当前位置: 仪器信息网 > 行业主题 > >

福辛普利钠

仪器信息网福辛普利钠专题为您提供2024年最新福辛普利钠价格报价、厂家品牌的相关信息, 包括福辛普利钠参数、型号等,不管是国产,还是进口品牌的福辛普利钠您都可以在这里找到。 除此之外,仪器信息网还免费为您整合福辛普利钠相关的耗材配件、试剂标物,还有福辛普利钠相关的最新资讯、资料,以及福辛普利钠相关的解决方案。

福辛普利钠相关的资讯

  • 测序王国里的新“王牌”——纳米孔技术有望颠覆DNA测序市场
    p style=" text-align: center " img title=" 201711141316535767.JPG" src=" http://img1.17img.cn/17img/images/201711/insimg/71f679e6-bf81-40bb-9ea3-8d65204ae4ba.jpg" / /p p style=" text-align: center " strong   Scott Tighe(左)利用MinION设备在南极测序微生物DNA。图片来源:Sarah Johnson /strong /p p   Christopher Mason有一个喜欢在会议上展示的技巧。通过从志愿者手机上收集的化验样本获取DNA,他和同事能在1个小时内现场进行谱系分析,甚至详细描述出捐赠者一天的生活细节。“我们能从手机上的残留物预言谁刚吃了一个橘子或者谁吃了猪肉。”美国纽约威尔康奈尔医学院计算生物学家Mason表示。 /p p   他利用一种由英国牛津纳米孔技术公司(ONT)研发、名为MinION的手持测序设备实现了这种快速分析。MinION会让DNA长链穿过被称为纳米孔的小孔,探测由DNA的4个核苷酸组件引发的电流微小变化,从而阅读序列信息。Mason的展示是对该设备性能的轻松说明,而早期用户却积累了一些引人注目的科学成就。MinION在监控2015年埃博拉病毒暴发上扮演了举足轻重的角色,并乘船到达过南极甚至进入了太空轨道。 /p p   不过,大小和一副扑克牌相当的MinION仅在全球测序市场上占据了一小部分份额。这个市场仍由位于加州圣地亚哥的启迪公司主导。虽然启迪领先了近10年,但ONT及其用户正在努力克服技术挑战——最突出的挑战是较高的出错率。与此同时,竞争的企业希望对这种概念上很简单但技术上很复杂的测序策略稍加创新,从而超越ONT。 /p p    strong 在传染病研究人员中最受欢迎 /strong /p p   事实证明,MinION在传染病研究人员中尤其受欢迎。例如,伯明翰大学微生物基因学家、MinION早期采用者Nicholas Loman同全球病毒“热点区域”的同行合作,共同监控埃博拉在西非以及寨卡在巴西的传播。“他们基本上能在48小时内建立一个测序实验室使其运行,并且可以把设备打包到携带的行李箱里。”加州大学生物物理学家Mark Akeson表示。Akeson开展了纳米孔测序法方面的一些基础性研究,并且是ONT咨询委员会成员。Loman表示,这种可携带性是一种巨大的优势,但大量的数据输出可能会难以掌控。“我们在巴西几乎要成功了,但因为设备过热,我的苹果电脑崩溃了。” /p p   一些团队正在探寻临床微生物学应用。澳大利亚昆士兰大学生物信息学家Lachlan Coin开发了实时数据分析算法,以便检测血液样本中的耐药细菌。在利用培养细菌开展的早期测试中,Coin团队能在10个小时内辨别出一个样本中的所有抗药基因。Coin介绍说,现在的技术能让这一时间减半,但利用真实样本(人类DNA会将细菌DNA淹没)的做法正令这一过程复杂化。“我认为,再过1年左右,我们将能在6个小时内辨别出病人样本中的抗药基因。” /p p   其他研究人员正在探寻宏基因组学,目标是全面描述样本中的所有生物体。原则上,流动细胞中的每个纳米孔都能被用于同时检测不同的基因组。“你可以获得存在的任何物种——细菌、病毒和人类DNA的完整基因图谱。”Mason介绍说。他利用纳米孔测序对因肮脏出名的纽约地铁系统开展了宏基因组学调查,并且雄心勃勃地计划对更加荒凉的环境——包括火星进行分析。Mason同美国宇航局的科学家合作证实,MinION在国际空间站零重力条件下表现良好。他和同事希望,有一天能将该技术用于研究火星,并且为正在进行的寻找地外生命提供帮助。 /p p   回到地球,佛蒙特大学遗传学家Scott Tighe在南极麦克默多干河谷运行了MinION。在那里,他的团队用了两个多小时对微生物样本进行了测序。“设备停止运行的原因在于外面太冷了:电池到最后没电了。”同Tighe就若干项目有过合作的Mason解释说。 /p p    strong 瞄准哺乳动物基因组 /strong /p p   诸如美国国家人类基因组研究所所长Adam Phillippy等纳米孔方面的资深专家将微生物基因组组装视为“一个已经解决的问题”。如今,他们有了更高远的目标:含有数十亿个而非几百万个核苷酸的哺乳动物基因组。今年,一个包括Phillippy、Loman和加拿大安大略癌症研究所生物信息学家Simpson在内的研究团队报告称,他们仅利用达到很高准确度的MinION数据便组装了完整的人类基因组。Simpson介绍说,平均的重叠群大小达到百万碱基级别,精度值最高为99.44%。搭配使用启迪公司的短序列技术,该团队将准确度提升至99.96%,尽管这仍落后于99.99%的金标准准确度。 /p p   不过,在人类基因组分析的其他方面,纳米孔要更加擅长。例如,目前的人类基因组组装仍不完整,因为高度重复的区域对短序列分析“并不感冒”。一个由加州大学基因组学研究人员Karen Miga领导的团队证实,纳米孔能帮助研究人员填补这些空白。Miga团队利用150千碱基对序列重构了人类着丝点,即真核生物染色体上高度重复的基因组。对该领域的研究此前一片空白。同Miga开展合作的Akeson预测,离组装出真正完整的基因组序列可能仅有几年时间。 /p p   纳米孔分析还非常适合绘制外基因标记——对单个核苷酸进行的微小化学修饰,会影响基因表达。大多数测序平台利用的是清除这些标记的样品制备方法,但纳米孔平台可直接分析修饰的DNA。Simpson和来自约翰斯?霍普金斯大学的Winston Timp证实,他们能训练软件区分甲基化胞苷酸和正常胞嘧啶的电信号,准确度约为90%。Akeson也实现了类似的成功。“我们能探测到任何试图看到的修饰。”Akeson表示,“它甚至能区分两个氢原子之间的差别。” /p p strong   更多期待 /strong /p p   不过,一些用户发现,纳米孔样本准备工具具有不可预知性。例如,一些DNA样本需要广泛的优化。“一些人做得非常好并且获得了惊人的成果,但其他人仍在挣扎。”位于马萨诸塞州的药物研发公司Warp Drive Bio首席科学家Keith Robison 表示。在去年12月的一次演讲中,ONT首席科技官Clive Brown宣称:“公司正在投入很多努力,为人们提供针对特定样本类型的调试协议,从而帮助他们优化获得的样本。” /p p   诸多问题为竞争者带来了机遇。跟得最紧的是位于瑞士的罗氏公司。2014年,该公司并购了总部位于加州的纳米孔初创企业——珍妮亚技术公司。虽然罗氏公司对它的系统秘而不宣,但珍妮亚公司在2016年公开的一份文件中描述了“通过合成开展纳米孔测序”的策略。该技术将DNA合成酶同蛋白纳米孔配对。这种酶会读取目标DNA,并且利用带有化学标签的核苷酸建立互补序列。在每个碱基被包括进不断延长的DNA链时,它的标签被释放并穿过纳米孔,从而产生不同的电信号。 /p p   不过,ONT并未止步不前。和此前的模型相比,其两个最新的桌上型系统能传送大很多的数据量。在今年3月发布的GridION基本上可并行运行多个MinION设备。相比之下,PromethION利用的是一种完全不同的流动细胞,并且面向的是人类基因组规模的项目。“很明显,他们想让该系统在输出量方面同启迪公司的平台相媲美。”Loman表示。 /p p   虽然该领域取得了很多进展,但不容否认,纳米孔测序占据了支配地位。其低成本、可靠测序的前景令研究人员兴奋不已。“作为计算机科学家,我总是非常渴望数据。”Phillippy表示,“所有微生物学实验室和大学课堂都能产生测序数据的想法非常诱人。” /p p /p
  • 光伏纳米粒子可用作量子光源
    研究人员发现新型光伏纳米粒子可以发射相同的光子流。图片来源:美国《每日科学》网站据最新一期《自然光子学》杂志报道,美国麻省理工学院研究人员证明,新型光伏纳米粒子可发出单一的、相同的光子流,这可能为研发新的量子计算技术和量子隐形传态设备铺平道路。量子计算的大多数路线使用超冷原子或单个电子的自旋作为量子比特,以构成此类设备的基础。大约20年前,一些研究人员提出使用光作为基本量子比特单位的想法。这样做的好处在于无需再使用控制量子比特的昂贵而复杂的设备,只需要普通的镜子和光学探测器。研究人员表示,有了这些类似量子比特的光子,就可用家用线性光学系统建造一台量子计算机。因此,这些光子的准备是关键,他们最终选择了铅-盐类钙钛矿纳米颗粒。纳米颗粒形式的卤化铅钙钛矿有着极快的低温辐射速率,光发射得越快,输出就越有可能具有定义明确的波函数,因此,快速的辐射速率使卤化铅钙钛矿纳米颗粒能够发射量子光。为了测试它们产生的光子是否真的具有这种特性,研究人员采用了标准测试,即检测两个光子之间的洪-欧-曼德尔干涉。在没有任何辐射增强或光子结构的情况下,结果显示出高达0.56±0.12的校正可见度。这些结果证明了钙钛矿纳米晶体作为不可区分的单光子的可扩展胶体源的独特潜力。
  • 纳米分辨傅里叶红外光谱与成像技术(nano-FTIR & neaSNOM)助力复合聚合物领域实现新突破
    背景简介聚合物纳米复合材料是以聚合物为基体连续相,以纳米填充物为分散相的一种复合材料,具有易加工、摩擦和磨损率小、表面硬度高以及成本低廉等特点,在工业中具有广泛应用,受到诸多科学家的关注。研究聚合物复合材料的内部结构是一种综合性认知材料聚集形态形成和物质组成分布的有效方法。通常,科学家通过透射电子显微镜(TEM)研究颗粒的内部结构及聚集形态。但是,电子显微镜并不能对轻质元素(C, H, N和O) 进行元素识别及表征,而这些元素正是水体系聚合物主链单元的主要组成元素。同时,电子显微镜对聚合物功能团的识别强烈依赖于选择性染色,需要将电子密度高的重金属离子引入聚合物链。因此,通过扫描透射电子显微镜-电子能量损失谱方法(STEM-EELS)或者TEM相衬度法来研究聚合物纳米材料的形态结构及元素分布仍然存在一些争议,特别是在研究水溶性主链的聚合物体系中染色带来的误差和衬度失真尤为严重。近年来,迅速发展的纳米分辨傅里叶红外光谱与超分辨光学成像技术(nano-FTIR & neaSNOM)能够实现在10 nm的空间分辨率下对材料的化学组成和结构进行表征。与电子显微镜与电子能谱结合的方法相比,光学探测技术具有无损伤、无需染色标记、快速且适用性广等优点,可以研究材料化学组分,微观结构、电学、力学、高分子取向与构象以及物质相互作用等信息。研究进展近期西班牙纳米科学研究中心的Rainer Hillenbrand团队通过nano-FTIR & neaSNOM对聚全氟辛基丙烯酸酯-基丙烯酸酯-丙烯酸丁酯(PMB)形成的纳米复合颗粒进行研究[1]:证明了颗粒内部形成了复杂的Core-Shell-Shell结构。进一步,通过nano-FTIR对全氟取代共聚物(POA)和丙烯酸共聚物(MMA/BA)在三层结构中的分布及比例进行定量研究,发现本该富集在Core部分的疏水POA在三层结构中都存在,并且在inner-Shell的比例高度达到了65%。结合聚合反应动力学研究,nano-FTIR & neaSNOM可以呈现复合聚合物颗粒Core-Shell-Shell结构在形成过程中各化学组分生成时间、相分离及迁移的具体路径以及疏水、亲水相互作用,有助于提升对纳米材料复杂高次结构的理解和设计。需要指出的是:由于不同的域(核,壳)显示出显着不同的机械性能和形貌(图1a),其他方法(例如PiFM和AFM-IR)得到的红外信息会跟局域的机械性能有一定关联,造成一些数据假象。而nano-FTIR对于这种材料系统的优点是部与样品之间的纯光学相互作用决定了信号,因而得到的信号与材料的机械性能无关。 精彩结果展示图1 PMB嵌段聚合物截面光学超分辨成像。(a)s-SNOM原理示意图。通过激发光(Einc)聚焦照射AFM探针,在针周围形成增强的局域近场,进一步AFM探针以Ω轻敲振动频率调制针散射(Esca)的近场信号,从而获取纳米尺度下聚合物截面的光学图像。(b)纯poly(POA) 与poly(MMA-co-BA)的nano-FTIR光谱,用作对比参考光谱。垂直的蓝色虚线表示记录在图(d)和(e)中的近场光学图像的红外频率。(c) PMB颗粒的拓扑结构成像。(d, e) 近场红外的相位图对应了样品分别在1250 cm−1 (d)和在1736 cm−1 (e)处的吸收。图像的积分时间为每个像素6 ms 图像获取时间为24 min。图2 nano-FTIR&neaSNOM对PMB单颗截面Core-Shell-Shell结构中POA/ARC(MMA-co-BA)的高光谱及纳米红外光谱研究(左);图3 对多个PMB聚合物颗粒化学组分的统计研究,定量给出了Core-Shell-Shell的比例分布(右)。结论作者展示了无需化学染色标记的一种纳米成像与纳米光谱表征方法(s-SNOM& nano-FTIR),该方法确认了PMB聚合物复合颗粒内部结构并证明了新型的核-壳-壳复杂结构的存在。进一步通过对参比样品光谱进行线性叠加拟合,定量的计算出核-壳-壳结构中各个组分的定量比例及分布。这种同时表征材料微观纳米结构与对应化学成分的方法是前所未见的,有助于帮助科学找到影响材料性能的关键参数以及终材料聚集形态形成的动力学路径,依此来设计和调控材料所需的宏观性能。 研究利器上述研究中的纳米分辨傅里叶红外光谱与成像技术(nano-FTIR & neaSNOM)是由德国Neaspec公司利用其有的散射型近场光学技术发展出来的,使纳米尺度化学鉴定和成像成为可能。这一技术综合了原子力显微镜的高空间分辨率和傅里叶红外光谱的高化学敏感度,可以在纳米尺度下实现对几乎所有材料的化学分辨。由此开启了现代化学分析的纳米新时代。该设备还具有高度的可靠性和可重复性,已成为纳米光学领域热点研究方向的重要科研设备!图4 neaspec纳米傅里叶红外光谱仪-Nano-FTIR 参考文献:[1]. Cross-Sectional Chemical Nanoimaging of Composite Polymer Nanoparticles by Infrared Nanospectroscopy, Macromolecules, 2021, 54 (2), 995-1005, DOI: 10.1021/acs.macromol.0c02287
  • 130万!清源创新实验室原位傅立叶红外光谱仪采购
    项目概况 受清源创新实验室委托,福建省源兴工程管理有限公司对[350500]YXGC[GK]2021008、清源创新实验室原位傅立叶红外光谱仪采购货物类采购项目组织公开招标,现欢迎国内合格的供应商前来参加。 清源创新实验室原位傅立叶红外光谱仪采购货物类采购项目的潜在投标人应在福建省政府采购网(zfcg.czt.fujian.gov.cn)免费申请账号在福建省政府采购网上公开信息系统按项目获取采购文件,并于2022-01-17 09:30(北京时间)前递交投标文件。一、项目基本情况 项目编号:[350500]YXGC[GK]2021008 项目名称:清源创新实验室原位傅立叶红外光谱仪采购货物类采购项目 采购方式:公开招标 预算金额:1300000元 包1: 合同包预算金额:1300000元 投标保证金:0元 采购需求:(包括但不限于标的的名称、数量、简要技术需求或服务要求等)品目号品目编码及品目名称采购标的数量(单位)允许进口简要需求或要求品目预算(元)1-1A02100404-光学式分析仪器原位傅立叶红外光谱仪1(台(套))是技术要求 1.★红外主机光学腔和样品仓为真空系统密封设 计,具备抽真空功能,最大真空度≤0.2mbar 2.光谱范围:≥8000 ~350 cm-1,KBr分束器 3.▲最大光谱扩展范围:≥28000 ~10 cm-1 4.分辨率:≤0.4cm-1 5.▲波数准确度 :≤0.005cm-1@2000cm-1 6.▲信噪比:≥55000:1,(峰-峰值,1分钟测量,4cm-1) 7.★干涉仪:采用立体角镜光学补偿技术,光路永久准直,无需动态调整。 8.光源:带有预准直的高能量中-远红外光源。 9.★检测器:配置控温高灵敏度中红外DLaTGS检测器和液氮制冷MCT检测器,软件控制自动切换,直接输出数字信号 10.外光路输入接口≥2个,可扩展远红外汞灯光源和可见光氙灯光源。 11.▲外光路输出接口≥5个,可连接红外显微镜、高通量测试、偏振分析、热重分析仪、拉曼光谱仪、光致发光等各种大型附件。 12.A/D转换:24位、高速A/D转换。 13.网络化:红外主机与计算机之间通过“以太”网卡连接,无任何限制。红外主机在网络中“即插即用”;计算机可远程控制、采样及数据处理;实时数据共享。 14.中文界面的红外控制软件,包括红外控制、谱图处理、数据转换、多组分定量等操作软件; 15.▲实现腔体内部真空功能,系统结构为高强度材料构成,要求主机净重≥90kg 16.▲3D可视化:实验数据需能进行3D可视化处理。 (二)配置要求1.真空型红外主机 1套 2.控制软件 1套 3.随机文件 1套(包含:主机出厂验收报告;红外光谱仪操作软件U盘;电子版软件操作手册;仪器硬件维护手册) 4.无油真空泵 1套 5.★可加热液体池1套 6.★原位漫反射附件1套 7.★真空红外电化学附件1套1300000 合同履行期限: 合同签订后 (90 ) 天内交货 本合同包:不接受联合体投标二、申请人的资格要求: 1.满足《中华人民共和国政府采购法》第二十二条规定; 2.本项目的特定资格要求: 包1 (1)明细:招标文件规定的其他资格证明文件(若有) 描述:1、(强制类节能产品证明材料,若有,应在此处填写); 2、(按照政府采购法实施条例第17条除第“(一)-(四)”款外的其他条款规定填写投标人应提交的材料,如:采购人提出特定条件的证明材料、为落实政府采购政策需满足要求的证明材料(强制类)等,若有,应在此处填写)。 ※1上述材料中若有与“具备履行合同所必需设备和专业技术能力专项证明材料”有关的规定及内容在本表b1项下填写,不在此处填写。 ※2投标人应按照招标文件第七章规定提供。 (2)明细:具备履行合同所必需设备和专业技术能力专项证明材料(若有) 描述:1、招标文件要求投标人提供“具备履行合同所必需的设备和专业技术能力专项证明材料”的,投标人应按照招标文件规定在此项下提供相应证明材料复印件。 2、投标人提供的相应证明材料复印件均应符合:内容完整、清晰、整洁,并由投标人加盖其单位公章。 (3)明细:特别提醒事项 描述:1、投标人电子投标文件中的单位负责人授权书(若有)应为纸质投标文件正本中的原件的扫描件,否则以无效标处理。2、投标人响应“财务状况报告”项时若提供的是银行资信证明且资信证明上注有“复印无效”相关字样的,其纸质投标文件正本中必须提供原件。(如项目接受联合体投标,对联合体应提出相关资格要求;如属于特定行业项目,供应商应当具备特定行业法定准入要求。) 三、采购项目需要落实的政府采购政策 进口产品,不适用于本项目。节能产品,不适用于本项目。环境标志产品,不适用于本项目。信息安全产品,不适用于本项目。小型、微型企业,适用于本项目。监狱企业,适用于本项目。促进残疾人就业 ,适用于本项目。信用记录,适用于本项目,按照下列规定执行:(1)投标人应在投标截止时间前分别通过“信用中国”网站(www.creditchina.gov.cn)、中国政府采购网(www.ccgp.gov.cn)查询并打印相应的信用记录(以下简称:“投标人提供的查询结果”),投标人提供的查询结果应为其通过上述网站获取的信用信息查询结果原始页面的打印件(或截图)。(2)查询结果的审查:①由资格审查小组有权通过上述网站查询并打印投标人信用记录(以下简称:“资格审查小组的查询结果”)。②投标人提供的查询结果与资格审查小组的查询结果不一致的,以资格审查小组的查询结果为准。③查询结果存在投标人应被拒绝参与政府采购活动相关信息的,其资格审查不合格。四、获取招标文件 时间:2021-12-24 21:45至2022-01-08 23:59(提供期限自本公告发布之日起不得少于5个工作日),每天上午00:00:00至11:59:59,下午12:00:00至23:59:59(北京时间,法定节假日除外) 地点:招标文件随同本项目招标公告一并发布;投标人应先在福建省政府采购网(zfcg.czt.fujian.gov.cn)免费申请账号在福建省政府采购网上公开信息系统按项目下载招标文件(请根据项目所在地,登录对应的(省本级/市级/区县))福建省政府采购网上公开信息系统操作),否则投标将被拒绝。 方式:在线获取 售价:免费五、提交投标文件截止时间、开标时间和地点 2022-01-17 09:30(北京时间)(自招标文件开始发出之日起至投标人提交投标文件截止之日止,不得少于20日) 地点:福建省泉州市泉港区泉港区峰尾镇埭沙路飞达商业街C幢206室六、公告期限 自本公告发布之日起5个工作日。七、其他补充事宜 无。八、对本次招标提出询问,请按以下方式联系。 1.采购人信息 名 称:清源创新实验室 地 址:泉州市泉港区前黄镇学院路1号 联系方式:15860289670 2.采购代理机构信息(如有) 名 称:福建省源兴工程管理有限公司 地  址:泉州市泉港区泉港区峰尾镇埭沙路飞达商业街C幢206室 联系方式:17338720301 3.项目联系方式 项目联系人:小郑 电   话:17338720301 网址:zfcg.czt.fujian.gov.cn 开户名:福建省源兴工程管理有限公司 福建省源兴工程管理有限公司 2021-12-24
  • 纳福迎新送大礼,将幸福连续到底!
