当前位置: 仪器信息网 > 行业主题 > >

八氢嘧啶并

仪器信息网八氢嘧啶并专题为您提供2024年最新八氢嘧啶并价格报价、厂家品牌的相关信息, 包括八氢嘧啶并参数、型号等,不管是国产,还是进口品牌的八氢嘧啶并您都可以在这里找到。 除此之外,仪器信息网还免费为您整合八氢嘧啶并相关的耗材配件、试剂标物,还有八氢嘧啶并相关的最新资讯、资料,以及八氢嘧啶并相关的解决方案。

八氢嘧啶并相关的资讯

  • 岛津水产品中三甲氧苄氨嘧啶残留的LCMSMS检测方案
    三甲氧苄氨嘧啶(TMP),是一种磺胺增效剂。常与多种抗生素合用,也可产生协同作用,增强疗效,可以成倍增加部分抗菌药的疗效。抗菌谱与磺胺药基本类似,但抗菌作用弱,且易产生耐药性。和磺胺类、四环素、青霉素、红霉素、庆大霉素、粘菌素等合用可以增强抗菌作用。 目前我国对磺胺类及其增效剂的使用有比较明确的规定。农业部NY 5034 - 2005中规定禽肉类产品中磺胺类总量不得超过100 &mu g/kg NY5070 - 2002 中规定磺胺类在水产品中总量不得超过100 &mu g/kg, 增效剂磺胺三甲氧苄氨嘧啶限量不得超过50 &mu g/kg 。日本肯定列表中将动物源性食品的最低限量定为20 &mu g/kg。《SN/T 2538-2010进出口动物源性食品中二甲氧苄氨嘧啶,三甲氧苄氨嘧啶和二甲氧甲基苄氨嘧啶残留量的检测方法液相色谱质谱/质谱法》规定,三甲氧苄氨嘧啶的检测低限为5.0 &mu g/kg。 本方案建立了一种使用岛津超高效液相色谱仪LC-30A和三重四极杆质谱仪LCMS-8040联用快速测定水产品中三甲氧苄氨嘧啶的方法,供检测人员参考。水产品经处理后,用超高效液相色谱LC-30A分离,三重四极杆质谱仪LCMS-8040进行分析。三甲氧苄氨嘧啶在0.1-100 µ g/L浓度范围内线性良好,标准曲线的相关系数为0.9993;对1 µ g/L、5 µ g/L和10 µ g/L三甲氧苄氨嘧啶标准溶液进行精密度实验,连续6次进样保留时间和峰面积相对标准偏差分别在0.31%和3.95%以下,系统精密度良好。 岛津三重四极杆质谱仪系列 了解详情,请点击《超高效液相色谱三重四极杆质谱联用法测定水产品中的三甲氧苄氨嘧啶残留》。 关于岛津 岛津企业管理(中国)有限公司是(株)岛津制作所为扩大中国事业的规模,于1999年100%出资,在中国设立的现地法人公司。 目前,岛津企业管理(中国)有限公司在中国全境拥有13个分公司,事业规模正在不断扩大。其下设有北京、上海、广州、沈阳、成都分析中心;覆盖全国30个省的销售代理商网络;60多个技术服务站,构筑起为广大用户提供良好服务的完整体系。 岛津作为全球化的生产基地,已构筑起了不仅面向中国客户,同时也面向全世界的产品生产、供应体系,并力图构建起一个符合中国市场要求的产品生产体制。 以&ldquo 为了人类和地球的健康&rdquo 为目标,岛津人将始终致力于为用户提供更加先进的产品和更加满意的服务。 更多信息请关注岛津公司网站www.shimadzu.com.cn/an/ 。
  • 特一药业:磺胺嘧啶片国内首家通过一致性评价
    近日,特一药业集团对外公告,抗菌药物磺胺嘧啶片获得国家药品监督管理局核准签发的《药品补充申请批准通知书》。药品通过仿制药质量和疗效一致性评价,为该品种药物首家过评的企业。该药品为白色或微黄色药片,主要成分为磺胺嘧啶,分子式为C10H10N4O2S。在乙醇或丙酮中微溶,在水中几乎不溶;在氢氧化钠试液或氨试液中易溶,在稀盐酸中溶解。属广谱抗菌药,但由于目前许多临床常见病原菌对该类药物耐药故仅用于敏感细菌及其他敏感病原微生物所致的感染。该药可以用于敏感细菌及其他敏感病原微生物引起的下列感染:1、敏感脑膜炎球菌所致的流行性脑脊髓膜炎的治疗和预防。2、与甲氧苄啶合用可治疗对其敏感的流感嗜血杆菌、肺炎链球菌和其他链球菌所致的中耳炎及皮肤软组织等感染。3、星形奴卡菌病。4、对氯喹耐药的恶性疟疾治疗的辅助用药。5、治疗由沙眼衣原体所致的宫颈炎和尿道炎的次选药物。6、治疗由沙眼衣原体所致的新生儿包涵体结膜炎的次选药物。
  • Nature子刊:何川团队开发超快速精准检测微量DNA与RNA中5-甲基胞嘧啶的新方法
    DNA中的5-甲基胞嘧啶(5mC)是生物学领域基本的表观遗传标记,对调节基因表达至关重要。5mC不仅是多个生物学领域的研究重点,而且在临床上,5mC的异常甲基化模式与包括癌症在内的多种疾病的发生发展密切相关,为疾病的早期诊断和监测提供了有效的生物标志物。对5mC位点的精准检测对基础研究和疾病检测的准确性至关重要。尽管亚硫酸氢盐测序(BS-seq)技术在基础研究和临床上应用广泛,但目前用于5mC检测的常规BS-seq方法有明显缺陷:1)反应时间长,限制了其在临床上的快速检测。2)在高GC DNA区域或高度结构化的DNA(例如线粒体DNA),C到U的转化不完全,导致高背景和假阳性。3)DNA降解严重,对微量的样品如cell-free DNA(cfDNA)的检测带来挑战。4)常规BS处理造成非甲基化的区域优先降解,使得甲基化水平被高估。在临床上能用小量样品进行快速而准确地检测5mC一直是DNA表观遗传领域的一项挑战。而用于RNA m5C 检测的BS-seq同样困难重重。RNA的降解问题尤其严重。RNA的二级结构或稳定的RNA(比如tRNA)导致严重的高背景和假阳性。目前还缺乏准确有效的检测m5C的方法。2024年1月2日,芝加哥大学何川团队在 Nature Biotechnology 期刊发表了题为:Ultrafast bisulfite sequencing detection of 5-methylcytosine in DNA and RNA 的研究论文。该研究开发出了对微量DNA和RNA上的5-甲基胞嘧啶修饰进行快速,准确检测的测序方法——Ultrafast Bisulfite Sequencing(简称为UBS-seq)。何川课题组的戴庆博士根据BS-seq的机理以及由于BS反应而造成的DNA降解机制,发现用亚硫酸氢铵盐代替钠盐可以大大提高BS的效率,C能够在几分钟内完全转化为U而5mC保持不变(图1a),并且由于反应的时间大为缩短,DNA的降解也显著降低(图1b)。UBS-seq测序背景噪音比常规BS-seq降低10倍以上,并且UBS-seq整体转化效率更加一致(图1d)。图1:UBS-seq在DNA样品上的的转化效率UBS-seq不仅可以用于微量mESC基因组的测序,还可用于极少量细胞样品,甚至单细胞,在背景噪音和假阳性等方面要比常规BS-seq低得多。研究团队进一步应用UBS-seq来比对早期结直肠癌病人组和对照组的血液中提取的cfDNA 样品,发现明显的甲基化区别。这些结果显示UBS-seq在寻找5mC作为疾病的早期诊断的指标方面具有广泛的应用前景。另外,由于具有快速且能减少DNA的降解而特别适用于小量样品的特点,UBS-seq在从少量样品中检测已知的5mC疾病指标,以及在临床快速诊断和手术中的实时决策方面,具有独特的优势和应用前景。除了快速准确检测DNA中的5mC外,UBS-seq也可以用于快速准确检测RNA中的m5C。m5C广泛存在于多种类型的RNA中,影响细胞功能,并在多种癌症中发挥重要作用。然而,由于缺乏灵敏、准确的定量测序方法,m5C在不同RNA类型上的位置及化学计量一直有争论。与DNA中的5mC相比,mRNA中m5C的修饰位点以及修饰水平要低得多,因此如何避免常规 BS-seq中所产生的假阳性,降低RNA降解从而精准地检测到m5C位点并定量其修饰比例,一直是 RNA BS-seq 的主要挑战。研究人员进一步优化了UBS-seq 的配方,发现在98度下加热9分钟后,rRNA上所有的C位点的未转化率(背景噪音)仅有1%,而两个已知的m5C位点的未转化率(阳性信号)高达95%(图2a)。UBS-seq在rRNA样品上的准确性大大优于几种已发表的m5C BS-seq 方法(图2b)。随后研究团队将UBS-seq应用于具有复杂二级结构的tRNA,检测并且观察到NSUN2修饰位点的修饰比例能响应NSUN2基因的敲除(图2c),进一步验证了BS-seq的有效性和准确性。研究人员用UBS-seq对HeLa和HEK293T的mRNA进行了测序,发现了近两千多具有保守序列模式的位点(图2d)。随着NSUN2基因敲除,绝大多数m5C位点的修饰比例下降(图2e)。当把NSUN2的基因再转入敲除的细胞后,m5C位点的修饰比例又回升了(图2f)。这些结果证明了m5C UBS-seq 方法不仅非常灵敏高效,而且非常准确。为研究m5C的生物功能提供了有力的工具。图2:UBS-seq在RNA样品上的的转化效率,以及不同类型RNA上m5C位点的检测何川教授的团队近年来相继开发出了SAC-seq用于定量检测m6A,BID-seq用于定量检测等测序新方法,极大的促进了表观转录学领域的发展。随着UBS-seq的发表,将会进一步促进m5C的生物功能的研究,并和SAC-seq,BID-seq一起引领RNA表观转录组领域步入新的阶段。
  • 安捷伦科技公司推出首款针适用于疾病研究的 DNA 甲基化靶向序列捕获产品
    安捷伦科技公司推出首款针适用于疾病研究的DNA甲基化靶向序列捕获产品 2012 年 2 月 14 日,佛罗里达州马科岛(基因组生物学和技术,AGBT)- 安捷伦科技公司(纽约证交所:A)推出其靶向序列捕获平台的新成员,SureSelect XT 人甲基化测序系统,适用于表观遗传学研究中 DNA 甲基化位点检测。这是市场上第一款采用靶向序列捕获技术的全面 DNA 甲基化发现系统。安捷伦将于明日在基因组生物学技术进展年会上揭晓该产品的技术细节。 Agilent SureSelect XT 甲基化测序系统基于液相杂交,是可以分析人类基因组中低甲基化与过度甲基化的胞嘧啶位点的独特研究工具。亚硫酸盐测序技术是 DNA 甲基化研究的黄金标准,也是第一种可以全面研究DNA 甲基化的发现系统。Agilent SureSelect XT 甲基化测序系统将市场领先的靶向序列捕获平台 SureSelect 与亚硫酸盐测序结合在一起,挑选了与表观遗传学研究最相关的基因组序列,包含了与多种疾病(例如,癌症、基因组印记疾病、行为和精神障碍等等)相关的区域,实现了前所未有的序列覆盖范围。 &ldquo DNA 甲基化是重要的表观遗传学特征之一。&rdquo 华盛顿大学西北参考表观基因组图谱中心主任 John Stamatoyannopoulos 说,&ldquo 如果拥有一种经济实惠的可以在亚硫酸盐测序过程中智能地检测数百万 CpG 的平台,那么将大大降低成本并大幅扩展基因组规模 DNA 甲基化分析的范围和适用性。&rdquo &ldquo Agilent SureSelect XT 甲基化测序系统涵盖了所有基因组中癌症研究领域关注的甲基化胞嘧啶位点,投入产出比相当好。&rdquo 马克斯普朗克分子遗传学研究所 Michal-Ruth Schweider 医学博士说道。 &ldquo 我们很高兴能为用户提供这种新工具来满足医学界日益增加的需求。&rdquo 安捷伦副总裁基因组学总经理 Robert Schueren 说道。&ldquo 由于异常甲基化是可逆的,因此这种分析方法非常有利于开发新的治疗方法。&rdquo Agilent SureSelect XT 甲基化测序系统使研究人员能够分析超过 370 万个CpG 核苷酸序列位点,研究它们的甲基化状态。该系统针对启动子、经典 的CpG 岛以及最近被关注的位于CpG 岛上下游 2kb范围内的&ldquo shores&rdquo 和&ldquo shelves&rdquo 区域设计。研究表明,许多甲基化变化并不发生在启动子或 CpG 岛,而是发生在 CpG 岛上下游2kb 范围内,也就是 CpG 岛shores区域。除上述区域外,Agilent SureSelect XT 甲基化测序系统的设计还包含了已知的差异性甲基化区域。 与全基因组亚硫酸盐测序相比,Agilent SureSelect XT 甲基化测序系统具有更高的通量和更低的成本。它可以识别限制性内切酶或免疫沉淀法不能检测的区域。因为该产品也属于SureSelect XT 产品系列,安捷伦为用户提供全套工作流程解决方案。并配有适用于文库构建和靶序列捕获的所有必备试剂。 要了解更多信息,请访问 www.agilent.com/genomics/ngs。 关于安捷伦科技 安捷伦科技公司(纽约证交所:A)是全球领先的测量公司,同时也是化学分析、生命科学、电子和通信领域的技术领导者。公司的 18,700 名员工为 100 多个国家的客户提供服务。在 2011 财政年度,安捷伦的业务净收入为 66 亿美元。要了解安捷伦科技的信息,请访问:www.agilent.com.cn
  • PALL蛋白纯化填料试用申请活动即将开始
    PALL蛋白纯化填料试用申请活动即将开始 蛋白纯化新选择: 多一次尝试,多一种选择,不同的结果。 PALL蛋白纯化填料试用申请活动即将开始 申请有效期2011年5月4号-2011年6月4号 您是否为蛋白纯化结果不理想而烦恼? 试试PALL的层析填料吧,提供与传统填料不同的层析选择性! 你是否为蛋白纯化过程耗时而烦恼? 试试PALL的高流速层析填料吧,满足您在高流速下高结合性的要求。 您是否为填料的载量不高而烦恼? 试试PALL的Q/S HyperCel 层析填料吧,结合载量大于134-190mg/ml(BSA) 您是否为抗体纯化费时、费经费而烦恼? 试试PALL的MEP HyperCel层析填料吧,单抗纯化步骤,经济而简单 众多填料如何选择?请参考选择推荐。 MEP HyperCel、HEA HyperCel、PPA HyperCel: 混合模式层析填料:能替代传统的疏水层析模式,支持在低盐或者无盐状态下上样,洗脱PH更温和,最大限度保留蛋白生物活性的同时简化下游纯化流程。 MEP HyperCel 同时含亲和层析模式,替代传统的Protein A 亲和层析,优势: 无需调整料液,直接上样:直接从各种培养系统中捕获蛋白。省去微滤、超滤浓缩的步骤。 支持低浓度捕获,即使单抗浓度为50μg IgG/mL也能高效捕获。省掉浓缩的步骤。 温和的条件下洗脱:IgG一般在pH 5.5 to 4.0 的范围洗脱。 有效降低多聚体,同时去除DNA和HCP。 价格更经济。 Ceramic HyperD 系列: 如果您追求超高流速下高结合能力,Ceramic HyperD绝对是首选,在满足高流速下,同样拥有高分辨率。 CM Ceramic HyperD:在具备高流速下的高结合能力外,同时能接受180mM的盐浓度下上样,简化了上样流程,上样前无需脱盐操作。 推荐Ceramic HyperD 混合包装,货号:IEXVP-C001。内含四种1ml预装柱,DEAE、CM、S、Q 任您选择不同的离子交换。(不参加试用活动)。 此次参与试用申请的填料还有Protein A 亲和层析填料,IMAC HyperCel 亲和纯化His标签填料等,如需更多的具体性能的资料,请登录PALL的网站http://www.pall.com/查询。 样品申请货号及数量可见下表,详情请下载产品试用清单(附件一) 层析类型 货号 产品描述 配基 应用 可申请 总数 混合模式(离子交换;疏水层析;亲和层析) 12035-C001 ACROSEP MEP HYPERCEL,1ml 预装柱 甲基嘧啶 ●直接捕获多种不同类型、压型和种属的多抗和单抗; ●酶和重组蛋白; ●重组抗体片段; ●从多聚体中分离单抗单体; ●低盐浓缩物中蛋白的直接捕获 5支 20250-C001 ACROSEP HEA HYPERCEL, 1ml 预装柱 乙胺基 5支 20260-C001 ACROSEP PPA HYPERCEL,1ml 预装柱 苯基 5支 12035-069 MEP HyperCel 5mL, 瓶装 甲基嘧啶 3瓶 20250-012 HEA HyperCel 5mL,瓶装 乙胺基 3瓶 20260-015 PPA HyperCel 5mL,瓶装 苯基 3瓶 24775-075 HA Ultrogel 5mL 羟基磷灰石 交联的琼脂糖和羟基磷灰石 ●免疫球蛋白; ●糖蛋白; ●疫苗 2瓶 亲和层析 20078-C001 ACROSEP PROTEIN A HYPE 1ml 预装柱 重组蛋白A ●免疫球蛋白; ●MAbs 5支 20078-036 Protein A Ceramic HyperD F 5mL瓶装 2瓶 20093-C001 ACROSEP IMAC HYPERCEL 1ml 预装柱 亚胺-乙酰乙酸(IDA) ●His-tag重组蛋白 5支 20093-069 IMAC HyperCel 5mL,瓶装 3瓶 离子交换 20050-C001 ACROSEP CM Ceramic HyperD F,1ml 预装柱 羧甲基(CM) ●重组蛋白; ●质粒纯化; ●蛋白,疫苗; ●Mabs; ●捕获阶段; ●免疫球蛋白纯化 2支 20050-084 CM Ceramic HyperD F,5mL 瓶装 2瓶 20062-C001 ACROSEP S Ceramic HyperD F;1ml 预装柱 磺酸基(S) 2支 PRC05X050SHCEL01 PRC05X050 S HCEL01,1ml 预装柱(工业放大推荐) 2支 20195-013 S Hypercel 5ml瓶装 3瓶 20066-C001 ACROSEP Q Ceramic HyperD F 1ml 预装柱 季氨基(Q) 2支 20196-012 Q Hypercel 5ml 瓶装 3瓶 PRC05X050QHC001 PRC05X050 QHCEL01,1ml 预装柱 2支 20067-C001 ACROSEP DEAE Ceramic HyperD F 1ml 预装柱 二乙基氨基乙基(DEAE) 2支 20067-070 DEAE Ceramic HyperD F 5mL 瓶装 2瓶 申请方式:网上申请 下载并完整的填写产品试验申请单(附件二),Email到Jessie_Jing_Chen@ap.pall.com 经过审核后(完整的填写能方便您拿到样品),送出样品. 6月10号公布配送单号。 配送方式:送货上门或.邮寄 配送时间:2011年6月13号-6月17号 申请要求:1.限高校、科研单位实验室客户;数量有限,每个实验室限申请一种填料。 2.申请的客户承诺开始试用后两个月内,给PALL公司提供使用反馈情况 颇尔公司保留对该活动的解释权。
  • 全国生命分析化学研讨会召开 八院士齐聚
    第三届全国生命分析化学学术报告与研讨会在京召开   仪器信息网讯 为进一步促进我国生命分析化学研究的发展,加深学者之间的交流,强化学科交叉,由国家自然科学基金委员会化学科学部主办,北京大学、清华大学和中国科学院化学研究所共同承办的“第三届全国生命分析化学学术报告与研讨会”于2010年8月20日在北京大学召开。 会议现场   在大会开幕式上,大会组织者北京大学刘虎威教授首先向与会者介绍了会议的筹办情况,本次大会共收到投稿论文840余篇,报名参会人数超过1200人,会议规模超过以往。大会得到了安捷伦科技、赛默飞世尔科技、岛津、沃特世、大连依利特等多家国内外著名仪器厂商的赞助。 刘虎威教授  会议由国家自然科学基金委化学部庄乾坤教授致开幕词,他表示,与前两届会议的举办宗旨一致,本次会议仍然以自由研讨的形式,让思想撞击出火花,使创造力突涌,集小智为大智,化零散为整体,逐渐形成我国生命分析化学研究的独特战略发展思路,壮大具有特殊战斗力的我国生命分析化学研究队伍,开创生动活泼的生命分析化学研究新局面。 庄乾坤教授致开幕词   我国生命分析化学领域的八位著名院士出席了开幕式并分别作了重要的大会报告。北京大学庄乾坤教授和邵元华教授主持了院士论坛环节。 邵元华教授主持院士论坛环节   报告题目:生命活体分析-核成像技术   报告人:中国科学院柴之芳院士   柴之芳院士表示,核成像技术就是研究生命活动的有力武器之一。用于生命成像研究的核方法包括单光子发射计算机断层扫描技术(Single Photon Emission Computerized Tomography, SPECT), 正电子发射计算机断层扫描技术(Positron Emission Tomography, PET), 基于x射线发射的成像技术,以及基于同步辐射的x射线成像技术等。   柴之芳院士在报告中重点叙述了以PET为代表的核成像技术的特点和功能,并结合中科院高能所的一些研究成果,选择性地介绍核成像技术的应用领域和最新进展。   报告题目:细胞图案化、计数及其区分的研究   报告人:中国科学院陈洪渊院士   近年来,活体细胞固定化的研究,在涉及生命科学的诸多领域都受到极大关注,诸如系统生物学、生化分析、毒理监测、临床诊断和公共卫生等等。在电化学传感器、微流控技术及细胞图案化等研究领域,构建各种利于细胞粘附的生物界面用于完整活体细胞的研究巳成为当今的研究热点。   陈洪渊院士在报告中介绍了其研究组在细胞图案化,细胞计数及其区分等方面的最新进展:(1)提出了一种利用化学镀金结合电化学刻蚀构造Au/PDMS图案基底以实现细胞图案化的新方法 此外,结合微流控体系在PDMS基底构建纳米银模板图案,成功地用于有效介导具有时空选择的细胞的固定。(2)基于PDMS-PDDA薄膜和APBA修饰的多壁碳管对细胞的固定作用,我们分别构建了两种细胞电化学传感器。(3)设计并研制成一种用于细胞计数及其区分的芯片装置。   报告题目:生物计算逻辑体系在生命分析化学中应用的前景   报告人:第三世界科学院董绍俊院士   以硅片为基础的计算机因其集成电路的密度已接近理论极限而妨碍发展。近期科学家们已开始利用DNA计算来创造生物计算机,DNA逻辑门作为DNA计算的基础同样受到了广泛关注。作为分析化学工作者,围绕当前科技发展,从学科交叉角度,不断研发出简单实用的DNA逻辑门,将是进行DNA计算以及未来DNA计算机的最根本前提。   董绍俊院士介绍到,其课题组利用适配体控制生物燃料电池的能量输出,制备出适配体逻辑控制(NAND逻辑门)的生物燃料电池,可作为自我供电的、智能的适配体逻辑传感器。它能逻辑确定样品中两种目标物是否同时存在。另一方面,将生物燃料电池和密码锁相结合,其课题组进一步制备了一种新的生物计算安全体系,它具有模拟密码锁的功能。其特点是,能自我供电,并且可重复利用。这项研究有利于模拟和设计自然信号的传导,新陈代谢和基因调控体系。   报告题目:持久性有机污染物(POPs)生物指示物的研究   报告人:中国科学院江桂斌院士   江桂斌院士在其报告中首先提出,过去 10 年间,随着仪器分析技术特别是色谱与质谱技术的进步,若干环境中的新型污染物(Emerging Chemical Contaminants)被分离和鉴定出来。这些污染物所导致的环境与健康问题已经引起了国际社会的广泛关注。由于新型污染物通常浓度较低、组分复杂,而且干扰物质较多,因此,对分析技术有更高的要求,发展高灵敏度和高选择性的分离分析方法是解决问题的主要出路。   