当前位置: 仪器信息网 > 行业主题 > >

白芥子钾盐

仪器信息网白芥子钾盐专题为您提供2024年最新白芥子钾盐价格报价、厂家品牌的相关信息, 包括白芥子钾盐参数、型号等,不管是国产,还是进口品牌的白芥子钾盐您都可以在这里找到。 除此之外,仪器信息网还免费为您整合白芥子钾盐相关的耗材配件、试剂标物,还有白芥子钾盐相关的最新资讯、资料,以及白芥子钾盐相关的解决方案。

白芥子钾盐相关的资讯

  • 微流控技术仍面临微加工、设计等挑战——访烟台芥子生物技术有限公司
    近日,烟台芥子生物技术有限公司参展第十三届纳博会。展会现场,仪器信息网就微流控技术的市场规模、技术发展、行业应用、前景展望以及烟台芥子生物的产品优势、研制背景、技术特点等采访了烟台芥子生物技术有限公司。以下是对烟台芥子生物技术有限公司的现场采访视频:2022年3月1-3日,由科技部、中国科学院指导,中国微米纳米技术学会、中国国际科学技术合作协会、国家第三代半导体技术创新中心(苏州)主办,苏州纳米科技发展有限公司承办的第十三届中国国际纳米技术产业博览会(CHInano 2023)在苏州国际博览中心举行。本届纳博会为期3天,聚焦第三代半导体、微纳制造、纳米新材料、纳米大健康等热门领域,开设1场大会主报告、11场专业论坛、344场行业报告、22000平米展览、2场创新创业大赛,包括19位院士在内的300余位顶级专家、行业精英齐聚一堂,新技术、新产品、新成果集中亮相,为大家奉上一场干货满满、精彩纷呈的科技盛会,推出专业论坛、创新赛事、沉浸式游学等系列活动,全方位释放大会红利,推动产业生态建设,共绘美好发展蓝图。回望过去,寄语未来。展会现场,仪器信息网采访了15位专家、厂商代表,分别谈了各自的与会感受以及他们眼中中国半导体、MEMS、OLED、半导体设备、科学仪器、微流控等产业的发展现状和前景展望。
  • 智云达农药残留检测仪现身热播大剧《家宴》
    由王刚、颜丙燕、曾黎、高虎等著名演员主演的电视剧《家宴》近期在各大卫视热映。《家宴》以其强大的阵容,紧凑新颖的剧情吸引了大批观众。大米对家人的付出和她事业心、责任感都将人物刻画的深入人心。当电视剧热映至第八集时,冯家菜因故要被检查问题原料时,很多观众都会为大米心里抱不平,厌恶故意刁难之人,同时也有很多观众被质监所带去的那个12分钟就可以进行农药残留检测的ZYD-NB便携式农药残留检测仪吸引住了。因为这个仪器改变了大家以前对实验室农药残留检测的固有印象。 ZYD-NB便携式农药残留快速检测仪是由智云达科技有限公司研发生产,根据国标方法---速测卡法(纸片法)而专门设计的仪器。主要用于水果、蔬菜、茶叶、粮食、水及土壤中有机磷和氨基甲酸酯类农药的农药残留检测 ,特别适用于各级食品安全检测机构现场执法使用。就和《家宴》当中一样,现在各地的食品检验所已经开始广泛的使用食品检测仪器进行现场检测。这样不仅检验更有效率,不给不法商贩可乘之机,而且操作简便、结果准确。既给质监部门提供了便捷、也是对消费者负责。 质监部门选择ZYD-NB便携式农药残留检测仪是有道理的,它效率高:10个通道可同时测定10个样品;采用微电脑控制,温度和时间可调;并有自动控制和自动报警;采用液晶显示器,显示清晰明了。此外农药残留速测仪还可用于果蔬茶生产基地和农贸批发销售市场现场速测,餐馆、食堂、家庭果蔬加工前的农药残留检测等,应用很广泛。 北京智云达科技有限公司一直以来致力于食品快检行业、希望成为行业领导者。除了农残仪,智云达还研发生产了ZYD-TF土壤化肥速测仪、亚硝酸盐速测管、奶无忧三聚氰胺速测卡、ZYD-WSW食品微生物检测箱等等一系列产品。今后我们也会更加努力开发新产品,为质量检测机构提供更先进的仪器,为消费者提供更便捷实惠的家庭装检测产品。以家庭、个人为单位的消费群体已经开始慢慢习惯于利用食品安全检测仪来保证食品安全卫生,我们希望以后也能在您的家宴上看到智云达的身影。
  • 广西4000万元建国家燕窝及营养保健食品检测重点实验室
    3月11日,记者从广西检验检疫局了解,在1月23日国家质检总局正式批准在中马钦州产业园区筹建国家燕窝及营养保健食品检测重点实验室(钦州),加强对国外进口燕窝及营养保健食品检验检测。   据了解,该项目是国家部委首个支持中马钦州产业园区的项目。为了推进重点实验室建设工作,广西检验检疫局、中马钦州产业园区管委会、设计施工方等有关部门共同深入园区现场考察,召开座谈会进行专题研究重点实验室的建设工作。   检验检疫部门在研讨会上表示,已将推动重点实验室建设工作列为2014年重点督查工作事项,并根据国家食品类重点实验室建设要求及生物实验室安全要求,着手开展人才、技术储备等工作。中马钦州产业园区管委会加强招商引资工作,推动燕窝进口。与会各方对重点实验室涉及生物安全、通风设施等问题进行研讨并达成共识。   据了解,国家燕窝及营养保健食品检测重点实验室(钦州)规划建筑面积3500平方,计划总投资4000万元。重点实验室将以燕窝及燕窝制品的检测为重点,同时兼顾出口水产品、禽类肉制品、清真食品等其它食品和保健营养品的检测,力争3&mdash 5年内成为国内领先的燕窝及其制品检测、研究机构和我国西南地区知名的保健营养品及食品检测国家重点实验室,为中马钦州产业园区燕窝及食品加工产业提供技术支撑。
  • 安徽这6批次食品抽检不合格,有剁椒味凤爪、香蕉、梭子蟹等
    4月12日,安徽省市场监督管理局发布2023年第14期食品安全抽检信息通告,检出不合格食品6批次。不合格食品涉及农兽药残留、食品添加剂、重金属污染问题。   4批次食品检出农兽药残留问题,分别为合肥品尚多商贸有限公司销售的香蕉,噻虫胺不符合食品安全国家标准规定;安徽永辉超市有限公司巢湖万达广场分公司(合肥)销售的生姜,噻虫胺不符合食品安全国家标准规定;安庆桐城市文昌街道列洪水产经营部销售的黄鳝,恩诺沙星、甲氧苄啶不符合食品安全国家标准规定;安徽百大合家福连锁超市股份有限公司佳源广场店(合肥)销售的长豆角(豇豆),甲基异柳磷、氯氟氰菊酯和高效氯氟氰菊酯、三唑磷不符合食品安全国家标准规定。   噻虫胺是新烟碱类中的一种杀虫剂,是一类高效安全、高选择性的新型杀虫剂,具有触杀、胃毒和内吸活性。主要用于水稻、蔬菜、果树及其他作物上防治蚜虫、叶蝉、飞虱等害虫的杀虫剂。少量的残留不会引起人体急性中毒,但长期食用噻虫胺超标的食品,对人体健康可能有一定影响。《食品安全国家标准 食品中农药最大残留限量》(GB 2763—2021)中规定,噻虫胺在香蕉中的最大残留限量值为0.02mg/kg,噻虫胺在根茎类蔬菜中的最大残留限量值为0.2mg/kg。   恩诺沙星属于喹诺酮类合成抗菌药。《食品安全国家标准 食品中兽药最大残留限量》(GB 31650-2019)中规定,恩诺沙星在鱼的皮+肉中最大残留限量值为100μg/kg。动物源性食品中恩诺沙星超标的原因,可能是在养殖过程中为快速控制疫病,养殖户违规加大用药量或不遵守休药期规定,致使产品上市销售时药物残留超标。   甲氧苄啶是合成的抗菌药和磺胺增效药。具有抗菌谱广、性质稳定、体内分布广泛等优点。目前,我国已批准使用的甲氧苄啶,是作为增效剂与磺胺类药物联合使用。动物产品的甲氧苄啶残留,一般不会导致对人体的急性毒性作用,但长期大量摄入甲氧苄啶残留超标的食品,可能在人体内蓄积,导致胃肠道反应、皮肤过敏症状等。《食品安全国家标准 食品中兽药最大残留限量》(GB31650-2019)规定,甲氧苄啶在鱼等动物产品中残留限量为50μg/kg。黄鳝中检出甲氧苄啶残留超标可能为养殖者未严格遵守用药休药期等相关规定而导致。   还有1批次食品检出食品添加剂问题,为合肥市新站区润发超市销售的、标称四川阆中好口味食品有限公司生产的剁椒味凤爪(辐照食品),山梨酸及其钾盐(以山梨酸计)、防腐剂混合使用时各自用量占其最大使用量的比例之和不符合食品安全国家标准规定。   山梨酸及山梨酸钾是食品防腐剂,具有广泛的抑菌效果和防霉性能。山梨酸可以被人体的代谢系统吸收而迅速分解为二氧化碳和水,在体内无残留。造成山梨酸及其钾盐(以山梨酸计)不合格的原因,可能是企业为延长产品保质期或者为弥补产品生产中卫生条件不佳超量使用而导致。   防腐剂是指天然或合成的化学成分,用于延缓或抑制由微生物引起的食品腐败变质。常见的防腐剂有苯甲酸及其钠盐、山梨酸及其钾盐等。《食品安全国家标准食品添加剂使用标准》(GB 2760—2014)中规定,防腐剂混合使用时,各自用量占其最大使用量的比例之和不得超过1。   此外,还有1批次食品检出重金属污染问题,为安徽翔灿进出口贸易有限公司(合肥)销售的鲜活梭子蟹,镉(以Cd计)不符合食品安全国家标准规定。   镉(以Cd计)是最常见的重金属元素污染物之一。《食品安全国家标准 食品中污染物限量》(GB 2762-2017)中规定,镉(以Cd计)在鲜、冻水产动物的甲壳类中限量为0.5mg/kg。镉超标可能是水产品在养殖过程中对环境中镉元素的富集。   对上述抽检中发现的不合格产品,属地市场监管部门已责令生产经营者查清产品流向,召回、下架不合格产品,控制风险,并分析原因进行整改,涉及的不合格产品已按要求开展核查处置工作。
  • LPS盐的水溶性介绍
    电透析后直接得到的酸性脂多糖(lipopolysaccharide,LPS)可分别以不同的碱中和而取得各种相应的LPS盐。这些LPS盐在双蒸水中的溶解度差异很大。迄今为止,LPS的三乙基乙胺或四乙基乙胺盐在水中的溶解度最大。R-IPS的三乙胺盐在水中的溶解度可达20mg/ml,此时形成一种透明、无粘度的溶液。S-LPS的三乙胺盐溶解度更大,可高达400mg/ml。LPS钠盐的溶解度稍差,特别是R-LPS钠盐。形成溶液的透明度亦差于三乙胺型LPS盐,另外,LPS钠盐的粘度亦增加。LPS钾盐的溶解度稍好于钠盐,而LPS吡啶盐及铵盐的溶解度则差于LPS的钠或钾盐。LPS的钙及镁盐表现出极低的溶解度,这一点尤以R-LPS为明显。LPS的镁盐常常是不溶解性的。另外,LPS的有机盐,如1LPS的腐胺或精胺盐亦表现出极低的溶解性。
  • 味精里掺杂盐和硫酸镁 谷氨酸钠严重不达标
    味精颗粒   杂味的味精   小王是个挺较真的人。最近他和朋友到一家饭馆吃饭,觉得菜比往常咸了很多。服务员解释说可能是味精放多了。服务员的这番解释让小王感到非常奇怪,菜炒咸了,跟味精有什么关系呢?较真的小王回到家就上网查了起来。   小王:在网上了解会往里边掺加一些盐、糖或者是淀粉其它一些东西。   小王在网上查询后了解到,味精,学名“谷氨酸钠”,成品为白色柱状晶体,可以增加食物的鲜度,不应该有咸味。同时,小王还发现,有很多网友爆料说,味精里其实并不全是“谷氨酸钠”。真得是这样吗?为了了解更多,小王又到市场走了一圈,发现了一些他以前不知道的事。   小王:我到市场以后,通过跟商户交谈,商户就跟我说这味精里边,它的谷氨酸钠的含量都不够,里边它本身就是,往里边掺很多东西。   “炒菜不用放盐了”   小王打听到,这些大包装的袋装味精虽然都标注了谷氨酸钠大于等于99%,但是里面却并非都是纯粹的谷氨酸钠,那都加了什么呢?按照小王提供的信息,记者走访了青岛市的两个批发市场。   在青岛市抚顺路蔬菜副食品批发市场里有数十个批发调味料的摊位,每家都有几种牌子的味精在卖。记者在市场里看到,这里销售的味精有三种,无盐味精、加盐味精和增鲜味精,三种味精当中的谷氨酸钠含量也各不相同。摊主告诉记者,这种2.5公斤装的“无盐味精”,谷氨酸钠含量能达到99%以上,销量最好。   记者:这种一般你一个月能走多少?(好了能走200袋,不好能走150袋。)   商户:这一个月我光在这个地方就十几吨吧。   商户告诉记者,这种2.5公斤装的味精,普通家庭并不常用,主要供应酒店、饭馆等一些餐饮机构。   商户:这个货就可以呀,一般酒店用都用这种。   商户:基本都是川菜馆。   商户:饭店都吃。   商户:反正就是周边这几个饭店,还有学校,那些大学,大学那一要就一大包。   记者在市场上发现,虽然都是2.5公斤装的无盐味精,可是价格却不同,从十八九元到二十八九元不等,一袋味精的价格竟然能相差近十元钱,这是为什么呢?   商户:你去检验去吧,里边全是盐,你不用看,都是一个厂家的,你不信拿着上工商吧,你这两袋都拿着,你去检验去吧,我给你出钱不要紧。   味精里加盐?这不是无盐味精吗?怎么会加盐呢?怕记者不信,商铺老板还认真地指给记者看,袋子里一粒粒的细碎的小颗粒,老板说那就是盐了。   商户:看见没有?这都是盐,你看盐的晶体,炒菜不用放盐了呗,这个绝对不用放盐。   果然,这种售价为22元标称为谷氨酸钠含量99%以上的无盐味精里除了针状的结晶外,还有一些圆形的小颗粒,跟味精的的形状完全不同,尝起来咸咸的。   这位经营者说,加盐是为了降低生产成本,盐掺得越多,自然厂家赚得也就越多。   商户:这个五斤味精里边掺上半斤盐,(半斤盐差多少钱?)它那五元多钱一斤一下子成了多少?一下减了三四元,你掺上一斤呢,好味精的话五斤掺上一斤盐没问题的,绝对没问题。   包装是一回事实际含量是另一回事   记者走访发现,其实,往无盐味精里掺盐在市场上已经是个公开的秘密了。在青岛市城阳蔬菜调味品交易批发市场,一些经营者告诉记者,因为味精里掺了大量的盐,所以,一些饭馆里的厨师炒菜根本不再放盐,只放味精就行了。而且,很多杂牌味精都是买了别家的纯谷氨酸钠味精自己再勾兑包装后出售的。   商户:等于就是说这些味精,全是买它家的味精作原料,然后勾兑的,再做成的味精,就它家是原料。   商户:(一般都加啥呀?)加盐加糖和淀粉,(那不能看出来吗?)你要是亮度不好的话,发黑的话里边就加了,盐它根本就不像味精那么亮,加上盐它没那么亮。   虽然在外包装上标注的,都是谷氨酸钠含量达99%以上的无盐味精,但商户们心里很清楚,包装上标的是一回事,里面实际含量又是另一回事。关键还要看价格。   