当前位置: 仪器信息网 > 行业主题 > >

甲基苯戊酮

仪器信息网甲基苯戊酮专题为您提供2024年最新甲基苯戊酮价格报价、厂家品牌的相关信息, 包括甲基苯戊酮参数、型号等,不管是国产,还是进口品牌的甲基苯戊酮您都可以在这里找到。 除此之外,仪器信息网还免费为您整合甲基苯戊酮相关的耗材配件、试剂标物,还有甲基苯戊酮相关的最新资讯、资料,以及甲基苯戊酮相关的解决方案。

甲基苯戊酮相关的资讯

  • 梧桐已立,有凤来仪
    《庄子秋水篇》中提到“南方有鸟,其名鹓雏,子知之乎?夫鹓雏发于南海而飞于北海,非梧桐不止”。人们常将梧桐比作基业,将凤凰比作贤能,自古贤能择主而事,良禽择木而栖。 2019年1月16日,宁波新芝生物科技股份有限公司研究院在杭州市滨江区正式成立,经过5个月的筹备与建设,在总部领导的大力支持下,研究院初成规模,团队建设有条不紊,产品开发进度符合预期。为满足扩大化的研发、办公需要,研究院正式搬迁至杭州市滨江区滨安路688号——天和高科技产业园。新芝生物杭州研究院作为公司研发能力建设的重要平台,肩负为公司持续发展提供产品研发、技术研究、市场调查、体系建设、人才储备等重要职能,是新芝生物实现未来可持续发展的重要引擎。杭州研究院院长 寿淼钧 宁波新芝生物科技股份有限公司正式任命公司研发副总寿淼钧先生为杭州研究院院长。寿淼钧先生毕业于浙江工业大学,教授级高级工程师,曾获中国仪器仪表学会 “青年科技人才奖”称号,历任中控研发部经理、子公司副总、聚光科技(杭州)股份有限公司研发总监、上海安谱实验科技股份有限公司研发副总、北京吉天仪器有限公司研发副总等职位,拥有丰富的仪器研发管理经验。寿淼钧先生十余年来致力于为全球科研工作者提供优质、稳定、高效、便捷的科研仪器,是行业内资深的研发管理专家,也是兼具市场化思维和产品化能力的复合型人才,与公司的愿景与文化高度吻合,与新芝研究院定位和方向高度匹配。 寿院长通过五个层面汇报了杭州研究院的工作进展和未来规划:(一)确立业务方向公司新时期第一个5年发展规划提出的“成为生物样品制备领域专家”的目标,确立了杭州研究院要在公司总部已有成功产品和品牌的基础上,逐步研发和推出满足市场发展需要的新产品、新技术,与总部产品一起形成更为丰富的产品组合。目前杭州研究院已经有多条产品线在研,未来也将会持续推出更多优秀、先进、可靠的产品。(二)明确组织架构目前已经明确了杭州研究院的组织架构,根据精简高效的原则和IPD流程体系的要求,将矩阵式作为架构核心,健全了各纵向子系统职能岗位的设置。(三)建设研发管理体系确定了以IPD作为杭州研究院的研发过程管理体系,从项目立项、产品需求、系统方案设计、子系统方案和概要设计到详细开发、测试验证、新产品导入、结项,每个过程严格按照质量管理体系PDCA的核心要求做好评审检查管理工作和风险管理工作,通过计划分解、例行会议管理等方式推进开发工作。(四)提升员工能力首先是做好IPD流程体系的培训,并在日常工作中不断强调和贯彻实施;其次是做好子系统的技术培训。重视和推进研究院的知识产权建设,把知识创新转化为公司的核心竞争力。(五)对员工期望寿院长希望战略市场部要做好杭州研究院新产品开发的方向指引者,目标是市场,重点是战略。要充分做好客户需求调研、市场竞争分析、整合行业资源、把握行业发展动态,真正实现从客户中来,到客户中去。希望研发人员能成为“霸气”的人,能研发新技术,推出新产品,搞定新问题,更能认识不足,承认问题,改进自我。宁波新芝生物董事长周芳女士表示:做事最核心的就是解决人的问题,一家负责任的企业是需要能找到人,用好人,留住人。很高兴杭州研究院通过半年的努力已经在寿院长周围凝聚了一批优秀的人才,新芝生物的传统就是乐于分享,希望未来在坐的各位都能把在研究院的工作作为自己的一份事业而不是一份工作,希望大家在未来都能分享到公司发展带来的利益。 周总对杭州研究院寄予厚望,希望新芝人能有五“心”、二“吃”。五“心”:把孝心留给父母,把忠心留给企业,把爱心留给同事,把热心留给社会,自信留给自己。二“吃”:要有吃苦的精神,要能吃得起亏。最后,周总祝各位研究院的同事开心工作,快乐生活。董事长:周芳 总经理:朱佳军 朱总表示为科研服务者提供好的设备是作为仪器生产厂家觉得最有乐趣的事情,能够生产出优质的产品是对社会的回馈,而持续学习则是人与公司持续发展的原动力。朱总希望杭州研究院能在新芝生物30年的发展基础上汲取养分,把年轻人敢作敢想的精神发挥到极致,把产品和服务做到极致,为全球生物研究的科学家提供优质、可靠、专业的服务。杭州研究院建立在高起点、高标准、高质量的基础上,作为一颗“三十而立”的“梧桐树”,希望获得更多有识之士的加盟,共同为中国乃至世界的生命科学事业增添一点光彩。杭州天和高科技产业园简介杭州天和高科技产业园(杭州国家高新区海创基地生物医药园)位于滨江区滨安路688号,是一家以体外诊断产品(IVD)为特色的生物医药与智慧健康专业科技园,也是集孵化器、加速器、产业化为一体的新兴民营高科技园。园区建立了公共孵化大楼、公共实验室,技术开发服务平台,GMP标准厂房等设施,为企业提供包括研发服务、支撑服务、创新创业服务等一系列专业服务共引进海外高层次人才100余名,4名中国科学院院士,11名国家千人计划专家,13名浙江省千人计划专家,109位博士,滨江区创新创业“5050计划”资助项目52项。
  • 齐赏梧桐春日美,勇登鹏城第一峰
    2013年2月23日,朗诚实业团支部组织共青团员前往深圳梧桐山,进行了主题为&ldquo 健体魄,促和谐&rdquo 的登攀游玩活动,同时也号召、带动了部分同事一起参与到活动中来。 上午九点半,参加活动的员工在深圳梧桐山脚下集合。晴空万里,春意盎然,春风拂面,参加活动员工在吕总的带领下,以十足的干劲,高涨的热情,沿着登山道向顶峰奋勇前进。大家或选择平坦但悠长的盘山公路,边爬边赏沿途山景;或选择富有挑战性却是捷径的泰山涧步道,聆听叮咚山泉,溯溪而上。在攀登的途中,我们相互鼓励,相互扶持,鼓励因身体原因放慢登山脚步的同事,扶持因路途陡峭而难以攀爬的同事,处处尽显朗诚员工团结友爱、不畏艰险、勇攀高峰的精神。 梧桐山山高林密,主峰海拔943.7米,为深圳第一高峰,雄伟的山势与变幻莫测的云雾刚柔相济、与广瀚的大鹏湾山海相互辉映;山里溪涧幽邃、植物茂盛,是珠江三角洲地区珍稀动植物的庇护地和资源库之一。欣赏了沿途&ldquo 稀&rdquo 、&ldquo 秀&rdquo 、&ldquo 幽&rdquo 、&ldquo 旷&rdquo 的梧桐美景,攀上了崎岖陡峭的&ldquo 好汉坡&rdquo ,镌刻&ldquo 鹏城第一峰&rdquo 的巨石赫然眼前,终于成功登临大梧桐顶峰。站在顶峰,举目远望,西可俯瞰深圳市区,南与香港大雾山对峙,向东南远眺,烟波浩淼的大鹏湾海面及美丽的大鹏半岛尽收眼底。历时近六个钟,大家顺利完成了此次登山活动。最后聚集山脚的农家小店,品农家小菜,尝美味窑鸡,享胜利喜悦,真可乐也。 江山如此多娇,我们希望祖国的山河永远蓝天碧水,远离污染,人与环境协调发展,和谐相处;朗诚人的事业是让天更蓝,水更清,生态环境更和谐,朗诚人将竭力为之呼吁,为之奋斗,正如登顶梧桐一样,不畏艰险,勇攀高峰!
  • 北大荒集团黑龙江梧桐河农场有限公司130.00万元采购空气压缩机
    html, body { -webkit-user-select: text } * { padding: 0 margin: 0 } .web-box { width: 100% text-align: center } .wenshang { margin: 0 auto width: 80% text-align: center padding: 20px 10px 0 10px } .wenshang h2 { display: block color: #900 text-align: center padding-bottom: 10px border-bottom: 1px dashed #ccc font-size: 16px } .site a { text-decoration: none } .content-box { text-align: left margin: 0 auto width: 80% margin-top: 25px text-indent: 2em font-size: 14px line-height: 25px } .biaoge { margin: 0 auto /* width: 643px */ width: 100% margin-top: 25px } .table_content { border-top: 1px solid #e0e0e0 border-left: 1px solid #e0e0e0 font-family: Arial /* width: 643px */ width: 100% margin-top: 10px margin-left: 15px } .table_content tr td { line-height: 29px } .table_content .bg { background-color: #f6f6f6 } .table_content tr td { border-right: 1px solid #e0e0e0 border-bottom: 1px solid #e0e0e0 } .table-left { text-align: left padding-left: 20px } 详细信息 [公开招标]2022年北大荒集团黑龙江梧桐河农场有限公司浸种催芽设备更新项目 黑龙江省-佳木斯市-汤原县 状态:公告 更新时间: 2022-12-12 [公开招标]2022年北大荒集团黑龙江梧桐河农场有限公司浸种催芽设备更新项目 【信息时间:2022-12-12 】 招标公告 一、项目基本情况 1.项目编号:A2301010892003291001001 2.项目名称:2022年北大荒集团黑龙江梧桐河农场有限公司浸种催芽设备更新项目 3.采购方式:公开招标 4.预算金额:人民币130万元 5.采购需求:空气压缩机4台、压力平衡罐4个等,具体详见招标文件 6.项目实施地点及交货时间:北大荒集团黑龙江梧桐河农场有限公司,货物进场时间2023年2月28日前、货物安装调试时间2023年6月30日前。 7.本项目(是/否)接受联合体:否 8.本项目(是/否)允许转包、分包:否 9.本项目分为一个包。 二、申请人的资格要求: 1.投标人应符合《中华人民共和国政府采购法》第二十二条规定的条件。 2.具有营业执照独立法人资格; 3.法定代表人身份证复印件; 4.需提供近三年(2019年至2021年)内无重大违法违纪行为声明。 三、获取招标文件 1.获取招标文件时间:2022年12月12日23:00时至2022年12月20日00:00时(北京时间)。 2.地 点:北大荒电子招标平台。 3.方 式:投标人用已办理的CA锁在“北大荒电子招标平台”点击该项目选择“我要报名”-完善投标信息-填写发票信息。完成报名后可在“招标文件领取”页面免费下载招标文件。 四、提交投标文件 1.提交投标文件截止时间及地点:2023年1月4日9:00时(北京时间),在北大荒电子招标平台网上递交。在投标文件截止时间后递交的投标文件,系统将不予接收。 2.开标时间及地点:2023年1月4日9:00时(北京时间),线上开标,投标人无需到达开标现场。 五、公告期限 2022年12月12日23:00时至2022年12月20日00:00时(北京时间)。 六、其他补充事宜 1.本次招标公告在中国招标投标公共服务平台(www.cebpubservice.com)、北大荒电子招标平台(www.bdhzb.cn)及黑龙江公共资源交易网(http://www.hljggzyjyw.org.cn/)发布。 2.现场踏勘:无。3.投标人提问、质疑以及招标人对招标文件的澄清均通过网上进行。 七、注册通知 投标人须在“北大荒电子招标平台”(www.bdhzb.cn)进行用户注册,具体操作请参阅北大荒电子招标平台首页通知公告栏2021年5月18日发布的《关于平台用户入库及CA办理的通知》办理。入库办理咨询电话:0451-55195701,0451-55195778,CA办理咨询电话:0451-55195720。 八、对本次招标提出询问,请按以下方式联系 1.招 标 人:北大荒集团黑龙江梧桐河农场有限公司 地 址:北大荒集团黑龙江梧桐河农场有限公司 联 系 人:栾女士 联系电话:0468-3800215 2.招标代理机构:北大荒招标有限公司 地 址:黑龙江省哈尔滨市香坊区珠江路29号 联 系 人:薛女士 联系电话:0451-55195758 北大荒招标有限公司 2022年12月12日 × 扫码打开掌上仪信通App 查看联系方式 $('.clickModel').click(function () { $('.modelDiv').show() }) $('.closeModel').click(function () { $('.modelDiv').hide() }) 基本信息 关键内容:空气压缩机 开标时间:2023-01-04 09:00 预算金额:130.00万元 采购单位:北大荒集团黑龙江梧桐河农场有限公司 采购联系人:点击查看 采购联系方式:点击查看 招标代理机构:北大荒招标有限公司 代理联系人:点击查看 代理联系方式:点击查看 详细信息 [公开招标]2022年北大荒集团黑龙江梧桐河农场有限公司浸种催芽设备更新项目 黑龙江省-佳木斯市-汤原县 状态:公告 更新时间: 2022-12-12 [公开招标]2022年北大荒集团黑龙江梧桐河农场有限公司浸种催芽设备更新项目 【信息时间:2022-12-12 】 招标公告 一、项目基本情况 1.项目编号:A2301010892003291001001 2.项目名称:2022年北大荒集团黑龙江梧桐河农场有限公司浸种催芽设备更新项目 3.采购方式:公开招标 4.预算金额:人民币130万元 5.采购需求:空气压缩机4台、压力平衡罐4个等,具体详见招标文件 6.项目实施地点及交货时间:北大荒集团黑龙江梧桐河农场有限公司,货物进场时间2023年2月28日前、货物安装调试时间2023年6月30日前。 7.本项目(是/否)接受联合体:否 8.本项目(是/否)允许转包、分包:否 9.本项目分为一个包。 二、申请人的资格要求: 1.投标人应符合《中华人民共和国政府采购法》第二十二条规定的条件。 2.具有营业执照独立法人资格; 3.法定代表人身份证复印件; 4.需提供近三年(2019年至2021年)内无重大违法违纪行为声明。 三、获取招标文件 1.获取招标文件时间:2022年12月12日23:00时至2022年12月20日00:00时(北京时间)。 2.地 点:北大荒电子招标平台。 3.方 式:投标人用已办理的CA锁在“北大荒电子招标平台”点击该项目选择“我要报名”-完善投标信息-填写发票信息。完成报名后可在“招标文件领取”页面免费下载招标文件。 四、提交投标文件 1.提交投标文件截止时间及地点:2023年1月4日9:00时(北京时间),在北大荒电子招标平台网上递交。在投标文件截止时间后递交的投标文件,系统将不予接收。 2.开标时间及地点:2023年1月4日9:00时(北京时间),线上开标,投标人无需到达开标现场。 五、公告期限2022年12月12日23:00时至2022年12月20日00:00时(北京时间)。 六、其他补充事宜 1.本次招标公告在中国招标投标公共服务平台(www.cebpubservice.com)、北大荒电子招标平台(www.bdhzb.cn)及黑龙江公共资源交易网(http://www.hljggzyjyw.org.cn/)发布。 2.现场踏勘:无。3.投标人提问、质疑以及招标人对招标文件的澄清均通过网上进行。 七、注册通知 投标人须在“北大荒电子招标平台”(www.bdhzb.cn)进行用户注册,具体操作请参阅北大荒电子招标平台首页通知公告栏2021年5月18日发布的《关于平台用户入库及CA办理的通知》办理。入库办理咨询电话:0451-55195701,0451-55195778,CA办理咨询电话:0451-55195720。 八、对本次招标提出询问,请按以下方式联系 1.招 标 人:北大荒集团黑龙江梧桐河农场有限公司 地 址:北大荒集团黑龙江梧桐河农场有限公司 联 系 人:栾女士 联系电话:0468-3800215 2.招标代理机构:北大荒招标有限公司 地 址:黑龙江省哈尔滨市香坊区珠江路29号 联 系 人:薛女士 联系电话:0451-55195758 北大荒招标有限公司 2022年12月12日
  • 磐诺移动监测实验室,助力乐山五通桥园区VOCs第一阶段走航监测工作!
    挥发性有机物英文缩写VOCs(volatile organic compounds),是指熔点低于室温而沸点在50-260℃的挥发性有机化合物,主要来源于工业生产、有机溶剂使用、机动车尾气排放等。VOCs是大气中细颗粒物(PM2.5)和臭氧等污染物生成的重要前体物之一,有效控制VOCs排放,对于改善大气环境质量、提升人民群众环境幸福感具有重要的意义。众所周知,生态环境部于2018年初制定《工业园区挥发性有机物(VOCs)试点监测方案》,选取:黑龙江省大庆市石油化工园区、四川省乐山市盐磷化工园区、山东省淄博市化工园区、江苏省泰州市工业涂装园区4家园区开展试点工作。作为监测试点园区之一,如何有效进行科学监测,摸清污染家底,发力开展治理,为环境监管工作提供数据支撑,更大程度发挥试点作用,成为乐山五通桥区盐磷化工循环产业园区园区最为关注的问题。此次,在乐山市环境科学研究所组织下,磐诺携手相关单位,凭借VOCs移动监测实验室,成功助力园区第一阶段VOCs走航监测工作。走航监测工作取得了圆满成功,这也是磐诺环境VOCs移动监测实验室工作状态下的初次亮相。监测车搭载了在线GC-MS、在线GC、便携式GC、空气6参数仪、气象5参数仪、移动摄影系统等多种先进设备,实现了多功能集成,可实现对环境空气中117项VOCs、57项原PAMS物质等污染物的自动连续监测,为相关部门提供有力的数据保障。面对不同领域的用户,磐诺移动监测实验室为大家提供更为灵活的选择。全面的在线及离线仪器,满足大气、水、土壤等各领域用户需求多款车型及装修方案,完全自定义搭配【购买+租赁】两种服务模式,经济更省心助力园区工作,提供专业技术支持,磐诺,一直在行动!
