当前位置: 仪器信息网 > 行业主题 > >

噻螺环壬烷

仪器信息网噻螺环壬烷专题为您提供2024年最新噻螺环壬烷价格报价、厂家品牌的相关信息, 包括噻螺环壬烷参数、型号等,不管是国产,还是进口品牌的噻螺环壬烷您都可以在这里找到。 除此之外,仪器信息网还免费为您整合噻螺环壬烷相关的耗材配件、试剂标物,还有噻螺环壬烷相关的最新资讯、资料,以及噻螺环壬烷相关的解决方案。

噻螺环壬烷相关的论坛

  • 【金秋计划】螺纹环规、塞规

    【金秋计划】螺纹环规、塞规 检验检测实验室很少用到螺纹环规、塞规;[font=SF-Pro-Text, sans-serif][size=13px][color=#ba0000]螺纹环规、塞规[/color][/size][/font]是一种用于检验螺纹尺寸和形状的测量工具,通常用于检查螺纹的外径、内径、轴向跳动等参数。购买一款螺纹环规、塞规可以从以下几个方面去考虑:[font=SF-Pro-Text, sans-serif][color=rgba(0, 0, 0, 0.8)][back=#f5f5f5]精度和可靠性,使用的便捷性、产品的耐久性、售后服务水平、用户评论等方面综合考虑。常见的螺纹环规,M32*3.0 螺纹的直径是32mm,螺距3.0mm,T表示通端螺纹,Z表示止端螺纹。 螺纹环规、塞规安全注意事项:非量规检查的请勿使用。螺纹部及量规部的边角因为存在功能性尖锐部分,因此容易造成操作人员受伤,请加以注意,需要检查的产品或量规处于运动状态时去请勿检查量规。 使用前的注意事项:请用轻油或白油灯油侵袭量规及产品或以干净的布擦拭,确认量规是否存在的锈迹、伤痕、毛刺等。 使用时的注意事项:以抗锈润滑油充分涂抹。勿对了量规施加冲击。 保管时的注意事项:保管量规时,应先去除灰尘、切屑等,以防生锈,将量规存放在湿度小且温度变化不大的场所。 定期点检:无论使用情况如何,都应定期进行检查。 [img=,690,516]https://ng1.17img.cn/bbsfiles/images/2024/09/202409131134155405_4350_1980346_3.jpg!w690x516.jpg[/img][/back][/color][/font]

  • 【讨论】做PBDE的溶样溶剂用正己烷、壬烷还是异辛烷?

    做PBDEs时,上机前最后的溶样溶剂用什么比较好,文献上有用正己烷、壬烷和异辛烷几种,正己烷沸点70,异辛烷沸点99,壬烷则是150,买来的标准品用的溶剂则一般是异辛烷,大家都用什么溶样溶剂?这几样有啥优缺点,欢迎讨论

  • 【讨论】关于螺纹环规的校准

    大家好,我们公司生产中使用的螺纹环规(公制和英制的)目前都是送到计量部门进行外部校准,但我们想自己用螺纹塞规进行内部校准,请问大家可以吗?要是可以,相应塞规需要使用特殊的吗(比如校对规)?塞规的精度等级应该比环规高几个等级?有定性的规定吗?请大家不吝赐教,多谢了。[em54]

  • 【求助】马来酸噻吗洛尔

    哪位做 马来酸噻吗洛尔基本信息 英文名 D-Timolol maleate 别名 (+)-3-[3-(tert-Butylamino)-2-hydroxypropoxy]-4-morpholino-1,2,5-thiadiazole maleate 产品名称 马来酸噻吗洛尔 右旋噻吗洛尔马来酸盐 (+)-3-[3-(叔丁基氨基)-2-羟基丙氧基]-4-吗啉基-1,2,5-噻二唑马来酸盐 分子结构 分子式 C13H24N4O3S.C4H4O4 分子量 432.49 CAS 登录号 26839-77-0 EINECS 登录号 248-034-7 ,[color=#DC143C]请说一下色谱条件[/color]

  • 【xStandard标准品有奖问答 4.28(已完结)】8种二苯醚内标混标, 适用于HJ 909-2017 水质 多溴二苯醚的测定 气相色谱-质谱法、EPA 1614,不同浓度溶于正壬烷中,不同浓度溶在壬烷中,1 mL/安瓿,货号是?