商户:我说要是便宜的你就算呗,肯定是加盐加的就多,越便宜加盐越多,没听懂啊?盐便宜,盐才一元来钱一斤。   商户:6.5元一斤,盐才几角钱一斤,这不就钱出来了。   记者在市场上还了解到,由于近一段时间市场加强了管理,工商部门要求产品都要由厂家提供检验合格证书才能销售,所以许多味精厂把过去的产品包装换掉了,本来是标称99%的谷氨酸钠味精,现在都标成了80%。   发苦的味精   其实味精掺假,不仅仅局限在加盐上,还有其它的东西!因为味精颗粒有大小之分,而盐和淀粉的颗粒比较细,所以厂家一般会掺到小颗粒的味精里。那么大颗粒的味精里又会掺些什么东西呢?   记者购买了一些元味苑牌的无盐味精,它标称谷氨酸钠达到99%以上。但记者打开包装后发现,里有一些形状与味精相似的结晶体,个头要比味精的颗粒大些,尝起来有一点苦涩的味道。随后,记者在青岛建航牌的无盐味精中也发现了这种味道发苦的大个晶体。   小王:有的味精颗粒比较小,里边会掺加一些盐、糖,这都能看出来,还有一些颗粒比较大的,长粒的跟味精很相似的一种味精,但是颜色上不一样,用嘴一尝呢,它略微有种发苦的味道,跟味精的味道是不一样的,所以我就怀疑我说这种是什么东西。   这个形状跟味精相似,味道却大不一样的晶体到底是什么呢?除了盐、糖以外,味精里还加了其它的东西吗?   这袋名为元味苑的味精,是由青岛知味居味精有限公司生产的,记者按照包装上的厂址找了过去。但到了村口打听了很久,也没人听说过有家味精厂,几经周折,记者终于在一个深深的胡同当中,发现了一栋有厂房的大院,但院门口却没有挂任何的名牌和标志。村民们告诉记者,这里就是知味居味精厂。   村民:它家一直就是味精厂。   这个神秘的知味居味精厂位置并不显眼,也不挂任何厂牌,工作人员也很是神秘,不知道它们生产的东西到底加了什么。   添加物不止是盐、淀粉、石膏   记者又来到了一家生产“六合香”味精的厂家,这里的销售人员给记者讲述了一些业内的秘密。   销售人员:因为假的比较多,以次充好的比较多,非常乱,(味精能假到哪去?)加东西嘛,主要是盐,也有加其它的东西,包括最厉害的是在市场上出现的,加乱七八糟不能吃的东西,包括食品添加剂里边的东西。   这位销售员对味精里添加的不能吃的东西欲言又止,接着,他又给我们拿出了一盒他们自己从市场上搜集来的其它厂的掺假味精,并告诉我们,这些产品不论标称谷氨酸钠含量是99%,还是80%,基本上都没有达标。   销售员:(谷氨酸钠百分之八十这个能达到多少?)达到七十四点几吧,百分之七十五吧。   销售员说,别看只比标准低几个点,利润就是这样省出来的。   销售员:它的含量低五个点,每低一个点的味精,它加上盐之后,就得省八十元钱一吨,一个点,你说它差这五个点,它说八十的,给你的是七十五的,那五个点就等于说是四百元钱,这个它还是合算的,一样的钱它多赚四百元钱。   这位销售人员告诉我们,除非他们这些专业人士,不然一般人是看不出来味精里到底有没有掺假。   销售人员:这个里边道道很多,小商贩它越小,猫腻越多,往里边加了很多东西,(都加什么呀?)不好说,有一些业内的一些东西呀,不太想透露,就是对这个行业不好。   在记者的一再追问下,销售员打开了电脑,给记者查起了网页。我们看到了盐、淀粉、石膏等这些添加物。   销售人员:还有厉害的。   除了盐、淀粉、石膏外,还有更厉害的添加物,到底是什么呢?销售人员给记者打开了一个名为味精状硫酸镁的图片。   销售人员:这个就是味精状硫酸镁,一模一样啊,所以说你刚才看那个晶体或怎么样,你根本看不出来是吧,(你发现过有人加了吗?)我发现过。   据这位销售员说,某些小企业,会往味精中添加一种名为味精状硫酸镁的东西。那么,记者和小王在味精中发现的这些针状晶体就是味精状硫酸镁吗?   打破砂锅问到底,小王把自己买到的这种元味苑味精,拿到了当地的通标标准技术服务有限公司进行了检测。国家标准中,没有关于“硫酸镁“的检验方法。因此,检测单位对硫酸根和镁分别进行了检测,结果是,样品中谷氨酸钠的含量只有69.2%,与标称的99%相差30%,每100克味精中,镁的含量达到了2.3毫克。   五、六百元的硫酸镁不可能是食品级的   这些镁是怎么进入味精的呢,记者在网上搜索了一些生产味精状硫酸镁的厂家,它们大都宣称这是味精专用添加剂,记者给其中一些厂打了电话。   记者:味精状的,(你要要,最便宜495一吨),有没有味精厂用过你这个东西?(有,有用过的,他们回去还得掺别的东西。)   记者:你那有硫酸镁吗?(有,550元每吨),供没供过味精厂?(味精厂,多,差不多味精厂都用这个,有的味精厂大点的,一个月差不多七八十吨。)   记者共打了近十个厂家的电话,其中有五六家说自己给味精厂提供过硫酸镁,但一位生产食品级硫酸镁的厂家销售员却说,五、六百元的硫酸镁不可能是食品级的,是不能食用的。   销售员:我觉得500元不可能是食品级的,一到食品级它就不一样了,就比较差的食品级,也得一两千元了,应该就差在,它的卫生各个方面不达标,就是重金属,还有各个细菌,大肠杆菌之类的,还有重金属类的都会超标。   味精的国家标准中要求,谷氨酸钠味精中,谷氨酸钠的含量要达到99%,那么,记者发现的那两种有杂质的味精是否能达到这个标准呢?它里面到底添加了什么呢?   记者在批发市场上购买了两个品牌的无盐味精,分别是青岛市知味居有限公司生产的元味苑牌味精,和青岛建航味精有限公司生产的建航牌味精。两袋味精都标称自己的谷氨酸钠含量为99%,记者把这两袋味精送到了北京市理化分析测试中心进行了检测。   结果显示,元味苑牌味精的谷氨酸钠含量只有70.9%,与99%的要求相差近30%,味精中硫酸盐的含量超出了国家标准,大于0.05%,而且,镁的含量达到了每公斤102毫克。   建航牌味精的谷氨酸钠含量只有63.8%与标准要求相差35%左右,同样,它的硫酸盐含量也大于0.05%,镁含量甚至达到了每公斤143毫克。
  • 【青岛盛瀚】新国标登场,草甘膦盐检测将有据可循
    呼吁了多年的新草甘膦国家标准将于今年12月1日正式施行,面对长期以来市面上草甘膦不同盐型混淆的现象,“新国标”此番登场将如何接招?正文近日,国家质检总局国家标准委公布《中华人民共和国国家标准公告2017年第13号》,公告显示,本次国标的修订包括草甘膦水剂和可溶粉(粒)剂。2017版草甘膦新国标较2006版最大的变化主要在草甘膦盐型方面进行了修订,明确增加了一项对特定盐型成分的测定(如下表所示)。从12月1日即将实施的两项新国标《GBT 20684-2017 草甘膦水剂》和《GBT 20686-2017 草甘膦可溶粉(粒)剂》来看,草甘膦鉴别方法用到的是高效液相色谱法,而钠离子、钾离子、异丙胺离子等阳离子用到的是离子色谱法。采用离子色谱法可同时检测草甘膦制剂中的钾盐、铵盐、钠盐、异丙胺盐,以及铵盐和异丙胺盐等的混合物。该方法简便快速重现性好,准确度、精密度均能达到对制剂定量分析的要求,可以作为农药草甘膦盐的检测方法,适用于大批样品的定性及定量分析。青岛盛瀚色谱技术有限公司自主开发了分析草甘膦盐及其制剂的方法,CIC-D120型离子色谱仪搭配相关配件耗材,可实现对各类草甘膦制剂的产品性能及其含量判定。各类型产品样品图如下:1.草甘膦钾盐样品谱图:2.草甘膦异丙胺盐样品谱图:3.草甘膦异丙胺盐和草甘膦钾盐混合样品谱图:4.草甘膦异丙胺盐 铵盐 钾盐 钠盐混合样品谱图:结语:青岛盛瀚CIC-D120型离子色谱仪采用离子色谱法测定各种草甘膦制剂中的阳离子方法简单、快速、准确度高,完全符合《GBT 20684-2017 草甘膦水剂》和《GBT 20686-2017 草甘膦可溶粉(粒)剂》的要求。
  • 安徽八家严重污染企业被挂牌督办
    八家企业是:安徽晶威太阳能电力有限公司、淮北启明蓄电池制造有限公司、滁州市苏深表面处理有限公司、繁昌县汇龙织造漂染有限公司、芜湖雅丽丝染整有限责任公司、繁昌县繁星针织漂染有限责任公司、安庆金泉药业有限公司、合肥光大人造板有限公司   10月12日,省环保厅通报今年第三季度工业企业污染巡查情况,安徽晶威太阳能电力有限公司等8家存在严重环境违法问题的企业被“挂牌督办”。   被曝光的企业分别是:安徽晶威太阳能电力有限公司、淮北启明蓄电池制造有限公司、滁州市苏深表面处理有限公司、繁昌县汇龙织造漂染有限公司、芜湖雅丽丝染整有限责任公司、繁昌县繁星针织漂染有限责任公司、安庆金泉药业有限公司、合肥光大人造板有限公司。省环保厅指出,这些企业主要存在污水排放严重超标、未履行环评手续、未建立污水处理厂、未安装在线监控设施、污水处理设施擅自停运或运行不正常、生产废水直排等多种环境违法行为,严重污染了周围环境。   目前,省环保厅已对8家省级挂牌督办企业下达整改通知,要求企业立即停止生产、限期整改 建立健全环评手续,完善治污设施 追缴排污费并依法对企业处以罚款,杜绝污水直排、偷排现象,消除不良影响,并强调整改验收合格后,方可恢复生产。
  • 大型强子对撞机CMS合作组发现新的四夸克粒子家族
    记者10日从南京师范大学获悉,在9日举行的第41届国际高能物理大会上,欧洲核子研究中心大型强子对撞机(LHC)的紧凑介子线圈(CMS)合作组报告,他们发现了一个可能由4个粲夸克组成的奇特粒子家族。  “清华—南师”CMS组负责人、南京师范大学教授易凯代表CMS合作组介绍,这些粒子内部可能由4个同一种重味夸克组成,物理图像相对简单而利于理解。“这是中国实验团队首次在LHC上主导观测到可能的全粲四夸克粒子,也是中国首次在CMS实验上主导新粒子的发现。”易凯说。  夸克是一种基本粒子,目前已知有上夸克、下夸克、奇夸克、粲夸克、顶夸克、底夸克6种类型。“粒子一般由2—3个夸克组成,例如介子由一个夸克和一个反夸克组成,而重子由3个夸克或3个反夸克组成,它们被称为传统强子;但还有一类粒子可能由4个、5个夸克或者夸克胶子混合组成,因为比较罕见,所以也被称为奇特强子。”易凯表示。  理论学家在数十年前已预测到传统的强子和奇特强子态的存在,然而直到最近20年,科学家才在实验上观察到较为明确的四夸克态或五夸克态奇特强子。  “但此前还没有发现过全部由重味夸克组成的奇特强子家族,即粲夸克或底夸克组成的奇特粒子。”易凯说。  基于2016—2018年CMS采集的所有“质子—质子”对撞数据进行分析,CMS合作组随后在两个粲夸克偶素的不变质量谱中观测到了一个新的粒子家族。“其中的每一个粒子可能由4个同味重夸克组成,该家族中的3个共振峰依据质量被暂时命名为X(6600)、X(6900)和X(7300)。X(6600)和X(7300)粒子均是在世界上首次被观测到。”易凯说。  “这是首次在实验上观测到可能由纯重味夸克组成的奇特粒子家族。”易凯强调,“虽然近20年来,科学家们发现了几十个奇特强子,但这些奇特强子究竟是怎么形成的,还是未解之谜。而此次研究发现的奇特粒子家族,夸克的组成方式相对简单,我们就可以基于这种相对简单的组合方式,继而理解这些粒子的形成模式。”  易凯表示,CMS探测器收集的数据量大,也有很好的质量分辨率,预计将会在这个方向作出更多的贡献。  CMS合作组由50多个国家、约240个单位的4000多名成员组成,其中,中国组成员来自中国科学院高能物理研究所、北京大学、中国科学技术大学、北京航空航天大学、清华大学、南京师范大学等多个单位。近年来,中国CMS组在希格斯粒子性质测量和多玻色子研究等方面成绩突出。
  • 揭秘英国地下800米处暗物质搜寻实验室
    身在波尔比钾盐矿的肖恩帕林和尼尔罗利博士。钾盐矿地下深处就是一座科学实验室。矿井的地道又高又宽,足以并排摆放两辆路虎汽车。 天体粒子物理学家帕维尔马耶夫斯基走进被塑料布包裹的ZEPLIN-III探测器 波尔比钾盐矿位于约克郡荒野北部边缘地带,实验室座落于地下0.68英里(约合1.09公里)处   北京时间1月25日消息,一组天体粒子物理学家正在位于英国约克郡地下超过半英里(约合804米)的实验室搜寻暗物质。暗物质非常神秘,一直就是最大的宇宙谜团之一,即使参加这项实验的科学家也不确定暗物质是否真实存在或者最终能否发现这种物质。3月,实验结果将浮出水面,如果如愿以偿地发现暗物质,这一发现将彻底改变科学界的面貌。   实验室位于地下深处   搭乘一个漆黑一片的狭窄贯笼,感受气流在身边迅速穿过,经过6分半的下降之旅,你便来到这个地下实验室。实验室最深处与地面的距离超过0.5英里,位于北约克郡荒野地下,温度达到40摄氏度。如果出现任何差错,你将困在充满水的岩层下方,深度达到33名智利矿工被困矿井的两倍。庆幸的是,这些矿工最终成功获救。   当然了,在冬季的早晨,搭乘贯笼进入波尔比钾盐矿的科学家并没有这种担忧。如果有此担忧,他们无疑选错了地方。为了成功完成寻找和研究暗物质的这项工作,他们只能进入地下深处,防止遭到轰击地球表面的宇宙射线和辐射的影响。   他们身穿橙色连体工装,佩戴护胫,脚蹬安全靴,头戴安全帽,帽子上装有照明灯,身上还绑着一条大带子,同时配备必需的自救设备 (紧急呼吸器)。虽然从装扮上看,他们与矿工并无差异,实际上,他们的真实身份是物理学家,进入矿井的目的并不是为了寻找这座矿井的主产品——钾盐和岩盐,而是寻找更为难于捉摸的暗物质。迄今为止,还没有人证明暗物质真实存在。   在矿井的底部,矿工朝着一个方向——朝向矿井一面——前进,科学家则朝着另一个方向前进,穿过一条长地道向地下前进。矿井的这部分呈蜂窝结构,地道的总长度超过600英里(约合965公里)。只要不想到上方的岩石和水,你不会得幽闭恐怖症。地道内又高有宽,可并排容纳两辆路虎汽车。据一名煤矿矿工透露,由于地道主要是在岩盐矿脉中挖掘,封闭的速度较为缓慢。这里的温度较为适度,矿井内的盐就在嘴边,呼吸的空气能够感觉到盐的气息。   两个主实验室   科学家爬进一辆使用柴油机的路虎,其在制造上能够在地下使用时保证消防安全。在前行了800码(约合731米)后,他们将车停在旁边的一个小地道内。