  • 栽下“梧桐树” ,引得“凤凰”来——浅看怀柔科学仪器高质量发展之道
    高质量发展是“十四五”乃至更长时期我国经济社会发展的主题,关系我国社会主义现代化建设全局。科学仪器作为一项具有复杂而精密的技术体系,其制造水平是衡量一个国家高端制造能力的重要指标之一,与国家经济高质量发展息息相关。十四五期间,各项政策频频释放利好信号,科学仪器行业如何夯实产业发展基础,提升产业链、供应链韧性?又该如何抢抓科学仪器国产替代的重大发展机遇?带着这些问题,我们共同走进怀柔科学城以及ACCSI2023。全链条融合,怀柔栽好“梧桐树”科学仪器产业链位于行业中游,上游主要为各类仪器部件供给,下游主要为各大科研主体,从中游来看,科学仪器又可与试剂耗材、各类实验室服务相互配套,进而为下游提供完整的科学服务解决方案。怀柔科学城的谋篇布局,成功链接了科学仪器产业链的上下游。据统计,截至2020年底,中国科学院有18家科研院所和中国科学院大学入驻怀柔科学城,科研人员约2000名。北京大学、清华大学、有研科技集团、机械科学研究总院集团、中航工业综合技术研究所等高校院所和中央企业已入驻怀柔科学城。动力电池、轻量化材料成形技术与装备等2个国家制造业创新中心落户。 据不完全统计,截至2020年底,在怀柔科学城工作和生活的科研人员超过5000人,硕士生和博士生超过1万人。预计2025年,在怀柔科学城工作和生活的科研人员将达至到1.5万人。当前,怀柔科学城正充分利用科学设施平台集群优势,集中力量培育研发设计、分析检测认证、技术转移、创业孵化等科技服务业态,对于推动科学仪器行业产业全链条集群化发展创造了众多利好条件。夯实创新基础,“高精尖”产业引领发展北京怀柔科学城作为原始创新、基础研究的主战场,肩负着提升我国前沿领域源头创新能力的重要职责,与此同时,怀柔还具备科学设施、产业布局规划、产业扶持政策等方面的优势。四大高精尖产业,引领区域经济高质量发展。科学仪器和传感器产业聚焦科学仪器和智慧城市感知体系两个重点领域,引导科学仪器和传感器产业领域创新要素聚集,构建产业生态完善、平台创新活跃的国际尖端科学仪器和传感器产业高地新材料领域依托大科学装置和科技研发平台,充分利用中科院和北京地区高校院所的创新资源,促进产学研用深度融合,壮大提升纳米材料领域,培育发展催化材料、清洁能源材料等关键战略材料,面向下游应用延伸产业链,在医药健康、新能源等领域开展示范应用,形成产业转化生态链条。生命健康领域致力于发展细分领域生物医药产业,支持现有企业发展壮大,鼓励企业和高校院所在生物医学成像、干细胞和再生医学、诊断试剂、包装材料、生物制药、中药等领域深耕细作,培育更多医药健康“隐形冠军”企业。商业航天领域积极发挥空间环境地基综合监测网(子午工程二期)、空间科学卫星系列及有效载荷研制测试保障平台、太空实验室地面实验基地、空间天文与应用研发实验平台、深部资源探测技术装备研发平台等科学设施平台作用,充分利用科研、人才、成果资源,着力培育地球与空间探测相关业态。锚定ACCSI2023,抢占科学仪器发展“快车道”ACCSI2023,围绕 “创新发展,产业互联”主旋律,与怀柔科学城强强联合,聚力突破创新,筑牢产业之基,共同赋能促进产业创新集群融合发展。本届大会设置20+分论坛,邀请数百位业界大咖出席,将有2000+专业听众参会。届时,更将有“怀柔区高端仪器装备和传感器产业推介会暨怀柔区重点企业新品发布会”等独家论坛同期召开。ACCSI2023官网(全日程):https://www.instrument.com.cn/accsi/2023/index为促进中国科学仪器行业健康快速发展,搭建科学仪器行业“政、产、学、研、用、资、媒”等各方有效交流平台,助推北京市“两区”建设,服务首都科技创新,“2023第十六届中国科学仪器发展年会(ACCSI2023)”将于2023年5月17-19日在北京雁栖湖国际会展中心召开。ACCSI2023以“创新发展 产业互联”为主题,由仪器信息网(instrument.com.cn)主办,中国仪器仪表学会分析仪器分会、南京市产品质量监督检验院、我要测网(woyaoce.cn)、北京怀柔仪器和传感器有限公司等单位协办,中国仪器仪表行业协会、中国仪器仪表学会等单位支持。联系方式报告及参会报名:010-51654077-8229 13671073756 杜女士赞助及媒体合作:010-51654077-8015 13552834693魏先生微信添加accsi1或发邮件至accsi@instrument.com.cn(注明单位、姓名、手机)咨询报名。 2023第十六届中国科学仪器发展年会组委会
  • 无痛且无针头!全球首款注射疫苗机器人来了
    据美国《快公司》杂志网站近日报道,加拿大初创公司Cobionix宣称,他们研制出了全球首款能注射疫苗的机器人Cobi,其能以自主、无痛且无针头方式注射疫苗。据悉,Cobi由一个带有药瓶储存区的机械臂和一个与患者互动的屏幕组成。人们可以通过触摸屏在系统中登记,一个摄像头会录入登记者的身份证或是证明其已经预约接种疫苗或接收药物的证件。在人们完成接种登记手续后,Cobi会拿起一个装有药剂的小瓶,并使用其激光雷达传感器识别患者的身体。这个激光雷达传感器通过发射人眼不可见的光脉冲来测量它与某物体之间的距离。Cobionix公司联合创始人兼首席技术官尼玛扎马尼解释称,该系统基于人工智能创建的三维数字图来定位手臂,并确定注射时的理想高度。机械臂的设计可适应每个人的高度——无论是成人还是儿童。在接种疫苗时,很多人害怕针头,这可能引起头痛,甚至使他们感到恐惧,尤其是儿童,研究显示,三分之二的儿童害怕针头。但使用Cobi注射并不疼,因为它不使用针头,而是通过压力喷射来注射疫苗。药物被装入带有喷嘴的一次性容器中,给药部分由一个活塞和一个环绕着一圈金属丝的磁铁组成,当施加电流时,磁场推动活塞,挤压小瓶,通过喷嘴强力喷出药物,并穿过皮肤毛孔,进入身体。扎马尼解释说:“研制Cobi的目的是缓解医疗保健方面的劳动力短缺,其自主特性大大降低了人们对诊所基础设施的要求,这将有助于覆盖偏远地区人群,在这些地区,人们能够获得的医疗保健服务有限。”Cobionix公司表示,该机器人目前还只是一个工作原型,可能需要两年或更长时间才能上市,而疫苗接种只是它可能执行的众多任务之一,使用人工智能和3D视觉来观察病人情况的Cobi有朝一日可为人类进行超声波检查、抽血和活检。
  • 药包材中有害物质检测 | 挥发性有机物
    药物包装材料中的低分子量、非极性有机化合物通常易挥发,有很大可能性直接向药物迁移,对人体健康造成损害。与挥发性有机物分析相关的药包材分析标准方法与挥发性有机物分析相关的药用包装材料成分药用包材样品前处理方法简介1提取试验2浸出试验HS-GC-FID 检测药品包装材料中的有机挥发物图1:药品包装材料中常见有机挥发物(VOC)标准色谱图17种化合物出峰顺序为:乙醇、异丙醇、丙酮、丁酮、乙酸乙酯、乙酸异丙酯、正丁醇、苯、丙二醇甲醚、乙酸正丙酯、4-甲基-2-戊酮、甲苯、乙酸正丁酯、乙苯、二甲苯、环己酮珀金埃尔默Clarus 系列气相色谱仪和TurboMatrix HS 顶空进样器珀金埃尔默顶空自动进样技术专利 —— 压力平衡时间进样技术,整个进样过程仅有进样针在移动,定量更准确,重复性更好√ 彻底解决样品吸附问题,防止交叉污染√ 方便快捷调节进样量√ 无需载气稀释扫描下方二维码,即可下载珀金埃尔默药包材中有害物质检测相关资料下载。
  • 石墨炉原子吸收法测定不同溶剂中的铜
    原子吸收分光光度计多用于测定水溶液样品,但有的时候也需要用有机溶剂来制备样品。下面就来介绍使用日立偏振塞曼原子吸收分光光度计ZA3000,测定不同溶剂中铜的实验。实验分别以水、甲醇、乙醇、丙酮、4-甲基-2-戊酮 (MIBK)为溶剂制备样品,采用石墨炉法测定样品中的铜(Cu)。u 样品处理向水溶液中加入0.5 %的硝酸溶液,得到待测样品。向有机溶液(甲醇、乙醇、丙酮、MIBK)中加入0.5 %的硝酸溶液,得到待测样品。加入0.5 %的硝酸溶液,目的是为了维持铜在溶液中的稳定性。u 实验条件使用有机溶剂时,干燥温度可以稍微设置低一些。使用有机溶剂时,洗涤液可以用有机溶液,但在测定完成后,应使用纯水清洗或更换石墨管。u 实验结果? 原子吸收曲线图? 标准曲线即使溶剂使用有机溶液,也可在与水溶液基本相同的测量条件下准确测定样品。五种溶剂的铜溶液在0μg/L~20μg/L浓度范围内r2 ≥0.9997, 线性关系良好。 从上面这个实验表明,日立偏振塞曼原子吸收分光光度计采用双检测器系统,即使测定有机溶剂样品,基线也十分稳定,可以得到高精度的测定数据。
  • 为您实验排忧解难-----TDS-24RD完美应对HJ734-2014
    为您实验排忧解难-----TDS-24RD完美应对HJ734-20142013年9月10日,国务院印发《大气污染防治行动计划》,并制定具体的十条政策实施方案,也就是我们常说的《大气十条》。这是我国政府在对当前大气环境形势科学判断的基础上,作出的一项重大战略部署,为全国大气污染防治工作指明了方向,成为我国大气污染防治工作的纲领性文件。为了打好大气污染治理攻坚战,国家环境监测部门也制定了一系列的检测标准并颁布实施。其中HJ734-2014《固定污染源废气挥发性有机物的测定固相吸附-热脱附/气相色谱质谱法》为测定固定污染源废气中24种挥发性有机物。24种挥发性有机物包括:丙 酮、异丙醇、正己烷、乙酸乙酯、苯、六甲基二硅氧烷、3-戊酮、正庚烷、甲苯、环戊酮、 乳酸乙酯、乙酸丁酯、丙二醇单甲醚乙酸酯、乙苯、对/间二甲苯、2-庚酮、苯乙烯、邻二 甲苯、苯甲醚、苯甲醛、1-癸烯、2-壬酮、1-十二烯。 HJ734-2014标准已经颁布实施了超过5年时间,目前全国众多环境监测部门及第三方环境检测机构均在执行该标准,尤其是没有地方标准的省份(如广东则有DB44/814-2010等四大地标可执行)都在使用该标准进行固定污染源废气挥发性有机物的测定。然而,通过走访及调查发现,实验室在使用该标准进行检测时碰到了一下难以解决的问题。近期,泰通科技联合EWG1990仪器学习在《GCMS使用技术7天训练营》上进行了一项实验调查,参与本次调查的实验机构共计62家,调查结果统计如下表:结果发现,除24.2%的用户外其他75.8%的使用单位均存在一些仪器使用问题,水溶性组分出峰不好、峰形变形、线性不好、空白残留过高、加标回收率低等为众多用户普遍遇到的问题。HJ734-2014采用固相吸附-热脱附解析的方法进行,而标准中24中挥发性有机物包涵括的极性范围较大,实验过程捕集肼的捕集难度加大,最终导致丙酮、异丙醇、乳酸乙酯等组分出峰不理想甚至不出峰。 关于空白残留问题:该标准对各组分的空白残留量也提出较高要求,各组的绝对分残留值参见下表:序号组份名称:空白限度--方法检出限(单位ng)1丙酮3.132异丙醇0.643正己烷1.064乙酸乙酯1.805六甲基二硅氧烷0.426苯1.167正庚烷1.208甲苯1.239乙酸丁酯1.3910环戊酮1.1811乳酸乙酯2.1912乙苯1.9113.14对间二甲苯2.8115丙二醇单甲醚乙酸脂1.5316邻二甲苯1.1817苯乙烯1.20182-庚酮0.3519苯甲醚1.01201-癸烯0.9621苯甲醛2.10222-壬酮0.86231-十二烯2.41243-戊酮0.64 要满足标准要求的残留量,则对整个热脱附系统提出了较高的要求。为了实现此效果,TDS-24RD从工业结构设计上投入大量研发精力并甄选高惰性料用于产品生产制造。此外,专门研发推出了可深度活化的采样管专用活化装置。以下为TDS-24RD全自动热解析仪及ATHH-12全自动活化仪的实验效果: 组份名称:组份名称:空白限度--方法检出限(单位ng)实测空白管残留量(单位ng)/刚完成100ng进样后1丙酮3.131.922异丙醇0.640.403正己烷1.060.084乙酸乙酯1.800.435六甲基二硅氧烷0.420.056苯1.160.387正庚烷1.200.048甲苯1.230.989乙酸丁酯1.390.1710环戊酮1.180.4411乳酸乙酯2.191.4212乙苯1.910.1713.14对间二甲苯2.810.2415丙二醇单甲醚乙酸脂1.530.2616邻二甲苯1.180.2217苯乙烯1.200.30182-庚酮0.350.2019苯甲醚1.010.13201-癸烯0.960.3521苯甲醛2.101.12222-壬酮0.860.34231-十二烯2.410.53243-戊酮0.640.13 关于出峰问题:丙酮、异丙醇、乳酸乙酯等水溶性物质在试验过程容易峰形变形、出峰偏小甚至不出峰。研究表明,此类问题与除水过程、冷阱结构与选材有着密切关系,以下为TDS-24RD全自动热解析仪的实验效果(10ng标样分析):关于线性问题:HJ734-2014标准对各组分线性提出明确要求R≥0.995。这类的气体分析实验,排除操作人为因素影响外对仪器也提出较高了要求。以下为TDS-24RD在实验室分析效果: 1.实验仪器:TDS-24RD(24位)全自动二次热解析仪(泰通科技(广州)有限公司),ATHH-12(12位)活化仪(泰通科技(广州)有限公司),气质联用仪EI源,色谱柱:624 60m*0.25mm*1.4um2.方法条件:热脱附条件:吸附管脱附温度:350℃,脱附时间:300s,聚焦冷阱温度:-10℃,聚焦冷阱脱附温度:300℃,冷阱脱附时间:60s,传输线温度:120℃,阀温度:100℃。气质联用仪条件:进样口温度:220℃,柱流量:1.2ml/min,分流比:15:1,柱温条件:初始温度:40℃,保留5min,6℃/min上升至140℃,再15℃/min上升到200℃,保留5min,全扫描模式,扫描范围:33~270amu3.样品制备:吸附管(Carbopack C-13mm、Carbopack B-25mm、Carboxen1000-13mm)通过ATHH-12(12位)活化仪三阶程序升温活化完全后密封备用。校准品配制:配制成梯度浓度为5.00,10.0,20.0,50.0,100ng/ul的24种VOC混合标准溶液。标样加载模拟吸附:将老化后的吸附管装到ATHH-12(12位)活化仪的标样加载平台上,分别注入1ul的不同梯度浓度的标准溶液,吸扫完毕后(仪器默认3min)取下各个吸附管密封,得到含量为5.00,10.0,20.0,50.0,100ng的标准系列吸附管。备注:此次做样测试用外标法定量,证明仪器的可靠性及稳定性,并未添加内标物 5ng标准吸附管谱图数据 10ng标准吸附管谱图数据20ng标准吸附管谱图数据50ng标准吸附管数据谱图100ng标准吸附管数据谱图各组分线性数据:1、丙酮(R=0.9993)2、异丙醇(R=0.9999)3、正己烷(R=0.9998) 4、乙酸乙酯(R=0.9993) 5、六甲基二硅氧烷(R=0.9998)6、苯(R=0.9999)7、正庚烷((R=0.9999)8、甲苯(R=0.9998)9、乙酸丁酯(R=0.9995)10、环戊酮(R=0.9992)11、乳酸乙酯(R=0.9993)12、乙苯(R=0.9999)13、对间二甲苯(R=0.9998)14、丙二醇单甲醚乙酸脂(R=0.9938)15、邻二甲苯(R=0.9998)16、苯乙烯(R=0.9999)17、2-庚酮(R=0.9999)18、苯甲醚(R=0.9999)19、1-癸烯(R=0.9997)20、苯甲醛(R=0.9999)21、2-壬酮(R=0.9998)22、1-十二烯(R=0.9998)23、3-戊酮(R=0.9996) 泰通科技是专业从事于精密仪器设计、研发、生产、销售及服务的技术型企业。凭借着专业的研发、生产及售后服务团队为广大客户朋友提供高品质产品与优质的服务。产品研发上,始终奉行“进取、求实、严谨、创新”的方针,以技术为核心,不断开拓创新,力求以先进稳定的产品为客户创造更大的价值。
  • 康宁新案例 |可烯醇化酮α -羟胺化连续流合成工艺之二