近年来,江桂斌院士所在的课题组在新型污染物的筛选及识别技术方面已开展了一些工作,通过三种不同的技术途径筛选到一些新的污染物并开展了有关毒理学的前期研究:(1)基于化合物定量结构-物化性质相关模型(QSPRs) 对环境中新型PBT物质的鉴别。(2)基于质量平衡关系筛选和鉴别新型污染物。(3)生物效应引导的新型污染物识别方法。   江桂斌院士表示,其课题组通过将多维化学分析与毒性测定仪器相结合,已研制出用于EDA 的成组毒理学分析仪(Integrated Toxicology Analyzer),并建立了以发育神经毒性为检测终点,环境样品中溴代阻燃剂等复合有机污染物的毒性筛选及识别方法。   报告题目:DNA保护的荧光银纳米簇及其分析应用   报告人:中国科学院汪尔康院士   近十年来,科学家发现由几个到几十个贵金属原子构成的纳米簇表现出强的依赖于尺寸的荧光发射,并将其发展为一类新型的荧光物质。这些新型荧光团在很多研究领域如光学分析、单分子研究、纳米器件中都具有很大的应用潜力。   汪尔康院士向与会者汇报了其课题组在当前的工作中,发现一种单链寡聚核酸(dC12)保护的荧光银簇,其荧光可被Hg2+离子高选择和灵敏地淬灭。基于此,他们建立了一种简单高效的Hg2+离子检测方法,并尝试在杂交DNA双链里进行银簇合成,设计了包含有一个额外的胞嘧啶环的杂交双链DNA为合成模板进行荧光银纳米簇合成,发现荧光银纳米簇的形成对杂交DNA双链中胞嘧啶环附近碱基序列有高度依赖性,可以识别单碱基的差异,成功识别了一种典型的单碱基突变疾病-镰刀型细胞贫血症,联合PCR基因体外扩增方法,有望将其应用于实际样品检测。另外,汪尔康课题组还尝试利用银纳米簇作为荧光探针来研究DNA-药物的相互作用。以几种药物分子(包括抗癌药物、染色剂等)和DNA的相互作用为模型体系,对银纳米簇作为荧光探针在生物分析中的适用性进行了研究和验证。   报告题目:新仪器在生物传感领域的应用   报告人:中国科学院姚守拙院士   姚守拙院士向大家介绍了其实验组基于非质量响应液相压电传感理论和技术,开发了压电微生物传感器,用于血液、体液中微生物的快速培养和检测,旨在通过病原体的快速检出,促进临床的合理用药,延缓和控制耐药菌的产生。   此外,针对传统传感器有线有源的缺陷,根据磁致伸缩原理,其实验组研制出无线磁传感测定仪,应用于癌细胞和细菌生长等实时监控。   报告题目:DNA单碱基突变的压电与电化学检测   报告人:中国科学院俞汝勤院士   俞汝勤院士在报告中着重介绍了检测DNA单碱基突变的压电与电化学传感器设计。杂交与等位特异性探针的连接反应可在传感界面或在均匀溶液相中进行。在传感界面上修饰巯基标记的寡核苷酸捕获探针与目标基因突变位一侧互补,与另一侧互补的标记的寡核苷酸检测探针配合,以目标基因为模板,利用连接酶介导捕获探针与检测探针的连接反应,结合热变性处理,是实现目标基因的单碱基变异的区分的最基本途径。   用纳米金标记的检测探针或末端生物素化的检测探针将保留于传感器表面,直接提供质量变化信号或利用亲合素化的辣根过氧化物酶催化反应产生难溶沉淀,扩增质量变化信号。在均相溶液中进行杂交与连接则采用生物素标记的捕获探针,最终借生物亲和配合物的形成将检测探针导向压电传感界面。   采用电化学传感时,以二茂铁标记的寡核苷酸检测探针提供检测信号并设计使捕获探针与检测探针两端序列互补,连接的捕获探针与检测探针将形成分子信标(MB)发夹结构,有效提高二茂铁标记的电化学反应效率改善灵敏度。MB技术亦可直接用于单碱基突变电化学传感器设计。特别是在均相反应中综合运用DNA聚合酶与连接酶完成二步连接反应后,再在界面传感中采用MB技术进一步优化电化学检测。   报告题目:蛋白质组分离鉴定新技术新方法进展   报告人:中国科学院张玉奎院士   张玉奎院士在其报告中详细阐述了近年来发展的多种蛋白质组分离鉴定新技术新方法:   在高丰度蛋白质去除方面,发展了基于多维阵列液相色谱的通用型高丰度蛋白质去除技术 一次运行可去除58 种高丰度蛋白质,并将样品中蛋白质的鉴定数目提高2 倍以上。此外,还发展了基于蛋白质印迹材料的高丰度蛋白质选择性去除技术和基于蛋白质均衡器技术的降低蛋白质丰度分布范围的方法。利用上述策略,均显著提高了低丰度蛋白质的鉴定能力。   在低丰度蛋白质富集方面,研制了多种固载金属亲和色谱材料,包括无机有机杂化整体材料、聚合物颗粒和介孔材料,以及金属氧化物气溶胶和复合金属氧化物微球,实现了磷酸化肽的高选择性富集。此外,还研制了亲水材料和硼酸功能化材料,实现了糖肽的高选择性富集。   在多维多模式液相分离方面,研制了多种固定化酶反应器,实现了蛋白质组的在线快速酶解。研制了多种色谱柱和毛细管等电聚焦柱,提高了蛋白质和多肽分离的柱效和分辨率。建立了多维液相色谱、多维毛细管电泳和多维芯片毛细管电泳分离方法 通过与样品预处理或在线酶解的集成,不仅提高了系统的分析通量,而且提高了蛋白质鉴定的可靠性。   在质谱高灵敏度鉴定方面,合成了新型磁性微纳米材料,提高了基体辅助激光解吸离子化质谱对蛋白质鉴定灵敏度。发展了针对磷酸化肽的衍生技术,可不经过富集,直接实现磷酸化肽的高灵敏度鉴定。此外,还建立了多种质谱数据处理新方法。   除八名院士作大会报告外,本次会议还举办了分场讨论会,包括“青年论坛、生物纳米技术、食品分析、海外学者论坛、组学分析、临床分析、前沿论坛、生命分析基础理论、药物分析、仪器装置、环境与健康” 等不同主题,多名专家将在不同议题的专场讨论会上发表精彩演讲。此外,大会还设立了优秀论文墙报展以及小型的仪器展览会,多家厂商参展并在大会召开同期举办了技术交流会。 优秀论文墙报展 部分参展厂商
  • 甲基化成肿瘤检测新靶标?五种新型DNA甲基化酶检测技术进展揭秘
    DNA甲基化是哺乳动物基因组中最常见的表观遗传事件之一,即DNA中核苷酸与甲基基团的共价修饰[2]。DNA甲基化与人的生命进程有着密不可分的关系。细胞的增殖与分化、染色体完整性的维护或者X染色体的活性等等都离不开DNA甲基化的控制,DNA甲基化流程在胚胎发育中是无处不在的[1]。如果DNA甲基化进程出现异常,会导致生物体出现各种各样的疾病以及身体的生长缺陷或生理紊乱。DNA与蛋白质之间的相互作用如果出现异常,会影响基因的表达,从而引起人体内肿瘤的发生或者肿瘤的转移,这一切的源头都是DNA甲基化进程出现异常的结果[3]。DNA甲基化酶是肿瘤治疗靶点DNA甲基化酶是一种修饰酶,经常与限制性内切酶一同出现。在真核生物基因组以及原核生物基因组中,普遍存在DNA甲基化酶维持以及催化DNA甲基化过程的现象。DNA甲基化酶被广泛认为是一种治疗靶点以及预测生物甲基化过程的标志物,在单细胞水平上准确灵敏地检测DNA甲基化酶对于肿瘤医学上的临床诊断以及临床治疗甚至是生物学研究有着至关重要的作用。根据甲基化的核苷酸和位置被分为三组,即腺嘌呤的甲基化、胞嘧啶的4-N甲基化和胞嘧啶的5-C甲基化。所有已知的DNA甲基化酶在其甲基化过程中以s-腺苷甲硫氨酸作为甲基供体。最常见的DNA甲基化不仅发生在胞嘧啶嘧啶环5-C位置的CpG位点上,还发生在对称四核苷酸5’-G-A-T-C-3’ 中腺嘌呤环的6-N位置[4,5]。传统DNA甲基化酶检测方法有局限 DNA甲基化酶活性的高灵敏度检测在基因调控、表观遗传修饰、临床诊断和治疗等方面具有重要意义。传统用于检测DNA甲基化酶活性的方法包括高效液相色谱法(HPLC)[6], 聚合酶链反应(PCR)[7],凝胶电泳[8],高效毛细管电泳(HPCE)[9],以及使用同位素标记的s-腺苷甲硫氨酸甲基化检测[10,11]。尽管这些技术在实验室实践中被证明是有用的,但它们具有局限性。例如,大多数技术不仅使用笨重昂贵的设备,而且需要复杂的样品制备和数据分析所需的大量时间。同位素标记等技术是有效的,但它们往往需要费力的样品制备、同位素标记、复杂的设备和大量的DNA,使得它们不适合在医护点使用。所以,DNA甲基化酶活性检测迫切需要简单、便携、高灵敏度和低成本的检测方法。在最近的技术进步中,许多替代的DNA甲基化酶活性测定方法,如放射法、比色法、荧光法、电化学法等已被提出。此外,其中许多与纳米材料或酶结合,以显著提高它们的敏感性。放射法、蛋白质纳米孔等新型检测技术兴起 放射法:同位素标记作为最早检测DNA甲基化酶活性的方法之一,早期广泛应用于检测DNA甲基化酶和DNA甲基化的活性[12,13]。在由DNA甲基化酶催化的甲基化过程中,同位素标记的甲基部分转移到DNA上,从而赋予甲基化的DNA放射性。这种放射性可以很方便地用闪烁计数器或放射自显像仪来检测。可惜的是,放射性试剂的介入是限制这种试验在中央实验室进行的最大缺点。对无辐射DNA甲基化酶活性检测的研究导致了甲基化特异性PCR[14]、HPCE[9]和HPLC等替代品的发展[7,14],而甲基化特异性PCR被认为是较好的方法。尽管非放射性,上述DNA甲基化酶活性检测需要庞大且通常昂贵的设备,冗长且耗时的样品制备和数据分析,以及繁琐的检测方案,这在临床实践中也比较难以实现全覆盖。比色法:比色法用于DNA甲基化酶活性检测依赖于颜色变化的目视观察或与DNA甲基化酶相关的吸收光谱的光谱测量。它们具有成本低、简单、可移植性和在某些情况下无需仪器的优点。虽然紫外-可见光谱法可以量化DNA,但甲基化和未甲基化DNA在紫外-可见吸收特性上的低灵敏度和不显著差异基本否定了紫外-可见光谱法直接检测DNA甲基化酶活性[15~17]。金纳米粒子:金纳米粒子(AuNPs)由于其表面的等离子体共振吸收的高消光系数且强依赖于粒子间距离,在DNA甲基化酶活性检测的比色法研究中引起了广泛关注。如图1 所示,金纳米粒子表面包覆有双链DNA (ds-DNA),其中一条链包含DNA甲基化酶识别序列和5’-硫醇末端。在DNA甲基化酶存在的情况下,如图1 B 所示,DNA甲基化酶被共价标记在ds-DNA中碱基环的6-C位置,因为在5-N位置缺乏一个质子阻止了β-消除,甲基化的DNA不能被核酸外切酶 ExoⅠ剪切,因此金纳米粒子仍然均匀地分散在溶液中 [18]。从而实现DNA甲基化酶活性的检测。结果表明,在526 nm处,金纳米粒子聚集物的吸光度与DNA甲基化酶的活性呈2 ~ 32 U / mL的线性关系,检出限为0.5 U/ mL。图1. (A)基于ABP的比色生物传感器的示意图(B) DNA甲基化酶的检测机制 荧光法:荧光指吸收激发荧光团的光,以促进电子从基态到激发态,电子迅速地回到激发态的最低能级,然后当电子最终返回基态时,发出波长较长的光。与其他DNA甲基化酶活性测定法相比,荧光法检测DNA甲基化酶活性的优点是检测过程简单,灵敏度高,但其复杂的光学性能限制了其在集中实验室的应用[19~20]。图2. 基于外切酶的靶循环的DNA甲基化酶活性检测原理图电化学法:电化学生物分析技术的发展一直是现代分析化学研究的热点之一。电化学法用于DNA甲基化酶分析包括测量电流、电压、电荷和电阻等电量,以反映DNA甲基化酶的活性。与许多其他类型的DNA甲基化酶活性的检测相比,它们具有低成本、高灵敏度、执行现场监测的能力以及非常适合微型化和集成微制造技术的优点[22~23]。Zhi-Qiang Gao等人在2014年报道了一种简单、高灵敏度的DNA甲基化酶电化学活性测定方法。该方法采用电催化氧化抗坏血酸(AA)的信号放大手段,通过一个螺纹插层N,N -2(3-丙基咪唑)-1,4,5,8-萘二酰亚胺(PIND)电催化氧化还原Os(bpy)2Cl+ (PIND-Os),包含5’-CCGG-3’ 对称序列的ds-DNA首先固定在金电极上。然后用DNA甲基化酶孵育电极,经过酶催化特定CpG二核苷酸的甲基化,然后用识别5’-CCGG-3’ 序列的限制性内切酶 Hpa II 剪切酶处理电极,从而实现DNA甲基化酶活性检测的目的[24]。图3. DNA甲基化酶活性的检测原理示意图蛋白质纳米孔:蛋白质纳米孔检测技术是在单分子水平上以低成本、无标签和高通量的方式研究生物分子的检测技术。近年来,纳米孔技术正从生物传感的角度进行研究[25]。应用于核酸特征鉴定、化学反应过程的测量、蛋白质分析、疾病相关蛋白状态的检测以及酶动力学的研究等[26]。α-溶血7素是一种蛋白质纳米孔,它自发地插入到脂质双层膜中,形成一个纳米孔[27]。当一个带电分子在外加电势下通过蛋白质纳米孔时,它会引起离子电流的瞬态变化,电流变化事件被记录下来。被分析物可以通过当前电流发生的频率进行量化,特征电流信号则可以揭示被分析物的各种特征[28~30]。该检测方法不需要对DNA探针进行任何化学修饰,既方便又节约成本,减少了样品消耗。 图4. 用于分析DNA甲基化酶活性的纳米孔试验的示意图 在过去的十几年中,DNA甲基化酶活性的检测取得了重大进展。有几种方法有希望可在临床检测,使得该方法在用于癌症诊断、预后和治疗方面显示出了希望。比色法依赖于颜色变化的目视观察或与DNA甲基化酶相关的吸收光谱的光谱测量,具有成本低、简单、可移植性和在某些情况下无需仪器的优点,但是检出限相对较高。荧光法检测DNA甲基化酶活性的检测过程简单,检出限相对理想,但其复杂的光学性能以及昂贵的仪器设备限制了其在生活中的应用。电化学法由于需要构建较复杂的反应电极材料而使得其在临床上受到了一定的限制。蛋白质纳米孔的检测方法不需要对DNA探针进行任何化学修饰,既方便又节约成本,减少了样品消耗,检出限相对较为理想,并且已经成功应用于人类血清样本。这类检测可能最终为常规DNA甲基化酶活性的检测和分子诊断打开大门,为疾病的管理和诊断带来新的前景。 作者:王家海、骆 乐 作者简介:王家海,博士,教授,硕士生导师/博士生导师,广州大学化学化工学院;分析化学专业;主要研究领域为“基于核算纳米结构为信号传导载体的纳米孔传感器”;在核酸探针和仿生纳米孔两方面开展了一系列分子识别的工作,也为将来进一步开展分析化学研究打下了坚实的基础,期间积累了多种前沿分析方法和技术:仿生纳米孔制备和检测;微纳米加工技术;核酸探针人工合成技术。参 考 文 献 [1] 陈晓娟,闫少春,邵国,等.人DNA甲基化转移酶的分类及其功能[J].包头医学院学报,2014,30(04):136-138.[2] Das PM, et al. DNA methylation and cancer[J]. Clin. Oncol. 2004 22: 4632-4642.[3] Jurkowska RZ, et al. Structure and function of mammalian DNA methyltransferases[J]. ChemBioChem 2011 12: 206-222.[4] Lee GE, et al. DNA methyltransferase 1-associated protein (dmap1) is a co-repressor that stimulates DNA methylation globally and locally at sites of double strand break repair[J]. Biol. Chem. 2010 285: 37630-37640.[5] Liu SN, et al. Assay Methods of DNA Methylation and Their Applications in Cancer Diagnosis and Therapy[J]. Chinese J.Anal. Chem. 2011 39: 1451-1458.[6] Boye E, et al. Quantification of dam methyltransferase in Escherichia coli[J]. Bacteriol. 1992 174: 1682-1685.[7] Eads CA, et al. CpG island hypermethylation in human colorectal tumors is not associated with DNA methyltransferase overexpression[J]. Cancer Res. 1999 59: 2302-2306.[8] Bergerat A, et al. Allosteric and catalytic binding of s-adenosylmethionine to escherichia coli DNA adenine methyltransferase monitored by 3H NMR[J]. Proc. Natl. Acad. Sci. U. S. A. 1991 88: 6394-6397.[9] Fraga MF, et al. Rapid quantification of DNA methylation by high performance capillary electrophoresis[J]. Electrophoresis 2000 21: 2990-2994.[10] Yokochi T, et al. DMB (dnmt-magnetic beads) assay: measuring DNA methyltransferase activity in vitro[J]. Methods Mol. Biol. 2004 287: 285-296.[11] Adams RLP, et al. Microassay for DNA methyltransferase[J]. Biochem. Bioph. Methods 1991 22: 19-22.[12] Jurkowska RZ, et al. DNA methyltransferase assays[J]. Methods Mol. Biol. 2011 791: 157-177.[13] Pradhan S, et al. Recombinant human DNA (cytosine-5) methyltransferase [J]. Biol. Chem. 1999 274: 33002-33010.[14] Herman JG, et al. Methylation-specific PCR: a novel PCR assay for methylation status of CpG islands[J]. Proc. Natl. Acad. Sci. U. S. A. 1996 93: 9821-9826.[15] Kattenhorn, L. M. Korbel, G. A. Kessler, B. M. Spooner, E. Ploegh, H. L. Mol. Cell 2005, 19, 547−557.[16] Mosammaparast, N. Shi, Y. Annu. Rev. Biochem. 2010, 79, 155−179.[17] Barglow, K. T. Cravatt, B. F. Angew. Chem., Int. Ed. 2006, 45, 7408−7411.[18] Wu Z, et al. Activity-based DNA-gold nanoparticle probe as colorimetric biosensor for DNA methyltransferase/glycosylase assay[J]. Anal. Chem. 2013 85: 4376-4383.[19] Zhu, C. Wen, Y. Peng, H. Long, Y. He, Y. Huang, Q. Li, D. Fan, C. Anal. Bioanal. Chem. 2011, 399, 3459−3464.[20] Chen, F. Zhao, Y. Analyst 2013, 138, 284−289.[21] Xing XW, et al. Sensitive detection of DNA methyltransferase activity based on exonuclease-mediated target recycling[J]. Anal. Chem. 2014 86: 11269-11274.[22] Wu, H. Liu, S. Jiang, J. Shen, G. Yu, R. Chem. Commun. 2012, 48, 6280−6282[23] Wang, M. Xu, Z. Chen, L. Yin, H. Ai, S. Anal. Chem. 2012, 84, 9072−9078[24] Deng H, et al. Highly sensitive electrochemical methyltransferase activity assay[J]. Anal. Chem. 2014 86: 2117-2123.[25] Howorka, S. Siwy, Z. Nanopore Analytics: Sensing of Single Molecules. Chem. Soc. Rev. 2009, 38, 2360−2384.[26] Song, L. Hobaugh, M. R. Shustak, C. Cheley, S. Bayley, H. Gouaux, J. E. Structure of Staphylococcal α-Hemolysin, a Heptameric Transmembrane Pore. Science 1996, 274, 1859−1865.[27] Lin, L. Yan, J. Li, J. Small-Molecule Triggered Cascade Enzymatic Catalysis in Hour-Glass Shaped Nanochannel Reactor for Glucose Monitoring. Anal. Chem. 2014, 86, 10546−10551.[28] Li, J. Yan, H. Wang, K. Tan, W. Zhou, X. Anal. Chem. 2007, 79, 1050−1056.[29] Wood, R. J. Maynard-Smith, M. D. Robinson, V. L. Oyston, P. C. F. Titball, R. W. Roach, P. L. PLoS One 2007, 2, e801−e801.[30] Wood, R. J. McKelvie, J. C. Maynard-Smith, M. D. Roach, P. L. Nucleic Acids Res. 2010, 38, e107−e107.[31] Jinghong Li, et al. Nanopore-based, label-free, and real-time monitoring assay for DNA methyltransferase activity and inhibition[J]. Anal. Chem. 2017 89: 13252−13260.
