对于进口自中国的给蜊罐头,因PFAS问题两家公司发布了自愿召回令,FDA正在继续对边境的有限数量的进口货物和市场上的国内产品进行检测。滤食性动物,如给蜊以及其他双壳克类软体动物(包括牡蛎、贻贝和扇贝),比其他海产品类型有可能积累更多的环境污染物。因此,FDA正在对进口和国产双克类软体动物进行额外采样,以更好地了解商业海产品中的PFAS情况;   (3)FDA将采用高分辨率质谐分析方法进行检测,以测定食品中PFAS情况。
  • 麦克仪器给力科学研究-用于脂化生物柴油合成中游离酸的超高交联聚苯乙烯磺酸催化剂
    随着美国麦克仪器的市场份额的逐步壮大,美国麦克仪器已经成为行业科学研究必备仪器,日前英国哈德斯菲尔德大学教授发表了一篇题为&ldquo 用于脂化生物柴油合成中游离脂肪酸的超高交联聚苯乙烯磺酸催化剂 &rdquo 学术文章,已经被Applied Catalysis B: Environmental(115&ndash 116 (2012) 261&ndash 268)收录,在该项研究中,美国麦克仪器ASAP 2020与DVS Advantage仪器成为表征催化剂最强有力的工具,为其研究提供了最具可信度的分析结果。以下列举该文章的摘要以及链接供参考: 链接:http://www.sciencedirect.com/science/article/pii/S0926337311006102 标题:Hypercrosslinked polystyrene sulphonic acid catalysts for the esterification of free fatty acids in biodiesel synthesis 摘要: New sulphonic acid catalysts supported on hypercrosslinked polystyrene have been studied in the esterification of oleic acid with methanol and in the rearrangement of &alpha -pinene to camphene and limonenes. The catalysts have been characterised in terms of specific surface areas and porosities, affinities for water and for cylcohexane vapours, and both concentrations and strengths of acid sites. They have been compared with conventional macroporous polystyrene sulphonic acids (Amberlysts 15 and 35) and SAC-13, a composite between Nafion and silica. The results show that the hypercrosslinked polystyrene sulphonic acids, despite exhibiting relatively low concentrations of acid sites and acid site strengths below those of Amberlysts 15 and 35, are very much more catalytically active than conventional resins in reactions such as the esterification in which high acid site strengths are not required. It is thought that this is due to the highly accessible acid sites throughout the catalyst particles. Reusability studies are reported and it appears that the temperature at which the catalyst is used is important in controlling and minimising catalyst deactivation. 美国麦克仪器公司是世界上第一家将自动表面积分析仪、压汞仪以及沉降式粒度分析仪投放市场的公司。公司主营产品为研究级全自动比表面积与孔隙度分析仪、多站比表面积与孔隙度分析仪、快速比表面积与孔隙度分析仪、流动气体法比表面分析仪、程序升温化学吸附仪、化学吸附仪、压汞仪、高压吸附气体吸附仪、蒸汽吸附仪、密度测量、颗粒技术和颗粒形态分析仪等各种材料表征仪器。 美国麦克仪器产品在1979年进入中国市场,成为中美建交后最早进入中国市场的分析仪器。在为中国用户服务30多年后,于2011年3月在上海成立了麦克默瑞提克(上海)仪器有限公司,专业为中国市场提供美国麦克仪器公司的产品。公司总部设在上海,并在北京、广州、西安分别设有办公室,并设有应用实验室提供各类仪器的演示与操作培训并提供对外做样服务,为广大用户提供完整的实验室解决方案与疑难样品的分析。
  • Analytica China 2010“四大亮点”预览
    仪器信息网讯 2010年8月5日,慕尼黑上海分析生化展(Analytica China)主办方德国慕尼黑博览集团在北京新世纪日航酒店举办了媒体见面会,慕尼黑展览(上海)有限公司董事总经理毛大奔先生着重向在场媒体介绍了分析生化产业的最新动态以及本届展会的规模、亮点等相关信息。会议由慕尼黑展览(上海)有限公司高级项目经理路王斌先生主持。仪器信息网作为特邀媒体参加了此次新闻发布会。 慕尼黑展览(上海)有限公司董事总经理毛大奔先生   2010年9月15-17日,上海新国际博览中心在时隔2年后将又一次迎来亚太地区分析、生物技术、诊断和实验室技术领域的顶级盛会——第五届慕尼黑上海分析生化展(Analytica China)。届时将有来自22个国家和地区的近450家国内外顶尖企业,为约15000名到场观众展示最新科学仪器、尖端分析测试技术,提供全方位的实验室技术解决方案。   本届展会特别关注食品安全、环境分析、生物技术、教育科研、公共卫生这五大热点应用领域。如,本届参展企业中,有的为上海世博会的食品、环境安全保驾护航,有的为南非世界杯和即将召开的广州亚运会提供药检、食品安全、环境监测等方面的先进仪器,也有更多企业关注疫苗安全与流行病监测,以及矿业污染、食品添加剂风波、我国南方及长江流域水灾等民生话题。在本届展会上,所有与此相关的产品及解决方案都将一一亮相。 新闻发布会现场   第五届慕尼黑上海分析生化展四大亮点剖析如下:   亮点之一:展会规模历史最高   截至7月底,已有430余家国内外厂家竞相加盟慕尼黑上海分析生化展,预计最终展商数将近450家,展会规模超20,000平米,展会面积同比增长了18%,再次刷新自2002年以来的最高纪录。同时,国际化程度也创新高,共有来自19个国家的180多家国际领先企业参展,其中,德国、日本、英国和澳大利亚组织了大型国家展团将集体亮相,国际展商比例高达近40%。   本届展会将集中展示分析仪器、测试测量、生命科学、生物技术、实验室建设、试剂耗材和通用实验室设备的最新产品及应用。参展商包括安捷伦、珀金埃尔默、Eppendorf、默克、伯乐、耶拿、依拉勃、日本分光、德国莱驰、岛津、西格玛奥德里奇、德祥、帝肯、北友、上海精科、上海科学仪器、美谱达、桑翌、北京吉天等。其中,通用电气医疗集团、戴安、掘场等公司首次参展即以大面积展台重装上阵,再次印证了慕尼黑上海分析生化展在国内乃至亚洲的领先地位。   亮点之二:高水平的同期学术论坛   慕尼黑上海分析生化展期间,慕尼黑国际博览集团联合中国化学会、中国生物化学与分子生物学会蛋白质组学专业委员会(CNHUPO)、“中德复杂样品分离分析”联合研究中心等众多杰出科学机构将举办七场高水平的学术会议。   “第五届上海国际分析化学研讨会”是由中国化学会分析化学学科委员会主任汪尔康院士、中国化学会色谱专业委员会张玉奎院士和慕尼黑科技大学Antonius Kettrup教授共同担任主席。届时将有45位国际知名的科学家就分析质量控制、环境分析、蛋白质组学和代谢组学、分离科学和质谱学、电分析/传感器和食品及中草药检测等论题作大会报告及主题发言,其中超过40%为国外专家。   继上届展会首次与中国生物化学与分子生物学会蛋白质组学专业委员会(CNHUPO)合作举办的研讨会大获成功后,本届展会期间CNHUPO将带来“蛋白质组学与疾病”专题研讨会,重点围绕蛋白质组学及其在疾病研究中的应用取得的新进展进行研讨。   由中德复杂样品的分离分析联合研究中心与德国慕尼黑国际博览集团联合主办的“色谱技术中德论坛:复杂样品的分离分析”将为色谱领域的优秀中德科学家们搭建良好的舞台,将有10余位中德科学家献上精彩的报告。   由安捷伦科技有限公司首席执行顾问 、Labcompliance 全球FDA 法规管理处主席Ludwig Huber博士担任演讲嘉宾的“FDA/EU认证:实验室质量控制”以及“样品前处理技术及其小分子化合物的液相色谱-质谱分析”、“代谢组学方法在生物技术和生命科学中的进展”这三场研习班和培训班将为现场观众提供独一无二的教育机会。   另外,展会同期还将举办“展商技术交流会”,安捷伦、珀金埃尔默、岛津、帝肯、IKA、普源精仪、AES、德祥等企业将围绕药品及生物制品安全、环境检测、食品安全和转基因食品检测等话题展开为期两天的研讨。   亮点之三:强强联手,与国际化工展同期举办   中国国际化工展览会(ICIF China 2010)是由中国石油和化学工业协会主办,中国贸促会化工行业分会和中国化工信息中心承办的综合化工展览会,集中展示包括化工装备、化工检测、控制设备、干燥设备等当今石油和化学工业的数万种产品和先进技术。   同期举办的这两场行业盛会定会使慕尼黑上海分析生化展的展商,尤其是为石化、石油、化工及相关领域的业内人士不断拓展市场、扩大人脉资源提供了绝佳的商贸良机。   亮点之四:牵手世博,回馈观众   本届展会举行期间,正值上海世博会召开之际,值此机会,也为了回馈自2002年来一直支持展会的行业观众,主办方携手珀金埃尔默和Eppendorf共同邀请400位预登记观众参观世博。此外,“All-in-one Trip参观Analytica China与上海世博游同行”活动也正在积极展开。另外,网上趣味游戏“闪闪的红星现场冲关体验”依然可以继续挑战,诱人好礼同样不断,包括纪念版T恤衫、数码相框、豪华野餐包等。更多信息,敬请访问www.a-c.cn。 安捷伦科技有限公司化学分析市场经理何峻先生   此外,安捷伦科技有限公司化学分析市场经理何峻先生也借此机会展示了安捷伦近几年在生化分析领域的最新成就。何峻先生谈到:“安捷伦2009财年年收入高达45亿美元,其中,12亿美元来自于生命科学,9亿美元来自于化学分析。2010年,安捷伦斥资收购瓦里安后,拥有了针对全工作流程的完整产品系列,生物化学业务收入也由原来的38%升至公司总业务的57%,安捷伦在生物分析测量领域的领导地位将得到进一步巩固。”   “从全球性的环境污染、食品安全等事件到现代生活中必不可少的石化产品,安捷伦都能够提供以高灵敏度(Sensitivity)、高选择性(Selectivity)、快速分析(Speediness)、高准确度(Accuracy)、高智能化(Automatics),即“3S+2A”为标准的检测仪器以及完整的解决方案,如北京2008年奥运会、残奥会等的兴奋剂检测、应对国外技术性贸易壁垒的‘莫西菌素’检测、墨西哥原油泄漏事件的全面解决方案等。” Analytica China十年(2002-2012)发展曲线展板   会后,慕尼黑展览(上海)有限公司董事总经理毛大奔先生和高级项目经理路王斌先生回答了仪器信息网等媒体的记者提问。 慕尼黑展览(上海)有限公司高级项目经理路王斌先生   Instrument:除了上面的四大亮点以外,请问第五届慕尼黑上海分析生化展还有哪些精彩活动值得期待?   路王斌先生:本届展会按照食品安全、环境分析、生物技术、教育科研、公共卫生这五大热点应用进行区域划分,为展会观众提供了“一站式”的观展服务。另外,组委会还将根据不同领域或者亮点汇编报告集与宣传册,如学术报告专集、厂商活动专集等。   尤值一提的是,展会第一天举办的新品发布专场将汇集岛津、安捷伦、珀金埃尔默、瑞士华嘉等6大企业共同发布最新产品,相信一定会让企业用户代表及媒体记者一饱眼福。此外,展会同期还将举办大学日活动和IKA100周年庆典活动,同样也值得关注。   Instrument:伴随着网络的快速普及,展会规模在不同程度上受到了一定的冲击。请问慕尼黑组委会将来会采取哪些举措来保持或者推动展会的良好发展?   毛大奔先生:作为专业的会展组织机构,我们也认识到网络的快速发展逐渐改变了人们的生活,但是却不能够代替展会的交流和宣传的平台功能。企业通过展会来发布新产品新技术,与新老客户面对面地交流,能够有效地提高企业在行业内的形象。   但是,我们也认识到了网络的重要性,也在积极充分的利用网络来和线下的展览会产生互动。如,我们在网上开辟了厂商与客户的互动社区,通过自助式服务,使厂商与客户对接。希望将来能够逐步发展到网上展览会的效应,以填补慕尼黑展会两年一届的中间空白期。   Analytica China简介   Analytica China 慕尼黑上海分析生化展已经成为亚洲重要的分析、实验室技术、诊断和实验室技术领域的专业博览会和网络平台,位于行业在亚洲最具成长性的市场之一——中国。展会每两年在上海浦东新国际博览中心举办一次。上海同时是中国的化工和制药产业集散地。观众来自化学、医疗、食品、环境和医药产业,以及工业和政府研究部门的用户和决策者。   Analytica China慕尼黑上海分析生化展是Analytica全球网络的一部分。该网络涵盖了Analytica 德国国际分析、生化技术、诊断和实验技术贸易博览会暨国际研讨会(Analytica 2012,2012年4月17-20日,慕尼黑)、Analytica China慕尼黑上海分析生化展、AnalyticaAnacon India印度国际分析、生化技术、实验室技术和服务博览会暨国际研讨会(Analytica Anacon India 2011,2011年10月12日-10月14日,印度孟买)和Analytica Vietnam越南国际分析、生化技术、实验室技术和服务博览会(Analytica Vietnam 2011, 2011年4月7-9日,越南胡志明市)。更多以上展会及同期活动信息,请访问:www.Analytica.de。   德国慕尼黑国际博览集团简介   慕尼黑国际博览集团是世界领先的展览公司之一,每年在全球范围内举办近40个博览会,涉及行业包括资本货物、消费品和高科技。每年有100多个国家的30,000多家企业来到慕尼黑参展,观众遍及全球200多个国家和地区,总人数超过200万。此外,集团还在亚洲、俄罗斯、南北美洲举办各类专业博览会。慕尼黑在全球89个国家拥有6家子公司和66个代表处,集团网络覆盖全球。更多信息,欢迎登陆网站:   慕尼黑国际博览集团:www.messe-muenchen.de   慕尼黑展览(上海)有限公司: www.mmi-shanghai.com
  • 吉林省卫生健康委员会对废止《食品安全地方标准 面制食品中十二烷基苯磺酸钠的测定高效液相色谱-荧光检测器法》等7项食品安全地方标准征求意见
    各有关单位:根据《中华人民共和国食品安全法》和《国家卫生健康委办公厅关于进一步加强食品安全地方标准管理工作的通知》(国卫办食品函〔2019〕556号)的规定,经吉林省食品安全专家委员会议通过,我委将废止以下食品安全地方标准,具体废止标准号及标准名称如下:DBS22/010-2013 《食品安全地方标准 面制食品中十二烷基苯磺酸钠的测定高效液相色谱-荧光检测器法》DBS22/013-2013 《食品安全地方标准 植物源性食品中α-玉米赤霉烯醇和赤霉烯酮的测定 液相色谱-质谱/质谱法》DBS22/017-2013 《食品安全地方标准 柑橘类水果及其饮料中橘红 2 号的测定高效液相色谱法》DBS22/018-2013 《食品安全地方标准 鲜(冻)畜肉中鸭源性成分的定性检测PCR 方法》DBS22/003-2012《食品安全地方标准 生牛乳中雄激素的测定气相色谱-质谱法》DBS22/004-2012 《食品安全地方标准 植物油中胆固醇的测定气相色谱-质谱法》DBS22/008-2012 《食品安全地方标准 乳与乳制品中 L-羟脯氨酸的测定》现公开征求意见,如有意见建议请于2023年9月23日前书面反馈我委。联系人:省卫生健康委员会食品安全标准与监测评估处 邢立新联系电话:0431-88906887电子邮箱:1047810177@qq.com吉林省卫生健康委员会2023年9月13日
  • 2020药典 |《9306 遗传毒性杂质控制指导原则》解读与对策
    p style=" text-indent: 2em " 不同的药物的生产工艺决定了来源各异、种类众多的杂质类型。杂质的成份复杂且含量较低,难以检测。然而,药品的安全关系到千千万万人的生命安全,必须制定严格的要求来控制药品的质量。 /p p style=" text-indent: 2em margin-top: 15px " span style=" color: rgb(0, 112, 192) " strong 相关政策 /strong /span br/ /p p style=" text-indent: 2em text-align: justify margin-top: 10px " 为控制药物中遗传毒性杂质潜在的致癌风险, span style=" color: rgb(255, 0, 0) " strong 2020版中国药典 /strong /span 四部通则部分,添加了 span style=" color: rgb(255, 192, 0) " strong 《9306 遗传毒性杂质控制指导原则》 /strong /span 。这个新的指导原则为药品标准制修订、上市药品安全性再评估提供参考。 br/ /p p style=" text-indent: 2em " 药物杂质包括有机杂质、无机杂质以及残留溶剂等等。其中,2006年提出的基因毒性杂质是近两年关注的热门。该杂质又叫遗传毒性杂质(genotoxic impurities, GTIs),是指能引起遗传毒性的杂质。包括直接或间接损伤细胞DNA产生致突变和致癌作用的物质,也包括其他类型无致突变性杂质。 /p p style=" text-align: justify text-indent: 2em " EMEA和FDA发布了相应的指南。2007年欧洲药品局EMEA实施了关于基因毒性杂质的解决方案。2008美国FDA发布了《Guidance for industry—Genotoxic and Carcinogenic Impurities in Drug Substances and Products: Recommended Approaches》 /p p style=" text-indent: 2em text-align: justify " 对于未知数据的基因毒性杂质,制定了 span style=" color: rgb(255, 0, 0) " strong 相关摄入阈值TCC /strong /span ( span style=" color: rgb(255, 192, 0) " strong Threshold of Toxicological Concern,毒性物质限量 /strong /span ),也叫做毒理学关注阈值。其意义在于最大程度上保证服药的安全,使致突变的风险低于相关限度。 span style=" color: rgb(255, 0, 0) " strong TTC的限度为1.5 μg/d /strong /span 。 /p p style=" text-indent: 2em text-align: justify margin-top: 20px " span style=" color: rgb(0, 112, 192) " strong 基因毒性杂质来源与分类 /strong /span /p p style=" text-indent: 2em text-align: justify margin-top: 10px " 基因毒性杂质可能产生的环节包括:1)新药合成;2)原料纯化;3)存储运输(与包装物接触)等。其主要来源有:原料药合成过程中的起始物料、中间体、试剂、反应副产物;药物在合成、储存或者制剂过程中的降解产物;部分药物通过激活正常细胞而产生基因毒性物质。常见类型有卤代烷烃、磺酸酯/烷基磺酸酯/芳基磺酸酯、氮亚硝胺类化合物、硫酸二甲酯和硫酸二乙酯、双烷基硫酸酯、氨基甲酸乙酯、环氧化合物、四甲基哌啶氧化物、肼类、芳香胺、硼酸以及乙酰胺等,在列表中的种类有1,574种。这些结构在药物中就是“警示结构”。(如下图) /p p style=" text-align: center margin-top: 15px " img style=" max-width: 100% max-height: 100% width: 505px height: 423px " src=" https://img1.17img.cn/17img/images/202007/uepic/8020e615-ec50-477a-954a-243f7067ac87.jpg" title=" 种类.jpg" alt=" 种类.jpg" width=" 505" height=" 423" / /p p style=" text-align: justify text-indent: 2em margin-top: 15px " 化药中基因毒性杂质的案例有很多报道,比如沙坦类药物中的叠氮化物、亚硝胺类化合物,美罗培南中的318BP、M9、S5,抗艾滋药物Viracept (nelfinavir mesylate)中的甲基磺酸乙酯,以及阿瑞匹坦中的对甲苯磺酸甲酯、对甲苯磺酸异丙酯等等。 /p p style=" text-align: justify text-indent: 2em margin-top: 20px " span style=" color: rgb(0, 112, 192) " strong 基因毒性作用原理 /strong /span /p p style=" text-align: justify text-indent: 2em margin-top: 15px " 根据Miller理论,基因毒性试剂是亲电试剂或者可以代谢成亲电试剂,与DNA上的亲核基团反应生造成基因毒性。 /p p style=" text-align: justify text-indent: 2em margin-top: 10px " span style=" color: rgb(255, 0, 0) " strong 酰基卤化物: /strong /span 由于卤原子电负性较大,吸引电子,导致羰基碳非常缺电子,一旦和DNA接触,会和腺嘌呤的羰基氧发生酯化反应。二甲氨基甲酰氯和二乙氨基甲酰氯被IARC归为致癌物2A类。 /p p style=" text-align: justify text-indent: 2em margin-top: 10px " span style=" color: rgb(255, 0, 0) " strong 甲醛: /strong /span 高活性致癌物,与DNA发生多种反应。 /p p style=" text-align: justify text-indent: 2em margin-top: 10px " span style=" color: rgb(255, 0, 0) " strong 卤代脂肪族类: /strong /span 毒性取决于卤素的性质、数量和位置以及化合物的分子大小。 /p p style=" text-align: justify text-indent: 2em " 一卤甲烷的肝脏代谢的第一步是与谷胱甘肽(GSH)结合,导致S-甲基谷胱甘肽的形成。最终可能转化为甲硫醇(有毒的代谢物)。甲醛产生也可能导致细胞损伤。甲醛来源于细胞色素P450直接氧化母体化合物或甲硫醇的代谢。 /p p style=" text-align: justify text-indent: 2em " 二卤代烷烃通常通过谷胱甘肽或者细胞色素P450代谢后活化,产生遗传毒性。 /p p style=" text-align: justify text-indent: 2em " 三卤代烷烃容易被P450氧化活化,产生光气,光气是一种高活性的亲电中间体。完全卤代烷烃倾向于自由基机理反应。 /p p style=" text-align: justify text-indent: 2em " 四氯化碳在P450中被还原成三氯甲基自由基,该自由基和DNA之间的加合物是导致肝癌的主要原因。 /p p style=" text-align: justify text-indent: 2em margin-top: 10px " span style=" color: rgb(255, 0, 0) " strong 亚硝酸烷基酯亚硝酸酯: /strong /span 亚硝酸酯和DNA上的氮发生酯交换反应。 /p p style=" text-align: justify text-indent: 2em margin-top: 10px " span style=" color: rgb(255, 0, 0) " strong α,β-不饱和羰基: /strong /span 活泼的迈克尔受体,容易被亲核试剂进攻β碳或者羰基碳。 /p p style=" text-align: justify text-indent: 2em margin-top: 10px " span style=" color: rgb(255, 0, 0) " strong 醌: /strong /span 亲核剂的烷基化。易于被亲核试剂进攻,可以和蛋白质上GSH、半胱氨酸烷基化。氧化还原反应。它们可以与相应的半醌自由基进行酶促(即细胞色素P450/P450还原酶)和非酶氧化还原循环,导致ROS的形成,包括超氧阴离子,过氧化氢,并最终形成羟基自由基。ROS是造成衰老和癌变的主要元凶。 /p p style=" text-align: justify text-indent: 2em margin-top: 10px " span style=" color: rgb(255, 0, 0) " strong 烷基化间接作用试剂: /strong /span 单卤代烯烃卤代烯烃经过P450代谢后会被氧化成环氧化合物,然和和DNA反应诱导癌变。多卤代烯烃的反应更为复杂,三氯代乙烯进过P450代谢可以生成酰氯、环氧、氯代醛,这些物质均会诱导癌变。 /p p style=" text-align: justify text-indent: 2em margin-top: 10px " span style=" color: rgb(255, 0, 0) " strong 肼类: /strong /span 该类物质通过P450中氧化酶的催化,肼被氧化成偶氮类化合物。然后反应生成一系列碳正离子、自由基等活性物质,最终导致DNA烷基化,诱导癌变。脂肪族偶氮化合物该系列化合物是肼的氧化中间体。 /p p style=" text-align: justify text-indent: 2em margin-top: 10px " span style=" color: rgb(255, 0, 0) " strong N-亚硝胺化合物: /strong /span 一类非常稳定的化学致癌物。代谢得到活性烷基和大分子(DNA或者蛋白质)烷基化是产生遗传毒性和致癌性的主要原因。得到的小分子醛会进一步和DNA结合造成额外的损伤。NDMA在缬沙坦中的限度被要求限制到<0.3 ppm。 /p p style=" text-align: justify text-indent: 2em margin-top: 10px " span style=" color: rgb(255, 0, 0) " strong 芳香胺: /strong /span 必须代谢为反应性亲电试剂,才发挥致癌作用。对于芳香胺和酰胺,这通常涉及N-羟基芳胺和N-羟基芳酰胺的初始N-氧化。这是由细胞色素P450介导的。在通过酶的酯化作用进一步活化,形成活性亲电物种。最终造成DNA损伤。 /p p style=" text-align: justify text-indent: 2em margin-top: 20px " span style=" color: rgb(0, 112, 192) " strong 检测方案 /strong /span /p p style=" text-align: justify text-indent: 2em margin-top: 15px " 对于基因毒性杂质,只有高灵敏度、高选择性的分析方法才能为更好地选择和建立基因毒性杂质的检测方法提供重要参考。分析方法包括 span style=" color: rgb(255, 0, 0) " strong GC、LC、GC-MS和LC-MS法 /strong /span 等,还有相关的前处理技术包括 span style=" color: rgb(255, 0, 0) " strong 顶空分析法、固相萃取法和衍生化法 /strong /span 等。下图所示为,不同的基因毒性杂质的检测策略。 /p p style=" text-align: center " span style=" font-size: 14px " strong 表1 /strong 不同类型杂质的检测方法和前处理办法 /span /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 443px height: 475px " src=" https://img1.17img.cn/17img/images/202007/uepic/09a28c14-95da-4f42-8d1f-76fe5f0190fc.jpg" title=" 不同杂质的解决方案.png" alt=" 不同杂质的解决方案.png" width=" 443" vspace=" 0" height=" 475" border=" 0" / /p p style=" text-align: center margin-top: 20px " span style=" font-size: 14px " strong 表2 /strong 常用分析方法的特点 /span /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 461px height: 303px " src=" https://img1.17img.cn/17img/images/202007/noimg/7c9ec587-73dc-4805-9637-bff9c8d74d87.gif" title=" 分析方法特点.gif" alt=" 分析方法特点.gif" width=" 461" height=" 303" / /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 525px height: 428px " src=" https://img1.17img.cn/17img/images/202007/uepic/3c20ff8e-079b-469e-ba13-e1236aea38f9.jpg" title=" 决策树.png" alt=" 决策树.png" width=" 525" height=" 428" / br/ /p p style=" text-align: justify text-indent: 2em margin-top: 15px " span style=" color: rgb(0, 112, 192) " strong 具体解决方案【附连接】 /strong /span /p p style=" text-align: justify text-indent: 2em margin-top: 10px " span style=" color: rgb(255, 0, 0) " (杂质:卤代烷) /span /p p style=" text-align: justify text-indent: 2em " 【Agilent GC-MS】N,N-二甲基-3-氯丙胺盐酸盐(1,3-溴氯丙烷) br/ & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp Intuvo 9000 气相色谱系统+5977B单四极杆质谱检测器 /p p style=" text-align: justify text-indent: 2em margin-top: 10px " span style=" color: rgb(255, 0, 0) " (杂质:N-亚硝基二甲胺,NDMA) /span /p p style=" text-align: justify text-indent: 2em " a href=" https://www.instrument.com.cn/application/Solution-928363.html#advant" target=" _blank" 【Thermo】缬沙坦及雷尼替丁 /a /p p style=" text-align: justify text-indent: 2em " a href=" https://www.instrument.com.cn/application/Solution-924963.html" target=" _blank" 【岛津】氯沙坦: LCMS-8050 高效液相色谱-三重四极杆质谱 /a /p p style=" text-align: justify text-indent: 2em " a href=" https://www.instrument.com.cn/application/Solution-912288.html" target=" _blank" 【WATERS】缬沙坦——UPLC I-Class,Xevo TQ-S micro /a /p p style=" text-align: justify text-indent: 2em margin-top: 10px " span style=" color: rgb(255, 0, 0) " (杂质:环氧化物/醚) /span /p p style=" text-align: justify text-indent: 2em " a href=" https://www.instrument.com.cn/application/Solution-911034.html" target=" _blank" 【Thermo】盐酸普萘洛尔:高分辨液质Q Exactive Focus+ESI和APCI /a /p p style=" text-align: justify text-indent: 2em margin-top: 10px " span style=" color: rgb(255, 0, 0) " (杂质:磺酸类、磺酸酯、氨基酯类) /span /p p style=" text-align: justify text-indent: 2em " a href=" https://www.instrument.com.cn/application/Solution-871218.html" target=" _blank" 【Thermo】Triplus 300 顶空自动进样器+1300GC+ISQ-MS /a /p p style=" text-align: justify text-indent: 2em " a href=" https://www.instrument.com.cn/application/Solution-912519.html" target=" _blank" 【SHIMADZU】维格列汀:GCMS-TQ8050 NX /a /p p style=" text-align: justify text-indent: 2em " a href=" https://www.instrument.com.cn/application/Solution-926017.html" target=" _blank" 【SHIMADZU】酸肌酸钠 /a /p p style=" text-align: justify text-indent: 2em " a href=" https://www.instrument.com.cn/application/Solution-532949.html" target=" _blank" 【WATERS】——Waters Xevo TQD 三重四极杆质谱:快速正负切换的模式 /a /p p style=" text-align: justify text-indent: 2em " a href=" https://www.instrument.com.cn/application/Solution-813258.html" target=" _blank" 【Gs-Tek】(毛细管柱)气相柱GSBP-INOWAX 30m-0.25mm-0.25um液体直接进样法 /a br/ /p p style=" text-align: justify text-indent: 2em margin-top: 10px " span style=" color: rgb(255, 0, 0) " (杂质:4-硝基卞醇) /span /p p style=" text-align: justify text-indent: 2em " a href=" https://www.instrument.com.cn/application/Solution-912413.html" target=" _blank" 【Thermo】 TSQ 8000 Evo+Unknown Screening 插件 /a br/ /p p style=" text-align: justify text-indent: 2em margin-top: 10px " span style=" color: rgb(255, 0, 0) " (杂质:氯苯胺) /span /p p style=" text-align: justify text-indent: 2em " a href=" https://www.instrument.com.cn/application/Solution-822564.html" target=" _self" 【SHIMADZU】 /a span style=" color: rgb(255, 0, 0) " br/ /span /p p style=" text-align: justify text-indent: 2em margin-top: 10px " span style=" color: rgb(255, 0, 0) " (杂质:丁酸氯甲酯和2,3-二氯苯甲醛) /span br/ /p p style=" text-align: justify text-indent: 2em " a href=" https://www.instrument.com.cn/application/Solution-910495.html" target=" _blank" 【SHIMADZU】丁酸氯维地平 /a /p p br/ /p p (文中图片来自文献:汪生, 杭太俊. 药物中基因毒性杂质检测策略的研究[J]. 中国新药杂志, 2019(23).) /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 151px height: 46px " src=" https://img1.17img.cn/17img/images/202007/noimg/857572b4-04e8-4c23-8b52-b8b57dd8fb2c.gif" title=" 箭头分割线.gif" alt=" 箭头分割线.gif" width=" 151" height=" 46" / /p p style=" text-align: center" a href=" https://www.instrument.com.cn/zt/chemmed-impurity" target=" _blank" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202007/uepic/e377c5b6-1a94-40a2-b0ba-868cd2c52f62.jpg" title=" w640h110impurity.jpg" alt=" w640h110impurity.jpg" / /a /p p span style=" color: rgb(255, 0, 0) " strong & nbsp span style=" color: rgb(0, 0, 0) " 欲了解更多”药典与化药杂质“相关内容,请点击 span style=" background-color: rgb(255, 192, 0) color: rgb(255, 0, 0) " 图片 /span 进入以上专题~ /span /strong /span /p p style=" text-align: center margin-top: 10px " a href=" https://www.instrument.com.cn/webinar/meetings/yoloChemDrug2020/" target=" _blank" img style=" max-width: 100% max-height: 100% width: 640px height: 110px " src=" https://img1.17img.cn/17img/images/202007/uepic/ab578eb9-cc5b-4578-a6d9-26c3d27e426d.jpg" title=" 2020 banner.jpg" alt=" 2020 banner.jpg" width=" 640" vspace=" 0" height=" 110" border=" 0" / /a /p p & nbsp strong 2020年“化药杂质研究与技术”WEBINAR【戳链接,看回放】 /strong span style=" color: rgb(255, 0, 0) " strong /strong /span br/ /p
  • 中科光电亮相第四届智慧环保物联网博览会
    9月26日至28日,在第四届中国国际物联网(传感网)博览会智慧环保展区,中科光电以“立体监测、智慧环保”的核心理念,集中展出了新型气溶胶激光雷达、MAX-DOAS、光散射法PM2.5监测仪、傅里叶红外光谱分析仪等立体监测核心产品与整体解决方案,成为本届物联网博览会智慧环保的亮点。其中公司近期完成升级开发的气溶胶激光雷达吸引了众多参观者驻足,新版雷达从根本上解决了中国国情的适应性与系统应用的业务化管理需求,在构建大气“空天一体化”监测网,开展污染过程分析、污染特征分析、污染来原分析与雾霾预警中将发挥核心支撑作用。展会期间,环保部周建副部长重点参观考察了公司产品与解决方案,对公司与国内科研院所大力开展产业化合作给予了充分肯定并强调指出:“应予大力推广应用,支撑我国雾霾监测预警”。展会期间,江苏省委常委无锡市委书记黄莉新、无锡市市长汪泉、江苏省经信委、江苏省环保厅等多位领导莅临参观指导。图一:环保部周建副部长、江苏省委常委无锡市书记一行莅临公司展台参观考察 图二:中科光电“立体监测智慧环保”展示区
  • 2020版《中国药典》│遗传毒性杂质检测,您准备好了吗?