    可烯醇化酮的α-羟胺化反应一、以苯乙酮或苯丙酮的α-羟胺化反应以苯乙酮或苯丙酮为底物,在高效、多功能流动化学工艺平台进行了α-氯亚硝基衍生物原位制备、底物拔氢、α-羟胺化反应、硝酮中间体酸解、产物分析、液液分离、环戊酮骨架循环套用的整个流程(下图)。该连续流工艺平台实验室和放大规模反应单元采用的是康宁 LowFlow Reactor 和G1反应器,康宁反应器无缝放大的技术优势是该反应进一步扩大产能的保障。图7. 苯乙酮或苯丙酮的α-羟胺化反应连续流反应体系底物苯乙酮/苯丙酮与LiHMDS进入反应模组I在0℃、1 min停留时间条件下完成拔氢反应。反应液与发生器II中生成的 1-氯-1-亚硝基环戊烷进入反应模组II在0℃、1 min停留时间条件下发生亲电胺化反应。所得反应液中的硝酮中间体与盐酸进入反应模组III在60℃、1 min停留时间条件下发生酸解,原料转化率分别为70%(苯乙酮)和98%(苯丙酮),产物分离收率分别为62%(苯乙酮)和90%(苯丙酮)。表8. 产物收率随时间和温度变化曲线值得一提的是,在反应釜条件下,如果以一级酮(苯乙酮)为底物,即便将反应温度冷却至-78℃,反应生成的硝酮中间体还是更容易与原料烯醇负离子质子交换,进一步反应后只能得到46%的二胺化杂质。而在连续流工艺条件下,得益于物料的快速混合效果、低返混以及局部化学计量的精准控制,有助于得到目标产物,避免二胺化杂质的产生(下表)。对比典型的间歇釜反应条件(-78℃),在连续流工艺中,亲电胺化反应可以在更温和的反应温度(0℃)中进行,同时避免物料分解并在停留时间1分钟内达到几乎定量的转化。但不建议尝试高于0℃的反应条件以进一步减少停留时间,这可能会导致堵塞或物料的爆炸性分解。反应模块III的出料口集成了Zaiput高效液-液分离器在用来在线自动分离水相和有机相,水相中基本为纯的目标产物的盐酸盐,有机相中主要为环戊酮骨架。对有机相进一步处理以回收环戊酮,可转化为环戊酮肟,分离收率83%。环戊酮骨架的循环利用,使整个工艺更加绿色环保。Zaiput 液-液分离器是康宁在中国独家代理的在线分离仪器。是由MIT孵化出来的新型专利技术,可取代传统萃取技术。 二、扩展实验维持反应器设置不变,尝试了包括苯乙酮在内的22个底物,原料转化率和产物分离收率列于下表:实验结果讨论本通过独特、高效、可放大的连续流平台,可实现从可烯醇化酮和α-氯亚硝基化合物1a以高分离收率制备α-羟胺化酮化合物库。对高附加值的α-羟胺化酮中间体的生产可以实现工业化生产。分别以一级、二级和三级酮类化合物为原料制备了22个α-羟胺化酮化合物,为几种医药中间体 (包括世卫组织必需品和短缺药物)的生产开辟了道路。本项研究充分体现了连续流工艺的主要优点包括:高效的传热、传质系数,在线分析的集成、很少的占地面积等。反应平台保持了紧凑和高度集成的反应器设计(包括辅助设备在内小于2平方米)。连续流工艺条件下毒性和有潜在爆炸风险的化合物的原位制备和消耗使反应对环境的影响大大降低,对绿色合成技术延伸与拓展具有显著的参考意义!Reference:Victor-Emmanuel H. Kassin, Romain Morodo,a Thomas Toupy,Isaline Jacquemin, Kristof Van Hecke, Raphaël Robiette and Jean-Christophe M. Monbaliu ,Green Chem., 2021, 23,2336
  • 生态环境部发布《水质 苯甲醚和甲基叔丁基醚的测定 吹扫捕集/气相色谱-质谱法(征求意见稿)》
    为贯彻《中华人民共和国环境保护法》,规范生态环境监测工作,我部组织编制了《水质 苯甲醚和甲基叔丁基醚的测定 吹扫捕集/气相色谱-质谱法》国家生态环境标准征求意见稿,现公开征求意见。标准征求意见稿及其编制说明,可登录我部网站(http://www.mee.gov.cn)“意见征集”栏目检索查阅。  各机关团体、企事业单位和个人均可提出意见和建议。请于2023年6月12日前将意见建议书面反馈我部,并注明联系人及联系方式,电子文档请同时发送至联系人邮箱。  联系人:生态环境部监测司陈春榕、滕曼  电话:(010)65646262  传真:(010)65646236  邮箱:zhiguanchu@mee.gov.cn  地址:北京市东城区东安门大街82号  邮编:100006  附件:  1.征求意见单位名单  2.水质 苯甲醚和甲基叔丁基醚的测定 吹扫捕集/气相色谱-质谱法(征求意见稿)  3.《水质 苯甲醚和甲基叔丁基醚的测定 吹扫捕集/气相色谱-质谱法(征求意见稿)》编制说明    生态环境部办公厅  2023年5月6日  (此件社会公开)
  • 7项国家生态环境标准发布 涉及土壤、水质、废气等的色、质谱测定
    为贯彻《中华人民共和国环境保护法》,规范生态环境监测工作,近日,生态环境部发布《环境空气 65种挥发性有机物的测定 罐采样/气相色谱-质谱法》(HJ 759-2023)、《固定污染源废气 非甲烷总烃连续监测技术规范》(HJ 1286-2023)、《固定污染源废气 烟气黑度的测定 林格曼望远镜法》(HJ 1287-2023)、《水质 丙烯酸的测定 离子色谱法》(HJ 1288-2023)、《土壤和沉积物 15种酮类和6种醚类化合物的测定 顶空/气相色谱-质谱法》(HJ 1289-2023)、《土壤和沉积物 毒杀芬的测定 气相色谱-三重四极杆质谱法》(HJ 1290-2023)和《地表水环境质量监测点位编码规则》(HJ 1291-2023)等7项国家生态环境标准。《环境空气 65种挥发性有机物的测定 罐采样/气相色谱-质谱法》(HJ 759-2023)规定了测定环境空气和无组织排放监控点空气中65 种挥发性有机物的罐采样/气相色谱-质谱法。《环境空气 挥发性有机物的测定 罐采样/气相色谱-质谱法》(HJ 759—2015)首次发布于2015年,起草单位为江苏省环境监测中心。本次为第一次修订。与原标准相比,本标准在适用范围中增加了无组织排放监控点空气,完善了采样技术要求和前处理、定量方式的性能指标要求,支撑细颗粒物和臭氧协同控制工作及《关于消耗臭氧层物质的蒙特利尔议定书》履约监测。《固定污染源废气 非甲烷总烃连续监测技术规范》(HJ 1286-2023)为首次发布,规定了固定污染源废气非甲烷总烃和相关废气参数连续监测系统的组成和功能、技术性能、监测站房、安装、技术指标调试检测、技术验收、日常运行维护、质量保证和质量控制以及数据审核和处理等有关要求。有利于推动非甲烷总烃连续监测技术在固定源管理中的标准化、规范化应用,支撑《石油炼制工业污染物排放标准》(GB 31570-2015)等标准实施。《固定污染源废气 烟气黑度的测定 林格曼望远镜法》(HJ 1287-2023)为首次发布,规定了固定污染源废气中烟气黑度测定的林格曼望远镜法。适用于固定污染源排放的灰色或黑色烟气在排放口处黑度的测定,不适用于其他颜色烟气的测定,解决了林格曼黑度图板携带不便、摆放受限、易损褪色等问题,进一步提高烟气黑度测定结果的准确性和可比性,支撑《锅炉大气污染物排放标准》(GB 13271-2014)等标准实施。《水质 丙烯酸的测定 离子色谱法》(HJ 1288-2023)为首次发布,适用于地表水、地下水、生活污水和工业废水中丙烯酸的测定,填补了水中丙烯酸分析方法标准空白。本标准具有前处理方法简单、灵敏度高、重复性好等优点,支撑《石油化学工业污染物排放标准》(GB 31571-2015)、《合成树脂工业污染物排放标准》(GB 31572-2015)等标准实施。《土壤和沉积物 15种酮类和6种醚类化合物的测定 顶空/气相色谱-质谱法》(HJ 1289-2023)为首次发布,适用于适用于土壤和沉积物中乙醚、丙酮、甲基叔丁基醚、二异丙基醚、乙基叔丁基醚、2-丁酮、 甲基叔戊基醚、2-戊酮、乙基叔戊基醚、3-戊酮、甲基叔丁基酮、4-甲基-2-戊酮、2-己酮、环戊酮、3- 庚酮、2-庚酮、环己酮、6-甲基-2-庚酮、二异丁基甲酮、3-辛酮、2-辛酮等 15 种酮类和 6 种醚类化合物的测定,填补了土壤和沉积物中醚类化合物分析方法标准空白,拓展了酮类化合物分析对象范围,操作简便,易于推广,支撑土壤风险评估及管控工作。《土壤和沉积物 毒杀芬的测定 气相色谱-三重四极杆质谱法》(HJ 1290-2023)为首次发布,规定了测定土壤和沉积物中3种指示性毒杀芬同类物P26、P50 和P62 的气相色谱-三重四极杆质谱法,填补了土壤和沉积物中毒杀芬分析方法标准空白。本标准具有准确性好、灵敏度高等优点,支撑《新污染物治理行动方案》实施。《地表水环境质量监测点位编码规则》(HJ 1291-2023)为首次发布,适用于地表水环境质量常规监测点位的编码工作。本标准明确了监测点位控制级别、流域水系、行政区划、水体类型和顺序等要素的编码方法,规范了监测点位编码工作,在点位信息维护、数据联网与应用、信息公开等方面发挥重要作用。其中,《地表水环境质量监测点位编码规则》(HJ 1291-2023)自发布之日起实施,其余6项标准自2023年8月1日起实施。自2023年8月1日起,《环境空气 挥发性有机物的测定 罐采样/气相色谱-质谱法》(HJ 759-2015)废止。附:①环境空气 65 种挥发性有机物的测定 罐采样_气相色谱-质谱法 (HJ 759—2023代替HJ 759—2015) ②固定污染源废气 非甲烷总烃连续监测技术规范 (HJ 1286—2023) ③固定污染源废气烟气黑度的测定 林格曼望远镜法 (HJ 1287—2023) ④水质 丙烯酸的测定 离子色谱法 (HJ 1288—2023) ⑤土壤和沉积物 15种酮类和6种醚类化合物的测定 顶空_气相色谱-质谱法 (HJ 1289—2023) ⑥土壤和沉积物 毒杀芬的测定 气相色谱-三重四极杆质谱法 (HJ 1290—2023) ⑦地表水环境质量监测点位编码规则 (HJ 1291—2023)
  • 赫施曼助力胶鞋 、运动鞋N-甲基吡咯烷酮含量的测定
    胶鞋和运动鞋是我们日常生活中常见的鞋子类型,在生产过程中需要考虑到其材料成分及安全性。N-甲基吡咯烷酮是一种化学物质,对人体有一定的危害,因此需要进行检测和限制其含量。根据GB/T 38349-2019,测定胶鞋和运动鞋中N-甲基吡咯烷酮的方法是高效液相色谱法。实验涉及标准溶液的配置:N-甲基吡略烷酮标准储备溶液,20mg/L:用Miragen电动移液器移取0.5mL浓度为1000mg/L的N-甲基吡咯烷酮标准溶液至25mL容量瓶中,用甲醇(色谱纯)定容至刻度,得到20mg/L的标准储备溶液。N-甲基吡咯烷酮标准工作溶液:采用10mL规格的Miragen电动移液器,单吸多排模式设置5个体积分别为0.25、0.5、1.0、2.5和5mL,然后按分液键,将5个体积的N-甲基毗咯烷酮标准储备溶液(20mg/L)分别加入到10mL容量瓶中,然后用甲醇(色谱纯)定容至刻度,得到浓度分别为0.5、1、2、5和10mg/L标准工作溶液,与20mg/L的N-甲基吡咯烷酮标准储备液组成六个不同浓度的标准工作溶液。 实验室移取小体积(几微升到10毫升)的液体,一般采用移液器。Miragen电动移液器,数值靠设定或选定,电机控制活塞运动,吸液和排液也更加稳定,还有步骤少、调数快、模式多等诸多优势。Miragen电动移液器可给电机多段信号,从而达到吸液和排液分多次且各体积独立可调。比如上面的标准溶液的移取,就可设置单吸多排,单次吸取9.25mL,分5次排液(0.25、0.5、1.0、2.5和5mL),程序可存储和调用,非常便捷。
  • 全自动乌氏粘度仪-甲基乙烯基硅橡胶粘均分子量测定
    甲基乙烯基硅橡胶简称乙烯基硅橡胶,是由二甲基硅氧烷与少量乙烯基硅氧烷共聚而成,乙烯基含量一般为0.1%~0.3% (摩尔分数)。少量不饱和乙烯基的引入使它的硫化工艺及成品性能,特别是耐热老化性和高温抗压缩变形有很大改进。甲基乙烯基硅氧烷单元的含量对硫化作用和硫化胶耐热性有很大影响,含量过少则作用不显著,含量过大【达0.5% (摩尔分数)】 会降低硫化胶的耐热性。甲基乙烯基硅橡胶具有很好的耐高、低温性,可在-50~250℃下长期工作,防潮、电绝缘性,耐电弧,电晕性。耐老化、耐臭氧性。表面不粘性和憎水性。压缩变形小,耐饱和蒸汽性。广泛应用于耐高、低温密封管、垫圈、滚筒、按键胶辊、瓷绝缘子的更新换代。按照GB/T 28610粘均分子量测定方法。粘度法是测定聚合物分子量较为简捷的方法。特性粘度[η]是高分子溶液浓度趋近于零时的粘数值或对数粘数值(ηsp/C或Inηr/C)。在甲苯溶剂中,高分子物质的分子量和特性粘度的关系用下式表示: [η]=KMα式中:K-----常数,K=9.46×10-3;M----粘均分子量; α-----特性常数值;α=0.71用此计算公式计算得到分子量。实验所需仪器:卓祥全自动粘度仪、多位溶样器、自动配液器、万分之一电子天平。实验所需试剂:甲苯、无水乙醇。(AR级)溶剂粘度的测定:卓祥全自动粘度仪设置到实验目标温度值并且稳定后,加入甲苯,软件中启动测试任务待结束。粘度管的清洗:启动卓祥全自动粘度仪清洗、干燥程序,仪器自动将粘度管清洗干燥后待用。样品制备:在万分之一天平上精准称量精确到0.0001g,通过自动配液器将溶液浓度精准配制,再将样品瓶放置到多位溶样器室温中溶解,待溶解完毕取出待用(室温静置需N小时以上)。样品粘度的测定:加入样品,启动软件中特定公式测试,待任务结束。粘度管的清洗:再次启动卓祥全自动粘度仪清洗、干燥程序,仪器自动将粘度管清洗干燥后待用。按照以下公式1-5计算:ηr=t/t0---------------------------------------------------1ηsp=ηr-1--------------------------------------------------2c=m/v---------------------------------------------------3[η]=KMα-------------------------------------------------5式中:ηr------相对粘度;t ------溶液时间值,单位为秒(s);t0-----溶剂时间值,单位为秒(s);ηsp-----增比粘度;c------样品的浓度,单位为克每毫升g/ml;m----样品质量,单位为g;v---溶剂体积,单位为ml;[η]------特性粘度;M----粘均分子量; K-----常数,K=9.46×10-3; α-----特性常数值,α=0.71;
  • 卷烟条与盒包装中挥发性有机化合物测定——Supelco提供解决方案
    烟草和印刷行业挥发物检测国标指定用柱&mdash &mdash VOCOLTM气相毛细管柱 VOCOLTM气相毛细管柱是国标YC/T 207-2006《卷烟条与盒包装中挥发性有机化合物的测定 顶空气相色谱法》中的指定专用柱,也是GB-T-5750-2006生活饮用水标准检验方法中挥发性物质1,1-二氯乙烯(GB/T5750.8-2006:5.1)的指定用柱。 因其在分离度、柱性能等各方面均超越竞争对手的对应色谱柱,目前已经成为了烟草和相关印刷行业检测的指定用柱,并经过证明是目前满足该检测需求的唯一用柱。VOCOLTM气相毛细管柱广泛地应用于全国环境检测中心、各大卷烟厂,烟草研究院,烟用纸业公司,印刷厂等。 VOCOLTM气相毛细管柱是中等极性色谱柱,为分析挥发性有机化合物(VOCs)而专门设计的,是Sigma-Aldrich公司旗下著名分析品牌Supelco(色谱科)的专利产品。该系列色谱柱膜厚均大于1.0um,能够为挥发性有机物提供更长的保留时间和分离度,可以说是挥发性有机物分析的首选用柱。用于直接进样或配合吹扫捕集使用,适用于US EPA 502.2,524.2,624,8240,8260和8021等分析方法。 针对国标YC/T 207-2006《卷烟条与盒包装中挥发性有机化合物的测定 顶空气相色谱法》中物质的检测,SIGMA-ALDRICH为您提供了详细的产品清单,帮助您实现快速检测。如有任何问题,请随时联系我们。 北京:010-65688088-6812 上海:021-61415566-8209 广州:020-38840730-5001 序号 货号 名称 规格 目录价(元) 01 24217-U VOCOLTM气相毛细管柱 60m*0.32mm*1.8um 8460.27 02 12540-5ML-F 苯 5ml/瓶 566.28 03 03079-5ML 乙苯 5ml/瓶 625.95 04 95660-5ML 邻二甲苯 5ml/瓶 641.16 05 95670-5ML 间二甲苯 5ml/瓶 641.16 06 95680-5ML 对二甲苯 5ml/瓶 601.38 07 46139-5ML-R 乙醇 5ml/瓶 391.95 0891237-1ML-F 异丙醇 1ml/瓶 360.36 09 19422-5ML 正丁醇 5ml/瓶 827.19 10 02474-5ML 4-甲基-2-戊酮 5ml/瓶 1034.28 11 02482-1ML 环己酮 1ml/瓶 221.13 12 58958-5ML 乙酸乙酯 5ml/瓶 859.95 13 40858-1ML 乙酸丙酯 5ml/瓶 241.02 14 73285-1ML 乙酸丁酯 4ml/瓶 241.02 15 90871-1ML-F 乙酸异丙酯 3ml/瓶 262.08 16 72405-1ML-F 乙二醇二甲醚 2ml/瓶 363.87 17 82762-1ML-F 甲醇 1ml 160.29 18 96566-5ML-F 正丙醇 5ml/瓶 1430.91 19 45997-1ML-F 乙酸甲酯 1ml/瓶 437.58 20 47745-U 苯乙烯 1g/瓶 273.78 关于Sigma-Aldrich: 美国Sigma-Aldrich公司,是一家致力于生命科学与化学领域的高科技跨国公司,产品涵盖生物化学、有机化学、色谱分析等多个领域,产品数量超过120,000种,是全球数以万计的科学家和技术人员的实验伙伴。Sigma-Aldrich公司旗下的两大著名分析品牌Supelco和Fluka/RdH ,致力于分析化学领域的产品研制开发、生产销售和技术服务等,主要产品包括色谱柱、色谱耗材、固相萃取(SPE)、固相微萃取(SPME) 及品种十分齐全的高品质分析试剂和标准品,能为广大分析领域用户提供集色谱耗材、分析试剂和标准品于一体的一揽子解决方案。Sigma-Aldrich在36个国家与地区设有营运机构,雇员超过7900人,为全世界的用户提供优质的服务。Sigma-Aldrich承诺通过在生命科学、高科技与服务上的领先优势帮助用户在其领域更快地取得成功。如需进一步了解Sigma-Aldrich,请访问我们的官方网站:http://www.sigma-aldrich.com