    纳福迎新送大礼,将幸福连续到底! 自2011年12月至2012年3月,本商城会员,在任意三个月内(12月、1月、2月或1月、2月、3月),连续购买本商城产品,满额即送丰厚大礼: 每月购买满5888元,送联想平板电脑一个或捷安特自行车一辆; 每月购买满3888元,送格兰仕电烤箱一个或水星家纺一套; 每月购买满1888元,送飞利浦咖啡机一台或索尼MP3一部。 赠礼不可累计叠加或向下降级叠加。 详情请致电美瑞泰克:4006-117-116 关于商城本此活动的最终解释权归美瑞泰克所有。
  • analytica China 2018倾力打造行业新标杆
    p style=" text-align: center " strong   两年磨一剑,十月展锋芒 /strong /p p style=" text-align: center " strong   analytica China 2018倾力打造行业新标杆 /strong /p p   亚洲领先的分析、生化技术、诊断和实验室技术博览会——第九届慕尼黑上海分析生化展(analytica & nbsp China)即将于2018年10月31日-11月2日登陆上海新国际博览中心的E1-E4馆。作为业内翘首以盼的双年展,今年展会扩馆升级,规模从原先的3个馆扩大至4个馆,总展示面积达46,000平方米,将云集900余家海内外先锋企业参展和来自德国、英国、日本和中国台湾的各大展团亮相,预计将有逾27,000名实验室研究和应用领域的专业观众莅临参观,是分析生化领域不容错过的饕餮盛宴。 /p p   近年来,随着国家对重大科学仪器设备的支持力度不断加大,以及食品、环境、制药等应用领域蓬勃发展的环境下,分析仪器产业表现出巨大的发展潜力。据统计,2017年我国仪器仪表行业每月增加值的增速保持在10%以上,对外贸易全年累计实现了进出口总额 & nbsp 732.7 亿美元,预计这一数据在2018年将稳中有升。在这样的背景下,analytica & nbsp China以促进科学仪器产业发展为己任,将为相关企业、用户、专家等从业人员搭建一个产、学、研、用一体化的绝佳交流平台! /p p strong   扩馆升级势如破竹,中外名企百舸争流上演行业角逐战 /strong /p p   作为业内企业全面展示新产品、技术和解决方案的优质平台,analytica China & nbsp 2018除延续上届主题,设置生命科学、生物技术与诊断,分析与质量控制,实验室装备与技术,食品安全装备与技术四大展区外,还全新开设环境监测主题展区,强力整合环境监测领域涉及的相关产品及技术资源,从产品展示和同期会议两方面双管齐下,打造新产品、新技术、新应用、新资讯的专业发布平台,助力中国环境监测行业的向好发展。五大展区重磅登场,毫无疑问受到了新老展商的热烈追捧和踊跃报名。截至6月,展位已即将售罄,再一次印证analytica & nbsp China作为行业风向标的巨大影响力和号召力。 /p p   百舸争流,奋楫者先 千帆竟发,勇进者胜!中外名企汇聚一堂,将在analytica China & nbsp 2018上演一场精彩纷呈的角逐战!实验室装备与技术展区:梅特勒托利多、赛多利斯、美诺、依拉勃、松下冷链、艾卡、JULABO、奥豪斯、奥卓莱、世格、易格斯、泰坦、一恒、Waldner、特莱仕、威盛亚、大橡木、卓思、创美、台雄、榕德、欧诺诗、腾硕、科恩、迈蒂尼、科贝、瀚广、龙川净化、富美家、马斯德克等 生命科学、生物技术与诊断展区: & nbsp Thermo & nbsp Fisher、eppendorf、丹纳赫、默克、帝肯、哈美顿、普兰德、海尔、艾万拓、泰坦、天地、艺思高、普和希PHCbi、赛多利斯、Gilson、BIOSIGMA、CYANAGEN、博日、洁特、大龙兴创、桑翌、中科美菱等 分析与质量控制展区:安捷伦、岛津、PerkinElmer、Jasco、Horiba、瑞士万通、弗尔德、沃特世、耶拿、日立、安东帕、Bruker、德祥、佑科、元析仪器、海能仪器、尤尼柯、莱伯泰科、美谱达、天瑞仪器、北分瑞利、舜宇恒平、天美、大昌华嘉等 食品安全装备与技术展区:蔡司、SGS、艾迈柯思、聚光科技、ATAGO & nbsp 、Lab & nbsp Tech、VELP、阿尔塔、智云达、吉大小天鹅、沪析、纤检、遂真、北分天普、青岛普瑞邦、阿克苏贝尔等 环境监测装备与技术展区:哈纳沃德、Bruker、聚光科技、光谱、滨松、托普云、坛墨、屹尧、仪电、北裕等同台竞技,精彩一触即发! /p p strong   全面优化观展体验,PP计划邀您开启VIP尊享之旅 /strong /p p   一直以来,analytica China都以满足企业和用户之间的供需匹配为首任。今年,展会首次推出会员计划——Prime Priority 计划 & nbsp (简称“PP计划”),旨在为展会的优质观众和终端用户(即VIP用户)提供便利、优质的观展服务和体验,帮助VIP观众达成参观目的,提升观展满意度,同时也为VIP用户和参展企业提供更多、更便利的供需匹配服务。 /p p   作为VIP观众的唯一身份认证,持有PP卡的用户可尊享一系列观众福利,包括:直接凭卡入场参观,无需排队办证等候 免费享用午餐和VIP休息室茶歇(可携带一人同行) 免费参与展会同期活动,聆听100多场精彩报告等。一系列精彩纷呈的PP卡福利活动也在如火如荼进行中,包括:新品放送、做调研抢礼品卡、组团享丰厚好礼等。更多优惠福利,登陆www.ppcard.analyticachina.com.cn,即刻解锁! /p p strong   多会联动规模空前,品质升级共探行业发展新方向 /strong /p p   凭借新颖的论题、高质量的演讲、专业的组织,analytica & nbsp China的同期活动吸引着越来越多展商和观众的关注。今年,展会将针对分析化学、食品安全与营养健康、精准医学、环境分析与检测、样品制备、实验室认证与管理等进行专题探讨,同期举办多场高质量的重磅研讨会活动。 /p p   第九届上海国际分析化学研讨会由中国化学会和德国慕尼黑博览集团联合主办,以“分析化学——让生命更健康”为主题,邀请清华大学的林金明教授和德国杜伊斯堡-埃森大学的Oliver & nbsp J. Schmitz & nbsp 教授共同担任大会主席 2018中国国际食品产业发展论坛暨2018上海中欧国际食品安全研讨会由上海市食品学会、上海市食品安全工作联合会和德国慕尼黑博览集团共同主办,同期还将举办2018年上海市食品学会年会与上海市食品安全工作联合会年会、全国地方食品学会联谊会,首次多会联动,规模空前 实验室建设与安全论坛围绕实验室安全管理、实验室设计规划与运营管理、绿色实验室/智能实验室等话题,邀请海内外专家及企业展开交流 环境监测技术与分析论坛集结行业专家和用户,共探环境监测与分析的相关标准和专业技术,助力我国环境保护事业大发展 LSAC生命科技论坛:高通量测序技术与应用将邀请行业人士围绕高通量测序技术与应用进行深入探讨。此外,还有样品前处理前沿技术论坛、技术培训班系列、快速检测技术发展论坛等一系列精彩纷呈的活动! /p p   analytica China & nbsp 2018观众预登记已全面开通,立即登陆www.analyticachina.com.cn进行在线注册,即可轻松获取电子观众胸卡。更多信息,敬请访问展会官网或关注官方微信: & nbsp analyticaChina。 /p p strong   analytica China简介 /strong /p p   analytica China & nbsp 慕尼黑上海分析生化展已经成为亚洲重要的分析、实验室技术、诊断和生化技术领域的专业博览会和网络平台,位于行业在亚洲最具成长性的市场之一——中国。展会每两年在上海浦东新国际博览中心举办一次。上海同时是中国的化工和制药产业集散地。观众来自化学、医疗、食品、环境和医药产业,以及工业和政府研究部门的用户和决策者。analytica & nbsp China & nbsp 2016云集了848家国内外参展企业,展示面积达35,000平米,接待了来自62个国家和地区的24,582名专业观众。展会同期举办的analytica & nbsp China国际研讨会聚焦多个行业热点话题,吸引了3,323名来自不同行业领域的专业用户前来参会。(点击下载analytica China & nbsp 2016展后报告,更多内容请访问:www.analyticachina.com.cn。) /p p   analytica China慕尼黑上海分析生化展是analytica全球网络的一部分。该网络涵盖了analytica & nbsp 德国国际分析、生化技术、诊断和实验技术贸易博览会暨国际研讨会(analytica 2018,2018年4月10日至13日,慕尼黑)、analytica & nbsp China慕尼黑上海分析生化展(analytica China 2018,2018年10月31至11月2日,中国上海)、analytica Anacon & nbsp India印度国际分析、生化技术、实验室技术博览会暨国际研讨会(analytica Anacon India & nbsp 2017,2017年9月21日至23日,印度海德拉巴)以及analytica & nbsp Vietnam越南国际分析、生化技术、实验室技术博览会暨国际研讨会(analytica Vietnam 2017, & nbsp 2017年3月29日至31日,越南河内)。更多以上展会及同期活动信息,请访问:www.analytica.de。 /p p & nbsp /p p /p
  • 北卡罗莱纳州立大学Erin Baker副教授获2022年美国质谱年会Biemann奖
    ASMS美国质谱年会组委会公布了2022年的ASMS各大奖项的获奖者名单,其中Biemann奖章的获得者是北卡罗莱纳州立大学Erin Baker副教授.该奖项是授予其职业生涯早期的个人,以表彰其在基础质谱或应用质谱方面的重大成就。Baker博士是北卡罗来纳州立大学化学副教授,因其在新型离子淌度技术( IMS-MS )开发和该技术支持的各种贡献而获奖,她的创新科学贡献的包括:(1) 新的 IMS 技术和方法的开发以及对改进的漂移管 IMS (DTIMS) 平台的重大贡献; (2) 改进的 IMS-MS 平台与固相的耦合萃取和 LC 分离以实现高通量 IMS 测量并提高灵敏度,并用于代谢组学、脂质组学、蛋白质组学和暴露组学应用; (3) 创造第一碰撞横截面 (CCS) 数据库,包含 500 多种代谢物和异生物质,以实现大规模IMS技术的代谢组学和暴露组学研究; (4) 化学信息学工具箱的开发称为基于结构的连接性和组学表型评估 (SCOPE),以实现评估环境和临床研究中脂质组学关联的可视化。此外,baker博士建立了“女性质谱女者 (FeMS)”这一组织,并建立了一个全球网络(也包括男性,跨性别者参与),为教育、合作和研究指导提供频繁的线上交流机会。仪器信息网于2021年与Erin Baker副教授以及FeMS组织携手举办了“第一届女性质谱学者国际研讨会”,共邀请了FeMS共同创始人Anne K Bendt教授、FeMS委员会成员Erin S Baker教授、FeMS科学顾问委员会成员/斯克里普斯研究所John R Yates III教授、FeMS成员/威斯康星大学李灵军、葛瑛教授、北京大学黄超兰教授、中国药科大学叶慧副教授以及复旦大学张莹教授和多位优秀的青年学者分享精彩的报告。学术内容聚焦质谱在多组学研究的技术应用进展,而与其他学术研讨会不同的地方是,多位报告嘉宾积极分享了自己是如何走上质谱研究之路,以及在科研道路上的心路历程,并且还特别对后浪科研工作者提出了一些平衡工作与生活等方面的建议。北卡罗莱纳州立大学Erin S. Baker副教授做了题为《基于多维特征分析实现高可信度质谱检测》的报告。Baker教授团队应用离子迁移谱与质谱 (IMS-MS)、多组学分析和大数据评估来推动创新的质谱技术、系统生物学评估、新的软件功能以及人类健康与环境之间的联系。报告介绍了该团队近期基于IMS-MS开展的研究进展以及接下来的研究计划。
  • 赋能生物医药 拉曼光谱这些新方法/新应用极具潜力——第五届拉曼光谱网络会议报告提前看
    作为一种无创、快速、非损伤性的分析方法,拉曼光谱正逐渐成为生物医学领域中不可或缺的技术之一,在生物大分子(蛋白质、核酸等)及单细胞代谢研究,生化分析、疾病检测及诊断、药物检测及分子相互作用研究等多方面都彰显了极具诱惑的应用前景。相关论文信息显示,目前拉曼光谱分析技术已经在乙肝、登革热、阿尔茨海默症、肿瘤等疾病诊断方面进行探索。同时,拉曼光谱分析的对象,也不止是血清样本,还可以是唾液、尿液、人体分泌物甚至是活体组织等。不过,现阶段,拉曼光谱在医学领域的应用还不完善,还有很多亟待解决的问题。基于此,近年来,越来越多的专家在开展相关的课题攻关工作,为药物研发和疾病诊断等提供越来越深入的潜在方法和理论依据。第五届拉曼光谱网络会议(iCRS2023)期间,多位专家将现场分享,就拉曼光谱在生物和医学领域的应用展开探讨,点击报名》》》部分报告提前看:武汉纺织大学 沈爱国教授《高特异性SERS生物分析》(点击报名)武汉纺织大学生物工程与健康学院沈爱国教授,主要从事面向生命健康、环境和食品安全的生化传感、多光谱成像和仪器研制以及文物科技考古等领域的研究工作。先后主持1项国家重大科学仪器设备开发专项子项目,5项国家自然科学基金项目,1项中石油科技创新项目和2项国家重点实验室开放基金项目;参与1项国家自然科学基金仪器专项重点项目和1项国家重大研究计划培育项目。迄今已在Journal of the American Chemical Society, Angewandte Chemie International Edition, Advanced Functional Materials, Analytical Chemistry和Chemical Communications等杂志上发表SCI论文100余篇,他引2800余次,H因子35。特异性是复杂样品精确定量分析的先决条件。沈爱国教授的报告针对贵金属和无机半导体SERS基底的痼疾以及当前SERS检测方法鲜少商业化应用的现状,从SERS 识别或量化复杂体系中分子/分子集群的直接或间接测量的一般性原理入手,探讨标记、赋能、响应和锁定四种路径策略提高SERS生物分析的思路、原理、分子设计、材料制备和应用领域。本报告介绍的重点将聚焦响应型SERS和有机表面增强拉曼散射(OSERS)两种测量技术,它们的检测优势、具体应用场景和未来的发展趋势等。海军军医大学 陆峰教授《药物分子间相互作用研究新方法》(点击报名)海军军医大学陆峰教授,从事药物/生物的谱学研究20余年,近年致力于药物/毒物分析以及药物分子间相互作用研究的新原理、新方法、新技术、新产品等基础与应用研究。近五年主持国家科技部重大新药创制科技重大专项、国家自然科学基金、国家科技部重点研发计划、军队生物安全重点专项等10余项课题。在Anal Chem、Sensor Actuat B、中国科学等期刊发表论文90余篇,授权国家发明专利30余项。获中国发明协会发明创业奖创新一等奖、上海市科技进步三等奖、中国药学会科学技术三等奖、上海市优秀教学成果一等奖等。药物分子之间特定的相互作用既是全面了解细胞过程和潜在疾病治疗的基础,也是生物传感器检测目标分子的基础。分子相互作用研究是药学重要的研究领域之一,其研究方法也一直是国内外众多生命科学家关注的重要工具之一。本报告,重点介绍了表面增强拉曼光谱法(SERS)、生物膜干涉法(BLI)、分子动力学模拟(MD)及其协同方法,并初步应用于药物-核酸适配体、生物毒素药物-核酸适配体、siRNA-药物相互作用等研究对象。三种方法在研究分子间相互作用方面各有所长,可以发现互作表象、定量描述强度、揭示分子机制,有望成为阐明其分子机制的得力工具。吉林大学 韩晓霞教授《蛋白质拉曼光谱:从结构表征到功能探测》(点击报名)韩晓霞教授,2014年入职吉林大学超分子结构与材料国家重点实验室。迄今为止已在Nat. Rev. Methods Primers、Angew. Chem. Int. Edit.、Nano Lett.、ACS Nano等学术期刊发表论文100余篇,参与撰写英文专著4部,获省部级奖励4项,主持国家自然科学基金5项。目前研究兴趣主要集中在拉曼光谱在生命科学领域的应用研究。蛋白质是生命活动的主要承担者,研究蛋白质的结构和功能对于理解生命过程及其机理具有重要意义。快速灵敏的蛋白质鉴定和结构表征技术是蛋白质组学和生物医学迅速发展的关键。韩晓霞教授课题组以表面增强拉曼光谱(SERS)为主要研究手段,建立了一系列蛋白质标志物的检测方法,推动了SERS在生物医学领域的应用。近几年他们探索了凋亡信号通路中蛋白质–配体间的相互作用及其调控细胞凋亡的分子机制,阐明了关键调控因子在线粒体内以及线粒体–内质网互作调控细胞凋亡过程中所发挥的重要作用,为癌症靶向治疗相关的促凋亡药物的设计和筛选提供了实验方法和理论依据。上海师范大学刘新玲 副教授《表面增强拉曼光谱法检测唾液中D型氨基酸标志物》(点击报名)刘新玲,上海师范大学化学与材料科学学院教师,主要从事拉曼光谱和手性材料研究。拉曼光谱是一种分子指纹光谱分析方法,在分子检测中具有独特优势。然而,拉曼光谱法难以直接区分手性分子对映体。本研究通过引入手性选择剂,发展了几种用于手性分子识别的表面增强拉曼光谱分析方法,并用于检测唾液中D型氨基酸,通过临床唾液样本分析,发现胃癌患者中D氨基酸浓度显著高于非胃癌患者,为胃癌无创诊断提供了一种潜在方法。上海交通大学生物医学工程学院副院长 叶坚教授《Volume-active SERS nanoprobes for bright and supermultiplexed bioimaging》(点击报名)叶坚教授上,海交通大学生物工程学院副院长、上海交通大学医学院附属瑞金医院“广慈教授”、上海交通大学医学院附属仁济医院兼职研究员,国家自然科学基金委优秀青年基金获得者。目前的主要研究方向是等离激元纳米材料和拉曼光谱(表面增强拉曼光谱、缝隙增强拉曼探针)的生物医学应用。在Nature Communications、Nano Letters、ACS Nano、Small、Biomaterials等期刊上共发表论文70多篇,被引用次数近3000次,H因子为30。