    ? 导 读2020版《中国药典》已于今年6月正式发布,并将于12月30日起开始实施。2020版与此前版本的药典相比,有多处重要的增删与修改,四部新增《9306 遗传毒性杂质控制指导原则》为其中之一。该指导原则的出现,为遗传毒性杂质的控制提供了理论依据。据此,药典二部又在十种药物项下规定了对磺酸烷基酯类和N-亚硝胺类遗传毒性杂质的监控要求。如何建立遗传毒性杂质的监控能力成为一些制药企业与检测机构必须完成的挑战,需尽早做好相应准备。 什么是遗传毒性杂质,新版药典为什么要加入这些内容,具体都有哪些规定呢?让小编为你一一解读。 新版药典遗传毒性杂质内容的解读 根据新版药典的定义,遗传毒性杂质(genotoxic impurities)是指能引起遗传毒性的杂质,包括致突变性杂质和其他类型的无致突变性杂质。其主要来源于原料药或制剂的生产过程,如起始原料、反应物、催化剂、试剂、溶剂、中间体、副产物、降解产物等。 新版药典之所以要增加遗传毒性杂质的内容是为了加强国际标准协调,参考了人用药品注册技术要求国际协调会(ICH)相关指导原则。 药典四部新增《9306 遗传毒性杂质控制指导原则》,用于指导药物遗传毒性杂质的危害评估、分类和限制规定,以控制药物中遗传毒性杂质潜在的致癌风险,为药品标准制修订,上市药品安全性再评估提供参考。 药典二部有10种药物明确指出在必要时,应采用适宜的分析方法对产品进行分析,以确认相关遗传毒性杂质的含量符合我国药品监管部门相关指导原则或ICH M7指导原则的要求。这10种药物关于遗传毒性杂质的规定列表如下: 为了更好的推进磺酸烷基酯及N-亚硝胺的检测方法,岛津根据相关标准开发了多种检测方案。 岛津解决方案之磺酸烷基酯篇 磺酸烷基酯磺酸烷基酯一般是在磺酸盐类药物生产过程中产生的,2007年6月国际制药巨头罗氏制药公司在欧盟国家销售的一种抗HIV药物甲磺酸奈非那韦某些批次检出了甲磺酸乙酯,该事件导致此种药物在欧盟市场一度停售,直到罗氏修正了工艺并增加对甲磺酸乙酯的控制,此后多个国家及国际组织均加强了对磺酸烷基酯的监控。 磺酸烷基酯结构,R1为甲基、苯基或甲苯基,R2为烷基 磺酸烷基酯的分类不同的磺酸盐药物中需要检测的磺酸烷基酯的种类是不同的,下表罗列了各种磺酸盐原料药需要检测的磺酸烷基酯的种类。方案1 顶空+色相色谱质谱岛津HS-20+ GC-MS分析系统 岛津顶空自动进样器特点主要有:• 均一稳定的恒温控制技术,卓越的重现性• 加热炉可以位重叠加热,提高分析效率• 混合振荡功能,可使样品快速达到平衡,缩短分析时间 各磺酸烷基酯衍生物SIM色谱图 方法原理:在顶空条件下使用碘化钠将磺酸烷基酯衍生为的碘代烷烃,然后使用气质检测。方法特点:前处理简单,对仪器污染小,但不能同时检测不同类的磺酸烷基酯。 方案2 气相色谱质谱岛津GC-MS分析系统 岛津气质特点主要有:• 高灵敏度抗污染型离子源,良好的稳定性• 强劲大容量真空系统,大幅度缩短质谱开机后的稳定(抽真空)时间• OD Lens双偏转透镜,聚焦目标离子,减低噪音 八种磺酸酯标准品TIC色谱图 方法原理:药品溶于乙酸乙酯后有机滤膜过滤,直接采用气质检测。方法特点:可以同时检测不同类的磺酸烷基酯,基质复杂样品检测效果可能欠佳。 方案3 三重四极杆气相色谱质谱岛津GCMSMS分析系统 GCMSMS NX系列气质还具有以下特点:• ClickTek技术仪器维护更方便• 新一代AFC全惰性流路,提供更高的检测精度• 智能钟、Smart EI/CI 复合源提高实验效率 八种磺酸酯标准品MRM色谱图 方法原理:药品溶于乙酸乙酯,,有机滤膜过滤后使用三重四极杆气质检测。方法特点:可以同时检测不同类的磺酸烷基酯,三重四极杆气相色谱质谱抗干扰能力强可用于复杂基质样品的检测 岛津解决方案之N-亚硝胺篇 N-亚硝胺N-亚硝胺类化合物是一类强致癌有机化合物,它由前体物质硝酸盐、亚硝酸盐和胺类通过化学或生物学途径合成。典型代表化合物有N,N-二甲基亚硝胺(NDMA)、N,N-二乙基亚硝胺(NDEA)。2018年被爆出沙坦类药物中含有遗传毒性杂质NDMA,尤其是缬沙坦和氯沙坦尤为严重。 N-亚硝胺化合物结构 方案1 液相色谱最高130Mpa的高耐压,完美应对各种分析• 高通量自动进样器,实现样品的连续分析• 可配备流动相精灵,诊断精灵以及修复精灵• 最新设计的三维中文色谱软件,符合GMP标准 NDMA和NDEA 均在10min以内出峰,分离度良好,5 ng/mL标准品溶液灵敏度轻松满足ANSM French OMSL法规要求。 方案2 三重四极杆气相色谱质谱下图为6种N-亚硝胺定量限MRM图,峰型完美。应对欧洲药典质量控制要求so easy。 方案3 液相色谱质谱 • UF-Swiching技术:真正意义上实现了正、负离子同时采集;• UF-Scaning技术:扫描速度可达30000u/sec;• UF- Sweeper Ⅲ技术:离子碰撞过程的超低串扰;• UF- Senstivity技术:三重脱溶剂系统,实现超高灵敏度 轻松再现FDA和EDQM法规中规定的NDMA和NDEA检测方法,并使用LabSolutions软件实现了内标法和外标法同时定量。 5.0 ng/mL标准样品MRM色谱图 岛津自1875年创业以来,始终秉承创始人岛津源藏的创业宗旨“以科学技术向社会做贡献”,不仅视自己为仪器供应商,而且努力向各个行业的用户分享岛津丰富的专业资源和强大的应用支持。为应对制药行业相关用户对遗传毒性杂质的检测需求,岛津公司开发了基于LC、GCMS、HS-GCMS、GC-MS/MS以及LC-MS/MS等平台的相关药物中遗传毒性杂质的检测方法。岛津分析中心也精心推出《沙坦类药物中遗传毒性杂质检测方案》和《药品中遗传毒性杂质检测整体解决方案》,希望我们的工作对您有所帮助。
  • “十大亮点”预览ACCSI2021大会精华
    2021年是个特殊的年份,“十四五”开局之年,《“十四五”规划和2035年远景目标纲要》正式发布,中国各行业正整装待发,向第二个百年奋斗目标全力进军。与此同时,全球贸易摩擦不断,疫情黑天鹅事件又给世界经济带来巨大冲击,在百年未有的大变局中,机遇与挑战并存,中国科学仪器市场又将发生怎样切实的改变? 3月刚结束的两会上,多位委员提案:对国产重大科研仪器行业进行重点支持,鼓励生物医药产业进行国产仪器替代,多肽创新药产业纳入国家战略,大力推广国产研究型设备及生产化产业性设备等。科学仪器产业得到了前所未有的关注,打破科学仪器研发壁垒迫在眉睫。自2006年以来,科学仪器行业产业峰会——中国科学仪器发展年会(ACCSI)已成功举办十四届。2021年,迎来ACCSI的第十五个年头。ACCSI2021将于4月在无锡融创万达文华酒店盛大开启,诚邀您共赴科学仪器行业 的“达沃斯论坛”和“奥斯卡颁奖典礼”,尽享此次行业盛宴!本届中国科学仪器发展年会,都有哪些看点?不妨先睹为快。点击图片,查看整体日程↑↑时间:2021年4月21日-4月23日地点:无锡融创万达文华酒店会议中心规模:千人盛会亮点一:15年精心打造的科学仪器行业“达沃斯论坛”ACCSI旨在促进中国科学仪器行业“政、产、学、研、用、资、媒”等各方的有效交流,力求对中国科学仪器的最新进展进行较为全面的总结,力争把最新的有关政策、最前沿的行业市场信息、最新的技术发展趋势在最短的时间内呈现给各位参会代表。单届参会人数已突破1000人,业内誉为科学仪器行业的“达沃斯论坛”。ACCSI2020参会情况亮点二:百余位特邀报告嘉宾  1、产业政策解读  2、市场热点聚焦  3、行业风向预判  4、技术发展综述  5、高峰论坛碰撞  6、研发成果转化7、产业痛点分析8、产业资源对接亮点三:11个分论坛深度聚焦仪器及检测行业热点分会场1:第六届中国质谱产业化发展论坛分会场2:第五届检验检测产业峰会分会场3:第四届生命科学仪器发展论坛分会场4:中药分析与质量控制创新发展论坛分会场5:贵金属及珠宝检测技术发展论坛分会场6:量子精密测量产业化发展论坛分会场7:科学仪器及检测人才发展论坛分会场8:实验室智能化论坛分会场9:环境监测热点技术及市场论坛分会场10:首届中国电镜产业化发展论坛分会场11:“近红外光谱产业化瓶颈问题探讨”主题论坛亮点四:仪器及检测“奥斯卡”颁奖盛典部分奖项一览:2020科学仪器行业优秀新品2020年度科学仪器行业绿色仪器2020年度科学仪器行业用户关注十大仪器2020科学仪器研发特别贡献奖2020年度科学仪器行业领军企业2020科学仪器行业数字营销五佳企业2020年度科学仪器行业成长潜力企业2020年度科学仪器行业售后服务五佳企业2020年科学仪器行业企业年度人物2020年度十大第三方检测机构2020年度新锐检测机构2020科学仪器行业杰出雇主奖2020年度网络影响力检测机构亮点五:《中国科学仪器行业发展报告(2020)》重磅发布曾被两会代表提案引用的《中国科学仪器行业发展报告》,2020年度有哪些权威的国家统计数据?有哪些行业的发展动态解读?仪器采购市场发生了哪些变化?又会有哪些分析仪器的技术最新进展?尽在《中国科学仪器行业发展报告(2020)》(参会现场可领取)。亮点六:ACCSI2021同期举办“第三届仪器CMO圆桌峰会”2020年,一场突如其来的新冠疫情爆发,让科学仪器从幕后走到了前台。疫情之下,很多仪器企业决策层也面临巨大挑战。身为仪器公司的市场人,你是否有这样的疑惑:做品牌推广这种短期无法见利的行为,是否应当适当缩减?如何更好的通过品牌定位、管理、营销等更好的传递出品牌的内涵?… … 这些问题有望在ACCSI 2021同期举办的“第三届仪器CMO峰会”上得到解答,本次会议以“品牌迭代 驱动未来”为主题,旨在驱动科学仪器行业品牌营销的迭代,提升科学仪器产业在社会中的影响力。五位市场总监探讨市场营销如何引领业绩增长,与百余位仪器厂商市场人面对面答疑解惑。如果你也是仪器公司市场人,带着你的疑惑来仪器CMO峰会现场吧!亮点七:ACCSI2021同期举办“科学仪器发展战略座谈会(闭门)”座谈会将邀请科学仪器领域 30 家国内外知名企业的董事长、CEO、总经理,无锡政府主管领导、全国各质检院院长、所长,海关实验室技术中心主任等出席,共同探讨科学仪器如何助力海关、质检领域的高质量发展,促进二者深度融合。 亮点八:70余家仪器企业现场展示最新产品 特设供应链展区安捷伦、岛津、珀金埃尔默、梅特勒、坛墨、超磁机器人、耶拿、沃特世、迅杰光远、莱尼等多家仪器公司参展,现场展示最新产品。为帮助科学仪器上下游企业之间有效沟通、交流与合作,本次年会还特别设置了供应链展区,展品有科学仪器零部件、加工服务、软件服务及其他相关服务等。亮点九:科学仪器产业与长三角的一次深度对接近年来,江苏省出台大量政策,支持技术研发、创新及成果转化,旨在将无锡打造成为长三角区域乃至全国产业特色鲜明、研发创新活跃、制造实力雄厚的产业高地。无锡聚集了大量高新技术产业:信息技术、生物医药、智能装备、新材料、集成电路、汽车零部件等。这些高新产业的发展离不开科学仪器。本届科学仪器发展年会将充分结合无锡地区产业优势,发挥当地政策优势,邀请无锡政府、无锡市分析测试学会、无锡市分析测试协会,南京海关纺织工业产品检测中心等单位相关领导及代表出席,旨在促进产业资源的深度对接,实现各方的共赢发展。亮点十:参会人员层次高参会人员主要为行业领域专家学者、仪器公司中高层领导、检测公司中高层领导、科研院所研究员/副研究员、高校教授/副教授、实验室管理负责人、仪器用户单位决策人、政府领导、相关协会学会领导等,可快速拓展行业人脉关系。 参会联系报名  报告及参会报名:010-51654077-8214 15611023645李女士 13671073756杜女士  赞助及媒体合作:010-51654077-8015 13552834693魏先生  微信添加accsi1或发邮件至accsi@instrument.com.cn(单位、姓名、手机)咨询会议相关信息主办单位中国仪器仪表行业协会中国仪器仪表学会仪器信息网(www.instrument.com.cn)协办单位中国仪器仪表学会分析仪器分会南京市产品质量监督检验院我要测网(www.woyaoce.cn) 江苏省分析测试协会无锡量子感知研究所欲了解更多第十五届中国科学仪器发展年会信息及报名,请点击链接到官网:ACCSI 2021扫码立即报名往届年会精彩视频回顾:https://www.instrument.com.cn/news/20210108/569912.shtml
  • 解读《关于蓝莓花色苷等14种“三新食品”的公告》(2023年第3号)