  • 全国饲料工业标准化技术委员会发布国家标准《饲料中新甲基橙皮苷二氢查耳酮的测定 高效液相色谱法》征求意见稿
    国家标准计划《饲料中新甲基橙皮苷二氢查耳酮的测定 高效液相色谱法》由 TC76(全国饲料工业标准化技术委员会)归口 ,主管部门为国家标准化管理委员会。主要起草单位 山东省畜产品质量安全中心 、山东奔月生物科技股份有限公司 。附件:《饲料中新甲基橙皮苷二氢查耳酮的测定 高效液相色谱法》征求意见稿.pdf《饲料中新甲基橙皮苷二氢查耳酮的测定 高效液相色谱法》编制说明.pdf
  • 脂溶性聚合物环氧树脂及甲基硅油分子量分布测定
    脂溶性聚合物环氧树脂及甲基硅油分子量分布测定刘兴国 熊亮 曹建明 金燕美丽而寒冷的冬天又到了,室外大雪纷飞,喜欢运动的小伙伴们由户外转战室内,场馆内羽毛球、乒乓球、篮球大战相继上演,运动的身姿和蓝绿色地面、明亮的篮板构成了一道道靓丽的风景线。你可知道这漂亮的场地和器材是用什么材料制造的吗?学化学的你可能回答:“有机材料。”其实这些都是聚合物材料,绿色和蓝色的防滑地面材料为环氧树脂,有机玻璃的篮板材料为聚甲基丙烯酸甲酯。这些均为脂溶性聚合物材料的产品,它们已渗透到日常生活和高端科技的方方面面,从每天要用到的塑料袋到航天材料都可看见它们的身影。 今天,飞飞给大家重点介绍两种脂溶性聚合物。一种是低分子型环氧树脂,是由双酚A和环氧丙烷在氢氧化钠作用下缩聚而成,室温下为黄色液体或半固体,耐热、耐化学药品、电气绝缘性好,广泛用于绝缘材料、玻璃钢、涂料等领域,是常用的基础化工材料。另外一种为甲基硅油,它具有突出的耐高低温性、极低的玻璃化温度、很低的溶解度参数和介电常数等,在织物整理剂、皮革涂饰剂、化妆品、涂料和光敏材料等领域广泛应用。 分子量分布是表征聚合物的重要指标,对聚合物材料的物理机械性能和成型加工性能影响显著。常用测定方法有:粘度法、激光光散射法、质谱法和体积排阻色谱法 (SEC法),其中凝胶渗透色谱法(GPC法)作为体积排阻色谱法的一类,方便快捷、设备普及,具有广泛适用性。通过本文,飞飞给大家介绍以聚苯乙烯为标样,GPC法测定低分子量环氧树脂以及甲基硅油分子量的方法,通过对分子量分布的准确控制可以很好地保证产品的质量。变色龙软件GPC扩展包可以非常方便地将采集的GPC数据进行处理,快速地得到分子量分布的信息,而且该扩展包完全免费。 本实验仪器配置如下:仪器:赛默飞 U3000高效液相色谱仪泵:ISO3100 Pump自动进样器:WPS 3000SL Autosampler柱温箱:TCC3000 Column Compartment检测器:ERC 521示差检测器变色龙色谱管理软件 Chromeleon CDS 7.2 1. 环氧树脂分子量测定双酚A型环氧树脂基本结构及以它为材料制造的体育馆环氧地坪见图1:图1 双酚A型环氧树脂基本结构及体育馆环氧地坪色谱条件如下:分析柱:TSKgel G2500HXL 300*7.8mm,P/N:0016135(适用分子量范围100-20000);TSKgel G3000HXL 300*7.8mm,P/N:0016136(适用分子量范围500-60000);TSKgel G5000HXL 300*7.8mm,P/N:0016138(适用分子量范围1000-4000000);三根色谱柱串联分析。柱温:25℃RI检测器:过滤常数:2s,温度:35℃流动相:四氢呋喃,流速1.0mL/min进样量:15µL 对照品为聚苯乙烯,分子量分别为162,370,580,935,1250,1890,3050和4910;称取适量对照品用四氢呋喃超声溶解,浓度0.02mg/mL。样品用四氢呋喃溶解,浓度0.1mg/mL,测定谱图见图2。 图2不同分子量聚苯乙烯对照品测定谱图注:580和370两个对照品出厂报告上polydispersity多分散系数分别为1.13和1.15,分子量集中度差,所以峰形呈现为多簇小峰。其余对照品多分散系数均小于1.05,峰形呈对称单峰。 校正曲线及相关系数如下: 图3 校正曲线校正曲线方程y=-0.0006x3+0.0502x2-1.5496x+20.4439,相关系数R=0.9998。不同厂家不同批次环氧树脂样品测定结果如下: 表1 环氧树脂样品测定结果样品名称 重均分子量Mw样品-1 387样品-2 401样品-3 396 2. 甲基硅油分子量测定测试甲基硅油的分子量及其分布,常用的GPC方法是采用甲苯或四氢呋喃作为流动相,但是由于甲苯属于管制类试剂,不易购买,因此飞飞采用四氢呋喃(THF)作为流动相来测定硅油的分子量及其分布,结果显示分离与色谱峰形均较好。对照品为聚苯乙烯,分子量分别为1210,2880,6540,22800,56600和129000;称取适量对照品用四氢呋喃超声溶解,浓度约1.0mg/mL。样品用四氢呋喃溶解,浓度1mg/mL。色谱条件如下:分析柱:Shodex KF-805L 8.0*300mm(适用分子量范围300-2000000);柱温:30℃RI检测器温度:31℃流动相:四氢呋喃,流速0.8mL/min进样量:100µL 对照品测定谱图及校正曲线如下:图4 对照品测定谱图及校正曲线 校正曲线方程y=-0.0182x3+0.5987x2-7.1522x+34.6655,相关系数R=0.9996。甲基硅油样品测定结果数均分子量为20727,重均分子量为36273,Z均分子量为59280,Z+1均分子量为91320。总结到这里,飞飞给大家介绍了采用U3000液相结合变色龙软件采集和处理数据,分析低分子量环氧树脂和甲基硅油分子量的方法,由于两者分子量范围差异较大,实验采用了两组不同分子量的聚苯乙烯标准品作为对照品。对于环氧树脂由于需要测定的是低分子量聚合物且对照品分子量接近,所以采用了三根截留分子量不同的凝胶柱串联进行测定,结果更为准确。变色龙GPC分子量计算扩展包功能强大,导入和使用方便,为广大变色龙工作站用户扩展使用GPC功能带来便利。本文介绍的为脂溶性聚合物的分子量测定,对于水溶性聚合物的分子量分布测定,飞飞这里有较多应用文章供大家参考,感兴趣的朋友可联系我索取,这里给大家提供一篇最常用的,右旋糖酐40的分子量分布测定,扫描以下二维码既可查阅。
  • 水相中氧化亚铜-锐钛矿异质结上太阳光驱动的5-羟甲基糠醛催化选择氧化
    1.文章信息标题:Sunlight-drivenphotocatalyticoxidationof5-hydroxymethylfurfuraloveracuprousoxide-anataseheterostructureinaqueousphase中文标题:水相中氧化亚铜-锐钛矿异质结上太阳光驱动的5-羟甲基糠醛催化选择氧化页码:AppliedCatalysisB:Environmental320(2023)122006DOI:https://doi.org/10.1016/j.apcatb.2022.1220062.文章链接https://doi.org/10.1016/j.apcatb.2022.1220063.期刊信息期刊名:AppliedCatalysisB:EnvironmentalISSN:0926-33732021年影响因子:24.319分区信息:中科院一区Top涉及研究方向:化学4.作者信息第一作者是:云南大学张奇钊;通讯作者:云南大学方文浩。5.光源型号:CEL-HXF300-T3文章简介将5-羟甲基糠醛(HMF)选择氧化为2,5-二甲酰基呋喃(DFF)是糠醛类生物质平台分子转化利用的重要途径之一。DFF是合成糠基生物聚合物、药物中间体、杀菌剂以及荧光剂等的重要单体。传统的热催化氧化技术通常依赖于苛刻的温度和氧压,容易诱发安全和环境隐患。因此,迫切需要开发在温和条件下高效转化HMF为DFF的环境友好型催化体系。于是,光催化氧化技术,因为具有光生空穴和氧气存在下产生的活性氧物种可以在温和条件下驱动该反应的进行而成为科学家们研究的热点。然而现有的金属氧化物光催化剂的制备大部分较为复杂或者以有机试剂(即乙腈、三氟化苯等)作为反应溶剂导致较高的制备成本和环境污染。因此,非常需要低成本、易于制备和易于调节的氧化物催化剂。此外,使用水代替有机溶剂作为反应介质更环保,但对于金属氧化物催化剂来说可能具有很大的挑战性。因为作为副产物的水往往会阻碍正向反应,并且水也可能加剧金属浸出。基于上述研究背景,云南大学化学科学与工程学院方文浩教授课题组通过化学还原沉淀法制备了具有p-n异质结的(Cu2O)x‖TiO2光催化剂,实现了以H2O为反应溶剂,O2作为氧化剂,在无任何添加剂条件下高效利用太阳光催化氧化HMF制DFF。通过调变两种金属的比例和二氧化钛的晶相,深入研究了催化剂能带结构对反应机理的影响。研究发现Cu2O的含量决定HMF的转化率,而TiO2的晶相(即锐钛矿和金红石)影响DFF的选择性。通过清除剂实验研究揭示了空穴(h+)会将HMF深度氧化为CO2,而单线态氧(1O2)能够将HMF选择氧化为DFF。结合莫特肖特基曲线和价带谱数据可以推出半导体的能带结构,由此可得Cu2O的价带位置显然比HMF氧化为DFF的氧化电位更正,但比DFF的氧化电位更负。这表明Cu2O的价带上的光生空穴可以将HMF氧化成DFF,但不能进一步氧化DFF。相反,TiO2的价带位置比DFF的氧化电位更负,因此TiO2价带上的光生空穴能够进一步氧化DFF。p-n异质结的形成不仅抑制了TiO2上羟基自由基(•OH)的产生,而且还促进了O2在Cu2O上活化产生1O2。因此p-n异质结的形成增强了Cu2O的氧化还原能力同时增强了TiO2光利用效率。此外,通过光致发光谱,光电流响应以及电化学阻抗谱表征发现(Cu2O)0.16‖TiO2(A)具有最佳的光生电子和空穴的分离效率以及最佳的电荷迁移效率。与此相对应的,(Cu2O)0.16‖TiO2(A)催化剂在水相、35℃、10mLmin-1O2和模拟太阳光下的温和条件下(如图1所示),产生64.5mggcatal.-1h-1的DFF生成速率。这是目前文献报道的以水为反应介质金属氧化物光催化剂上取得的最佳结果。此外,该催化剂可直接在太阳光和空气下工作,且多次循环使用未见失活。该工作通过一系列的光电性质与形貌表征,深入揭示了异质结催化剂中两种半导体间的强相互作用。研究了在光催化反应过程中光生空穴与各个活性氧物种的作用。并通过能带结构解释了晶相与催化活性的构效关联问题。期望本研究建立的反应选择性和能带结构之间的关系可以应用于其他异质结光催化体系。
  • HPLC级叔丁基甲醚促销
    货号:CAEQ-4-018397-4000 HPLC级叔丁基甲醚 规格:4L 报价:540元 促销价:整箱起订432元/瓶,4瓶/箱 促销时间:2011年5月3日至2011年5月31日 高效液相色谱法已经在产品检测、研发以及药物质量控制和环境分析领域成为首要的技术方法,因而对所使用的溶剂提出了更高的要求。 CNW液相色谱溶剂具有以下优点:1)低紫外吸收,确保最佳灵敏度;2)严格控制非挥发性物质、游离酸、游离碱和水分含量至最低;3)严格的梯度测试以检测干扰峰和基线漂移情况;4)可用于荧光检测。我们可以为您提供满足不同分析需求的溶剂,如UV-IR表示可满足紫外可见吸收光谱、红外光谱等分析;HPLC preparative表示可满足制备色谱分析;HPLC isocratic表示可满足等度洗脱分析;HPLC gradient表示可满足梯度洗脱分析;GPC表示可满足大分子化合物凝胶渗透色谱分析;另外我们还可以为您提供满足所有现代LC/MS精确检测分析用的溶剂。 订货信息: 产品货号 产品名称 品牌 规格 报价(元) 4.003302.4000# HPLC级甲醇 CNW 4L 180.00 4.003306.4000# HPLC级乙腈 CNW 4L 420.00 4.003513.2500# HPLC级水 CNW 2.5L 200.00 4.003513.4000 HPLC级水 CNW 4L 320.00 4.012256.0500# HPLC级苯CNW 500ml 400.00 4.012256.1000 HPLC级苯 CNW 1L 600.00 4.012256.4000# HPLC级苯 CNW 4L 1360.00 4.012783.0500# HPLC级吡啶 CNW 500ml520.00 4.012783.1000# HPLC级吡啶 CNW 1L 860.00 4.012783.4000 HPLC级吡啶 CNW 4L 2800.00 4.010734.0500 HPLC级二甲基亚砜 CNW 500ml 360.00 4.010734.4000# HPLC级二甲基亚砜 CNW 4L 1150.00 4.011410.0250# HPLC级1,4-二氧六环 CNW 250ml 480.00 4.010410.0500 HPLC级1,4-二氧六环 CNW 500ml 860.00 4.010410.1000# HPLC级1,4-二氧六环 CNW 1L 1360.00 4.014077.4000 HPLC级N,N-二甲基甲酰胺 CNW 4L 520.00 4.014080.0500# HPLC级N,N-二甲基乙酰胺 CNW 500ml 360.00 4.014080.1000# HPLC级N,N-二甲基乙酰胺 CNW 1L 480.00 4.014080.2500 HPLC级N,N-二甲基乙酰胺 CNW 2.5L 800.00 4.011556.4000# HPLC级环己烷 CNW 4L 520.00 4.011406.0500# HPLC级N-甲基吡咯烷酮 CNW 500ml 320.00 4.011406.4000 HPLC级N-甲基吡咯烷酮 CNW4L 980.00 4.012001.4000# HPLC级二氯甲烷 CNW 4L 600.00 4.011408.0500 HPLC级1-氯丁烷 CNW 500ml 450.00 4.011408.1000# HPLC级1-氯丁烷 CNW 1L 750.00 4.011412.0500# HPLC级氯苯 CNW 500ml 560.00 4.011412.1000 HPLC级氯苯 CNW 1L 960.00 4.011404.1000 HPLC级1,2-二氯苯 CNW 1L 750.00 4.011414.0500# HPLC级1,2,4-三氯苯 CNW 500ml 520.004.011414.1000 HPLC级1,2,4-三氯苯 CNW 1L 860.00 4.018397.4000# HPLC级叔丁基甲醚 CNW 4L 540.00 4.011321.4000# HPLC级四氢呋喃 CNW 4L 720.00 4.014048.4000# HPLC级乙酸乙酯 CNW 4L 450.00 4.016362.4000# HPLC级乙醇 CNW 4L 520.00 4.013493.4000# HPLC级异丙醇 CNW4L 420.00 4.010893.1000# HPLC级异丁醇 CNW 1L 560.00 4.010893.4000 HPLC级异丁醇CNW 4L 1800.00 4.010566.4000# HPLC级异辛烷 CNW 4L 860.00 4.019067.1000 HPLC级正丙醇 CNW 1L 300.00 4.019067.2500 HPLC级正丙醇 CNW 2.5L 640.004.014508.1000# HPLC级正丁醇 CNW 1L 360.00 4.014508.4000# HPLC级正丁醇 CNW 4L 860.00 4.019030.4000# HPLC级正庚烷 CNW 4L 800.00 4.011518.4000# HPLC级正己烷 CNW 4L 450.00 4.019028.4000# HPLC级正戊烷 CNW 4L 800.00 4.011402.1000 HPLC级叔丁醇 CNW 1L 640.00 4.011401.0500 HPLC级正辛醇 CNW 500ml 480.00 4.011405.0250 HPLC级1,2-二氯乙烷 CNW 250ml400.00 4.011405.1000 HPLC级1,2-二氯乙烷 CNW 1L 600.00 4.011403.1000 HPLC级4-甲基-2-戊酮 CNW 1L 560.00 4.000306.4000 LS-MS甲醇 CNW 4L 600.00 4.000308.4000 LS-MS乙腈CNW 4L 840.00 4.000302.4000 LS-MS水 CNW 4L 600.00 了解更多产品请进入安谱公司网站 http://www.anpel.com.cn/
  • 多项标准将实施 涉及这些分析仪器!