曾被ACS Nano期刊邀请撰写Perspective文章一篇,被邀请为Springer出版社撰写英文专著一章。本次会议中,叶坚教授的报告题目是《Volume-active SERS nanoprobes for bright and supermultiplexed bioimaging》。雷尼绍(上海)贸易有限公司 李兆芬 高级工程师《雷尼绍拉曼在生物医药领域的最新应用进展》(点击报名)李兆芬,现任雷尼绍光谱产品部应用工程师,主要负责拉曼技术在各个领域的应用开发及使用,拥有多年的拉曼光谱分析测试经验,具有丰富的理论知识及测试技巧,致力于拉曼光谱在各个领域应用解决方案开发和推广。多次协助老师在Nature,Advanced material,等期刊发表论文。显微共焦拉曼光谱系统因为其无需前处理,无损,快速,准确等优异的性能,受到各个领域科研人员的广泛关注,在生物和制药领域分析中也有其独特的优势,例如可以直接对活的细胞等进行检测,可以通过拉曼成像给出药物的工艺等。本次报告就Renishaw拉曼光谱仪在生物以及制药领域中最新的应用做简单的分享。安捷伦科技(中国)有限公司分子光谱产品工程师 裴金菊《空间位移拉曼和透射拉曼在制药上的应用》(点击报名)裴金菊,安捷伦分子光谱产品工程师,2012年毕业于武汉大学化学学院,研究生课题是拉曼等分子光谱技术新型分析方法开发,毕业后一直在国际知名的仪器公司从事分子光谱的应用开发与支持工作,2017年加入安捷伦科技,主要负责红外、紫外、拉曼等分子光谱在制药/生物制药行业的应用开发和技术支持工作。空间位移和透射拉曼均被最新中国药典收录,USP1858重点介绍药厂正在使用的三大拉曼之一——空间位移拉曼,独具直接穿透不透明外包装鉴别原辅料的功能,加速原辅料鉴别放行,解决原辅料100%鉴别最大的痛点。透射拉曼,穿透整个样品,结合化学计量学算法,无需前处理,无损、快速定量检测片剂、胶囊、粉末等样品中的活性成分含量。 蔚海光学仪器(上海)有限公司 应用主管 卢坤俊《海洋光学拉曼解决方案及应用分享》(点击报名)卢坤俊,现任海洋光学亚洲公司应用工程师主管,主要负责光谱仪相关产品的技术支持与光谱解决方案的应用开发工作,有着10年以上的环境、智能农业、化工、消费电子、半导体及生命科学领域的光谱应用背景。本报告将介绍海洋光学公司及客户合作模式,并分享了海洋光学微型光谱仪在拉曼方向的各类应用,包括生物医学、食品安全、制药、安检刑侦以及化工领域。另外,报告还将分享海洋光学在拉曼方向的解决方案模式,包括模块化拉曼、手持式拉曼、便携式拉曼、显微拉曼等。为了分享拉曼光谱技术及应用的最新进展,促进各相关单位的交流与合作,仪器信息网与上海师范大学将于2023年10月24-25日联合举办第五届拉曼光谱网络会议(iCRS2023) 。以上仅是部分报告嘉宾的分享预告,更多精彩内容请参加会议页面:https://www.instrument.com.cn/webinar/meetings/icrs2023/
  • 理加联合赴帕纳科北京办公室培训
    2014年8月6日,北京理加联合科技有限公司(以下简称:理加联合)派5名代表赴帕纳科北京办公室进行了为时一天的培训,主要培训了帕纳科的历史及其最新推出的台式能量色散型X-射线荧光光谱仪E1、E3系列的原理及实际操作。 理论内容培训 实际操作培训 样品位 X射线 讲解软件 截谱 帕纳科E1、E3系列台式能量色散型X-射线荧光光谱仪具有相比其它同类仪器更优秀的元素分析性能,可进行不破坏样品,快速、准确并可车载到现场的检测,并且含有Omnian无标定量软件包,减轻了测量过程中对标样的依赖性,是环境检测中元素分析的快速、准确的分析工具。 关于理加联合主要代理产品:美国LGR公司激光痕量气体和稳定同位素分析仪美国ASD公司地物光谱仪意大利AMS集团全自动化学分析仪和流动分析仪美国CSI公司闭路涡度相关和大气廓线测量系统美国Resonon公司高光谱成像光谱仪荷兰帕纳科X-射线荧光光谱仪瑞典OPSIS公司凯氏定氮仪和自动消解仪理加联合作为专业的生态与环境仪器的供应商和服务商,一直以“为客户提供最先进的产品和最优质的服务”为目标,在不断引进国外新产品和新技术的同时,努力提升自身的技术支持、售后服务和研发能力,为用户提供更高品质的产品和服务。欲了解更多信息,请浏览公司网站:www.li-ca.com
  • 小世界里大作为——西安交大微纳中心的创新故事
    p   1微米,是一百万分之一米 1纳米,是十亿分之一米……迈入新世纪,科技的锋芒正在向更精密更细微的层面深入。成立于2009年的西安交通大学微纳尺度材料行为研究中心(简称微纳中心),即是对介于微米和纳米尺度之间的材料结构、性能进行研究的科研机构。 /p p   成立仅仅6年,西安交大微纳中心佳绩频出:不仅每年都有成果在《自然》及其正刊《自然· 材料》《自然· 通讯》等顶级学术期刊上发表,创造了西安交大以第一作者单位在《自然》刊发论文的历史,并且很多论文的第一作者都是在读博士生、硕士生,培养出了大批人才。 /p p   成果、人才涌现背后,其生成机制令人好奇。 /p p strong   互补产生聚合效应—— /strong /p p strong   “梦之队”带出精兵强将 /strong /p p   生活中的铝制品通常稳定耐用,因为它的表面会自然形成一层氧化铝保护膜。但在含氢环境中,铝制品却常常会在表面鼓出气泡,导致氧化膜保护层脱落,乃至材料失效。 /p p   日前,“氢鼓泡”成因之谜被西安交大微纳中心成功破解,成果发表在世界著名期刊《自然· 材料》上,将有助于提高石化、海洋、航空航天等领域金属材料的服役寿命。 /p p   这是该中心创造的最新成果。 /p p   2009年,怀着报效祖国的愿望,在西安交大材料学院院长孙军的邀请下,三位国家“千人计划”专家:美国约翰霍普金斯大学教授马恩、美国海思创纳米力学仪器制造公司应用研究中心主任单智伟和美国麻省理工学院教授李巨,联手发起筹建了西安交大微纳中心。 /p p   这3人都是微纳尺度材料领域的知名专家,阵容堪称豪华。但在微纳中心执行主任单智伟看来,这并不能保证创新成果不断涌现。“一个团队绝不仅仅是几名最优秀的人的简单集合。组建团队时,我们就有意识地找互补性强的专家合作。不能我不知道的东西,你也不知道。” /p p   联系、发现、比较,三人最终组成团队,撑起了微纳中心在世界上的学术高度:马恩教授是世界华人材料领域的权威,单智伟特长在实验,李巨擅长科研模拟。为保持与世界前沿领域的联系,三人商定,单智伟全职回国,其他两人兼职,国内国外两边跑。 /p p   一个优秀的科研团队,不仅需要学术带头人,也需要实验技术人员。西安交大坚持“以你为主”理念,为“千人计划”专家提供施展才能的空间。微纳中心成立之初缺兵少将,中心所在的材料学院,专门将学院的实验技术团队划归微纳中心管理。对这些人员,微纳中心制定了相应考核管理办法,开展轮岗,让他们“既会玩剑,也会耍棍”,有力地保障了科研的进行。科研“梦之队”由此诞生。 /p p   坚持“握指成拳”,让“梦之队”发挥最大作用。微纳中心借鉴哈佛、剑桥等大学的经验,在学生培养上,采取了团队导师制,即三位“千人计划”专家和其他老师集体指导每一个学生,克服单一导师的局限性。 /p p   异质互补、密切协作,聚合效应凸显。“我很幸运能在这些导师门下学习。他们的指导,让我很快了解到前沿领域的问题,更容易出成果。”在导师们的指导下,2012年,在读博士田琳关于“非晶态金属的弹塑性极限研究”的论文,被《自然· 通讯》在线发表,并入选“中国百篇最具影响国际学术论文”。 /p p   strong  把复杂的事情做简单—— /strong /p p strong   最大限度把精力投向科研 /strong /p p   凌晨3点,有学生搬着马扎排队预约科研设备,且大多集中在毕业前夕——中心成立后,单智伟发现了这个奇怪的现象。一经了解才知道,由于采取人工预约方式,信息不对称,容易扎堆。同时,花费巨资购买的仪器设备,在周末、晚上全部关掉了,造成了极大的浪费。 /p p   为破解这一问题,微纳中心一方面让设备充分运转,确保物尽其用,另一方面聘请了软件工程师,开发了网上预约系统,不仅方便了学生,还实现了对学生科研和设备使用情况的跟踪。 /p p   这是微纳中心管理改革的一个剪影。 /p p   回顾自己的科研生涯,单智伟认为,科研的本质就是“把复杂的事情做简单”。为把人从低水平重复的工作中解放出来,把主要精力投入到科研中,在学校的支持下,微纳中心进行了一系列管理改革。 /p p   为处理纷繁的日常事务,微纳中心将学校给三位“千人计划”学者配的3名秘书组成行政团队,将各种事项全部流程化,每个人负责一环,化解了无序和低效率,真正实现了让科研人员从冗杂的事务中解脱出来。 /p p   微纳中心在读研究生有26名,占据团队的半数。在对学生管理方面,微纳中心一改过去每年新生入学时花大量人力进行培训的传统,将技术人员培训活动制成课件播放,实现了培训的规范化 将发表文章和获专利授权,折算成享受成果津贴奖励等,实现了激励的制度化。 /p p   除此之外,微纳中心创造性地提出,取消寒暑假,实行年假制度,研究生和科研人员每人享有20个工作日的带薪年假。“我们不能再把研究生当成普通学生对待,而是要当作专业研究人员来看待,这样,大学才能实现从教学型到研究型大学转变。”单智伟说。 /p p   “微纳中心的学生在科研技能的学习培训速度上要远超国内的其他团队,往往硕士生第一年即具备了比很多博士生还要扎实全面的科研技能。”成功破解“氢鼓泡”成因之谜、以第一作者在《自然· 材料》刊发论文的在读博士生解德刚感慨地说。 /p p    strong 将论文视为解决问题的副产品—— /strong /p p strong   用兴趣标注科研新高度 /strong /p p   微纳中心成立6年来,实现了多名学生以第一作者发表高水平论文,两篇入选“中国百篇最具影响国际学术论文”。以中心为主要研究团队的“微纳尺度材料形变特性及其尺寸效应”获得2010年度“中国高校十大科技进展”。 /p p   学生如何走上科技高原的呢? /p p   “科研是有乐趣的,并不是枯燥的,不需要苦大仇深。”单智伟说,中心注重吸收国际科研运行方面先进经验,坚持以人为中心,倡导兴趣驱动,注重引导学生在发现、解决身边的问题中享受科研的乐趣。“论文是科研的副产品,把问题解决了,论文自然就出来了。” /p p   “雾霾到底是什么?长什么样?”去年春季雾霾困扰时,单智伟给学生提出了这样的问题,但没人能回答他。 /p p   在单智伟的指导下,研究生丁明帅和同学连续两个月,每天收集空气中沉降的颗粒物,测出了雾霾的成分,并测试了颗粒的力学性能,发现部分颗粒硬度达到钢铁的5-10倍。“雾霾不仅对身体有影响,对飞机发动机等设备也有影响。”当看到测定结果,学生们的喜悦之情溢于言表。 /p p   仪器设备是科研的基础。面对动辄千万元的仪器设备,微纳中心成立之初就提出,让学生参与管理维护,并进行着国内很少有人做的设备改造工作。“每台设备都有它的局限性和极限,不熟悉仪器,就像买了辆宝马车却开在土路上一样,发挥不了最大作用。”指着自行改造的各种仪器,在读硕士黄龙超告诉记者,这使得中心的设备变得更加独特,能够做出别人无法做的事情。 /p p   由于独特的科研运行机制和文化,近年来,微纳中心吸引了英国、澳大利亚等许多发达国家的学生和科研人员前来学习。现在,微纳中心已成为世界微纳材料领域最具实力的科研团队之一。 /p
  • “微纳颗粒”在新三板挂牌上市
    现今,上市对企业自身具有全方位的提升效应。首先中小企业进入资本市场,表明此企业的成长性、市场潜力和发展前景得到了承认,这本身就是荣誉的象征。在经营资本方面,上市改良了融资途径,有利于提高股份的流动性,完善企业的资本结构,增强企业的发展后劲。此外上市后会进一步完善企业治理,夯实基础管理、实现规范发展。最后上市对企业的品牌建设作用巨大。有利于树立企业品牌,改善企业形象,更为有效的开阔市场。 济南微纳颗粒仪器股份有限公司是集研发、生产、销售颗粒测试相关仪器设备于一体的高新技术企业。公司的前身为山东建材学院颗粒测试研究所,研究激光粒度测试技术自1982年承担国家七五科技攻关项目开始,至今已有30余年的历史。多年来微纳颗粒一直以“发展与普及当代最先进的颗粒测试技术”为己任,以先进的科技实力及过硬的产品质量,为高校科研院所及各行业提供技术支持与服务,获得了广大用户的好评。 为追求公司的长远战略,实现更大空间的跨越式发展,在山东省济南市和高新区政府的大力支持下,我公司于2011年完成了股份制公司改制,2013年通过新三板上市评估流程。2014年作为中国颗粒测试行业的第一支股票,证监会核定我公司证券名称为:“微纳颗粒”,证券代码为:430410,并定于元月24日在北京《全国中小企业股份转让系统》进行上市挂牌。 值此新年万象更新, “微纳颗粒”挂牌上市之际,我们诚挚的感谢领导、专家、企业、朋友多年来对“微纳颗粒”的长期支持与厚爱。微纳颗粒公司将秉承自身作为中国颗粒测试技术的领航者的职责,再接再厉以引领国内颗粒测试行业的新技术开发为己任。继续为中国粒度测试技术赶超世界一流水平做出不懈努力。
  • 纳微科技助您圆梦“中国色谱芯”
    “汇智而行创新启动未来” - 第四届制药分离纯化技术与学术大会已顺利落下帷幕,这届大会的参会代表人数和单位数量均创下历史新高,来自全球范围273家单位共计550余名代表参会,包括中科院院士、海外权威专家等在内的35名高层次专家,大会及分会场报告多达40场,截止目前并被13家媒体报道,点击率达到8万多次。小编很幸运地与广大参会者一起参与和见证了此次行业盛典。会场内报告嘉宾百家争鸣,展厅里与会展商各显神通,纳微科技用心推出的“圆梦中国色谱芯”的主题活动成为了点睛之笔,无时无刻不向世人展现着“中国智造惠及全球”的强大魅力。参会代表踊跃参加“圆梦中国色谱芯”活动中国“色谱芯”圆梦感悟:创新驱动,实干兴邦 据不完全统计,2022年全球色谱仪器及耗材市场规模预计将达110亿美金,其年复合增速在2017年到2022年预计约为6%,其市场规模和前景相当可观。然而,我国色谱填料的进口占比约为90%,而国产色谱仪器出口仅为7%。中国色谱产业界亟需发展拥有“中国自主知识产权”的色谱填料,要努力扭转长期以来色谱层析填料单向进口的格局。那么,如何糖让全球更多的客户认可信赖“中国智造”的色谱层析填料?怎样让世界爱上“中国造色谱芯”?纳微科技在第四届制药分离纯化技术与学术大会的主题活动中给出了答案,那就是一定要拥有:全球领先的新技术、大规模批次稳定供货能力、灵活多样的标准及定制产品、完备周到的技术服务。令人欣喜的是,纳微科技秉承“以创新,赢尊重,得未来”的质量方针,向世人展现“中国色谱芯”的内涵和进展,将成为我们中国“色谱芯”的圆梦契机。还分享一个好消息,若采用具有真正技术含量或创新型的中国造填料或层析介质,CFDA会纳入工艺创新的范畴,纳微会积极配合药企的申报审评工作!图 1. 全球色谱仪器市场规模趋势预测 (2016-2022)单分散色谱填料:从世界性难题走向现实 纳微通过自主技术研发实现了单分散色谱填料的精准制备的突破——填料微球的粒径和孔径大小均一,CV值低于3%,能成功实现对单分散填料的“一次成型,无需筛分”的技术至高点,并实现有填料表面多样化的功能偶联,既提供标准化产品,又提供专业化客户定制服务。接下来,小编认为很有必要带领大家了解一下单分散填料带给您的诸多好处,也有助于您理解“中国色谱芯”的内涵:装柱容易,柱床稳定,填料不易破碎,反压升高慢峰展宽与峰对称性更好高流速下不易发生流穿现象洗脱/收样更集中,节省大量缓冲液或流动相批次重现性更好大规模化生产及批次间一致性 大家千万不要以为解决单分散这个世界性难题就万事大吉了,事实上任何一项颠覆性的技术要产业化也非易事,要保证大规模批量化生产的一致性,才是真正的难点。我们深有体会,填料批次间一致性、重现性会直接影响药品的质量安全和一致性、药品生命周期(研发、质控等)和成本效益、药监部门(FDA、WHO等)的审核认证及药物申报等一系列重点领域,也是药监局和企业非常关心的问题。图2. 不同批次间填料测试数据(A.检测四种蛋白重现性好;B.粒径单分散性:CV值均小于3%;C.比表面积和孔容积保持一致) 纳微拥有现代规模化生产能力,在苏州工业园区有13000m2的研发中试基地,在常熟已规划27000m2现代化生产基地,单分散硅胶填料年产超过20吨(200kg/批次),单分散聚合物填料年产超过100吨(500L/批次),拥有2000L高自动化反应釜加工设备10余个,分析检测与质控平台总价值超过5000万,并通过ISO9001质量体系认证。此外,纳微还成功解决了生产批次间一致性问题,能够为客户提供规模化稳定供货合同定制:卓越的规模化生产能力和批次间重现性提供色谱层析填料的战略储备获得整个药品生命周期的支持和信任可持续性良好的供应链战略性合作签署和项目推进色谱填料定制研发技术服务 大家可能不知道,纳微科技作为一家重视研发和科研创新的高科技企业,其研发投入占比达到40%之多,这个数字可以说是相当惊人的。正因如此,纳微还提供根据客户的多样化需求进行填料产品的定制技术服务:粒径精确定制(5nm-1000μm内任意粒径单分散微球)形貌孔径可控(不同形貌微球,如空心、多孔、核壳、实心等,3nm到800nm内任意调控孔径大小和比表面积球)表面性能定制(键合官能团的种类、密度等均可控)基质种类可控(根据不同需求如光电磁性、机械强度等,选择多样化基质)规模化生产(经济高效、规模化生产、批次间一致性佳)完善的技术与产品服务体系 除了上述介绍之外,纳微科技还注重确保产品、技术服务体系能给客户带来更好的使用体验:承办一年一度的全国性的制药分离纯化技术学术大会堪称业界技术盛会,牵头成立医药分离纯化产业联盟协会囊括超过50家的上下游供应商;高压制备色谱与蛋白抗体纯化技术实验班深受业界学员的好评,推荐率高达93%;提供各种分离纯化整体解决方案服务,拥有强大的应用工程师团队。纳微还拥有专业化客户服务团队,通过400电话、微信/QQ、E-mail等多种联络渠道,确保第一时间为客户排忧艰难,做到让客户满意。 在纳微科技践行圆梦中国“色谱芯”的征途中,十年来既得到广大制药客户的支持,也得到了党和政府的关切,纳微科技的层析填料拥有完全自主的知识产权技术,我们相信,纳微科技的明天一定会更加美好,“中国色谱芯”宏伟梦想必将现实!