    【xStandard标准品有奖问答 4.28(已完结)】8种二苯醚内标混标, 适用于HJ 909-2017 水质 多溴二苯醚的测定 气相色谱-质谱法、EPA 1614,不同浓度溶于正壬烷中,不同浓度溶在壬烷中,1 mL/安瓿,货号是?

    [b]问题:[b][/b]8种二苯醚内标混标, 适用于HJ 909-2017 水质 多溴二苯醚的测定 [url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]-质谱法、EPA 1614,不同浓度溶于正壬烷中,不同浓度溶在壬烷中,1 mL/安瓿,货号是?答案:47146=======================================================================【活动内容】1、每个工作日上午10:00左右发布一个色谱问答题,版友根据题目给出自己理解的答案。2、每个工作日下午15:10公布参考答案。【活动奖励】幸运奖:抽奖软件,当天随机抽取3个或5个回答正确的版友ID号(最后一个ID号,截止至下午15:00),每人奖励[color=#ff0000]2钻石币[/color](抽奖人数≤10,抽取3个版友;抽奖人数>10,抽取5个版友);中奖名单:999youran(注册ID:999youran)PAEs(注册ID:v2911392)lijing320323(注册ID:lijing320323)mengzhaocheng(注册ID:mengzhaocheng)大川之子,纵横四海(注册ID:chuangu120)[img=,690,388]http://ng1.17img.cn/bbsfiles/images/2018/04/201804281530346808_3977_1610895_3.jpg!w690x388.jpg[/img][img=,690,388]http://ng1.17img.cn/bbsfiles/images/2018/04/201804281530362818_9206_1610895_3.jpg!w690x388.jpg[/img]积分奖励:所有回答正确的版友奖励[color=#ff0000]10个积分[/color](幸运奖获得者除外)。【注意事项】同样的答案,每人只能发一次[/b][align=left][color=#ff0000][b]PS:该贴浏览权限为“回贴仅作者和自己可见”,回复的版友仅能看到版主的题目及自己的回答内容,无法看到其他版友的回复内容。[/b][/color][/align][align=left][color=#ff0000][b] 下午3点之后解除,即可看到正确答案、获奖情况及所有版友的回复内容。[/b][/color][/align][color=#ff0000][b][/b][/color]

  • 【分享】螺纹塞规的国家标准

    螺纹塞规的规格分为粗牙、细牙、管子螺纹三种。螺距为0.35毫米或更小的2级精度及高于2级精度的螺纹环规和螺距为0.8毫米或更小的3级精度的螺纹环规都没有止端。螺纹塞规检修方法:假如被测螺纹能够与螺纹通规旋合通过,且与螺纹止规不完全旋合通过(螺纹止规只答应与被测螺纹两段旋合,旋合量不得超过两个螺距),就表明被测螺纹的作用中径没有超过其最大实体牙型的中径,且单一中径没有超出其最小实体牙型的中径,那么就可以保证旋合性和连接强度,则被测螺纹中径合格。1. 米制普通螺纹用大写M表示,牙型角2α=60°(α表示牙型半角); 2. 米制普通螺纹按螺距分粗牙普通螺纹和细牙普通螺纹两种; 2.1. 粗牙普通螺纹标记一般不标明螺距,如M20表示粗牙螺纹;细牙螺纹标记必需标明螺距,如M30×1.5表示细牙螺纹、其中螺距为1.5。 2.2. 普通螺纹用于机械零件之间的连接和紧固,一般螺纹连接多用粗牙螺纹,细牙螺纹比统一公称直径的粗牙螺纹强度略高,自锁机能较好。 3. 米制普通螺纹的标记:M20-6H、M20×1.5LH-6g-40,其中M 表示米制普通螺纹,20表示螺纹的公称直径为20mm,1.5表示螺距,LH表示左旋,6H、6g表示螺纹精度等级,大写精度等级代号表示内螺纹,小写精度等级代号表示外螺纹,40表示旋合长度; 3.1. 常用米制普通粗牙螺纹的螺距如下表(螺纹底孔直径:碳钢φ=公称直径-P;铸铁φ=公称直径-1.05~1.1P;加工外螺纹光杆直径取φ=公称直径-0.13P):表1 常用米制普通粗牙螺纹的直径/螺距 公称直径 螺距P 铸铁底孔 碳钢底孔 外螺纹光杆直径 公称直径 螺距P 铸铁底孔 碳钢底孔 外螺纹光杆直径 M5 0.8 4.1 4.2 4.9 M24 3 20.8 21 23.7 M6 1 4.9 5 5.9 M27 3 23.8 24 26.7 M8 1.25 6.6 6.7 7.9 M30 3.5 26.3 26.5 29.6 M10 1.5 8.3 8.5 9.8 M33 3.5 29.3 29.5 32.6 M12 1.75 10.3 10.4 11.8 M36 4 31.7 32 35.5 M14 2 11.7 12 13.7 M42 4.5 37.2 37.5 41.5 M16 2 13.8 14 15.7 M48 5 42.5 43 47.5 M18 2.5 15.3 15.5 17.7 M56 5.5 50 50.5 55.5 M20 2.5 17.3 17.5 19.7 M64 6 57.5 58 63.5 3.2.米制普通内螺纹的加工底孔直径可用下式作近似计算:d=D-1.0825P,其中D为公称直径,P为螺距。