这条地道通往一个采用胶合板结构的简易交流区。来自上方的压力导致这里开始出现裂缝,现正等待重建。   在交流区暂作休息,喝一杯咖啡之后,他们沿着一条狭窄的通道继续向下前进,进入一个更衣区。在这里,他们换上干净的靴子和帽子,穿上一次性拉链式白色连体工装。地下实验室一定要保持洁净,这也就是为什么他们在进入前就换上干净的工作服。此外,他们还要穿过一个封闭的真空吸尘装置,吸掉身上的每一粒尘土。形象地说,就如同洗了一个澡。完成这些准备工作之后,他们才可以进入实验室。   这个地下实验室并不起眼,长300英尺(约合91米),墙壁采用紫红色防火涂料,看上去有点恐怖。顶部是滑行装置,用于两吨重的起重机运送重型设备,墙边摆着大量测量设备、电脑显示器、表盘、电线和仪表。中央是两个主实验仪器,表面上体现不出它们的重要性。它们将帮助科学家揭开宇宙的一个最大谜团。   其中一个实验仪器主要由一个巨大的盒子构成,体积70立方英尺(约合2立方米),外面包裹着难看的透明聚丙烯塑料布,看起来似乎是最近才运到实验室的,上没来得及拆封。另一个实验设备也是一个立方体,现已被大卸八块,来自加利福尼亚州的一名教授正对其进行维修。这个设备由一系列框架构成,好似一个鸡蛋切片机,它的电线很细,细到让人不敢近距离观察,唯恐一不小心摔倒,压坏这个造价数千英镑的设备。   这两个实验仪器一个是暗物质探测器,被称之为“ZEPLIN-III”,另一个是暗物质望远镜,被称之为“DRIFT-II”,它们均在与时间赛跑,寻找在宇宙中占据重要位置的暗物质。科学家认为暗物质在宇宙的比重高达80%以上。  进气系统,确保超纯氙气供应 研究小组在临时餐室暂作停留,而后穿上工作服进入实验室 矿用卡车搭载液态氮,开往实验室   可能一无所获   在科学界,寻找暗物质是众多物理学家为之奋斗的目标,发现者的名字将被永远载入史册,与牛顿和爱因斯坦齐名。但令人感到备受挫折的是,这种物质非常神秘,参与这一项目的科学家中没有一个人确切知道暗物质是否真实存在。   欧洲核子研究组织耗资60亿英镑(约合96亿美元)的大型强子对撞机座落于瑞士,寻找暗物质也是这一庞大项目的目标之一。此外,美国和欧洲的其他一系列项目也将寻找暗物质作为一个重要目标。英国此次寻找暗物质的努力一年的费用不到100万英镑(约合160万美元)。   加利福尼亚州教授斯诺登伊夫特从洛杉矶的西方学院飞到英国,进入地下实验室修理暗物质望远镜。他表示:“我真的不知道我正在寻找的这种粒子是否真实存在。我们可能只是白费心机,根本找不到暗物质。”   如何成功发现暗物质呢?ZEPLIN-III项目负责人、伦敦帝国学院讲师亨里克阿劳霍博士表示:“如果能够发现暗物质,我们将最终解答物理学上的一个重大疑问。”伊夫特教授脸上的笑容告诉我们,寻找暗物质的努力最终徒劳无功的可能性并不像他开玩笑时说的那么小。在他眼里,这是一个最令人兴奋的科学研究领域。对于此次寻找暗物质的尝试,公众最关心的莫过于结果——究竟是如愿以偿地发现暗物质还是发现其他物质。   他说:“在发明荧光灯之前,没有人知道发现等离子体发出的光线意味着什么。在创立量子力学理论时,科学家最初认为这是一项完全无用的理论。但突然间,他们发现全世界的每一台电脑都立基于这一理论。”在这个地下实验室,伊夫特用外行人能够听得懂的话解释寻找暗物质的重要性。他说:“虽然发现这种物质的可能性很小,但发现的意义非常重大,要知道,暗物质在宇宙质量中的比重高达85%。”   质量失踪问题   我们已经知道其他15%由什么物质构成。我们的身体、我们的家、我们的行星,所有我们能够看到和触摸到的一切都由普通物质构成。物质是引力之源,由原子构成,电子绕着原子核运动,产生一个电磁场。在浩瀚的宇宙,在恒星之间漆黑一片的空间,可能还存在另一种物质——暗物质。不仅仅在太空,地球上也可能存在暗物质,虽然数量较少,在阅读这段文字时,每秒将有100万暗物质粒子穿过你的小指。之所以被称之为暗物质是因为这种物质不会发射光线同时也不可见。暗物质没有电磁场,这也就意味着几乎无法借助任何常规科学测量设备探测到它们的存在。   我们何时发现可能存在暗物质?直到上世纪30年代,还没有人得出这一发现。1933年,加州理工学院的瑞士天文学家弗里兹扎维奇提出了一项非常引人注目的暗物质存在理论。但几十年来,很少有科学家相信暗物质存在的可能性。   扎维奇提出的谜题必须通过研究星系质量加以解答。星系质量计算通常采用两种方式,一种是测量星系的旋转速度,星系旋转速度越快,所拥有的质量越大 另一种是根据星系的亮度进行估计,也就是估计星系的恒星数量。在对后发座星系团进行研究时,扎维奇发现了奇怪的现象。他利用维里定理计算后发座星系团的真实质量,所得出的质量却是视觉观测下的大约400倍。这种现象被称之为“质量失踪问题”。   什么物质导致如此巨大的差异?答案可能就是暗物质。直到上世纪70年代,扎维奇的理论才得到证实。当时,年轻的美国天文学家维拉鲁宾利用其对螺旋星系旋转速度的观测数据得出同样的结论。我们能够观察到的星系区域——明亮区——所拥有的质量似乎只占星系总质量很少的一部分,余下的质量一定存在于我们无法观察到的暗区。 分析暗物质探测器获取的数据 谢菲尔德大学的马克派普为DRIFT-II探测器实施“手术”。这个探测器是世界上最灵敏的暗物质望远镜 液态氮用于冷却ZEPLIN-III探测器中的“靶子”   费用政府买单   此次科学竞赛旨在率先发现暗物质的存在。35年来,没有一个人成功做到这一点,这项任务难度之大我们可想而知。伊夫特表示:“全世界大约有300位科学家一直在搜寻暗物质,这是一项非常艰巨的任务。参与这项工作的人就像着了魔一样研制探测设备,探测自己认为中的暗物质。但这种探测具有极大的不确定性,可能一无所获。”   在难于进入的地下深处进行暗物质研究是一个最基本的要求,这种要求也提高了搜寻暗物质的难度。阿劳霍指出,科学家在矿井内进行研究并不会遭遇危险或者患上幽闭恐惧症,真正让他们感受头疼的是地下研究并不十分便利。他说:“第一周,所有人都喜欢这里,恐惧心理很快烟消云散。但便利性仍旧是一大挑战。”   首先,进入矿井并非易事。科学家要沿着一条沿岸环路驶往怀特比北部地区,有时还会遭遇降雪,而后花一两个小时佩戴各种装备,下降到矿井,随后还要换装,最后进入实验室。这里的工作环境十分恶劣。空气中的盐可能让电气设备陷入混乱,任何体积超过70立方英尺(约合2立方米)的设备都无法借助起重机运进矿井。由于搜寻暗物质项目本身的特殊性,所进行的实验在几个月甚至最后结束时可能不会得出任何令人兴奋的发现。   虽然一些工作可以借助计算机远程完成,但设备的维护和修理工作还是要亲历亲为,这是不可避免的。除了校准机械装置和检查是否出现生锈、破损和裂缝外,工作人员还要定期使用300升液态氮保持ZEPLIN-III内的氙气处于液态。氙气从俄罗斯进口,每公斤1万英镑(约合1.6万美元)。实验室每年的运营成本为30万英镑(约合48万美元),主要是工作人员的工资、电费和设备维护费用,由英国政府买单。   灵敏度就是一切   对于暗物质到底是什么,科学家意见不一。一些科学家认为,暗物质可能是由晕族大质量致密天体构成,这种物质可能来自于黑洞。上世纪70年代,意大利科学家指出暗物质可能由axions粒子构成,axions以一种洗衣粉的名字命名。也有人认为,存在暗物质不过是一种幻想,星系出现“质量失踪问题”的真正原因只能说明牛顿物理学定律存在缺陷。   当前有关暗物质的最流行理论是,这种物质由大质量弱相互作用粒子(WIMPs)构成。之所以取这个名字是因为暗物质据信会与正常物质发生反应,但这种情况非常罕见。世界各地的大量实验都围绕这一理论展开,波尔比矿井内进行的实验便是其中最为先进的一个。阿劳霍表示:“这是一项竞争激烈的竞赛,我们是有望获取胜利的主要选手之一。”   如果按照国际标准,这座地下实验室是使用零星资金建造的,虽然事实如此,但阿劳霍和他的国际粒子物理学家小组——来自伦敦、迪高特、爱丁堡、葡萄牙和莫斯科的研究实验室——却操作着世界上最为灵敏的探测设备。在这场寻找暗物质的竞赛中,灵敏度就是一切。   阿劳霍解释说:“在6个月的实验中,我们预计自己的实验只能探测到少量暗物质事件。但在相同的时间内,我们却可以探测到数百万次背景辐射事件,来自于探测设备和实验室墙壁的痕量放射能,来自于能够穿透到这一地下深度的少量宇宙射线。毫无疑问,探测设备的灵敏度越高,所能消除的背景噪音越多,也就越有可能发现暗物质。”   这也就是为什么ZEPLIN-III探测器被包裹上保护性材料。外层的聚丙烯塑料在设计上用于帮助消除中子,周围厚厚的铅壳则用于消除伽马射线。探测器内部的“靶子”由12公斤纯液态氙构成,一旦核心受到粒子轰击便会发生反应。无论什么时候,只要发生反应便会产生闪光(由光子传感器记录)和电荷,后者在悬于液态氙“靶子”上方薄薄的氙气层中测量。通过测量光脉冲与电荷尺寸的比率,波尔比的研究小组能够确定所探测到的“事件”是否是一次罕见而令人极度兴奋的WIMP交互作用,或者只是一次令人沮丧的伽马射线穿过。   这座科学实验室的主厅 参与这一项目的科学家中没有一个人确切知道暗物质是否真实存在   不管谁获得胜利,都将名垂青史并斩获诺贝尔奖   截至春初,波尔比研究小组将确定他们能否得出令人信服的发现,即在世界上第一次探测到暗物质的存在。“令人信服”非常重要,因为他们必须说服自己,同时还要说服这一研究领域心存怀疑的其他竞争对手。这些竞争对手中有的位于加拿大,有的位于南达科他州,有的则位于意大利大萨索山地下,其中包括他们的主要竞争对手——XENON 100暗物质搜寻实验。XENON项目组最近的一次实验在2010年9月进行,未能发现令人信服的暗物质存在证据,这让波尔比项目组长长地舒了一口气。   出生于波兰的ZEPLIN-III项目负责人帕维尔马耶夫斯基博士指出:“实际上,我们没必要期盼竞争对手遭遇失败,因为发现暗物质的最终受益对象是整个科学界,而不单单是个人。此外,他们使用的是与我们类似的探测设备,如果他们能够取得成功,说明我们也有成功机会。这是一个竞争激烈的研究领域,不管谁获得胜利,都将名垂青史并斩获诺贝尔奖。如果失败降临到其他团队而不是自己团队身上,你同样会感到非常失望。”   如果失败,我们需要制造一台更大的探测器   现在,波尔比矿井内的科学家正朝着实现这一梦想的道路前进。ZEPLIN-III探测器的灵敏度是ZEPLIN-II的10倍,ZEPLIN-II的灵敏度大约也是Mark I的10倍。借助于这种高灵敏探测设备,科学家距离发现暗物质自然更近一步。在打开探测器并在3月进行最终测量时,实验结果将浮出水面。如果ZEPLIN-III能够记录10次事件并证明这些事件并非背景辐射的结果,研究小组便取得胜利。波尔比实验室资深科学家和设施负责人肖恩帕林表示:“这里的每一个人都认为,我们已经处在上演重大发现的边缘。虽然没有一个人观测到非背景辐射事件,但我们可能已经进入上演这种发现的时刻。”   在波尔比的实验中,没有人愿意猜测成功发现暗物质的几率。由于遭受失败的可能性极高,实验室的空气中弥漫着紧张的气氛。DRIFT-II主要由美国大学资助,研究小组希望这个探测器至少可以安全使用3年。ZEPLIN-III的资金将于3月陷入枯竭,政府部门和赞助者——科学与技术设施理事会需要为之提供更多资金。   ZEPLIN-III项目组操作着世界上最灵敏的探测器,在进行旨在寻找暗物质的实验中,他们自然处于有利位置,成功发现暗物质的几率高于其他研究团队。面对这种极富挑战的实验,我们不得不问如果失败了怎么办?伊夫特对此表示:“如果失败,我们需要制造一台更大的探测器,继续进行这种实验。”
  • 大型强子对撞机发现新奇异五夸克粒子
    科学家们在欧洲核子研究中心的大型强子对撞机(LHC)上发现了一种新粒子,其被称为“奇异的五夸克”。研究团队表示,发现这样的奇异粒子有助他们理解夸克是如何结合形成复合粒子的。相关论文刊发于17日出版的《物理评论快报》杂志。  科学家们认为,夸克是不能再分割的基本粒子,目前已知的夸克包括上夸克、下夸克、粲夸克、奇异夸克、底夸克和顶夸克6种。夸克通常“三五成群”形成强子,比如重子(由3个夸克组成的质子和中子等)和介子。但更多夸克也能“成群结队”形成“四夸克态”和“五夸克态”。  此前,物理学家也发现了几种“四夸克态”。2022年7月,LHC上底夸克探测器(LHCb)实验合作组宣称,发现了一种“五夸克态”。  在最新研究中,科学家们通过以极高的能量让两束质子发生对撞,从而发现了这一新粒子,最新发现的五夸克粒子包含一个奇异夸克。  团队成员之一、意大利米兰大学伊莉莎贝塔斯帕达罗诺雷拉指出,质子和中子等常见的强子通常由两到三个夸克组成,他们最新发现的“五夸克态”非常奇特。  诺雷拉表示,科学家们发现了越来越多“四夸克态”和“五夸克态”,这些研究就像是粒子领域的“文艺复兴”,科学家们收集的证据越来越多,也越能研究更复杂的衰变,研究这些奇异的夸克态很重要,因为它们有助于揭示夸克在粒子内部的结合情况。
  • 借自然之力,护绿水青山——记2018赛莱默世界水日为水行走
    01我们为什么“为水行走”在我国用水困难的偏远地区,妇女们不得不每天步行4-5公里山路取水供一家人全天使用。“为水行走”活动旨在邀请水行业各界人士通过亲身体验缺水地区取水之路的艰辛,提升水资源保护意识以及作为水行业从业者的责任感及使命感。02我们为水行走,为水发声在赛莱默分析仪器中国总经理潘桂东先生的号召下,赛莱默分析仪器全体员工积极响应,纷纷报名参与了本次长走活动。在本次活动中,潘总身先士卒,带领赛莱默分析仪器的同事们积极响应号召,参与环保倡议,为保护水资源贡献一己之力。我们也将身体力行,号召身边的伙伴积极参与到环保事业中,共创和谐水世界。03我们的使命在刚刚结束的两会中,生态环保、低碳节能正逐渐成为考量发展质量的重要指数。大会明确提出:水污染防治将成为各地2018年及“十三五”时期的治理重点。作为一家全球领先的水科技企业,赛莱默集团一直致力于将先进的水科技带到最急需的地方,帮助人们提高生活质量。公司将保护环境、社区和自然资源,以及支持可持续发展植入我们的基因,利用我们在水行业的专长和知识支持中国的慈善事业是我们的长期承诺和核心价值。自2015年至今,赛莱默分析仪器已经在广西为8所小学修建了水塔,为当地师生提供清洁的生活用水。在今后的日子里,赛莱默分析仪器中国仍将一如既往的践行企业社会责任,把世界先进的技术带到中国,为中国的水环境保护事业做出贡献!