  • 加速推动新质生产力发展,托普云农为建设农业强国注智赋能
    农业是立国之本、强国之基。当前,我国农业已进入高质量发展阶段。近日,作者在某杂志发表的重要文章中强调:“发展新质生产力是推动高质量发展的内在要求和重要着力点。要围绕建设农业强国目标,加大种业、农机等科技创新和创新成果应用,用创新科技推进现代农业发展,保障国家粮食安全。”农业作为传统产业、基础产业,也是发展新质生产力的重要领域。“新质生产力”正在中国农业领域掀起一股强劲的新浪潮,为农业产业的快速发展和乡村振兴注入了新的活力。浙江托普云农科技股份有限公司(以下简称“托普云农”)聚焦数字种业、现代农机装备与数字乡村等重点领域,深入推进种业振兴行动,加强农业关键核心技术攻关,全面构建农业科技创新体系,加快推进农业科技成果转化推广,打造了一批农业科技标志性成果。01智能装备,重塑农业生产模式科技创新是推动新质生产力形成的关键因素,也是企业发展的内在驱动力。作为国内先行的智慧农业综合服务商、全国专精特新重点“小巨人”企业,托普云农始终坚持“信息技术与农业专业深度融合,硬件与软件双向协同”的双轮驱动战略,以科技创新为根本动力,深化农业“双强”行动,积极引进行业尖端人才,推动农业智能装备国产化替代。当前,托普云农已自主研发气象环境、土壤、植物生理等多领域农业传感器30余种,创新升级技术,研发、迭代智能硬件装备200余种,赋能农业科研、种业、生产、管理、服务等全产业链应用场景。同时,托普云农成立智能实验室,开展智能识别、农业行业预测等一系列农业AI算法深度研究,推动科研成果向产业生产力落地转化。02创新驱动种业未来,守护国家粮食安全种业是农业的“芯片”,是农业现代化的基础,是保障粮食安全的关键。托普云农在种业科技创新领域不断发力,围绕种业监管部门、科研院所、高校、种业企业等群体,创新研发育种、制种、种子检验智能仪器以及种业管理服务平台,打造育种信息化、种子检验实验室数字化、制种基地现代化提升、数字种业综合监管实时化等多场景解决方案。①智能装备托普云农从育种科研精密仪器出发,将图像识别、人工智能、物联网、大数据等前沿科技与传统育种、制种、种子检验等环节相结合,研发种业科研全流程的智能装备。在智能人工环境方面,托普云农自主研发种质资源库、人工气候室、养虫室、组培室、智能光照培养箱、智能人工气候箱等智能装备,以科技力量构建起涵盖种质资源保护、植物生长全过程、病理性研究等多场景的智能化环境调控体系,全方位满足种业科研、教学、生产等多元需求;在数字育种方面,托普云农创新研发了高通量植物表型采集分析平台,可实现从植物器官、单株到群体的全生育期高通量、高精度、无损数据采集和多维度表型数据解析。100%国产化,120+表型指标高精度、高效率解析,经科技成果鉴定,托普云农“高通量植物表型采集分析平台”已达到国内领先水平,并逐步向国际前沿技术水平迈进。该产品荣获CISILE 2024“自主创新金奖”。托普云农还自主研发了系列手持式智能装备和智慧应用,涵盖种子的根、茎、叶、花、果实全流程,为现代育种工作提供新利器;在种子检验方面,托普云农配套全流程种子质量检验实验室建设方案,可实现实验室规划建设—设备配置—培训服务的一站式服务,助力提高区域种子监督检验能力。②数字种业综合解决方案聚焦现代化农作物制种基地建设,托普云农以高标准农田为基础,通过布设墒情、苗情、虫情、灾情、农机及绿色防控智能装备,实现生产过程自动化、生产数据可视化;打造水肥一体化智能灌溉系统,将生育期与气候生长季、作物长势与灌溉液位对比分析,实现作物的生长适应性评估。基于区域种业信息化发展需求,打造智慧种业服务平台,平台可汇聚多方数据资源,打造全域资源一张图、种子供需交易专题、投入品监管专题、种子检测管理专题、园区数字生产场景和园区智能管理场景,构建以产业为主导、企业为主体、基地为依托、产学研相结合、育繁推一体化的现代种业体系。平台还导入数字化改革理念,将管理端和应用端数据打通,实现制种大户补贴线上一键办理,为种植户和管理人员提供方便。湘东区智慧服务平台03数智赋能,激发数字乡村新动能推动农业新质生产力的形成,关键在于提升数字应用新效能,加快科技成果向产业化的顺利转化。多年来,托普云农将大数据、人工智能、物联网等数字技术与传统农业紧密结合,打造出浙江乡村大脑、兰溪杨梅产业大脑、浦江葡萄产业大脑等大数据服务平台,构建以“农业大脑”为支撑的技术能力体系,打造“乡村大脑+行业监管”、“产业大脑+未来农场”应用模式,赋能传统农业农事农服数字化智能化升级,实现生产智能化、运营可视化以及管理数字化,助力实现乡村振兴和农民农村的共同富裕。在数字生产方向,为探索现代新型农业生产方式,让水稻种植高效高产且高质,托普云农携多家单位利用古林土地规模化流转的优势,建立起了一套完整的优质高效水稻精准化种植技术体系。作为国家首批、华东地区唯一的优质高效水稻大田种植数字农业技术集成示范项目,宁波海曙古林数字大田以“农机可视化、种植信息化、灌溉智能化”等三化为核心,通过将大数据、人工智能、北斗导航等信息技术与农业技术深度融合,构建了“育、耕、种、管、收、烘”全流程智能化的水稻优质高效精准化种植技术体系,显著提高农业生产效率。宁波海曙古林数字大田在乡村数据汇集方向,围绕政务平台的数字化改革,托普云农全资子公司——浙江森特作为“浙江乡村大脑”技术支持单位,应用大数据、云计算、人工智能等信息技术,聚焦农业高质高效、乡村宜居宜业、农民富裕富足三大战略目标,搭建起“一仓一图一码五库三能力”的核心架构,支撑农业农村数字化改革应用,提升农业智能、乡村智治、农民智富能力。迭代升级至今,“浙江乡村大脑”已成为浙江省农业农村领域数字化改革的重要成果。浙江乡村大脑在产业融合促富方向,托普云农全资子公司——浙江森特构建“产业大脑+未来农场”的发展模式,实现业务全闭环、主体全上线、地图全覆盖、数据全贯通、服务全集成的数字农业产业体系。截至目前,已成功打造出杨梅产业大脑、葡萄产业大脑等多个卓有成效的产业案例。兰溪杨梅产业大脑展望未来,托普云农将不断提升科技创新能力,坚持科技创新引领农业产业创新,以科技创新打造发展农业新质生产力的“主引擎”。加快产学研深度融合,加强创新链、产业链、资金链、人才链的融合,加大农业装备自主研发力度和机械化水平,积极探索农业科技创新的新模式、新路径,通过技术创新和模式创新,推动农业产业结构的优化升级,加快传统农业科技成果的转型升级,为实现农业现代化、建设农业强国注入新技术动力、提供新要素动能、夯实新产业支撑。
  • DNA测试芯片暴利拆解:芯片成本不足20美元
    新创公司InSilixa开发出一款新的DNA测试芯片,据称可在1小时内以不到20美元的成本完成高准确度的DNA测试 相形之下,现有以手持读取器进行测试的成本高达250美元左右。   这款名为Hydra-1K的芯片可大幅削减现有疾病检测方法所需的时间与费用,为重点照护(pointofcare)带来分子级的诊断准确度。不过,这款设计目前才刚开始进行为期18-24个月的实地测试。   我们已经隐密地开发二年半了,这是我们第一次展示这项成果,"InSilixa创办人兼CEOArjangHassibi在日前举行的HotChips大会上表示。   InSilixa声称所采取的测试途径不仅成本更低,而且比现有的分子诊断更迅速,但完全不影响准确度。   InSilixa最近还向世界卫生组织(WHO)会员国展示其芯片成功检测结核的结果。   该公司目前正致力于为该芯片开发一项疾病的商业应用。该公司的目标在于使其芯片成为一款开放的平台,让医疗从业人员与研究人员可用于瞄准一系列的广泛测试,这比该公司能够自行开发的应用还更多更有意义。"但我们自已也将保留几项应用领域,"Hassibi说。   相较于其他的实验室上芯片(lab-on-a-chip),InSilixia的设计是针对像在芯片上进行化学键合的实时分析。Hassibi说,目前有些设计利用必须以化学药剂清洗芯片表面的合成途径,但这些化学药剂中可能含有降低测试准确度的杂质。   该公司主要的秘密武器就在于用来进行检测的化学物质。除此之外,"我们有一半的研发都用于使该系统可用于不懂编程的医生和化学家,"他说。   该公司正致力于寻求美国FDA510(k)的批准,预计需时约六个月。   原理:如何运作?    InSilixa的DNA测试芯片采用IBM250nm制程制造,成本约30-50美元。它利用每个分子传感器约100um的32x32数组。制造该芯片的挑战之处在于多级芯片封装制程。  光传感器在每一数组点进行化学键合实时检测   个别的数组元素由光电二极管和加热器组成,以刺激化学反应。该芯片利用5W功率加热   芯片与电路板   LVDS接口提供数据,绘制时间和温度的2D数组影像   Hydra-1K读取器芯片是一款独立的FPGA板
  • 傅若农:气-固色谱的魅力
    编者注:傅若农教授生于1930年,1953年毕业于北京大学化学系,而后一直在北京理工大学(原北京工业学院)从事教学与科研工作。1958年,傅若农教授开始带领学生初步进入吸附柱色谱和气相色谱的探索 1966到1976年文化大革命的后期,傅若农教授在干校劳动的间隙,系统地阅读并翻译了两本气相色谱启蒙书,从此进入其后半生一直从事的事业&mdash &mdash 色谱研究。傅若农教授是我国老一辈色谱研究专家,见证了我国气相色谱研究的发展,为我国培养了众多色谱研究人才。此次仪器信息网特邀傅若农教授亲述气相色谱技术发展历史及趋势,以飨读者。   第一讲:傅若农讲述气相色谱技术发展历史及趋势   第二讲:傅若农:从三家公司GC产品更迭看气相技术发展   第三讲:傅若农:从国产气相产品看国内气相发展脉络及现状   第四讲:傅若农:气相色谱固定液的前世今生   一、 气-固色谱早于气-液色谱问世   大多数人知道1952年Martin和Synge由于发明了气相色谱而获得诺贝尔化学奖,但是,真正的第一台气-固色谱仪是Erika Cremer和她的学生在奥地利因斯布鲁克(Innsbruck)大学开发出来的。1944-1945年第二次世界大战正酣期间,Cremer和她的学生设计开发出第一台气-固色谱仪。在此期间有一段迷人的故事。   Erika Cremer(1900-1996)学的是物理化学,具有很好的吸附/解吸方面的研究背景。1940年,她进入奥地利因斯布鲁克大学参与了乙炔的氢化研究工作,她碰到的问题之一是测定混合物中的乙炔和乙烯的含量,她在开始时的试验是用选择性吸附方法进行测定,但是,她发现这两个化合物的吸附热的差别不足以使它们用经典的吸附方法得到分离,与此同时她很熟悉由Hesse写的液相色谱教科书(1943年出版),此书让她知道可以考虑使用吸附色谱的方法,用气体作流动相,利用吸附性差别来分离混合物。   Cremer经过研究和思考,总结了她的新思路并写成一篇短文,投送到Naturwissenschaften 杂志发表,该杂志于1944年11月29日收到她的论文,1945年2月杂志接受了她的论文, Cremer收到出版社的清样后立即校对返回。可是当出版社正准备以特刊付印时,出版社工厂在空袭中被炸毁,所以这篇论文葬身于废墟之中,一直未能发表,直到31年后的1976年才作为历史文件发表。   在第二次世界大战结束以后,奥地利因斯布鲁克大学的实验室大部分被毁了,但是Cremer的一个新来的研究生Fritz Prior,可以在他原来的中学(他原是这个中学的老师)进行试验,作为他的博士论文,Cremer决定进行在空袭中被炸毁论文中设想的气-固色谱仪器和方法,幸运的是她原来自己设计制作的热导池还在,她们组装的气相色谱仪具备了现代气相色谱仪的主要部件,氢气发生气做载气,有载气流量调节器,有一个进样系统,分离用色谱柱和一个热导检测器,这一方案现在还存放在德意志博物馆的波恩分馆中展出。   1947年春Prior的工作结束了,得到了正结果,这一仪器可以定量分离空气、乙炔、乙烯。下图是这篇论文的一张分离图。 图 1 Prior 分离乙炔和乙烯的色谱 色谱柱:u型管,直径1 cm,填充硅胶20 cm 柱温 25 ℃. A= 空气, B= 乙烯, C= 乙炔 图 2 1959年Cremer在东德举行的气相色谱报告会时和当代四位著名色谱学专家的合影 (中间是Cremer) (来源:L. S. Ettre,Chromatographia,2002,55:625)   二、 早期的气-固色谱的固定相   气-固色谱的出现早于气-液色谱,这也是因为在上世纪40-50年代有几位出色的物理化学家研究吸附剂的吸附理论,为气-固色谱奠定了理论和实际基础。   在上世纪后半页用于气-固色谱的吸附剂有硅胶、活性碳、氧化铝、分子筛、石墨化炭黑、碳分子筛、多孔聚合物等,这些吸附剂可以作填充柱的固定相,也可以填充或涂渍到玻璃、金属或弹性石英毛细管中。这些吸附剂的用途如表 1 所示。 表 1 吸附剂的应用领域   1、硅胶吸附剂   气相色谱发展早期,硅胶可以用作气-固色谱的固定相,也可以用作气-液色谱的载体,由于硅胶制作工艺、原料表面积及孔径的不同,其分离性能有很大的差别,为此厂家进行了标准化的分级,有不同品牌和规格的色谱用硅胶,下表是Rhone- Progil 公司生产的球型多孔硅胶,而Waters公司又把其中的 Porasil 进一步筛分成不同粒度的产品。 表 2 商品硅胶的型号和规格   我国当时的天津第二试剂厂也生产了DG-1,DG-2,DG-3和DG-4,其性能类似于Porasil A,Porasil B,Porasil C,Porasil D。例如Supelco公司和Sigma-Aldrich公司供应用于分析硫化合物的硅胶填充色谱柱:Chromosil 310和 Chromosil 330,有许多实际使用的报告。   硅胶吸附剂的填充柱使用者不多,但在分析硫化物的场合仍然有人在用,如上海大学的Hui Wang等使用Chromosil 310和 GDX 502(极性聚合物多孔小球)以吸附-解吸方是分析色谱方式分析氢气中 ppb 级 SO2. (Intern.J. hydrogen energy,2010,35:2994-2996)。   德国的 Martin Steinbacher等也是使用Chromosil 310 柱(152cm x 3.2mm id )分析土壤和大气中的微量的硫化羰和二氧化硫(Atmospheric Environment, 2004,38:6043&ndash 6052)。   英国的 Evelyn E. Newby 利用 Chromosil 330 柱(244cm x 3.2mm id )在60℃分析口腔气体中的硫化氢和甲基硫醇等气体,评价牙膏消除口臭的作用(Archives of oral biology 53,2008, Suppl. 1 :S19&ndash S25)。   美国的Julie K. Furne等利用Chromosil 330 柱(244cm x 3.2mm id )分析排泄物中的硫化氢。(J. Chromatogr.B, 2001,754:253&ndash 258)。   英国的M. Steinke 等使用Chromosil 330 柱(183cm x 3.2mm id )的顶空气相色谱法测定二甲基硫化物评价硫代甜菜碱裂解酶的活性。(J. Sea Research,2000, 43:233&ndash 244)。   2、 氧化铝吸附剂   氧化铝有5种晶形,在气相色谱里多用g型,它有很好的热稳定性和机械强度,其含水量不同吸附性就有很大的差异,所以在使用前要进行适当的活化处理。上世纪80年代已故色谱学者鞠云甫对氧化铝吸附剂做过深入研究,他得到如下的结论:   (1) 可用改变热处理温度的方法来控制g-氧化铝微球的比表面, 氧化铝微球在350 ℃ 发生相转变, 至420℃ 完全转变为g氧化铝。   (2) g-氧化铝微球表面的酸, 主要是路易斯酸可用涂渍固定液改性的方法予以降低。改性后的 g-氧化铝微球表面酸度低于国外氧化铝表面酸度, 这种改性减弱了固定相的极性。   (3)热处理温度对要分离组分的保留值有重大影响,如用0.3% 阿皮松-L 对经过500℃ 灼烧4小时得到的g-氧化铝微球改性而制得的固定相, 在85 ℃ 柱温下能够全分离C1-C 4的烃类15个组分。(鞠云甫等,燃料化学学报,1983,12(1):69-76)   但是后来的研究表明,人们用碱金属卤化物让氧化铝改性,也可以得到很好的效果。英国的 A. Braithwaitel等研究了用碱金属卤化物处理氧化铝的表面,得到以下的结论:   (1) 未改性氧化铝表面有路易斯酸活化点,可以与不饱和烃的p电子产生作用,比饱和烃的保留时间增加,同时不饱和烃的色谱峰会产生拖尾,用碱金属卤化物改性氧化铝表面会消除拖尾,但是也会影响饱和烃和不饱和烃的分离保留因子。   (2) 氧化铝的改性必须要减少路易斯酸活化点,以便形成更为均一的表面性能,假定氧化铝表面的改性过程是碱金属阳离子和阴离子的共同作用,那么改性剂的阴离子就有选择性封闭大部分路易斯酸活化点的作用,这些活化点就不能再和被分析物作用,但不是所有的卤化物阴离子都有这一作用。改性剂的阳离子也会影响氧化铝的吸附作用,主要是卤化物的阳离子随其阳离子体积的减小,使烯烃/烷烃的分离度增加。其原因显然是表面上的极性或者是表面上阳离子的电荷密度增加所致,或者是两种原因的结合所致。   (3) 假定阳离子对氧化铝表面的改性是由于它降低了吸附剂的吸附特性,从而降低了吸附物质和吸附剂的作用力,被改型吸附剂的活性就可以用改性剂的量来控制,但是只要很少量的改性剂就可以使色谱峰的拖尾消除,得到对称的色谱峰。改性剂浓度超过一个临界值盐就会析出来,就起不到封闭活化点的作用,改性剂的浓度在2-4%之间。(Chromatographia,1996,42(1/2):77-82)   3、分子筛吸附剂   1925年人们发现了天然泡沸石(如菱沸石)对水、甲醇、乙醇等蒸气有很强的吸附作用,而对丙酮、醚和苯等蒸气则不予吸附,这种泡沸石就是天然的分子筛。后来人们模仿天然泡沸石的生成条件,并不断改进合成工艺,合成了多种类型的人造分子筛。所以叫做分子筛,是因为泡沸石具有象笼子一样的结晶结构,笼子的孔穴大小一致,而且正好是与分子的尺寸大小相当,分子尺寸比泡沸石孔穴尺寸小的就容易吸附,相反就不吸附。   分子筛具有几何选择性:分子筛的结晶结构有一定的尺寸,不同类型的分子筛具有不同的尺寸,表 中的数据。因而分子筛的选择性和所用分子筛类型及被分离化合物的临界尺寸有关。所谓临界尺寸是指垂直于其长度的最大横截面的直径,一些化合物的临界尺寸见表3。 表3 气固色谱用分子筛的几何尺寸   分子筛对极性分子和极化率大的分子作用力强,对极性分子和不饱和烃分子有较大的亲和力,如在4A 分子筛上吸附下列气体的能力依次加大:   O2 图3 SBA-15投射电镜图 (A) 6nm, (B)8.9nm (C) 20nm, (D) 26nm   平均孔径数据来自BET和X-射线衍射结果.   国内一些单位把SBA-15介孔分子筛作为气-固色谱固定相,如中科院煤炭化学研究所的赵燕玲等研究了SBA-15介孔分子筛作为气相色谱固定相对含有甲烷、乙烷、乙烯、丙烷和丙烯的气态烃类混合物和正己烷/l-己烯、正庚烷/l-庚烯、正辛烷/1-辛烯 3 种液态烃类混合物的色谱分离性能 并与硅胶作为色谱固定相分离3 种液态烃类混合物的情况进行了比较。与常规色谱填料硅胶相比,SBA-15介孔分子筛更适合作为烯烃/烷烃分离的色谱固定相。(赵燕玲等,石油化工,2010,39(10):1110-1114)   4、高分子多孔小球(GDX)   高分子多孔小球是1966年 Hollis 用苯乙烯和二乙烯基苯进行共聚而得到的,他对这类聚合物的色谱分离性能进行了详细的研究,把它们叫做Porapak。他所研究 Porapak Q 是一种色谱分离性能十分优秀的气-固色谱固定相。不久出现了各种品牌的高分子多孔小球固定相。我国在60年代末中科院化学所也研究出这类高分子多孔小球固定相,把它们命名为GDX(Gaofenzi Duokong Xiaoqiu),是高分子多孔小球汉语拼音的字头。后来天津化学试剂二厂生产了GDX 101、GDX 102、GDX 103、GDX 104、GDX 105、GDX 201、GDX 301、GDX 501等牌号,上海化学试剂厂生产了叫做&ldquo 401.....404有机载体&rdquo 的高分子多孔小球。   (1) GDX的特点   a、GDX的疏水性很强,水峰可以在乙烷后洗脱出,为有机物中微量水的测定提供了一种优良的色谱固定相。   