    一、新食品原料解读材料(一)蓝莓花色苷蓝莓花色苷是以杜鹃花科越橘属蓝莓(Vaccinium corymbosum L.)的果实为原料,经酶解、水提取、纯化、浓缩、干燥等工艺制成的粉状物质。加拿大批准蓝莓提取物(花色苷含量≥40%)作为天然健康食品使用;欧盟将蔬菜、水果来源的花色苷作为食品添加剂使用;美国将葡萄及葡萄皮来源的花色苷作为食品添加剂,允许在饮料等食品中使用。本产品推荐食用量为:总花色苷含量40.0%的蓝莓花色苷推荐食用量为800毫克/天,超过该含量的按照实际含量折算。根据《中华人民共和国食品安全法》和《新食品原料安全性审查管理办法》规定,国家卫生健康委员会委托审评机构依照法定程序,组织专家对蓝莓花色苷的安全性评估材料审查并通过。新食品原料生产和使用应当符合公告内容以及食品安全相关法规要求。鉴于蓝莓花色苷在婴幼儿、孕妇和哺乳期妇女人群中的食用安全性资料不足,从风险预防原则考虑,上述人群不宜食用,标签及说明书中应当标注不适宜人群。该原料的食品安全指标按照公告规定执行。(二)黑麦花粉本产品的基源植物为禾本科黑麦属植物黑麦(Secale Cereale L.),原产于中亚及地中海等地区,在欧洲被广泛种植。本产品是采收黑麦的花粉,经过干燥、分离等工艺制成。在日本和韩国,花粉作为一种食物类别,不限定其基源植物,黑麦花粉可作为食品食用;在美国,黑麦花粉可作为食品原料进行销售。本产品推荐食用量为≤1.5克/天。根据《中华人民共和国食品安全法》和《新食品原料安全性审查管理办法》规定,国家卫生健康委员会委托审评机构依照法定程序,组织专家对黑麦花粉的安全性评估材料审查并通过。新食品原料生产和使用应当符合公告内容以及食品安全相关法规要求。鉴于黑麦花粉在婴幼儿、孕妇和哺乳期妇女人群中的食用安全性资料不足,从风险预防原则考虑,上述人群不宜食用,且花粉过敏者也不宜食用,标签及说明书中应当标注不适宜人群。该原料的食品安全指标按照公告规定执行。二、食品添加剂新品种解读材料(一)L-硒-甲基硒代半胱氨酸1.背景资料。L-硒-甲基硒代半胱氨酸作为食品营养强化剂已列入《食品安全国家标准食品营养强化剂使用标准》(GB 14880),允许用于调制乳粉(儿童用乳粉除外)和调制乳粉(仅限儿童用乳粉)、大米及其制品、小麦粉及其制品等食品类别。本次申请的L-硒-甲基硒代半胱氨酸为新的生产工艺,其使用范围和用量与GB 14880中已批准硒的规定一致。2.工艺必要性。该物质作为食品营养强化剂用于调制乳粉(儿童用乳粉除外)和调制乳粉(仅限儿童用乳粉)(食品类别01.03.02)、大米及其制品(食品类别06.02)、小麦粉及其制品(食品类别06.03)、杂粮粉及其制品(食品类别06.04)、面包(食品类别07.01)、饼干(食品类别07.03)、含乳饮料(食品类别14.03.01),强化食品中硒的含量。其质量规格按照公告的相关要求执行。(二)D-阿洛酮糖-3-差向异构酶1.背景资料。枯草芽孢杆菌(Bacillus subtilis)来源的D-阿洛酮糖-3-差向异构酶申请作为食品工业用酶制剂新品种。美国食品药品管理局等允许其作为食品工业用酶制剂使用。2.工艺必要性。该物质作为食品工业用酶制剂,主要用于催化D-果糖制得D-阿洛酮糖。其质量规格执行《食品安全国家标准食品添加剂食品工业用酶制剂》(GB 1886.174)。(三)抗坏血酸棕榈酸酯(酶法)1.背景资料。抗坏血酸棕榈酸酯(酶法)于2016年第9号公告批准作为抗氧化剂用于脂肪,油和乳化脂肪制品等食品类别。本次申请扩大使用范围:作为抗氧化剂用于方便米面制品(食品类别06.07);作为食品营养强化剂,是维生素C的一种化合物来源,其使用范围和用量与GB 14880中已批准维生素C的规定一致。日本厚生劳动省、韩国食品药品安全部等允许其作为抗氧化剂用于方便米面制品,欧盟委员会、日本厚生劳动省、澳大利亚和新西兰食品标准局等允许其用于调制乳粉、饮料等食品类别。根据联合国粮农组织/世界卫生组织食品添加剂联合专家委员会评估结果,该物质的每日允许摄入量为0-1.25mg/kg bw。2.工艺必要性。该物质作为抗氧化剂用于方便米面制品(食品类别06.07),延缓方便米面制品氧化。该物质作为食品营养强化剂,是维生素C的化合物来源,强化食品中维生素C的含量。其质量规格执行国家卫生健康委(原国家卫生和计划生育委员会)2016年第9号公告。(四)维生素B11.背景资料。维生素B1作为食品营养强化剂已列入《食品安全国家标准 食品营养强化剂使用标准》(GB 14880),允许用于调制乳粉(仅限儿童和孕产妇用乳粉)、豆粉、豆浆粉、豆浆、胶基糖果、大米及其制品、小麦粉及其制品等食品类别,本次申请扩大使用范围用于特殊用途饮料(包括运动饮料、营养素饮料等)(食品类别14.04.02.01)。美国食品药品管理局、欧盟委员会、日本厚生劳动省、澳大利亚和新西兰食品标准局等允许其用于食品。2.工艺必要性。该物质作为食品营养强化剂用于特殊用途饮料(包括运动饮料、营养素饮料等)(食品类别14.04.02.01),强化食品中维生素B1的含量。其质量规格执行《食品安全国家标准 食品添加剂 维生素B1(盐酸硫胺)》(GB 14751)。(五)维生素B21.背景资料。维生素B2作为食品营养强化剂已列入《食品安全国家标准 食品营养强化剂使用标准》(GB 14880),允许用于调制乳粉(仅限儿童和孕产妇用乳粉)、豆粉、豆浆粉、豆浆、胶基糖果、大米及其制品、小麦粉及其制品等食品类别,本次申请扩大使用范围用于特殊用途饮料(包括运动饮料、营养素饮料等)(食品类别14.04.02.01)。美国食品药品管理局、欧盟委员会、日本厚生劳动省、澳大利亚和新西兰食品标准局等允许其用于食品。2.工艺必要性。该物质作为食品营养强化剂用于特殊用途饮料(包括运动饮料、营养素饮料等)(食品类别14.04.02.01),强化食品中维生素B2的含量。其质量规格执行《食品安全国家标准 食品添加剂 维生素B2(核黄素)》(GB 14752)。(六)牛磺酸1.背景资料。牛磺酸作为食品营养强化剂已列入《食品安全国家标准 食品营养强化剂使用标准》(GB 14880),允许用于特殊用途饮料等食品类别,本次申请在特殊用途饮料(包括运动饮料、营养素饮料等)(食品类别14.04.02.01)中最大使用量由0.5g/kg扩大到0.6g/kg。美国食品药品管理局、日本厚生劳动省、澳大利亚和新西兰食品标准局等允许其用于调味饮料等食品类别。2.工艺必要性。该物质作为食品营养强化剂用于特殊用途饮料(包括运动饮料、营养素饮料等)(食品类别14.04.02.01),强化食品中牛磺酸的含量。其质量规格执行《食品安全国家标准 食品添加剂 牛磺酸》(GB 14759)。三、食品相关产品新品种解读材料(一)己二酸与2-乙基-2-(羟甲基)-1,3-丙二醇和对叔丁基苯甲酸的聚合物1.背景资料。该物质为无色透明液体,不溶于水。欧洲委员会和日本厚生劳动省均允许该物质用于食品接触用涂料及涂层。2.工艺必要性。该物质作为添加剂用在涂料中,可提高涂料的粘结性,增强涂层与金属基材之间的附着力。(二)4,8-三环[5.2.1.02,7]癸烷二甲醇与对苯二甲酸和1,6-己二醇的聚合物1.背景资料。该物质为透明液体,不溶于水。欧洲委员会和日本厚生劳动省均允许该物质用于食品接触用涂料及涂层。2.工艺必要性。该物质是涂料的主要成膜物质,形成的涂层用于金属罐内壁时具有较好的附着力、抗锈性和抗腐蚀性。(三)氢化二聚C18不饱和脂肪酸与1,4-丁二醇、乙二醇、对苯二甲酸和2-乙基-2-(羟甲基)-1,3-丙二醇的嵌段共聚物1.背景资料。该物质在常温下为淡黄色透明颗粒。欧盟委员会、日本厚生劳动省和瑞士联邦食品药品监督管理局均允许该物质用于食品接触用塑料材料及制品。2.工艺必要性。该物质主要用于金属罐内壁PET覆膜材料的中间层,添加了该物质的PET膜具有较好的加工性能和阻隔性。(四)1,6-己二酸与(E)-2-丁烯二酸和4,8-三环[5.2.1.02,7]癸烷二甲醇的聚合物1.背景资料。该物质常温下为无色液体,不溶于水。美国食品药品管理局和欧洲委员会均允许该物质用于食品接触用涂料及涂层。2.工艺必要性。以该物质为原料生产的涂料对于金属和塑料材料具有较好的附着力,用于底涂层中可改善涂层与基材间的附着力,同时可增加产品的柔韧性和抗腐蚀性。(五)1,4-丁二醇与2,2-二甲基-1,3-丙二醇、1,4-环己二酸和间苯二甲酸的聚合物1.背景资料。该物质常温下为淡黄色固体,不溶于水。美国食品药品管理局和欧洲委员会均允许该物质用于食品接触用涂料及涂层。2.工艺必要性。该物质是一种聚酯类树脂,主要用于金属罐内壁,具有较强的附着力。添加了该物质的金属罐内壁涂层具有较好的拉伸性和抗腐蚀性。(六)对苯二甲酸二甲酯与1,4-丁二醇和4,8-三环[5.2.1.02,7]癸烷二甲醇的聚合物1.背景资料。该物质常温下为无色至黄色的无定形固体,不溶于水,可溶于酮类等有机溶剂。美国食品药品管理局允许该物质用于食品接触用涂料及涂层,不得用于接触婴幼儿配方奶粉和母乳;欧洲委员会允许该物质用于食品接触用涂料及涂层。2.工艺必要性。该物质是涂料的主要成膜物质,主要用于金属罐内壁。成膜后的涂层具有较好的柔韧性,利于对罐体进行弯折冲压等加工工艺。
  • 岛津 思领◆慧致 液相主题庆典在石家庄隆重举办
    2019年7月19日,岛津公司在石家庄举办了主题为“思领慧致”的液相主题庆典暨Nexera LC-40 新品发布会。岛津自上世纪中叶推出首台GPC系统以来,始终不忘初心、努力践行“匠人精神”,同时潜心钻研、致力创新,始终引领液相色谱技术的发展潮流。如今重磅推出岛津首套融合“AI”与“IOT”技术的旗舰级液相色谱仪新品Nexera LC40,旨在给广大用户带来全新的体验。在一阵激荡热烈的敲鼓声中,发布会正式开始。发布会开场现场盛况 岛津公司分析仪器市场部靳松经理率先发表了致辞,在致辞中她提到岛津是一个有历史、有积淀、有传承的百年企业,即将推出的Nexera LC-40系列,秉承了岛津一直以来的设计理念,将源自日本的“匠人精神”和面向未来的互联网科技结合,融合优秀的工业设计和人工智能(AI)以及物联网(IoT)等尖端科技,在提供卓越性能的同时,将带来如“流动相精灵”、“诊断精灵”、“修复精灵”等自主操作功能,实现人机对话,是一台有思想的液相色谱仪。岛津分析仪器市场部靳松经理 致辞结束后开始了揭幕仪式,河北省分析仪器技术学会环境分析监测分会秘书长仇计清教授与岛津公司分析测试仪器事业部魏亮经理一起为新产品进行了揭幕,并由河北省分析仪器技术学会化工医药监测分会秘书长魏福祥教授为新品发表了致辞,作为岛津公司的老用户,魏教授表达了对Nexera LC 40新品的期待和对岛津公司以往工作的肯定,并且,魏教授还强调了他借助岛津的仪器平台,在中国石化出版社出版了《现代仪器分析技术及应用》,在社会上引起不错的反响。由此,岛津旗舰级液相色谱新品Nexera LC-40在石家庄正式亮相,引来现场阵阵欢呼。揭幕仪式河北省分析仪器技术学会化工医药监测分会秘书长魏福祥教授 揭幕仪式和致辞过后,岛津分析测试仪器市场部迟大民对岛津超高效液相色谱仪NexeraLC-40新品进行了全面的介绍。他分析了目前实验室面临的待解决的问题,分别从实验室一线实验操作人员、中层管理者、高层管理者不同的角度来思考这些问题,并且按照实验室使用液相色谱仪进行样品分析的流程,为与会者详尽地介绍了Nexera LC-40在样品分析各个步骤中为用户提供的多种多样的先进性能与功能。他强调Nexera LC-40融合岛津优秀的工业设计和人工智能(AI)、智能物联(IoT)等尖端技术,成为了一台真正的面向未来的液相色谱仪。在提供卓越性能的同时,带来如‘流动相精灵’、‘自我诊断’、‘智能恢复’、‘智能流速控制’等多项人性化、智能功能,能够给各位用户带来非同以往的便利操作体验。岛津分析测试仪器市场部迟大民 茶歇中,参加发布会的现场来宾纷纷走到仪器前,向岛津工作人员询问了有关仪器的使用方法和功能性问题,双方进行了非常热烈的讨论。 茶歇过后,岛津市场部杨晓春发表了题目为《基于质谱技术的遗传毒性杂质检测解决方案》的报告,该解决方案集成了多种仪器、软件和系统的使用以及岛津全球子公司的检测实例分享,包括磺酸酯类、芳香胺类、氮亚硝胺类基因毒性杂质分析等,适用于多个国家对于遗传毒性杂质的标准方法,为解决行业挑战与热点问题提供了有效、及时的帮助。岛津分析测试仪器市场部杨晓春 最后,岛津(上海)实验器材有限公司(SGLC)市场部徐露莎介绍了今年新推出的三个系列色谱柱,分别是:更耐酸耐碱耐高温的Scepter系列,满足更快分析速度的Velox系列以及面对碱性化合物能有限避免拖尾的Arata系列。在实验室中,除了常规使用的C18柱外,还可以使用五氟苯基柱、联苯柱解决一些具有共轭、含极性基团、结构相近的化合物。此外,在分析实验室中取样-加标-前处理-上机所涉及的各类耗材及小型仪器该公司也都有提供。岛津(上海)实验器材有限公司(SGLC)市场部徐露莎 发布会结束,现场传来热烈地掌声,岛津会继续践行“匠人精神”,致力创新,为用户带来更好的体验,与用户一起合作共赢。 接下来,让我们一起再回顾下现场的揭幕仪式:(点击下方图片)
  • 澳新食品标准局拟修改食品标准法典
    澳新食品标准局(FSANz)对外公布了拟议的澳新食品标准法典(Food Standards Code)修改草案详情,并征求有关团体和个人的评议意见。   新的澳新食品标准法典的修改包括批准一种转基因玉米、用作高强度甜味剂的Steviol(甜菊)以及特殊医疗用食品等。FSANz将会仔细考虑来自各方的评论,任何人都可以申请修改食品标准法典,澳新食品标准局对食品、物质以及食品生产技术进行评估,并进行管理效果分析,确保修改结果有益于社会。   特殊医疗用食品 Proposal P242,初步评定为最后的评估结果。特殊医疗用食品(FSMP)指的是在医生或其他健康专业人士(如营养师,护士)监督下使用的,治疗慢性病患者、残疾人、急性病患者或受伤者的食品。目前,澳新食品标准法典中并没有明确关于FSMP的标准。FSANZ拟议制定一个关于FSMP的标准,并欢迎来自公众的意见。   而对于由转基因抗除草剂玉米DAS-40278-9制成的食品 Application A1042,属于第一次评估。陶氏益农澳大利亚公司正寻求批准由转基因抗除草剂玉米DAS-40278-9制成的食品。FSANZ对该转基因玉米进行了充分的科学评估,以保证人类使用的安全性,目前该评估正在进行中。   对于甜菊糖甙的允许含量 Application 1037的评估:嘉吉公司正在寻求批准提高甜菊糖甙在冰淇淋,水基饮料,酿造软饮料,配方饮料和调味酱油中的最大允许含量。甜菊醇甙是食品产业用作糖替代品的高强度甜味剂。嘉吉公司声称需要提高最大允许含量,为消费者提供更好的口感。   木质素磺酸钙(40-65)作为食品添加剂 Application A1030的评估:帝斯曼营养产品澳大利亚公司已要求批准将木质素磺酸钙(40-65)用作脂溶性维生素(A,D,E和K)和类胡萝卜素的载体制成食品添加剂和营养物质,以帮助这些营养物质融入水基食品。木质素磺酸钙(40-65)帮助不溶于水的维他命和类胡萝卜素均匀分布在水基食品和饮料中。FSANZ正在寻求评议意见,特别是来自食品行业的意见。   对澳新食品标准法典的维护 Proposal P1013的评估:FSANZ还将定期修订澳新食品标准法典,以维护其通用性和透明度。这些修订旨在解决澳新食品标准法典中不一致的地方,拼写错误,语法和印刷错误,遗漏以及需要更新或澄清的项目。
  • 美丽新卫士:电雾式检测器应用于化妆品检测