  • 塞子脱落的问题

    PDA试管培养基和生理盐水灭菌后,当打开锅盖后,发现很多的硅胶塞(棉塞)已经脱落了,请问大家是怎么回事啊,以前从来没有过,但是这一周开始每天都有锥形瓶的塞子脱落

  • 螺纹及轮廓综合测量机测量螺纹环塞规的应用

    [b][color=#3366ff]SJ5300螺纹及轮廓综合测量机[/color][/b]为全自动测量,操作者只需装好被测螺纹,在检测软件上选择被测螺纹的标准和输入被测螺纹的规格、检测量程等参数后,点击“开始”按钮,系统立即进行全自动检测,系统可以实时显示螺纹轮廓的牙型曲线图,自动计算出大径、中径、小径、螺距、牙型角等各项螺纹参数,并根据系统内置的螺纹标准数据库对被测件螺纹的各项参数进行合格判定,整个测量过程不超过2分钟,检测结束后自动生成测量结果。[align=center][img=,690,466]http://ng1.17img.cn/bbsfiles/images/2017/05/201705021640_01_3712_3.jpg[/img][/align]  轮廓扫描功能模块同样为全自动测量,在轮廓扫描模式下,操作者只需选择扫描范围,装好被测零件,点击“开始”按钮,系统立即进行全自动检测,系统可以实时显示扫描轮廓的曲线图,通过计算,用户可以获得轮廓的尺寸、形位公差等参数的结果。用户完成所有参数的评定后,即可进行测量报告打印。系统带有数据库,所有评定参数都可以保存。1、 全自动检测螺纹综合参数测量中无需人工干预和计算,2分钟内即可完成所有被测参数的扫描测量,并显示所有测量结果,自动生成检测报告,大大简化了操作人员的工作强度,提高了测量效率和测量质量与精度。1) 客户选好螺纹类型、输入相关检测信息,点击“开始”后,计算机自动控制高精度伺服电机精确驱动测针与被测螺纹接触扫描,不需人工干预。 2) 高精度光栅测量系统自动记录扫描过程中的坐标变化,由计算机自动计算螺纹相关参数,自动形成分析图表。3) 检测软件自动生成检测报告。[align=center][img=,348,348]http://ng1.17img.cn/bbsfiles/images/2017/05/201705021641_01_3712_3.jpg[/img][/align]2、 单项、双向扫描轮廓功能能对物体的轮廓、二维尺寸、二维位移进行测试与检验,直接描绘出表面轮廓曲线的形状,对测量得到的零件轮廓形状数据可进行尺寸、形位公差等参数计算,测量速度快、结果可靠、操作方便。一机二用,大幅提高了仪器的性价比。3、 高精度、高稳定性、高重复性采用六大技术措施,保证仪器的高精度、高稳定性、高重复性。1) 领先的高速多路、高精度细分光栅系统:引进国际领先的高精度光栅测量系统,采用2000倍数字化细分算法和FPGA高速并行采样,实现分辨力达到0.01um和同时高速采样、处理多路光栅,完全满足被测件测量精度要求。同时设计非接触式光栅采集系统,彻底消除连接和传动带来的误差,精度更高,系统更灵敏、更可靠。2) 精确测力控制系统:精确控制的测力调节系统,实现扫描针对螺纹轮廓稳定、可靠的接触扫描测量,降低测力变化引起的测量误差。