b、GDX是球形,大小均匀,有利于色谱柱的填充,提高了柱效。   c、改变聚合工艺条件,可改变GDX的极性和孔径,制出各种性能的的高分子多孔小球来。   (2) GDX的制备   GDX是用二乙烯基苯和苯乙烯在水中进行悬浮聚合而得。即把要聚合的单体分散在水中,在引发剂的作用下进行共聚,由于在原料中加入一定量的溶剂作稀释剂,在聚合过程中稀释剂不起反应,但它会在小球中占据一定空间,待聚合后把稀释剂赶出来,在高分子多孔小球中就形成了很多小孔。GDX的结构如图4。 图 4 GDX的结构   (3) GDX的性质   GDX是白色或微黄色的圆球,比表面从几十到几百 m2/g,表观密度为0.1~0.5 g/mL,一般可耐高温250~270℃。国内外高分子多孔小球的性能见分析化学手册第5分册-气相色谱分析。   (4) GDX的应用   有机物中微量水的测定:如顺丁橡胶的合成中要求单体丁二烯含水量在3× 10-5 g/mL以下,用100 cm × 0.4cm i.d.GDX-105色谱柱,在120℃柱温下,载气流速 33mL/min,可很好地进行测定。有机溶剂和氯化氢中的微量水分可用GDX-104柱测定。   半水煤气成分的测定:用GDX-104(3.7m)和分子筛(3.0m)的串联柱,通过阀切换在GDX-104柱上分离CH4、CO、CO2。在分子筛柱上分离O2和N2。可避免CO2通过分子筛柱。   自从Hollis 开发出高分子多孔小球之后有很多近一步的研究,但是没有更多的突破,只是在扩大了应用方面有不少研究工作。   5、碳吸附剂   (1)活性碳   早期除去硅胶以外活性碳是气相色谱使用最早的固定相,开始主要使用工业级别的活性碳,但是,使用了一段时间以后,色谱性能不能令人满意,就把它改性,以适应色谱分离的要求。在制备活性碳当中,要得到所需要的性能,碳化和活化过程的参数中最最重要的是原料的选择和预处理。活性碳的基本性质决定于所用原料,使用的原料有自然的木头、泥炭、煤、果核、坚果的外壳以及人工合成物质,主要是聚合物。在没有空气和化学品条件下的碳化过程中,首先是大多数非碳元素(氢、氧和微量硫和氮)由于裂解的破坏而分解挥发了,这样元素碳就留下来,形成结晶化的石墨,其结晶以无规则方式相互排列,而碳则无规律地存在于自由空间里,这一空间是由于滞留在这里的物质被沉积和分解而形成的。进行碳化的目的是使之形成适当的空隙并形成碳的排列结构,碳化过程使碳吸附剂具有较低的吸附容量,使其比表面只有几个 m2/g,一直到没有所担心的过高的吸附性。为了得到高空隙度和一定的比表面积,碳化还要进行活化过程。从天然原料制得的活性碳要比从合成物制得的活性碳具有较高的灰分,从合成物制得的活性碳几乎没有灰分,并且具有很好的机械性能,不易压碎和被磨损。由天然原料制得的活性碳其吸附性能受到它表面化学结构的影响,而其表面性质又决定于与其键合在一起各种杂原子(如氧、氮、氢、硫、氯等)的种类,活性碳是没有特殊选择性,或选择性很小的吸附剂,制备良好的活性碳为多孔结构,主要是各种直径的微孔和介孔,其比表面可达1000 m2/g到2m2/g,或者更高一些,使其具有高的吸附容量。由于活性碳表面具有很大的化学和几何不均一性,特别是工业用活性碳尤为严重,即使是低沸点气体和轻烃,也会产生很厉害的拖尾。在气相色谱发展早期活性碳只用于分析稳定的气体特别是惰性气体和轻烃。上世纪 50年代初捷克的 Janak 和 60年代初波兰的 Zielinski 在使用活性碳作固定相分析气体混合物方面做了很多工作。此后由于气相色谱的发展和活性碳研究的深入,人们就对活性碳的表面进行改性,包括用化学方法除去活性碳中的灰分(除去无机杂质),在无氧气氛中进行高温处理除去活性碳表面结合的氧,用催化活化及高温碳沉积的方法对多孔结构进行改性。用活性碳填充的色谱柱出现拖尾不仅是由于活性碳上的微孔和孔径的不均一所造成毛细管凝聚,更重要的也还由于混合物中的一些成分在各种非碳物质上的强烈吸附所致,这些附加的物质有两类,在活性碳孔中的无机物,他们在表面上没有键合,部分灰分和杂原子(常常是氧和氢、硫、氮、卤素等),这些杂原子与碳骨架进行了化学结合。而且这些附加物会使进行色谱分离的物质产生可逆吸附。在气相色谱的应用中,活性碳的改性是把活性碳在150-200 ℃下处理几个小时,并在0.1 mm Hg真空下除去水分,这样不会影响吸附剂的表面性能。之后就出现了石墨化炭黑和碳分子筛。   (2)石墨化碳黑   为了克服活性碳的缺点,国内外早期进行了许多研究,就把碳黑在真空中或在还原性气氛中进行高温处理,如加热到3000℃,结果在碳表面上形成石墨状的晶形。这样处理之后,表面均匀、活化点也大为减少了。比表面由几百 m2/g 下降到 低于 30 m2/g 。所以大大改善了色谱峰形。提高了分析的再现性。据原苏联基先列夫的研究,认为在石墨化碳黑的表面上没有官能团,没有&pi 键,所以它的吸附性主要靠色散力起作用,因而石墨化碳黑的极性比角鲨烷还小。   为了适应各种样品的分离,可对它进行各种表面处理,如:   ① 涂渍少量固定液消除残存的少量活化点。   ② 分离酸性化合物时可用磷酸处理石墨化碳黑。   ③ 分离碱性化合物时可用有机碱处理石墨化碳黑。   ④ 在100℃下用氢气处理石墨化碳黑可除去表面的氧,适于还原性物质的分离。   (3) 碳分子筛 (碳多孔小球)   1968年 Kaiser 制备出一种碳吸附剂叫&ldquo 碳分子筛&rdquo ,国外的商品名是 Carbosieve B,它是用偏聚氯乙烯小球进行热裂解,得到固体多孔状的碳,其比表面为1000 m2/g,平均孔径为 1.2 nm 。作。 表4 2008年后有关CNTs作气相色谱固定相的研究的工作   2、金属有机框架化合物作气相色谱固定相   金属有机框架化合物(MOFs)是由无机金属离子和有机配体,通过共价键或离子共价键自组装络合形成的具有周期性网络结构的晶体材料。其中,金属为顶点,有机配体为桥链。MOFs结构中的金属离子几乎包含了所有过渡金属离子。通常分为含氮杂环有机配体、含羧基有机配体、含氮杂环与羧酸混合配体三种类型。MOFs具有独特的孔道,可设计和调控它的尺寸和几何形状,并在孔道内存在开放式不饱和金属配位点,使其可用于吸附或分辨不同的气体或离子,MOFs极适宜于辨识特定的小分子或离子,在多相催化、气体分离和储存等方面有着广泛的应用。由于MOFs具有优异的性质,比如比表面高、热稳定性好、纳米级孔道结构均一、内孔具有功能性、外表面可修饰等,在分析化学领域有广泛的应用前景,MOFs在分析化学中有多种应用,也是极好的气相色谱固定相。   由于MOFs不容易涂渍在毛细管壁上。南开大学严秀平研究组用动态法把纳米级MOF-101涂渍在15m长的大内径(0.53mm)石英毛细管柱上,使最难分离的二甲苯三个位置异构体得到十分漂亮的基线分离,并用于多种混合物的分离上。 图 6 二甲苯三个位置异构体的分离图   近几年国内严秀平研究组和云南师范大学的袁黎明研究组对MOFs作色谱固定相做了许多十分出色的工作,限于篇幅有机会再讨论。   另外固体固定相当今主要用于制备PLOT(多孔层开管柱,这一课题下次再讨论。   在结束此文之际,看到已故蒋生祥先生和郭勇博士团队今年发表的一篇有关碳基吸附剂-碳纳米管的综述(J Chromatogr A, 2014,1357:53&ndash 67)(但是此文只涉及碳纳米管作固相萃取和固相微萃取的论述,没有设计碳基吸附剂作气相色谱固定相的综述)。同时看到瞿其署先生团队在2014年发表的有关石墨烯的制备、性能及在分析化学中应用的综述论文(J Chromatogr A,2014,1362:1&ndash 15 ),有兴趣者可直接阅读。   小结   气-固色谱虽然它的应用广泛性远不如气-液色谱,但它还是一个很有用的方法,有它突出的魅力,是气-液色谱不能代替的技术。使用上述几种吸附剂制备的填充柱或PLOT柱,对低沸点混合物的分离具有独到的作用。不过,近年出现的多种纳米材料可作气-固色谱固定相,虽然它们具有独特的优点,但是还有待进行更深入的工作,形成商品柱,才能发挥其作用。目前实际应用的还是常规的气-固色谱固定相。下一讲,我将介绍PLOT柱的诱惑力。(未完待续)   (作者:北京理工大学傅若农教授)
  • 285万!长春理工大学中山研究院采购傅里叶红外光谱仪和傅里叶太赫兹光谱仪
    项目概况长春理工大学中山研究院傅里叶红外光谱仪和傅里叶太赫兹光谱仪采购项目招标项目的潜在投标人应在广东省政府采购网https://gdgpo.czt.gd.gov.cn/获取招标文件,并于 2022年04月08日 09时30分 (北京时间)前递交投标文件。一、项目基本情况项目编号:442000-2022-01308项目名称:长春理工大学中山研究院傅里叶红外光谱仪和傅里叶太赫兹光谱仪采购项目采购方式:公开招标预算金额:2,850,000.00元采购需求:合同包1(长春理工大学中山研究院傅里叶红外光谱仪和傅里叶太赫兹光谱仪采购项目):合同包预算金额:2,850,000.00元品目号品目名称采购标的数量(单位)技术规格、参数及要求品目预算(元)最高限价(元)1-1光学式分析仪器傅里叶红外光谱仪1(台)详见采购文件1,800,000.00-1-2红外仪器傅里叶太赫兹光谱仪1(台)详见采购文件1,050,000.00-本合同包不接受联合体投标合同履行期限:详见第二章 采购需求 合同履行期限二、申请人的资格要求:1.投标供应商应具备《政府采购法》第二十二条规定的条件,提供下列材料:1)具有独立承担民事责任的能力:在中华人民共和国境内注册的法人或其他组织或自然人,投标(响应)时提交有效的营业执照(或事业法人登记证或身份证等相关证明)副本复印件。2)有依法缴纳税收和社会保障资金的良好记录:提供投标截止日前6个月内任意1个月依法缴纳税收和社会保障资金的相关材料。如依法免税或不需要缴纳社会保障资金的,提供相应证明材料。3)具有良好的商业信誉和健全的财务会计制度:供应商必须具有良好的商业信誉和健全的财务会计制度(提供2020年度以来任一年度财务状况报告或提供投标截止日前6个月内任意1个月的财务报表或基本开户行出具的资信证明)。4)履行合同所必须的设备和专业技术能力:按投标(响应)文件格式填报设备及专业技术能力情况。5)参加采购活动前3年内,在经营活动中没有重大违法记录:在经营活动中没有重大违法记录:参照投标(报价)函相关承诺格式内容。重大违法记录,是指供应商因违法经营受到刑事处罚或者责令停产停业、吊销许可证或者执照、较大数额罚款等行政处罚。(根据财库〔2022〕3号文的要求,《中华人民共和国政府采购法实施条例》第十九条第一款规定的“较大数额罚款”认定为200万元以上的罚款,法律、行政法规以及国务院有关部门明确规定相关领域“较大数额罚款”标准高于200万元的,从其规定。)2.落实政府采购政策需满足的资格要求:合同包1(长春理工大学中山研究院傅里叶红外光谱仪和傅里叶太赫兹光谱仪采购项目)落实政府采购政策需满足的资格要求如下:本采购包不专门面向中小企业采购。3.本项目的特定资格要求:合同包1(长春理工大学中山研究院傅里叶红外光谱仪和傅里叶太赫兹光谱仪采购项目)特定资格要求如下:(1)投标人未被列入“信用中国”网站(www.creditchina.gov.cn)“记录失信被执行人或重大税收违法案件当事人名单”记录名单;不处于中国政府采购网(http://www.ccgp.gov.cn/)“政府采购严重违法失信行为信息记录”中的禁止参加政府采购活动期间。(以采购代理机构于投标(响应)截止时间当天在“信用中国”网站(www.creditchina.gov.cn)及中国政府采购网(http://www.ccgp.gov.cn/)查询结果为准,如相关失信记录已失效,投标人需提供相关证明资料)。(2)单位负责人为同一人或者存在直接控股、管理关系的不同供应商,不得同时参加本采购项目(或采购包)投标(响应)。为本项目提供整体设计、规范编制或者项目管理、监理、检测等服务的供应商,不得再参与本项目投标(响应)。投标(报价)函相关承诺要求内容。(3)本采购包不接受联合体投标三、获取招标文件时间: 2022年03月18日 至 2022年03月25日 ,每天上午 00:00:00 至 12:00:00 ,下午 12:00:00 至 23:59:59 (北京时间,法定节假日除外)地点:广东省政府采购网https://gdgpo.czt.gd.gov.cn/方式:在线获取售价: 免费获取四、提交投标文件截止时间、开标时间和地点2022年04月08日 09时30分00秒 (北京时间)地点:远程电子开标,请登录广东政府采购智慧云平台五、公告期限自本公告发布之日起5个工作日。六、其他补充事宜1.本项目采用电子系统进行招投标,请在投标前详细阅读供应商操作手册,手册获取网址:https://gdgpo.czt.gd.gov.cn/help/transaction/download.html。投标供应商在使用过程中遇到涉及系统使用的问题,可通过400-1832-999进行咨询或通过广东政府采购智慧云平台运维服务说明中提供的其他服务方式获取帮助。2.供应商参加本项目投标,需要提前办理CA和电子签章,办理方式和注意事项详见供应商操作手册与CA办理指南,指南获取地址:https://gdgpo.czt.gd.gov.cn/help/problem/。3.如需缴纳保证金,供应商可通过"广东政府采购智慧云平台金融服务中心"(http://gdgpo.czt.gd.gov.cn/zcdservice/zcd/guangdong/),申请办理投标(响应)担保函、保险(保证)保函。4.开评标有关事项:(1)本项目开标方式为“远程电子开标”,项目采用电子远程电子开标环节使用手册获取网址:https://gdgpo.czt.gd.gov.cn/help/transaction/gongyinshan.html。(2)请投标人按“远程电子开标”有关要求,在投标/报价截止时间前,将加密的电子投标/报价文件上传至云平台项目采购系统,逾期上传或错误方式投递送达将导致投标/报价无效。(3)本项目将在智慧云平台在线签到及在线解密。投标人不需要委派代表前往开标/唱价现场,不需要到现场提交纸质或电子光盘投标/报价文件。(4)在开标/唱价截止时间前,请各投标/报价人核实并确认填写授权代表的姓名与手机号码,若因填写的授权代表信息有误而导致的不良后果,由投标人自行承担。(5)各投标人在参加开标/唱价之前须自行对使用电脑的网络环境、驱动安装、客户端安装以及数字证书的有效性等进行检测,确保可以正常使用。七、对本次招标提出询问,请按以下方式联系。1.釆购人信息名 称:长春理工大学中山研究院地 址:中山市火炬开发区会展东路16号数码大厦15-17层联系方式:0760-869811272.釆购代理机构信息名 称:广东人信工程咨询有限公司中山分公司地 址:中山火炬开发区孙文东路濠头段12号光裕大厦第五层A区联系方式:0760-888387183.项目联系方式项目联系人:黄小姐电 话:0760-88838718广东人信工程咨询有限公司中山分公司2022年03月18日
  • 普利赛斯参加2009年上海ChinaCoat展览会
    涂料行业中的重要盛会CHINACOAT2009将于2009年11月18-20在上海举行,届时我司将携油漆、涂料行业中专业的检测仪器参加本会,我们的优质服务人员将现场解答使用人员在日常检测中遇到的各种问题,同时国外原厂的专家也将亲临展位,相信一定会给您带来不同的感受。 欢迎您的参观! 展会地址:上海新国际博览中心,E2展厅 展 台 号:E2J04 公司名称:普利赛斯国际贸易(上海)有限公司 公司地址:上海市凯旋路2200号凯旋大厦3500室 邮 编:200030 电 话:021-64477888 传 真:021-64476677 联 系 人:蓝春来 先生 E-mail: info@precisaitl.com.cn 网 址:www.precisaitl.com.cn
  • 十年砥砺,纳微打造中国“色谱芯”
    2018年4月24日,CCTV2央视财经评论针对中兴通讯,中兴无“芯”展开了深入的讨论,引发了各界对于中国核心产业发展的种种思考。苏州纳微科技有限公司历经十年磨砺,一举打破国际巨头垄断的局面,打造出中国“色谱芯”。摘自央视财经评论 纳微科技始终专注做基础材料创新,成功自主研发出了拥有世界领先的单分散纳微米球制备技术和为客户提供分离纯化整体解决方案,一举打破国外在该领域的技术垄断和封锁,并用事实证明了中国“色谱芯”成功突围,我们一直在努力践行“以创新、赢尊重、得未来”的理念并引领行业的发展。 十年来,纳微开发出世界上独一无二的单分散(均粒)硅胶色谱填料规模化制备技术,成为世界上唯一可大规模生产均粒硅胶色谱填料的公司。纳微让单分散硅胶和聚合物微球从实验室走向大规模生产真正成为可能,并可以精确控制硅胶色谱填料的粒径大小,粒径分布及孔道结构,,用生动的材料学语言形容为“一次成型,无需筛选”,纳微还采用智能化自动化生产模式,让产品质量和性能得到更好的保障。中国科学院张玉奎院士对纳微高度评价:“苏州纳微批量生产的产品对中国色谱产业作出了很大贡献,意义重大。尤其在中国色谱填料大量进口的情况下,苏州纳微扭转了这一格局。” 同时纳微为业界提供多种高品质、高性能的色谱填料和层析介质——硅胶、聚合物、离子交换、疏水、Protein A、标签蛋白亲和层析、手性、凝胶渗透、固相萃取填料等,以及分析色谱柱、层析制备预装柱、标准微纳米颗粒、磁珠、LCD间隔物微球、ACF导电金球、光扩散微球等丰富产品,可提供专业化定制产品,还提供全面的分离纯化解决方案与技术服务,并拥有全球领先的规模化生产能力与质量保证体系。这些产品被广泛应用于生物医药、光电能源和食品安全的领域,融合了生物学、材料学、化学等多学科的技术。纳微科技世界独创的纳微米球制备技术和产品,不仅赢得了国内外客户的认可,同时也先后引来色谱届的世界巨头公司来纳微科技考察交流。 未来,纳微还将继续弘扬创造和奋斗精神,推动国家战略新兴产业的发展和进步。纳微位于苏州工业园区的纳微米球生产和研发基地纳微科技部分产品
  • 技术线上论坛| 10月18日《纳米傅里叶红外光谱仪(nano-FTIR)的技术特点与前沿应用》
    报告简介: 如何实现在纳米尺度下对材料进行无损化学成分鉴定是现代化学的一大科研难题。现有的一些高分辨成像技术,如电镜或扫描探针显微镜等,这些技术鉴定化学成分的能力较弱。另一方面,红外光谱具有很高的化学敏感度,但是其空间分辨率却由于受到二分之一波长的衍射限限制,只能达到微米别,因此也无法进行纳米别的化学鉴定。德国neaspec公司利用其有的散射型近场光学技术发展出纳米傅里叶红外光谱nano-FTIR,这一技术综合了原子力显微镜的高空间分辨率和傅里叶红外光谱的高化学敏感度,得到的红外光谱与传统FTIR和衰弱全反射ATR-IR的红外光谱有高的对应度,因此可以在纳米尺度下实现对几乎所有材料的化学分析,分辨率高达10 nm。本报告详细阐述了纳米傅里叶红外光谱仪nano-FTIR的基本原理、技术特点及在Science、Nature Communications、Nano Letters等期刊上的前沿应用案例,展现了其在纳米尺度下进行化学分析的巨大前景。 直播入口:您可以通过扫描下方二维码直接进入直播界面,无需注册。扫码预约观看报告时间:2021年10月18日 14:00 主讲人:张瑞显 博士化学专业博士,毕业于美国伊利诺伊大学厄本那香槟分校。主要研究方向为新型材料的表面光谱表征及在能源存储领域的应用。在Quantum Design中国子公司,从事表面光谱相关设备的产品推广、客户挖掘及销售业务。技术线上论坛:https://qd-china.com/zh/n/2004111065734
  • 新闻|全国政协副主席、科技部部长万钢莅临纳微公司调研