    2月份已经来临,有大批国家标准将正式实施。经统计,2月1日正式实施的标准就有近270项,其中16项涉及仪器检测。那么让我们一起来看看这些与仪器相关的标准有哪些吧: 序号标准标号标准名称代替标准号实施日期1GB/T 4698.10-2020海绵钛、钛及钛合金化学分析方法 第10部分:铬量的测定 硫酸亚铁铵滴定法和电感耦合等离子体原子发射光谱法(含钒)GB/T 4698.10-19962021/2/12B/T 13747.27-2020锆及锆合金化学分析方法 第27部分:痕量杂质元素的测定 电感耦合等离子体质谱法2021/2/13GB/T 13747.3-2020锆及锆合金化学分析方法 第3部分:镍量的测定 丁二酮肟分光光度法和电感耦合等离子体原子发射光谱法GB/T 13747.3-19922021/2/14GB/T 13747.4-2020锆及锆合金化学分析方法 第4部分:铬量的测定 二苯卡巴肼分光光度法和电感耦合等离子体原子发射光谱法GB/T 13747.4-19922021/2/15GB/T 15076.11-2020钽铌化学分析方法 第11部分:铌中砷、锑、铅、锡和铋量的测定 直流电弧原子发射光谱法GB/T 15076.11-19942021/2/16GB/T 15076.4-2020钽铌化学分析方法 第4部分:铁量的测定 1,10—二氮杂菲分光光度法GB/T 15076.4-19942021/2/17GB/T 15076.6-2020钽铌化学分析方法 第6部分:硅量的测定 电感耦合等离子体原子发射光谱法GB/T 15076.6-19942021/2/18GB/T 15076.7-2020钽铌化学分析方法 第7部分:铌中磷量的测定 4-甲基-戊酮-[2]萃取分离磷钼蓝分光光度法和电感耦合等离子体原子发射光谱法GB/T 15076.7-19942021/2/19GB/T 38513-2020铌铪合金化学分析方法 铪、钛、锆、钨、钽等元素的测定 电感耦合等离子体原子发射光谱法2021/2/110GB/T 6041-2020质谱分析方法通则GB/T 6041-20022021/2/111GB/T 6324.10-2020有机化工产品试验方法 第10部分:有机液体化工产品微量硫的测定 紫外荧光法2021/2/112GB/T 38845-2020智能仪器仪表的数据描述 定位器2021/2/113GB/T 38935-2020光学遥感器在轨成像辐射性能评价方法 可见光-短波红外2021/2/114GB/T 13087-2020饲料中异硫氰酸酯的测定方法GB/T 13087-19912021/2/115GB/T 38596-2020催化剂生产废水中重金属含量的测定2021/2/116GB/T 38592-2020纺织染整助剂产品中4,4' -亚甲基双(2-氯苯胺)的测定2021/2/1
  • 英研发早期诊断糖尿病新仪器:诊断方法简易无痛
    牛津研发出早期诊断糖尿病新仪器   中新网1月6日电 据美国媒体报道,通常在儿童或者年轻时被诊断出患有甲型糖尿病的人必须注射胰岛素,并且要小心饮食,以便控制血糖。诊断这种疾病通常需要提取血样,这对很多青少年来说是一种可怕的经历。英国的研究人员说,他们研发出了一种简易无痛初步诊断法,只要提取病人呼吸的样本就可以。   据估计,每年有多达8万名儿童患上甲型糖尿病,如果不治疗,这种免疫性疾病会导致死亡,因此早期发现极为重要。   糖尿病的症状之一是病人呼出的气体带有甜味,牛津大学著名化学教授盖斯· 汉考克说,这是因为病人血液中累积的一种叫做酮类的化学物质所导致的。   他说:&ldquo 这种甜味是一种特殊酮类的气味,叫做丙酮,处于糖尿病酮症酸中毒阶段的病人呼吸中通常带有这种气味,被医生用来作为诊断依据。&rdquo   英国研究人员说,他们研发出一种便携式的呼吸分析仪器,可以探测出病人呼吸中非常少量的丙酮。   牛津医学诊断公司首席执行官伊恩&bull 坎贝尔说,研发这个仪器并不容易,因为人的呼吸中带有百万种化合物的分子,而这个仪器要测试出其中的一种。   他说:&ldquo 我们让病人往这个仪器里吹气,提取我们想要测量的挥发性有机化合物,滤过其余部分,然后把我们想要的分子放进测量空穴。&rdquo   汉考克教授参与了这个仪器的研发,他说,市面上有类似的分析仪器,不过只能放在桌上,很重。   汉考克说:&ldquo 我们的目的是把它做成便携式仪器,可以拿起来,简单地往里面吹气就行了。&rdquo   研究人员说,在一年之内,这种新型分析仪器就可以在医生诊所里投入使用,不久还可能会有更小型的供个人使用的仪器。   可是,研究人员指出,这种呼吸分析仪只能用来做初步检测,要确诊还必须通过适当的血液检查。
  • 污水监测追踪毒品技术将推广?哪些人员将从中受益
    p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201807/noimg/8df805fe-dc9d-4231-baeb-682f3fedb7f0.jpg" title=" 警方销毁毒品.png" / /p p style=" text-align: center " 中国警方销毁缴获的毒品 br/ /p p   近日,Nature上刊登了一篇文章称,中国正在运用一项罕见的法医技术监测几十座城市的毒品情况。 /p p   据了解,该技术是通过分析污水的化学成分或人体尿液中的代谢物进行毒源追溯。虽然许多国家都已采用污水流行病学(WBE)技术监测毒品问题,包括比利时、荷兰、西班牙和德国,但采集的数据主要用于流行病学研究而非政策制定。美国普吉特湾大学的化学家Daniel Burgard说:“最值得注意的是中国把这项技术转化为实际应用。” /p p   我国是如何把这项技术转化为实际应用的呢?协助各地警方开展缉毒工作北京大学的环境化学家李喜青教授表示,中山市警方已经通过污水监测技术成功追踪并逮捕了一名制毒分子 中国多座城市最早将于明年开始收集污水数据,帮助警方确定潜在吸毒人员。中山市成为全国首个将污水验毒技术全面应用于禁毒实务的城市。 /p p   实际上,国内研究毒品的污水分析法的机构已有多家。2011年,FoonYinLai等人检测出香港最大规模污水处理厂进水中的氯胺酮、甲基苯丙胺和可卡因,并估算出消费量分别为1400~1600mg/日/1000居民、180~200mg/日/1000居民、160~180mg/日/1000居民,这是污水分析法首次在亚洲大都市的应用。2012年9月至10月之间,北京大学李喜青等人首次在内陆18座大城市(北京、广东、上海等)检测了36个污水处理厂中的甲基苯丙胺、氯胺酮、可卡因、美沙酮、苯甲酰芽子碱、芽子碱甲基酯、6-单乙酰吗啡、迷幻药、甲氧麻黄酮、亚甲基二氧吡咯戊酮、去甲氯胺酮等化合物的含量。结果表明,中国境内毒品的主要类型为甲基苯丙胺和氯胺酮,而且深圳和广州消费量高于北京、上海。 /p p   2017年,北京大学李喜青等人研究项目得到实际应用。2017年6月23日,中山市公安局、北京大学城市与环境学院举行了环境法医学联合实验室签约仪式。据悉,这是北京大学城市与环境学院与地方公安合作成立的国内第一个毒品环境法医学实验室,标志着中山成为全国首个通过污水验毒监测毒情新模式的试点。 /p p   今年6月,中国国家主席习近平表示禁毒工作事关国家安危和人民福祉。值得注意的是,李教授指出,截至今年底,中央和地方政府将投资至少1000万元人民币(约合150万美元)用于开发WBE监测技术,他预计未来几年每年的投资金额至少会翻番。 /p p   小编整理了一下发现,可用于污水中毒品检测的仪器有HPLC、LC-MS、GC-MS、激光拉曼光谱仪等。通过整理招标信息发现,部分省市对可进行城市污水毒品检测机构正在进行招标。如若通过检测污水追踪监测毒品的技术推广开来,相信相关仪器的需求量必将增长,相关检测机构也将从中受益! /p p 招标公告示例: /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201807/insimg/f182d31f-82de-498a-a87f-b11af9765a96.jpg" style=" float:none " title=" 招标公告.png" / /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201807/insimg/dca5176b-dd3a-4c9d-8d0c-719e16b32012.jpg" style=" float:none " title=" 招标公告2.png" / /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201807/insimg/d13dc849-fe21-4b43-846d-a872ef9565c5.jpg" style=" float:none " title=" 招标公告3.png" / /p p br/ /p
  • 生态环境部《土壤和沉积物中甲基汞和乙基汞测定》 (征求意见稿) 标准解读
    生态环境部办公厅2020年12月31日发布《土壤和沉积物 甲基汞和乙基汞的测定 吹扫捕集/气相色谱-冷原子荧光光谱法(征求意见稿)》 (环办标征函〔2020〕62号) ,我国国内第一个土壤和沉积物中甲基汞和乙基汞的测定方法标准公开征求意见。 该标准的主要起草单位是由中国环境监测总站和江苏省环境监测中心,验证单位包括:山东省生态环境监测中心、广西壮族自治区生态环境监测中心、四川省生态环境监测总站、湖南省长沙生态环境监测中心、贵阳市环境监测中心站和合肥市环境监测中心站等七家单位。为什么需要对土壤和沉积物中的甲基汞和乙基汞进行测定呢?土壤中的汞主要包括金属汞、无机化合态汞和有机化合态汞。有机化合态汞以有机汞(烷基汞)和有机络合汞普遍存在。其中烷基汞主要包括甲基汞和乙基汞;甲基汞是有机汞中毒性最大的一种形态,甲基汞很容易穿过血脑屏障,对人神经系统进行侵害,尤其对妇女和儿童有很大的影响;土壤中的甲基汞易被植物吸收,通过食物链在生物体内富集,从而暴露给人体;而土壤中的腐殖质与汞结合形成的络合物不易被植物吸收。另外,乙基汞也属于亲脂性化合物,中毒后可引起急性肠胃炎以及造成严重的肾脏损伤等。土壤和沉积物中的甲基汞和乙基汞国内是否有相关限值控制标准? 2018年6月,生态环境部与国家市场监督管理总局联合发布了《土壤环境质量 建设用地土壤污染风险管控标准(试行)》(GB36600—2018)国家环境质量标准,该标准于2018年8月1日正式实施,标准中明确了不同类型建设用地中甲基汞的筛选值和管制值,其中甲基汞在第一类用地的筛选值为5mg/kg。 目前国内暂无涉及土壤和沉积物中乙基汞的限值控制标准。《土壤和沉积物 甲基汞和乙基汞的测定 吹扫捕集/气相色谱-冷原子荧光光谱法(征求意见稿)》内容简介原理:土壤或沉积物样品经碱液提取后,提取液中的甲基汞和乙基汞经四丙基硼化钠衍生,生成挥发性的甲基丙基汞和乙基丙基汞,经吹扫捕集、热脱附和气相色谱分离后,再高温裂解为汞蒸气,用冷原子荧光光谱仪检测。根据保留时间定性,外标法定量。 方法检出限和定量下限:当取样量为0.5 g 时,甲基汞和乙基汞的方法检出限均为0.2 μg/kg,测定下限均为0.8 μg/kg 前处理过程:分析过程:标准曲线:8 个40 ml 棕色进样瓶,分别加入实验用水约35 ml,再分别加入0 pg,2.00 pg,5.00 pg,10 pg,50 pg,100 pg,500 pg,1500 pg的甲基汞和乙基汞混合标准溶液,,然后加入300 μl 乙酸-乙酸钠缓冲溶液及50 μl 四丙基硼化钠溶液(如果只进行甲基汞的分析,可加入四乙基硼酸钠溶液进行衍生化反应),迅速加入实验用水至瓶满,不留空隙,盖紧盖子静置10 min ~15 min。实际样品:40 ml 进样瓶中加入实验用水约35 ml 至瓶颈处,取试样150 μl 至进样瓶中,依次加入300 μl 乙酸-乙酸钠缓冲溶液及50 μl 四丙基硼化钠溶液(如果只进行甲基汞的分析,可加入四乙基硼酸钠溶液进行衍生化反应),最后迅速加入实验用水至瓶满,盖紧盖子静置10 min ~15 min 上机分析:标准内部验证和外部验证均采用美国知名仪器厂家Brooks Rand公司生产的MERX全自动烷基汞分析系统:MERX全自动烷基汞分析系统异位吹扫捕集,样品满瓶式进样,衍生化效率和烷基汞分析结果不受环境空气的影响三通道Tenax 捕集阱交替捕集,效率高液体传感器,水汽进入捕集阱会报警精密流量控制,气流波动小,避免因吹扫气流量过大造成大量水汽进入吸附阱或因流量过小造成的吸附不完全甲基汞检出限可达0.002ng/L;乙基汞检出限可达0.005ng/L宽线性范围:甲基汞0.0125-50ng/L,乙基汞0.025-50ng/L残留低:高浓度样品运行后仪器残留低于2‰重复性好,数据结果可靠国内销售数量超过300家,用户的普遍选择MERX全自动烷基汞分析系统同时还是《水质烷基汞的测定吹扫捕集/气相色谱-冷原子荧光光谱法》(HJ 977-2018)的验证仪器。该仪器数据质量稳定可靠,在国内饱受好评。谱图:质量控制:空白试验:每20 个样品或每批次样品(<20 个/批)应至少做一个空白试样,空白试样的测定值应低于方法检出限(甲基汞和乙基汞的方法检出限均为0.2 μg/kg)校准:建议每次分析前均应建立工作曲线,若采用线性回归法,相关系数≥0.995;若采用响应因子法,校准系数RSD≤15%(工作曲线绘制后,每批样品测定时需要测定工作曲线中间浓度点的标准溶液,其相对误差值应该控制在±20%以内。否则,需重新绘制工作曲线)平行样:每20 个或每批次样品(<20 个/批)应至少测定一个平行双样,测定结果的相对偏差应≤30%基体加标:每20 个样品或每批次样品(<20 个/批)应至少测定一个基体加标样品或一个土壤或沉积物的有证标准物质。甲基汞加标回收率控制在75%~130%之间;乙基汞加标回收率控制在70%~120%之间标准物质测定:测定甲基汞有证标准物质的允许相对误差在﹣40%~+10%之间展望:本标准的检出限、精密度等性能指标能满足《土壤环境质量 建设用地土壤污染风险管控标准(试行)》(GB 36600-2018)的相应要求,相信该标准正式出台后,会使涉及土壤和沉积物中甲基汞和乙基汞分析检测的单位有据可依,并为相关分析检测人员提供新的思路和手段。 参考文献:1. 关于征求《土壤和沉积物 甲基汞和乙基汞的测定吹扫捕集/气相色谱-冷原子荧光光谱法》国家环境保护标准意见的通知 (链接:http://www.mee.gov.cn/xxgk2018/xxgk/xxgk06/202012/t20201231_815730.html);2. 《土壤和沉积物 甲基汞和乙基汞的测定 吹扫捕集/气相色谱-冷原子荧光光谱法(征求意见稿)》及编制说明;3. 《土壤环境质量 建设用地土壤污染风险管控标准(试行)》(GB36600—2018)。
  • 重磅:生态环境部《土壤和沉积物 甲基汞和乙基汞的测定》 (HJ 1269—2022) 标准发布