  • 化妆品中草药的防紫外线透过测定方法
    简介太阳的紫外线辐射(UVR)分为三类:UV-C(200-280 nm)、UV-B(280-320nm)和UV-A(320-400 nm)。UV-C是生物学上最有害的辐射,但它是由臭氧层过滤掉。目前,UV-B辐射和在较小程度上UV-A辐射是诱发皮肤癌。防晒霜和防晒是化学物质,吸收或阻挡紫外线和显示各种阳光的免疫抑制作用。[ 1 ]皮肤护理产品添加一些有效的药物在使用防晒霜一起通过不同途径工作的使用可能会降低uv-b-generated ROS介导的光老化的有效方法。[ 2 ]从水果和蔬菜种子中提取的许多液体油是轻,低粘度和较低的闭塞比油。他们的渗透和承载特性,以及其天然含量的维生素E,类胡萝卜素和必需脂肪酸,使他们非常有价值的。几种天然基础防晒乳液,包括杏仁、鳄梨、椰子、棉籽、橄榄、花生油、芝麻、大豆,已报道有紫外线过滤器。一般来说,当应用于皮肤,植物油很容易吸收,并表现出巨大的铺展。挥发油有恶臭的原则,这是在植物的各个部分,并作为一个香水和在室温下蒸发。精油有三个明显的作用:生理(如抗炎作用),心理(如芳香疗法)和化妆品(例如,防腐效果由于抗菌和抗氧化性能),与相应的好处。精油用于香料香水和护肤产品促进荷尔蒙平衡对抗毒素的堆积和软化皮肤。[ 3 ],我们选择了一些草药油(挥发性以及非易失性),通常用于化妆品。防晒霜的效果通常是由防晒系数(SPF)表示,它的定义是需要产生一个最小红斑剂量的紫外线能量(MED)保护皮肤,分为生产所需的无保护的皮肤医学的UV能量(公式1):最小红斑剂量(MED)被定义为最低的时间间隔或剂量的UV光的照射,足以产生最小可察觉的红斑,无保护的皮肤。[4,5]防晒指数越高,更有效的是防止晒伤的产品。体外筛选方法可能是一种快速、合理的刀具数量减少的体内实验和风险的人类受试者的紫外线照射有关,当技术试验参数进行了调整和优化。[ 6 ]在体外培养的方法有两类:包括一般吸收或透射紫外辐射防晒产品的薄膜在石英板或生物膜的测量方法,和方法的防晒剂的吸收特性是基于分光光度法测定稀溶液。[ 11 ] 7–计算确定的紫外线防护因子由COLIPA标准及其他监管机构的定义包括在紫外光谱防晒乳液样品的透光率测量的加权的红斑加权因子在不同波长。[ 12 ]在体外模型是根据所描述的方法确定。[ 9,13,14 ]所观察到的吸光度值在5 nm波长间隔(290-320 nm)用公式计算:在CF =修正系数(10),EE(λ)=辐射波长λerythmogenic效果,ABS(λ)=波长λ光度吸光度值。我×EE值是常数。他们是由塞尔等人确定。,[ 15 ],见表1水醇非易失性草药油的吸光度(固定油)然而,有SPF值测定的影响因素很多,如不同的溶剂中溶解的防晒霜使用;和防晒剂的浓度组合;乳液型;与车辆部件的相互作用,如酯类、配方中使用润肤剂和乳化剂;与皮肤车辆的相互作用;其他活性成分的添加;pH体系和乳液的流变性能,除其他因素外,可增加或减少每个防晒紫外吸收。不同的溶剂和软化剂对最大吸收波长和对几种化学防晒的紫外吸光度的影响,单独或组合,是众所周知的记载。[16,17],辅料及其它活性成分也可以产生紫外吸收带,从而干扰的UV-A和UV-B防晒霜。这种影响体现在成品制剂,尤其是大于15的SPF的护肤液。[ 18 ]使用防晒霜的车辆水醇乳液、水乳剂和油性润肤油或油的水。的防晒制剂必须涂在皮肤上,应继续保留作为一个连续的薄膜,应坚持表面应耐洗了汗水。当水醇溶液使用,水和酒精很快蒸发,留下一个自增塑膜的防晒霜完全覆盖皮肤紧贴于它。防晒霜或防晒制剂的分光光度法评价标准技术涉及到一个已知重量的溶剂紫外透明屏幕或制备溶液。材料与方法:乙醇(默克?)分析级。从当地药店购买了各种厂家的油。不同比例的乙醇和蒸馏水对油的溶解性进行了测定。据报道,最大的50%的乙醇可用于化妆品。因此,在蒸馏水中,油的溶解度被检测到10%至50%的乙醇。观察到40%乙醇和60%蒸馏水溶液中的最大溶解度。初始库存的溶液的制备以1% V / V油在乙醇和水的溶液(40:60)。然后从这个股票的解决方案,0.1%准备。此后,从290到320 nm处测定吸光度值,每个部分的准备,在5纳米的间隔,以40%的乙醇和60%的蒸馏水溶液为空白,使用岛津紫外可见分光光度计(岛津1800,日本);值如表1所示。有人发现,如果我们增加了油的浓度,然后浊度增加;和减少的浓度,得到的负读数。太阳保护因子测定等分试样制备扫描290和320 nm之间,所得到的吸光度值与相应的电子倍增(λ)值。然后,他们的总和,并乘以与校正因子(10)讨论:SPF是一个防晒配方的有效性的定量测量。为了有效地防止晒伤和其他皮肤损害,防晒产品应该有一个广泛的吸收,即,在290和400纳米之间。体外SPF是有用的筛选试验,在产品开发过程中,作为体内防晒措施的补充。在本研究中,挥发性和非挥发性植物油是用紫外分光光度法应用曼苏尔数学方程评价。[ 9 ] SPF值的样品使用紫外分光光度法在表?tables11和?22所示。酒精挥发的草药油的吸光度:它可以从表3中发现的非挥发性油的SPF值在2和8之间;和挥发油,在1和7之间。从这些非易失性或固定油,橄榄油和椰子油的SPF值为8左右;6左右;蓖麻油,杏仁油,5左右;3左右的芥子油和芥子油,芝麻油,2左右。因此可以得出结论,橄榄油和椰子油有最好的SPF值,这一发现将有助于固定液的选择防晒剂配方中。分光光度法计算太阳保护因子值的草药油:同样,SPF值的挥发油被发现是在1和7之间。从这些精油,薄荷油,罗勒油被发现是大约7的SPF值;薰衣草油,橙油,6左右;4左右;桉树油,茶树油,3左右;2左右;和玫瑰油,1左右。因此可以得出结论,薄荷油和罗勒油有最好的SPF值,这一发现将有助于香水的选择防晒剂配方中。因此开发具有更好的安全性和高防晒系数的防晒霜,配方设计师必须了解物理化学原理,不仅对活性紫外吸收而且车辆部件,如酯类润肤剂,配方中所用的乳化剂和香料,因为防晒霜可以与车辆其他部件相互作用,这些相互作用会影响防晒霜的疗效。结论:该紫外分光光度法简便、快速,采用低成本的试剂可用于体外测定在许多化妆品配方的SPF值。所提出的方法可能是有用的,作为一种快速的质量控制方法。它可用于在生产过程中,在分析的最终产品,并可提供重要的信息,然后进行到体内试验。对非易失性油SPF值的知识将有助于油的选择各种化妆品剂型的配方油面霜和乳液的最重要的组成部分。同样,SPF值挥发油在香水的选择是有帮助的。更多关于 防紫外透过率测试仪:http://www.zxlry.com/product/product-111.html
  • 中科院分子细胞卓越中心被授予“中国科协2022年度科研仪器优秀案例征集活动优秀组织单位”
    为贯彻习近平总书记在两院院士大会和中国科协第十次全国代表大会上的重要讲话精神,积极构建以创新价值、 能力、贡献为导向的实验技术人员评价体系,中国科协依托 “科研仪器案例库”面向全国实验技术人员顺利开展了2022年度优秀科研仪器案例征集遴选活动。中国仪器仪表学会负责此次征集遴选活动的组织及评选工作,学会组织专家严格认真的审查、初评、会评,于1000篇入库案例中评选出100篇优秀案例,其中36篇为一类优秀案例,64篇为二类优秀案例。在本次遴选征集活动中,分子细胞卓越中心获得“2022年度科研仪器优秀案例征集活动优秀组织单位”。附:2022年度科研仪器优秀案例征集活动优秀组织单位中国科学院昆明动物研究所中国科学院生物物理研究所中国科学院烟台海岸带研究所中国科学院分子细胞科学卓越创新中心北京科技大学中国计量科学研究院浙江省科技项目管理服务中心仪器信息网海能未来技术集团股份有限公司浙江福立分析仪器股份有限公司广州禾信仪器股份有限公司北京北分瑞利分析仪器(集团)有限责任公司
  • 真迈生物GenoCare 1600单分子基因测序仪获NMPA上市批准
    7月14日,国家药监局官网发布医疗器械批准证明文件,真迈生物GenoCare 1600单分子基因测序仪通过国家药品监督管理局(NMPA)审核,获准临床应用。GenoCare 1600获批临床应用是真迈生物发展的重要里程碑,从启动GenoCare 1600研发到获得NMPA上市批准,真迈生物实现了做中国人自己的测序仪的梦想;同时,也是真迈生物国产测序平台在生育健康领域临床布局和推广应用的关键一步。真迈生物联合创始人兼 CEO 颜钦表示:“本次获得单分子测序仪NMPA上市批件,这是对真迈生物单分子测序技术及产品服务能力的有力证明,同时再次展现出国家及大众对基因测序仪在生命健康行业中重要作用的认可。打造满足临床需求的有价值的产品,让每个生命拥有实现健康理想的基建,我们有信心为精准医疗和人类生命健康提供国产平台支撑,国产基因测序仪有能力为人民生命健康福祉做出更大贡献。”GenoCare 1600单分子基因测序仪采用基于单分子芯片的表面荧光测序技术SURFseq,利用全内反射光学原理(TIRF)对碱基的荧光信号进行识别,实现边合成边测序。凭借自身无需扩增、操作简便、自动分析等技术特点,GenoCare 1600单分子基因测序仪大大地简化了基因检测过程,显著降低了测序成本和检测周期。GenoCare 1600单分子基因测序仪在无创产前基因检测(NIPT)等应用方向具备明显优势。GenoCare 1600的获批,意味着国产单分子基因测序技术临床诊断时代的开启。未来,真迈生物将与合作伙伴一起,共同推动单分子测序技术在临床诊断领域的应用,助力临床诊断水平提升和基因测序行业发展,为人类生命健康保驾护航,为健康中国建设贡献企业力量。
  • 著名化学家严纯华院士出任兰州大学校长
    p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201712/insimg/75255cfa-0556-4187-a88b-25857538dc41.jpg" title=" 1_副本.jpg" / /p p   12月19日下午,兰州大学在本部大学生活动中心礼堂召开教师干部大会,宣布中共中央、国务院关于兰州大学校长调整的决定,任命严纯华同志为兰州大学校长(副部长级),王乘同志因年龄到限不再担任兰州大学校长。中组部干部三局巡视员、副局长刘后盛,教育部副部长孙尧,甘肃省委常委、宣传部部长陈青,校党委书记袁占亭,原任校长王乘,新任校长严纯华出席大会并讲话。大会由袁占亭主持。 /p p   孙尧代表教育部党组对王乘同志为兰州大学付出的心血和做出的贡献表示感谢,希望严纯华同志担任兰州大学校长以后,深入实际调查研究,尽快熟悉学校各方面的情况,与袁占亭同志密切配合,团结带领班子全体同志和广大师生员工,不断推动兰州大学各项事业取得新的成效。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201712/insimg/590eab21-c5f7-4a2d-b163-d23902a69b31.jpg" title=" 2_副本.jpg" / /p p   王乘在讲话中深情回顾了在兰大四年半的工作生活经历。他感谢党培养了他,赋予他施展才华的广阔舞台 感谢兰大班子成员和全校师生员工对他在兰大的工作给予的大力支持。他将永远为在兰大工作生活的岁月而荣幸,永远为自己是一名兰大人而自豪。王乘希望全校师生员工把思想统一到中央的决定精神上来,像支持他一样支持新任校长的工作,像关心他一样关心新任校长的生活。他相信,在习近平新时代中国特色社会主义思想和党的十九大精神指引下,在中组部、教育部的正确领导下,在甘肃省委、省政府的鼎力支持下,兰州大学领导班子一定能够继往开来、再谱华章,引领兰州大学创造更加辉煌的业绩。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201712/insimg/bbeaef9e-4fc8-4988-949d-d5d2f87f41ad.jpg" title=" 3_副本.jpg" / /p p   严纯华在讲话中说,“感谢党中央、国务院以及中组部、教育部、甘肃省委省政府对我的信任,我深感使命光荣、责任重大,我定当尽心竭力、不负重托,全力推动学校各项事业继续蓬勃发展”。他表示,将自觉用习近平新时代中国特色社会主义思想和党的十九大精神武装头脑、指导实践,努力从兰大优秀历史传统中汲取力量与智慧,团结带领学校班子认真履责 将注重发挥学术委员会、教代会和学代会的作用,真心实意解决师生员工的实际困难,将集体力量与智慧结晶充分体现在学校改革和事业发展的进步成果中 将严格要求自己,以身作则,实干苦干,廉洁自律,坚持真理,敢于担当,不畏惧回避困难,全身心投入到学校的各项工作中。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201712/insimg/7c0bd684-2640-46d0-b92f-a84266304d19.jpg" title=" 4_副本.jpg" / /p p    strong 严纯华同志简历: /strong /p p /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201712/insimg/7cb0fab7-df81-4be7-80ea-db61e60a27ab.jpg" title=" 5.jpg" / /p p   严纯华,男,汉族,1961年出生于上海,江苏如皋人,1986年6月加入中国共产党,博士,教授,中国科学院院士。 /p p   1978年10月考入北京大学化学系,先后获理学学士(1982年7月)、硕士(1985年7月)和博士学位(1988年1月)。此后留校工作,先后任北京大学讲师(1988年)、副教授(1989年)、教授(1992年)、长江学者特聘教授(1999年)、博雅讲席教授(2016年)。现任北京大学稀土材料化学及应用国家重点实验室主任、北京大学-香港大学稀土生物无机和材料化学联合实验室主任。2011年当选为中国科学院院士,2012年当选为发展中国家科学院(TWAS)院士,2013年被选为第十二届全国人大代表。2013年11月起,历任北京大学副教务长、研究生院常务副院长,党委组织部部长。2016年10月任南开大学党委常委、副校长。2017年12月任兰州大学校长(副部长级)。 /p p   主要从事稀土分离理论、应用及稀土功能材料研究。发展了“串级萃取理论”及稀土分离流程的最优化设计方法,实现了高纯重稀土的大规模工业生产 提出了“联动萃取工艺”的设计和控制方法。建立了稀土纳米晶的可控制备方法,系统研究了稀土纳米晶发光、催化等基本性质,开展了稀土纳米晶材料的生物影像和生物催化技术研究。曾获得国家自然科学二等奖两次(2011年和2006年)和三等奖(1987年)、国家科技进步二等奖(1999年)和三等奖(1991年),获得国家教委(教育部)科技进步一等奖七次(1986年、1990年、1995年、1997年、2005年、2010年、2016年)、二等奖两次(1988年、1998年)、冶金部科技进步二等奖(1989年),以及香港求是科技基金会授予的“杰出青年学者奖”(1996年)、中国化学会-阿克苏诺贝尔化学奖(2010年)等多项科技奖励。1996年被授予国家有突出贡献中青年专家称号。目前兼任《中国稀土学报》、J. Rare Earths主编,Inorganic Chemistry (ACS,美国)、《结构化学》、Frontiers of Chemistry in China、Chemistry of Materials (ACS,美国)、ChemistryOpen (Wiley)、RSC Advances (RSC, 英国)等刊物的副主编、编委或顾问编委等,同时兼任中国科协全委会委员、中国稀土学会和有色金属学会副理事长等。 /p
  • 北京谱仪BESIII实验发现新粒子X(2600)
    近日,北京谱仪BESIII实验国际合作组利用已经收集的100亿 J/ψ 实验数据,首次观测到新粒子X(2600),实验结果于2022年7月19日在线发表在《物理评论快报》杂志上[Phys. Rev. Lett. 129 (2022) 042001]。此次,BESIII合作组在 J/ψ→γπ+π-η' 过程中观测到的这一新粒子X(2600),实验确认其统计显著性大于20倍标准偏差,并测量到X(2600)的两个主要衰变模式f0(1500)η' 和X(1540)η' 的产额。这一结果是寻找研究新强子态领域又一新的重要成果。下一步在更多的衰变末态中寻找X(2600)粒子并测定其自旋宇称,对理解X(2600)粒子的本质至关重要。 自然界已发现的强子由2个或者3个夸克组成,而量子色动力学(QCD)允许多夸克态、混杂态和胶球等新型强子的存在。因此,实验上发现多夸克态、混杂态和胶球对检验和发展QCD以及强子唯象理论模型具有重要意义,一直是世界上许多高能物理实验的最重要物理目标之一。近年来,格点QCD理论取得了巨大的进展,为实验研究介子谱以及超出夸克模型的新型强子态提供了重要的理论依据,并预言了基态赝标量胶球的质量范围为 2.3–2.6 GeV/c2。BESIII 实验利用正负电子对撞可以产生大量的粲偶素粒子,其中J/ψ 的辐射衰变被公认为是寻找新型轻强子态特别是胶球的理想场所。目前实验上已确认的质量大于2GeV的粒子非常稀少。2012年BESIII实验首次在J/ψ 辐射衰变中观测到与格点QCD预言的基态赝标量胶球质量一致的共振态X(2370)。通过更多实验数据进一步探索该粒子的内部结构,并更广泛地寻找可能的2.0GeV以上的新粒子,缩小对质量大于2GeV的粒子认识的盲区,对于深入理解新型强子谱学有重要意义。 目前,BESIII实验已在J/ψ 的辐射衰变的π+π-η' 质量谱上观测到了一系列新的粒子态,包括确认BESII发现的X(1835)和新的X(2120)、X(2370)和X(2600)。这些实验结果为深入理解强子谱学提供了重要的实验依据和研究窗口。参考文献:PRL在线发表文章链接:https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.129.042001 π+π-η' 质量谱
  • 第十四届全国青年分析测试学术报告会在兰州召开
    仪器信息网讯 2016年7月28日,由中国分析测试协会青年学术委员会(以下简称为:青委会)主办,中国农业科学院农业质量标准与检测技术研究所承办的第十四届全国青年分析测试学术报告会在兰州召开,来自全国各地的青年分析测试工作者200多人出席此次会议,仪器信息网作为支持媒体亦参加了本次会议。会议现场  自1989年开始,28年的时间里,青委会一直致力于以适合青年人特点的方式开展科技交流等活动,到目前为止已经举办了十四届全国青年分析测试学术报告会。众多的青年学者通过此平台迅速成长,如今都已经成为各个学校、科院院所及企业的骨干。  本次会议特别简化了会议开幕流程,给专家和与会者更多沟通和交流的时间,切实践行了务实的工作作风。中国计量科学研究院化学研究所所长、中国分析测试协会副秘书长、中国分析测试协会青委会主任李红梅研究员主持会议。  值得一提的是,本届会议不仅搭建了青年分析测试学者学术交流的平台,组委会还特别邀请了分析测试领域的“大家”来分享他们的科研成果及成功经验。在大会特邀报告环节,中国科学院大连化学物理研究所张玉奎院士、中国检验疫科学研究院庞国芳院士等8位专家给与会代表带来了精彩的报告。中国科学院大连化学物理研究所 张玉奎院士报告题目:定量蛋白质组学深度覆盖  张玉奎院士从人类蛋白组学的进展讲起,介绍了蛋白质定性、定量的研究现状。针对目前存在的研究难题,张玉奎院士课题组在定量蛋白质组学深度覆盖方面开展了一系列的研究工作,涉及集成化蛋白质样品预处理系统、膜蛋白质样品预处理方法、蛋白质组深度覆盖分析技术等方面。中国检验检疫科学研究院 庞国芳院士报告题目:高分辨质谱+互联网+地理信息(GIS)三元融合技术提升农产品质量安全保障能力  针对我国农产品质量安全所面临的实际问题,庞国芳院士在报告中详细介绍了其课题组承担的“十二五”国家科技支撑计划课题2012BAD29B01所取得的创新成果,包括研发非靶标高通量农药残留侦测技术;研发高分辨质谱+农药残留大数据智能分析软件;示范应用发现我国农药使用特征及规律(2012-2015);研发高分辨质谱+GIS农药残留风险溯源食品管理软件等。军事医学科学院 钱小红研究员报告题目:分析科学与蛋白质组学  钱小红研究员在报告中介绍了电泳、色谱、质谱等多种蛋白质组学分离和鉴定技术,特别详细介绍了其课题组在蛋白质组学质谱定量技术等方面开展的研究工作。其总结到,蛋白质组学的诞生基于分析技术的发展,而同时蛋白质组学的复杂性也为分析技术提出了新的挑战,蛋白质组学未来的发展也将依赖分析技术的突破。军事医学科学院 谢剑炜研究员报告题目:效应标志物质谱定量技术在硫芥毒理机制研究中的应用  芥子气是目前国际防化医学研究的难点,也是热点,其毒理机制不清楚,而且没有特效抗毒药。对此,谢剑炜研究员课题组利用分析手段开展了一系列的相关毒性机理的研究工作,包括化学转化/LC-MSMS方法研究芥子气在污染大鼠体内的分布等。在本次报告中,谢剑炜研究员特别分享了《效应标志物质谱定量技术在硫芥毒理机制研究中的应用》工作。中国计量科学研究院化学所所长 李红梅研究员报告题目:大分子标准物质的纯度定值与溯源技术研究  在报告中,李红梅研究员介绍了化学计量与溯源技术的关系,强调了大分子标准物质的纯度定值与溯源技术研究的重要性,并详细介绍了其课题组所开展的系列工作:质量平衡法 纯度定值技术-缬氨酸国际比对;氢氘交换-多肽核磁定量技术;C肽国际比对-质量平衡法;肿瘤标志物-甲胎蛋白、癌胚抗原标准物质研究;基于鳌合稀土金属元素标记及ICP-MS的蛋白质定量研究等。清华大学化学系 林金明教授报告题目:液滴制备及其质谱分析方法的建立与应用  林金明教授详细介绍了其课题组在微流控芯片-质谱系统研究中开展的多项研究工作:微液滴产生与在线纸喷雾离子化质谱分析;建立“质谱传感器”,结合微透析技术用于细胞培养体系的实时化学监控;构建微流控芯片-质谱分析平台,量化蛋白质非共价作用;在线微流控芯片-质谱研究细胞代谢。据悉,5年的时间,林金明教授课题组的该项研究已经发表了数十篇高质量的论文,引起了业内的极大关注。四川大学 侯贤灯教授报告题目:原子光谱分析:从元素到分子到形貌  侯贤灯教授在报告中介绍到,建立灵敏度高、准确性好、抗干扰能力强的分析方法和野外现场分析装置是原子光谱发展进入深水区所面临的挑战。而针对此,侯贤灯教授也给出了原子光谱分析的几大出路:表征型原子光谱仪;部件改进及小型化;元素成像与形貌分析以及一些其它的拓展应用。同时在报告中,侯贤灯教授也介绍了其课题组在原子光谱分析中所做的相关仪器研发和应用工作。赛默飞世尔科技(中国)有限公司 芦苓博士报告题目:基于静电场轨道离子阱 (orbitrap)气相色谱质联用仪的未知物结构鉴定和新化合物发现  芦苓博士介绍了基于静电场轨道离子阱 (orbitrap)GC-MS的特点及其在未知物结构鉴定和新化合物发现过程中所起的作用,并以药物原料杂质分析等实际案例进行详细的说明。  大会特邀报告后,本届会议开设了生命分析化学、环境分析化学、化学计量与标准物质、食品与农产品安全四个专题进行分会报告,共安排了近60位来自各大科研院所的青年科研工作者就各领域分析测试新方法、新技术进行深入地探讨,精彩报告请见仪器信息网后续报道。 生命分析化学专题、环境分析化学专题 化学计量与标准物质专题、食品与农产品安全专题  此外,本次会议还得到了赛默飞世尔、岛津、华质泰科、海光仪器、美诺电器等公司的的大力支持,这些公司也带来了最新的产品信息,吸引了很多参会者的咨询。交流现场与会代表合影
  • 2025年版《中国药典》2341公示稿|第三法 药材及饮片中二硫代氨基甲酸盐类农药残留量测定法解决方
    25药典专栏7月26日,国家药典委员会发布了“2341 农药残留量测定法公示稿”和“0212 药材和饮片检定通则公示稿”,一经发布,引起了行业内的广泛关注。方法主要修订了以下内容:删除原第一、二、三法;原第五法药材及饮片(植物类)中禁用农药多残留测定法,重列为第一法,并由原有的33种禁用农残扩增为47种农残;新增第二法相关药材及饮片品种中农药多残留测定法;新增第三法药材及饮片中二硫代氨基甲酸盐类农药残留量测定法。根据0212药材和饮片检定通则药典标准草案公示稿的限量值要求和第三法药材及饮片中二硫代氨基甲酸盐类农药残留量测定法的方法要求,岛津(上海)实验器材有限公司第一时间进行方案应对,具体应用详见下文。1. 实验部分1.1 分析条件GC条件 仪器配置:岛津GCMS-TQ系列气相色谱-质谱联用仪; 毛细管柱:SH-I-624Sil MS(30 m×0.25 mm,1.4 μm;P/N:R221-75962-30) 程序升温:初始温度40 ℃保持3.5 min, 以30℃/min升温到250℃,保持2 min。 载气:He载气控制方式:恒流模式,1.5 mL/min进样口温度:180 ℃ 进样时间:1 min进样量:1.0 μL进样方式:分流进样,分流比5:1质谱条件 电离模式:电子轰击电离(EI) 离子源温度:200 ℃ 接口温度:250 ℃ 检测器电压:调谐电压+0.5 kV溶剂延迟:1 min数据采集模式:MRM各化合物MRM参数如下: 1.2 样品前处理取本品,碎粉,过三号筛。精密称取1 g,置10 mL顶空瓶中,精密加入异辛烷3 mL,加盐酸-氯化亚锡溶液(取二水合氯化亚锡7.5 g,加盐酸215 mL使溶解,加水至500 mL,摇匀)5 mL,摇匀,立即密封。置80℃水浴中1小时,时时振摇。取出,冷却,摇匀,离心(5000转/min)3分钟,取上层有机相作为供试品溶液。 2. 实验结果2.1 标准品溶液的MRM色谱图2.2 实际样品的测定报告下载扫码获取PDF版应用报告
  • 上海交大团队用拉曼光谱助力分子定量检测