    美丽新卫士:电雾式检测器应用于化妆品检测熊亮 胡金盛 冉良骥 金燕引言:随着经济的快速发展,人们生活水平的提高,化妆品已从早期的奢侈品转变为大众日常的消费品,美丽经济规模日渐壮大。近年来随着电商的广泛应用、各大美妆博主的时尚引导、短视频平台的直播带货,化妆品的种类不断丰富,化妆品的消费逐年递增,随之而来引起的化妆品纠纷也逐年上升。化妆品中致癌致敏成分检出、铅汞重金属含量超标、糖皮质激素非法添加、微生物污染等安全问题, 使得化妆品质量监督管理及化妆品检验的科学性受到了人们的关注和重视。 2021年3月2日,国家药品监督管理局发布2021年第17号通告,将《化妆品中防腐剂检验方法》、《化妆品中硼酸和硼酸盐检验方法》、《化妆品中对苯二胺等32种组分检验方法》、《化妆品中维甲酸等8种组分检验方法》等7项检验方法纳入《化妆品安全技术规范(2015年版)》,作为该规范修订或新增的检验方法。 此次新增和修订,对原技术规范“第四章 理化检验方法4防腐剂检验方法”整个分析方法的框架结构进行了调整,变更尺度非常之大。在修订的《化妆品中防腐剂检验方法》中,新增了4.3 已脒定二(羟乙基磺酸)盐等7种组分的检验方法。 随着政府通告的发布,《规范》修订的检验方法,自2021年5月1日起施行,因此众多具有化妆品注册和备案检验机构资质的实验室开始了实验室扩项的准备工作。然而有多个客户实验室在实际方法开发过程中发现,参照“4.3 已脒定二(羟乙基磺酸)盐等7种组分”标准方法,采用0.1%三氟乙酸溶液作为流动相,检测波长为210nm,虽然可以提高部分低紫外吸收待测物的响应,但由于210nm为三氟乙酸的截止波长,在梯度分析过程中产生剧烈的基线波动,可能会影响低含量待测物的峰型以及检测灵敏度。 飞飞有妙招针对这一情况,飞飞协助客户开发了一套全新的含量测定方法。新方法采用了Acclaim Surfactant Plus表面活性剂专用色谱柱分离,并配合赛默飞独有的电雾式检测器(以下简称CAD,如图1所示)测定。图1 电雾式检测器(CAD)(左:Vanquish CAD系列,右:Corona Veo系列)由于待测物经色谱柱分离后,在CAD内部先进行雾化再进行检测,可完全消除挥发性流动相对基线的干扰,而且相对原标准方法,飞飞发现“十二烷基三甲基溴化铵”的检测灵敏度也有大幅提升,如图2所示。图中7种组分的浓度分别为:己脒定二(羟乙基磺酸)盐40 μg/mL、氯己定60 μg/mL、十二烷基三甲基溴化铵(DTAB)800 μg/mL、十二烷基二甲基苄基氯化铵200 μg/mL、苄索氯铵200 μg/mL、十四烷基二甲基苄基氯化铵200 μg/mL、十六烷基二甲基苄基氯化铵200 μg/mL。图2 7种组分混标CAD色谱图 随后飞飞对这套全新方案进行了方法学考察,结果当然也是妥妥哒!图3 混标最低点连续进样6次重叠色谱图 结论本方法基于赛默飞新一代Vanquish Core高效液相色谱系统,Acclaim Surfactant Plus表面活性剂专用色谱柱配合赛默飞特有的电雾式检测器(CAD),开发了一个全新的针对化妆品中已脒定二(羟乙基磺酸)盐等7种防腐剂的含量测定方法。本方法中7种防腐剂的分离度和灵敏度均优于国标方法,重复性好,线性范围宽,给化妆品中限量使用组分的分析提供了一种新思路,拓展了化妆品行业的分析手段。 “码”上下载扫码立即免费下载【采用电雾式检测器(CAD)分析化妆品中已脒定二(羟乙基磺酸)盐等7种防腐剂的含量】
  • 婴幼儿配方食品新国标实施,带您快速浏览岛津检测方案(二)
    上期介绍了新版婴幼儿配方食品国标GB10765、GB10766和GB10767在必需成分如蛋白质、维生素、矿物质的变化情况,这期再来聊聊新版国标在可选择成分、安全性指标的内容。一、可选择成分新国标新增了牛磺酸和二十二碳六烯酸(DHA)的最小值要求,修订了二十二碳六烯酸和二十碳四烯酸的单位。牛磺酸和DHA对婴幼儿大脑发育和先天生理功能的健康起到非常关键的作用,新国标规定了添加下限,对这些营养物质的添加量更加明确。岛津应用方案应用1:保健食品中EPA、DHA和AA测定-GC法前处理采用碱水解法进行水解和甲酯化,采用异辛烷进行提取,GC检测。EPA甲酯、DHA甲酯、AA甲酯和内标标准溶液色谱图(浓度:0.5mg/mL)实际样品色谱图应用2:奶粉中牛磺酸的测定-HPLC柱后衍生法岛津提供OPA柱后衍生和单磺酰氯柱前衍生高效液相色谱法方案,可根据检测需求进行配置。氨基酸分析仪 符合国标要求全自动氨基酸柱后分析系统(OPA衍生)应用3:乳制品中肌醇的测定-LC-MS/MS法前处理过程:样品加水溶解均质,三氯甲烷提取涡旋离心后,取上清液过滤测定,内标法定量。奶粉加标样品色谱图120μg/g肌醇标准曲线图二、安全性指标新国标要求污染物、真菌毒素、致病菌等限量指标,应符合相应食品安全国家标准。GB2762《食品中污染物限量》、GB2761《食品中真菌毒素限量》及GB29921《食品中致病菌限量》要求。值得注意的是,GB2762-2022中婴幼儿配方食品中铅的限量由2017版的0.15mg/Kg下调到0.08mg/Kg(液态婴幼儿配方食品根据8:1的比例折算其限量)。GB2761-2017中规定了婴幼儿配方食品黄曲霉毒素B1和黄曲霉毒素M1的限量均为0.5μg/Kg(以粉状产品计) 。i-Series系列液相色谱仪结合真菌毒素方法包可以完成多种真菌毒素的检测三、婴幼儿配方食品中新污染物和食品添加剂随着科学技术的发展,我们对污染物和食品添加剂的认识更加充分,更能精准的在整个生产链中去进行危害控制,生产出高质量、高品质的宝宝食品。例如氯丙醇酯和缩水甘油酯、氯酸盐和高氯酸盐、食品添加剂香兰素等化合物的检测方案,我们力求检测手段紧跟法规要求,帮助客户更好的监测风险。新国标已经开始实施,广大消费者和研究工作者对于高质量产品的追求还在继续,让我们一起坚持科学喂养,给宝宝打下最初的健康基石!参考文献:1. CFSA婴幼儿配方食品系列标准新旧国标主要变化本文内容非商业广告,仅供专业人士参考。
  • 保障金砖蓝丨安光所、中科光电“四大法宝”,助力金砖峰会
    2017年9月3日-9月5日,第九届金砖会议在厦门隆重举行,中国科学院安徽光学精密机械研究所(以下简称“安光所”)、无锡中科光电技术有限公司(以下简称“中科光电”)作为金砖会晤环境质量保障重要合作伙伴,受福建省环保厅及厦门市环境监测站委托全程参与保障工作。保障期间,安光所、中科光电以臭氧/颗粒物激光雷达组网监测、移动走航监测、超级站仪器运维及超级站数据诊断分析这四大法宝,全方位的为环境质量会商保障决策提供了重要的数据基础及技术支撑。会商现场(屏幕显示臭氧激光雷达组网监测图)臭氧/颗粒物激光雷达组网监测雷达组网布点图雷达组网监测案例安光所、中科光电针对专家小组重点关注的区域污染传输问题,在厦门与周边地区传输通道(边界点位)设立臭氧激光雷达及颗粒物激光雷达进行实时立体监测,一旦发现污染传输立即联动移动监测车进行走航追踪。大气环境立体走航监测走航车走航扫描监测案例保障期间,安光所、中科光电对会场所在的厦门岛内进行持续环岛走航监测,从近地面至高空监控外来污染物对岛内的输入,并对污染严重方位进行定点水平扫描。除此之外,安排走航车对岛外进行类似“第二岛链”式的半包围走航监测,同时响应与雷达组网监测的联动。 超级站建设及运维超级站数据监控超级站数据监控为了保障厦门超级站(中科光电承建)仪器可靠运行,公司特派工程部经验丰富的运维人员24小时驻场,进行仪器运行状态监控、突发故障及时处理,会晤期间做到了对海量且多样的监测数据质量负责,圆满地完成了数据输出任务。超级站数据诊断分析超级站智慧分析平台 超级站智慧分析平台 作为会商现场最重要的一环,中科光电特地开发出了 “厦门市大气超级站智慧分析平台”,该平台囊括了超级站及各点位上的仪器数据,实现了在线数据智能诊断分析。打通了仪器设备到数据集成到数据质控到最终分析诊断的链路,具有超强的时效性、针对性。 一个超级站,两台走航车,三方技术团队,四省数据联动,五个臭氧雷达观测站,十余驻场小伙伴,N个不眠保障夜! 在环保人的共同努力下,金砖会议期间厦门市空气质量达到全优,空气质量保障成果喜人。习近平总书记更是赞美到“抬头仰望是清新的蓝,环顾四周是怡人的绿”!保障任务结束当天,环保部刘炳江司长和福建环保厅朱华厅长对安光所、中科光电的保障工作给予了充分肯定!厦门会晤环境质量会商圆满结束合影(中科光电技术负责人与厦门环境监测站负责人)
  • 药典8001试药修订草案二次公示 常用试剂增加质控指标
    近日,药典委发布关于8001 试药标准草案的公示(第二次),对此前公示过的草案进行了进一步修订。此次公示为期一个月,相关人员可在线对草案进行反馈。此次修订稿由广东省药品检验所起草,中国食品药品检定研究院、黑龙江省药品检验研究院、广州市药品检验所、无锡市药品安全检验检测中心、北京大学等单位进行复核。主要起草人包括洪建文、彭洁、肖慧、武建卓、王婷婷。试药指在本版药典中供各项试验用的试剂,但不包括各种色谱用的吸附剂、载体与填充剂。药品检验检测中使用试药的质量直接影响药品分析检验检测结果的质量。《中国药典》8001 试药通则在指导药品检验检测过程以及试药的使用与管理中发挥着重要的作用。 但随着《中国药典》收载品种的不断丰富,检验检测所需化学试剂门类和品种的不断增加,《中国药典》收载的试药在品种和数量上,关键质量指标的要求上已经不能满足目前药品检验检测对所使用试剂试药的需求,同时还缺乏相应的安全和储存指引。为促进药品科学监管、切实发挥《中国药典》 对药品检验用试剂试药的技术指导作用,本次对8001试药通则进行了修订。第一版草案,主要在试药的通用技术要求、常用试药的关键质量指标以及试药品种的补充与更新三方面进行完善。1、在试药的通用技术要求方面,针对8001试药通则存在的分级分类与现行版化学试剂国家标准不一致、缺乏安全和储存指引、有效性提示等问题,结合试药的生产、销售以及 在药品检验检测的使用情况,参考《GB/T 37885-2019 化学试剂分类》更新细化了药典试药的分类,进一步促进了药典试药通则与现行版化学试剂国家标准的协调。此次公示稿中针对此方面进行了协调,由传统的四个等级分类,修订为十个大类,而且提到试药管理“一般应符合其化学品安全标签及化学品安全技术说明书的要求,应关注并保持其有效性,必要或可行时,可通过制定有效期或采用灵敏度试验等方式予以保证”,为试药的正确选用提供了更好的指导。2、对常用试药增加了相应的质控指标,结合国内外药典及试药产品目前的质量情况,对甲醇等 21 种常用的 试药,根据其用途,通过实验研究考察其关键质量属性,结合该试药的质量标准及不同品牌产品的实际质量情况,增加了相应的质控指标。而本次草案,根据 2024 年2月8001试药第一次公示稿的反馈意见和建议,国家药典委员会相关专业委员会进行了研讨,在第一次公示稿的基础上修订了部分内容,主要为:1. 将“供高效液相色谱使用时需满足要求”明确为“供高效液相色谱流动相使用时需满足要求”。 2. 修订辛烷磺酸钠、辛烷磺酸钠一水合物、溴化钾、氯化钾、硫酸钙的相关表述,详见附件公示稿。 3. 增加 8001 试药各品种的 CAS 号,详见附件 EXCEL 表格。8001 试药CAS编号表.xlsx附件1 8001 试药公示稿(第一次).pdf
  • 2013 BCEIA 天美中国展前新品预览(三)——UH5300
    UH5300双光束分光光度计高通量定量分析废水中的磷酸根离子 概要 日立最新推出UH5300 双光束分光光度计,光源采用脉冲氙灯,能耗低,环保;C-T型的双光束光学系统,实现1nm光谱带宽,超高的扫描速度(6000nm/min)与全波段范围内0.3nm的波长准确性,确保用户快速获得高精准的结果。非常具有特色的是可以实现远程的无线操作(iPad、笔记本、PC)。用户界面非常简单,具有前所未有的操作便捷性。在进行多个样品测试和长时间的时间动力学测试时、可远程实时进行数据确认。根据分析结果或者状态,我们可以准备下一个样品的检测,因此可以提高工作效率。在此,我们检测了废水中的磷酸离子浓度,为了确定其浓度,需要进行多份样品分析对照。当校正曲线在0.01~2.0 mg/L范围内生成时,其可获得良好的线性关系,相关系数(R2)为 0.9997。 方法 分析对象 : PO43- 检测方法 : 钼蓝(抗坏血酸还原)法 JIS K0102 46.1.1 定量范围 : 0.01 ~ 2.0 mg/L 分析条件 仪器 : UH5300 狭缝 : 1 nm 扫描速度 : 400 nm/min 检测波长 : 880 nm 触摸屏的简单操作流程 关键词 环境分析相关、废水、环境化学、环境、废水、PO43-、磷酸盐离子、吸收光谱、校准曲线、着色试剂、 磷酸, UV, UH5300, U-5100, U-2900 分光光度计 UV Sheet No. UV120004-01 分析方法 钼酸铵-抗坏血酸混合溶液的制备方法 样品:25mL │&larr 加反应试剂(*1) 2mL 搅拌 │&larr 放置25 min 测量溶液 温度 : 室温 *1 钼酸铵-抗坏血酸混合溶液 溶液1: 钼酸铵溶液 称取七钼酸六铵四水和物6g、双[(+)-酒石酸盐]二锑酸(III)二钾三水和物0.24 g 、加水溶解,最终体积300mL | &larr 硫酸(2+1)120mL 混合 | &larr 氨基磺酸铵 5g 混合、加水至500mL 溶液2 : L(+)-抗坏血酸溶液 称取L(+)-抗坏血酸7.2 g 、加水溶解,最终体积100mL 将溶液1和溶液2按5 :1的比例混合制备钼酸铵-抗坏血酸混合溶液 (测量时混合) 测量结果 废水的添加回收试验 废水 废水 + 0.5 mg/L 回收率 ND 0.48 ± 0.003 95.2 ± 0.7 % ND : Not detected, n = 3 UH5300 会在天美展台展出,欢迎您前来关注。 时间:2013.10-23-10.26 地址:北京展览馆 天美展台:2090-2093,2020-2027(2号馆主席台旁)
  • 疾病防治专栏 | 人体体液中钙、镁、氟、磷离子的检测
    疾控防治专栏人体体液中钙、镁、氟、磷离子的检测引言人体内的液体由水及溶解在水中的无机盐、有机物一起构成,统称体液。水是体液中的主要成分,也是人体内含量最多的物质。体液广泛分布于机体细胞内外,细胞内液是物质代谢的主要部位,细胞外液则是机体各细胞生存的内环境。保持体液容量、分布和组成的动态平衡,是保证细胞正常代谢、维持各种器官生理功能的必需条件。体液中主要的电解质有 Na+、K+、Ca2+、Mg2+、Cl-、HCO3-、HPO42-和 SO42-,以及一些有机酸和蛋白质等。监控人体体液中电解质对疾控防治工作有重要指导意义。泌尿系统结石是泌尿外科常见的疾病之一,发病率及复发率高,其中以磷酸钙、磷酸铵镁和草酸钙结石为主。尿液内磷酸盐、草酸盐等浓度增大时,晶体物质即可析出沉淀形成尿路结石。有研究指出,尿氟水平可作为反映人体氟摄入情况的重要指标,以及作为地方性氟中毒的病区判定和防治效果评价。本文小编为大家介绍离子色谱检测人体体液中氟、磷酸盐、镁、钙的方法。皖仪科技应用方案 仪器设备 ---------------------------------------------------离子色谱仪,配有电导检测器淋洗液发生器:氢氧根型、甲磺酸型自动进样器样品前处理---------------------------------------------将样品稀释一定倍数后,经超滤后进样分析。色谱条件-----------------------------------------------1.阴离子测试色谱条件2.阳离子测试色谱条件测试结果----------------------------------------------- 阴离子标曲测试谱图 1.线性校准曲线2.样品测试谱图 阳离子标曲测试谱图 1.线性校准曲线2.样品测试谱图阳离子的测试中,Na+、NH4+的分离度一直是大家关注的重点,合适的色谱柱、合适的色谱条件对测试结果至关重要,下面看看咱们本次测试的分离度信息,所有离子的分离度都完全满足测试需求的哦。 进样信息 总结以上就是小编对人体体液中离子的测试结果了,可以看出,所有离子的线性均大于0.995,线性良好,氟离子在0.0025mg/L时峰形明显,完全满足检出限需求,阳离子的测试也是表现优异,选择离子色谱仪进行人体体液中阴阳离子的测定,方法简单,一次进样可做多种组分分析。皖仪科技 中国高端色谱标杆品牌