  • Nature | 小分子代谢产物也“跨界”?看GABA如何调控免疫反应
    当我们提到GABA(γ-氨基丁酸)的时候我们会想到什么?GABA是一种主要的抑制性神经递质,调节神经元间的通讯。在大脑之外,在肠道、脾脏、肝脏和胰腺中也检测到了GABA这种神经递质的存在【1,2】。但是GABA在免疫系统中是否会“跨界”发挥作用还不得而知。2021年11月3日,日本横滨理化研究所Sidonia Fagarasan研究组发文题为B cell-derived GABA elicits IL-10+ macrophages to limit anti-tumour immunity,发现B细胞来源的GABA诱导巨噬细胞从而限制抗肿瘤免疫反应,为免疫系统中除了细胞因子和膜蛋白之外的小分子代谢产物的免疫调节功能提供了新的见解。小分子水溶性代谢产物不仅是细胞内生物化学反应过程的重要中间产物,也是释放到细胞外环境中的“信号分子”,从而影响临近的细胞【3-5】。淋巴细胞受到多种受体和可溶性小分子代谢产物的调节,但是仍然有很多小分子代谢产物的功能尚未被了解清楚。因此,作者们希望能够找出其中发挥关键调节作用的水溶性代谢产物,该代谢产物可能作为环境线索发挥作用从而介导免疫细胞之间的相互作用。为了找出参与免疫系统的小分子水溶性物质,作者们对处于稳态以及激活状态淋巴细胞中进行水溶性代谢产物的分析。这两种淋巴细胞之间有200种左右的代谢产物存在显著的不同。其中主要涉及的代谢特征的不同是丙氨酸、天冬氨酸以及谷氨酸通路的差异,另外嘌呤和嘧啶代谢以及三羧酸环也与免疫激活密切相关。在这些代谢产物中,一个以前被广泛认为在神经系统中发挥作用的因子GABA引起了作者们的兴趣。先前并没有研究表明B细胞能够产生GABA,因此GABA在免疫系统中的作用也很不清楚。首先,作者们确认了免疫系统中的B细胞的确是GABA产生来源,并且通过对GABA合成的关键酶分析发现小鼠和人类B细胞中GAD67(Glutamate decarboxylase 67)而非GAD65的表达水平会上升。该结果说明无论是小鼠还是人类中谷氨酸的代谢的确能够刻画B细胞谱系的变化。那么B细胞中所产生的GABA是如何在免疫系统中发挥作用的呢?为此,作者们采用了MC38结肠癌模型,该模型中B细胞已经被证明通过抗原非特异性机制抑制抗肿瘤T细胞反应【6】。作者们发现B细胞缺乏的小鼠品系中肿瘤的生长比野生型的肿瘤控制的更好。另外,与接受安慰剂的小鼠相比,植入缓释GABA颗粒会导致B细胞去除的小鼠肿瘤生长显著增加。通过加入GABA受体激动剂木防己苦毒素,作者们发现会限制肿瘤的生长并提高肿瘤浸润性CD8+T细胞的细胞毒性活性。因此,作者们发现减少GABA或影响GABA受体信号通路会增强细胞毒性T细胞反应和抗肿瘤免疫,而分泌GABA使宿主对肿瘤生长产生免疫耐受。那么GABA影响免疫功能系统的细胞生物学机制是如何的呢?先前的研究表明肿瘤相关巨噬细胞(Tumour-associated macrophages,TAMs)可以抑制抗肿瘤免疫反应。作者们发现GABA影响巨噬细胞生理的过程,促进向抗炎表型极化的反应。进一步地,作者们想知道GABA如何调节巨噬细胞。研究表明TAMs起源于单核细胞(Monocytes),因此,作者们猜测GABA是通过影响单核细胞向巨噬细胞的分化来调节巨噬细胞的。为了验证这一假设,作者们将GABA加入到培养基中,发现会导致细胞数量增加、细胞存活增加同时也促进抗炎巨噬细胞特征因子FRβ(Folate receptor β)的表达。基因转录本分析也证明细胞周期相关以及叶酸代谢相关的基因出现了明显地上调。因此,作者们确认GABA促进具有抗炎特性的巨噬细胞的分化、扩张和存活。进一步地,为了确认B细胞中GABA的作用,作者们构建了特异性在B细胞中敲除GAD67的小鼠品系,发现条件性失活GAD67后会导致B细胞中GABA含量显著降低,而且发现B细胞产生的GABA会显著限制抗肿瘤T细胞反应。总的来说,该工作发现作为代谢产物以及神经递质的GABA会通过激活的B细胞被合成和分泌出来,作为细胞间相互交流的线索影响机体免疫系统的响应。该工作说明B细胞谱系产生的小分子代谢产物具有炎症调节的作用,可能会成为未来免疫反应调节的药物靶点。原文链接:https://doi.org/10.1038/s41586-021-04082-1
  • 【瑞士步琦】使用Sepmatix 8x SFC进行高效色谱柱筛选
    高效色谱柱筛选尿嘧啶和黄嘌呤,即咖啡因、可可碱和茶碱,是一组在各种生物过程和人类消费中起重要作用的有机化合物[1-3]。这些分子属于杂环化合物,其特点是含有碳原子和氮原子的环状结构。尿嘧啶是 RNA(核糖核酸)的基本组成部分,RNA 是形成遗传密码并参与蛋白质合成的基本核碱基之一。另一方面,黄嘌呤、咖啡因、可可碱和茶碱是一类结构相似但生物效应不同的生物碱[1-3]。这些黄嘌呤存在于各种植物中,是一种众所周知的兴奋剂,可以穿过血脑屏障,影响中枢神经系统。在 RP(反相色谱)[1-3]条件下(SN_802_2023), LC(液相色谱)可分离生物碱。超临界流体色谱(SFC)是一种使用超临界二氧化碳(CO2)作为流动相的基本成分的色谱技术。这种状态的二氧化碳被称为超临界,它具有独特的特性,如高扩散系数和低粘度,使其成为分离和分析化合物的绝佳溶剂。与传统色谱方法相比,SFC 提供了许多优势,包括更快的分析时间,更低的溶剂消耗和分离的差异选择性。此外,与 RP-LC 相比,SFC 代表了一种正交技术,为各种分析挑战提供了互补的分离能力。在 SFC 中,色谱柱筛选包括测试不同的固定相,以找到最适合特定分离任务的固定相。固定相是色谱系统的重要组成部分,因为它直接影响色谱的选择性。不同的固定相具有不同的化学功能和与分析物的相互作用,使它们或多或少地选择特定的化合物。通过筛选和选择合适的色谱柱,可以优化分离条件,以获得更好的目标分析物的分辨率和灵敏度。本文描述了使用 Sepmatix 8x SFC 仪器对尿嘧啶、咖啡因、可可碱和茶碱混合物进行平行柱筛选,随后转移到制备的 Sepiatec SFC-50。1设备Sepiatec SFC-50 instrumentSepmatix 8x SFC instrumentPrepPure Silica, 5μm, 250 x 10mmPrepPure Diol, 5μm, 250 x 10mmPrepPure Silica, 5μm, 250 x 4.6mmPrepPure Diol, 5μm, 250 x 4.6mmPrepPure Amino, 5μm, 250 x 4.6mmPrepPure 2-EP, 5μm, 250 x 4.6mmReprosil 4-EP, 5μm, 250 x 4.6mm (Dr. Maisch GmbH)PrepPure PEI, 5μm, 250 x 4.6mmPrepPure CBD, 5μm, 250 x 4.6mmCyano, 5μm, 250 x 4.6mm, (Dr. Maisch GmbH)2试剂和材料二氧化碳(99.9%)甲醇(≥99%)尿嘧啶(99% + %)可可素(99%)咖啡(99%以上)茶碱(99%)3实验样品制备:在 50/2.5mL 甲醇/水混合液中,40℃ 下用超声水浴溶解 0.05g 尿嘧啶,0.07g 咖啡因,0.055g 可可碱,0.085g 茶碱。Sepmatix 8x SFC 筛选运行条件:流动相:A =二氧化碳:甲醇流速:3ml /min(每柱)流动相条件:0-0.5min:5% B0.5-8.0min:5 - 50%8.0-9.4min:50%9.4-9.5min:50 - 5%9.5-10min:5% B检测:紫外扫描波段:200nm - 600nm筛选运行是自动开始的。使用流量控制单元将流量设置为每通道 3mL/min,并平衡色谱柱。自动进样(V=5 μL),开始平行筛选(运行时间=10min)。背压调节器设置为 150bar,柱箱加热至 32°C。SFC-50 运行条件:流动相:A =二氧化碳;B=甲醇流动相条件:等度运行条件检测:紫外波长 270nmSFC 柱在规定的流速下条件预热 3 分钟,使用定量环自动注入样品并开始运行。背压调节器设置为 150bar,柱箱加热至 40°C。3结果与讨论用 Sepmatix 8x SFC 筛选色谱柱:为了确定样品的最佳分离选择性,进行了不同色谱柱的筛选。使用 Sepmatix 8x SFC 仪器可以高效地同时筛选8个色谱柱。因此,最佳选择性可以在很短的时间内确定。为此,使用了 8 种不同的固定相:硅胶、二醇基、氨基、氰基、2-EP、4-EP、PEI 和 CBD,图1显示了筛选的结果。▲图1:Sepmatix 8x SFC 仪器筛选结果。从左到右依次为:硅胶、氨基、氰基、二醇基;下从左至右依次为:2-EP、4-EP、PEI、CBD 柱;运行时间=10分钟用分辨率(R)来衡量色谱方法在色谱图中分离和区分两个相邻峰的能力,它量化了分析物相互分离的程度。表 1 显示了 4 组分分离的分辨率值。使用 Sepmatix 软件和以下公式自动确定:其中tR1 和 tR2 代表 组分 1 或组分 2的保留时间W1 和W2 代表分量1或分量 2 峰高一半处的宽度在处理复杂的混合物时,分辨率尤其重要,因为它确保每个分析物都被很好地分离,并且可以准确地识别和定量。分辨率为 1 表示峰值根本没有被分解,基本上是合并的,而更高的分辨率值表示峰值之间的分离更好。在使用过程中,分辨率至少应达到 1.5,才能以适当的定量和鉴定分析物。色谱柱R1R2R3硅胶1.574.183.79氨基5.421.264.44氰基未分离3.351.69二醇3.925.12.292-EP3.622.72未分离4-EP9.462.87未分离PEI9.931.8610.8CBD5.011.274.51表1:SFC 不同筛选条件下的分辨率值R 值的筛选和评价表明,硅胶、二醇基和 PEI 相对样品的分离选择性最好。二醇基在运行时间和分辨率方面表现出最佳性能。硅胶柱上的分离并不完全是茶碱和咖啡因的基线分离。PEI 相的运行时间相对较长,因为样品分子的位阻较大。表 2 为洗脱顺序,这是通过测定的光谱和组分的单独进样来确定的。与其他相相比,硅胶显示出不同的洗脱顺序。对于氰基、2-EP 和 4-EP,不能完全确定洗脱顺序。色谱柱洗脱顺序硅胶茶碱,咖啡因,尿嘧啶,可可碱氨基咖啡因,茶碱,可可碱,尿嘧啶氰基咖啡因和茶碱的双峰,可可碱,尿嘧啶二醇咖啡因,茶碱,可可碱,尿嘧啶2-EP咖啡因,茶碱,可可碱和尿嘧啶的双峰4-EP咖啡因,茶碱,可可碱和尿嘧啶的双峰PEI咖啡因,茶碱,可可碱,尿嘧啶CBD咖啡因,茶碱,可可碱,尿嘧啶表2:SFC 不同色谱柱筛选条件下的洗脱顺序将开发方法通过 SFC-50 放大:由于二醇基取得了最好的结果,因此选择了 5μm, 250 x 10mm 的 PrepPure 二醇基进行 Sepiatec SFC-50 方法放大制备。由于通过堆叠注射法纯化混合物的效率明显高于多次梯度注射法,该方法是在等度运行条件下实施的,这是使用堆叠进样的要求。在等度条件下,样品只能在低甲醇含量下分离(见图2,下)。在高甲醇浓度下,由于流动相的高洗脱强度,尿嘧啶、咖啡因、茶碱和茶碱是不可分离的(见图2,上)。▲图2:使用 PrepPure Diol 5 μm, 250 x 10mm 色谱柱分离样品。上:流速= 20 mL/min, 150 bar, 40℃,270nm, 33% B,进样量= 0.09 mL,运行时间= 4 min;下:流量= 20 mL/min 150 bar 40°C, 270 nm, 12%甲醇,0.09 mL,运行时间= 5 min改变压力和温度可以优化分辨率。最佳分离条件为 40℃ 和 150bar。图 3 为图 2(下)实验条件下的堆叠进样情况,堆叠时间为 2.42min,因此每 2.42min 进样一次。在这种情况下,由于每次额外注入节省了平衡时间,因此提高了产能。为了更有效的多次分离,可以使用硅胶填料。使用 34% 的甲醇作为改性剂,将堆叠时间缩短至 2.15min。与二醇基相比,硅胶填料在 100bar 下表现出更好的性能。然而,在 1.5 的分辨率下,咖啡因和茶碱并不能获得理想的基线分离。由于硅胶的极性比二元醇高,为了快速洗脱,必须增加改性剂的含量,但这也导致溶剂消耗增加。4结论在本文中,使用 Sepmatix 8x SFC 进行柱筛选,并将开发结果转移到 Sepiatec SFC-50 进行放大。在色谱参数分辨率和运行时间方面,二醇基表现出最好的效果。对于二醇基,根据筛选结果,在 Sepiatec SFC-50 仪器上采用 250 × 10 mm 柱进行等度堆叠进样。作为比较,开发了另一种用于硅胶填料的方法,但分辨率值略差。这种分离表明,要想在 prep-SFC 中获得一个好的分离方法,事先通过柱筛选确定最佳选择性是很重要的。然后,该方法可以在 prep-SFC 上简单实现,并进行了优化。最理想的是,该方法在等度条件下应用,以最大限度地提高产量。每次注射后的叠加紫外信号表明该方法具有良好的再现性(图3和4,下面)。垂直线描述了收集相应分数的时间窗口。▲图3:堆叠进样与二醇柱分离。流速= 20 mL/min, 150 bar, 40℃,270 nm, 12% B,进样量= 0.12 mL;堆叠时间:2.42 min,注射次数:8次;上图:最终色谱图;下图为各注射剂的紫外信号叠加图▲图4:堆叠进样与硅胶柱分离。流速= 16 mL/min, 100 bar, 40℃,270 nm, 34% B,进样量= 0.09 mL;堆叠时间:2.15 min,注射次数:7次;上图:最终色谱图;下图:分别在254 nm和270 nm处注射的叠加紫外信号5参考文献https://doi.org/10.1093/chromsci/46.2.144DOI: 10.1021/jf030817mDOI: 10.1016/j.foodchem.2004.11.013DOI: 10.1016/j.saa.2004.03.030Laboratory Chromatography Gμide, ISBN 3-033-00339-7, by Büchi Labortechnik AG (Switzerland)
  • 农业部修订国家兽药残留基准实验室药物残留检测范围
    为加强兽药残留监控工作,保障动物产品安全,根据《兽药管理条例》规定,我部对国家兽药残留基准实验室药物残留检测范围进行了修订完善,现予公告。   一、按照《中华人民共和国动物及动物源食品中残留物质监控计划》,国家兽药残留基准实验室主要承担相关药物残留检测方法(筛选法、定量法、确证法)研究和标准的制定、检测技术仲裁、比对试验及技术培训等工作。   二、各兽药残留基准实验室药物检测范围   (一)国家兽药残留基准实验室(中国兽医药品监察所)   1.一般兽药品种   (1)抗微生物药   四环素类:四环素、土霉素、金霉素、多西环素   氟喹诺酮类:诺氟沙星、环丙沙星、恩诺沙星、达氟沙   星、二氟沙星、沙拉沙星、氟甲喹、噁喹酸。   (2)抗寄生虫药   二硝基类:二硝托胺、尼卡巴嗪   其他:乙氧酰胺苯甲酯。   2.禁用药物清单品种   β-受体兴奋剂类:西马特罗、克仑特罗、沙丁胺醇。   (二)国家兽药残留基准实验室(中国农业大学)   酰胺醇类:甲砜霉素、氟苯尼考   磺胺类:磺胺二甲嘧啶、磺胺甲噁唑、磺胺对甲氧嘧啶、   一般兽药品种抗微生物药   磺胺类:磺胺二甲嘧啶、磺胺甲   磺胺间甲氧嘧啶、甲氧苄啶。   抗寄生虫药   阿维菌素类:伊维菌素、阿维菌素、多拉菌素   磺胺类:磺胺喹噁啉、磺胺氯吡嗪钠   离子载体抗球虫药:莫能菌素钠、盐霉素钠、拉沙洛西   磺胺类:磺胺喹   钠、马度米星铵、赛杜霉素   其他:氯羟吡啶、盐酸氯苯胍、盐酸氨丙啉、氮哌酮、   癸氧喹酯、氢氢溴酸常山酮。   具有雌激素样作用的物质:玉米赤霉醇   禁用药物清单品种   氯霉素(包括琥珀氯霉素)   硝基咪唑类:替硝唑、地美硝唑、甲硝唑   镇静药:安眠酮、氯丙嗪、地西泮(安定)。   3.禁用药物品种   洛硝达唑   (三)国家兽药残留基准实验室(华南农业大学)   β-内酰胺类(青霉素类和头孢菌素类):青霉素、氨苄   一般兽药品种抗微生物药一般兽药品种抗微生物药   西林、阿莫西林、苯唑西林、氯唑西林、头孢氨苄、头孢噻呋、头孢喹肟、克拉维酸   多肽类:杆菌肽、黏菌素、维吉尼霉素   其他:泰妙菌素、洛克沙胂、氨苯胂酸。   咪唑并噻唑类:左旋咪唑、噻咪唑、哌嗪、氮胺菲啶   抗血吸虫药:吡喹酮   抗血吸虫药:吡喹酮   抗锥虫药:三氮脒   三嗪类:地克珠利、托曲珠利   有机磷类:二嗪农、巴胺磷、倍硫磷、敌敌畏、甲基吡   啶磷、马拉硫磷、蝇毒磷、敌百虫、辛硫磷   有机氯类:氯芬新   拟除虫菊酯类:氰戊菊酯、溴氰菊酯、氟氯苯氰菊酯、   氟胺氰菊酯。   性激素类:苯甲酸雌二醇、甲基睾丸酮、苯丙酸诺龙、丙酸睾酮、己烯雌酚   具有雌激素样作用的物质:醋酸甲孕酮、去甲雄三烯醇酮、。   杀虫剂:锥虫胂胺、呋喃丹(克百威)、杀虫脒(克死螨)、林丹(丙体六六六)、毒杀芬(氯化烯)、氯化亚汞(甘汞)、硝酸亚汞、醋酸汞、吡啶基醋酸汞、酒石酸锑钾。   群勃龙、醋酸氟孕酮。   (四)国家兽药残留基准实验室(华中农业大学)   氨基糖苷类:链霉素、庆大霉素、卡那霉素、新霉素、大观霉素、安普霉素、越霉素A、潮霉素B   大环内酯类:红霉素、泰乐菌素、替米考星、吉他霉素、泰万菌素   林可胺类:林可霉素   喹噁啉类:乙酰甲喹、喹乙醇。   苯并咪唑类:阿苯达唑、芬苯达唑、非班太尔、奥芬达唑、甲苯咪唑、氟苯达唑、苯氧丙咪唑   抗吸虫药:三氯苯达唑、硝碘酚腈、碘醚柳胺、氯氰碘柳胺   其他:双甲脒。   糖皮质激素类:地塞米松、倍他米松   解热镇痛类:安乃近。   喹噁啉类:卡巴氧   硝基呋喃类:呋喃它酮、呋喃唑酮、呋喃苯烯酸钠、呋   喃妥因、呋喃西林。   硝基化合物:硝基酚钠、硝呋烯腙。   杀虫剂:孔雀石绿、五氯酚酸钠、双甲脒(水生食品动   物)。   砜类抑菌剂:氨苯砜。   三、本公告自发布之日起执行,2007年3月发布的农业部公告第824号同时废止。   二0一一年七月二十九日
  • 公布|2021年社会化农产品质量安全与营养品质检验检测技术能力验证结果