测力仅同类仪器的一半,甚至四分之一,提高了扫描针的耐用性(寿命超过1万多次),避免量规划伤。3) 高精度气浮导轨系统:掌握无磨损、超低摩擦力的高精度气浮导轨系统的核心制造工艺,保证导轨稳定、可靠地工作。4) 关键部件的特殊制作:进口特殊材料制作的高刚性、无变形测杆和刚性强、耐磨性好的扫描针,保证螺纹数据的真实采集。5) 精巧平衡臂技术:消除导轨的摆动,保证扫描时坐标系统的正交稳定性,奠定高精度测量的基础。6) 精密机械设计经验及加工、装配能力:公司拥有10多年的精密仪器设计制造经验,以及一批有丰富精密仪器设计制造经验的研发工程师和一批熟练的精密加工、装配技师,同时配有先进的检测、加工设备,保证制造工艺精良,进一步保证高精度、高稳定性。4、 SmartTouch智能扫描技术(专利一)  通过实时测力控制装置和智能测力传感装置有效解决测针磨损、大坡度螺纹不能直接扫描等问题。实时测力控制装置实现实时测力0.1~10gf可调,实现测力的精确控制。智能测力传感装置精度达到0.1gf,可以有效地保护测针。采用SmartTouch智能探针技术达到的突破性效果是:1) 突破性实现大幅提升爬坡能力。新型仪器测力只需3gf(甚至更小,1~2gf),即还不到一代仪器的一半,是进口仪器的四分之一(IAC仪器14gf)。通过微小测力,精细测力控制,实现扫描上坡85°,下坡87°。该新型技术是实现梯形螺纹、偏梯形螺纹、锯齿形螺纹等螺纹精确测量的基础,是一次突破性实现。2) 真正恒力扫描。实现保持任意位置、任意斜面为相同接触力,提高测量精度。3) 高效解决针尖磨损。实现实时监测测针受力,有效保护测针,突破性解决针尖磨损问题,测针基本不磨损。通过实时监测测力,设计智能障碍规避能力,更有效保护测针。4) 智能变速扫描。根据不同牙型,采取智能变速扫描,实现任意表面上的数据分布均匀,使分析算法更可靠。5、 简便、人性化设计螺纹装夹方便快捷,无需复杂调整过程,无需记录数据,仪器操作界面友好,操作者几分钟内即可基本掌握仪器操作,使用十分简便。1) 10多年积累的实用计量检测软件设计经验,向客户提供简洁、实用、快速的操作体验。2) 集成众多螺纹标准、规程,功能强大、自动处理数据、打印各种格式的检测报告,自动显示、打印、保存、查询测量记录。3) 测量范围广,可满足绝大多数螺纹类型的综合参数测量。4) 纯中文操作软件系统,更好的为国内用户服务。5) 打印格式正规、美观。测量数据可存档,或集中打印,不占用检测操作时间。6) 本仪器采用计算机大容量数据库储存,可自动记录保存所有测量结果。

  • 【讨论】关于丁基胶塞穿刺落屑方法讨论

    大家讨论下关于胶塞穿刺落屑的相关疑问。我在做穿刺落屑的时候,已知穿刺落屑数胶塞是由做第一批时同行2组或4组做一批产品,看看落屑数一致则认为落屑数准确。不知道大家对于已知穿刺落屑数胶塞是怎么来的?

  • 【求助】螺纹塞规检定规程

    螺纹塞规检定规程、、深度尺检定规程、今天我经理让我查找这些资料,请大哥哥大姐姐们帮帮忙``谢谢啦``[em0713] [em0713] [em0713]