    )4月17日,国际顶级期刊Nature(《自然》)在线发表了题为“Digital colloid-enhanced Raman spectroscopy by single-molecule counting”(通过单分子计数进行数字胶体增强拉曼光谱定量检测)的研究论文。该研究针对表面增强拉曼光谱领域内定量的挑战,系统阐述了基于数字胶体增强拉曼光谱(digital colloid-enhanced Raman spectroscopy, dCERS)的定量技术。基于单分子计数,dCERS成功实现了超低浓度目标分子的可靠定量检测,为表面增强拉曼光谱技术的普遍应用奠定了重要基础。本文的第一作者为上海交通大学生物医学工程学院致远荣誉计划博士研究生毕心缘,通讯作者为叶坚教授。作为资深作者,邵志峰教授在基本概念、数据解析以及文章的凝练、修改等方面做出了关键贡献。Daniel M. Czajkowsky教授也对数据的物理原理与文章修改做出了重要贡献。上海交通大学是论文的唯一完成单位和通讯单位。图为论文发表截图。本文图片均由受访团队提供拉曼散射(Raman scattering)是Chandrasekhara Venkata Raman于1928年发现的一种指纹式的、具有分子结构特异性的非弹性散射光谱,并获得了1930年颁发的诺贝尔物理学奖。通过拉曼谱峰可以直接判断对应的分子结构,进而识别具体的分子的类型。该技术具有无需标记的优势,使其在物理、化学、生物、地质、医学、国防和公共安全等各个领域均具有重要的应用价值。拉曼信号通常比较弱,因此增强其信号就变得非常有必要。表面增强拉曼光谱(surface-enhanced Raman spectroscopy, SERS)源于1974年英国南安普敦大学化学系Martin Fleischmann等人的一个重要实验。1997年SERS迎来了里程碑的事件——单分子SERS检测的实现。自此,SERS技术被认为有希望使得拉曼光谱第二次获得诺贝尔奖。屏幕截图 2024-04-18 112443但是,随着SERS研究的不断深入,人们发现在低浓度检测时,拉曼信号强度存在极大的不可重复性。因此,具有单分子检测的灵敏度并不意味着超灵敏定量的实现。换言之,获得更高的增强因子只是实现SERS高灵敏定量检测的必要条件,而只有实现了具有可重复性的测量,SERS技术才具有实际应用与大规模推广的能力。这一困扰拉曼领域几十年的难题,难以在现有的技术框架中得到圆满解决。上海交通大学生物医学工程学院叶坚教授和邵志峰教授团队发明了数字胶体增强拉曼光谱(dCERS),利用胶体纳米颗粒,可以实现较高效率的单分子检测。通过该单分子计数的方式可以实现对多种分子(如染料分子、代谢小分子、核酸、蛋白)的定量检测。其中,dCERS技术所采用的胶体颗粒的合成步骤简单,易于放大生产,在应用中,可以方便地取出每个批次的少量颗粒来针对具体的目标分子预先建立标准曲线,从而可以可靠地用于后续未知浓度样本的定量。为了确立dCERS在实际测量中的潜力,该团队选取了百草枯和福美双作为展示实例。百草枯是一种高效、剧毒的除草剂,可以诱导帕金森氏病的发生,目前已有32个国家严格禁止其使用。福美双是一种含硫剧毒杀真菌剂,被欧盟归为二类致癌物。因此,超高灵敏度的、准确可靠的定量检测技术对于这些分子的检测非常重要,尤其是致癌物,原则上不存在安全剂量。选取普通的湖水作为背景并混入微量的百草枯,该团队成功实现了低于欧盟最大残留量规定三个数量级的检测灵敏度。对于福美双,该团队选取了实验室培养的豆芽提取液,达到了优于质谱五个数量级的检测灵敏度。他们证明了,通过系列稀释的方法,检测中的背景干扰可以得到完美的抑制,从而实现准确的靶分子浓度的测量。而dCERS的超高灵敏度和可靠的统计分布是实现这些定量测量的关键基础。图为研究团队成员。这项研究展示了dCERS技术基于单分子计数实现了超低浓度目标分子在未知复杂背景中的可重复性定量,无需使用任何目标分子的特定标记。由于不同的目标分子大多具有独特的SERS光谱,dCERS可以实现多种不同分子的同时定量检测,因此具有很好的应用前景。另外,本工作使用的胶体纳米颗粒可以方便地进行大规模生产和制备,而检测方法相对简单,因此,dCERS有望进一步推动高灵敏检测技术的变革和进步。今年刚好是发现SERS技术的50周年,随着dCERS技术的进一步成熟,dCERS在生命科学、临床医学、环境保护、食品检测、国防与公共安全以及基础研究等领域有望得到广泛应用。
  • 浙江曝光4家严重质量安全隐患月饼产品和企业
    中秋将至,眼下正是月饼销售旺季,近期浙江省质监部门进行了月饼质量专项抽查,月饼的实物质量合格率为97%,总体质量较好,4批次存在严重质量安全隐患的月饼产品和企业被曝光。   本次监督抽查共抽取355家企业363批次月饼,按照相关标准要求,对感官、馅料含量、酸价、砷、铅、铝、黄曲霉毒素B1、菌落总数、大肠菌群、霉菌计数、致病菌、防腐剂、甜味剂、色素、包装规范、标签等31项指标进行了检测。检测结果显示:合格343批次,批次合格率为94.5%,较2012年提高了3.5个百分点,剔除9批次为标签、包装空隙率不合格,月饼的实物质量合格率为97.0%。   此次抽检未发现月饼有违法添加非食用物质现象,主要存在问题是,标志标签不规范、馅料含量不足及个别产品微生物与重金属超标等。   质监部门曝光了4批次存在严重质量安全隐患的产品及其企业,这些月饼抽查不合格较严重企业和产品分别是:宁波北仑唯客食品有限公司生产的缤纷炫礼广式月饼(生产日期2013.9.2)名称不规范,配料表不规范,未标示含山梨酸钾 苍南县农老伯食品有限公司生产的玉苍麻饼(潮式水晶类,生产日期2013.8.26)大肠菌群超标 苍南县荣华食品有限公司生产的月饼(生产日期2013.8.27)铝超标,并检出胭脂红 嘉兴市佳时春食品有限公司生产的苏式椒盐月饼(生产日期2013.8.9)菌落总数超标。   对不合格产品,质监部门已依法责令企业停止生产销售,限期整改。
  • 高分子表征技术专题——荧光关联光谱在高分子单链研究中的应用
    2021年,《高分子学报》邀请到国内擅长各种现代表征方法的一流高分子学者领衔撰写从基本原理出发的高分子现代表征方法综述并上线了虚拟专辑。仪器信息网在获《高分子学报》副主编胡文兵老师授权后,也将上线同名专题并转载专题文章,帮助广大研究生和年轻学者了解、学习并提升高分子表征技术。在此,向胡文兵老师和组织及参与撰写的各位专家学者表示感谢。高分子表征技术专题前言孔子曰:“工欲善其事,必先利其器”。 我们要做好高分子的科学研究工作,掌握基本的表征方法必不可少。每一位学者在自己的学术成长历程中,都或多或少地有幸获得过学术界前辈在实验表征方法方面的宝贵指导!随着科学技术的高速发展,传统的高分子实验表征方法及其应用也取得了长足的进步。目前,中国的高分子学术论文数已经位居世界领先地位,但国内关于高分子现代表征方法方面的系统知识介绍较为缺乏。为此,《高分子学报》主编张希教授委托副主编王笃金研究员和胡文兵教授,组织系列从基本原理出发的高分子现代表征方法综述,邀请国内擅长各种现代表征方法的一流高分子学者领衔撰写。每篇综述涵盖基本原理、实验技巧和典型应用三个方面,旨在给广大研究生和年轻学者提供做好高分子表征工作所必须掌握的基础知识训练。我们的邀请获得了本领域专家学者的热情反馈和大力支持,借此机会特表感谢!从2021年第3期开始,以上文章将陆续在《高分子学报》发表,并在网站上发布虚拟专辑,以方便大家浏览阅读. 期待这一系列的现代表征方法综述能成为高分子科学知识大厦的奠基石,支撑年轻高分子学者的茁壮成长!也期待未来有更多的学术界同行一起加入到这一工作中来.高分子表征技术的发展推动了我国高分子学科的持续进步,为提升我国高分子研究的国际地位作出了贡献. 借此虚拟专辑出版之际,让我们表达对高分子物理和表征学界的老一辈科学家的崇高敬意! 原文链接:http://www.gfzxb.org/article/doi/10.11777/j.issn1000-3304.2020.20238《高分子学报》高分子表征技术专题链接:http://www.gfzxb.org/article/doi/10.11777/j.issn1000-3304荧光关联光谱在高分子单链研究中的应用周超 1,2 ,杨京法 1,2 ,赵江 1,2 1.中国科学院化学研究所机构 北京 1001902.中国科学院大学机构 北京 100049作者简介: 赵江,男,1967年生. 分别于1989年、1992年在吉林大学物理系获得学士、硕士学位,1995年于中国科学院物理研究所获得博士学位,之后分别于北京大学化学与分子工程学院、日本产业综合研究所、美国伊利诺伊大学从事博士后研究,2004年起于中国科学院化学研究所任研究员,入选中国科学院“百人计划”,2009年获得国家杰出青年科学基金资助,2013年当选美国物理学会Fellow. 以单分子荧光显微与光谱方法开展关于高分子物理基础性研究,研究方向包括:多电荷大分子、聚合物表界面、高分子动力学、相变与玻璃化转变等 通讯作者: 赵江, E-mail: jzhao@iccas.ac.cn摘要: 荧光关联光谱(fluorescence correlation spectroscopy,FCS)是一项用于研究体系动力学性质的统计光谱技术,随着它被引入材料与化学研究领域,近年来取得了大量全新的研究成果. 该技术在高分子科学研究中也逐渐发挥出越来越大的作用,特别是在聚合物结构和动力学方面,这表明它在高分子领域的巨大潜力. 本文将从FCS的基本原理、实验技巧以及在一些具有挑战性体系中的应用等方面展开,着重介绍它在高分子溶液,如聚电解质溶液、高分子混致不溶现象,以及不同的表界面体系中取得的新成果,展示FCS区别于其他传统技术的特点和优势.关键词: 荧光关联光谱 / 高分子 / 聚电解质 / 表界面 / 混致不溶 目录1. 荧光关联光谱的基本原理2. 荧光关联光谱的实验技巧2.1 实验样品的标记和纯化2.2 激发体积的校准3. 荧光关联光谱在高分子单链研究中的应用3.1 FCS在聚电解质体系中的应用3.2 FCS在高分子混致不溶现象中的应用3.3 FCS在表界面体系中的应用3.4 FCS在有外场作用的体系中的应用4. 荧光关联光谱技术的发展和应用5. 结论参考文献高分子物理研究的目标之一是探究聚合物在不同尺度上的结构与动力学,及其对于高分子体系性质的决定性. 其中,聚合物构象是最为基础的研究内容. 高分子构象是指由于主链上单键内旋转而产生的分子链在空间的不同形态. 对于中性聚合物体系,由于分子链的结构自相似性,利用标度理论可以成功描述其在良溶剂、θ溶剂以及不良溶剂中分子链的尺寸. 散射技术是研究高分子链构象最成功的方法,如:光散射、X射线散射以及中子散射. 就动态光散射而言,它通过检测高分子溶液散射光强随时间涨落而得到其关联函数,从而获得单分子链的扩散速率信息,并获得分子链的流体力学半径信息[1,2]. 结合静态散射实验所获得的回转半径,可以确定聚合物在溶液中的形态[3,4]. 虽然光散射方法在具有短程相互作用的中性聚合物体系表征中非常成功,但是该项技术在一些条件或情形下却遇到了很大的困难,如:多电荷体系、多组分复合体系、表界面体系等. 在多电荷体系中,多重长程静电相互作用使得动态光散射信号中出现令人费解的“快慢模式”[5~7]. 用光散射法来考察高分子的混致不溶现象时,混合溶液中强烈的组分涨落导致强烈的光散射背景信号,严重影响了光散射对信息的提取[8]. 因此,采用新的技术和研究方法开展高分子表征无疑是重要的.荧光关联光谱(fluorescence correlation spectroscopy,FCS)是表征高分子的有效新方法之一. 它与动态光散射同属于光子相关光谱技术,通过分析光信号的涨落而得到分子链动力学信息. 然而,FCS具有很高的探测灵敏度,通过获取荧光涨落信号而得到单个分子的动力学信息. 荧光关联光谱技术是由Madge、Elson和Webb[9~11]在20世纪70年代发展起来的,20世纪90年代,随着Rigler等[12]将共聚焦技术引入,FCS得到快速发展. 采用共聚焦显微技术,FCS的激发-探测空间体积缩小至~10−15 L,激发-探测空间内的分子数目大大地降低,实验的信噪比也随之提高. 与此同时,具有很高灵敏度的单光子检测器的采用使得FCS实现了单分子水平的测量. 随着计算机技术的进步,数据采集卡能够实时地进行数据的采集和相关性计算,使得FCS技术得到了重要的突破,在科学研究中的应用也越来越广泛.近年来,FCS在高分子物理研究中逐渐表现出重要作用,相比于传统的散射技术,它有着独特的优势. 第一,FCS具有极高的灵敏度,可以在极稀薄条件下(~10−9 molL−1)进行测量,同时具有达到光学衍射极限空间分辨率(~200 nm)与出色的时间分辨率(10−6 s). 第二,FCS的信噪比与聚合物的分子量无关. 在实验中,聚合物链通过化学键合的方式实现一比一的荧光标记,因此,分子量不同的样品对于信号的贡献相同. 但是,对于光散射技术而言,散射光强与聚合物分子量具有依赖性,因而信噪比也随之改变,分子量偏小样品的实验难度较大. 第三,对样品的荧光标记同样带来了可选择性与识别性,实现了同一体系中不同组分的区分式研究. 例如,通过对不同组分使用不同的荧光分子进行标记,采用多色FCS对各组分间的运动及其关联进行分析;也可选择性地对多组分体系中的特定组分进行标记,实现复杂体系中特定组分的研究.伴随着FCS技术的发展以及与其他研究手段的联用,其应用越来越广泛,从最初的生物领域[13~15]到胶体[16,17]、聚合物[18,19],从溶液[20~23]到熔体[24~26]、凝胶[27~29]、表界面体系[30~32]等,都取得了许多原创性的成果. 值得指出的是,FCS在测量平动和转动扩散系数、反应速率常数、平衡结合常数、细胞内粒子浓度等方面有着突出的优势[33~35].1. 荧光关联光谱的基本原理当一个体系处于热力学平衡态时,分子的热运动会导致体系浓度、密度等发生局部涨落. 通过相关分析方法,计算这些局部涨落的关联函数,就可以从信号中提取出体系的热力学信息. 动态光散射技术正是运用了此方法,通过测量溶液的散射光强随时间涨落而获得其关联函数,从而获得样品的动力学信息. 荧光关联光谱测量共聚焦空间内样品荧光强度随时间的涨落,通过计算其关联函数而得到对涨落有贡献的热力学性质信息.在激发空间内在任一时刻荧光强度F(t),激发空间内荧光信号在t时刻的强度涨落δF(t)为:其中,⟨F(t)⟩=1/T∫0TF(t)dt,为从0到T 时间内的平均荧光强度.上述涨落的归一化自关联函数为G(τ):自关联函数包含了导致共聚焦空间内荧光信号强度涨落的所有信息,如:平动及转动扩散导致的荧光信号涨落、探针的光物理和化学变化(如:三重态)等导致的涨落等. 