    关于公布2021年社会化农产品质量安全与营养品质检验检测技术能力验证通过结果的函各农产品质量安全检验检测机构、营养品质评价鉴定等技术机构:为满足各相关农产品质量安全检验检测、营养品质评价鉴定等技术机构检验检测评价鉴定技术水平与业务能力提升需要,确保检验检测结果的准确性、稳定性、可靠性、一致性和可比性,2021年10-11月,农业农村部农产品质量安全中心(简称“国家农安中心”)依托农业农村部环境保护科研监测所、中国兽医药品监察所、中国水产科学研究院等技术单位,启动探索开展了例行化、常态化、社会化服务的农产品质量安全检验检测与营养品质评价鉴定技术能力验证工作,统称“国农验证”(CAQS验证)。经考核评价和综合分析,78家农产品质量安全检测机构和营养品质评价鉴定技术机构通过了农产品中农药残留检验检测、农产品中重金属检验检测、农产品中营养品质评价鉴定、畜禽产品中兽药和违禁添加物残留检验检测、水产品中药物残留检验检测、牛奶营养品质评价鉴定与污染物检验检测、土壤中全量和有效态元素检验检测、肥料中养分和重金属检验检测等8个项目(参数)481类次能力验证考核,具体能力验证考核通过单位及项目(参数)信息见附表。2022年国家农安中心将根据需要常态化启动实施国农验证,如需咨询可随时与国家农安中心检验检测管理处联系。电话:010-59198536 010-59198576;邮箱:nongyezhijian@163.com。附表:2021年社会化农产品质量安全与营养品质检验检测技术能力验证机构通过结果一览表农业农村部农产品质量安全中心2021年12月13日附表:2021年社会化农产品质量安全与营养品质检验检测技术能力验证机构通过结果一览表注:1.农产品中农药残留检验检测项目具体参数:A类参数:甲胺磷、甲拌磷(含甲拌磷砜、甲拌磷亚砜)、氧乐果、对硫磷、甲基对硫磷、毒死蜱、敌敌畏、甲氰菊酯、乙酰甲胺磷、三唑磷、水胺硫磷、杀螟硫磷、马拉硫磷、伏杀硫磷、亚胺硫磷、氯氟氰菊酯、异菌脲、丙溴磷、溴氰菊酯、克百威(含3-羟基克百威)、甲萘威、灭多威、腐霉利、三唑酮、涕灭威(含涕灭威砜、涕灭威亚砜)、滴滴涕、六六六、氯氰菊酯、氰戊菊酯、异丙威。B类参数:倍硫磷、辛硫磷、治螟磷、蝇毒磷、灭线磷、杀扑磷、乐果、甲基异柳磷、二嗪磷、氟氯氰菊酯、联苯菊酯、氟胺氰菊酯、氟氰戊菊酯、氯菊酯、百菌清、五氯硝基苯、乙烯菌核利、三氯杀螨醇、多菌灵、吡虫啉、氟虫腈(含氟甲腈、氟虫腈硫醚、氟虫腈砜)、啶虫脒、苯醚甲环唑、哒螨灵、嘧霉胺、甲氨基阿维菌素苯甲酸盐、烯酰吗啉、虫螨腈、咪鲜胺、嘧菌酯、二甲戊灵、噻虫嗪、氟啶脲、灭幼脲、阿维菌素、除虫脲、吡唑醚菌酯、多效唑、甲霜灵、氯苯嘧啶醇、氯虫苯甲酰胺、醚菊酯、灭蝇胺、敌百虫、莠灭净、特丁硫磷(含特丁硫磷砜、特丁硫磷亚砜)、异丙甲草胺、霜霉威、氯吡脲、虫酰肼。C类参数:抗蚜威、氟硅唑、唑螨酯、己唑醇、丙环唑、腈苯唑、杀虫脒、氯唑磷、戊唑醇、久效磷、内吸磷、硫环磷、狄氏剂、莠去津、乙螨唑、茚虫威、肟菌酯、噻虫胺、噁唑菌酮、唑虫酰胺。2. 畜禽产品中兽药及违禁添加物残留检验检测项目具体参数:猪肉中β-受体激动剂:克伦特罗、沙丁胺醇、莱克多巴胺。鸡肉中氟喹诺酮类药物:达氟沙星、恩诺沙星、环丙沙星、沙拉沙星。3.水产品中药物残留检验检测项目具体参数:8种磺胺类化合物:磺胺噻唑、磺胺异恶唑、磺胺二甲嘧啶、磺胺嘧啶、磺胺甲恶唑、磺胺喹恶啉、磺胺间二甲氧嘧啶、磺胺甲基嘧啶。4.牛奶营养品质评价鉴定与污染物检验检测项目具体参数:磺胺类:磺胺二甲基嘧啶、磺胺嘧啶、磺胺甲基嘧啶、磺胺噻唑。
  • 岛津推出猪肉中磺胺类药物的三重四极杆质谱法检测方案
    磺胺类药物(sulfa drug)是一类人工合成的抗菌药。因磺胺类药物抗菌谱广、使用方便、价格低廉,为了提高养殖产量,在饲料添加和动物生长中被广泛使用。磺胺类药物本身服用过量会导致胃肠刺激、肾损伤、过敏、抗药性等副作用,而磺胺类药物残留可使对这类药物过敏的食用者发生过敏反应,这类药物在体内长期蓄积也会引发过敏反应,甚至引发癌症。国际食品法典委员会(CAC)与欧美等大多数国家对食品业饲料中磺胺类药物残留都有限量标准,我国农业部第235号公告《动物性食品中兽药最高残留量》中规定,磺胺类药物在各靶组织中的最大允许残留总量为100 &mu g/kg。兽药残留的监控是保证食品安全的重要措施,也是保障人民身体健康的重要手段。 本方案参考农业部1025号公告-23-2008《动物源食品中磺胺类药物残留量检测液相-串联质谱法》中的样品提取纯化过程和分析方法,采用岛津超高效液相色谱仪LC-30A和三重四极杆质谱仪LCMS-8030联用的方法测定猪肉中9种磺胺类药物:磺胺嘧啶(SD)、磺胺甲基嘧啶(SM1)、磺胺二甲嘧啶(SM2)、磺胺甲氧哒嗪(SMP)、磺胺甲恶唑(SMZ)、磺胺间甲氧嘧啶(SMM)、磺胺异恶唑(SIZ)、磺胺间二甲氧嘧啶(SDM)、磺胺喹恶啉(SQX)。本测定方案分析速度快、系统精密度良好、灵敏度高。定量限达到0.04~0.31 &mu g/kg,满足农业部1025号公告-23-2008中0.5 &mu g/kg测定低限的要求。 了解详情,请点击&ldquo 超高效液相色谱三重四极杆质谱联用法测定猪肉中磺胺类药物 &rdquo 关于岛津 岛津企业管理(中国)有限公司是(株)岛津制作所为扩大中国事业的规模,于1999年100%出资,在中国设立的现地法人公司。 目前,岛津企业管理(中国)有限公司在中国全境拥有13个分公司,事业规模正在不断扩大。其下设有北京、上海、广州、沈阳、成都分析中心;覆盖全国30个省的销售代理商网络;60多个技术服务站,构筑起为广大用户提供良好服务的完整体系。 岛津作为全球化的生产基地,已构筑起了不仅面向中国客户,同时也面向全世界的产品生产、供应体系,并力图构建起一个符合中国市场要求的产品生产体制。 以&ldquo 为了人类和地球的健康&rdquo 为目标,岛津人将始终致力于为用户提供更加先进的产品和更加满意的服务。 更多信息请关注岛津公司网站www.shimadzu.com.cn。
  • 兽药非法添加物检测标准与方法集合(截至2024年6月30日)
    兽药非法添加物通常指的是在兽药生产过程中未经批准或超出规定范围添加的化学物质,这些物质可能对动物健康和人类食品安全构成风险。及时对兽药非法添加物进行检测,可以确保兽药的安全性和有效性,防止非法添加物对动物和人类健康造成危害,同时保障食品安全和公共卫生。兽药非法添加物检测通常在以下情况下进行:1. 兽药生产过程中的质量控制。2. 兽药上市前的注册检验。3. 市场监管中的随机抽检。4. 怀疑兽药存在质量问题时的专项检测。通过这些检测,可以及时发现并处理非法添加问题,保护消费者权益,维护市场秩序。检测主要用到的仪器为:高效液相色谱仪、液相色谱-质谱联用仪、显微镜等。中国农业农村部已经组织制定了多项兽药中非法添加物的检查方法标准,以加强兽药监管。这些标准包括《兽药制剂中非法添加磺胺类药物检查方法》、《兽药中非特定非法添加物质检查方法》等,旨在规范兽药生产,确保兽药中不含有非法添加物质。据仪器信息网查询和统计,截至2024年6月30日,农业农村部官方网站上一共公告了61种兽药非法添加物检测标准与方法,整理如下表所示,供各行业的读者参考借鉴。序号名称兽药制剂非法添加物发布时间文件/公告号01《硫酸卡那霉素注射液中非法添加尼可刹米检查方法》硫酸卡那霉素注射液尼可刹米2016.05.09农业部公告第2395号02《恩诺沙星注射液中非法添加双氯芬酸钠检查方法》恩诺沙星注射液双氯芬酸钠2016.05.19农业部公告第2398号03《中药散剂中非法添加呋喃唑酮、呋喃西林、呋喃妥因检查方法》中药散剂:止痢散、清瘟败毒散、银翘散呋喃唑酮、呋喃西林、呋喃妥因2016.09.23农业部公告第2448号《兽药制剂中非法添加磺胺类药物检查方法》等34项检查方法(修订31个;新建3个)04《中兽药散剂中非法添加氯霉素检查方法》中兽药散剂:白头翁散、苍术香连散、银翘散氯霉素2016.09.2305《中药散剂中非法添加乙酰甲喹、喹乙醇检查方法》中药散剂:止痢散、健胃散、清瘟败毒散、胃肠活、肥猪散、清热散、银翘散乙酰甲喹、喹乙醇2016.09.2306《黄芪多糖注射液中非法添加解热镇痛类、抗病毒类、抗生素类、氟喹诺酮类等11种化学药物(物质)检查方法》黄芪多糖注射液解热镇痛类:对乙酰氨基酚、安乃近、氨基比林、安替比林;抗病毒类:利巴韦林、盐酸吗啉胍;抗生素类:林可霉素;氟喹诺酮类:诺氟沙星、氧氟沙星、环丙沙星、恩诺沙星等11种化学药物( 物质)2016.09.2307《肥猪散、健胃散、银翘散等中药散剂中非法添加氟喹诺酮类药物(物质)检查方法》肥猪散、健胃散、银翘散氟喹诺酮类药物(物质):氧氟沙星、诺氟沙星等2016.09.2308《氟喹诺酮类制剂中非法添加乙酰甲喹、喹乙醇等化学药物检查方法》氟喹诺酮类制剂:氧氟沙星制剂、诺氟沙星(及其盐)制剂、恩诺沙星(及其盐)制剂、环丙沙星(及其盐)制剂乙酰甲喹、喹乙醇2016.09.2309《氟苯尼考粉和氟苯尼考预混剂中非法添加氧氟沙星、诺氟沙星、环丙沙星、恩诺沙星检查方法》氟苯尼考粉、氟苯尼考预混剂氧氟沙星、诺氟沙星、环丙沙星、恩诺沙星2016.09.2310《氟苯尼考制剂中非法添加磺胺二甲嘧啶、磺胺间甲氧嘧啶检查方法》氟苯尼考制剂:氟苯尼考可溶性粉、氟苯尼考粉、氟苯尼考预混剂、氟苯尼考溶液、氟苯尼考注射液磺胺二甲嘧啶、磺胺间甲氧嘧啶2016.09.2311《乳酸环丙沙星注射液中非法添加对乙酰氨基酚检查方法》乳酸环丙沙星注射液对乙酰氨基酚2016.09.2312《阿莫西林可溶性粉中非法添加解热镇痛类药物检查方法》阿莫西林可溶性粉解热镇痛类药物:对乙酰氨基酚、安替比林、氨基比林、安乃近、萘普生2016.09.2313《注射用青霉素钾(钠)中非法添加解热镇痛类药物检查方法》注射用青霉素钾(钠)解热镇痛类药物:安乃近、对乙酰氨基酚、氨基比林、安替比林、2016.09.2314《氟苯尼考制剂中非法添加烟酰胺、氨茶碱检查方法》氟苯尼考制剂:氟苯尼考粉、氟苯尼考可溶性粉、氟苯尼考预混剂烟酰胺、氨茶碱2016.09.2315《氟喹诺酮类制剂中非法添加对乙酰氨基酚、安乃近检查方法》氟喹诺酮类制剂:氧氟沙星、诺氟沙星(及其盐)、恩诺沙星(及其盐)、环丙沙星(及其盐)注射液、可溶性粉及粉剂对乙酰氨基酚、安乃近2016.09.2316《硫酸庆大霉素注射液中非法添加甲氧苄啶检查方法》硫酸庆大霉素注射液甲氧苄啶2016.09.2317《氟苯尼考固体制剂中非法添加β-受体激动剂检查方法》氟苯尼考固体制剂:氟苯尼考粉、可溶性粉、预混剂β-受体激动剂:克伦特罗、莱克多巴胺、沙丁胺醇、西马特罗、西布特罗、妥布特罗、马布特罗、特布他林、氯丙那林2016.09.2318《盐酸林可霉素制剂中非法添加对乙酰氨基酚、安乃近检查方法》盐酸林可霉素制剂:盐酸林可霉素可溶性粉、注射液乙酰氨基酚、安乃近2016.09.2319《黄芪多糖注射液中非法添加地塞米松磷酸钠检查方法》黄芪多糖注射液地塞米松磷酸钠2016.09.2320《氟苯尼考液体制剂中非法添加β-受体激动剂检查方法》氟苯尼考液体制剂:氟苯尼考注射液、溶液β-受体激动剂:克伦特罗、莱克多巴胺、沙丁胺醇、西马特罗、西布特罗、妥布特罗、马布特罗、特布他林、氯丙那林2016.09.2321《柴胡注射液中非法添加利巴韦林检查方法》柴胡注射液利巴韦林2016.09.2322《柴胡注射液中非法添加盐酸吗啉胍、金刚烷胺、金刚乙胺检查方法》柴胡注射液盐酸吗啉胍、金刚烷胺、金刚乙胺2016.09.2323《柴胡注射液中非法添加对乙酰氨基酚检查方法》柴胡注射液对乙酰氨基酚2016.09.2324《鱼腥草注射液中非法添加甲氧氯普胺检查方法》鱼腥草注射液甲氧氯普胺2016.09.2325《鱼腥草注射液中非法添加林可霉素检查方法》鱼腥草注射液林可霉素2016.09.2326《鱼腥草注射液中非法添加水杨酸、氧氟沙星检查方法》鱼腥草注射液水杨酸、氧氟沙星2016.09.2327《中兽药散剂中非法添加金刚烷胺和金刚乙胺检查方法》中兽药散剂:白头翁散、苍术香连散、银翘散金刚烷胺、金刚乙胺2016.09.2328《扶正解毒散中非法添加茶碱、安乃近检查方法》扶正解毒散茶碱、安乃近2016.09.2329《黄连解毒散中非法添加对乙酰氨基酚、盐酸溴己新检查方法》黄连解毒散对乙酰氨基酚、盐酸溴己新2016.09.2330《酒石酸泰乐菌素可溶性粉中非法添加茶碱检查方法》酒石酸泰乐菌素可溶性粉茶碱2016.09.2331《硫酸安普霉素可溶性粉中非法添加诺氟沙星检查方法》硫酸安普霉素可溶性粉诺氟沙星2016.09.2332《硫酸黏菌素预混剂中非法添加乙酰甲喹检查方法》硫酸黏菌素预混剂乙酰甲喹2016.09.2333《硫酸安普霉素可溶性粉中非法添加头孢噻肟检查方法》硫酸安普霉素可溶性粉头孢噻肟2016.09.2334《阿维拉霉素预混剂中非法添加莫能菌素检查方法》阿维拉霉素预混剂莫能菌素2016.09.2335《甘草颗粒中非法添加吲哚美辛检查方法》甘草颗粒吲哚美辛2016.09.2336《兽药制剂中非法添加磺胺类药物检查方法》阿莫西林可溶性粉、氟苯尼考粉、盐酸林可霉素注射液、伊维菌素注射液、恩诺沙星注射液、盐酸环丙沙星可溶性粉、鱼腥草注射液、止痢散、黄芪多糖注射液、健胃散磺胺类药物:磺胺嘧啶、磺胺二甲嘧啶、磺胺对甲氧嘧啶、磺胺间甲氧嘧啶、磺胺甲噁唑2016.09.2337《兽药中非法添加甲氧苄啶检查方法》替米考星预混剂、磷酸泰乐菌素预混剂、盐酸多西环素可溶性粉、乳酸环丙沙星可溶性粉及注射液、恩诺沙星注射液甲氧苄啶2016.10.08农业部公告第2451号38《兽药中非法添加氨茶碱和二羟丙茶碱检查方法》环丙沙星注射液及可溶性粉、恩诺沙星注射液、替米考星注射液及预混剂、盐酸多西环素可溶性粉、酒石酸泰乐菌素可溶性粉、磷酸泰乐菌素预混剂、金花平喘散、荆防败毒散、麻杏石甘散氨茶碱、二羟丙茶碱2016.10.0839《兽药中非法添加对乙酰氨基酚、安乃近、地塞米松和地塞米松磷酸钠检查方法》氟苯尼考粉及预混剂、泰乐菌素预混剂、替米考星预混剂及注射液、板蓝根注射液、穿心莲注射液对乙酰氨基酚、安乃近、地塞米松和地塞米松磷酸钠2016.10.0840《兽药中非法添加喹乙醇和乙酰甲喹检查方法》硫酸黏菌素可溶性粉及预混剂、黄连解毒散、白头翁散喹乙醇和乙酰甲喹2016.10.0841《硫酸黏菌素制剂中非法添加阿托品检查方法》硫酸黏菌素制剂:硫酸黏菌素可溶性粉、硫酸黏菌素预混剂阿托品2016.10.0842《鱼腥草注射液中非法添加庆大霉素检查方法》鱼腥草注射液庆大霉素2017.02.27农业部公告第2494号43《兽药中非法添加非泼罗尼检查方法》阿维菌素粉非泼罗尼2017.08.31农业部公告第2571号44《兽药中非法添加药物快速筛查法(液相色谱-二级管阵列法)》兽药兽药及其原料与辅料中紫外光谱图库中所列153种药物2019.05.16农业部公告第169号45《麻杏石甘口服液、杨树花口服液中非法添加黄芩苷检查方法》麻杏石甘口服液、杨树花口服液黄芩苷2019.07.31农业农村部公告第199号46《兽药中非特定非法添加物质检查方法》兽药非特定非法添加物质:对人或动物具有药理活性或毒性作用等的物质2020.05.09农业农村部公告第289号47《中兽药固体制剂中非法添加物质检查方法—显微鉴别法》不含动物类、矿物类药材的中兽药散剂;中兽药散剂、颗粒剂、胶囊剂、片剂、丸剂、锭剂化学成分;其他药味2020.05.0948《兽药中非法添加硝基咪唑类药物检查方法》盐酸多西环素可溶性粉、硫酸新霉素可溶性粉罗硝唑、甲硝唑、替硝唑、地美硝唑、奥硝唑或异丙硝唑2020.05.0949《兽药中非法添加四环素类药物的检查方法》麻杏石甘散、银翘散、替米考星预混剂、氟苯尼考预混剂、磺胺氯吡嗪钠可溶性粉四环素类药物:土霉素、盐酸四环素、盐酸金霉素或多西环素2020.11.19农业农村部公告第361号50《兽药固体制剂中非法添加酰胺醇类药物的检查方法》健胃散、止痢散、球虫散、胃肠活、阿莫西林可溶性粉、氨苄西林可溶性粉、硫酸新霉素可溶性粉、盐酸大观霉素林可霉素可溶性粉、盐酸土霉素预混剂、注射用盐酸土霉素、盐酸金霉素可溶性粉、酒石酸泰乐菌素可溶性粉、硫酸红霉素可溶性粉、替米考星预混剂、盐酸林可霉素可溶性粉、硫酸粘菌素可溶性粉、恩诺沙星可溶性粉、盐酸环丙沙星可溶性粉、氧氟沙星可溶性粉、盐酸环丙沙星小檗碱预混剂、阿苯达唑伊维菌素预混剂、阿维菌素粉、地克珠利预混剂、维生素C可溶性粉、复方维生素B可溶性粉酰胺醇类药物:甲砜霉素、氟苯尼考、氯霉素2020.11.1951《兽药制剂中非法添加磺胺类及喹诺酮类25种化合物检查方法》黄芪多糖注射液、维生素C可溶性粉、硫酸卡那霉素注射液磺胺脒、磺胺、磺胺二甲异嘧啶钠、磺胺醋酰、磺胺嘧啶、甲氧苄啶、磺胺吡啶、马波沙星、磺胺甲基嘧啶、氧氟沙星、培氟沙星、洛美沙星、达氟沙星、恩诺沙星、磺胺间甲氧嘧啶、磺胺氯达嗪钠、沙拉沙星、磺胺多辛、磺胺甲噁唑、磺胺异噁唑、磺胺苯甲酰、磺胺氯吡嗪钠、磺胺地索辛、磺胺喹噁啉或磺胺苯吡唑等磺胺类及喹诺酮类25种化合物2021.01.11农业农村部公告第384号52林可霉素注射液中非法添加盐酸左旋咪唑检查方法林可霉素注射仦盐酸左旋咪唑2021.11.8农业农村部公告第485号53硫酸新霉素可溶性粉中非法添加苯并咪唑和大环内酯类抗寄生虫药物检查方法硫酸新霉素可溶性粉氧阿苯达唑、阿苯达唑、芬苯达唑、三氯苯达唑、乙酰氨基阿维菌素、阿维菌素、伊维菌素2022.10.13农业农村部公告第611号54复方麻黄散中非法添加喹烯酮检查方法复方麻黄散喹烯酮2022.10.13农业农村部公告第611号55恩诺沙星注射液中非法添加呋噻米检查方法恩诺沙星呋噻米2022.10.13农业农村部公告第611号56鸡传染性支气管炎活疫苗中非法添加/改变制苗用毒种检测方法鸡传染性支气管炎活疫苗-2023.10.23农业农村部公告第717号57鸡传染性法氏囊病活疫苗中非法添加/改变制苗用毒种检测方法鸡传染性法氏囊病活疫苗-2023.10.2358鸡新城疫活疫苗中非法添加/改变制苗用毒种检测方法
  • 标准品样品免费申请,先到先得!晒单更有奖励!
    ??????????????????? 好消息!好消息!为感谢一直以来关注阿尔塔科技的伙伴们,我们特选出以下几种有代表性的标准溶液作为样品,免费试用!免费领取!数量有限,赠完为止。First Standard?好不好,试一试才知道!????????????订货信息中文名称英文名称CAS#浓度包装????1ST20005-10H4, 4’-滴滴伊溶液,10ppm4,4’-DDE solution, 10ppm72-55-910ppm1ml1ST20022-10Mγ -六六六溶液,10ppmgamma-HCH solution, 10ppm58-89-910ppm1ml1ST20008-10H2, 4’-滴滴涕溶液, 10ppm2,4’-DDT solution, 10ppm789-02-610ppm1ml??1ST20508-100H??2, 4' -滴滴滴溶液, 100ppm2,4' -DDD solution, 100ppm53-19-0100ppm1ml1ST20111-100B杀螟硫磷溶液, 100ppmFenitrothion solution, 100ppm122-14-5100ppm1ml1ST20094-100B?二嗪磷溶液, 100ppmDiazinon solution, 100ppm333-41-5100ppm1ml???1ST20210-100H联苯菊酯溶液, 100ppmBifenthrin solution, 100ppm82657-04-3100ppm1ml1ST20271-100M克百威溶液, 100ppmCarbofuran solution, 100ppm1563-66-2100ppm1ml??1ST4017-100M磺胺嘧啶 (SDZ)溶液, 100ppmSulfadiazine solution, 100ppm68-35-9100ppm1ml1ST5738-100M诺氟沙星溶液, 100ppmNorfloxacin solution, 100ppm70458-96-7100ppm1ml??1ST4102-100A四环素溶液, 100ppmTetracycline solution, 100ppm60-54-8100ppm1ml1ST1114-100H邻苯二甲酸二丁酯溶液, 100ppmDibutyl phthalate solution, 100ppm84-74-2100ppm1ml1ST1114-10H邻苯二甲酸二丁酯溶液, 10ppmDibutyl phthalate solution, 10ppm84-74-210ppm1ml领取方式:您可以通过以下两种方式领取1. 网站申请请点击阿尔塔网站http://www.altascientific.cn/y/web/ 填写相关信息并提交2. 手机申请请关注阿尔塔微信公共平台(微信号Alta-Scientific),在底部的标准品商城中找到您希望申请的标准品(价格为1元),点击“立即购买”,在卖家留言中按以下格式填写您的信息并点击购买您所在的公司/单位:EmailQQ申请理由请注意:*无论何种申请方式,本次活动的样品运费由阿尔塔科技有限公司承担,但是因为手机商城系统要求,所有样品的价格设置为1元,您可以联系卖家,索取1元优惠码,实现0元领取,如果您愿意,直接壕掷1元购买也是可以的!*请在收货地址及手机联系方式中填写真实有效信息,便于我们发货*每个单位/公司限领一个样品 晒单有奖手机购买结束后,请在我的记录中找到您的订单记录,点击右下角的“我要晒订单”,将您的购买记录分享到朋友圈,还可以获得抽绳背包一个!礼品将随免费样品同时发放到您手中!填写试用反馈表可继续领取!第一次领取后,我们将给您发放样品试用反馈表,详细填写此表格并Email给阿尔塔市场部,您将获得第二次免费申请样品的机会!????????????????