  • 四方光电激光扬尘传感器助力打赢蓝天保卫战
    p   根据“两会”期间公布的2020年政府工作报告,今年要实现单位国内生产总值能耗和主要污染物排放量继续下降 深化重点地区大气污染治理攻坚 要打好蓝天、碧水、净土保卫战,实现污染防治攻坚战阶段性目标。 br/ /p p   2020年是打赢蓝天保卫战、“十三五”规划的全面收官之年,我国大气污染治理进入攻坚“深水期”,剩下的都是难啃的“硬骨头”。作为一直以来的重点和难点,扬尘污染治理已然成为大气污染防治目标完成与否的关键点之一。 /p p   扬尘治理,需对症下药 而把脉问诊,监测为先。高性能的扬尘传感器对实现扬尘全面监测、精准治理、降低成本等多方面的重要性不言而喻。 /p p    span style=" color: rgb(0, 176, 240) " strong 扬尘传感器的需求及应用现状 /strong /span /p p   行业发展初期,扬尘监测设备多基于β射线吸收法,然而受仪器体积较大、成本高昂等因素掣肘,量大面广的需求无法得到真正满足。 /p p   基于光散射原理的粉尘传感器,在民用室内检测应用中,经历了从采用LED光源和扩散式采样,用于粉尘浓度变化的趋势检测,到升级为激光光源和风扇采样,可以精确检测PM2.5数值的创新发展过程。然而针对室外扬尘监测还需要PM10和TSP的精准监测要求,则无法得到满足。 /p p   因此,能够同时准确测量PM2.5/PM10/TSP、体积小、购买和维护成本低成为了扬尘监测设备配套传感器面临的主要挑战。 /p p    span style=" color: rgb(0, 176, 240) " strong 室外扬尘颗粒物监测的技术难点 /strong /span /p p   ① 与β射线原理的设备保持较高的线性相关性 /p p   国站监测设备采用的是β射线原理,其他的扬尘监测站的监测数据必须要与其保持高度一致性,但由于原理上的差异,要做到这一点,传感器需要采用更高性能的器件,有效提升颗粒物识别的能力。 /p p   ② 满足室外-30℃~70℃的工作温度要求 /p p   温度对传感器激光管的影响非常大,然而室外温度范围更宽,夏天在太阳下暴晒,温度可能会到达70℃ 冬天北方严寒地区最低温度可能达到零下30℃。这就要求传感器在此温度下不仅能够正常工作,还要确保检测的准确性。 /p p   ③检测精度不受水雾影响 /p p   由于室外环境经常会遇到凝霜与露水的情况,这些水汽进入到传感器后会严重影响到传感器的测量值,甚至会造成传感器永久损坏。 /p p   ④长期使用,精度不受积灰影响 /p p   扬尘传感器工作在室外,大颗粒的灰尘经过传感器采样风道内会受到重力影响附着在传感器内部,长期使用,会使得灰尘在传感器内部大量堆积,影响到测量准确性。 /p p    span style=" color: rgb(0, 176, 240) " strong 四方光电激光扬尘传感器的技术特点 /strong /span /p p   四方光电基于创新的光散射技术研究,陆续推出红外粉尘传感器、激光粉尘传感器等系列传感器产品,广泛应用于室内、室外及车内检测等领域。 /p p   在此基础上,四方光电针对扬尘传感器的应用场景,以及不同地方标准需求,推动技术革新升级,成功研发扬尘颗粒物传感器PM3003S及 PM3006。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/578caa97-49a6-4d7e-9c5f-e5fc398bc203.jpg" title=" 222_副本.jpg" alt=" 222_副本.jpg" / /p p style=" text-align: center " 图1:PM3006S(左)及 PM3006(右)激光扬尘传感器 /p p    strong 1、 扬尘颗粒物智能识别技术(API技术) /strong /p p   PM3003S,PM3006采用了独特的API(Auto Particle Identification,自动颗粒识别)技术,在多种尘源下进行标定,根据检测到的颗粒物分布进行自动判断,确保PM2.5、PM10和TSP的检测精度。 /p p style=" text-align: center" img style=" width: 580px height: 393px " src=" https://img1.17img.cn/17img/images/202006/uepic/bb9423a3-a58f-4a20-924e-5ae69424f42a.jpg" title=" 11.jpg" width=" 580" height=" 393" border=" 0" vspace=" 0" alt=" 11.jpg" / /p p style=" text-align: center" img style=" " src=" https://img1.17img.cn/17img/images/202006/uepic/8ddb10c0-114d-496b-bd0c-6b33eaad613f.jpg" title=" 22.jpg" / /p p    strong 2、 高温、恒功率、线型激光管 /strong /p p   PM3003S、 PM3006激光扬尘传感器采用了工作温度在-30~70℃的恒功率、线型光源,其光功率高达100mW,相比点光源高出20倍以上,原始信号更强,大大提升了颗粒物的识别效率。同时对光源采用了恒功率控制,保证原始信号的稳定输出,确保测量的稳定性。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/e6860d1a-bc80-4215-b684-13ef739fa43c.jpg" title=" 33_副本.jpg" alt=" 33_副本.jpg" / /p p style=" text-align: center " 图2:室外扬尘传感器与民用粉尘传感器光源差别,左:高功率线型光源,右:低功率点光源 /p p    strong 3、 自带除水雾装置,不受水汽影响。 /strong /p p   四方光电研制的PM3003S、 PM3006激光扬尘传感器前端配套了除湿装置,防止室外环境中细小的水珠进入检测气室,消除水汽对扬尘传感器的精度影响。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/0c10a2cf-ddd2-450c-bf4b-330c21a12571.jpg" title=" 44_副本.jpg" alt=" 44_副本.jpg" / /p p    strong 4、 创新结构设计,长效防积灰。 /strong /p p   PM3003S、 PM3006激光扬尘传感器通过流体力学仿真对采样风道进行了长效防积灰结构设计,经过实际验证,可以减少室外环境对传感器检测精确度的影响,降低后期维护成本。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/efa66063-7146-489b-88b2-af426b89892a.jpg" title=" 66.jpg" alt=" 66.jpg" / /p p   我国室外扬尘网格化监测经历了早期的β射线吸收法,到采用民用净化器大量应用的激光粉尘传感器的过程。在使用过程中发现,民用的激光粉尘传感器不仅不能满足-30~70℃室外环境温度的全天候使用要求,同时还必须面对监测场所,特别是建设工地经常喷洒降霾的水雾影响,或者下雨潮湿的气候环境等。这种环境下,水雾经常被判断为严重雾霾造成爆表。同时网格化室外粉尘监控希望得到局部的可以与国家大气环境监测网数据具备的PM2.5/PM10/TSP的多项参数对比, 民用激光传感器由于激光功率小,采样流量小, PM10分辨率很低,无法提供准确的PM10, 通常采用根据PM2.5的数字进行比例计算,造成PM10监测数据失真。四方光电研制的PM3003S、 PM3006激光扬尘传感器通过采用宽温型大功率线型激光光源、API粉尘自动识别技术、先进的流道设计实现抗污染、大流量车规级采样机构、高湿度环境的水雾去除装置等,低成本地实现了对室外扬尘粉尘与β射线吸收法达到0.9相关系数的高精度测量。 /p p br/ /p
  • Sigma-Aldrich提供奶制品中三聚氰胺解决方案
    因为三鹿乳粉三聚氰胺污染事件,使得&ldquo 三聚氰胺&rdquo 这个化学名词,一夜之间让人如此揪心。西格玛奥德里奇(Sigma-Aldrich),作为世界领先的实验室化学品和色谱耗材的供应商,愿意为广大分析检测工作者,提供以下产品。希望对尽快准确检测三聚氰胺,有所帮助。如有任何问题,请随时联系我们。 三聚氰胺(纯度,99.0%); 衍生化试剂 BSTFA+TMCS(99:1) 吡啶; HPLC 甲醇、乙腈; LC-MS 三乙胺; LC-MS 水; 三氯乙酸; 柠檬酸; 离子对试剂 辛烷磺酸钠; 色谱柱; SPE 小柱(DSC-MACX, Envi-Carb); ... ... 关于Sigma-Aldrich: 美国Sigma-Aldrich公司,是一家致力于生命科学与化学领域的高科技跨国公司,产品涵盖生物化学、有机化学、色谱分析等多个领域,产品数量超过120,000种,是全球数以万计的科学家和技术人员的实验伙伴。Sigma-Aldrich公司旗下的两大著名分析品牌 Supelco和Fluka/RdH ,致力于分析化学领域的产品研制开发、生产销售和技术服务等,主要产品包括色谱柱、色谱耗材、固相萃取(SPE)、固相微萃取(SPME) 及品种十分齐全的高品质分析试剂和标准品,能为广大分析领域用户提供集色谱耗材、分析试剂和标准品于一体的一揽子解决方案。Sigma-Aldrich在36个国家与地区设有营运机构,雇员超过7900人,为全世界的用户提供优质的服务。 Sigma-Aldrich承诺通过在生命科学、高科技与服务上的领先优势帮助用户在其领域更快地取得成功。如需进一步了解Sigma-Aldrich,请访问我们的得奖网站:http://www.sigma-aldrich.com, 或直接联系我们: 地址:上海市淮海中路398号世纪巴士大厦22楼A-B座 邮编:200020 电话:+86-21-61415566 传真:+86-21-61415568 热线电话:800-819-3336 email:ordercn@sial.com
  • 离子色谱分析氨基糖苷类药物及在各国药典中的应用
    离子色谱自上世纪70年代开始经过近40多年的发展,已成为色谱分析领域中十分重要的分支,被广泛应用于无机阴阳离子、有机酸、糖醇类化合物、氨基酸、氨基糖苷类抗生素等,具有方便快速、灵敏度高、选择性好、可同时分析多种化合物、样品用量少等优点。离子色谱的检测器主要有电化学检测器与光学检测器,在药品控制领域,应用得最多的为电化学检测器,包括电导检测器和安培检测器。电导检测器主要用于测定无机阴阳离子与部分极性有机物如羧酸等。安培检测器又可分为直流安培检测器与积分安培(包括脉冲安培)检测器,其中积分安培检测器主要用于测定糖类、氨基酸类及氨基糖苷类抗生素等。氨基糖苷类抗生素具有相似的化学结构与理化性质,都是以碱性环己多元醇为苷元,与氨基糖缩合成苷,是临床应用较早的一类抗生素。氨基糖苷类抗生素根据其来源可分为发酵与半合成2种,其中发酵来源的主要有链霉素、新霉素、卡那霉素、巴龙霉素、妥布霉素、庆大霉素、核糖霉素及大观霉素等;半合成是以发酵来源的抗生素为前体,再进行结构改造而得到,主要有阿米卡星、奈替米星、异帕米星及我国自主研发的依替米星等,具有更强的抗菌活性、低耐药性及低毒性等。氨基糖苷类抗生素结构中无紫外吸收基团,难以采用常规的高效液相色谱-紫外检测器控制质量,目前国内常用的分析方法为高效液相色谱-蒸发光散射检测法(HPLC-ELSD)。由于其结构中含有多个氨基(-NH2)与羟基(-OH),在强碱性溶液中易解离成阴离子,在一定电压下,可在金电极表面发生氧化反应,实现脉冲安培检测,因此国外药典中多采用离子色谱法检测该类药物。本文概述了本实验室近十几年来采用离子色谱法分析氨基糖苷类抗生素的实例,并简述离子色谱法在各国药典中控制该类药物的应用与发展趋势。1. 硫酸阿米卡星、硫酸阿米卡星注射液与注射用硫酸阿米卡星有关物质1.1 色谱条件YMC ODS-Aq C18(4.6mm×250mm, 5µm)色谱柱,流动相为1L无二氧化碳的去离子水中加三氟乙酸20mL,五氟丙酸300μL,七氟丁酸300μL,50%(V/V)氢氧化钠溶液8mL,用50%(V/V)氢氧化钠溶液调节pH为3.3,加乙腈10mL;流速1.0 mLmin-1;柱后加碱2.1%(V/V)氢氧化钠溶液,流速为0.3mLmin-1;脉冲安培电化学检测器,工作电极为金电极(直径3mm),参比电极为Ag-AgCl复合电极,四波形检测电位(T1: 0.00~0.40s,E1: 0.1V;T2: 0.41~0.42s,E2: -2.0V;T3: 0.43s,E3: 0.6V;T4: 0.44~0.50s,E4: -0.1V)。柱温为35℃,进样量20μL。1.2 结果硫酸阿米卡星与其杂质A、杂质B、杂质 C、杂质D、杂质E、杂质G、杂质H、杂质I均能分离,见图1。阿米卡星质量浓度在0.4985~9.969 µgmL-1范围内峰面积线性关系良好,阿米卡星峰检测限为2.0ng,定量限为5.0ng。