对于单光子激发体系,激发空间内的光强分布满足三维高斯分布,对在溶液中进行三维扩散的荧光分子而言,其浓度的涨落满足扩散方程,因而其关联函数的表达式为:其中,Veff=π1.5w02z0为激发空间的体积,特征时间τD=w02/4D为荧光分子通过激发空间所需的平均时间. G(0)=1/Veff⟨c⟩=1/N为激发空间内荧光分子平均数目的倒数,当样品的浓度越低时,G(0)值越大.从G(τ)的表达式可知,FCS的自关联函数有4个变量w0、z0、⟨c⟩、D,其中w0、z0属于仪器的参数,即共聚焦空间的横向半径与纵向半高度,而⟨c⟩、D分别是荧光分子的平均浓度和扩散系数. 因此,在准确标定仪器参数w0w0、z0z0的条件下,通过数值拟合将得到未知样品的浓度和扩散系数. 扩散分子的流体力学半径可以根据Stokes-Einstein方程得到:其中,kB为玻尔兹曼常数,T为温度,η为介质黏度.FCS仪器结构如图1所示,激光器的输出光经过准直扩束后由二向色镜反射进入物镜,并经物镜聚焦在样品中激发荧光. 产生的荧光由同一物镜收集,再次通过二向色镜以及滤镜将杂散的激光以及背景光过滤压制,最终由透镜聚焦并由针孔进行空间滤波进入到检测收集系统.图 1Figure 1. Schematic illustration of instrument structure of fluorescence correlation spectroscopy.由于单光子检测器可能出现接收一个光子产生多个电子的情况,为了消除这个过程带来的误差,可以将荧光信号分成等强度的两部分,然后对2个通道内的信号作交叉关联:2. 荧光关联光谱的实验技巧由于一般的聚合物不发光,因此FCS实验所采用的样品需要进行荧光标记. 另外,在实验操作方面,最需要注意对于激发体积的严格校准,以确保实验测量的准确性.2.1 实验样品的标记和纯化样品标记方法主要有以下2种:第一,在样品需要标记的位点预留反应的基团,如:氨基、羧基、叠氮基团等,再根据不同的基团及FCS实验的要求选择合适的活性荧光分子进行化学键合. 为了获得较高的标记效率,在标记过程中加入的荧光分子的量远大于聚合物,所以反应结束后有大量游离的自由荧光分子存在,需要通过体积排除色谱和超滤等方法进行分离提纯,直至滤液中不再检测到荧光信号.第二,在样品合成过程中加入适当比例的共聚合荧光单体进行共聚,例如,通过RAFT聚合制备聚异丙基丙烯酰胺(PNIPAM)时,可以加入适当比例的荧光单体来合成具有一定分子量范围、分子量分布较窄和荧光标记的样品[36]. 反应完成后同样也需要超滤、透析等方式进行分离提纯.2.2 激发体积的校准FCS实验之前,需要对仪器进行校正得到仪器激发体积的参数. 采用已知浓度和扩散系数的荧光分子样品来进行校正,例如Rhodamine 6G (Rh6G)分子,它在纯水中的扩散系数为414 μm2s−1 (25 °C),实验中一般将其配置成5×10−9 molL−1 (5 nmolL−1)的水溶液进行FCS测量,然后通过对测得的关联函数进行拟合即可得到激发空间的尺寸.另外,温度对于扩散系数的影响很大,不同温度下进行实验时,同样需要对扩散系数进行校正,校正的公式如下:如图2所示,以波长为488 nm的激光作为激发光,对FCS测量得到的Rhodamine 6G的自相关曲线进行拟合得到激发空间的尺寸为w0=0.224 μm,z0=1.608 μm.图 2Figure 2. A typical autocorrelation function curve and the fitting result of free Rhodamine 6G molecules in water.需要说明的是,FCS的测量会受到样品体系折射率不匹配的影响. 如图3所示,当样品溶液与物镜的折射率不匹配时,会导致表观的激发体积出现显著变化:第一,表观的w0值随折射率不匹配的增加而减小,这是折射率不匹配产生的像差导致;第二,随着物镜焦点位置从界面处愈加深入到样品溶液中时,折射率不匹配导致的表观w0值的变化愈明显[36].图 3Figure 3. (a) Representative normalized autocorrelation function curves of fluorescent nanoparticles diffusing in aqueous solution of glycerol at a small focal depth (25 μm) (b) Values of the apparent lateral radius of the excitation-detection volume of FCS as a function of the refractive index of the solution. The distance of the focal point in the sample medium away from the coverslip surface is displayed. (Reprinted with permission from Ref.[36] Copyright (2012) American Chemical Society).依据FCS的原理,w20=4DτDw02=4DτD,因此,即使微小w0变化也将显著影响探针分子拟合得到的扩散系数值. 因此,选择合适的溶液体系和物镜使得折射率尽可能匹配,对于FCS的测试准确性至关重要. 在折射率不匹配问题无法避免时,如图3(b)中,可以使用一个较低的焦点位置(25 μm)能有效地避免激发体积的畸变[36].此外,如图4所示,以厚度为0.16 mm的盖玻片为例,当实验使用物镜的校正环与样品池底部的盖玻片厚度不匹配时,激发体积的尺寸也会出现较大的偏差,所以在实验前还需注意物镜校正环与盖玻片厚度是否匹配[37].图 4Figure 4. Values of the apparent lateral radius of the excitation-detection volume of FCS as a function of the value of correcting collar (Reprinted with permission from Ref.[37] Copyright (2018) University of Chinese Academy of Sciences).因此,在FCS实验中,应该尽量选择合适的物镜类型以匹配样品的折射率,并调整镜头校正环数值与盖玻片厚度一致,如果折射率不匹配的情况不能避免,那就选择较低的、固定的焦点深度值以保证实验结果可靠可信.除了上述两点之外,在实验过程中还需要注意激光光强的选择,过强的入射光容易导致荧光探针发生光漂白而带来实验误差,因此应该降低进入物镜的激光光强进行实验.3. 荧光关联光谱在高分子单链研究中的应用FCS以其独特的优势在一些传统研究手段难以涉足的高分子体系中展现出独特的优势,例如:考察水溶液中聚电解质的单链动力学[38~44]、混致不溶现象中高分子链构象的变化[36]、表界面体系中高分子的扩散动力学[30~32,45~48]等等.3.1 FCS在聚电解质体系中的应用聚电解质是主链或者侧链上带有可离子化基团的聚合物,在极性溶剂中,聚电解质主链由于解离而带电,同时存在大量带有相反电荷的抗衡离子[49,50]. 正是聚电解质链间、链段间以及链与抗衡离子间多重长程静电相互作用,在赋予聚电解质丰富性质的同时,也给聚电解质的研究带来了很大的困难[51~53]. 例如,当采用动态光散射技术研究带电聚合物体系时,在低离子强度的聚电解质溶液中,存在“快与慢”的2种松弛模式. 为了探究聚电解质中的这种多级松弛模式的起源,研究人员进行了大量的实验并提出了多种可能的解释,但至今仍未有一个确切的回答[5,6,54~56].如果采用传统散射技术来研究低离子强度条件下带电聚合物体系的扩散运动,实验中遇到不少困难,而FCS实验中样品极稀浓度和极高选择性的优势就体现出来,依靠FCS技术,研究人员可以在极稀薄条件下进行实验研究,在聚电解质溶液体系获得全新的信息.Wang等[38]利用FCS在实验上第一次观察到了在无扰溶液中疏水聚电解质的一级构象转变. 如图5(a)所示,弱聚电解质聚(2-乙烯基吡啶) (P2VP)分子的构象随带电分数的变化而呈现出一级转变特征,即:随pH的升高由伸展的线团构象至坍缩的链球. 除了通过pH值改变聚电解质的带电分数,聚电解质的构象转变也可以由改变外加盐的浓度导致,即:抗衡离子吸附与静电屏蔽作用. 如图5(b)所示,P2VP的单分子链流体力学半径随着静电屏蔽长度的增加而连续增加.图 5Figure 5. (a) Diffusion coefficient of P2VP as a function of pH value of the solution. Inset: The hydrodynamic radius of P2VP as a function of pH value (b) The hydrodynamic radius of P2VP as a function of Debye length of the system (Reprinted with permission from Ref.[38] Copyright (2007) American Institute of Physics).Xu等[39]利用FCS技术在单分子水平上研究了强聚电解质的构象. 实验发现,在无外加盐的情况下,强聚电解质聚苯乙烯磺酸钠(NaPSS)和季胺化聚(4-乙烯基吡啶)(QP4VP)的流体力学半径和聚合度之间分别存在着0.7和0.9的标度关系,说明在低离子强度时,聚电解质链的构象比中性聚合物在良溶剂中溶胀的无规线团构象更加伸展. 如图6所示,采用棒状构象的分子模型得到了理想的拟合结果(其中QP4VP在高分子量部分出现偏离是高分子量聚电解质吸附更多的抗衡离子所导致的). 拟合结果显示分子链的直径分别为2.2和2.3 nm,这比理论假设的裸露水合聚电解链的直径0.8 nm要大很多,这也说明了聚电解质链的周围有抗衡离子云的存在.图 6Figure 6. Values of hydrodynamic radius of NaPSS and QP4VP plotted as a function of degree of polymerization. The solid lines denote the numerical fitting based on the theoretical model of diffusion of a rod-like molecule, and the dashed line denotes the fitting results using the diameter of a hydrated chain, i.e., d=0.8 nm. (Reprinted with permission from Ref.[39] Copyright (2016) American Institute of Physics).Xu等[40]进一步研究了在不同外加盐浓度情况下聚电解质链的构象. 如图7所示,聚电解质分子链构象具有分子量依赖性:在低盐浓度时,短链分子的聚电解质采取棒状构象,而长链分子采取无规线团构象;随着外加盐浓度的增加,所有的NaPSS和QP4VP均采取无规线团构象.图 7Figure 7. Diffusion coefficient of NaPSS (a) and QP4VP (b) as a function of degree of polymerization under salt concentrations of 10−4, 0.1, and 1.0 molL−1, respectively The solid lines represent the results of fitting using the relation of Rh∼N−v. (Reprinted with permission from Ref.[40] Copyright (2018) American Institute of Physics).Ren等[41]通过FCS技术研究了i-motif DNA的解折叠过程. 如图8所示,在不同盐浓度的条件下,随着pH值的升高,i-motif DNA均发生了从有序的四联体结构到无规线团的构象转变,并且这一转变对盐浓度有着依赖性:盐浓度越高,解折叠的起始pH值就越低. 这种盐浓度依赖性的主要原因是外加盐的引入导致更多的抗衡离子吸附在DNA链上而降低了链的电荷密度,降低了链周围的局部质子浓度,而后者是控制折叠形成的关键因素.图 8Figure 8. The values of hydrodynamic radius of a single i-motif DNA strand as a function of pH value in the solution Three conditions were chosen: solution without any salt addition (salt-free), and 50 mmolL−1 and 100 mmolL−1 NaCl solutions (physiological environment) The start and end points of the conformation transition are denoted by the arrows. (Reprinted with permission from Ref.[41] Copyright (2018) The Royal Society of Chemistry).如果将光子计数直方图(PCH)技术与FCS相结合,可以对聚电解质主链的电势、有效带电量、抗衡离子分布等方面进行深入研究. 