  • 加拿大发布《食品药品法规》多项修正提案
    加拿大卫生部2010年1月18日发布了G/TBT/N/CAN/293、294、295、296、297号通报。标题:《食品药品法规》修正提案。其中:   293号通报   通过除去四种药品成分的列入,允许其具有非处方分类的资格,并且建议根据《天然保健品法规》,这些药品成分可以(全部或部分)作为非处方天然保健品管理。这将意味着含有这些药品成分的产品在加拿大出售将不需要处方,而且根据《天然保健品法规》,制造商可以申请这些药品成分的销售授权。主要有:   欧芹脑,油剂-欧芹脑油,是在欧芹籽、莳萝籽,以及最低程度在茴香籽、檫木根皮和其他植物种类的香精油中发现的。大约1克/天的剂量会使人受到毒性作用的影响。然而,在食物中通常存在的欧芹脑油显示没有在草药中发现的毒性剂量。   积雪草提取物及其有效成分-积雪草提取物,源自称为积雪草(gotukola)的小植物。积雪草提取物是一种浓缩的制剂。   地阿诺及其盐类和衍生物-地阿诺,也称为二甲氨基乙醇或DMAE。是在鲑鱼子、甲壳类动物和鱼油中发现的一种天然来源的化学物质,是一种卵磷脂的先质,一种在体内用于产生乙酰胆碱的化学物质,一种在头脑及身体其他部分发现的化学物质。   可可碱及其盐类-可可碱,是在可可粉和巧克力中发现的一种天然存在的化学物质,并且同样也可以合成配制用于商业用途。可可碱对人类的影响类似咖啡因,但程度较低。   293号通报拟批准日期,在加拿大官方公报第I部分公布6~8个月内。   拟生效日期:在措施批准之日。提意见截止日期:2010年3月11日。   294号通报   旨在为修订目前列入《食品药品法规》目录F第I部分的四种药物成分在保留特殊浓度、用途、给药途径处方分类的同时,规定允许非处方分类免除的提案提供评议机会。   依照《天然保健品法规》,该修正提案将允许制造商申请含有下列四种药品成分拟议免除的浓度、用途、给药途径或剂量的产品作为天然保健品的销售授权。   多巴胺及其盐类。目前列入的多巴胺及其盐类将修订成保留多巴胺及其盐类静脉注射剂(注射用药物)型处方分类。所有其他任何浓度和用途的剂型和给药途径将免除处方分类。多巴胺是通过静脉注射给药治疗肾脏衰竭、感染性休克,以及由于心脏病发作导致的急性心力衰竭。   金及其盐类。将修订成,保留金及其盐类和衍生物静脉注射剂(注射用药物)型的处方分类。经修订的列表将以不会改变金诺芬(一种单独列入目录F的金衍生物口服药)分类的措词表达。作为处方药品,金化合物注射给药(通过注射),用于治疗其他治疗方法已经无效的风湿性关节炎患者。   洛伐他丁。将修订成,除了当洛伐他丁以规定每一剂量单位或每天的剂量低于1.0毫克的口服剂型出售时之外,保留所有浓度和剂型的处方分类。含有低于1.0毫克的口服剂型的洛伐他丁将从处方分类中免除。   尿嘧啶及其盐类。将修订成,当出售用于治疗癌症时,保留尿嘧啶及其盐类的处方分类。尿嘧啶及其盐类在任何浓度、剂型或给药途径的其他用途将免除处方分类。尿嘧啶作为处方药与其他抗癌药品协力提高抗癌活性和减少不良反应。   295号通报   依照《天然保健品法规》,该修正提案将允许制造商申请含有下列三种药品成分拟议免除的浓度、用途、给药途径或剂量的产品作为天然保健品的销售授权。其中:   二甲基亚砜:当二甲基亚砜出售用于治疗间质性膀胱炎或硬皮病,以及所有兽医用途时,保留人用处方分类。所有其他用途的任何浓度和任何剂型的人用二甲基亚砜将从处方分类中免除。   左卡尼汀:当出售用于治疗原发性或继发性左卡尼汀缺乏症时,左卡尼汀及其盐类和衍生物保留处方分类。所有其他用途的任何浓度、剂型或给药途径的左卡尼汀及其盐类和衍生物将从处方分类中免除。左卡尼汀是在动物产品中自然存在的,并且在大部分植物中少量存在。原发性左卡尼汀缺乏症是一种涉及左卡尼汀在体内处理的遗传疾病,并且会导致肌无力和心力衰竭死亡。继发性左卡尼汀缺乏的综合病症是为数众多的,并且包括新陈代谢的遗传缺陷。   L-色氨酸:当作为单一成分出售时,将规定L-色氨酸的处方分类。L-色氨酸是不能在人体内合成的必需氨基酸之一,并且必须在饮食中供给。L-色氨酸在体内作用于维生素B3和神经递质5-羟色胺的形成。   296号通报   拟将四种药品成分增补进《食品药品法规》目录F第I部分。   艾库组单抗(Eculizumab)。用于治疗阵发性睡眠性血红蛋白尿(一种罕见的造血干细胞发生病变,在夜间发生血红蛋白尿)的患者。需要在有具体的说明书或在医生的直接监督下使用。   奥美沙坦酯。用于高血压产生原因不明的低血压症患者。奥美沙坦酯通过人体中自然产生的荷尔蒙和有效影响血压的血管紧缩素II起作用。需要在有具体的说明书或在医生的直接监督下使用。   血小板生成素拟肽。是一种用于治疗免疫性血小板减少性紫癜(一种体内免疫系统破坏血小板的疾病)患者血小板数量低的蛋白质。需要在有具体的说明书或在医生的直接监督下使用。   人白介素12/23单克隆抗体。用于治疗中度至重度慢性斑块状银屑病。银屑病是一种造成皮肤上出现称作斑块的鳞状红色斑的自身免疫性疾病。需要在有具体的说明书或在医生的直接监督下使用。其提意见截止日期:2010年3月27日。   297号通报   拟将三种药品成分增补进《食品药品法规》目录F第I部分。   戈利木单抗。是一种对免疫系统起作用的单克隆抗体,并且用于治疗成人活动性类风湿关节炎、银屑病性关节炎(炎症性关节疾病),以及强直性脊柱炎(炎症性脊骨疾病)。在治疗过程中需要医生的直接监督,并且需要常规实验室监测。戈利木单抗在正常的治疗剂量标准可能产生不良或严重的副作用。   拉帕替尼及其盐类。是一种抗癌药,用于治疗患有HER2+(受体阳性)乳腺癌,发展并扩散到身体其他部位的患者。在治疗过程中需要医生的直接监督,并且需要常规实验室监测。   伏立诺他胶囊。是一种抗癌药,用于治疗皮肤T细胞淋巴瘤(一种免疫系统癌症),用在当该病持续、恶化或在用其他药治疗期间或之后复发之时。在治疗过程中需要医生的直接监督,并且需要常规实验室监测。
  • 数字PCR准确量化定量结直肠癌患者血浆中ctDNA甲基化水平
    导读 :基因调控区的DNA甲基化状态的改变可导致多种癌症的发生。这种表观遗传学改变在生物学上是稳定的,并存在于循环肿瘤DNA(ctDNA)中,使其适合于早期检测和无创动态监测肿瘤负荷。数字PCR技术凭借其较高的灵敏度、精度、准确度以及对抑制剂的耐受度,针对低浓度样本检测时优势显著。文献解读: 法国贝桑松大学医院肿瘤生物学系的研究者在BMC Cancer(IF:3.8)发表了题为The detection of specific hypermethylated WIF1 and NPY genes in circulating DNA by crystal digital PCR&trade is a powerful new tool for colorectal cancer diagnosis and screening的文章。在转移性和II/III期结直肠癌(CRC)患者中,WNT inhibitor因子1(WIF1)和神经肽T(NPY)的甲基化程度较高,作者评估是否可以使用WIF1和NPY的甲基化程度作为一种结直肠癌标志物,该研究建立了一种将亚硫酸氢盐法(bisulfite-将未甲基胞嘧啶转化为尿嘧啶)与数字PCR相结合的方法。 文章相关结果: ▲Bisulfite方法检测甲基化的原理 A、Naica Crystal Miner分析软件给出的 3D点图,用于检测超甲基化WIF1和NPY和参考基因ALB。 B、通过测量在未甲基化DNA的背景下甲基化DNA的系列稀释液获得的标准曲线。为了确定观察到的突变体数量是否显著高于LOB,使用了基于假阳性概率的贝叶斯方法。对于每个结果,通过减去最终的假阳性分区(通过其概率分布加权)来校正阳性分区的数量。当校正后的95%置信区间的下限包括零时,该样本被视为阴性。 3色Naica Crystal Digital PCR检测WIF1和NPY 分别检测了10个来自III期或IV期CRC患者和5个健康个体的血浆样品。来自CRC患者的所有血浆DNA样本的高甲基化WIF1和NPY得分均为阳性,而在健康个体中未检测到高甲基化的WIF1和NPY。通过将WIF1和NPY浓度与ALB参考浓度对比评估,血浆DNA中的高甲基化WIF1比例范围为8%至93%,而高甲基化NPY的比例范围为0.1%至78%。血浆样品中检测到的检测限甲基化WIF1和NPY量分别为5.1和1.2cp/μL。 ※ Concentration of ALB (white bars), hypermethylated WIF1 (black bars) and hypermethylated NPY (hashed bars) in plasma of CRC patients and healthy individuals. 通过上述方法,即经亚硫酸氢盐转化后再进行3色数字PCR方法,能够在每25μL体系中可靠的检测低至25和5个拷贝的高甲基化WIF1和NPY,并且该检测结果可以用作通用的结直肠癌标志物和肿瘤特异性突变的替代物。使用3色Naica Crystal Digital PCR检测WIF1和NPY,结果和理论值一致,未出假阴性和假阳性结果。 该研究的结论是使用naica系统检测结直肠癌(CRC)中特定超甲基化的WIF1和NPY基因可以作为CRC诊断和筛查的强大新工具。研究发现,与邻近非肿瘤组织相比,肿瘤组织中的NPY和WIF1基因显著超甲基化(WIF1的p值0.001 NPY的p值0.001)。此外,研究发现NPY或WIF1在液体活检中的超甲基化具有95.5%的敏感性[95%CI 77–100%]和100%的特异性[95%CI 69–100%]。研究结果表明,NPY和WIF1的超甲基化是CRC的恒定特异性生物标志物,与它们在致癌过程中的潜在作用无关。 |欢迎来电垂询| naica️ ® 全自动微滴芯片数字PCR系统申请试用,大家可以拨打电话010-57256059或者官微申请,诚挚邀请您到Stilla数字PCR中国技术示范与服务中心参观,期待与您相见。 艾普拜生物提供多种靶点的数字PCR检测试剂盒和检测assay,欢迎订购和咨询。 个性化定制服务 艾普拜生物数字PCR个性化定制服务覆盖多种检测试剂需求 ( 如鉴定、易位、突变检测、多重突变、高阶多重等 ),更多信息请联系您身边艾普拜生物工作人员或电话联系我们。
  • 耐药性与甲基化|naica® 微滴芯片数字PCR系统助力霍乱弧菌耐药性机制分析
    导读自青霉素发现以来,抗生素已经成为人类对抗细菌的最有效武器,挽救了无数人的生命,但随着抗生素使用上的无节制,抗生素耐药性已成为一个重大的全球问题。因此了解微生物对抗生素适应的分子机制成为抗击抗生素耐药性(AMR)的一个重要途径。近日,法国巴斯德研究所的科学家运用转录组测序、naica® 微滴芯片数字PCR等技术证实VchM(霍乱弧菌特有甲基转移酶)参与应对氨基糖苷类抗生素的应激反应,这表明,DNA甲基化在氨基糖苷类抗生素的耐药机制中也发挥着重要作用,该文章刊载于《PLOS GENETICS》。应用亮点:▶ 运用naica® 微滴芯片数字PCR系统分析霍乱弧菌操纵子表达情况。▶ VchM缺失会导致生长缺陷,但却可以使霍乱弧菌对氨基糖苷产生应激。▶ VchM直接调节groES-2(伴侣蛋白编码基因)的胞嘧啶甲基化,从而改变其表达情况,影响霍乱弧菌耐药性。氨基糖苷(AGs,如:妥布霉素、链霉素、卡那霉素、庆大霉素和新霉素)是一类针对细菌核糖体小亚基的抗生素,其破坏翻译保真度,增加细胞中错误折叠蛋白质的水平。而本文的研究主要针对霍乱弧菌对其的耐药性机理。科学家们在之前的研究中发现,特定DNA甲基转移酶基因突变(VchM)的霍乱弧菌相比WT具有更强的耐药性,这表明DNA甲基化可能在霍乱弧菌适应AGs中发挥作用。VchM编码一种Orphan m5C DNA甲基转移酶,导致5‘-RCCGGY-3’基序的胞嘧啶甲基化,虽然VchM的缺失会导致生长缺陷,但霍乱弧菌细胞可以在亚致死浓度和致死浓度的抗生素下对氨基糖苷应激。▲图1:霍乱弧菌ΔVchM对亚致死浓度氨基糖苷的敏感性较低。GAs类,TOB(妥布霉素),0.6 μg/ml、GEN(庆大霉素),0.5 μg/ml、NEO(新霉素),2.0 μg/ml;非Gas类,CAM(氯霉素),0.4 μg/ml和CARB(β -内酰胺类西林),2.5 μg/ml对于ΔVchM霍乱弧菌的转录组测序和遗传分析发现,ΔVchM菌株中有4个直接参与蛋白质折叠的基因被上调。包括groEL-1,groEL-2,groES-1,groES-2。通过naica® 微滴芯片数字PCR系统对基因表达进行验证分析发现,ΔVchM霍乱弧菌中groES-2的表达在不同时期均有较大上调。进一步通过缺失验证表明了groESL-2对ΔVchM的抗生素高耐受性的作用。▲图2:ΔVchM菌株中groESL-2操纵子上调(对数生长期,Exp, OD600 ≈ 0.3;指数生长期,Stat, OD600 ≈ 1.8–2.0)在groESL-2区域观察存在四个VchM甲基化基序存在。进一步对基序分析发现,破坏这些基序会导致groESL-2基因表达增加(如图3)。且基序破环越多,则导致的表达上调更加明显。同时,ΔVchM中的groESL-2基因表达一直高于基序突变,表明还存在其他因素与甲基化协同控制groESL-2表达。这些结果表明,在霍乱杆菌中,一组特定的伴侣蛋白编码基因受DNA胞嘧啶甲基化的控制,将DNA甲基化与伴侣蛋白表达的调节和对抗生素的耐受联系起来。▲图3:在WT中,groESL-2区域的VchM位点突变导致基因表达增加法国巴斯德研究所是世界上最著名的研究所之一,成立130余年来一直走在世界科技前沿,是微生物学、免疫学、传染病学等学科的起源地,曾开发出狂犬病疫苗、天花疫苗、流感疫苗、黄热病疫苗等多个造福人类的疫苗产品,并培养了10名诺贝尔奖生理学或医学奖获得者,实现研究、教育、健康、创新“四位一体”的研究机构。
  • 分析科学仪器助力!陨石中发现DNA的主要成分
    日本北海道大学的大场康弘(Yasuhiro Oba)和合作者研究发现,组成DNA和RNA必不可少的嘧啶碱基可能是由富碳陨石带来地球的。相关研究4月26日发表于《自然—通讯》。 组成DNA和RNA离不开两类化学成分,也称碱基。这两类化学成分是嘧啶和嘌呤,其中嘧啶包括胞嘧啶、尿嘧啶、胸腺嘧啶,嘌呤包括鸟嘌呤、腺嘌呤。 目前为止,只有嘌呤碱基和尿嘧啶在陨石中发现过。然而,研究人员在模拟星际介质——恒星之间的空间——条件的实验中发现了嘧啶,有人据此推测它们可能是通过陨石抵达地球的。 大场康弘和同事使用了专门针对碱基进行优化的小规模量化的先进分析技术,分析了3颗富碳陨石:默奇森陨石、默里陨石和塔吉什湖陨石。 除了之前在陨石中已检测到的化合物,如鸟嘌呤、腺嘌呤、尿嘧啶之外,他们还首次发现了达到十亿分比浓度的各种嘧啶碱基,如胞嘧啶和胸腺嘧啶。 这些化合物存在的浓度与模拟太阳系形成前条件的实验预测的差不多。 作者认为,研究结果表明,这类化合物可能是在星际介质中经由光化学反应产生的,随后又在太阳系形成的过程中融入了小行星。这些化合物最终通过陨石抵达地球,对于早期生命出现的遗传学功能可能起到了一定作用。
  • 层浪前沿|IF最高15.82!!层浪流式细胞仪助推国内外八篇文献在国际期刊见刊发表
    ——浪花虽小,层层堆叠,亦能掀起滔天巨浪引言 于2016年开启层浪流式的正式研发,于2022年相继发布了国内首台三激光流式LongCyteTM(临床型)和FongCyteTM(科研型)。截止到2024年4月,近十年的技术沉淀搭载新兴企业平台,层浪流式细胞仪共助推了8篇国际期刊文章的发表,其中4篇IF值≥10,最高达15.82,展现出层浪流式受到非同凡响的国际权威认可,以及其如阪上走丸般的学术论文转化率。 论文集锦8IF=15.82 1区Q1No.1标题:Hepatic-Accumulated Obeticholic Acid and Atorvastatin Self-Assembled Nanocrystals Potentiate Ameliorative Effects in TreaUnravelling Immune-Inflammatory Responses and Lysosomal Adaptation: Insights from Two-Photon Excited Delayed Fluorescence Imagingtment of Metabolic-Associated Fatty Liver Disease期刊:Advanced Science时间:2024年3月11日领域:医学/消化系统疾病引用产品:FongCyteTM单位:吉林农业大学中药材学院;吉林大学医学院;华南理工大学生物医学科学与工程学院摘要:奥贝胆酸(OCA)是一种选择性法内甾体X受体激动剂,可改善多种肝脏疾病的损伤和炎症。但其临床应用仍然受溶解度差、生物利用度低和潜在副作用的限制。这篇文章创造了一种由OCA和降胆固醇的阿托伐他汀(AHT)组成的肝靶向纳米药物,其活性药物成分(API)含量理想,用于口服MAFLD的联合治疗。这种无载体纳米晶体(OCAHTs)是自组装的,不仅提高了胃肠道环境中的稳定性,而且通过胆汁酸转运蛋白介导的肠肝循环过程实现了肝脏蓄积。口服OCAHT在改善对乙酰氨基酚挑战小鼠和高脂肪诱导的MAFLD小鼠的肝损伤和炎症方面优于OCA和AHT的简单组合,且系统毒性较小。重要的是,OCAHT对MAFLD相关的分子通路具有深远的反向作用,包括损害脂质代谢、减少炎症和增强抗氧化反应。这项工作不仅为肝脏靶向药物递送提供了一种基于胆汁酸转运体的便捷策略,而且还提供了一种高效、安全的全API纳米晶体,从而促进了纳米药物针对MAFLD的实际转化。IF=14 1区Q1No.2标题:Bioactive mesoporous silica nanoparticle-functionalized titanium implants with controllable antimicrobial peptide release potentiate the regulation of inflammation and osseointegration期刊:Biomaterials时间:2024年3月5日领域:生物医学工程引用产品:FongCyteTM单位:华南理工大学组织修复与重建国家工程研究中心;华南理工大广东省生物医学工程国家重点实验室摘要:细菌感染和骨整合延迟是钛基骨科植入物的两大挑战。在本研究中,我们通过将抗菌肽(AMP)负载的二硒化物桥接介孔二氧化硅纳米颗粒(MSNs)固定在表面,开发了一种功能化的钛植入物Ti-M@A,显示出良好的长期和机械稳定性。功能化植入物对4种临床细菌(金黄色葡萄球菌、大肠杆菌、铜绿假单胞菌和MRSA)的抑菌活性超过95.71%,这是由于其具有破坏细菌膜的能力。此外,Ti-M@A可以有效抑制细菌的生物膜形成。由于骨髓间充质干细胞(mBMSCs)中硒的存在,功能化的植入物还能显著促进小鼠骨髓间充质干细胞(mBMSCs)的成骨分化。值得注意的是,它可以通过清除LPS激活的巨噬细胞中的ROS,在体外触发巨噬细胞走向M2极化。因此,感染和非感染骨缺损模型的体内试验表明,这种生物活性植入物不仅可以杀死超过98.82%的金黄色葡萄球菌,还可以促进骨整合,为解决钛植入物细菌感染和延迟骨整合提供了一种联合策略。IF=10.2 1区Q1No.3标题:Self-polymerized platinum (II)-Polydopamine nanomedicines for photo-chemotherapy of bladder Cancer favoring antitumor immune responses期刊:Journal of Nanobiotechnolog时间:2023年7月22日领域:医学/肿瘤学引用产品:FongCyteTM单位:内蒙古人民医院泌尿外科;广东省生物医学工程重点实验室教育部生物医学材料与工程重点实验室华南理工大学摘要:由于铂类药物在晚期膀胱癌(BC)的肿瘤蓄积较低,且化疗药物释放不受控制,因此全身给药具有明显的局限性。迫切需要先进的策略来克服目前铂类药物化疗的局限性,以达到最大的治疗效果和减少副作用。在这项研究中,自聚合铂(Ⅱ)聚多巴胺纳米复合物(PtPDs)被专门用于BC的有效化学光免疫治疗。高Pt负载含量(11.3%)的PtPDs在还原性肿瘤微环境和近红外(NIR)光照射的联合作用下可降解,从而控制Pt离子的释放,实现高效化疗。此外,聚多巴胺促进了更强的光热效应,以补充铂类化疗。因此,PtPDs在体外和体内为MB49 BC提供了有效的化学光热治疗,增强了免疫原性细胞死亡(ICD)效应和强大的抗肿瘤免疫应答。当与PD-1检查点阻断联合使用时,基于PtPDs的光化学疗法引起全身免疫反应,完全抑制原发和远处肿瘤的生长,且不会诱导全身毒性。本篇文章为金属-多巴胺自聚合提供了一种高度通用的方法,用于金属基化疗药物的精确递送,并可能作为一种有前途的纳米药物,用于有效和安全的铂类BC化疗。IF=10 No.4标题:Unravelling Immune-Inflammatory Responses and Lysosomal Adaptation: Insights from Two-Photon Excited Delayed Fluorescence Imaging期刊:Advanced Healthcare Material时间:2024年2月26日领域:生物化学引用产品:LongCyteTM单位:生物活性物质与天然药物作用国家重点实验室;中国医学科学院药物研究所北京活性物质发现与可药用性评价重点实验室摘要:具有近红外(NIR)发射的双光子激发(TPE)显微镜已成为一种很有前途的深部组织光学成像技术。近年来,长寿命发射探针荧光寿命成像技术的发展进一步提高了荧光成像的空间分辨率和精度,特别是在具有短寿命背景信号的复杂系统中。在这项研究中,介绍了两种创新的溶酶体靶向探针,Cz-NA和tCz-NA。这些探针具有多种优势,包括TPE (λex =880 nm),近红外发射(λem=650 nm)。热激活延迟荧光(TADF)寿命长(分别为1.05 μs和1.71 μs)。这些特点显著提高了深组织成像的分辨率和信噪比。通过将声光调制器(AOM)装置与TPE显微镜相结合,作者成功地将Cz-NA应用于双光子激发延迟荧光(TPEDF)成像中,以跟踪小鼠对炎症的溶酶体适应和免疫反应。这项研究揭示了溶酶体微管、先天免疫反应和体内炎症之间的关系,为未来开发无自发荧光的分子探针提供了有价值的见解。IF=9.7 1区Q1No.5标题:Engineering a biomimetic system for hepatocyte-specific RNAi treatment of non-alcoholic fatty liver disease期刊:Acta Biomaterialia时间:2024年1月15日领域:医学/生物医学工程引用产品:FongCyteTM单位:南方医科大学第三附属医院广东省骨关节退行性疾病重点实验室骨科;华南理工大学组织修复与重建国家工程研究中心;华南理工大学医学院摘要:RNA干扰(RNAi)对难治性肝病具有巨大的潜力。