  • 【分享】内燃机缸套-活塞环摩擦副是一个典型的摩擦学系统,

    内燃机缸套-活塞环摩擦副是一个典型的摩擦学系统,其中含有多种类型的摩擦和磨损,润滑、摩擦、磨损的相互作用十分显著。其摩擦学性能对提高内燃机的可靠性和耐久性,保证内燃机经济、可靠地工作具有决定性的作用。其摩擦学问题的研究一直是人们关注的热点之一。  关键词:内燃机 缸套 活塞环 摩擦学研究  内燃机中缸套-活塞环摩擦副对内燃机工作性能(动力性、经济性以及稳定性等)和使用寿命有着举足轻重的影响。如何控制好这对摩擦副的摩擦学行为是人们魂系梦牵的事情。由于缸套-活塞环摩擦副的工作条件十分苛刻,经常处于高温、高压和高冲击负荷工作状态。为了解决好这对摩擦副的润滑和抗磨问题,国内外许多汽车工程技术人员,长期以来孜孜以求地投入了大量的研究工作,至今仍在探索。1 缸套-活塞环摩擦学理论研究概述  从缸套-活塞环研究的历史上看,早期对缸套-活塞环的摩擦学研究主要是求内燃机的摩擦功耗,自Stanton,T.E.1925年发表第一个摩擦力研究结果以来,人们围绕着缸套-活塞环的摩擦及润滑问题做了许多工作,Rogowki,A.R.指出活塞连杆系统的摩擦功耗可占到整个内燃机机械损失的75%,而缸套-活塞环的摩擦功耗又占活塞连杆系统的75%,Ricardo,H.的研究表明当内燃机以1600r/min转速运转时,活塞连杆系统的损失占机械损失的58%,并指出“对所有内燃机来说,活塞连杆系统的摩擦功耗是机械损耗的最大组成部分,但又是最难准确地定量描述的部分。”最早在点火内燃机上进行摩擦力测量的是美国麻省理工学院的学者们,他们通过研究得出了摩擦力随气体压力升高略有增加的结论。Farobarros,A.T Dyson,A.研究了不同粘度润滑油对摩擦力的影响以及在混合润滑区内减摩添加剂的作用。Wakuri,Y.等人通过对摩擦力的测量和分析,指出贫油对摩擦力有巨大的影响,同时还探讨了环组中活塞环的数目对摩擦力的影响以及缸套-活塞环间油膜厚度随润滑油粘度的变化。Furuhama,s.等人在缸套-活塞环摩擦学特性研究作出了巨大的贡献,他们于70年代末期研制的可动缸测量摩擦力装置,有效地克服了惯性力、气体压力等因素的影响,测得了在整个内燃机工作循环中的摩擦力变化过程,提出了内燃机载荷主要由流体润滑膜承担,而摩擦力主要受混合润滑区域影响的论断,这一点已被后来进一步的理论研究所证实。  Riches,M.F.等人侧重于混合润滑效应,从理论和实验两方面对缸套-活塞环间的摩擦力进行了研究,指出在低速及低粘条件下充分考虑混合润滑作用的重要性。活塞环的摩擦影响着内燃机的效率,而缸套-活塞环的磨损则影响着它们的使用寿命,近年来,对高性能内燃机提出要求之一就是延长不解体检测的运行时间。为此,减少缸套-活塞环的磨损就成了首要的任务。缸套-活塞环的磨损是非常复杂的,它受到许多因素的影响,同时其磨损又包含粘着磨损、磨粒磨损、腐蚀磨损等多种磨损形式。针对这种情况,Nealc,M.J.经过广泛调查,于1970年发表文章阐述了缸套-活塞环一般的磨损机理,提出了一些改善措施,指出了需要加强研究的问题。基于Archard,J.F.磨损定律,Ting,L.L.等人提出了一种分析缸套-活塞环磨损的模型,分别计算了缸套上推力面和次推力面的磨损,得出了缸套磨损曲线。国内的桂长林教授也提出了一种将Archard,J.F.模型用于机械零件磨损设计的算法,并重点分析了缸套-活塞环的磨损问题。该文指出了缸套-活塞环的磨损问题的研究成效不显著的原因,主要是在设计上没有建立起一个可以预测缸套-活塞环耐磨寿命的计算模型和计算方法。Baker,A.J.S.等人探讨了影响活塞环擦伤的动力学因素,提出了一种用无量纲临界功能法分析内燃机活塞环工况的方法,此外还探讨了载荷因素对缸套磨损的影响,并对磨损进行了测量。此外,孔凌嘉较全面地讨论了缸套-活塞环的磨损问题,并第一次把磨损和润滑放在一个模型中加以研究,并考察了它们之间的偶合关系,建立了一个同时考虑边界润滑条件下的磨损与三体磨粒磨损的综合分析模型,对磨粒尺寸、磨粒浓度对磨损的影响做了定量的计算。刘琨以内燃机活塞系统为研究对象,较系统地研究了缸套-活塞环、缸套-活塞裙部的摩擦学特性,为进行高性能的内燃机活塞系统设计提供了理论基础。桂长林等人从缸套的磨合、耐磨性、摩擦功耗和机油消耗诸方面对设计上需要确定的表面形貌进行了探讨,给出一些参数组合。缸套-活塞环间的磨损在上、下止(死)点处最大,尽管在冲程中部是流体润滑,但也是磨损存在,这就为磨损提出了新课题,促进人们进一步的研究。润滑是降低摩擦、减少磨损的重要途径,因此缸套-活塞环的润滑也是长期以来人们所致力研究的领域。Castleman,R.A.假定在冲程中部具有典型的载荷和速度,最先对缸套-活塞环流体润滑进行了计算,证实了表面外凸的活塞环可以与缸套间产生足够厚的油膜。后来人们又发现,在分析和求解油膜厚度时,必须考虑挤压效应,这样才能在整个循环中求解。分析表明,活塞环的曲率半径是影响油膜形成的关键因素。在上、下止点处为了保证挤压效应,则活塞环应有较大的曲率半径,而在冲程中部为了保证动压效应,则希望曲率半径小。因此,设计时应综合考虑。在这个阶段,缸套-活塞环的润滑分析是采用简化了的Reynolds方程]。