供试品溶液中除辅料峰外,各杂质均以主成分自身对照法计算,其中杂质B校正因子为1.4,杂质C校正因子为1.3,杂质D校正因子为0.8,杂质E校正因子为1.2,杂质H校正因子为1.4,杂质I校正因子为0.6。结果8批次硫酸阿米卡星原料总杂质含量为1.2%~1.7%,77批次硫酸阿米卡星注射液总杂质含量为1.1%~2.3%,10批次注射用硫酸阿米卡星总杂质含量为1.2%~2.2%。1. 杂质I 2.杂质B 3.杂质G 4.杂质A 5.杂质C 6.杂质D 7.杂质E 8.杂质H图1 硫酸阿米卡星系统适用性色谱图中国药典2020年版(ChP2020)采用高效液相色谱紫外末端吸收法测定硫酸阿米卡星及其制剂的有关物质。英国药典2024年版(BP2024)与欧洲药典11.0版(EP11.0)均采用离子色谱法测定,流动相体系均为辛烷磺酸钠-无水硫酸钠-四氢呋喃,其中四氢呋喃是影响该方法测定的关键因素,同样纯度不同品牌、甚至同一品牌不同批号的的四氢呋喃都会影响该方法的重复性。此外,EP 11.0 与BP2024的方法还存在运行时间太长大于100min,三电位检测对金电极损耗较大,盐浓度较大对仪器损耗大等缺点。本实验室同样采用离子色谱法,用多氟烷酸体系代替辛烷磺酸钠体系,简化了流动相的配制,缩短了分析时间为35min,用四电位取代三电位保护了工作电极,检测的杂质数量与杂质总量均多于ChP2020的紫外末端吸收法,可用于硫酸阿米卡星及其制剂的有关物质控制。2. 硫酸庆大霉素注射液、硫酸庆大霉素片与硫酸庆大霉素颗粒2.1 色谱条件TSK-gel ODS-81Ts C18(4.6mm×250mm,5µm)色谱柱;流动相为0.7%三氟乙酸(含0.025%五氟丙酸,50%(V/V)氢氧化钠4ml,用50%(V/V)氢氧化钠调节pH值至2.6)-乙腈(97:3);流速为1.0mLmin-1;柱后加碱为2%(V/V)氢氧化钠溶液,流速为0.3mLmin-1;脉冲安培电化学检测器,工作电极为金电极(3mm),参比电极为Ag-AgCl复合电极,四电位检测:同前;柱温为35℃;进样量20µL。2.2 结果硫酸庆大霉素含有4个主组分,分别为C1、C1a、C2a、C2,还含有结构相似的小组分西索米星与小诺霉素。该方法可完全分离4个主组分,并可同时分离出22个有关物质。庆大霉素C1a、西索米星与小诺霉组分的检测限分别为5.3ng、3.5ng与8.0ng,定量限分别为17.8ng、11.6ng与26.7ng。ChP2020采用HPLC-ELSD法测定硫酸庆大霉素注射液的组分,而BP2024与EP11.0均采用离子色谱法测定硫酸庆大霉素原料的组分与有关物质,USP现行版采用离子色谱法测定其原料的组分,均未采用离子色谱法对硫酸庆大霉素注射液进行控制。本实验室对比了离子色谱法与HPLC-ELSD法同时测定硫酸庆大霉素注射液的有关物质,发现两种方法的分离效能相当,但采用离子色谱法时各组分的响应值随其电化学活性不同而差异明显,如西索米星的响应因子大于小诺霉素,在以西索米星为外标法进行有关物质测定时,结果小于HPLC-ELSD。 3 硫酸庆大霉素片组分与有关物质3.1 色谱条件Thermo AcclaimTMAmG C18(4.6mm×150mm, 3µm)色谱柱,流动相为0.7%三氟乙酸(含0.025%五氟丙酸,50%(V/V)氢氧化钠4mL,用50%(V/V)氢氧化钠溶液调节pH至2.6)-乙腈(96.5:3.5),流速1.0mLmin-1,柱后溶液为2%(V/V)的氢氧化钠溶液,柱后加碱为0.3mLmin-1;脉冲安培电化学检测器,工作电极为金电极(直径3mm),参比电极为Ag-AgCl复合电极,四波形检测电位(T1: 0.00~0.40s,E1: 0.1V;T2: 0.41~0.42s,E2: -2.0V;T3: 0.43s,E3: 0.6V;T4: 0.44~0.50s,E4: -0.1V)。柱温为35℃,进样量20μL。3.2 结果该方法中庆大霉素C1、C1a、C2a、C2分别在1.328~132.8µgmL-1、1.606~160.6µgmL-1、7.378~737.8µgmL-1、1.276~127.6µgmL-1浓度范围内线性关系良好,回收率为98.2%~101.8%。有关物质测定中,西索米星在2.632~52.64µgmL-1、小诺霉素在2.006~25.07µgmL-1浓度范围内线性关系良好,西索米星检测限为0.01µg,小诺霉素检测限为0.02µg,各杂质与庆大霉素各组分均能完全分离,见图2。156批次中148批次的硫酸庆大霉素片各C组分的绝对含量分别为C1a为26.3%~37.1%,C2+ C2a为41.8%~49.3%,C1为16.5%~22.2%,4个组分总含量为90.6%~105.0%。148批次的有关物质为小诺霉素1.8%~2.8%,西索米星为未检出~1.5%,其他最大单杂为 0.3%~0.9%,其他总杂为1.2%~4.2%。发现其余8批次样品组分与有关物质均不符合规定,原因为企业采用不符合标准规定的原料所致。1-5,7-8.未知杂质 6. 西索米星 9.小诺霉素图2 硫酸庆大霉素片有关物质典型色谱图ChP2020采用微生物检定法控制其含量,未控制有关物质。BP2024、EP11.0与USP现行版均未收载该品种。本实验室在参考国外药典离子色谱法测定其原料的基础上建立了硫酸庆大霉素片组分与有关物质的方法。方法对乙腈的比例进行了调整,工作电位由四电位取代三电位,可有效的分离硫酸庆大霉素片各组分与各杂质。4.硫酸庆大霉素颗粒组分与有关物质 4.1 色谱条件YMC-Pack Pro C18 RS(4.6×250mm,5μm)色谱柱,流动相为1.6%三氟乙酸(含0.05%五氟丙酸,50%(V/V)氢氧化钠8ml,用50%(V/V)氢氧化钠溶液调节pH值至2.6)-乙腈(94:6),流速1.0 mLmin-1,柱后加碱为2%(V/V)的氢氧化钠溶液,柱后加碱为0.3mLmin-1;脉冲安培电化学检测器,工作电极为金电极(直径3mm),参比电极为Ag-AgCl复合电极,四波形检测电位(T1: 0.00~0.40s,E1: 0.1V;T2: 0.41~0.42s,E2: -2.0V;T3: 0.43s,E3: 0.6V;T4: 0.44~0.50s,E4: -0.1V)。柱温为35℃,进样量20μL。4.2 结果硫酸庆大霉素颗粒的辅料主要为蔗糖,含量较高,与主成分的比例约为200:1,出峰时间约为5min。采用硫酸庆大霉素片的方法测定颗粒时,蔗糖的拖尾峰会导致前15min的基线抬高,严重干扰颗粒有关物质的测定。因此本实验室在硫酸庆大霉素方法的基础上增加了三氟乙酸、五氟丙酸与乙腈的比例,成功解决了蔗糖对硫酸庆大霉素颗粒有关物质测定的干扰。该方法中庆大霉素C1、C1a、C2a、C2分别在5.264~131.6µgmL-1、5.032~125.8µgmL-1、5.595~139.9µgmL-1、3.410~85.24µgmL-1浓度范围内线性关系良好,回收率为98.7%~100.8%。有关物质测定中,西索米星在1.987~39.74µgmL-1、小诺霉素在2.045~51.13µgmL-1浓度范围内线性关系良好,西索米星检测限为0.003µg,小诺霉素检测限为0.01µg,各杂质与庆大霉素各组分均能完全分离,见图3。1-14,16-18-未知杂质;15-西索米星;19-小诺霉素图3 硫酸庆大霉素颗粒有关物质典型色谱图5.盐酸大观霉素与注射用盐酸大观霉素有关物质 5.1 色谱条件采用离子色谱法及HPLC-ELSD法同时分析注射用盐酸大观霉素的有关物质。两法色谱柱均为Apollo C18 (250mm× 4.6mm,5µm),流动相均为0.1molL-1三氟乙酸溶液,柱温均为30℃,进样量均为20µL。离子色谱检测:柱后加减为21g/L氢氧化钠溶液,流速0.5mlmin-1,工作电极为金电极(直径3mm),参比电极为Ag-AgCl复合电极,四波形检测电位(T1: 0.00~0.40s,E1: 0.1V;T2: 0.41~0.42s,E2: -2.0V;T3: 0.43s,E3: 0.6V;T4: 0.44~0.50s,E4: -0.1V)。ELSD检测:漂移管温度110℃,载气流速2.6Lmin-1,增益1。5.2 结果ChP2020采用HPLC-ELSD法控制其原料,BP2024与EP11.0采用离子色谱法控制其原料。注射用盐酸大观霉素为无菌原料直接分装,本实验室参考国外药典方法测定了盐酸大观霉素及其制剂的有关物质,并同时与HPLC-ELSD方法进行比较。结果两种方法检测出的有关物质种类和数量基本一致,但离子色谱灵敏度比ELSD高,离子色谱检测限为2.4ng,ELSD为72.8ng。两种方法测定的31批次注射用盐酸大观霉素,杂质D与杂质E结果基本一致,但杂质A、4R-双氢大观霉素及总杂质结果差异较大,原因为杂质A、4R-双氢大观霉素杂质在两种检测器上响应不一致。因此采用离子色谱测定时需对杂质A与4R-双氢大观霉素杂质进行校正因子计算,按校正因子计算后的有关物质结果两种方法基本一致。6.青霉胺与青霉胺片含量与有关物质6.1 色谱条件Dikma Spursil C18(4.6mm×250mm,5µm)色谱柱;流动相为5.3g无水磷酸二氢钠-0.25g己烷磺酸钠,加去离子水1L溶解后,用磷酸调节pH值为2.85,加乙腈9ml;流速为1.0mLmin-1;柱后加碱为21gL-1氢氧化钠溶液,流速为0.3mLmin-1;脉冲积分安培电化学检测器,工作电极为金电极(1mm),参比电极为Ag-AgCl复合电极,六电位检测(T1为0~0.04s,E1为0.13V;T2为0.05~0.21s,E2为0.33V;T3为0.22~0.46s,E3为0.55V;T4为0.47~0.56s,E4为0.33V;T5为0.57~0.58s,E5为-2.0V;T6为0.59~0.60s,E6为0.93~0.13V);柱温为30℃;进样量20µL。6.2 结果含量测定方面,青霉胺浓度在49.88~199.5µgmL-1范围内线性关系良好,回收率为98.4%~101.5%,31批次青霉胺片含量为97.6%~101.5%。有关物质测定方面,各杂质与主成分青霉胺均能完全分离(见图4),青霉胺浓度在3.118~49.88µgmL-1,青霉胺二硫化物杂质浓度在1.616~19.39µgmL-1范围内线性关系均良好,青霉胺与青霉胺二硫化物杂质的检测限均为0.02µg;青霉胺二硫化物结果为0.4%~0.8%,最大单杂为0.9%~2.9%,其他总杂为2.4%~7.3%。1. EDTA 2.辅料3~8.未知杂质 9.青霉胺10.青霉胺二硫化物图5 青霉胺片有关物质典型色谱图ChP2020采用电位滴定法测定其含量,USP现行版采用HPLC法测定其含量,二者均未控制其有关物质。青霉胺虽不属于氨基糖苷类抗生素,但其结构中含有多个氨基与羧基,无共轭双键,同样可以采用离子色谱法测定。离子色谱法测定该品种的关键点为检测电位的选择,直接采用糖四电位时主成分响应很弱,采用仪器自带的六电位时峰型严重拖尾,因此本实验室采用循环伏安法分别对青霉胺与杂质青霉胺二硫化物进行扫描,确定了最佳的六电位波形,解决了主成分严重拖尾的问题。讨论讨论1: 操作过程中遇到的问题与解决方法离子色谱电化学检测在操作过程中常存在背景信号较高、基线噪音较大,重复性差等问题,导致试验耗时耗力,进展缓慢。如硫酸阿米卡星及其制剂测定过程中会出现响应信号下降的现象,原因为流动相中的三氟乙酸可使金电极表面钝化,使用一段时间后需用水擦拭金电极。硫酸庆大霉素制剂测定过程中,出现了背景信号缓慢增加,基线噪音增大的情况,使用一段时间后需用硝酸冲洗管路或打磨电极。为解决该问题,本实验室与离子色谱工程师们查找问题与原因,耗时近3年,终于初步解决了上述问题。首先,所有涉及的容器、试剂与过滤装置均应单独使用,试剂均应为高纯度试剂。其次,对仪器的部分管路用聚醚醚酮材料的管线取代原白色塑料管线,降低管路的透氧性。再次,仪器使用前分别用1.5molL-1的硝酸溶液、2.4gL-1的EDTA溶液、乙腈与去离子水依次冲洗管路。接着,使用时分别对流动相、柱后碱液的水离线脱气15min,除去溶解在其中的氧气,脱气完成后再用氮气或氦气保护。使用时所有的管路须充满液体,防止氧气进入系统中导致重复性降低。最后,更换了进样阀。初步解决了重复性差的问题,但测定时仍需要在碱液中加入一定浓度的EDTA,降低金属离子的影响。虽然重复性差的问题初步得到解决,但背景信号较高,剂型噪音较大等问题在日常操作中还存在着,还需要继续磨合。讨论2:各国药典中离子色谱法分析氨基糖苷类药物的情况(1)中国药典ChP2005年版在“附录V D 高效液相色谱法”检测器下提到了电化学检测器。从2010年版开始在附录中单独列出了“离子色谱法”,对离子色谱的色谱柱、洗脱液、检测器、测定法均进行了详细说明。直到2015年版才首次将该法收录至正文中,涉及的品种为硫酸依替米星,检测项目为有关物质与含量,同时还设有第二法为HPLC-ELSD法,二者选其一。现行2020年版药典仍沿用2015年版方法测定硫酸依替米星。收载的氨基糖苷类药物主要都采用HPLC-ELSD法。硫酸依替米星是我国自主研发的一种半合成氨基糖苷类抗菌药物,也是ChP 2020年版唯一一个采用离子色谱法安培检测器控制的品种。有关物质方法与含量测定方法均一致,为采用C18色谱柱,以0.2molL-1三氟醋酸溶液[含0.05%五氟丙酸、1.5gL-1无水硫酸钠、0.8%(V/V)的50%氢氧化钠溶液、用50%氢氧化钠溶液调节pH值至3.5]-乙腈(96:4)为流动相,四电位检测,柱后加碱(50%氢氧化钠溶液1→25),柱后流速为0.5mLmin-1。(2)国外药典美国药典USP25-NF20首次采用高容量的三乙胺阴离子交换色谱柱,以氢氧化钠为淋洗液测定了阿米卡星(包括硫酸阿米卡星及阿米卡星注射液)、卡那霉素(包括硫酸卡那霉素、卡那霉素注射液及硫酸卡那霉素胶囊)的含量。随后,USP27-NF22开始采用耐强酸、强碱和高浓度盐的聚苯乙烯-二乙烯基苯共聚物填料色谱柱代替传统的阴离子交换柱,并首次用四电位取代三电位测定了硫酸链霉素原料、硫酸链霉素注射液及注射用硫酸链霉素的含量。随着离子色谱不断发展,USP37-NF32及之后的版本用十八烷基键合硅胶代替了聚苯乙烯-二乙烯基苯共聚物色谱柱,流动相以烷基化有机酸如三氟乙酸、五氟丙酸等作为离子对试剂测定庆大霉素原料的组分。该方法采用柱后加碱的模式,较美国药典常用的氢氧化钠淋洗液体系更能避免空气中二氧化碳的影响,分析系统更稳定。