然而,建立针对肝细胞的特异性、高效和安全的递送系统仍然是一个巨大的挑战。文章描述了一种很有前途的肝细胞靶向系统,通过将三触角N-乙酰半乳糖胺(GalNAc)工程细胞膜与可生物降解的介孔二氧化硅纳米颗粒相结合,高效、安全地将siRNA递送至肝细胞并沉默靶PCSK9基因表达,用于治疗非酒精性脂肪性肝病。在优化了GalNA工程策略、插入顺序和细胞膜来源后,我们获得了性能最佳的alNAc制剂,与基于阳离子脂质的GalNAc制剂相比,具有强大的肝细胞特异性内化,减少了Kupffer细胞捕获,从而实现了强大的基因沉默和更低的肝毒性。因此,通过在高脂肪饮食喂养的小鼠中全身施用靶向PCSK9的siRNA,实现了脂质积累和损伤的持久减少,同时显示出理想的安全性。总而言之,这种GalNAc工程仿生物代表了肝细胞特异性基因治疗和预防代谢疾病的多功能、高效和安全的载体。IF=5.5 No.6标题:Synthesis and Biological Evaluation of Benzo [4,5]- and Naphtho[2′,1′:4,5]imidazo[1,2-c]pyrimidinone Derivatives期刊:Biomolecules时间:2023年11月20日领域:化学引用产品:LongCyteTM单位:俄罗斯科学院生物有机化学研究所摘要:氮杂咔唑因其抗致病性和抗肿瘤活性等特性而受到广泛关注。本研究合成了一系列结构相关的三环苯并[4,5]-和三环萘[2',1':4,5]咪唑[1,2-c]嘧啶酮衍生物,并对其具有一个或两个带正电的系链进行了抗增殖活性评价。带两个带氨基臂的铅四环衍生物5b对A549肺腺癌细胞的代谢活性有抑制作用,CC50值为3.6 μM,对VA13永生化成纤维细胞具有显著的选择性(SI =17.3)。细胞周期测定显示5b触发G2/M阻滞,无凋亡迹象。一项对其与多种DNA G4s和双链相互作用的研究,以及随后的双荧光素酶和插入物置换试验表明,插入物而不是G4调节的癌基因表达,可能有助于观察到的活性。最后,在浓度高达20mg /kg的72小时后,5b的水溶性盐被证明不会引起急性毒性作用、小鼠行为的改变、或体重的任何减少。因此,5b在体内研究中是潜力候选者;然而,还需要进一步的研究来阐明其分子靶点。IF=4.6 No.7标题:Imidazolium-Based Main-Chain Copolymers With Alternating Sequences for Broad-Spectrum Bactericidal Activity and Eradication of Bacterial Biofilms期刊:Macromolecular Bioscience时间:2024年1月23日领域:基础医学引用产品:FongCyteTM单位:中山大学深圳校区生物医学工程学院;广东省传感器技术与生物医学仪器重点实验室摘要:为了应对不断升级的细菌耐药性挑战,对抗浮游细胞增殖和消除根深蒂固的生物膜的必要性强调了阳离子聚合物抗菌剂的必要性。然而,有限的疗效和细胞毒性对其实际应用提出了挑战。本文介绍了以咪唑(Plm+)为阳离子组分的新型咪唑基主链共聚物。通过调节前体分子,对每个单元的疏水性和阳离子密度进行微调,从而对临床相关病原体产生广谱杀菌活性。Plm+1因其强大的抗菌性能而脱颖而出,对耐甲氧西林金黄色葡萄球菌(MRSA)的最小抑菌浓度为32ug mL-1,显著减少金黄色葡萄球菌(S.aureus)和大肠杆菌(E.coli)的生物膜。杀菌机制包括破坏外膜和细胞质膜,使细胞质膜去极化,并触发细胞内活性氧(ROS)的产生。总的来说,这项研究假设了基于咪唑的主链共聚物的潜力,系统地定制了它们的序列,可以作为对抗耐药细菌感染的潜力候选者。IF=2.899 No.8标题:Study on the correlation between IL-12p70, IL-17A and migraine in children期刊:Frontiers in Neurology时间:2024年1月31日领域:医学/神经引用产品:MateCyteTM单位:河北省石家庄市儿童医院小儿神经内科摘要:头痛是儿童最常见的神经系统症状之一,偏头痛是最常见的原发性头痛,是一种发病率高且呈逐年上升趋势的脑功能障碍。然而,目前这种疾病复杂的病理生理机制尚未得到充分解释,在诊断和治疗方面存在局限性。既往研究表明,炎症反应在成人偏头痛或动物模型的发生发展中起一定作用,其中最主要的是促炎反应,如细胞因子IL-1ß 、IL-6、TNF-α、CGRP等展开。随着科学技术的进步,细胞因子检测在临床诊断和治疗中得到了广泛的应用,但其在儿童偏头痛诊断中的应用价值还有待进一步探索。本研究基于目前临床应用的IL-12P70、IL-17A等12种细胞因子检测方法,主要探讨与儿童偏头痛存在相关的细胞因子及其水平。
  • 岛津倾情赞助第八届国际生物药大会
    随着审评、审批速度大大加快、市场准入规则逐渐清晰,尤其在新冠疫情的影响下,临床上对生物药的需求日益迫切,生物药已经成为世界经济的主导产业。然而,新药开发过于集中在个别热门靶点、生产成本居高不下、质量一致性难以维持、对于新型治疗手段缺乏统一的质量标准等问题,不仅是某一家生物药企业面临的问题,更是中国生物药产业必须克服的挑战。作为中国生物药企业参与度最高的年度盛会,BioCon 2021第八届国际生物药大会于2021年4月22-23日在上海成功举办,岛津企业管理(中国)有限公司(以下简称“岛津”)作为赞助商出席了本次大会。 本次大会共分为七大专场,分为专场一创新抗体/蛋白药研发、专场二抗体/蛋白药物工艺开发与优化、专场三细胞治疗药物开发与产业化、专场四基因治疗与溶瘤病毒开发、专场五生物药商业化生产制造、专场六核酸疫苗与药物研发及专场七生物药产业发展高峰论坛,岛津主要聚焦在抗体/蛋白药物工艺开发与优化专场。 在抗体/蛋白药物工艺开发与优化分会场中,关于生物制剂分析与开发实践专题,岛津分析计测事业部市场部程汉兴发表了题目为《生物药从非临床研究到工艺开发以及质量控制解决方案》的报告。 在报告中提到工艺监测和质量控制推动生物药高质量发展,岛津现有基于LC MS/MS方法的培养基和工艺监测方案可以通过离线和在线模式实现分析培养基以及细胞上清液中有机组分,监控培养基中的氨基酸,核苷酸等125种以上物质含量变化,最终选择通过实时监控培养基中成分消耗变化,进而优化培养基及补料成分,保证抗体产品高质量生产。 此外对于工艺过程中金属元素变化,会对于产品电荷异质性会造成一定影响,因此可利用岛津ICP-MS分析培养过程中金属元素含量变化,通过监测变化改善电荷变异体的比例。此外还提到对于抗体的表征分析,利用液相串联高分辨质谱Q-TOF分析抗体的分子量,蛋白序列,二硫键以及糖型分析,最终可利用岛津高效液相色谱进行肽图分析,优质的色谱稳定性保证产品放行时实验效率更高。 整个会议期间,岛津在相应展位与参会的行业专家进行了热烈交流,并与参会专家一同交流探讨了大分子药物在生物工艺与质量表征分析方便的新技术,直至大会结束。
  • 翼路有你 携手八载 共创未来|瀚辰光翼八周年庆暨家庭开放日
    感谢翼路有你携手同行八载共创辉煌未来!2024年4月13日,在这个阳光明媚的晴朗天 我们迎来了瀚辰光翼8周年庆&家庭开放日 一起来看看欢声笑语的精彩瞬间吧! 瀚辰精心布置了打卡区,让每一位到场的瀚辰er都能留住这值得纪念的一刻!感谢瀚辰er们这一年的努力与陪伴,新的一年我们也携手并进!今天,每一位到场的大伙伴小伙伴都是我们最尊敬最可爱的嘉宾~你们的笑容让这一天更值得纪念!本次周年庆暨家庭开放日,瀚辰精心准备了多种轻松快乐的互动游戏~室外趣味闯关游戏有:吹球过河、趣味套圈圈、光盘拔河、跳绳挑战、筷子运球、投壶……让我们一起运动起来!同时,我们也策划了室内亲子互动游戏~为每一位萌娃准备了石膏娃娃彩绘、扭扭棒花DIY、彩泥捏捏乐、奶油胶DIY、考古挖挖挖……各位家长们和小朋友们,展现你们实力的时候到啦~Show time~今天,瀚辰er们和他们最最亲爱的家人们一起来到了他们办公的地方,参观了他们为之奋斗拼搏的地方。员工及家属感受到了瀚辰光翼的人文关怀,家人们对员工工作的理解与支持,是最动人的爱,是幸福感与向心力的具现!公司的发展离不开每位瀚辰人的努力拼搏和勤勉付出,更离不开瀚辰家属背后的默默支持和包容理解,衷心感谢大家为公司发展所奉献的一切。瀚辰也将一如既往地致力于为大家提供更好的工作和生活环境,与大家携手创造更加美好的未来!
  • Nature|天津工生所:新一代碱基编辑技术开发获进展
    碱基编辑(base editing,BE)作为前沿的基因组编辑技术,能够在基因组水平上实现精确、高效的单碱基编辑。该技术广泛应用于基础研究、基因治疗和细胞工厂构建等领域。常用的DNA碱基编辑器主要是通过将可编程的DNA结合蛋白(如Cas9)与碱基脱氨酶融合实现的,包括胞嘧啶碱基编辑器(CBE)、腺嘌呤碱基编辑器(ABE)以及糖基化酶碱基编辑器(GBE)等,可以实现C-to-T、A-to-G以及C-to-G等种类的碱基编辑。然而,这些碱基编辑器是针对C和A碱基的直接编辑,且所包含的脱氨酶可能导致非Cas9依赖的DNA或RNA脱靶。 中国科学院天津工业生物技术研究所研究员毕昌昊带领的合成生物技术研究团队,联合研究员张学礼带领的微生物代谢工程研究团队,开发了不依赖脱氨酶(deaminase-free,DAF)的碱基编辑器DAF-CBE和DAF-TBE,分别在大肠杆菌中实现C-to-A、T-to-A的碱基颠换,在哺乳动物细胞中实现C-to-G、T-to-G的碱基颠换编辑。 该研究通过定向进化改造了人源尿嘧啶糖基化酶(UNG)的两个突变体UNG(N204D)和UNG (Y147A),获得了两种高活性的DNA糖基化酶,分别可以作用于胞嘧啶碱基的CDG4和胸腺嘧啶碱基的TDG3。进而,研究将这两种DNA糖基化酶与nCas9(Cas9、D10A)融合,构建了CDG4-nCas9和TDG3-nCas9两种碱基编辑器,用于在大肠杆菌中进行C-to-A和T-to-A的编辑。实验结果显示,CDG4-nCas9和TDG3-nCas9在大肠杆菌中的编辑效率最高分别达到58.7%和54.3%。进一步,研究针对Homo sapiens密码子优化版本的CDG4-nCas9和TDG3-nCas9,在HEK293T细胞中实现了C-to-G和T-to-G的颠换编辑,编辑效率分别达到38.8%和48.7%。这两种编辑器的脱靶效果低于常用的胞嘧啶碱基编辑器(BE4max)和糖基化酶碱基编辑器(CGBEs)。因此,研究将这两个编辑器命名为DAF-CBE和DAF-TBE。此外,通过进一步的工程改造,该团队优化了CDG和TDG的空间位置,得到了DAF-CBE2和DAF-TBE2的新版本。它们的编辑窗口从原来的间隔序列(protospacer sequence)5'端移动到中间区域,且C-to-G和T-to-G的编辑效率分别提高了3.5倍和1.2倍。DAF-CBE和DAF-TBE实现了人诱导多功能干细胞(hiPSC)高效编辑。 综上所述,经过定向进化改造,该团队开发的DAF-CBEs和DAF-TBEs碱基编辑器在大肠杆菌和哺乳动物细胞中实现了高效的碱基颠换编辑,无需使用脱氨酶。与现有的引导编辑器(prime editing)或糖基化酶碱基编辑器(GBEs)相比,DAF-BEs具有相当的编辑效率、更小的尺寸和更低的脱靶率,这扩展了碱基编辑器的编辑类型,为工业菌株铸造和生物医药等领域的相关研究提供了新的技术工具。 近日,相关研究成果发表在《自然-生物技术》(Nature Biotechnology)上。研究工作得到国家重点研发计划、国家自然科学基金、天津市合成生物技术创新能力提升行动专项、中国科学院青年创新促进会和天津市自然科学基金的支持。论文链接DAF-BEs碱基编辑器的设计及进化
  • 农残、兽残标准品溶液自由组合,开启神速实验模式
    食品安全已经上升到了关系国际民生和国家安全战略的高度,为确保国民“舌尖上的安全”,2014年8月1日,由农业部与国家卫生计生委联合发布的新版《食品中农药最大残留限量》(GB2763-2014) 标准正式实施,不仅要求部分农药的残留量降低,而且增加了新农药的残留标准,被称为“最严的农药残留国家标准”。2015 版药典通则2341中规定了76 种农药的气相色谱串联质谱法和155 种农药的液相色谱串联质谱法及检出限。随着多项农残限量标准出台,对于食品及药品相关产业影响巨大,对各检测机构的硬件设备及检测技术提出了更高的要求,对标准品的需求也更大。在农药残留、兽药残留检测的日常工作中,科研工作者经常需要购买很多的标准品,花费很多的时间配制标准溶液和混标溶液,既费时又费力,而且容易造成浪费。 近期,Sciex连续发布多种农药兽药分析方法。《蔬菜和水果中农残分析的整体解决方案》,对农业部规定的70多种例行监测的农药中适合液质联用检测的51种农药给出了快速高效的定量分析方法。《动物源食品中多兽药残留的181种高通量筛查和定量方法》,使用QTRAP?4500液相色谱质谱联用系统建立了一种多兽残高通量的筛查和定量方法,包含18大类181个常见兽药。该方法在鸡肉、牛肉、猪肉等基质中通过验证,可用于肉中多兽残的筛查和定量分析,整个样品分析过程简单、快速、通用、灵敏。《GB 2763-2014 标准中307种农药的MRM离子对数据库》,针对 GB 2763-2014标准中307种可以液质离子化的农药建立了MRM离子对数据库,包括了 MRM 质谱方法所有参数信息,可直接用于建立农残检测的 LC-MS/MS 分析方法。 作为Sciex密切的合作伙伴,阿尔塔科技在Sciex农药兽药残留分析方法研发过程中积极配合,提供以上检测方法的相关标准品,并在新方法的研究中通力合作,不仅能够提供新版药典中容易质子化的GC/MS-MS方法中的76种农药、LC/MS-MS方法中的155种农药,还可以提供《GB 2763-2014》 标准中其他种类的标准品,根据客户需要研制各种农药兽药的标准溶液和混标溶液,有效搭配,自由组合,从几个品种到几十个、上百个品种,即开即用,省钱省力省时间,助您提高实验效率! 《动物源食品中多兽药残留的181种高通量筛查和定量方法》 包括以下各种标准品、标准溶液及混标溶液的组合方法包1ST9232-Kit 181种兽药混标 1ST2210醋酸甲羟孕酮,1ST2218地塞米松,1ST8020劳拉西泮,1ST5719氟罗沙星,1ST2221甲睾酮,1ST2241醋酸泼尼松龙,1ST8029三唑仑,1ST7801红霉素,1ST2286丙酸睾丸素,1ST2219醋酸地塞米松,1ST8031奥沙西泮,1ST7802A林可霉素盐酸盐,1ST2208醋酸氯地孕酮,1ST2235倍他米松戊酸酯,1ST8021硝西泮,1ST7803A盐酸克林霉素,1ST2292去氢睾酮,1ST2253,醋酸倍他米松,1ST5556羟基甲硝唑,1ST7712罗红霉素,1ST2275群勃龙,1ST8531莫美他松,1ST5554甲硝唑,1ST7809交沙霉素,1ST8505苯丙酸诺龙,1ST2244氟轻松醋酸酯,1ST5525二甲硝咪唑 ,1ST7806泰乐菌素,1ST7191格列本脲,1ST2242阿氯米松双丙酸酯,1ST5568罗硝唑,1ST7009吉他霉素,1ST7192格列美脲,1ST7200替诺昔康,1ST5519氯甲硝咪唑,1ST7805替米考星,1ST7193格列吡嗪,1ST8002氟芬那酸,1ST5513苯硝咪唑,1ST7013头孢氨苄,1ST7195瑞格列奈,1ST8009茚酮苯丙酸,1ST5542异丙硝唑,1ST12001头孢匹啉,1ST7197甲苯磺丁脲,1ST8004双水杨酸酯,1ST5501阿苯达唑,1ST10007头孢克洛,1ST2227泼尼松,1ST7152卡洛芬,1ST5505阿苯哒唑亚砜,1ST12002头孢克肟,1ST2228可的松,1ST7153酮基布洛芬,1ST5536氟苯咪唑,1ST12003头孢拉定,1ST2226氢化可的松,1ST7154托灭酸,1ST5531芬苯达唑,1ST10009头孢匹罗,1ST2229甲基泼尼松龙,1ST7155,美洛昔康,1ST5561奥芬达唑,1ST12004,头孢他美酯,1ST2246氟米龙,1ST7156氟尼辛,1ST5546甲苯咪唑,1ST7014头孢唑啉,1ST2230倍他米松,1ST7159甲芬那酸,1ST2522噻苯哒唑,1ST120053-去乙酰基头孢噻肟,1ST2224曲安西龙,1ST7161双氯芬酸,1ST5579替硝唑,1ST12006头孢孟多锂,1ST2262醋酸泼尼松,1ST7162吡罗昔康,1ST5591奥硝唑,1ST12012头孢米诺钠盐,1ST2238醋酸可的松,1ST7165萘丁美酮,1ST1307A莱克多巴胺盐酸盐,1ST12007头孢哌酮钠,1ST2240醋酸氢化可的松,1ST7166舒林酸,1ST1302沙丁胺醇,1ST12011头孢羟氨苄,1ST2232倍氯米松1ST7167托麦汀,1ST1304A特布他林硫酸盐,1ST7003头孢噻呋,1ST2231氟米松,1ST7168吲哚美辛,1ST1309西马特罗,1ST10011头孢氨噻,1ST2257甲基泼尼松龙醋酸酯,1ST4017磺胺嘧啶,1ST1301A,盐酸克伦特罗,1ST10012头孢他啶,1ST2247醋酸氟米龙,1ST4007磺胺噻唑,1ST1303妥布特罗盐酸盐,1ST12008头孢洛宁,1ST2256醋酸氟氢可的松,1ST4003磺胺吡啶,ST1324A喷布特罗盐酸盐,1ST12009头孢喹肟,1ST2236布地奈德,1ST4002磺胺甲基嘧啶,1ST8033A盐酸普萘洛尔,1ST4102四环素,1ST2249氢化可的松丁酸酯,1ST4014磺胺二甲基嘧啶,1ST1313氯丙那林,1ST4111A盐酸土霉素,1ST2233曲安奈德,1ST4040磺胺间甲氧嘧啶,1ST4107恩诺沙星,1ST4110A盐酸金霉素,1ST2234氟氢缩松,1ST4008磺胺甲噻二唑,1ST5738诺氟沙星,1ST4122X多西环素单盐酸半乙醇半水合物,1ST2254地夫可特,1ST4036磺胺对甲氧嘧啶,1ST5756培氟沙星,1ST7137奥拉多司,1ST2250氢化可的松戊酸酯,1ST4034磺胺氯哒嗪,1ST5703环丙沙星,1ST7104氯羟吡啶,1ST2248哈西奈德,1ST4004磺胺甲氧哒嗪,1ST5740氧氟沙星,1ST10021金刚烷胺,1ST2237氯倍他索丙酸酯,1ST4006磺胺邻二甲氧嘧啶,1ST5757沙拉沙星,1ST7001氯霉素,1ST2263醋酸曲安奈德,1ST4042磺胺间二甲氧嘧啶,1ST5714依诺沙星,1ST7002甲砜霉素,1ST2260倍他松丁酸酯,1ST4005磺胺甲基异噁唑,1ST5759洛美沙星,1ST7005氟苯尼考,1ST2251泼尼卡酯,1ST4010磺胺二甲异噁唑,1ST5735萘啶酸,1ST2215己烯雌酚,1ST2255二氟拉松双醋酸酯,1ST4012苯甲酰磺胺,1ST5745恶喹酸,1ST2217双烯雌酚,1ST2243安西奈德,1ST4028磺胺喹恶啉,1ST5761氟甲喹,1ST7201A玉米赤霉醇,1ST2259莫米他松糠酸酯,1ST4001磺胺醋纤,1ST4100达氟沙星,1ST7201B β-玉米赤霉醇,1ST2261倍氯米松双丙酸酯,1ST4009甲氧苄氨嘧啶,1ST5758双氟沙星,1ST7202α-玉米赤霉烯醇,1ST2239氟替卡松丙酸酯,1ST4013磺胺苯吡唑,1ST5743奥比沙星,1ST7202B β-玉米赤霉烯醇,1ST2252醋酸曲安西龙双,1ST8015咪哒唑仑,1ST5753司帕沙星,1ST7203玉米赤霉酮,1ST2225泼尼松龙,1ST8016阿普唑仑,1ST7204玉米赤霉烯酮,1ST8019氯硝西泮,1ST7102地西泮 《蔬菜水果中农业部例行监测农残的LC-MS/MS分析方法》中包括以下51种纯品、标准溶液及混标溶液的组合方法包1ST27019-10M,51种农药混标,10ppm 1ST21058多菌灵,1ST20348氟啶脲,1ST20140甲基对硫磷,1ST20297啶虫脒,1ST25000阿维菌素,1ST20111杀螟硫磷,1ST20298吡虫啉,1ST20167氧乐果,1ST20065倍硫磷,1ST20001毒死蜱,1ST20345除虫脲,1ST20173水胺硫磷,1ST20350噻虫嗪,1ST20127甲基异柳磷,1ST20434对硫磷,1ST21145烯酰吗啉,1ST20097敌敌畏,1ST21202三唑酮,1ST21189苯醚甲环唑,1ST20093甲胺磷,1ST20094二嗪磷,1ST21226腐霉利,1ST20449灭多威,1ST20349灭幼脲,1ST20305氟虫腈,1ST20144乙酰甲胺磷,1ST20189亚胺硫磷,1ST20438三唑磷,1ST21161嘧霉胺,1ST20168马拉硫磷,1ST20155丙溴磷,1ST20277甲萘威,1ST20406哒螨灵,1ST22249二甲戊灵,1ST20273涕灭威亚砜,1ST20172伏杀硫磷,1ST20271克百威,1ST20375涕灭威,1ST21157嘧菌酯,1ST20170辛硫磷,1ST20098乐果,1ST20288甲氨基阿维菌素苯甲酸盐,1ST21164异菌脲,1ST202593-羟基克百威,1ST20222甲氰菊酯,1ST20182敌百虫,1ST20266涕灭威砜,1ST20210联苯菊酯,1ST21247咪鲜胺,1ST20124甲拌磷,1ST20396虫螨腈 《GB2763-2014 标准中307种农药的MRM离子对数据库》中使用的纯品、标准溶液及组合混合标准溶液方法包参见1ST27048,307种农药混标溶液。 《2015版中国药典通则2341中76种农药的气相色谱串联质谱法》中使用的纯品、标准溶液及组合混合标准溶液方法包参见1ST27046,76种农药混标溶液。 《2015版中国药典通则2341中155 种农药的液相色谱串联质谱法》中使用的纯品、标准溶液及组合混合标准溶液方法包参见1ST27045,155种农药混标溶液。
  • 这一省通报2024年农产品质量安全检测技术能力验证结果