    “科技成果转化实际上是科技创新的一个重要环节!”——全国政协副主席、科技部部长 万钢一元肇始,万象更新。1月19日上午,全国政协副主席、科技部部长万钢莅临苏州纳微科技有限公司调研科技成果转化工作,纳微董事长江必旺博士热情接待并介绍了公司的发展情况。做好基础材料,打造创新产业平台在接待展厅,纳微创始人江必旺博士向科技部部长万钢及其他领导介绍了纳微十多年来创新创业的发展历程。一方面,江博士有感于中国在很多领域如纳米技术,和色谱技术领域基础研究取得突飞猛进的进步,发表文章数量已跃居世界第一,但中国很多产业的核心技术和关键材料基本垄断在发达国家手里; 另一方面,是苏州市政府积极引才的政策,让江博士离开了自己创办的北大深圳研究生院纳微米材料研究中心,到苏州工业园区创业。纳微迎接万部长一行的接待展厅江博士向万部长介绍说:纳微之所以能成功开发出世界领先的微球精准制造技术,甚至把多项技术和产品做到全球独有的水平,是因为纳微汇聚了一批从事化学,材料,生物等不同领域的顶级技术专家,并秉持“以创新,赢尊重,得未来”的理念长期坚持跨领域技术创新的结果。江博士说纳微很多技术和产品如单分散二氧化硅色谱填料,单分散磁珠及导电金等产品都是经过长达8-10年的时间研发出来的。江博士解释说纳微能坚持长达10多年交叉领域的基础创新与国家省市园区对人才创业的支持政策分不开。最后江博士介绍了纳微发展规划:打造世界一流的纳微米材料创新和产业化中心。万部长在听取了江博士的介绍后,充分肯定了纳微十年来的发展成绩,还拿起展台上的一瓶装固体微球产品,晃动后仔细观察了固体微球象液体一样流动的现象,并很有兴趣地给大家解释为什么微小的固体微球会象液体一样流动的背后科学原因。江博士向万部长一行领导展示公司的产品情况提出美好愿景,寄语公司平台化发展在参观公司应用实验室时,江博士解释公司不仅做微球材料研发和产业化,还会针对制药企业提供个性化分离纯化整体解决方案,并为客户提供应用服务支持及培训。万部长听后指导公司应该建设平台型的创新企业,鼓励公司加强与不同行业的企业家或专家合作共同推动微球材料在不同领域应用和产业化,并进一步向下游尖端领域延伸,加快产业发展。万部长对公司未来发展提出专业性地期望在此次调研交流中,江苏省副省长马秋林,科技部高新技术发展及产业化司司长秦勇,政策法规与监督司司长贺德方,江苏省科技厅厅长王秦,苏州市委副书记、市长李亚平,市委常委、工业园区党工委书记徐惠民,市委常委、副市长吴庆文,市政府秘书长杨知评等领导也来到现场陪同调研。交流指导结束后,万部长临上车前,握着江博士的手鼓励道:”再干十年,成为世界第一”。江博士表示:纳微将不忘初心,继续坚持跨领域创新,并将携手不同领域的专家和企业家合作做大做强产业。纳微计划建设世界一流的先进微球材料创新中心,以支撑中国新兴产业发展。
  • 海谱纳米光学:全球首款微型光谱芯片正式量产
    物理世界的数字化时代正奔涌而来。2D、3D视觉技术将物体的颜色、形状、大小、尺寸、位置等信息转换为AI时代的大数据,但物质成分的数字化进程却停步不前。如今,可解码万物“指纹”的革命性视觉成像技术—高光谱成像正打破这一僵局。高光谱成像突破人眼限制,可实现万物成分检测,为机器视觉提供更真实、更准确的物理世界信息,为人类提供更高维度观察世界的方式。近日,《南方日报》等媒体持续聚焦海谱纳米光学(以下简称“海谱”)微型高光谱成像MEMS芯片及快速增长的高光谱成像市场。从专注研发到高光谱产品的工程化、市场化,海谱跨过创业公司“死亡之谷”的背后,折射的是国产MEMS芯片在全球高端芯片竞技场的突围。从深圳市海谱纳米光学科技有限公司(Hypernano,简称海谱)获悉,2022年初,该公司宣布正式全球率先量产了第一代微型高光谱成像MEMS(微机电系统,Micro-Electro-Mechanical System)芯片,高光谱工业相机及高光谱相机模组即将推向市场。▲海谱纳米光学据悉,基于微型高光谱成像MEMS芯片技术,海谱推出的高光谱成像模组在波长精度、拍摄速度、空间分辨率、半峰宽、视场角等专业技术指标上达到全球领先水平,体积比传统光谱相机缩小了近1000倍,是业界尺寸最小的高光谱相机模组。半导体老兵深圳创业跨越“死亡之谷”海谱创始人兼CEO黄锦标介绍,公司于2019年1月创立,以“光谱芯视觉,感知超极限”为使命,专注于高光谱成像技术的设计与研发。▲黄锦标黄锦标毕业于南开大学微电子专业,有着20多年半导体技术和市场经验,曾担任多家半导体公司高管,有着很强的系统开发和市场开拓的经验。而海谱研发团队在MEMS领域拥有近20年的芯片设计与工艺制造经验,团队核心成员包括多名顶尖MEMS专家及深圳孔雀人才。2022年3月,海谱完成数千万元A轮融资,投资方包括昆仑资本、远方资本、湾信资本。业内人士介绍,MEMS芯片最常用的是承担传感功能,在整个大的信息系统里有点类似于人的感官系统。从行业而言,欧美是MEMS产业、技术与产品的发源地,处于全球领先地位,中国MEMS产业起步较晚,MEMS产业还处于发展的起步阶段,我国不仅在精度和敏感度等性能指标上与国外存在巨大差距,应用范围也多局限于中低端领域。因而有芯片创业难,MEMS芯片创业更难的说法。不过,尽管我国MEMS传感器厂商面临诸多挑战,但从上游设计、中游制造、下游封装等领域国产替代的空间巨大。▲海谱微型高光谱成像MEMS芯片正因为身处MEMS产业这一高精尖行业,海谱从成立初期的3年,经历了高科技创业公司所面临的“死亡之谷”考验,即从技术研发到产品量产的种种挑战。“创业公司的技术再领先,也要把它变成一个工程化且可市场化的产品,这个过程有很多坑,只有迈过去,技术才具有商业价值。”黄锦标称。黄锦标介绍,海谱走到去年年底时,最核心的技术芯片开始量产。同时,将芯片应用于相机的相关模组也已准备完毕,相当于公司在技术工程化产品这个初创公司最大的槛,已经迈了过去。填补国内微型高光谱MEMS芯片领域空白说起海谱的技术,首先还要科普一下光谱技术。光谱学始于英国科学家牛顿,是人类借助光认知世界的重要方式,地球上不同的元素及其化合物都有自己独特的光谱特征,光谱因此被视为可以辨别物质的成分信息。光谱学的最大特色之一,是研究光与物质产生相互作用的学科,通过物理的方法可以获取物体的成分,在应用上可以非接触和非破坏地进行检测。典型的如天文对象、高温物体、放电气体… … 在分子和原子层次上物质作分析研究,主要是用光谱方法。比如人类用光谱相机拍摄遥远星球的表面物质。▲高光谱原理黄锦标介绍,高光谱成像技术则将成像技术与光谱技术相结合,可获取高光谱分辨率的连续、窄波段的图像数据。其原理是将成像技术与光谱技术相结合,在探测目标二维空间信息的同时,获取其每一个空间位置上的光谱信息,从而实现对物质成分的直接检测。物质光谱信息具有指纹特性,即不同的物质拥有不同的光谱,因此高光谱成像为机器视觉的物质感知、识别和分析提供了新路径,是继2D、3D视觉技术之后的下一代革命性视觉成像技术。2019年,海谱在深圳成立后,开启第一款微型高光谱成像MEMS芯片的研发设计与流片。2020年初,海谱宣布正式量产第一代微型高光谱成像MEMS芯片,填补了国内在微型高光谱成像MEMS芯片领域的空白。传统光谱成像设备一般手工组装,存在体积大、价格昂贵、无法批量生产等问题,海谱微型高光谱成像MEMS芯片具备高空间分辨率、高透光率等性能优势,解决了光谱成像设备体积、成本等问题 芯片化量产还可有效降低高光谱成像设备的台间差,实现芯片至整机全自动组装。由此,海谱突破性地实现了MEMS特殊工艺的突破,解决了高光谱成像工业化、低成本和量产化的业界难题,研发能力覆盖芯片设计、光学模组、产品相机、算法研发、完整应用解决方案等高光谱全链条技术,可为全球多领域客户提供一站式高光谱成像解决方案。“传统的光谱成像设备是一个大仪器 海谱的相机模组才一片指甲大,而且更便宜,不管从体积还是价格、便利性都跨越民用的门槛,也是中国在这个细分芯片赛道上做到了世界领先的位置。”黄锦标这样比较。▲高光谱成像技术可检测物质成分芯片产品覆盖全光谱波段,万物皆可测目前,公司已推出几款芯片,形成全光谱覆盖,实现万物皆可测。黄锦标介绍,高光谱成像MEMS芯片及模组可以应用于工业检测、医疗健康、安防环保、食品检测、IOT等多场景。例如在工业检测领域,高光谱技术可在非接触的情况下实现食品检测分拣、质量等级筛选等功能,以往几分钟或数小时的检测结果如今可实时在线获取。在医疗健康,高光谱设备可赋予普通显微镜高光谱视觉能力,同时还可实现癌症筛查、手术辅助成像等功能。在安防环保领域,高光谱技术可对水质、环境进行实时监测,实现对水质的定性、定量观测,实现云图可视化效果。在食品检测领域,高光谱成像技术可对肉类、果蔬、粮油等进行材质分析,检测果蔬的糖度、水分、硬度、酸度等指标,智能分析肉类的新鲜程度。值得留意的是,海谱不仅有硬件团队,也有AI算法团队,这也保证了芯片获取数据后可以计算建模,得到一致性较高的结果。为何一个默默无名的初创科技公司,可以填补芯片产业空白,实现全球技术领先?黄锦标介绍,高光谱成像MEMS芯片是一个多学科的技术突破,不单单涉及微电子,还有化学、材料、机械、光学等。但是,公司一直聚焦于高光谱成像技术这一细分领域,而且公司核心研发团队此前20年专注于该细分技术的研发,有着世界领先的技术沉淀。“中国芯片暂时落后于国外,实际上差在积累不够,除了资本、政策和市场加持,需要很多科研人员、工程师长年累月地在实验室和芯片产线上辛勤付出,这样才有领先技术突破。”黄锦标称,作为一名90年代从大学毕业后进入半导体行业的老兵,见证了深圳20来年半导体行业的萌生、发展和蓬勃,希望通过自主科技创新,支持国产技术在半导体“无人区”技术实现更多突破。【深创者说@黄锦标】“我们一直强调,一个技术是否具有先进性、突破性,一定要有用,要为市场和消费者提供所认可的解决方案。海谱将微型高光谱成像MEMS芯片与人工智能算法结合,来为消费者转译物体的成分信息。比如我们人眼或者普通相机拍一块肉,就是一张普通照片,但是安装我们芯片的相机拍出的照片,经过算法读取,会转换出一个普通人可理解的结果,告诉你这块肉是否新鲜。我们坚持不会做终端产品。现在国内尤其深圳已经有很多全球知名的硬件终端产品公司,我们的定位是生产芯片以及解决方案,来服务这些硬件终端产品公司。在我们看来,现在中国卡脖子,是卡在缺少上游核心芯片或器件的技术和制造能力。海谱立志于去做这样的一个角色。
  • 中国科学院徐明:基于光谱和质谱成像的纳米单颗粒原位分析研究
    在满足目前各种应用需求的前提下,光谱分析仪器和方法也在不断的创新发展中,不论是分子光谱还是原子光谱都涌现了一系列创新的成果,特别是拉曼光谱、近红外光谱、激光诱导击穿光谱、太赫兹、超快光谱、荧光相关光谱、高光谱等相关技术彰显了极具诱惑的市场活力,引领着行业发展的方向。第十二届光谱网络会议(iCS 2023)中,近50位专家报告充分彰显了光谱创新潜力,纷纷展示了一系列的创新成果:从仪器整机到关键部件;从系统集成到方法开发;从大型科研仪器,到用于现场的便携、手持设备;从实验室检测设备,到过程分析技术……为了更好的展示这些创新成果,同时也进一步加深专家、用户、厂商之间的合作交流,会议主办方特别策划《光谱创新成果“闪耀”iCS2023》网络专题成果展,集中展示本次光谱会凸显的创新成果,包括但不限于仪器、部件、技术、方法、应用等。徐明 研究员中科院生态环境研究中心人物简介:徐明,中国科学院生态环境研究中心,研究员,博士生导师。主要从事重金属(离子态、颗粒态)的健康效应、分子靶点及分析方法研究。获国家基金委优秀青年科学基金、入选中国科学院青年创新促进会。主持并参与国家自然科学基金、科技部973、科技部重点研发计划、中国科学院战略性先导科技专项B等9项。发表论文72篇,申请和授权国家发明专利3项。本次会议中,中科院生态环境研究中心徐明研究员分享了《贵金属纳米颗粒的体内示踪与原位成像谱学方法研究进展》(点击回看》》》)引发行业关注。会后,我们也再次邀请徐明研究员分享其团队在纳米颗粒原位分析的系列研究成果。1、成果简介纳米材料已被广泛应用于工业、农业、食品、医药等领域。例如,银纳米颗粒作为抗菌剂被用于病原微生物的消杀,金纳米颗粒因其优良的光学性能和生物相容性被用于疾病诊断与治疗等等。一旦进入生物体内,纳米颗粒会经历复杂的转化过程,包括溶解、聚集、解聚等。纳米颗粒的体内转化会改变其物理化学特性,进而对纳米颗粒的功能产生影响。然而,目前针对纳米颗粒体内转化、分布的原位分析表征极具挑战。通常使用电子显微镜对组织或细胞内的纳米颗粒进行检测,该种方式成本高,操作难,不易于推广。其它成像技术,如质谱、红外光谱、拉曼光谱、荧光光谱等,成像分辨率难以达到纳米级别,无法实现单颗粒分析。针对上述难题,为实现生物组织和细胞中纳米颗粒转化与分布的精确分析,徐明研究员研究团队近期开展了基于光谱成像和质谱成像的纳米单颗粒原位分析研究。成果一:细胞内金纳米颗粒聚集行为的单颗粒成像分析为观测金纳米颗粒(AuNPs)的细胞内聚集行为,我们基于高光谱暗场显微镜(EHDFM)开发了一种单颗粒成像分析新方法。利用局域表面等离子共振现象(LSPR)产生的散射光谱信号,可对AuNPs的聚集程度进行定性和定量分析,实现生物介质中和细胞内AuNPs的原位单颗粒分析(图一)。该方法具有很好的特异性与灵敏度,相关研究成果近期已发表于Journal of Physical Chemistry B(https://doi.org/10.1021/acs.jpcb.2c08289)。图一成果二:利用间充质干细胞进行肿瘤靶向递送金纳米颗粒的原位成像分析为观测金纳米颗粒(AuNPs)的体内行为与分布特征,其团队整合了激光溅射电感耦合等离子体质谱(LA-ICP-MS)和高光谱暗场显微镜(EHDFM)技术,可实现生物组织中AuNPs的定性与定量成像分析(图二)。针对纳米颗粒肿瘤靶向效率低的问题,我们比较了间充质干细胞(MSC)介导的AuNPs肿瘤靶向与增强渗透滞留效应(EPR)间的递送效率差异,证实MSC介导的肿瘤靶向递送效率比EPR效应提高了2.4~9.3倍,可将更多AuNPs递送至肿瘤坏死核心。相关研究成果近期已发表于ACS Nano(https://doi.org/10.1021/acsnano.2c07295)。图二成果三:新型核壳结构纳米探针成像分析银纳米颗粒的胃肠道转化为观测纳米颗粒的体内转化过程,我们开发了一种以星形金纳米颗粒为内核,外层包覆银壳的球形核壳结构纳米探针(Au@AgNPs)。在体内,一旦该探针的银壳发生溶解等转化,就伴随着元素和光谱信号的变化,进而可通过LA-ICP-MS和EHDFM进行成像分析(图三)。利用该纳米探针,其团队成功示踪了颗粒银在小鼠胃肠道中的转化与吸收过程,揭示了颗粒银和离子银的体内行为与分布特征的差异。相关研究成果近期已发表于Advanced Functional Materials(https://doi.org/10.1002/adfm.202302366)。图三2、产业化意向上述相关的成果正在申请国家专利,后续将发展更多面向应用的技术方法和成像探针,欢迎相关的科研与产业合作。3、课题组未来研究计划后续研究中,徐明研究员研究团队将重点开发针对生物分子和纳米材料的质谱、光谱成像技术。
  • IVIS视角 | 穿上 “细胞膜吉利服”的纳米载体在体内必将威力大增
    众所周知,多功能纳米载体可以有效识别肿瘤细胞并且在体外具有良好的抗肿瘤效果。但是目光转向体内,这些纳米载体往往在免疫系统的攻击下集体失灵。因为,人体免疫系统将会感知纳米载体的入侵,并且非常努力的把我们精心设计的载体清除掉。一旦纳米载体被清除掉,药物就很难到达目标肿瘤区域,很难实现杀伤肿瘤的效果。因此,纳米医学的一个非常重要的课题就是在不破坏免疫系统的前提下,让纳米载体躲避免疫系统的攻击。传统的解决方案我们都是通过在纳米载体表面携带各种伪装工具,尽量和免疫细胞捉迷藏,能躲则躲,绝不露面。但是这些载体也很容易迷路, 到达深层肿瘤部位的很少,并且在和免疫系统的斗智斗勇中,还会激发免疫系统产生新的抗体从而加速纳米载体的清除,因此很难达到治疗的效果。而随着仿生纳米医学的发展,科学家们可以让纳米载体穿上“吉利服”,不但可以在免疫系统中潜伏下来,还可以大摇大摆的从免疫细胞的眼皮底下蒙混过关,发挥极大功效。这种“吉利服”就是细胞膜提取物,不同种类细胞提取的细胞膜包覆在纳米载体表面还可以表现出特殊的功效,像红细胞膜或者一些免疫细胞膜可以提高纳米载体的体内循环时间,肿瘤细胞膜可以特异识别同源肿瘤等。穿上“细胞膜吉利服”之后,纳米载体将显现各方面的优势和潜力,从而成为近年来多功能纳米载体领域的研究热点之一。1、T细胞膜包裹下仿生纳米药物的免疫识别增强通过糖代谢技术,获取嵌入叠氮基团(N3)的功能化T细胞,并提取功能化T细胞膜包裹在吲哚菁绿/聚合物纳米载体表面,构建仿生纳米光敏剂。功能化T细胞膜上不但原本的抗原受体可以赋予纳米光敏剂识别肿瘤细胞的能力,并且N3基团可以识别肿瘤细胞糖代谢靶点,从而实现纳米载体在肿瘤内部的富集,通过小动物光学成像可以清楚的看到T细胞膜包裹下仿生纳米药物在肿瘤部位的靶向作用,从而进一步实现肿瘤的精准可视化治疗。功能化T细胞膜仿生纳米颗粒实现特异性的肿瘤靶向和精准光热治疗参考文献:T Cell Membrane Mimicking Nanoparticles with Bioorthogonal Targeting and Immune Recognition for Enhanced Photothermal Therapy. Advanced Science. 2019: 1900251.2、生物学重编程全抗原细胞膜助力纳米疫苗的研发将肿瘤细胞和树突细胞融合细胞的生物学重编程细胞膜包覆在金属有机化合物表面,构建肿瘤疫苗可以在融合细胞膜表面表达大量免疫刺激分子,从而使得包裹融合细胞膜的纳米载体像抗原呈递细胞一样直接作用T细胞从而激活免疫反应。通过小动物光学成像,可以看到重编程细胞膜包覆的纳米载体在体内长循环到达肿瘤部位的过程。到达肿瘤部位的纳米载体还可以被树突细胞识别,从而诱导树突细胞成熟,增强免疫效果,最终消除肿瘤,从而拓展肿瘤治疗平台。生物学重编程细胞膜包裹纳米载体的过程以及肿瘤免疫的激活参考文献: Cytomembrane nanovaccines show therapeutic effects by mimicking tumor cells and antigen presenting cells. Nature Communications. 2019, 10(1): 3199.3、肿瘤细胞膜包裹的黑磷纳米载体拓宽光热肿瘤免疫治疗手术切除的肿瘤组织含有对患者特异性的新抗原,是成为制备个体化肿瘤疫苗最好的材料来源。作者利用细胞膜封装的方式在二维光热黑磷量子点(BPQDs)表面包裹肿瘤组织的细胞膜,从而制备具有光热效应的纳米肿瘤疫苗(BPQD-CCNVs),并且把纳米肿瘤疫苗和集落刺激因子(GM-CSF)装入热敏水凝胶中。皮下注射水凝胶后可以在红外光的作用下持续释放纳米疫苗以及集落刺激因子,招募并激活DC细胞,从而捕获肿瘤抗原并激活肿瘤特异性T细胞。同时,尾静脉注射PD-1抑制剂,阻断PD-1/PD-L1免疫检查点通路,增强T细胞抗肿瘤免疫应答效应。通过活体光学成像我们可以对肿瘤进行生物发光标记,从而长期连续监测肿瘤在体内的发展情况。实验结果表明通过光热免疫治疗可以有效清除实体肿瘤同时抑制术后转移的复发。(A)光热肿瘤免疫实验设计思路;(B)FITC标记的水凝胶在体内的降解情况;(C)个性化光热肿瘤免疫治疗可以有效抑制术后实体肿瘤的复发;(D)个性化光热肿瘤免疫治疗可以有效抑制术后肿瘤的转移。参考文献:Surgical Tumor-Derived Personalized Photothermal Vaccine Formulation for Cancer Immunotherapy. ACS nano. 2019, 13(3): 2956-2968.珀金埃尔默拥有先进的分子影像技术,其小动物活体成像系统为生物医学的各种研究领域(包括肿瘤、干细胞、传染病、炎症、免疫性疾病、神经疾病、心血管疾病、代谢疾病、基因治疗、纳米材料、新药研发、植物学等)提供了完整的成像解决方案。点击链接,获取相关产品及应用资料:https://account.custouch.com/perkinelmer/site/#/list/15?_wxr_1564535099232&refresh=true关于珀金埃尔默:珀金埃尔默致力于为创建更健康的世界而持续创新。我们为诊断、生命科学、食品及应用市场推出独特的解决方案,助力科学家、研究人员和临床医生解决最棘手的科学和医疗难题。凭借深厚的市场了解和技术专长,我们助力客户更早地获得更准确的洞见。在全球,我们拥有12500名专业技术人员,服务于150多个国家,时刻专注于帮助客户打造更健康的家庭,改善人类生活质量。2018年,珀金埃尔默年营收达到约28亿美元,为标准普尔500指数中的一员,纽交所上市代号1-877-PKI-NYSE。了解更多有关珀金埃尔默的信息,请访问www.perkinelmer.com.cn。
  • analytica China 2022:莱比信邀您共赴双十之年!