    生态环境部办公厅2023年1月29日正式发布《土壤和沉积物 甲基汞和乙基汞的测定 吹扫捕集/气相色谱-冷原子荧光光谱法》(HJ 1269—2022),该标准为我国国内第一个土壤和沉积物中甲基汞和乙基汞的测定方法标准,标准将于2023年6月16日正式实施。 该标准的主要起草单位是由中国环境监测总站和江苏省环境监测中心,验证单位包括:山东省生态环境监测中心、广西壮族自治区生态环境监测中心、四川省生态环境监测总站、湖南省长沙生态环境监测中心、贵阳市环境监测中心站和合肥市环境监测为什么需要对土壤和沉积物中的甲基汞和乙基汞进行测定呢?土壤中的汞主要包括金属汞、无机化合态汞和有机化合态汞。有机化合态汞以有机汞(烷基汞)和有机络合汞普遍存在。其中烷基汞主要包括甲基汞和乙基汞;甲基汞是有机汞中毒性最大的一种形态,甲基汞很容易穿过血脑屏障,对人神经系统进行侵害,尤其对妇女和儿童有很大的影响;土壤中的甲基汞易被植物吸收,通过食物链在生物体内富集,从而暴露给人体;而土壤中的腐殖质与汞结合形成的络合物不易被植物吸收。另外,乙基汞也属于亲脂性化合物,中毒后可引起急性肠胃炎以及造成严重的肾脏损伤等。土壤和沉积物中的甲基汞和乙基汞国内是否有相关限值控制标准? 2018年6月,生态环境部与国家市场监督管理总局联合发布了《土壤环境质量 建设用地土壤污染风险管控标准(试行)》(GB36600—2018)国家环境质量标准,该标准于2018年8月1日正式实施,标准中明确了不同类型建设用地中甲基汞的筛选值和管制值,其中甲基汞在第一类用地的筛选值为5mg/kg。目前国内暂无涉及土壤和沉积物中乙基汞的限值控制标准。《土壤和沉积物 甲基汞和乙基汞的测定 吹扫捕集/气相色谱-冷原子荧光光谱法》(HJ 1269—2022)内容简介原理:土壤或沉积物样品经碱液提取后,提取液中的甲基汞和乙基汞与四丙基硼化钠发生衍生化反应,生成挥发性的甲基丙基汞和乙基丙基汞,经吹扫捕集、热脱附和气相色谱分离后,再高温裂解为汞蒸气,用冷原子荧光光谱法测定。根据保留时间定性,外标法定量。 方法检出限和定量下限:当取样量为0.5 g 时,提取液体积为 30 ml 时,甲基汞和乙基汞的方法检出限均为0.2 μg/kg,测定下限均为0.8 μg/kg 前处理过程:分析过程:标准曲线:8 个40 ml 棕色进样瓶,分别加入实验用水约35 ml,再分别加入0 pg,2.00 pg,5.00 pg,10 pg,50 pg,100 pg,500 pg,1000 pg的甲基汞和乙基汞混合标准溶液,,然后加入300 μl 乙酸-乙酸钠缓冲溶液及50 μl 四丙基硼化钠溶液,迅速加入实验用水至瓶满,不留空隙,盖紧盖子静置20 min实际样品:40 ml 进样瓶中加入实验用水约35 ml 至瓶颈处,取试样150 μl 至进样瓶中,依次加入300 μl 乙酸-乙酸钠缓冲溶液及50 μl 四丙基硼化钠溶液,最后迅速加入实验用水至瓶满,盖紧盖子静置20 min 上机分析:标准内部验证和外部验证均采用美国知名仪器厂家Brooks Rand公司生产的MERX全自动烷基汞分析系统:异位吹扫捕集,样品满瓶式进样,衍生化效率和烷基汞分析结果不受环境空气的影响三通道Tenax 捕集阱交替捕集,效率高液体传感器,水汽进入捕集阱会报警精密流量控制,气流波动小,避免因吹扫气流量过大造成大量水汽进入吸附阱或因流量过小造成的吸附不完全甲基汞检出限可达0.002ng/L;乙基汞检出限可达0.002ng/L宽线性范围:甲基汞0.0125-50ng/L,乙基汞0.025-50ng/L残留低:高浓度样品运行后仪器残留低于2‰重复性好,数据结果可靠国内销售数量超过350家,用户的普遍选择来源:《土壤和沉积物 甲基汞和乙基汞的测定 吹扫捕集/气相色谱-冷原子荧光光谱法(征求意见稿)》编制说明第65页MERX全自动烷基汞分析系统同时还是《水质烷基汞的测定吹扫捕集/气相色谱-冷原子荧光光谱法》(HJ 977-2018)的验证仪器。该仪器数据质量稳定可靠,在国内饱受好评。 谱图:质量控制:空白试验:每20 个样品或每批次样品(<20 个/批)应至少做一个空白试样,空白试样的测定值应低于方法检出限(甲基汞和乙基汞的方法检出限均为0.2 μg/kg)校准:每次分析样品前均应建立不少于 6 个点的校准曲线,采用线性回归法计算结果,曲线的相关系数≥0.995;采用校准系数法计算结果,校准系数 CFi的相对标准偏差≤15%。每20 个样品测定一个校准曲线中间浓度点的标准溶液,其相对误差值应该控制在±20%以内,否则应重新建立校准曲线平行样:每 20 个或每批次样品(少于 20 个样品)应至少测定 1 个平行双样,平行双样测定结果的相对偏差应在±30%以内基体加标:每 20 个样品或每批次样品(少于 20 个样品)应至少测定 1 个基体加标样品或1 个有证标准物质。甲基汞加标回收率控制在 75%~130%之间;乙基汞加标回收率控制在 65%~120%之间 展望:本标准的检出限、精密度等性能指标能满足《土壤环境质量 建设用地土壤污染风险管控标准(试行)》(GB 36600-2018)的相应要求,该标准会使涉及土壤和沉积物中甲基汞和乙基汞分析检测的单位有据可依,并为相关分析检测人员提供新的手段。 参考文献:1. 土壤和沉积物 甲基汞和乙基汞的测定 吹扫捕集/气相色谱-冷原子荧光光谱法 (HJ 1269—2022)(链接:https://www.mee.gov.cn/ywgz/fgbz/bz/bzwb/jcffbz/202301/t20230128_1014026.shtml);2. 土壤和沉积物 甲基汞和乙基汞的测定 吹扫捕集/气相色谱-冷原子荧光光谱法(征求意见稿)及编制说明(链接:http://www.mee.gov.cn/xxgk2018/xxgk/xxgk06/202012/t20201231_815730.html);3. 土壤环境质量 建设用地土壤污染风险管控标准(试行)(GB36600—2018)。
  • 解读|GB/T 39560.12-2024 《电子电气产品中某些物质的测定第12部分:气相色谱-质谱法同时测定聚合物中的多溴联苯、多溴二苯醚和邻苯二甲酸酯》
    2024年6月29日,《电子电气产品中限用物质的限量要求》(GB/T 26572-2011)的《第1号修改单》获得正式批准。这一修改单扩大了中国RoHS限用物质的范围,新增了四种邻苯二甲酸酯类物质。受管控的限用物质总数增至10项,标志着中国在电子电气产品环保管理方面迈出了重要一步。该修改单预计将于2026年1月1日起正式实施。同时,第14号公告还批准发布了标准GB/T 39560.12-2024《电子电气产品中某些物质的测定第12部分:气相色谱-质谱法同时测定聚合物中的多溴联苯、多溴二苯醚和邻苯二甲酸酯》。这项标准作为中国RoHS检测邻苯类物质的方法,将于2024年10月1日开始实施。GB_T 39560_12-2024 《电子电气产品中某些物质的测定第12部分_气相色谱-质谱法同时测定聚合物中的多溴联苯、多溴二苯醚和邻苯二甲酸酯》.pdf近日,GB/T 39560.12-2024全文也已公布,该标准规定了气相色谱-质谱法同时测定聚合物中多溴联苯、多溴二苯醚和邻苯二甲酸酯。目的在于确定一种适应于同时测定电子电气产品中多溴联苯、多溴二苯醚和邻苯二甲酸酯的技术方法。制定背景此次GB/T39560系列标准是为了适应产业对新种类有害物质限制的要求和新型检测技术发展,保持我国RoHS检测技术及结果国际一致。在推动实现中国RoHS与国际的对接互认,努力成为全球电器电子行业绿色发展的参与者、引领者的过程中起到了重要的作用。制定过程本文件等同采用IEC 62321-12:2023《电工产品中某些物质的测定第12部分:气相色谱-质谱法同时测定聚合物中的多溴联苯、多溴二苯醚和邻苯二甲酸酯》。本文件还做了下列编辑性修改:-为了与我国现有标准系列一致,将标准名称改为《电子电气产品中某些物质的测定第12部分:气相色谱-质谱法同时测定聚合物中的多溴联苯、多澳二苯醚和邻苯二甲酸酷》:更改了IEC原文的两误,将11.2e)中的“用5个校准点的结果(根据表5)”更改为“用5个校准点的结果(根据表6)”标准GB/T 39560.12-2024主要内容原理:聚合物中不同种类的化合物,如PBB、PBDE、BBP、DBP、DEHP和DIBP等,通过超声辅助同时萃取,然后采用气相色谱-质谱仪(GC-MS)的全扫描模式和(或)单(或“选择”)离子监测(SIM)模式进行定性和定量分析。仪器设备:分析天平、容量瓶、超声波清洗器、带有聚四氟乙烯螺帽的离心管、离心机、去活进样口衬管、铝箔、微升注射器或者自动移液管、巴斯德吸管、带100μL玻璃衬管和PTFE衬垫的1.5mL样品小瓶或根据分析系统选择合适的样品瓶(带棕色或琥珀色)、微型振荡器(已知的如漩涡器或漩涡混合器)、使用带毛细管柱连接质谱检测器(电子电离,EI)的气相色谱、对PBB、PBDE和邻苯二甲酸酷化合物有足够分离效率的约15m长的色谱柱、0.45m聚四氧乙滤膜、预清洗过的滤纸。试验过程:1、 制样:推荐使用液氮冷却的低温研磨,并通过500μm的筛子。否则样品切成小于1mm✖ 1mm。2、 制备储备液:PBB、PBDE、邻苯二甲酸酯、内标。3、 萃取:称取100mg±10mg样品加入4mL丙酮/正己烷于离心管中,再加入标记物(分析回收率),超声水浴提前15min,水浴温度不超过40℃。超声结束后5000r/min离心5mim,取上清液于25mL容量瓶,再次加入萃取重复2次后定容。4、加入内标,将内标储备液稀释后加入萃取液中测定。5、 GC-MS检测:优化特定的GC-MS系统可能需要不同的条件,以实现所有校准同系物的有效分离,并满足质量控制(QC)和检测限(LOD)的要求。 色谱柱:非极性(苯基亚芳基聚合物,相当于5%苯基-甲基聚硅氧烷)长度15m;内径0.25mm;膜厚度0.1μm。应尽量使用高温色谱柱。 进样系统:程序升温、冷柱、分流/不分流进样器或类似的进样系统。 进样衬管:4mm在底部带玻璃棉(去活)的单底锥形玻璃衬管。 载气:氦气 1.0mL/min,恒定流量。 柱温箱:100℃保持2min,20℃/min升至320℃保持3 min。 传输线温度:300℃。 离子源温度:230℃。 电离方法:电子电离(EI),70eV 驻留时间:在SIM模式下为50ms.6、标准曲线制定(难点)7、 分析物浓度计算。我们将陆续邀请多位权威标准制定专家深入阐释“中国RoHS升级解读”相关内容,敬请持续关注本话题的最新动态。
  • 910万!广东省公安厅2023-100禁毒检测试剂消耗品采购项目
    一、项目基本情况项目编号:0809-2341GDG14250项目名称:广东省公安厅2023-100禁毒检测试剂消耗品采购项目采购方式:公开招标预算金额:9,104,695.90元采购需求:合同包1(依托咪酯快检试剂):合同包预算金额:2,400,000.00元品目号品目名称采购标的数量(单位)技术规格、参数及要求品目预算(元)最高限价(元)1-1化学试剂和助剂吗啡、甲基安非他明、氯胺酮、依托咪酯(4合1)检测试剂(胶体金法)80,000(人份)详见采购文件2,400,000.00-本合同包不接受联合体投标合同履行期限:合同服务期为一年。当1年合同服务期满或货物总额累计结算达到各包组的每年预算金额时先到为准,服务合同自动终止。合同包2(毒品标准品及对照品):合同包预算金额:1,327,726.00元品目号品目名称采购标的数量(单位)技术规格、参数及要求品目预算(元)最高限价(元)2-1化学试剂和助剂吗啡一水合物3(瓶)详见采购文件1,764.00-2-2化学试剂和助剂甲卡西酮外消旋体盐酸盐3(瓶)详见采购文件3,186.00-2-3化学试剂和助剂苯丙胺盐酸盐3(瓶)详见采购文件1,764.00-2-4化学试剂和助剂可待因3(瓶)详见采购文件1,764.00-2-5化学试剂和助剂替苯丙胺盐酸盐3(瓶)详见采购文件2,175.00-2-6化学试剂和助剂去氧麻黄碱外消旋体盐酸盐3(瓶)详见采购文件1,764.00-2-7化学试剂和助剂二亚甲基双氧安非他明盐酸盐3(瓶)详见采购文件2,175.00-2-8化学试剂和助剂氟胺酮3(瓶)详见采购文件5,850.00-2-9化学试剂和助剂4-甲氧基甲基苯丙胺盐酸盐3(瓶)详见采购文件4,746.00-2-10化学试剂和助剂盐酸去甲氯胺酮3(瓶)详见采购文件3,675.00-2-11化学试剂和助剂去甲芬太尼盐酸盐一水合物3(瓶)详见采购文件4,800.00-2-12化学试剂和助剂苯甲酰爱康宁3(瓶)详见采购文件1,764.00-2-13化学试剂和助剂氯胺酮3(瓶)详见采购文件1,764.00-2-14化学试剂和助剂盐酸曲马多3(瓶)详见采购文件4,500.00-2-15化学试剂和助剂瑞芬太尼盐酸盐3(瓶)详见采购文件5,952.00-2-16化学试剂和助剂哌替啶盐酸盐3(瓶)详见采购文件1,764.00-2-17化学试剂和助剂去环丙甲基丁丙诺啡3(瓶)详见采购文件14,256.00-2-18化学试剂和助剂可卡因3(瓶)详见采购文件1,764.00-2-19化学试剂和助剂麦角二乙胺3(瓶)详见采购文件4,800.00-2-20化学试剂和助剂芬太尼盐酸盐3(瓶)详见采购文件1,410.00-2-21化学试剂和助剂丁丙诺啡盐酸盐3(瓶)详见采购文件15,840.00-2-22化学试剂和助剂舒芬太尼3(瓶)详见采购文件4,416.00-2-23化学试剂和助剂5-二甲基-3,3-二苯基氮杂戊环高氯酸盐3(瓶)详见采购文件2,646.00-2-24化学试剂和助剂美沙酮盐酸盐3(瓶)详见采购文件1,764.00-2-25化学试剂和助剂芬特明盐酸盐3(瓶)详见采购文件3,660.00-2-26化学试剂和助剂羟考酮3(瓶)详见采购文件4,560.00-2-27化学试剂和助剂安非拉酮盐酸盐3(瓶)详见采购文件9,030.00-2-28化学试剂和助剂替来他明盐酸盐3(瓶)详见采购文件4,320.00-2-29化学试剂和助剂乙基去甲氟胺酮盐酸盐3(瓶)详见采购文件7,950.00-2-30化学试剂和助剂2-(乙氨基)-2-苯基环己-1-酮盐酸盐3(瓶)详见采购文件12,780.00-2-31化学试剂和助剂地佐辛盐酸盐一水合物3(瓶)详见采购文件13,050.00-2-32化学试剂和助剂甲胺酮盐酸盐3(瓶)详见采购文件11,940.00-2-33化学试剂和助剂哌醋甲酯盐酸盐3(瓶)详见采购文件2,865.00-2-34化学试剂和助剂依托咪酯3(瓶)详见采购文件2,925.00-2-35化学试剂和助剂甲喹酮3(瓶)详见采购文件4,260.00-2-36化学试剂和助剂地芬诺酯盐酸盐3(瓶)详见采购文件12,570.00-2-37化学试剂和助剂N-(1-氨甲酰基-2,2-二甲基丙基)-1-丁基吲唑-3-甲酰胺3(瓶)详见采购文件11,550.00-2-38化学试剂和助剂N-(1-氨甲酰基-2,2-二甲基丙基)-1-(4-戊烯基)吲唑-3-甲酰胺3(瓶)详见采购文件11,550.00-2-39化学试剂和助剂3,3-二甲基-2-[1-(4-氟丁基)吲哚-3-甲酰氨基]丁酸甲酯3(瓶)详见采购文件11,550.00-2-40化学试剂和助剂2-[1-(4-氟苄基)-1H-吲哚-3-甲酰氨基]-3-甲基丁酸甲酯3(瓶)详见采购文件11,550.00-2-41化学试剂和助剂N-(1-甲基-1-苯基乙基)-1-(4-氰基丁基)吲唑-3-甲酰胺3(瓶)详见采购文件11,550.00-2-42化学试剂和助剂2-[1-(5-氟戊基)-1H-吲哚-3-甲酰氨基]-3,3-二甲基丁酸甲酯3(瓶)详见采购文件11,550.00-2-43化学试剂和助剂N-(1-乙氧基羰基-2-甲基丙基)-1-(5-氟戊基)吲哚-3-甲酰胺3(瓶)详见采购文件11,550.00-2-44化学试剂和助剂2-[1-(4-氟丁基)-1H-吲唑-3-甲酰氨基]-3,3-二甲基丁酸甲酯3(瓶)详见采购文件11,550.00-2-45化学试剂和助剂2-[1-(5-氟戊基)-1H-吲哚-3-甲酰氨基]-3-苯丙酸甲酯3(瓶)详见采购文件11,550.00-2-46化学试剂和助剂N'-(1-(5-氟戊基)-2-氧代吲哚-3-亚基)苯甲酰肼3(瓶)详见采购文件11,550.00-2-47化学试剂和助剂3,3-二甲基-2-[1-(5-氟戊基)吲哚-3-甲酰氨基]丁酸乙酯3(瓶)详见采购文件11,550.00-2-48化学试剂和助剂3,3-二甲基-2-[1-(5-氟戊基)吲唑-3-甲酰氨基]丁酸甲酯3(瓶)详见采购文件7,470.00-2-49化学试剂和助剂3,3-二甲基-2-[1-(4-戊烯-1-基)-1H-吲唑-3-甲酰氨基]丁酸甲酯3(瓶)详见采购文件11,550.00-2-50化学试剂和助剂N'-(1-戊基-2-氧代吲哚-3-亚基)苯甲酰肼3(瓶)详见采购文件11,550.00-2-51化学试剂和助剂N'-(1-己基-2-氧代吲哚-3-亚基)苯甲酰肼3(瓶)详见采购文件11,550.00-2-52化学试剂和助剂3,3-二甲基-2-(1-戊基-1H-吲唑-3-甲酰氨基)丁酸乙酯3(瓶)详见采购文件11,550.00-2-53化学试剂和助剂[1-(4-氟苄基)-1H-吲哚-3-基](2,2,3,3-四甲基环丙基)甲酮3(瓶)详见采购文件6,720.00-2-54化学试剂和助剂N-(1-金刚烷基)-1-(4-氟丁基)吲唑-3-甲酰胺3(瓶)详见采购文件11,550.00-2-55化学试剂和助剂N-(金刚烷-1-基)-1-(5-氯戊基)-1H-吲唑-3-甲酰胺3(瓶)详见采购文件11,550.00-2-56化学试剂和助剂N-(金刚烷-1-基)-1-(环己基甲基)-1H-吲唑-3-甲酰胺3(瓶)详见采购文件11,550.00-2-57化学试剂和助剂羟基可替宁1(瓶)详见采购文件1,538.00-2-58化学试剂和助剂乙酰芬太尼1(瓶)详见采购文件1,397.00-2-59化学试剂和助剂甲氧麻黄酮1(瓶)详见采购文件749.00-2-60化学试剂和助剂去甲氟胺酮1(瓶)详见采购文件8,826.00-2-61化学试剂和助剂溴胺酮1(瓶)详见采购文件7,310.00-2-62化学试剂和助剂3-[1-(哌啶-1-基)环己基]苯酚盐酸盐1(瓶)详见采购文件1,554.00-2-63化学试剂和助剂地西泮1(瓶)详见采购文件562.00-2-64化学试剂和助剂依替唑仑1(瓶)详见采购文件8,353.00-2-65化学试剂和助剂艾司唑仑1(瓶)详见采购文件1,456.00-2-66化学试剂和助剂利多卡因盐酸盐一水合物1(瓶)详见采购文件1,058.00-2-67化学试剂和助剂盐酸甲苯噻嗪1(瓶)详见采购文件428.00-2-68化学试剂和助剂N-(1-氨基-3,3-二甲基-1-氧代丁-2-基)-1-丁基-1H-吲唑-3-甲酰胺1(瓶)详见采购文件7,084.00-2-69化学试剂和助剂3,3-二甲基-2-[1-(4-戊烯-1-基)-1H -吲唑-3-甲酰胺基]丁酸1(瓶)详见采购文件9,000.00-2-70化学试剂和助剂3,3-二甲基-2-[1-(4-丁醇)吲哚-3-甲酰氨基]丁酸甲酯1(瓶)详见采购文件9,000.00-2-71化学试剂和助剂咖啡因-D31(瓶)详见采购文件8,838.00-2-72化学试剂和助剂那可汀-D31(瓶)详见采购文件2,800.00-2-73化学试剂和助剂N-蒂巴因-D31(瓶)详见采购文件3,276.00-2-74化学试剂和助剂罂粟碱-D61(瓶)详见采购文件3,276.00-2-75化学试剂和助剂舒芬太尼-D51(瓶)详见采购文件9,000.00-2-76化学试剂和助剂去甲氟胺酮-D41(瓶)详见采购文件6,375.00-2-77化学试剂和助剂地西泮-D51(瓶)详见采购文件506.00-2-78化学试剂和助剂羟基可替宁1(瓶)详见采购文件1,538.00-2-79化学试剂和助剂去甲乙酰芬太尼盐酸盐一水合物1(瓶)详见采购文件1,648.00-2-80化学试剂和助剂4-苯胺基-N-苯乙基哌啶二盐酸盐一水合物1(瓶)详见采购文件5,860.00-2-81化学试剂和助剂可替宁3(瓶)详见采购文件3,000.00-2-82化学试剂和助剂吗啡-D33(瓶)详见采购文件18,000.00-2-83化学试剂和助剂O6-单乙酰吗啡-D33(瓶)详见采购文件18,000.00-2-84化学试剂和助剂去氧麻黄碱外消旋体盐酸盐-D53(瓶)详见采购文件7,788.00-2-85化学试剂和助剂苯丙胺-D53(瓶)详见采购文件36,000.00-2-86化学试剂和助剂氯胺酮-D43(瓶)详见采购文件22,500.00-2-87化学试剂和助剂去甲氯胺酮-D43(瓶)详见采购文件22,500.00-2-88化学试剂和助剂3,4-亚甲二氧基甲基苯丙胺-D53(瓶)详见采购文件18,000.00-2-89化学试剂和助剂3,4-亚甲二氧基苯丙胺-D53(瓶)详见采购文件22,500.00-2-90化学试剂和助剂可卡因-D33(瓶)详见采购文件18,000.00-2-91化学试剂和助剂苯甲酰爱康宁-D33(瓶)详见采购文件18,000.00-2-92化学试剂和助剂四氢大麻酸-D33(瓶)详见采购文件22,500.00-2-93化学试剂和助剂可替宁-D33(瓶)详见采购文件18,000.00-2-94化学试剂和助剂甲卡西酮-D33(瓶)详见采购文件22,500.00-2-95化学试剂和助剂氟胺酮-D43(瓶)详见采购文件19,125.00-2-96化学试剂和助剂PMMA-D33(瓶)详见采购文件19,350.00-2-97化学试剂和助剂芬太尼-D5盐酸盐3(瓶)详见采购文件7,680.00-2-98化学试剂和助剂去苯乙基芬太尼-D53(瓶)详见采购文件18,000.00-2-99化学试剂和助剂去苯乙基乙酰芬太尼-13C63(瓶)详见采购文件35,607.00-2-100化学试剂和助剂4-ANPP-D53(瓶)详见采购文件36,000.00-2-101化学试剂和助剂可待因-D63(瓶)详见采购文件36,000.00-2-102化学试剂和助剂美沙酮-D33(瓶)详见采购文件18,000.00-2-103化学试剂和助剂曲马多-D33(瓶)详见采购文件25,950.00-2-104化学试剂和助剂钯ICP标准液1(瓶)详见采购文件612.10-2-105化学试剂和助剂银ICP标准液1(瓶)详见采购文件388.02-2-106化学试剂和助剂金ICP标准液1(瓶)详见采购文件612.10-2-107化学试剂和助剂铅ICP标准液1(瓶)详见采购文件611.93-2-108化学试剂和助剂汞ICP标准液1(瓶)详见采购文件611.93-2-109化学试剂和助剂磷ICP标准液1(瓶)详见采购文件351.02-2-110化学试剂和助剂1-苄基-1H-咪唑-5-羧酸1(瓶)详见采购文件1,200.00-2-111化学试剂和助剂碘化钾1(瓶)详见采购文件92.90-2-112化学试剂和助剂甲醇中D-依托咪酯溶液3(瓶)详见采购文件900.00-2-113化学试剂和助剂甲醇中D-依托咪酯-D5溶液3(瓶)详见采购文件6,900.00-2-114化学试剂和助剂甲醇中依托咪酯酸溶液3(瓶)详见采购文件2,700.00-2-115化学试剂和助剂海洛因3(瓶)详见采购文件9,699.00-2-116化学试剂和助剂氯胺酮1(瓶)详见采购文件2,613.00-2-117化学试剂和助剂左旋甲基苯丙胺盐酸盐1(瓶)详见采购文件4,067.00-2-118化学试剂和助剂右旋甲基苯丙胺盐酸盐1(瓶)详见采购文件3,658.00-2-119化学试剂和助剂麻黄碱1(瓶)详见采购文件2,613.00-2-120化学试剂和助剂二亚甲基双氧安非他明盐酸盐1(瓶)详见采购文件2,613.00-2-121化学试剂和助剂乙酰可待因1(瓶)详见采购文件6,533.00-2-122化学试剂和助剂O3-单乙酰吗啡氨基磺酸盐1(瓶)详见采购文件5,500.00-2-123化学试剂和助剂可卡因1(瓶)详见采购文件2,613.00-2-124化学试剂和助剂吗啡一水合物1(瓶)详见采购文件2,613.00-2-125化学试剂和助剂1-苯基-2-丙酮1(瓶)详见采购文件4,800.00-2-126化学试剂和助剂3,4-亚甲基二氧苯基-2-丙酮1(瓶)详见采购文件4,800.00-2-127化学试剂和助剂胡椒醛1(瓶)详见采购文件4,800.00-2-128化学试剂和助剂N-乙酰氨基苯甲酸(N-乙酰邻氨基苯甲酸)1(瓶)详见采购文件7,060.00-2-129化学试剂和助剂邻氨基苯甲酸1(瓶)详见采购文件7,060.00-2-130化学试剂和助剂羟亚胺盐酸盐1(瓶)详见采购文件8,826.00-2-131化学试剂和助剂邻氯苯基环戊酮1(瓶)详见采购文件8,826.00-2-132化学试剂和助剂1-苯基-2-溴-1-丙酮(α-溴代苯丙酮)1(瓶)详见采购文件4,800.00-2-133化学试剂和助剂4-苯氨基-N-苯乙基哌啶1(瓶)详见采购文件5,860.00-2-134化学试剂和助剂黄樟素1(瓶)详见采购文件4,800.00-2-135化学试剂和助剂N-苯乙基-4-哌啶酮1(瓶)详见采购文件5,860.00-2-136化学试剂和助剂N-甲基-1-苯基-1-氯-2-丙胺盐酸盐1(瓶)详见采购文件4,800.00-2-137化学试剂和助剂γ-丁内酯1(瓶)详见采购文件3,768.00-2-138化学试剂和助剂3-氧-2-苯基丁腈(α-氰基苯丙酮)1(瓶)详见采购文件3,325.00-2-139化学试剂和助剂溴西泮1(瓶)详见采购文件2,613.00-2-140化学试剂和助剂可待因1(瓶)详见采购文件2,613.00-2-141化学试剂和助剂地西泮1(瓶)详见采购文件1,295.00-2-142化学试剂和助剂艾司唑仑1(瓶)详见采购文件1,786.00-2-143化学试剂和助剂美沙酮盐酸盐1(瓶)详见采购文件2,613.00-2-144化学试剂和助剂安眠酮(甲喹酮)1(瓶)详见采购文件2,613.00-2-145化学试剂和助剂Δ9-四氢大麻酚1(瓶)详见采购文件1,034.00-2-146化学试剂和助剂三唑仑1(瓶)详见采购文件3,140.00-2-147化学试剂和助剂氟胺酮1(瓶)详见采购文件4,873.00-2-148化学试剂和助剂麦角二乙胺1(瓶)详见采购文件1,600.00-2-149化学试剂和助剂芬太尼1(瓶)详见采购文件195.00-2-150化学试剂和助剂1-[1-(3-甲氧基苯基)环己基]哌啶盐酸盐1(瓶)详见采购文件8,826.00-2-151化学试剂和助剂亚甲基二氧吡咯戊酮盐酸盐1(瓶)详见采购文件8,857.00-2-152化学试剂和助剂N-甲基-N-异丙基-5-甲氧基色胺1(瓶)详见采购文件6,213.00-2-153化学试剂和助剂N-(1-氨基-3,3-二甲基-1-氧亚基丁-2-基)-1-(戊-4-烯-1-基)-1H-吲唑-3-甲酰胺 (ADB-4en-PINACA)1(瓶)详见采购文件7,084.00-2-154化学试剂和助剂3,3-二甲基-2-[1-(4-戊烯-1-基)-1H-吲唑-3-甲酰氨基]丁酸甲酯 (MDMB-4en-PINACA)1(瓶)详见采购文件7,084.00-2-155化学试剂和助剂N-(1-氨基-3,3-二甲基-1-氧亚基丁-2-基)-1-丁基-1H-吲唑-3-甲酰胺 (ADB-BUTINACA)1(瓶)详见采购文件7,084.00-2-156化学试剂和助剂1-(4-氰基丁基)-N-(2-苯基丙-2-基)-1H-吲唑-3-甲酰胺 (4CN-CUMYL-BUTINACA)1(瓶)详见采购文件7,084.00-2-157化学试剂和助剂2-[1-(5-氟戊基)-1H-吲哚-3-甲酰氨基]-3-甲基丁酸乙酯 (5F-EMB-PICA)1(瓶)详见采购文件7,084.00-2-158化学试剂和助剂2-[1-(5-氟戊基)-1H-吲哚-3-甲酰氨基]-3,3-二甲基丁酸甲酯 (5F-MDMB-PICA)1(瓶)详见采购文件7,084.00-2-159化学试剂和助剂2-[1-(4-氟丁基)-1H-吲唑-3-甲酰氨基]-3,3-二甲基丁酸甲酯 (4F-MDMB-BUTINACA)1(瓶)详见采购文件7,084.00-2-160化学试剂和助剂N-(1-金刚烷基)-1-(4-氟丁基)吲唑-3-甲酰胺 (4F-ABUTINACA)1(瓶)详见采购文件7,084.00-2-161化学试剂和助剂N-(1-氨甲酰基-2-甲基丙基)-1-(4-氟苄基)吲唑-3-甲酰胺 (AB-FUBINACA)1(瓶)详见采购文件2,452.00-2-162化学试剂和助剂赛洛新1(瓶)
  • 甲基化成肿瘤检测新靶标?五种新型DNA甲基化酶检测技术进展揭秘
    DNA甲基化是哺乳动物基因组中最常见的表观遗传事件之一,即DNA中核苷酸与甲基基团的共价修饰[2]。DNA甲基化与人的生命进程有着密不可分的关系。细胞的增殖与分化、染色体完整性的维护或者X染色体的活性等等都离不开DNA甲基化的控制,DNA甲基化流程在胚胎发育中是无处不在的[1]。如果DNA甲基化进程出现异常,会导致生物体出现各种各样的疾病以及身体的生长缺陷或生理紊乱。DNA与蛋白质之间的相互作用如果出现异常,会影响基因的表达,从而引起人体内肿瘤的发生或者肿瘤的转移,这一切的源头都是DNA甲基化进程出现异常的结果[3]。DNA甲基化酶是肿瘤治疗靶点DNA甲基化酶是一种修饰酶,经常与限制性内切酶一同出现。在真核生物基因组以及原核生物基因组中,普遍存在DNA甲基化酶维持以及催化DNA甲基化过程的现象。DNA甲基化酶被广泛认为是一种治疗靶点以及预测生物甲基化过程的标志物,在单细胞水平上准确灵敏地检测DNA甲基化酶对于肿瘤医学上的临床诊断以及临床治疗甚至是生物学研究有着至关重要的作用。根据甲基化的核苷酸和位置被分为三组,即腺嘌呤的甲基化、胞嘧啶的4-N甲基化和胞嘧啶的5-C甲基化。所有已知的DNA甲基化酶在其甲基化过程中以s-腺苷甲硫氨酸作为甲基供体。最常见的DNA甲基化不仅发生在胞嘧啶嘧啶环5-C位置的CpG位点上,还发生在对称四核苷酸5’-G-A-T-C-3’ 中腺嘌呤环的6-N位置[4,5]。传统DNA甲基化酶检测方法有局限 DNA甲基化酶活性的高灵敏度检测在基因调控、表观遗传修饰、临床诊断和治疗等方面具有重要意义。传统用于检测DNA甲基化酶活性的方法包括高效液相色谱法(HPLC)[6], 聚合酶链反应(PCR)[7],凝胶电泳[8],高效毛细管电泳(HPCE)[9],以及使用同位素标记的s-腺苷甲硫氨酸甲基化检测[10,11]。尽管这些技术在实验室实践中被证明是有用的,但它们具有局限性。例如,大多数技术不仅使用笨重昂贵的设备,而且需要复杂的样品制备和数据分析所需的大量时间。同位素标记等技术是有效的,但它们往往需要费力的样品制备、同位素标记、复杂的设备和大量的DNA,使得它们不适合在医护点使用。所以,DNA甲基化酶活性检测迫切需要简单、便携、高灵敏度和低成本的检测方法。在最近的技术进步中,许多替代的DNA甲基化酶活性测定方法,如放射法、比色法、荧光法、电化学法等已被提出。此外,其中许多与纳米材料或酶结合,以显著提高它们的敏感性。放射法、蛋白质纳米孔等新型检测技术兴起 放射法:同位素标记作为最早检测DNA甲基化酶活性的方法之一,早期广泛应用于检测DNA甲基化酶和DNA甲基化的活性[12,13]。在由DNA甲基化酶催化的甲基化过程中,同位素标记的甲基部分转移到DNA上,从而赋予甲基化的DNA放射性。这种放射性可以很方便地用闪烁计数器或放射自显像仪来检测。可惜的是,放射性试剂的介入是限制这种试验在中央实验室进行的最大缺点。对无辐射DNA甲基化酶活性检测的研究导致了甲基化特异性PCR[14]、HPCE[9]和HPLC等替代品的发展[7,14],而甲基化特异性PCR被认为是较好的方法。尽管非放射性,上述DNA甲基化酶活性检测需要庞大且通常昂贵的设备,冗长且耗时的样品制备和数据分析,以及繁琐的检测方案,这在临床实践中也比较难以实现全覆盖。比色法:比色法用于DNA甲基化酶活性检测依赖于颜色变化的目视观察或与DNA甲基化酶相关的吸收光谱的光谱测量。它们具有成本低、简单、可移植性和在某些情况下无需仪器的优点。虽然紫外-可见光谱法可以量化DNA,但甲基化和未甲基化DNA在紫外-可见吸收特性上的低灵敏度和不显著差异基本否定了紫外-可见光谱法直接检测DNA甲基化酶活性[15~17]。金纳米粒子:金纳米粒子(AuNPs)由于其表面的等离子体共振吸收的高消光系数且强依赖于粒子间距离,在DNA甲基化酶活性检测的比色法研究中引起了广泛关注。如图1 所示,金纳米粒子表面包覆有双链DNA (ds-DNA),其中一条链包含DNA甲基化酶识别序列和5’-硫醇末端。在DNA甲基化酶存在的情况下,如图1 B 所示,DNA甲基化酶被共价标记在ds-DNA中碱基环的6-C位置,因为在5-N位置缺乏一个质子阻止了β-消除,甲基化的DNA不能被核酸外切酶 ExoⅠ剪切,因此金纳米粒子仍然均匀地分散在溶液中 [18]。从而实现DNA甲基化酶活性的检测。结果表明,在526 nm处,金纳米粒子聚集物的吸光度与DNA甲基化酶的活性呈2 ~ 32 U / mL的线性关系,检出限为0.5 U/ mL。图1. (A)基于ABP的比色生物传感器的示意图(B) DNA甲基化酶的检测机制 荧光法:荧光指吸收激发荧光团的光,以促进电子从基态到激发态,电子迅速地回到激发态的最低能级,然后当电子最终返回基态时,发出波长较长的光。与其他DNA甲基化酶活性测定法相比,荧光法检测DNA甲基化酶活性的优点是检测过程简单,灵敏度高,但其复杂的光学性能限制了其在集中实验室的应用[19~20]。图2. 基于外切酶的靶循环的DNA甲基化酶活性检测原理图电化学法:电化学生物分析技术的发展一直是现代分析化学研究的热点之一。电化学法用于DNA甲基化酶分析包括测量电流、电压、电荷和电阻等电量,以反映DNA甲基化酶的活性。与许多其他类型的DNA甲基化酶活性的检测相比,它们具有低成本、高灵敏度、执行现场监测的能力以及非常适合微型化和集成微制造技术的优点[22~23]。Zhi-Qiang Gao等人在2014年报道了一种简单、高灵敏度的DNA甲基化酶电化学活性测定方法。该方法采用电催化氧化抗坏血酸(AA)的信号放大手段,通过一个螺纹插层N,N -2(3-丙基咪唑)-1,4,5,8-萘二酰亚胺(PIND)电催化氧化还原Os(bpy)2Cl+ (PIND-Os),包含5’-CCGG-3’ 对称序列的ds-DNA首先固定在金电极上。然后用DNA甲基化酶孵育电极,经过酶催化特定CpG二核苷酸的甲基化,然后用识别5’-CCGG-3’ 序列的限制性内切酶 Hpa II 剪切酶处理电极,从而实现DNA甲基化酶活性检测的目的[24]。图3. DNA甲基化酶活性的检测原理示意图蛋白质纳米孔:蛋白质纳米孔检测技术是在单分子水平上以低成本、无标签和高通量的方式研究生物分子的检测技术。近年来,纳米孔技术正从生物传感的角度进行研究[25]。应用于核酸特征鉴定、化学反应过程的测量、蛋白质分析、疾病相关蛋白状态的检测以及酶动力学的研究等[26]。α-溶血7素是一种蛋白质纳米孔,它自发地插入到脂质双层膜中,形成一个纳米孔[27]。当一个带电分子在外加电势下通过蛋白质纳米孔时,它会引起离子电流的瞬态变化,电流变化事件被记录下来。被分析物可以通过当前电流发生的频率进行量化,特征电流信号则可以揭示被分析物的各种特征[28~30]。该检测方法不需要对DNA探针进行任何化学修饰,既方便又节约成本,减少了样品消耗。 图4. 用于分析DNA甲基化酶活性的纳米孔试验的示意图 在过去的十几年中,DNA甲基化酶活性的检测取得了重大进展。有几种方法有希望可在临床检测,使得该方法在用于癌症诊断、预后和治疗方面显示出了希望。比色法依赖于颜色变化的目视观察或与DNA甲基化酶相关的吸收光谱的光谱测量,具有成本低、简单、可移植性和在某些情况下无需仪器的优点,但是检出限相对较高。荧光法检测DNA甲基化酶活性的检测过程简单,检出限相对理想,但其复杂的光学性能以及昂贵的仪器设备限制了其在生活中的应用。电化学法由于需要构建较复杂的反应电极材料而使得其在临床上受到了一定的限制。蛋白质纳米孔的检测方法不需要对DNA探针进行任何化学修饰,既方便又节约成本,减少了样品消耗,检出限相对较为理想,并且已经成功应用于人类血清样本。这类检测可能最终为常规DNA甲基化酶活性的检测和分子诊断打开大门,为疾病的管理和诊断带来新的前景。 作者:王家海、骆 乐 作者简介:王家海,博士,教授,硕士生导师/博士生导师,广州大学化学化工学院;分析化学专业;主要研究领域为“基于核算纳米结构为信号传导载体的纳米孔传感器”;在核酸探针和仿生纳米孔两方面开展了一系列分子识别的工作,也为将来进一步开展分析化学研究打下了坚实的基础,期间积累了多种前沿分析方法和技术:仿生纳米孔制备和检测;微纳米加工技术;核酸探针人工合成技术。参 考 文 献 [1] 陈晓娟,闫少春,邵国,等.人DNA甲基化转移酶的分类及其功能[J].