    湖南省农业农村厅通报了2024年农产品质量安全检测技术能力验证结果,全文如下:关于2024年农产品质量安全检测技术能力验证结果的通报各市州、县市区农业农村局,各相关单位:根据农业农村部《农产品质量安全检测机构考核办法》规定,按照《关于开展2024年农产品质量安全检测技术能力验证工作的通知》要求,我厅于6月下旬组织开展了全省农产品质量安全检测技术能力验证工作,现将情况通报如下:能力验证包括农产品中农药残留、重金属含量、畜禽产品中兽药和违禁添加物残留和水产品中药物残留等四项内容,共有128个农产品检测机构参加,86个结果合格,合格率为67.2%。其中,市级检测机构16个,12个合格,合格率为75%;县市区检测机构85个(南县检验检测中心因实验室搬迁未参加),63个合格,合格率为74.1%;其它类检测机构27个(株洲市鸿锟检测技术有限公司未按时参加、湖南宏润检测有限公司未参加农药残留项目),11个合格,合格率为40.7%。农产品农药残留检测:考核茄子中甲胺磷等73种农药残留定量检测结果的准确性,按照真值法进行判定。共有120个检测机构参加,97个结果合格,合格率为80.8%、优秀率为45%。从机构类别看,市级检测机构12个,11个合格,合格率为91.7%、优秀率为75%;县级检测机构83个,64个合格,合格率为77.1%、优秀率为42.2%;其它类检测机构25个,22个合格,合格率为88%、优秀率为40%。从考核内容看,参加全项考核16个,全部合格,合格率为100%、优秀率为68.8%;参加必考项考核104个,81个合格,合格率为77.9%、优秀率为41.3%。23个不合格检测机构分别是:娄底市、安仁县、桂东县、临武县、永兴县、辰溪县、沅陵县、新晃县、中方县、涟源市、武冈市、邵阳县、湘乡市、泸溪县、安化县、沅江市、宁远县、新田县、汨罗市、岳阳县农产品检测机构和湖南安基检测技术有限公司、湖南华弘检测有限公司、湖南省勘测设计院有限公司。农产品重金属含量检测:考核大米中铅、镉含量定量检测结果的准确性,按照真值法进行判定。共有44个检测机构参加,35个结果合格,合格率为79.5%。其中,市级检测机构6个,5个合格,合格率为83.3%;县级检测机构12个,9个合格,合格率为84.6%;其它类检测机构26个,21个合格,合格率为80.8%。9个不合格检测机构分别是:益阳市、衡阳县、隆回县、沅江市农产品检测机构和湖南鼎誉检验检测股份有限公司、湖南伟达纳比检测科学有限公司、湖南宏润检测有限公司、湖南华弘检测有限公司、湖南湘中博一检测技术有限公司。畜禽产品兽药和违禁添加物残留检测:考核猪肉中β一受体激动剂(克伦特罗、莱克多巴胺、沙丁胺醇)和磺胺类(磺胺甲噁唑SMZ、磺胺甲氧基嘧啶SMM、磺胺二甲氧嘧啶SDM)残留定量检测的准确性,按照真值法进行判定。共有31个检测机构参加,25个结果合格,合格率为80.6%、优秀率为38.7%。从机构类别看,市级检测机构8个,7个合格,合格率为87.5%、优秀率为50%;县级检测机构2个,全部合格,合格率为100%;其它类检测机构21个,16个合格,合格率为76.2%、优秀率为38.1%。从考核内容看,参加β一受体激动剂类残留检测27个,25个合格,合格率为92.6%、优秀率为81.5%;参加磺胺类残留检测28个,23个合格,合格率为82.1%、优秀率为39.3%。6个不合格检测机构分别是:郴州市农产品质量检验检测中心和湖南伟达纳比检测科学有限公司、广东省食品工业研究所有限公司湖南分公司、中南粮油食品科学研究院有限公司、湖南省硕远检测技术有限公司、湖南华弘检测有限公司。水产品药物残留检测能力验证:考核鲤鱼中磺胺类(磺胺嘧啶、磺胺二甲基嘧啶、磺胺甲基嘧啶、磺胺异恶唑、磺胺甲基异恶唑)和硝基呋喃类代谢物(AOZ、AMOZ、AHD、SEM)残留定量检测结果的准确性,按照真值法进行判定。共有31个检测机构参加,18个结果合格,合格率为58.1%、优秀率为19.4%。从机构类别看,市级检测机构7个,5个合格,合格率为71.4%、优秀率为28.6%;县级检测机构3个,1个合格,合格率为33.3%、优秀率为33.3%;其它类检测机构21个,12个合格,合格率为57.1%、优秀率为14.3%。从考核内容看,参加磺胺类残留检测26个,21个合格,合格率为80.8%、优秀率为53.8%;参加硝基呋喃类残留检测29个,19个合格,合格率为65.5%、优秀率为27.6%。13个不合格检测机构分别是:娄底市畜禽水产品质量安全检测中心、郴州市、湘阴县、沅江市农产品检测机构和长沙海关技术中心、中国检验认证集团湖南有限公司、湖南山水检测有限公司、湖南广绿检测有限公司、湖南韬谱科技有限公司、广东省食品工业研究所有限公司湖南分公司、湖南华弘检测有限公司、中大智能科技股份有限公司、湖南省硕远检测技术有限公司。能力验证不合格的检测机构要认真分析和查找原因,迅速开展整改,并按要求参加不合格项目的复验,因故未参加的检测机构也应及时参加复验。复验工作具体要求与能力验证一致,由原各技术支持单位具体承担,样品发放时间为8月27日。如有任何问题或建议,请及时联系厅农产品质量安全监管处,联系人:杨韶红,电话:13687380849。2024年农产品质量安全检测技术能力验证结果汇总表.doc.doc湖南省农业农村厅办公室2024年7月25日消息来源:https://agri.hunan.gov.cn/xxgk/tzgg/202407/t20240729_33365973.html
  • 化妆品中米诺地尔检测方法(暂行)发布
    为做好化妆品中米诺地尔检测工作,国家食品药品监督管理局组织有关专家对《化妆品中米诺地尔的检测方法(暂行)》进行了论证,并经化妆品标准专家委员会审评通过,日前予以印发。   附:关于印发化妆品中米诺地尔检测方法(暂行)的通知 各省、自治区、直辖市食品药品监督管理局(药品监督管理局),新疆生产建设兵团食品药品监督管理局:   根据《化妆品卫生规范》(2007年版)规定,6-(哌嗪基)-2,4-嘧啶二胺-3-氧化物(米诺地尔)为禁用组分。为做好化妆品中米诺地尔的检测工作,国家局组织有关专家对《化妆品中米诺地尔的检测方法(暂行)》进行了论证,并经国家局化妆品标准专家委员会审评通过,现予印发,请遵照执行。                             国家食品药品监督管理局                            二○一○年八月二十三日
  • 中铁八局重庆工程检测中心顺利通过国家计量认证复查
    2010年7月27日至29日,受国家认证认可监督管理委员会的委派,铁道评审组专家杨安杰、重庆市技术监督局专家李玲一行四人来到中铁八局集团重庆工程检测中心,对中心进行了计量认证复查评审。   评审组采取试验室环境查看、现场试验考核、对授权签字人进行提问和召开座谈会等形式对重庆工程检测中心进行了全面考评,并对技术文件、原始记录和质量管理体系的运行情况进行了全面审查。审查后,评审组认为工程检测中心建立了较完善的质量管理体系,修订了质量手册、程序文件、作业指导书和各种记录表格等,覆盖了计量认证所规定的条款。组织管理、实验室环境、仪器设备、量值溯源、人员素质和质量管理体系的运行,符合认证评审准则的规定。   此次复审由原来的12类61种产品228个参数扩展为15类63种产品267个参数。新增工程用水及土工合成材料等三类39个参数。此次计量认证复查评审的顺利通过,表明中铁八局重庆工程检测中心检测能力又上了一个新台阶。
  • 585万!通辽市农畜产品质量安全中心采购相关试剂及设备
    项目概况产品分析仪器仪表招标项目的潜在投标人应在内蒙古自治区政府采购网获取招标文件,并于2021年09月08日 09时00分(北京时间)前递交投标文件。一、项目基本情况项目编号:TLSZCS-G-H-210063项目名称:产品分析仪器仪表采购方式:公开招标预算金额:5,850,000.00元采购需求:合同包1(分析及鉴定系统):合同包预算金额:3,800,000.00元品目号品目名称采购标的数量(单位)技术规格、参数及要求品目预算(元)最高限价(元)1-1其他专用仪器仪表农畜产品品质及产地溯源分析系统1(套)详见采购文件1,600,000.001,600,000.001-2其他专用仪器仪表高分辨农畜产品农兽药残留分析及鉴定系统1(套)详见采购文件2,200,000.002,200,000.00本合同包不接受联合体投标合同履行期限:合同签订后30个日历日内交货合同包2(兽药残留检测标准物质耗材):合同包预算金额:550,055.00元品目号品目名称采购标的数量(单位)技术规格、参数及要求品目预算(元)最高限价(元)2-1其他专用仪器仪表甲磺酸培氟沙星(液体)10(支)详见采购文件1,200.001,200.002-2其他专用仪器仪表盐酸沙拉沙星(液体)10(支)详见采购文件600.00600.002-3其他专用仪器仪表诺氟沙星(液体)10(支)详见采购文件600.00600.002-4其他专用仪器仪表盐酸洛美沙星(液体)10(支)详见采购文件680.00680.002-5其他专用仪器仪表氧氟沙星(液体)10(支)详见采购文件600.00600.002-6其他专用仪器仪表盐酸环丙沙星(液体)10(支)详见采购文件600.00600.002-7其他专用仪器仪表甲磺酸达诺沙星(液体)10(支)详见采购文件600.00600.002-8其他专用仪器仪表恩诺沙星(液体)10(支)详见采购文件110.00110.002-9其他专用仪器仪表氘代盐酸恩诺沙星-D5(液体)10(支)详见采购文件3,550.003,550.002-10其他专用仪器仪表喷布特罗盐酸盐10(支)详见采购文件20,600.0020,600.002-11其他专用仪器仪表氯丙那林(液体)10(支)详见采购文件680.00680.002-12其他专用仪器仪表盐酸妥布特罗(液体)10(支)详见采购文件680.00680.002-13其他专用仪器仪表非诺特罗氢溴酸盐(液体)10(支)详见采购文件4,400.004,400.002-14其他专用仪器仪表西马特罗(液体)10(支)详见采购文件600.00600.002-15其他专用仪器仪表克伦特罗(液体)10(支)详见采购文件17,800.0017,800.002-16其他专用仪器仪表莱克多巴胺10(支)详见采购文件8,750.008,750.002-17其他专用仪器仪表沙丁胺醇(液体)10(支)详见采购文件5,900.005,900.002-18其他专用仪器仪表特布他林10(支)详见采购文件7,060.007,060.002-19其他专用仪器仪表克伦特罗-D9(液体)10(支)详见采购文件3,900.003,900.002-20其他专用仪器仪表沙丁胺醇-D3(液体)11(支)详见采购文件22,330.0022,330.002-21其他专用仪器仪表莱克多巴胺-D3(液体)11(支)详见采购文件10,780.0010,780.002-22其他专用仪器仪表氯丙那林-D710(支)详见采购文件19,800.0019,800.002-23其他专用仪器仪表西马特罗D7(液体)10(支)详见采购文件3,900.003,900.002-24其他专用仪器仪表妥布特罗D9(液体)10(支)详见采购文件52,800.0052,800.002-25其他专用仪器仪表特布他林D910(支)详见采购文件16,400.0016,400.002-26其他专用仪器仪表非诺特罗-d610(支)详见采购文件24,000.0024,000.002-27其他专用仪器仪表喷布特罗D910(支)详见采购文件43,700.0043,700.002-28其他专用仪器仪表金霉素10(支)详见采购文件5,050.005,050.002-29其他专用仪器仪表土霉素(液体)10(支)详见采购文件2,200.002,200.002-30其他专用仪器仪表四环素10(支)详见采购文件4,500.004,500.002-31其他专用仪器仪表强力霉素10(支)详见采购文件7,400.007,400.002-32其他专用仪器仪表金刚烷胺(液体)10(支)详见采购文件1,080.001,080.002-33其他专用仪器仪表金刚烷胺D15(液体)10(支)详见采购文件13,000.0013,000.002-34其他专用仪器仪表氟苯尼考(液体)10(支)详见采购文件680.00680.002-35其他专用仪器仪表氟苯尼考胺(液体)10(支)详见采购文件680.00680.002-36其他专用仪器仪表甲砜霉素(液体)10(支)详见采购文件680.00680.002-37其他专用仪器仪表氯霉素(液体)10(支)详见采购文件3,060.003,060.002-38其他专用仪器仪表氯霉素-D5(液体)10(支)详见采购文件13,600.0013,600.002-39其他专用仪器仪表有色孔雀石绿(液体)10(支)详见采购文件600.00600.002-40其他专用仪器仪表无色孔雀石绿(液体)10(支)详见采购文件600.00600.002-41其他专用仪器仪表有色孔雀石绿D5(液体)10(支)详见采购文件3,550.003,550.002-42其他专用仪器仪表无色孔雀石绿D6(液体)10(支)详见采购文件2,400.002,400.002-43其他专用仪器仪表AOZ(液体)10(支)详见采购文件680.00680.002-44其他专用仪器仪表AMOZ(液体)10(支)详见采购文件680.00680.002-45其他专用仪器仪表AHD(液体)10(支)详见采购文件680.00680.002-46其他专用仪器仪表SEM(液体)10(支)详见采购文件5,800.005,800.002-47其他专用仪器仪表AOZ-D4(液体)10(支)详见采购文件3,600.003,600.002-48其他专用仪器仪表AMOZ-D5(液体)10(支)详见采购文件10,200.0010,200.002-49其他专用仪器仪表AHD-C3(液体)10(支)详见采购文件31,520.0031,520.002-50其他专用仪器仪表SEM-13C(液体)10(支)详见采购文件43,240.0043,240.002-51其他专用仪器仪表磺胺噻唑(液体)10(支)详见采购文件1,400.001,400.002-52其他专用仪器仪表磺胺间二甲氧嘧啶(液体)10(支)详见采购文件680.00680.002-53其他专用仪器仪表磺胺甲噻二唑(液体)10(支)详见采购文件600.00600.002-54其他专用仪器仪表磺胺氯哒嗪(液体)10(支)详见采购文件1,400.001,400.002-55其他专用仪器仪表磺胺嘧啶(液体)10(支)详见采购文件600.00600.002-56其他专用仪器仪表磺胺甲基嘧啶(液体)10(支)详见采购文件2,000.002,000.002-57其他专用仪器仪表磺胺多辛(液体)10(支)详见采购文件600.00600.002-58其他专用仪器仪表磺胺异噁唑(液体)10(支)详见采购文件600.00600.002-59其他专用仪器仪表磺胺间甲氧嘧啶(液体)10(支)详见采购文件1,100.001,100.002-60其他专用仪器仪表磺胺二甲嘧啶(液体)10(支)详见采购文件1,300.001,300.002-61其他专用仪器仪表磺胺甲噁唑(液体)10(支)详见采购文件1,100.001,100.002-62其他专用仪器仪表磺胺二甲氧嘧啶(液体)10(支)详见采购文件1,100.001,100.002-63其他专用仪器仪表磺胺喹噁啉(液体)10(支)详见采购文件600.00600.002-64其他专用仪器仪表替米考星(液体)10(支)详见采购文件4,100.004,100.002-65其他专用仪器仪表阿维菌素(液体)10(支)详见采购文件600.00600.002-66其他专用仪器仪表阿苯达唑(液体)10(支)详见采购文件600.00600.002-67其他专用仪器仪表阿苯达唑砜(液体)10(支)详见采购文件800.00800.002-68其他专用仪器仪表阿苯达唑亚砜(液体)10(支)详见采购文件600.00600.002-69其他专用仪器仪表地克利珠(液体)10(支)详见采购文件2,300.002,300.002-70其他专用仪器仪表土霉素对照品7(支)详见采购文件700.00700.002-71其他专用仪器仪表阿维菌素对照品7(支)详见采购文件3,815.003,815.002-72其他专用仪器仪表地塞米松磷酸钠对照品7(支)详见采购文件1,785.001,785.002-73其他专用仪器仪表氨基比林对照品7(支)详见采购文件1,925.001,925.002-74其他专用仪器仪表氯氰碘柳胺钠对照品5(支)详见采购文件3,400.003,400.002-75其他专用仪器仪表伊维菌素对照品5(支)详见采购文件1,240.001,240.002-76其他专用仪器仪表氟苯尼考对照品7(支)详见采购文件3,815.003,815.002-77其他专用仪器仪表恩诺沙星对照品7(支)详见采购文件2,870.002,870.002-78其他专用仪器仪表安替比林对照品7(支)详见采购文件1,225.001,225.002-79其他专用仪器仪表乳酸环丙沙星对照品7(支)详见采购文件2,485.002,485.002-80其他专用仪器仪表萘普生对照品7(支)详见采购文件1,260.001,260.002-81其他专用仪器仪表青霉素对照品7(支)详见采购文件1,925.001,925.002-82其他专用仪器仪表头孢噻呋对照品7(支)详见采购文件4,760.004,760.002-83其他专用仪器仪表阿苯达唑对照品7(支)详见采购文件1,505.001,505.002-84其他专用仪器仪表烟酸诺氟沙星对照品7(支)详见采购文件2,870.002,870.002-85其他专用仪器仪表氨苄西林对照品7(支)详见采购文件1,260.001,260.002-86其他专用仪器仪表卡那霉素标准品7(支)详见采购文件525.00525.002-87其他专用仪器仪表林可霉素对照品6(支)详见采购文件1,650.001,650.002-88其他专用仪器仪表绿原酸对照品7(支)详见采购文件1,470.001,470.002-89其他专用仪器仪表黄芩苷对照品7(支)详见采购文件2,555.002,555.002-90其他专用仪器仪表无水葡萄糖对照品7(支)详见采购文件735.00735.002-91其他专用仪器仪表氟喹诺酮类试剂盒3(盒)详见采购文件7,800.007,800.002-92其他专用仪器仪表阿维菌素试剂盒3(盒)详见采购文件9,600.009,600.002-93其他专用仪器仪表阿苯达唑试剂盒3(盒)详见采购文件9,000.009,000.002-94其他专用仪器仪表替米考星试剂盒3(盒)详见采购文件9,600.009,600.002-95其他专用仪器仪表磺胺喹恶啉试剂盒3(盒)详见采购文件7,800.007,800.002-96其他专用仪器仪表地克珠利试剂盒3(盒)详见采购文件12,300.0012,300.00本合同包不接受联合体投标合同履行期限:合同签订后30个日历日内交货合同包3(农药残留检测标准物质耗材):合同包预算金额:599,529.00元品目号品目名称
  • Illumina透露半导体测序仪的更多细节
    2016年度的基因组生物学技术进展大会(AGBT)于上周在美国奥兰多举行。Illumina的CEO Jay Flatley在大会上宣布了其半导体测序平台,即Firefly计划的更多细节。  Flatley表示,Firefly将打开新的市场,因为它是如此简单。最终目标是制成这样一种设备,输入的是原始样本,而输出的是报告。尽管Illumina还没有实现,但Firefly无疑是朝着那个方向迈进了一步。  正如Illumina之前提到的,Firefly是基于它在2008年收购Avantome时获得的CMOS技术。Illumina一直在开发Avantome的技术,但从未商业化,因为这项技术离不开emulsion PCR。然而,Illumina希望将边合成边测序技术(SBS)与半导体芯片相融合。  Firefly设备本质上是一个带有纳米孔的CMOS传感器。纳米孔嵌入光电二极管中,让DNA沉积。簇生成和测序都在CMOS芯片上直接发生。由于CMOS是个单通道的设备,Flatley表示,研究人员必须弄清楚如何开发单通道的边合成边测序技术。  Firefly将采用一种新的编码技术。对于Illumina HiSeq测序仪采用的四通道技术,每个核苷酸被一种单独的荧光染料标记,并在四个不同的光学通道中检测。而之后推出的NextSeq则采用了一种双通道技术。这种技术使用两种荧光染料,其中鸟嘌呤总是暗的,腺嘌呤和胞嘧啶用单个染料标记,而胸腺嘧啶用两个染料标记。  在单通道技术中,胸腺嘧啶将有一个永久的荧光标记。腺嘌呤将有相同的荧光标记,但这种染料是可以去除的。鸟嘌呤将永远是暗的。另外,胞嘧啶一开始是暗的,但之后会加上荧光标记。  Flatley随后演示了这个方案如何读取DNA。在四个核苷酸的第一幅图像中,A和T同时被标记并可以检测。之后,在第二幅图像中,A的染料切除,并添加到C上。这样,第二幅图像中只有C和T发荧光。通过综合两幅图像的信息,所有四种碱基很容易被区分。在内部测试中,Illumina已经证明了99%的原始读取准确性和2x150 bp读长,与HiSeq X的表现相当。  这个平台将包含两个模块,总体积达1立方英尺。一个模块将用于文库制备,能够在3.5小时内平行制备8个文库,且无人值守。文库制备卡盒将利用Illumina NeoPrep所使用的数字微流体技术。用户只需加入样品和引物。这个设备将带来8个单独的文库,或合并成一个文库,用于测序。  制备好的文库随后上样到测序卡盒中,其中包含CMOS芯片。测序大约需要3.5-13小时,具体取决于应用,随后结果可上传到BaseSpace云计算环境,进行数据分析。这个系统将由iPad驱动,因此可无线监控。  Firefly有望在2017年下半年商业化,售价低于3万美元,而每个样品的耗材成本约为100美元。Flatley表示,Firefly的产量达到1 Gb,使其特别适合靶向研究、耐药性监控以及个人基因组测序等应用。
  • 【涨知识】跟水质特征有关的哪些术语