  • 【求助】石墨压环怎么从螺母中取出

    我用的是岛津QP2010[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]气质联用[/color][/url],在换柱子时发现,螺母根本就取不下来,可能我当时在安装时,用的劲太大了,后来我截柱子,把螺母弄了下来,可压环是怎么也去不出来,请问大家都是怎么弄的

  • 泊洛沙姆188复合聚L-乳酸电纺纤维对多西他赛的增溶及缓释作用

    【序号】:4【作者】:王瑛颖1董欣1孙丽敏【题名】:泊洛沙姆188复合聚L-乳酸电纺纤维对多西他赛的增溶及缓释作用【期刊】:中国医药工业杂志. 【年、卷、期、起止页码】:2022,53(02)【全文链接】:https://kns.cnki.net/kcms2/article/abstract?v=6xaVI2TORM3ARoBbYX9nngoMpvlw1VqfA-oFcpXHubrWGNZ40V3cmqgvRAS_oiJ-IRA42P49jaW3IFxS7Yem-70qpxaC1m5ptFSo27CmNGz50JFq6qUfhxBOV7lmDI8VRUkSKg_CxkATp5EmNIeQ2w==&uniplatform=NZKPT&language=CHS

  • 【求助】柱螺母堵塞的解决办法

    有人遇到石墨垫在柱螺母上取不下来吗?我换柱螺母时发现石墨垫弄不掉,且石墨垫用时间长也堵了,哪位高手有办法,将石墨垫破坏也行,但我弄不净.手头没有合适工具,紧急求助[em0708]

  • 谁知道有气密性好的具塞螺旋管吗?

    各位,我要测微藻中脂肪酸的组分和含量,所用的甲酯化方法如下:称取50mg藻粉于10ml具塞玻璃管中,1mg/ml十七酸作为内标,加0.5ml,向装有螺旋藻藻粉的具塞玻璃管中加入2mL 2%H2SO4•MeOH溶液,向玻璃管中充N2,使N2充满整个玻璃管,在涡旋混合器上混匀,置于80℃水浴70min,待其冷却后,用正己烷提取,黄色的正己烷层即可用来进行GC/MS分析。但在水浴过程中,有些管中的溶剂都挥发了,怀疑是玻璃管的气密性不好,我用的是CNW的8ml Tread screw neck vial想请大家帮帮忙,想想办法。

  • 缓冲液对柱塞杆的影响有多大

    我碰到过很多仪器刚用没多久就漏液了,后发现柱塞杆被划伤了,应该是缓冲盐结晶所致。看来缓冲盐对柱塞杆影响和破坏较大,使用过程中一定得多注意,以防这个小小的疏忽给我们的实验带来不必要的麻烦。

  • 接检测器的螺母经常换吗?

    色谱柱接进样口、检测器的螺母,用的时间长了,穿柱子端的小孔会变大,加入石墨垫后,会漏气,这时需要购买新的螺母,螺母用经常换吗?

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制