    亚洲重要的分析、生化技术、诊断和实验室技术博览会——第十一届慕尼黑上海分析生化展(analytica China 2022)即将于2022年11月14-16日在上海新国际博览中心N1-N5馆拉开帷幕。 本届展会也是analytica China的20周年。莱比信将携手德国Herolab(赫洛莱博)带来离心机&不溶性微粒检测仪新品及热销仪器亮相N2馆2124。在此诚邀各位莅临参观,与您共赴双十之年! 第十一届慕尼黑上海分析生化展(analytica China 2022)时间:2022年11月14-16日地点:上海新国际博览中心莱比信展位号:N2.2124 Herolab (赫洛莱博)公司与KLOTZ(克劳斯)公司达成战略合作,推出PM系列不溶性微粒检测仪。在此次合作中,Herolab将KLOTZ专业的激光颗粒检测技术和符合制药行业GxP数据管理要求的软件融合,推出了PM系列不溶性微粒检测仪。 Herolab 拥有比较完善的高速离心机产品线,可以提供从微量到大容量,从台式到落地式,从常温到低温等多种规格型号的产品,并为每一款产品匹配了工艺精湛且款式丰富的转子。 此外,德国Gonotec渗透压仪、德国Haver & Boecker筛网、筛分仪和动态颗粒图像分析仪 、英国Lovibond比色计和色度仪、德国Edmund Büehler摇床、加热器和研磨仪、德国ZIEGRA制冰机等众多实验室通用产品都可以亲身体验、实际操作,更多实验室自动化解决方案欢迎莅临展位咨询! 回顾以往,展望未来,莱比信将与一直以来给予我们支持和关注的合作伙伴,携手开启下一个征程!
  • 梁立娜博士加盟磐合科仪 出任高级副总裁、首席技术官
    2017年5月18日,上海磐合科学仪器股份有限公司对外宣布,经公司董事会多次力邀,原赛默飞世尔科技(中国)有限公司应用与产品总监梁立娜博士将正式加盟公司,担任磐合科仪高级副总裁、首席技术官职务。 梁立娜博士,师从我国著名分析化学、环境化学家江桂斌院士。自从中科院生态环境研究中心获得博士学位后,先后担任戴安中国有限公司、赛默飞世尔科技(中国)有限公司技术部门负责人,曾带领70余人的应用与产品市场团队,支持数亿美元的色谱、质谱、光谱、样品前处理、耗材及软件业务,带领团队与专家合作,解决热点、难点及特色问题,支持公司业务多年高速增长。 在繁重的管理业务之余,梁立娜博士目前在科研领域担任多个跨学科、交叉领域的社会职务,如全国离子色谱学术委员会委员及副秘书长、全国原子光谱学术委员会委员、中国仪器仪表学会食品质量安全检测与技术应用分会理事、中国检验检疫学会委员、上海市药学会药物分析专业委员会委员、四川省分析测试学会理事等。 磐合科仪将结合梁立娜博士深厚的技术背景、丰富的行业资源和管理经验,为她度身定制专业化的工作和研究平台,与此同时梁立娜博士将协助董事会制定公司未来产品发展战略,并全面负责公司产品与技术相关的顶层规划设计、市场驱动与应用实施等全方位的工作。相信她的加盟,将为公司未来的发展注入新的活力,推动磐合科仪在技术研发、产品升级、业务拓展等方面再上新台阶。 最近几年,有多位国际仪器公司高管理层加入到中国民营仪器企业,相信在他们的共同努力下,一定会极大地提高国内仪器公司的业务和管理水平,推动行业的快速发展!磐合科仪作为一家非常有特色的、在环境监测和食品安全领域为全行业提供综合解决方案和产品增值服务的高新技术企业,近年来各项业务实现了高速发展。公司尊重知识,尊重人才,希望更多对国内仪器行业有兴趣、对公司有信心的有志之士加入,实现共同发展!
  • 创新引领中国临床质谱,豪思生物荣登《财富》“2022最具社会影响力的创业公司”榜单
    7月28日,世界著名财经杂志《财富》(中文版) “2022中国最具社会影响力的创业公司榜单”发布,豪思生物凭借在多组学及临床质谱领域的创新探索,从数百家候选公司中脱引而出,成功入围。  《财富》(中文版)“中国最具社会影响力的创业公司”榜单始于2021,基于对中国经济和商业实体的体察和认识,《财富》在继续关注传统的观察对象基础上,将更多的创业公司纳入视野,希望通过记录它们的开创性商业实践,对中国经济有更为深刻的多层级全方位展示。今年,《财富》采用了更新的、更为细致和完善的评选体系,希望在更广大范围内找出更多的代表时代精神,即以智慧、坚持和勇气让世界变得更好的创业公司。 作为国内精准医疗领域多组学应用与临床质谱技术早期探索者和实践者,豪思生物基于代谢组学、蛋白组学等多组学研究,一直在专注将先进的质谱技术和临床应用场景深度融合,致力于在中国推广质谱技术,为临床的诊断、大众的健康管理提供更精准、更高效、更便捷的帮助。 在Multi-omics的探索基础上,豪思生物实现了中国临床质谱领域多个从0到1的突破,率先转化了心血管疾病、阿尔茨海默症等重大疾病的创新质谱应用。同时,豪思生物真正做到从临床需求出发,通过完成国际顶尖技术本土化、帮助国内顶尖科研成果产品化,实现质谱核心技术自主化和智能化,把相对非常复杂的化学方法下沉为稳定易用的质谱产品,让每一个检验人员,可以稳定地用质谱这双眼睛,在医疗的诊断路径里给出非常有用的指标,为医生提供更好的工具去制定精准的用药和治疗方案。  如榜单宗旨,豪思正在用自己的商业路径和科研探索去不断攻克人类健康管理的难题,真正为中国医疗体系、中国老百姓的健康提供更适配、更切实可用的产品和服务。  人类社会的进步由创新推动,而创新的商业化,即为创业。豪思生物这类以科技创新或商业模式创新解决困扰世界的难题,在获得商业成功的同时,展示出社会影响力的创业公司,值得褒奖。
  • 新研发中心投资近2亿!纳微科技新大楼启用 加快色谱全产业链布局
    仪器信息网讯 2024年9月6日,苏州纳微科技股份有限公司(以下简称“纳微科技”)新研发中心大楼正式启用。上午举行的启动仪式,中国科学院院士、原北京大学校长周其凤,第十三届全国人民代表大会外事委员会副主任委员、原北京大学校长林建华,苏州市委常委、园区党工委书记沈觅,苏州工业园区党工委委员、管委会副主任倪乾、邹小伟等领导以及近百位嘉宾受邀出席。仪器信息网作为特邀媒体全程参与并报道本次活动。本次新大楼启用,标志着纳微科技的研发生产水平迈上新台阶,对于助力纳微科技在微球材料领域持续创新、不断突破奠定了更坚实的基础。新研发中心大楼仪式现场 在启动仪式上,中国科学院院士、原北京大学校长周其凤,第十三届全国人民代表大会外事委员会副主任委员、原北京大学校长林建华,苏州工业园区党工委委员、管委会副主任倪乾以及纳微科技创始人、董事长江必旺分别致辞。中国科学院院士、原北京大学校长 周其凤致辞第十三届全国人民代表大会外事委员会副主任委员、原北京大学校长林建华致辞苏州工业园区党工委委员、管委会副主任倪乾致辞纳微科技创始人、董事长江必旺致辞江必旺在致辞中首先介绍纳微科技新研发大楼的建设情况,并感谢了各方给予的大力支持。他回顾创业历程,在艰苦的条件下,纳微科技的研发团队凭借坚持和努力,成功研发出世界领先的纳米微球材料,并实现了产业化。并经过多年努力成长为纳米微球材料领域的龙头企业,新研发大楼的启用标志着公司研发条件和实验能力迈上新台阶,为公司未来发展奠定坚实基础。未来,纳微科技将利用新研发大楼,打造世界一流的化学实验室,为科研人员提供更好的科研环境。并将持续开发更多创新技术和产品,为生物医药、电子信息等领域发展做出贡献。致辞之后,纳微科技董事长江必旺、总经理牟一萍及多位嘉宾代表共同为新大楼揭幕。启动仪式仪式结束后,工作人员带领来宾参观了纳微科技的研发中心大楼。大楼总建筑面积达到29272平方米,其中地上11层,地下2层。内设有多个专业实验室,包括生物制药分离纯化应用技术研究实验室、新产品研发实验室等,这些实验室配备了先进的设备和配置,各类实验室仪器设备超过200台,能够满足公司在高性能纳米微球材料领域进行深入研究的需要。参观掠影纳微科技研发中心大楼的启用,标志着公司发展迈向崭新的篇章。这座建筑面积3万多平米的大楼,配备了世界一流的研发设备和实验设施,为纳微科技提升研发实力、开发更多创新技术和产品奠定了坚实的基础。除了加大硬件投入之外,纳微科技还吸引了一大批优秀的研发和管理人才,全面提升了从产品研发到服务及营销能力体系的建设。近年来,纳微科技积极拓展业务版图,通过收购和投资等方式,不断完善产业链布局,加速市场拓展。纳微科技联合旗下福立、纳谱、赛谱等子公司,正在构建从微球、色谱耗材到色谱仪器的全产业链条及产品矩阵。展望未来,希望纳微科技以新大楼为平台,不断提升研发实力,开发更多高性能、高附加值的纳米微球材料及相关产品,推动中国乃至全球相关领域的发展。仪器信息网将对纳微科技的发展进行持续关注。
  • 探索临床质谱的创新商业模式|走进杭州亿纳谱
    眼下,质谱领域的创业潮风起云涌,从技术、产业以及历史的角度,我们该如何明晰这一次质谱产业浪潮的意义,又该如何把握前行的方向?在此背景下,仪器信息网特别策划“《质谱纵横》之企业走访实录”,以期深度洞察质谱行业发展,以信息化助力企业发展。2023年6月,仪器信息网走访团实地探访了总部位于杭州的一家标志物研发及临床质谱企业,浙江亿纳谱生命科技有限公司。探究入局不久的亿纳谱如何设计自身的商业模式?针对临床质谱这条即将迎来变革的黄金赛道,亿纳谱如何才能跑赢?仪器信息网走访团队与亿纳谱团队合影(从右至左:亿纳谱联席执行官万馨泽、仪器研发负责人吴晓楠博士、四川大学华西医院GCP中心研究员秦永平、中国仪器仪表行业协会分析仪器分会秘书长曾伟、仪器信息网编辑部副主任刘丰秋、仪器信息网质谱编辑万鑫)认识“亿纳谱”近年来质谱成为了最热的科学仪器投资概念股,质谱相关的创业公司也多了很多大学教授、科学家的身影,且渐成趋势。仪器信息网注意到,过去一年”吸金“能力排前十的质谱创业公司中(点击了解 ),2家出自大学教授,2家来自科学家,嗅到机会的大批新势力们逐渐崭露头角,纷纷利用自己的知识、技术“抢抓”行业风口。成立于2017年10月的浙江亿纳谱生命科技有限公司(简称:亿纳谱)就是由大学教授创业一家临床质谱公司,其创始人是上海交通大学特聘教授、长江学者钱昆教授。亿纳谱公司致力于将原创纳米材料技术应用于质谱检测领域,并围绕临床质谱的产业链,布局标志物研发、质谱诊断试剂盒、质谱仪器、多组学等领域。钱教授的研究方向聚焦分子组学分析方法与转化医学应用领域,曾突破设计新型芯片材料器件与质谱技术方法,并应用于分子检测和生理疾病过程的诊治。钱教授也与多家国际、国内生物技术公司及多家三甲医院、医疗企业开展研发合作,拥有丰富的产业化背景。因公司精准定位在广受关注的临床质谱赛道,亿纳谱的首轮融资便吸引了包括沃生资本、拾萃资本等多家医疗专业投资方。在临床质谱的几大技术平台中,色谱串联三重四极杆液相质谱(LC-MS/MS)是临床最为成熟的技术平台之一,具备精准定量能力,布局企业多、仪器多、试剂多,也是临床质谱市场的核心板块;同时,得益于检测速度快、通量高等特点,芯片耦合激光解离固相质谱(MALDI-TOF)技术也已广泛应用于临床微生物鉴定领域。在获得02年诺奖之后,随着生命科学研究的进展,能用于蛋白、多肽、核酸等生物大分子检测的固相质谱技术也越来越受到人们的关注;然而,能用于生物小分子检测,特别是代谢标志物筛选的固相质谱技术是领域的难题。基于此,亿纳谱公司率先打造了液相(LC)+固相(MALDI)双质谱体系,将自主设计研发的纳米芯片结合人工智能,创建重大疾病分子组工程平台和智能质谱医疗检测分析平台iMS-Clinics系统;同时,面向大型人群队列完成微量体液样本中代谢标志物高通量快速筛选和鉴定,实现了新标志物及组合的临床转化应用。“另一种”商业模式上文提到,中国临床质谱的蓬勃发展一方面受限于“卡脖子”技术的设备研发与制造,目前临床质谱市场的质谱仪器设备几乎被国外公司垄断。近些年随着国产替代呼声的高涨,一部分受资本青睐的质谱创业公司从质谱仪器的研发开始,承担着自主研发制造等带来的重投入。但众所周知,像质谱这样的等高端科学仪器的研发、制造需要企业保持长周期、高成本投入,也因此初创企业的商业模式、资金等方面均面临极大的挑战。“商业盈利模式对于初创企业来说非常重要,资本市场具有周期性,资本生态对于投资条件往往很苛刻,因此对于目前的临床质谱创业公司来说,我们认为选择适合的商业盈利模式不仅能让项目‘活下来’,还能让企业迅速成长!”亿纳谱联席执行官万馨泽坦言道。因此,亿纳谱将首轮融资主要用于试剂盒的研发与报证、针对特定重大疾病进行质谱技术平台的开发迭代与拓展,以及市场销售与服务网络的搭建与深化。亿纳谱还将筛选优化一系列新的代谢标志物及组合,拓展蛋白、多肽标志物及组合,实现其在重大疾病诊断领域的快速发展和布局。目前,亿纳谱获批的一类注册证20多个,1个二类注册证已经进入医疗器械注册检测环节。可以看出,亿纳谱致力于打造集转化医学和精准医学一体的临床质谱解决方案。走访座谈会现场不过,为了做好国产替代、解决“卡脖子”问题,亿纳谱也在积极积累和准备仪器设备研制工作。借助上海交通大学完善的产学研体系,亿纳谱将研发中心设立在上海,重点攻克反射式飞行时间质谱的研发和制造。据了解,常见的飞行时间质量分析器主要有线性式和反射式,目前临床应用中常见的多为线性式飞行时间质谱技术。而随着生命科学研究的深入,反射式飞行时间质谱由于具有高分辨率和准确度等特性,能够在复杂样本分析等方面发挥优势。此外,亿纳谱也在全国范围内逐步筹建研究院,包括华北内蒙研究院、华西四川研究院、以及华中研究院和华南研究院等,以期借助各地的优势科研高地,更快更深地推动质谱技术在临床的大规模应用。亿纳谱杭州实验室掠影
  • Alicona新品InfiniteFocus和MeX遵循新ISO标准
    新的ISO标准25178第一次包括基于测量对光学区域进行分类的标准参数。作为ISO委员会的成员,Alicona的专家在确定表面测量技术的分类方法中发挥了重要的作用。同时,Alicona拥有对表面参数的最终决定权。   光学表面测量仪InfiniteFocus的无限变焦技术和MeX的基本技术都作为光学表面测量技术包含在ISO 25178中。   新的ISO标准包含表征表面测量结果的许多参数,InfiniteFocu和MeX遵循以下标准:   1.描述高度分布的参数:Sa, Sq, Sp, Sv, Sz, Ssk, Sdq, Sdr   2.描述材料面积比率的参数:Sk, Spk, Svk, Smr1, Smr2   3.用自动相关功能、傅里叶光谱、混合参数测量空间参数:Sal, Str, Std, Stdi   4.体积测量的参数:Vmp, Vmc, Vvc, Vvv, Vvc/Vmc   5.梯度分布
  • 傅若农:PLOT气相色谱柱的诱惑力