    茂默科学以客户为本、合作共赢的理念,致力于帮忙客户提供整体实验方案。力求解决行业内客户对科学仪器选型难、维护难的处境。通过不断优化公司运作和提升服务质量,目前已赢得业内人士和广大客户广泛认可,拥有广泛而稳固的合作伙伴和客户群体。现介绍一些跟水质特征有关的术语。1 α系数 alpha factor在活性污泥污水处理设备中,混合液与清洁水中氧传递系数之比。2 氨的汽提 ammonia stripping通过碱化和曝气去除水中氨化合物的一种方法。3 半致死浓度 lethal concentration,LC50在一定时间的连续暴露下,使受试生物半数致死的毒物浓度。4 β系数 beta factor在活性污泥污水处理设备中,混合液中溶解氧饱和值与同一温度和气压下清洁水中溶解氧饱和值之比。5 测试组 test batch在遗传毒性测试中培养基、接种体和稀释系列的混合物。6 超载 surcharge在靠重力流动的污水管中,当满管后流量再增加时所造成的状况。这可能引起过量污水从检查井溢出。7 初级生物降解 primary biodegradation在微生物的作用下,化合物的结构发生变化,导致一些特性丧失。8 初级厌氧生物降解 primary anaerobic biodegradation由于厌氧微生物的作用,受试化合物仅发生结构改变,而未达到终矿化的生物降解阶段。9 粗滤池 roughing filter在有机物含量或水力负荷比正常情况高得多的条件下工作的生物滤池,用以降低高强度污染工业废水中易降解有机物的过高浓度。10 大型植物 macrophytes大型水生植物,包括挺水、沉水和浮水植物。11 淡水 fresh water含盐量低的天然水,或一般认为便于抽取和处理产生饮用水的水。12 氮平衡 nitrogen balance参见114,质量平衡。13 氮循环 nitrogen cycle自然界中氮及其化合物被利用和转化的循环过程。14 DNA损伤 DNA damage不影响细胞复制的各种DNA变化。15 点突变 point mutation;基因突变 gene mutation基因中单碱基对(核苷酸对)改变引起的突变,包括缺失、插入、移码突变、核苷酸序列的改变。16 毒性试验 toxicity test使某种物质在一定浓度下与特定的生物接触,以确定该物质对生物的毒性影响。16.1 流水毒性试验 flow-through toxicity test;动态毒性试验 dynamic toxicity test试验水体在连续流动情况下所进行的毒性试验。16.2 半静态毒性试验 semi-static toxicity test;定期更换受试液的毒性试验 toxicity test with intermittent renewal以较长时间间隔(如12 h或24 h)来分批更换大部分试液(大于95%)的毒性试验;或定期(一般每隔24 h)将受试生物转移到毒物浓度与起始相同的新配试液中的毒性试验。16.3 静态毒性试验 static toxicity test;不更换试液的毒性试验 toxicity test without renewal在试验周期内,不更换试液的毒性试验。17 对照组 control batch是试验过程的一部分,表明无待测物质存在时基质条件对检测系统的影响。注:在遗传毒性紫外致突变(umuC)试验中,对照组包括不含待测菌的培养基、只含蒸馏水和接种物的培养基、含接种体和溶剂的培养基等。18 多氯联苯 polychlorinated biphenyls,PCBs多氯取代的联苯类化合物的总称,也包括一氯联苯。19 反冲洗 backwashing用水以逆流方向清洗滤池的操作过程,常需辅以空气冲刷。20 腐、败 putrefaction有机物受厌氧微生物作用无控制地分解,并产生臭味。21 腐、败的 septic由于缺乏溶解氧而产生腐、败的现象。22 腐生的 saprobic与有机物腐、败有关的。23 腐殖污泥 humus sludge生物滤池脱落的微生物膜。通常在后沉淀池中分离出。24 附聚(作用) agglomeration絮凝体或悬浮颗粒物聚结形成更大的絮凝物或更易沉降、浮起的颗粒物。25 隔夜培养 overnight culture下午开始,培养过夜(通常约16 h),以备第二天早晨进行的预培养接种使用。26 光合作用 photosynthesis在有光的条件下生物借助光化学反应将二氧化碳和水合成有机物。27 哈森色标 Hazen number表示水色度的值。一个标准单位为每升水中1 mg铂[以六氯铂(Ⅳ)酸的形式存在],或2 mg六水氯化钴(Ⅱ)存在下所产生的颜色。28 含水层 aquifer由具有渗透性的岩石、砂或砾石构成的能够提供大量水的含水床或含水层。29 河段 reach有一定上游和下游界限的河道。30 核苷酸 nucleotide基因组的组成成分(腺嘌呤、鸟嘌呤、胞嘧啶、胸腺嘧啶),通过糖和磷酸基团连接而形成核酸链,其顺序决定着基因组的遗传密码。31 核酸 nucleic acid重要的遗传物质,由核苷酸按一定的顺序连接而成的双螺旋结构,决定遗传编码。32 核糖核酸 ribonucleic acid,RNA构成遗传物质的重要组分之一。在RNA病毒中是基因组的组成成分。注:RNA与DNA不同,在核苷酸序列中,尿嘧啶(U)取代了胸腺嘧啶(T)(参见DNA,83)。33 后氯化 post-chlorination水(或废水)处理后再进行氯化。34 弧菌Vibrio sp.好氧、无孢子生殖的革兰氏阴性细菌,广泛分布于地表水中。某些种系致病菌,如霍乱菌、副溶血性弧菌。35 化学示踪剂 chemical tracer人为添加或天然存在于水中,用于示踪水流的化学物质。36 回流 recirculation经过初级或完全处理的部分废水,由处理系统的某一单元返回到前面单元的过程。37 汇水区 catchment area;汇水盆地 catchment basin水能自然地排到水道或某一点所形成的区域。38 混合液 mixed liquor在活性污泥曝气池或氧化沟内进行循环或曝气的活性污泥与污水的混合物。39 混合液悬浮固体 mixed liquor suspended solids,MLSS混合液中固体物质的总浓度,通常规定以干重计。40 活菌 viable bacteria具有代谢和(或)繁殖能力的细菌。41 活性炭处理 activated carbon treatment用活性炭吸附去除水和废水中溶解的或胶态的有机物的过程。例如用以改善水的味、臭和色。42 积水 ponding由于生物滤池滤料间隙堵塞,在池面上出现的水。43 基因组 genome细胞中编码遗传信息的所有遗传物质(核酸、DNA、RNA)。44 交叉连接 cross connection指管道之间的连接有可能使受污染水进入饮水供水系统,从而给公众健康带来危害。也用于描述不同配水系统之间的一种规范连接。45 接种 seeding人为引入合适的微生物而对生物系统进行接种。46 接种体 inoculum;接种材料 inoculation material向新鲜培养基中加入的微生物(或经预培养,处于指数生长期的菌悬液)。47 菌胶团膜 zoogloeal film含有大量细菌、原生动物和真菌的黏液基质,覆盖在成熟的生物滤池、慢速砂滤池滤料的润湿表面或污水管内壁。48 矿化作用 mineralization有机物完全分解成二氧化碳、水,以及其他元素的氢化物、氧化物和矿物盐。49 理想的自然群落 expected natural community在河道中仅有自然胁迫,而人为干扰较小的生物群落。50 磷平衡 phosphorus balance参见114,质量平衡。51 浓度-效应关系 concentration-effect relationship某种物质或几种物质混合物,在一定浓度梯度下,导致某种诊断标志物产生响应的剂量的相关性。注:在遗传毒性紫外致突变(umuC)试验中,umuC基因的诱导取决于受试样品中遗传毒物的浓度。52 排水区 drainage area水排至一点或多点的区域,区域边界由主管部门限定。53 培养基 culture medium支持微生物生长的液态或固态营养物质。54 贫营养水 dystrophic water含营养物甚少而含腐殖质浓度高的水。55 潜水面 water table静止的或自然流动的地下水的水面。在该水面下,除了不透水的地方外,蓄水层被水饱和。56 倾析 decantation悬浮固体沉淀或与高密度液体分离后倾出上清液。57 清洗生物 scouring organisms一些生物,例如蠕虫、昆虫幼虫和其他无脊椎动物,它们能通过摄食或移动以去除生物滤池滤料表面的细菌团膜(细菌块膜)。58 泉水 spring自然涌出地表的地下水。59 三级处理 tertiary treatment为进一步减轻污染影响,对经过初级和二级处理的污水进一步处理的过程。包括:深度物理处理、化学处理和生物处理。60 排水的深度处理 effluent polishing采用深度物理或生物方法对二级处理排水进行的三级处理。61 设定点 designated site(生物学分类的河流)在水体某一段中所选定的某个具体点,该点的水质能够代表该段水体的水质。62 生态系统 ecosystem通过不同组成的生物和其周围环境间的相互作用,形成物质循环和能量交换的系统。63 生态学 ecology研究生物及其相关环境之间相互关系的一门学科。64 生物降解 biodegradation在水介质中由于活生物的复杂作用引起的有机物的分子降解。65 生物降解阶段 biodegradation phase试验中从延滞期结束至达到大生物降解率的90%所经历的时间。66 生物矿化 biomineralization由生物活性引起的矿化作用。67 生物量 biomass给定水体中生命物质的总质量。68 (砂滤)生物膜 biofilm(of a sand filter)由活的、死的和垂死的生物在慢速砂滤池或其他生物滤池介质表面形成的膜。69 生物群 biota水生生物系统中的所有活的组分。70 生物指数 biotic index描述水体生物群的数值,用以表示水体的生物质量。71 受试样品 test sample经过所有前处理步骤(如离心、过滤、匀浆、pH调节和离子强度测定)的待测样品。72 熟化塘 maturation pond大型浅水池,用于进一步处理已经生物处理过的污水,并去除该过程中形成的固体。73 水文测量 hydrometry水流的测量与分析。74 水文地理学 hydrography研究与测量海洋、湖泊、河流和其他水域的一门应用科学。注:在一些国家中此术语等同于海洋物理化学。75 水文学 hydrology研究降水、径流或渗滤及储存、蒸发和再降这一水循环的应用科学。76 淘析 elutriation一种污泥调节工艺。用清洁水或污水厂的出水淘洗污泥,以减小污泥的碱度,特别是除去氨的化合物,从而减少混凝剂的需用量。77 停留期 retention period;滞留时间 detention time按规定的流速计算,水或废水在特定单元或系统内停留的理论时间。78 透光层 euphotic zone透光程度足以维持光合作用的上层水体。79 突变 mutation;染色体突变 chromosomal mutation生物体或病毒的遗传物质(DNA或RNA)永、久性地改变,通常是一个基因中,表现为遗传物质(一个或多个核苷酸)的缺失、易位、转导,导致遗传编码的改变,从而改变基因功能。80 推流系统 plug-flow system至少理论上(如果实际无法达到)在渠道横断面可达到充分混合,而沿水流方向又无混合或扩散的一种系统。81 脱落 sloughing菌胶团膜物质以腐质污泥的形式从生物滤池的滤料上连续脱离。82 春蜕膜 vernal sloughing;spring sloughing春季由于生物活动增强,从而使生物滤池中新的菌胶团膜滋生而旧生物膜大量脱落。83 脱氧核糖核酸 deoxyribonucleic acid,DNA构成除RNA病毒外所有生物基因组的遗传物质。与RNA不同的是,DNA核苷酸序列中含有胸腺嘧啶,而不是尿嘧啶。84 稳定期 plateau phase生物降解阶段结束到试验结束这段时间。85 稳定性 stability处理前后,废水或污泥抗腐、败的能力。86 稳定性试验 stability test;亚甲蓝试验 methylene blue test对经过生物处理污水的一种检验。试验时,向生物处理过的出水中加入亚甲蓝染料,在隔绝空气的条件下,通过染料褪色所需的时间评估水稳定性。87 污泥龄 sludge age在排泥率恒定的情况下,活性污泥处理厂排放全部活性污泥所需的天数。计算方法是用活性污泥厂污泥的总排放量除以每天排放的污泥量。88 污泥膨胀 sludge bulking活性污泥法处理系统中,通常由于丝状菌的存在,引起活性污泥体积膨胀和不易沉降的现象。89 污泥压滤 sludge pressing采用机械加压去除污泥中液体的方法,使之形成易于处置的固体物。90 无观察效应浓度 no observed effect concentration,NOEC统计学上略低于低观察效应浓度的实验浓度。91 稀释系列 dilution series预设受试样品与稀释基质(例如水或缓冲液)配比的一系列测试用混合物。92 延迟期 lag phase从试验开始到用于降解的微生物驯化适应和选择完成所经历的时间,此时化合物或有机物的降解程度达到大生物降解率的10%。93 沿岸带 littoral zone即水体边缘浅水带,阳光可直接透射到水底,根生植物占优势。94 盐跃层 halocline在分层的水体中,含盐浓度梯度大的一层。95 氧饱和值 oxygen saturation value与大气(天然系统)或纯氧(纯氧废水处理系统)处于平衡的溶解氧浓度。它随温度、氧分压和盐度而变化。96 养分去除 nutrient removal在水和废水处理中,专为除去含氮和含磷化合物而使用的生物、物理和化学方法。97 氧化沟(渠) oxidation ditch(channel)通常为若干平行沟渠在终点相连,形成闭合循环,装有曝气装置用于处理原污水或澄清污水的系统。98 氧亏 oxygen deficit在水系统中,实际溶解氧浓度与其饱和浓度值之差。99 氧平衡 oxygen balance参考114,质量平衡。100 遗传毒性 genotoxicity通常指由导致突变的物理或化学因素引起的基因组特异性改变的毒性效应。101 遗传毒性试验 genotoxicity test确定DNA损伤或DNA修复等遗传毒性作用的试验系统。102 引水 abstraction将水从任何水源永、久地或暂时地转移到其他地方,使其不再是该地区水资源的一部分,或者转移到该地区内的另一水源。103 英霍夫锥形管 Imhoff cone容积通常为1L,刻度接近尖端,可用来测定水中可沉降物体积的圆锥形透明容器。104 营养物的去除 nutrient removal在水和废水处理中,专为去除含氮和含磷化合物而使用的生物、物理和化学方法。105 umuC操纵子 umuC-operon调控umuC基因诱导的基因序列。106 umuC紫外致突变及化学修复 umuC UV mutagenesis and chemical repair在遗传毒性实验中,使用umuC基因研究受试菌株的DNA损伤。umuC基因的表达受到DNA损伤的诱导。107 油状膜 slick漂浮在海面或者其他水体上的一层物质,例如石油膜。108 预暴露 pre-exposure在添加化合物或有机物的实验条件下,对接种体进行预培养。目的是通过微生物的适应和选择,增强接种体对受试物的降解能力。109 预活化 pre-conditioning在适宜培养条件下对受试生物进行预培养。该过程中不添加化学药品或有机物质。微生物在此过程中适应实验中培养条件,可改善实验效果。110 预培养 pre-culture在适宜培养条件下培养(已活化的)微生物,以促进其适应实验中培养条件。是特定试验(如遗传毒性试验)的一部分。111 原生水 connate water与周围岩石或地层具有同一地质年代的间隙水。水质往往不良,不适于正常使用(例如饮用、工农业使用)。112 原种培养 stock culture一定条件下(如在适合的培养基中冻存)生物菌株的培养,目的是保持原有的特性,如核酸序列。113 真空过滤 vacuum filtration污泥经滤布,藉真空抽滤的一种脱水方法。114 质量平衡 mass balance在一确定系统内(例如湖泊、河流或污水处理厂),特定物质输入量和输出量(包括该物质在系统中的形成或分解)之间的相互关系。115 中温消化 mesophilic digestion污泥在20~40℃下的厌氧消化,在该温度范围内有利于微生物生长。116 中营养水 mesotrophic water天然的或由于营养累积形成的中等营养状态的水,介于贫营养和富营养之间。117 自养细菌 autotrophic bacteria;化能自养细菌 chemolithotrophic bacteria能利用无机物作为碳源和氮源而繁殖的细菌。118 总固体浓度 total solids concentration在一定条件下,已知体积的活性污泥烘干后的重量。119 大生物降解率 biodegradation maximum level试验中,一种化合物或有机物不再继续发生生物降解时的大生物降解程度(以百分率表示)。120 低可观察效应浓度 lowest observed effect concentration,LOEC与对照相比,观察到显著效应(p≤0.05)时受试物的低浓度。121 低无效应稀释度 lowest ineffective dilution,LID(一定稀释度下废水的毒性测试)试验中无抑制效应或不产生特定值以上效应的大浓度稀释值。122 终好氧生物降解 ultimate aerobic biodegradation在有氧条件下,化合物或有机物被微生物降解成CO2、H2O和元素形态的矿物盐,并同化成微生物的一部分。123 终需氧量 ultimate oxygen demand,UOD有机物完全矿化和氨氮、亚硝态氮氧化所需要的氧的理论计算值。124 终厌氧生物降解 ultimate anaerobic biodegradation在无氧条件下,化合物或有机物被微生物降解成CO2、CH4、H2O和元素形态的矿物盐,并同化成微生物的一部分。(来源:HJ 596.3-2010)
  • 畜禽养殖,中国抗生素污染源爆点
    六十秒读懂专题:中国是抗生素滥用最为严重的国家。在医疗领域之外,畜禽养殖业中抗生素的大量应用,以及养殖废水处理监管的缺失同样需要我们注意,因为正是其造成了中国严重的抗生素污染,进而导致细菌耐药性越来越强这一严峻形势。   中国环境遭受抗生素污染,河流污染情况尤其严重   &ldquo 近日,包括《纽约时报》《南华早报》在内的多家媒体发表文章,引用内地研究者在《中国科学》杂志社发布的科学通报,称中国环境正在遭受严重的抗生素污染。国际媒体所言非虚,近年来不断的报道也印证了这一结论。在2014年12月25日,《焦点访谈》报道称珠江广州段受抗生素污染非常严重,脱水红霉素、磺胺嘧啶、磺胺二甲基嘧啶的含量分别为460纳克/升、209纳克/升和184纳克/升,远远高出了欧美发达国家河流中100纳克/升以下的含量。   类似的情况并不只存在于珠江流域,北京师范大学水科学研究院对中国部分地表水取样检测后发现,全国主要河流,包括海河、长江入海口、黄浦江、珠江和辽河等河流都检出抗生素。2014年5月,另一项研究称中国的地表水被检测出含有68种抗生素,其中珠江、黄浦江等地检出的抗生素频率高达100%,除检出频率外,地表水抗生素浓度水平也大大高于西方国家。以黄浦江为例,磺胺甲嘧啶在所有的采样点中均被检出,枯水期检出频率为100%,浓度峰值达到每升623.3纳克(1纳克=1/1000微克),对比德国莱茵河2003年数据,其峰值也不足60纳克,而在美国和日本,该物质几乎没有检出。磺胺类药物属于广谱抗菌药,用于敏感细菌及其他敏感病原微生物所致的感染。水体与土壤的抗生素交叉污染,使得这一问题变得越发棘手。   畜禽养殖消耗大量抗生素,一为抗病,二为增肥   大部分抗生素都是通过人与动物的排泄物进入水体,这揭示了中国抗生素污染的一个重要来源&mdash &mdash 畜禽养殖。前文提及的调查报告显示,中国是世界抗生素使用第一大国。2013年中国抗生素使用量近于世界其他国家的总和,其中人类消耗量为48%,52%为动物消耗,也就是养殖业消耗。养殖场在畜禽养殖过程中应用抗生素原因有以下两点:   一,降低畜禽患病率。相较于野外,养殖场的畜禽密度显然要高的多,所以一旦发生动物疫情,传染速度非常快,就会给养殖户带来严重损失。在养殖过程中添加抗生素,可以预防与治疗疫病,避免遭受此类损失。   二,相当一部分抗生素可以通过杀灭有害菌,调节畜禽肠道内细菌总数促进畜禽消化,进而影响生长,增加畜禽个体重量。部分饲料企业会在其产品中预先添加入此类抗生素,养殖户则采用此种饲料刺激畜禽增重以提高收入。   中国养殖业抗生素滥用,无钱处理闷声大排污   在中国,由于养殖密度大、畜禽疫病复杂多样再加上监管不力等多种原因,普遍存在抗生素过量使用甚至滥用等问题。养殖户在使用含抗生素饲料之外,还会采用注射、灌服等多种手段再次添加抗生素。对于畜禽养殖场,抗生素支出占用药总支出的70%到80%。   故此,抗生素在国内所占成本比重要大大高于国外。以肉用鸡为例,据报道,2012年中国抗生素约占总成本的10% 而2015年,麦当劳宣布在两年内其在全美提供的鸡肉将不含抗生素,供应商泰森食品公司声称这一计划将使公司养殖成本提升3%。鉴于抗生素一直是畜禽供应商基于经济考量作出的选择,我们可以推断出,在美国,肉用鸡抗生素所占成本比重是必然低于3%这一数值的。   相较于大部分人关注的食品安全&mdash &mdash 也就是抗生素在畜禽体内的残留而言,更严重的是养殖废水的问题。因为绝大多数的抗生素都会被代谢出体外,最终以养殖废水的形式进入环境,如不加以处理,就会造成严重的污染。而中国还没有如何处理养殖废水的强制规定,如何处理含有抗生素的废水完全取决于养殖场的环保意识。国家环保总局于2007年编制完成了《畜禽养殖业污染治理工程技术规范》,但由于废水处理成本较高(每万头猪场污水处理设备投资就需至少120万元),加上监管和专项补贴基金的双重空缺,所以小型养殖场更倾向于直接把废水排入河流。故而在中国各大河流甚至是地下水中检出高浓度抗生素也就不足为奇了。   抗生素环境污染,细菌耐药性越来越强,旧疾病卷土重来   部分人对抗生素污染相当不以为意。如南京鼓楼自来水中检出阿莫西林等两种抗生素,官方部门首先声称南京水务集团供水完全达到国家标准&mdash &mdash 因为国家标准根本没有对抗生素的检测指标,继而又有专家声称每升水8纳克这样的浓度,对于正常人的身体健康不会有大的影响。实际情况是,抗生素不同于重金属等污染,虽然这样低的浓度短期内不会直接损害人类健康,但这样的抗生素环境就像是细菌的角斗场,那些通过环境考验的细菌抗药性会大大增强。面对这样的超级细菌,现有的抗生素逐渐会变得不再有效,就好像老奸巨猾的犯罪分子不再害怕警察一样。   时至今日,细菌耐药性发展的速度逐渐赶上了新抗生素的研发速度。以结核病为例,世界卫生组织估计,2011年全世界有50万耐多药结核病新发病例,而以往的特效药物对于这样的结核病不再起作用。这些病例中,有60%就发生在巴西、中国、印度、俄罗斯联邦和南非(&ldquo 金砖五国&rdquo )。2015年,估计将需要20亿美元用于耐多药结核病的诊断和治疗。   美国:FDA政策收紧,买抗生素要找兽医开处方   美国曾经一度是畜禽养殖业抗生素泛滥的重灾区,据调查,美国抗生素有八成消耗在养殖业上(当然必须指出,这与美国严格限制抗生素在医疗中的使用是有关系的)。在20世纪70年代,已经有官员担心抗生素的滥用会导致耐药性传染病。据统计每年至少有2.3万美国人死于耐药性感染。2013年,美国食品药品管理局(FDA)转变其之前相对宽松的政策,严格限制养殖业中抗生素的应用。FDA与各抗生素生产厂商联手,修改抗生素使用条件,规定食用动物生产商不得再使用抗生素加快动物生长。而如果农场主想要用抗生素为他们的动物治疗疫病,就需要有执照的兽医为其开出处方,凭处方才能购买抗生素。也正是因为FDA的强力政策,美国麦当劳才主动提出要&ldquo 在两年内停用抗生素鸡&rdquo ,当然,中国的麦当劳则不在此列。   虽然缺乏相关的政策与标准,但中国现也仍在对抗抗生素滥用的道路上,这又尤以寻找抗生素替代品为重点。目前,以&ldquo 中草药替代抗生素&rdquo 最为炙手可热。如搜索专利号CN 103168919 A,即可发现这是一种&ldquo 增强免疫和促进生长的饲料添加剂&rdquo ,具有&ldquo 扶正祛邪、益气固表、健脾开胃、消食化积、补血生津&rdquo 等功效,令人叹服。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制