BP从2002年版、EP从4.0版开始收载了硫酸新霉素的离子色谱方法,方法采用柱后加减模式测定了硫酸新霉素原料的有关物质。随后,BP2003年版、EP5.0版及之后的版本陆续将离子色谱法应用于奈替米星、妥布霉素、庆大霉素、大观霉素及阿米卡星等品种。方法的共同特点为采用耐强酸碱的聚苯乙烯-二乙烯基苯柱或耐酸的C18柱,以烷基磺酸盐或三氟乙酸等离子对试剂作为流动相,与氨基糖苷类药物形成离子对增强其保留,再加入少量的有机改进剂改善分离,三电位检测。直到BP2007年版、EP6.0版开始陆续采用更为普及的辛烷基键合硅胶或十八烷基键合硅胶色谱柱测定了盐酸大观霉素、硫酸庆大霉素、阿米卡星与硫酸阿米卡星等。其中从BP2011年版、EP7.0版开始,硫酸庆大霉素有关物质与组分方法中,流动相由烷基磺酸盐体系变更为三氟乙酸-五氟丙酸体系,减少了流动相中的盐在金电极表面沉积并使检测信号更稳定。发展趋势与展望中国药典是药品研制、生产、经营、使用和监督管理等均应遵循的法定依据,是我国保证药品质量的法典。中国药典具有使用范围广,权威性强的特点,因此其收载的质量标准应具有操作性强、重现性好、耐用性好、成本适中等特点。目前中国药典中采用离子色谱安培检测法测定的品种仅硫酸依替米星一个,而国外药典多采用安培检测法测定氨基糖苷类药物。离子色谱安培检测法在中国药典中发展缓慢的原因主要有2点:一是国内外离子色谱仪的普及率不同。国内制药企业规模参差不齐,离子色谱仪价格较高,仅一些规模较大的企业采购了离子色谱仪;而国外制药企业规模通常较大,大多有条件购买价格昂贵的仪器。二是国内外离子色谱仪使用情况不同。国内使用离子色谱电导检测比较多,而国外电导检测与安培检测发展基本持平。由于离子色谱安培检测器在分析无紫外吸收或紫外吸收较弱的药物方面具有一定的优势,无需衍生化可直接检测,灵敏度高、选择性好,具有一定的发展前景。而且目前国产离子色谱仪蓬勃发展,日趋成熟与稳定,为今后离子色谱在药物分析方面提供了更多的技术支持和选择性。但相关离子色谱生产企业也需解决操作过程中仪器存在的一些问题,如提高仪器的重复性和易操作性,使离子色谱在今后的应用更加深入和广泛。本文作者:李茜,王立萍,刘英*(河南省药品医疗器械检验院,郑州,450018)作者简介:李茜,女,副主任药师 研究方向:抗生素质量分析与质量控制*通讯作者:刘英,女,主任药师 研究方向:抗生素质量分析与质量控制
  • “好的仪器,用在刀刃上!”——Topsizer在纳米碳酸钙测试中的应用
    纳米碳酸钙又称超微细碳酸钙,是碳酸钙行业中的高端明星产品,其应用最成熟的行业是塑料工业,主要应用于塑料制品,可改善塑料母料的流变性,提高其成型性。另外,纳米碳酸钙用于油墨产品中体现出了优异的分散性、透明性和极好的光泽、及优异的油墨吸收性、高干燥性等优点。还有涂料、日化、造纸等行业,对纳米碳酸钙的应用需求也迅速发展。纳米碳酸钙的粒度检测,不但需要科学的检测方案(针对团聚的有效处理),更需要性能优异、分辨能力出众的高端激光粒度仪。近年来,欧美克仪器在纳米碳酸钙客户中,积累了连州凯恩斯、江西九峰、湖北科迈、湖北凯龙等行业典型客户,靠得就是Topsizer型激光粒度仪在检测亚微米、纳米颗粒的表现以及一套行之有效的检测方案。纳米碳酸钙的生产过程中,碳化后的碳酸钙浆料,在经过脱水、烘干、活化等工序后形成最终碳酸钙粉体产品,其粒径分布将影响后续其在塑料、橡胶、油墨等产业的填加量和最终产品性能,因此,粒径分布是纳米碳酸钙生产企业十分关注的,作为产品质控的一个重要参数。其中,在纳米碳酸钙的生产中,通过加入适当的分散改性剂进行改性,增强了碳酸钙粉的分散性、减少团聚,在许多应用领域展现了更好的使用性能,在纳米碳酸钙的生产中,改性几乎成了标准的选择,不同改性剂种类和用量和改性工艺所生产产品质量各有异同,如何通过检测纳米碳酸钙在不同分散条件下的粒径分布情况,以协助调整碳化沉淀工艺并预测产品的应用效果,是近年来热议的课题。欧美克仪器深耕碳酸钙行业二十余载的岁月里,欧美克的仪器质量和品牌口碑,不断得到行业客户们的一致认可,行业仪器占有率高。Topsizer激光粒度分析仪采用国际先进的红蓝双光源设计,红光主光源为进口氦-氖激光器,波长0.6328μm,并有蓝光辅助半导体光源,波长0.466μm,弥补了常规设计散射光角度的盲区,极大地提高了对纳米级颗粒及少量大颗粒的分辨力。其具有量程宽(0.02-2000微米)、重复性好、精度高、测试结果真实、自动化程度高等诸多优点,是纳米碳酸钙粒度检测的不二之选。Topsizer型激光粒度仪(湿法)纳米碳酸钙的检测方案与检测重钙、一般轻钙的主要区别是颗粒团聚的处理,若以检测一般改性轻钙的方法(制样时使用十二烷基苯磺酸钠SDBS作为分散试剂,外置超声10分钟),纳米碳酸钙的原生颗粒很难被分散出来,得出的结果是团聚后的二次粒径,如图:测试结果基本是稳定的,但粒径分布只有普通重钙的级别,在进样器开始内置超声后,部分团聚体逐步解聚,测试结果如下:由于纳米钙的改性程度要远远超越一般的轻钙、重钙,采用一般的分散剂(如六偏磷酸钠、-SDBS、酒精等),难以达到充分的分散效果以了解样品一次粒径情况(或接近一次粒径的稳定结果)。欧美克仪器测试人员,经过多年的探索和不断尝试,最终选着了一种含有OM7超细轻钙专用分散剂的复配分散剂对样品进行前处理,并伴随超声处理,结果如下:测试结果有明显的改善,但仍未符合纳米碳酸钙的粒径预期。纳米碳酸钙属于超细粉体,不易分散彻底,因此在加入分散解聚剂后以传统进样器内置超声外,同时进行了细胞粉碎机的大功率的超声分散15分钟,以纯净水作为测量介质,并以“通用模式”进行粒度分析,结果如下:针对于该广西某公司生产的纳米碳酸钙样品,仍然有部分的硬团聚体的存在,导致结果出现了第二个大颗粒小峰,但结果的稳定性和粒径分布是基本符合预期的。采用同样的测试方案,同样的Topsizer型激光粒度仪,我司在早两年测试某进口的纳米碳酸钙样品,其结果是完全符合纳米碳酸钙的粒径分布要求的,如下。在我司多年来接触的一般国产纳米碳酸钙中,或多或少是会出来粒度分布的“双峰”状态,D90大概在1-2微米间,这主要可能是在生产工艺中,碳化或活化没有完全做好,导致大量硬团聚体的产生,影响了整体粒径分布。这些硬团聚体在使用中难以被分散开,会影响纳米钙的使用性能,因此,对于硬团聚体含量的检测,是纳米碳酸钙产品质量控管的关键所在,同时对于激光粒度仪的检测性能也是较为苛刻的要求。对纳米碳酸钙的粒度测试,到底是将其彻底分散到最小粒径的结果可靠,还是选择与下游生产的分散程度相近地分散样品,进行二次粒径粒度分布测试更可靠,一直是一个有争论的问题。但如果要对纳米碳酸钙生产工艺进行监控,就需要更关注生产流程中碳化沉淀的一次粒径情况。同时通过对硬团聚体二次粒径的严格控制,以使最终产品能满足高端行业(如油墨等)的应用要求。技术进步,以人为本,欧美克仪器的检测技术和应用开发,是和碳酸钙行业同步发展、偕同并进的。欧美克仪器专业服务于客户纳米碳酸钙的检测需求,为客户生产出优质的纳米碳酸钙产品保驾护航!参考文献1. 沈兴志、吴瑾. 轻钙、活性钙、纳米钙产品激光粒度测试分析探讨.2. 纳米碳酸钙.百度百科.
  • 上海仪电科仪诚邀您参加中国国际科学仪器及实验室装备展览会(CISILE2016)
    中国国际科学仪器及实验室装备展览会(CISILE),由中国仪器仪表行业协会主办,中国机械工业联合会、中国出入境检验检疫协会、中国教育装备行业协会等行业机构大力支持。旨在加强行业应用和国际交流、科学仪器的成果转化,推动我国科学仪器的产业化、现代化发展。上届展会展览面积达25000平米,参展企业近700家,来自中国大陆、台湾、香港、澳门以及美国、德国、法国、日本、印度、新加坡、俄罗斯、芬兰、英国、荷兰、韩国、西班牙等30多个国家和地区的众多知名企业参加,集中展示了分析仪器、实验室仪器及装备、光学仪器、生化仪器、试验仪器、力学性能测试仪器、行业专用仪器、配件、耗材等领域的新产品和新技术,目前是国内科学仪器领域规模最大、水平最高的国际化专业展会。 上海仪电科仪(INESA)将携雷磁、上分、棱光、仪电物光等自主品牌产品,众多2016年新品盛装出席本次展会。诚邀各界人士场参观、指导和交流,谢谢! 展会时间:2016年5月22日~24日展会地点:北京.国家会议中心仪电科仪展位号:T10
  • Sigma-Aldrich新品亮相BCEIA 2011 (三)
    相关报道: Sigma-Aldrich新品亮相BCEIA 2011 (一) Sigma-Aldrich新品亮相BCEIA 2011 (二) 2011年10月15日,第十四届北京分析测试学术报告会及展览会(BCEIA 2011)在北京展览馆圆满落下帷幕。Sigma-Aldrich公司携旗下著名分析品牌Supelco、Fluka参展此次分析行业的盛会。展会期间,Sigma-Aldrich公司重点展出了Supelco、Fluka品牌的高品质分析产品,如SPE,SPME,色谱柱,气相柱、GC配件、HPLC配件、溶剂和标准品等。 更有来自美国Supelco总部的品牌研发经理Michael Ye博士做了题为“Supelco最新样品前处理技术在营养与食品安全中的应用”的技术应用报告会。报告会上Ye博士介绍了Supleco最新研发的三款新产品以及这些新产品在食品检测中的应用。新颖的报告内容受到了与会专家和老师的热烈欢迎。应用报告会上Ye博士隆重介绍了Supelco推出的三款最新前处理产品,其中一款新产品:Discovery 银离子交换SPE小柱——优化分离不同饱和度和顺反异构体脂肪酸甲酯 Discovery 银离子交换SPE小柱, 利用特有的技术将银离子(Ag+)嵌入SCX (磺酸基阳离子交换)载体上。在正相洗脱条件下,银离子(Ag+)仅对脂肪酸甲酯的双键有吸附作用,具体表现为: 饱和的脂肪酸甲酯(无双键),不吸附,最快流出; 顺式的双键,吸附作用比反式的强。反式的先流出,顺式的后流出; 双键越多,吸附作用越强。双键少的先流出,双键多的后流出。 由此达到脂肪酸甲酯(FAME)不同饱和度和顺反异构体的分离效果。此吸附保留机理,是基于双键上的两个电子提供电子,Ag+接收电子,从而发生电子转移,使得Ag+与双键形成复合体样品:1.0g油,从微波爆米花的膨化袋中刮出,8ml去离子水混合,石油醚液液萃取,三氟化硼甲醇溶液甲酯化,正己烷液液萃取,浓缩至5ml,无水硫酸钠干燥。 SPE小柱:Discovery 银离子交换SPE小柱,750mg/6ml(54225-U);活化:4ml丙酮,然后4ml正己烷;上样:1ml正己烷提取液;洗脱:6ml正己烷:丙酮(96:4)(馏分1); 4ml正己烷:丙酮(90:10)(馏分2); 4ml丙酮(馏分3);色谱柱:SP-2560,75mx0.18mm,0.14um(23348-U);柱温:180℃进样口温度:220℃检测器:FID,220℃载气:氢气,40cm/sec进样量:0.5uL,100:1分流衬管:4mm内径分流衬管,杯型(2051001)各馏分回收率 馏分 C18:0 C18:1反 C18:1顺 C18:2顺,顺 1 100% 100% 2% -- 2 -- -- 98% -- 3 -- -- --100% 产品订购 描述 包装 货号 Discovery银离子交换SPE小柱 750 mg/6 mL 30 54225-U 750 mg/1 mL Rezorian™ Cartridge 10 54226-U SP-2560 气相色谱柱 75 m x 0.18 mm I.D., 0.14 μm 1 23348-U 100 m x 0.25 mm I.D., 0.20 μm 1 24056 相关产品 描述 包装 货号 SP-2380气相色谱柱 30 m x 0.32 mm I.D., 0.20 μm 1 24116-U 30 m x 0.25 mm I.D., 0.20 μm 1 24110-U Supelco 37 种脂肪酸甲酯混标 1 47885-U关于Sigma-Aldrich:美国Sigma-Aldrich公司,是一家致力于生命科学与化学领域的高科技跨国公司,产品涵盖生物化学、有机化学、色谱分析等多个领域,产品数量超过120,000种,是全球数以万计的科学家和技术人员的实验伙伴。Sigma-Aldrich公司旗下的两大著名分析品牌Supelco和Fluka/RdH ,致力于分析化学领域的产品研制开发、生产销售和技术服务等,主要产品包括色谱柱、色谱耗材、固相萃取(SPE)、固相微萃取(SPME) 及品种十分齐全的高品质分析试剂和标准品,能为广大分析领域用户提供集色谱耗材、分析试剂和标准品于一体的一揽子解决方案。Sigma-Aldrich在36个国家与地区设有营运机构,雇员超过7900人,为全世界的用户提供优质的服务。Sigma-Aldrich承诺通过在生命科学、高科技与服务上的领先优势帮助用户在其领域更快地取得成功。如需进一步了解Sigma-Aldrich,请访问我们的官方网站:http://www.sigma-aldrich.com
  • 展会回顾丨2021四川环保博览会,天津润泽环保大放异彩!抢占焦点!
    2021四川环保博览会,天津润泽环保,异彩纷呈 5月15日,2021四川环保博览会在成都正式落下了帷幕。这场环保盛会集中展示了水处理、大气污染防治、固废处理、环境监测、土壤修复、工业节能与清洁生产、生态修复等环境解决方案,550+中外企业参展,携手展示行业前沿的设备、产品与技术,为相关行业提供高质量的环保解决方案。让我们走进展会,寻觅现场的魅力与精彩! 现场剪影 见证品牌势能 天津润泽环保科技有限公司多年从事气体传感器应用技术的开发与研究,服务于环境监测站、工业园区管委会、市政管理单位、大型化工石化企业、污水治理及垃圾处理企业等。 PEN3.5型便携移动式电子鼻恶臭监测仪、OLFOSENSE型在线式电子鼻恶臭监测仪、水体异味检测仪、多通道气体采样系统、在线多组分气体监测仪等设备组成了充满科技感的2021年润泽环保产品集锦阵容。在这里,科技化和实用化始终贯穿于可靠的监测装备之中,全面诠释了润泽环保的品牌理念,受到广大业内人士的充分认可。 细节出发 实现产品升级 展会现已圆满落幕,从产品升级到品类迭新,从开始的驻足到进一步的了解,润泽环保不断迭新换代、完善自我,凭借着前瞻性的战略眼光和技术创新,博得了大家热烈的反响。未来我们将继续努力,带动环保产业向前发展。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制