    编者注:傅若农教授生于1930年,1953年毕业于北京大学化学系,而后一直在北京理工大学(原北京工业学院)从事教学与科研工作。1958年,傅若农教授开始带领学生初步进入吸附柱色谱和气相色谱的探索 1966到1976年文化大革命的后期,傅若农教授在干校劳动的间隙,系统地阅读并翻译了两本气相色谱启蒙书,从此进入其后半生一直从事的事业&mdash &mdash 色谱研究。傅若农教授是我国老一辈色谱研究专家,见证了我国气相色谱研究的发展,为我国培养了众多色谱研究人才。此次仪器信息网特邀傅若农教授亲述气相色谱技术发展历史及趋势,以飨读者。   第一讲:傅若农讲述气相色谱技术发展历史及趋势   第二讲:傅若农:从三家公司GC产品更迭看气相技术发展   第三讲:傅若农:从国产气相产品看国内气相发展脉络及现状   第四讲:傅若农:气相色谱固定液的前世今生   第五讲:傅若农:气-固色谱的魅力   看看下面这张图1,1 min 多一点时间就把苯到二甲苯几个难分离的混合物分开了,而且把间位和对位二甲苯也给分开了,遗憾的是间位和邻位二甲苯没有分开,当然只用了15 m 长的毛细管色谱柱,这种色谱柱叫做PLOT柱,这是半个世纪前在英国&ldquo 自然&rdquo 杂志(Nature)上一篇简短论文上报道的(Halasz I,Horvath C,Nature,1963,197:71-72)。这一工作是最早使用石墨化炭黑作固定相PLOT柱完成的,这一实例对想利用气相色谱用于石油和石化工业分析的人员来说有很大的诱惑力,为什么?这是因为色谱柱短、固定相耐温性好、无流失、分析时间短,可以把在气相色谱中最难分离的间、对二甲苯基线分离。   再看看图 2,这是最近云南师范大的袁黎明研究组把手性向列结构的介孔材料制备成PLOT柱分离手性化合物,这样的PLOT柱,柱高温、分辨率高、可作手性分离,扩展了PLOT柱的应用范围。在新的应用领域又体现了它的诱惑力。   图1 石墨化炭黑作固定相PLOT柱分离苯、甲苯、乙苯和二甲苯   色谱柱:15 m x 0.25mm,5.4mg 石墨化炭黑/m,柱温:245 ℃,   分流比:1:1050,进样:0.2&mu L   图2 手性相列内消旋硅胶PLOT柱分离手性化合物   (Anal Chem,2014,86:9595)   1、什么是PLOT柱   PLOT柱是多孔层开管柱(Porous Layer open tubular column)的缩写,早在上世纪50年代末毛细管色谱柱的发明人 Golay就指出:如果把光滑的毛细管壁变成均匀多孔的细颗粒,就会大大有利于毛细管柱的效能(M J R Golay,Gas Chromatography 1957),他在1960年又进一步详细阐述了这一方法,这种多孔层毛细管色谱柱可以降低相比率,同时又使固定液液膜比较薄,有利于传质阻力提高柱效,在具有多孔层毛细管内壁上涂渍一层可以增加内壁的表面积,多孔层物质可以用化学方法处理,也可以用颗粒悬浮物沉积到管壁上,于是早期的气相色谱开拓者们就循这一思路研发,1962-1963年Horvâ th等开发了这一类型的毛细管多孔层色谱柱。   大家知道Csaba Horvâ th (1930-2004)是液相色谱的开拓者之一,他是匈牙利人,上世纪50年代在匈牙利受到化学工程方面的高等教育,1962-1963年间在德国法兰克福大学(美音河畔的法兰克福)Halâ sz的实验室攻读博士期间,研究了无机色谱固定相,使用Golay的静态涂渍技术制备出多孔层气-液色谱柱(在氧化铁颗粒上涂渍聚乙二醇),这种色谱柱叫做载体涂渍开管柱(support-coated open-tubular ,SCOT),属于多孔层开管柱(PLOT)的一种,同时也制备了吸附型气-固色谱柱(见上图1)(Nature,1963,197:71-72)。   PLOT柱发展早期,很多研究是针对SCOT柱,即把填充柱使用的载体用某种胶粘附在毛细管壁上,然后再在这一载体上涂渍固定液。现在商品PLOT柱则严格地限于把多孔吸附剂以化学或物理方法粘附在毛细管内壁上,进行气-固色谱,所以有人也把它叫做&ldquo 吸附固相开管柱&rdquo (adsorption solid-phase open-tubular column,ASPOT)。   2、早期的填充毛细管柱到PLOT柱   由于填充气相色谱柱的分离能力有限,致使许多复杂的混合物无法分离,尽管开发了许许多多固定相,但是仍然由于填充柱柱效不高,无法满足实际工作的需要,而壁涂毛细管柱(WCOT),由于其液膜厚度的限制柱容量小,对低沸点物质保留作用小,对一些永久气体不能分离,而气-固色谱可以分离低沸点物质,但是柱效低对难分离的混合物受到限制,所以出现了填充毛细管气-固色谱柱,1962年Halasz和 Heine就制备了氧化铝的填充毛细管柱,他们把一根1mm直径洁净的钢丝穿入直径为2.2mm的玻璃管,在玻璃管和钢丝的空隙中装入吸附剂,把填充好吸附剂的玻璃管水平放在毛细管拉制机上,并小心地把钢丝移除,把玻璃管拉制成直径为0.3mm的毛细管。在作者的实验中使用的吸附剂是在400℃ 加热9h的氧化铝,吸附剂颗粒直径在 0.10-0.15mm之间,然后把毛细管在120℃下用氢气吹扫24h,以除去吸附剂吸附的水分。用这种10m长的色谱柱就可以把15个C5的烃类在6min 内分离开(Nature,1962,194:971),见下图3。   图3 填充毛细管气-固色谱柱分离芳烃的色谱   色谱柱:10m 柱温:80℃,色谱柱脱活:用晶体硫酸钠湿润载气   载气:氢气,流速:2.5ml/min , 分流比:1:600,FID 检测器   1&mdash 甲烷,2&mdash 乙烷,3&mdash 乙烯,4&mdash 丙烷,5&mdash 丙烯,6&mdash 乙炔,7&mdash 异丁烷,   8&mdash 正丁烷,9&mdash 丁烯-1,10&mdash 反丁烯-2,11&mdash 异丁烯,12&mdash 顺丁烯-2,   13-异戊烷,14&mdash 正戊烷,15&mdash 丁二烯(Nature,1962,194:971)   这种填充毛细管柱可能是由于制作麻烦未能普及,而1963年,Kirkland在开管柱中沉积氧化铝,制备了氧化铝PLOT柱(Anal Chem,1963,35(9):1297),之后,人们把Kirkland作为PLOT柱得第一发明人。前面我们提到Horvath C同时在1963年制备了石墨化炭黑的PLOT柱,因为Horvath C的工作发表在Nature上,可能被人忽视。不过很有意思,后来Kirkland和Horvath二人都成为赫赫有名的液相色谱先驱。由于PLOT柱在许多领域实际工作中得到应用,直到现在有大量商品化的PLOT气相色谱柱,得到广泛的应用。   3、现代商品化PLOT柱所使用的固定相和色谱柱类型   按照季振华1999年的综述(J Chromatogr. A, 1999),842:115&ndash 142),商品化PLOT柱所使用的吸附剂有:氧化铝、石墨化炭黑、分子筛、有机多孔聚合物等,见下表1。   表1 商品化PLOT柱所使用的吸附剂(固定相)   目前世界上几个著名的色谱柱生产厂家都有上述固定相的PLOT柱,比如安捷伦公司就有专门生产PLOT柱的生产线。这些PLOT柱可用于分析干气、低分子量的轻烃异构体和挥发性极性化合物(见表2)。HP家族中的PLOT柱有各种不同的规格,可满足不同领域的使用,有适用于大容量分析的530&mu m柱,如果要进行快速分析或进行GC/MS分析可以选择250&mu m或320&mu m的PLOT柱。   表2 HP-PLOT柱的应用   (1)HP-PLOT 分子筛柱   使用HP-PLOT 分子筛柱分析永久气体和惰性气体, HP-PLOT 分子筛柱是在柱内涂渍有固定化的5A分子筛,涂层厚度为12 ~50&mu m。这样可以保证对氮、氧、氩、甲烷和一氧化碳的分离。   把吸附剂键合到毛细管壁上,减少颗粒脱落的机会,以免颗粒进入系统的阀或检测器里,这样可以大大提高检测器的灵敏度和整个系统的精确性。   分析永久气体一般使用分子筛柱,HP-PLOT 分子筛柱有足够的柱效和柱容量用以很好地分离氮、氧、甲烷和一氧化碳。这种色谱柱适合于多种气体分析样品阀所要求的时间选择。在进行等温40℃分析时,氧和氩只能部分分离。如果要把它们完全分离,可以不用冷冻低温而使用厚膜HP-PLOT 分子筛柱, 可在接近环境温度下分析环境中的惰性气体。在35℃下可以把惰性气体及氧和氮很好地分离,分析时间不到10min。   HP-PLOT 分子筛柱的柱径规格为0.32和0.53mm, 为了能在不使用冷冻低温下分离氧和氩气,可以使用厚膜柱HP-PLOT MoleSieve/5A分子筛柱。薄膜HP-PLOT 分子筛柱是多种应用分析(包括常规的空气监测)的色谱柱,分析时间小于10s。使用薄膜HP-PLOT 分子筛柱可以在低温下分离氧和氩。   (2)HP-PLOT 三氧化二铝柱   HP-PLOT 三氧化二铝柱系列,包括使用三氧化二铝颗粒和各种脱活的三氧化二铝颗粒的涂层开管柱。所有HP-PLOT 三氧化二铝柱都适用于烃气流中C1-C6异构体的分离,每种类型的HP-PLOT 三氧化二铝柱都各有其特点和优点,如表3所述。   HP-PLOT 三氧化二铝柱的柱径从0.25mm到0.53mm, 0.53mm 柱的使用更为普遍,因为它的柱容量大,适合于大体积进样阀的应用。如使用0.53mm HP-PLOT 三氧化二铝KCl柱可分析乙烯和丙烯气体中的组分,用HP-PLOT 三氧化二铝柱检测烃类的检测限为10ppm。对0.32mm和0.53mm内径的所有三种色谱柱其温度上限均为200℃,对0.25mm柱可以在250℃下短时间使用。由于0.25mm柱的柱效高并且使用温度上限也较高,所以它可以用于高达C10的烃类 。   表3 HP-PLOT 三氧化二铝柱   (3)HP-PLOT Q柱   HP-PLOT Q柱是HP公司PLOT柱中应用广泛的色谱柱,HP-PLOT Q柱适合于以下对象的分离:   * 烃类(所有C1-C3异构体,一直到C14的链烃,天然气,炼厂气,乙烯,丙烯气体),   * 二氧化碳,空气/一氧化碳,水,   * 极性溶剂,含氧和含硫化合物。   HP-PLOT Q柱具有以下的点:   a 具有优良的机械稳定性,很少或没有碎片脱落,使其适合于有阀控制的分析和GC/MS的分析   b流失量小,减少老化时间,提高灵敏度   c 重复性好,节省工作时间和购置费用   d 最高恒温使用温度为270℃   4、近年出现新材料制备的PLOT柱   (1)金属有机框架材料(MOFs)制备的PLOT柱   近年金属有机框架材料(MOFs)风靡一时,趋之若鹜,尝试在各个领域中应用的文章数不胜数,在分析化学中的应用如下图 4 所示。   图4 金属有机框架材料(MOFs)在分析化学中的应用领域   何谓金属有机框架材料(MOFs)?金属有机框架化合物(MOFs)是由无机金属离子和有机配体,通过共价键或离子共价键自组装络合形成的具有周期性网络结构的晶体材料。其中,金属为顶点,有机配体为桥链。MOFs结构中的金属离子几乎包含了所有过渡金属离子。通常分为含氮杂环有机配体、含羧基有机配体、含氮杂环与羧酸混合配体三种类型。MOFs具有独特的孔道,可设计和调控它的尺寸和几何形状,并在孔道内存在开放式不饱和金属配位点,使其可用于吸附或分辨不同的气体或离子,MOFs极适宜于辨识特定的小分子或离子,在多相催化、气体分离和储存等方面有着广泛的应用(Li J, Sculley J, Zhou H,Chem Rev,2012, 112:869&ndash 932)。由于MOFs具有优异的性质,比如比表面高、热稳定性好、纳米级孔道结构均一、内孔具有功能性、外表面可修饰等,在分析化学领域有广泛的应用前景(Gu Z,Yang C, N Chang,et al,Accounts Chem Res,2012),MOFs在分析化学中有多种应用,也是气相色谱固定相很好的选项。   2006年陈邦林等(Chen B, Liang C,Yang J,Angew Chem,Inter Ed,2006, 45:1390 &ndash 1393)首次把金属有机框架化合物 MOF-508用作气相色谱固定相,用以分离直链烃和叉链烃,MOF-508的分子式为 Zn(BDC)(4,4&rsquo -Bipy)0.5(MOF-508:BDC=1,4-苯羧酸, 4,4&rsquo -Bipy=4,4&rsquo -联吡啶),其空间结构如图5,它据有简单的立方体带孔的框架,孔径可由两个互相穿插的情况来调节,其一维通道横截面大约为 0.4x0.4 nm,这样的结构对气相色谱分离烷烃具有很好的选择性。但是陈邦林是把金属有机框架材料MOF-508 制备成填充柱进行研究的。   图5 MOF-508 的空间结构   真正制备成毛细管柱,即多孔层毛细管色谱柱(PLOT柱)的研究是南开大学的严秀平研究组(Gu Z,Yan X, Angew Chem,In ted. 2010,47:1477)和云南师范大学的袁黎明研究组(Xie S,Zhang Z, Wang Z,et al, JACS,2011, 133:11892&ndash 11895)的工作。严秀平等在2010年在德国&ldquo 应用化学&rdquo 上发表了使用MOF-101作固定相分离二甲苯位置异构体和乙苯混合物以及其他苯取代化合物的工作,MOF-101是铬和对苯二甲酸的金属框架配位化合物(Cr3O(H2O)2F(BDC)3),具有较大的孔径(2.9&ndash 3.4 nm),适合于做气-固色谱的固定相,他们用动态法把MOF-101涂渍在15m长的大内径(0.53mm)石英毛细管柱上,所用的涂渍方法类似于1963年Horvath所用的方法:首先把MOF-101和乙醇制备成悬浮液,然后以气体压力灌注到毛细管(15m x 0.53mm id)中,以动态涂渍技术把固定相沉积到毛细管壁上,这一色谱柱,自然是PLOT柱了,色谱柱的横截面图如图6所示。用这一色谱柱分离三个二甲苯位置易购体得到十分漂亮的基线分离图,而且分离时间很短见图 7。   图6 MOF-101 毛细管柱的电镜横截面图   图7 MOF-101 毛细管柱分离二甲苯异构体的色谱   袁黎明研究组主要是研究MOFs的手性固定相,2011年他们合成了[{Cu(sala)}n] (H2sala = N-(2-羟苄基)-L-丙氨酸),涂渍成毛细管色谱柱,用以分离外消旋的烃类、醇类和Grob试剂,分离效果见表5。   2013年他们合成了三维开放框架手性MOF,Co(D-Cam)1/2(bdc)1/2(tmdpy) (D-Cam=D-樟脑酸 bdc=1,4-苯二羧酸酯,tmdpy=4,4&prime -三亚甲基联嘧啶),制备成毛细管手性色谱柱,这种Co(D-Cam)1/2(bdc)1/2(tmdpy)化合物具有手性构架的三维结构,具备内在手性的拓扑网络。把它制备成两种毛细管色谱柱,柱A为30m长的530&mu m的大内径柱,柱B为2m长的75&mu m小内径柱,用动态法制备毛细管色谱柱,在120℃下以正十二烷测试它们的柱效,分别为1450 plate/m和3100plate/m.使用烷烃、醇类、外消旋化合物和Grob试剂测试色谱柱。用柱B和商品手性柱分离一些外消旋化合物的分离因子对比见表4。   表4 [{Cu(sala)}n]柱上分离一些外消旋化合物的分离因子   2013年华南师范大学章伟光和郑盛润研究组也涉足MOFs用作气相色谱固定相的研究,他们把管状金属有机框架化合物 MOF-CJ3动态涂渍在毛细管柱中,研究色谱保留行为。MOF-CJ3是以1,3,5-苯三羧酸(TBC)为有机桥联基的管状MOFs,具有一维沿着C的方向延伸的管道,孔壁由TBC有机桥联基组成,它可以提供苯环和羧基形成超分子作用。研究者选择直链、叉链烃、二甲苯和乙苯以及芳香族位置异构体(如甲酚、对苯二酚和二氯苯)作分离测试物,并测定了麦氏常数见表5   表5 MOF-CJ3 色谱柱的麦氏常数      表6是近年使用各种MOFs作固定相的PLOT柱。   表6 各种MOFs作固定相的PLOT柱(J Chromatogr A,2014,1348:1-16)   (2) 介孔分子筛固定相的PLOT柱   1992年,Kresge等首次利用烷基季铵盐阳离子作为表面活性剂,合成了介孔分子筛如 MCM-41,此类介孔分子筛的比表面积大、孔径均一、孔径可调等特点,突破了微孔材料(如沸石)的孔径限制,扩大了用作气相色谱固定相的范围。 1998年赵东元等(现在是复旦大学教授,院士)用亲水的三嵌段共聚物聚环氧乙烷-聚环氧丙烷-聚环氧乙烷(即P123)制备了有序二维六方相介孔分子筛 SBA-15,其壁厚可达6.4nm,孔径可达30nm,并且具有较高的水热性能(100℃,50h)。SBA-15不仅弥补了MCM-41水热性能方面的不足,而且三嵌段共聚物具有可生物降解、无毒、价廉等特点,满足了环保要求,成为近年来的研究热点之一,在催化、吸附、分离、纳米组装、生物医药和传感等方面得到了广泛的应用。( 赵东元等. Science ,1998,279:548)   以前有人利用这类介孔材料的填充柱分离烃类混合物。最近袁黎明研究组把手性向列结构的介孔材料(CNMS)制备成PLOT柱分离手性化合物,这是PLOT柱向高温、高分辨、特殊分离型毛细管色谱方向发展(Anal. Chem. 2014, 86: 9595&minus 9602)。下表7是CNMS柱与典型手性色谱柱分离性能的比较。   表7 CNMS柱与环糊精和氨基酸聚硅氧烷手性色谱柱分离性能的比较   (3)碳纳米材料作固定相的PLOT柱   2005年 Mitra等首次把自组装碳纳米管使用化学蒸汽沉积(CVD)方法涂渍在长的毛细管色谱柱中,得到高的柱效,改变CVD条件会改变CNTs膜的厚度和形态,因而可调整色谱的选择性(Anal Chim Acta,2010,675 :207&ndash 212)。2006年 Mitra 等又利用鈷和鉬盐进行催化的化学蒸汽沉积方法吧单壁CNTs涂渍在毛细管色谱柱中,厚度达300nm,柱效可达每米1000理论塔板数,测试其麦氏常数属非极性固定相(Anal Chem,2006,78:2064&ndash 2070)。2003年至今发表的一些有关碳纳米材料作气相色谱固定相的研究的工作见表9   表8 有关CNTs作PLOT柱的研究的工作   小结   常规PLOT柱在石油和石化等领域有十分成功的应用,而各个大色谱柱生产商都供应各种类型通用和专用类型的PLOT柱。近年各种新材料的出现促使人们把它们制备成PLOT柱进行研究,有很成功的案例,但是没有看到有深入进行色谱柱工艺优化的研究,还没有达到商品色谱柱的性能。希望研究者自己或联合厂家协作进行深入的柱工艺研究,完成这类PLOT柱商品化的过度。下一讲和大家聊一聊&ldquo 顶空进样技术的过去和现在&rdquo 。(未完待续)   (作者:北京理工大学傅若农教授)
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制