包头医学院学报,2014,30(04):136-138.[2] Das PM, et al. DNA methylation and cancer[J]. Clin. Oncol. 2004 22: 4632-4642.[3] Jurkowska RZ, et al. Structure and function of mammalian DNA methyltransferases[J]. ChemBioChem 2011 12: 206-222.[4] Lee GE, et al. DNA methyltransferase 1-associated protein (dmap1) is a co-repressor that stimulates DNA methylation globally and locally at sites of double strand break repair[J]. Biol. Chem. 2010 285: 37630-37640.[5] Liu SN, et al. Assay Methods of DNA Methylation and Their Applications in Cancer Diagnosis and Therapy[J]. Chinese J.Anal. Chem. 2011 39: 1451-1458.[6] Boye E, et al. Quantification of dam methyltransferase in Escherichia coli[J]. Bacteriol. 1992 174: 1682-1685.[7] Eads CA, et al. CpG island hypermethylation in human colorectal tumors is not associated with DNA methyltransferase overexpression[J]. Cancer Res. 1999 59: 2302-2306.[8] Bergerat A, et al. Allosteric and catalytic binding of s-adenosylmethionine to escherichia coli DNA adenine methyltransferase monitored by 3H NMR[J]. Proc. Natl. Acad. Sci. U. S. A. 1991 88: 6394-6397.[9] Fraga MF, et al. Rapid quantification of DNA methylation by high performance capillary electrophoresis[J]. Electrophoresis 2000 21: 2990-2994.[10] Yokochi T, et al. DMB (dnmt-magnetic beads) assay: measuring DNA methyltransferase activity in vitro[J]. Methods Mol. Biol. 2004 287: 285-296.[11] Adams RLP, et al. Microassay for DNA methyltransferase[J]. Biochem. Bioph. Methods 1991 22: 19-22.[12] Jurkowska RZ, et al. DNA methyltransferase assays[J]. Methods Mol. Biol. 2011 791: 157-177.[13] Pradhan S, et al. Recombinant human DNA (cytosine-5) methyltransferase [J]. Biol. Chem. 1999 274: 33002-33010.[14] Herman JG, et al. Methylation-specific PCR: a novel PCR assay for methylation status of CpG islands[J]. Proc. Natl. Acad. Sci. U. S. A. 1996 93: 9821-9826.[15] Kattenhorn, L. M. Korbel, G. A. Kessler, B. M. Spooner, E. Ploegh, H. L. Mol. Cell 2005, 19, 547−557.[16] Mosammaparast, N. Shi, Y. Annu. Rev. Biochem. 2010, 79, 155−179.[17] Barglow, K. T. Cravatt, B. F. Angew. Chem., Int. Ed. 2006, 45, 7408−7411.[18] Wu Z, et al. Activity-based DNA-gold nanoparticle probe as colorimetric biosensor for DNA methyltransferase/glycosylase assay[J]. Anal. Chem. 2013 85: 4376-4383.[19] Zhu, C. Wen, Y. Peng, H. Long, Y. He, Y. Huang, Q. Li, D. Fan, C. Anal. Bioanal. Chem. 2011, 399, 3459−3464.[20] Chen, F. Zhao, Y. Analyst 2013, 138, 284−289.[21] Xing XW, et al. Sensitive detection of DNA methyltransferase activity based on exonuclease-mediated target recycling[J]. Anal. Chem. 2014 86: 11269-11274.[22] Wu, H. Liu, S. Jiang, J. Shen, G. Yu, R. Chem. Commun. 2012, 48, 6280−6282[23] Wang, M. Xu, Z. Chen, L. Yin, H. Ai, S. Anal. Chem. 2012, 84, 9072−9078[24] Deng H, et al. Highly sensitive electrochemical methyltransferase activity assay[J]. Anal. Chem. 2014 86: 2117-2123.[25] Howorka, S. Siwy, Z. Nanopore Analytics: Sensing of Single Molecules. Chem. Soc. Rev. 2009, 38, 2360−2384.[26] Song, L. Hobaugh, M. R. Shustak, C. Cheley, S. Bayley, H. Gouaux, J. E. Structure of Staphylococcal α-Hemolysin, a Heptameric Transmembrane Pore. Science 1996, 274, 1859−1865.[27] Lin, L. Yan, J. Li, J. Small-Molecule Triggered Cascade Enzymatic Catalysis in Hour-Glass Shaped Nanochannel Reactor for Glucose Monitoring. Anal. Chem. 2014, 86, 10546−10551.[28] Li, J. Yan, H. Wang, K. Tan, W. Zhou, X. Anal. Chem. 2007, 79, 1050−1056.[29] Wood, R. J. Maynard-Smith, M. D. Robinson, V. L. Oyston, P. C. F. Titball, R. W. Roach, P. L. PLoS One 2007, 2, e801−e801.[30] Wood, R. J. McKelvie, J. C. Maynard-Smith, M. D. Roach, P. L. Nucleic Acids Res. 2010, 38, e107−e107.[31] Jinghong Li, et al. Nanopore-based, label-free, and real-time monitoring assay for DNA methyltransferase activity and inhibition[J]. Anal. Chem. 2017 89: 13252−13260.
  • 科学家开发出精氨酸二甲基化蛋白质组分析新方法
    近日,中国科学院大连化学物理研究所生物分离分析新材料与新技术研究组研究员叶明亮团队和上海有机化学研究所生物与化学交叉研究中心研究员刘聪团队合作,将硼酸化学引入到甲基化蛋白质组分析方法中,并巧妙利用精氨酸残基上不同修饰基团的位阻差异,实现高效的精氨酸二甲基化肽段富集,显著提高了蛋白质甲基化的分析能力;利用此新方法,系统分析了蛋白质分相过程中精氨酸二甲基化的变化,揭示了此类修饰的发生会降低蛋白质的分相能力。  蛋白质精氨酸甲基化是一种调控蛋白质功能的重要翻译后修饰,与较多疾病的发生发展相关。研究表明,精氨酸二甲基化会影响一些神经退行性疾病相关蛋白的液-液相分离,以及相分离所驱动的无膜细胞器的产生。然而,受限于目前精氨酸二甲基化蛋白质组分析技术覆盖率不足,这类研究仅聚焦于少数几个蛋白,尚未系统性探究精氨酸甲基化对蛋白质相分离的影响。  本研究发现,不同甲基化修饰的精氨酸残基在与邻二酮类化合物反应时,由于位阻不同,反应活性差异巨大。合作团队据此设计了一种精氨酸二甲基化肽段的富集方法:先利用环己二酮选择性的封闭无修饰精氨酸残基,随后利用丙酮醛选择性的在二甲基化精氨酸残基上修饰顺式邻二羟基,从而使得硼酸材料可以选择性的富集精氨酸二甲基化肽段。相比传统的免疫亲和富集方法,该方法拥有较强的精氨酸二甲基化肽段富集能力,特别是在鉴定RG/RGG序列上的精氨酸二甲基化位点方面有更高的灵敏度。合作团队将该方法应用于分析蛋白质相分离过程中精氨酸甲基化的变化,发现包括G3BP1,FUS,hnRNPA1、KHDRBS1在内的一些与无膜细胞器或神经退行性疾病相关的蛋白质上的精氨酸二甲基化程度发生了显著变化;系列实验验证发现,精氨酸甲基化会显著降低这些蛋白质的分相能力,且上述蛋白质组分析中鉴定到变化的甲基化位点是调控蛋白质相分离的关键因素。本工作开发了基于化学反应的精氨酸二甲基化蛋白质组分析方法,并利用这一方法揭示了精氨酸二甲基化对蛋白质液-液相分离具有重要的调控作用。  叶明亮团队致力于蛋白质磷酸化、糖基化、甲基化等翻译后修饰分析新方法的研究,发展了基于可逆酶促化学标记的O-GlcNAc糖肽无痕富集方法,克服了标记基团对糖肽质谱检测的干扰,实现了O-GlcNAc糖基化的高灵敏分析(Angew. Chem. Int. Edit.);利用不同糖肽的同一肽段骨架具有相似碎裂规律的特点,发展出基于“模式识别”的肽段序列鉴定新方法,实现了谱图拓展,显著提高了N-链接位点特异性糖型的鉴定灵敏度,并可发现未知的糖链及糖链修饰(Nat. Commun.)。  相关研究成果以Global profiling of arginine dimethylation in regulating protein phase separation by a steric effect-based chemical-enrichment method为题,发表在《美国国家科学院院刊》(PNAS)上。研究工作得到国家重点研发计划、国家自然科学基金、大连化物所创新基金等的支持。
  • 自动乌氏黏度仪在羟丙甲基纤维素中的应用
    羟丙基甲基纤维素(hydroxypropyl methyl cellulose),亦有简化作羟丙甲纤维素(缩写作HPMC),是属于非离子型纤维素混合醚中的一个品种。它是一种半合成的、不活跃的、黏弹性的聚合物,常于工业助剂、眼科学用润滑剂,又或在口服药物中充当辅料或赋型剂。在工业领域中,羟丙甲基纤维素的主要用途是为聚氯乙烯生产中做分散剂,系悬浮聚合制备PVC的主要助剂。另外,在其他石油化工、涂料、建材、除漆剂、化妆品等产品生产中,羟丙甲基纤维素也可作增稠剂、稳定剂、保水剂、成膜剂等。在合成树脂领域,添加羟丙甲基纤维素可使获得的产品具有颗粒规整、疏松、视比重适宜,加工性能优良等特点。羟丙甲基纤维素在生产和研发中关键的指标是分子量,根据分子量不同,羟丙甲基纤维素制品可用于不同的用途,低分子量级别(分子量)的羟丙甲基纤维素用于片剂包衣材料,高分子量(分子量100000)的羟丙甲基纤维素可用作片剂骨架的阻滞剂、有延缓药物释放的作用。目前羟丙甲基纤维素分子量常用的测试方式是乌氏毛细管法,乌氏毛细管法实验操作简单,数据重复性好,在大多数高分子材料研发及相关质量控制中都起到关键作用,尤其是ZVISCO自动乌氏黏度仪因其自动化程度高,节省人力的同时进一步提高了实验数据的可靠性。以IV2000系列自动乌氏黏度仪、MSB系列多位溶样块、ZPQ智能配液器一整套黏度测试设备为例: 实验流程:1. 智能配液过程使用ZPQ智能配液器进行配液,点击配液功能后,直接输入浓度和质量(可通过连接天平直接获取),可直接计算出所需要的目标体积进行移液并且精度可达0.1%。可避免因手动配液方法导致的精度差、效率低及数据误差等问题。ZPQ智能配液器还具有密度计算功能,移取液体体积后,输入质量(可与天平通讯,直接获取),即可自动计算出密度值。2. 溶样过程MSB系列多位溶样块,采用金属浴的方式进行加热溶样并具有自动搅拌功能,同时可容纳15个样品。溶样效率快、转速可调、溶样时间可调、溶样温度可调、溶样温度可达180℃。3. 测试过程IV2000系列自动乌氏黏度仪可实现自动连续测量,全程无需人员看管。并且采用的智能红外光电传感器,保证测量时间可达到毫秒级,可有效确保实验数据的精度,避免人工实验导致误差。4. 测试结果:IV2000系列自动乌氏黏度仪连接电脑端,得出结果可在计算机上直接显示,并有数据储存、多样化粘度分析报表等多种功能。
  • 全自动乌氏粘度仪在PPE(聚苯醚)材料中的应用
    聚苯醚是本世纪60年代发展起来的高强度工程塑料,化学名称为聚2,6—二甲基—1,4—苯醚,简称PPO(Polyphenylene Oxide)或PPE(Polypheylene ether),又称为聚亚苯基氧化物或聚苯撑醚,是一类耐高温的热塑性树脂,它的特点是在长期负荷下,具有优良的尺寸稳定性和突出的电绝缘性,使用温度范围广,可在-127~121℃范围内长期使用。PPO(聚苯醚)材料无毒、透明、相对密度小,具有优良的机械强度、耐应力松弛、抗蠕变性及耐水耐热性。由聚苯醚改性而成的改性聚苯醚(MPPE)是世界五大通用工程塑料之一,在电子电气、家用电器、办公自动化设备、汽车、建筑、航空和军工等领域具有广泛的用途。根据国标GB/T 41874-2022用毛细管法测试PPE(聚苯醚)特性粘度,乌氏毛细管法实验操作简单,数据重复性好,在大多数高分子材料研发及相关质量控制中都起到关键作用,尤其是ZVISCO自动乌式粘度仪因其自动化程度高,节省人力的同时进一步提高了实验数据的可靠性。ZVISCO IV6000系列全自动乌式黏度计、MSB系列多位溶样块、ZPQ智能配液器一整套黏度测试设备为例: 实验流程:1. 智能配液过程使用ZPQ智能配液器进行配液,点击配液功能后,直接输入浓度和质量(可通过连接天平直接获取),可直接计算出所需要的目标体积进行移液并且精度可达0.1%。可避免因手动配液方法导致的精度差、效率低及数据误差等问题。ZPQ智能配液器还具有密度计算功能,移取液体体积后,输入质量(可与天平通讯,直接获取),即可自动计算出密度值。2. 溶样过程MSB系列多位溶样块,采用金属浴的方式进行加热溶样并具有自动搅拌功能,同时可容纳15个样品。溶样效率快、转速可调、溶样时间可调、溶样温度可调、溶样温度可达180℃。3. 测试过程IV6000系列全自动乌式黏度计可实现自动连续测量,全程无需人员看管。并且采用的智能红外光电传感器,保证测量时间的精度可到毫秒级,可有效确保实验数据的精度,避免人工实验导致误差。4. 测试结果:IV6000系列全自动乌式黏度计连接电脑端,得出结果可在计算机上直接显示,并有数据储存、多样化粘度分析报表等多种功能。5. 粘度管清洗干燥过程:IV6000系列仪器可自动排废液,自动加清洗液干燥液、自动清洗并干燥粘度管,粘度管无需从浴槽中取出,粘度管不易损坏,减少耗材成本支出。清洗模式可多种选择,同时具有废液分类收集功能,减少废液回收成本及避免因多种废液混合导致的风险。IV6000系列全自动乌式黏度计可实现自动测试、自动排废液、自动加清洗液和干燥液、自动清洗,自动干燥,告别了粘度管是耗材的时代。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制