例如,Luo等[42]将pH敏感的荧光探针标记于NaPSS链的不同位点,采用PCH技术测量分子链局部的pH值,发现聚电解质链附近的局部氢离子浓度比本体溶液中高2~3个数量级,而末端效应使得分子链中间的静电势高于末端的静电势. 同时,他们还发现氢离子浓度在径向呈现出e指数衰减的趋势,这证明了聚电解质链周围存在抗衡离子云的说法[43].Jia等[44]研究了抗衡离子分布与聚合物浓度的依赖关系,通过FCS测量NaPSS溶液中作为抗衡离子探针的带负电荧光分子的扩散系数,确定自由探针和吸附于主链的探针2个组分,发现与主链结合的抗衡离子组分随着聚合物浓度的增加而增加. Xu等[40]采用PCH测量NaPSS单分子链电位,发现其随着聚合度的增大而单调上升,且在聚合度大的区间达到饱和. 这说明主链的静电势与分子量不是线性关系,其有效带电分数以及有效电荷密度随着分子量的增加而减小. 上述实验结果说明聚电解质抗衡离子与主链的相互作用是吸附与脱附的动态平衡,而不是经典的Manning抗衡离子凝聚[57~60].3.2 FCS在高分子混致不溶现象中的应用高分子的混致不溶现象(cononsolvency)是一类回归型过程:2种高分子的良溶剂按一定比例混合后反而成为了不良溶剂[61,62]. 一个典型的例子是:常温下聚异丙基丙烯酰胺(PNIPAM)在水与一定比例的甲醇、乙醇、异丙醇、丙酮、四氢呋喃、DMSO等良溶剂的混合液中不再溶解,溶液的相分离温度显著改变,溶液黏度下降,PNIPAM凝胶溶胀率下降. 研究人员对这一现象的起源进行了大量的实验探究,至今未能达成共识[8,63~66].了解高分子链的构象对于理解混致不溶现象至关重要. 前人采用光散射方法研究了水和甲醇混合溶剂中PNIPAM链从线团到塌缩球再到线团的构象转变[64]. 需要特别说明的是,为了在极稀溶液中获得足够高的散射强度与信噪比,研究中采用了分子量高达107 gmol−1的样品. 当采用FCS技术研究该过程时,由于其超高的灵敏度以及与样品分子量无关的信噪比,可在混合溶剂环境下高分子单链的研究中提供独特的信息[67]. Wang等[36]利用FCS研究了PNIPAM在水-乙醇混合溶剂中的混致不溶过程. 如图9所示,PNIPAM具有非对称的回归型构象变化特征:随着乙醇浓度的增大,在一个很窄的乙醇浓度范围内PNIPAM链剧烈塌缩,然后在很宽的乙醇浓度范围内逐渐地再度伸展,说明这一构象转变不是先前文献中所认为的一级构象转变过程. 这表明乙醇分子比水分子更强烈地与PNIPAM链发生作用,这是由乙醇较强的疏水水合效应所致,暗示了Tanaka提出的模型中水合/失水的协同能力强于醇分子吸附/脱附的协同能力[65,66].图 9Figure 9. Normalized autocorrelation function curves of diffusing single chains of PNIPAM with five degrees of polymerizations in pure ethanol (a) and at xEtOHxEtOH of 0.25 (b) The solid line with each data set denotes the results of the numerical fitting using three-dimensional diffusion model Rh6G in (a) denotes the results of free fluorescent Rhodamine 6G, and its drastic difference from those of polymers indicates the successful labeling and sample purification (c) The values of hydrodynamic radius of PNIPAM single chains as a function of xEtOHxEtOH (Reprinted with permission from Ref.[36] Copyright (2012) American Chemical Society).如图10所示,不同乙醇浓度下得到PNIPAM单链的尺寸的标度率(Rh∼NυRh∼Nυ)表明,标度指数νν随着xEtOHxEtOH变化:随着乙醇的浓度的增加,ν从~0.57到0.5再到~1/3变化,说明在上述3个区域,PNIPAM高分子链分别采取了溶胀、无规线团、坍缩链球的构象,即:由纯水中的溶胀线团经无规线团构象而急剧转变为塌缩链球构象,进而又再度逐渐伸展,经过无规线团构象变化至溶胀线团构象. 从标度指数的变化也可以发现回归型链构象变化的高度非对称性,进一步印证了Tanaka提出的协同吸附-优先吸附模型[65,66].图 10Figure 10. Typical double-logarithmic plot of hydrodynamic radius of single PNIPAM chains as a function of degree of polymerization under different solvent compositions: (a)xEtOH=xEtOH=1.0, (b)xEtOH=xEtOH=0.28, (c)xEtOH=xEtOH=0.25 Solid lines are the least-squares linear fitting (d) The vv values as a function of xEtOHxEtOH The three dotted lines denote the theoretical values of the static scaling index for a random coil (0.588), an undisturbed coil (0.5), and a compact globule (1/3). (Reprinted with permission from Ref.[36] Copyright (2012) American Chemical Society).3.3 FCS在表界面体系中的应用受限高分子链,尤其是处于界面的高分子链结构及动力学性质,直接关系到表界面的机械性能、摩擦性能、流变性能等,这些性质与高分子材料在表界面上的应用息息相关,如涂料、润滑剂、胶黏剂等[68~71]. 但是对于高分子链在表界面处的动力学研究存在着不少技术难题,主要原因是表界面动力学带来的浓度涨落被局限于二维或准二维空间,探测难度极大,使得传统的散射方法难以应用. 近年来,得益于单分子技术的迅猛发展,空间和时间分辨能力分别有了显著的优化,极大提高了人们直接“观察”分子或粒子行为的能力,这为我们从分子水平认识聚合物在界面上的动力学性质打下了基础.荧光关联光谱因其极高的灵敏度与显微测量能力被成功地应用于表界面体系的研究中. 对于处于二维自由扩散的分子而言,其自关联函数为:其中,w0是二维FCS观察区域(即激发空间在界面等二维平面投影)的半径,⟨ρ⟩=⟨N⟩/A,即单位面积内荧光探针的平均数量,A是激发空间在界面等二维平面上投影的面积.Sukhishvili等[30]利用FCS研究了荧光染料标记的不同分子量的聚乙二醇(PEO)在固-液界面上的扩散. 从分子链界面扩散运动行为出发,分析出在极稀浓度的条件下聚合物分子在固-液界面上呈现出了紧密吸附的pancake构象,发现了界面扩散系数与分子量的-3/2的独特标度率. Zhao等[31,32]则利用FCS研究了PEO在固-液界面上扩散速率与界面吸附浓度的非线性关联性,即:随着聚合物浓度的增加,其扩散系数先增加并在某一浓度值达到极值,进而骤然大幅下降. 这是由于极低浓度分子链紧密吸附的pancake构象会随着吸附浓度的增加变成loop-tail-train构象,即:吸附使得分子链构象变得相对松散,其扩散速率由与基底接触的train部分占主导. 随着吸附浓度的增加,较为自由的loop-tail部分则增加了其运动能力,因此扩散系数增加;更高浓度时扩散系数出现骤降是因为体系中出现了jamming效应,即分子链间的作用增强,阻碍了分子链的扩散运动.Ye等[45]利用FCS研究了不同拓扑结构的聚合物链在石英-二氯甲烷界面上的扩散,如图11所示,线形聚苯乙烯(PS)扩散的标度率为D∼M−1.5,重现了reptation模型;而环形PS的标度率则为D∼M−1,展现为Rouse模型. 两者的差异是由于环形分子没有末端,无法像线形分子一样完成蛇行运动,而是由一系列链段受到热激发进行跳跃,跨过局部能垒的运动组成.图 11Figure 11. Double-logarithmic plots of center-of-mass diffusion coefficient against molecular weight for surface diffusion of cyclic (c-PS) and linear (l-PS) polystyrene chains on fused silica-DCM interface The solid lines with slopes of 1 and 3/2 are drawn as guides to the eye The dashed lines through the points representing the best fit of the data give power law slopes of 1.46 for linear chains and 1.00 for cyclic chains. (Reprinted with permission from Ref.[45] Copyright (2016) The Royal Society of Chemistry)Yang等[46]利用FCS研究了不同盐溶液作为液相时,NaPSS在疏水单层分子膜界面上的扩散行为. 如图12所示,吸附在疏水表面的聚电解质分子链的扩散受到液相中不同阴离子的影响,主要原因在于不同的阴离子效应改变了界面疏水相互作用强度,从而改变了界面与分子链之间摩擦力,造成扩散系数的显著改变.图 12Figure 12. Typical data of the lateral diffusion coefficient of a NaPSS single chain at the interface of a hydrophobic surface and an aqueous solution as a function of the salt concentration in the aqueous solution (Reprinted with permission from Ref.[46] Copyright (2011) American Chemical Society)Yang等[47]利用FCS技术研究了聚苯乙烯与聚异戊二烯(PI)的嵌段共聚物在二甲基甲酰胺(DMF)与PI聚合物构成的液体界面上的扩散运动. 如图13所示,在本体聚合物分子量跨越了2个数量级的变化,界面上PS-b-PI的扩散系数仅有轻微的下降. 这表明,在PI/DMF的体系中,存在很低黏度的界面层,该界面层的黏度与构成界面的本体聚合物的分子量不存在明显依赖性.图 13Figure 13. Interfacial diffusion coefficient of single PS-b-PI chain as a function of the molecular weight of bulk PI The dashed line is for the guide of eye Inset: illustration of the sample geometry (Reprinted with permission from Ref.[47] Copyright (2008) American Chemical Society).Li等[48]利用FCS探究了PEO分子在烷烃-水界面上的扩散行为. 研究发现,PEO在该界面上聚合物的横向扩散为正常扩散,与二维布朗运动模型相吻合. 如图14所示,液-液界面上的PEO的界面扩散系数与其聚合度之间存在D∼N−0.5的标度关系,这一新的标度关系表明其界面扩散运动遵循着新的运动机理.图 14Figure 14. The logarithm of interfacial diffusion coefficient of PEO as a function of the logarithm of molecular weight (Reprinted with permission from Ref.[48] Copyright (2020) The Royal Society of Chemistry).从单分子层面上研究界面扩散,有助于发现分子最真实和原始的扩散行为规律,这在传统的系综平均实验中往往会被忽略或者被多种因素耦合而产生的运动行为掩盖,这是上述FCS实验结果最大的优势之处. 此外,值得注意的是,在研究固-液界面上聚合物扩散机理时,不同研究团队利用FCS和单粒子追踪(single particle tracking, SPT)技术,得到了不同的结果及界面扩散机理,也因此导致了FCS和SPT 2种技术在界面分子动力学研究上存在多年的学术争论[30,31,72,73]. 我们基于这个问题也展开了实验对比,发现FCS和SPT都能够提供准确且可靠的实验结果,在条件满足时两者能够得到相互吻合相互匹配的实验结果,相关数据结果将在未来进行发表.3.4 FCS在有外场作用的体系中的应用对于聚合物而言,在其合成、分离、加工等过程中有可能会经历电场、流动场、剪切场等作用,尤其在生命体中更是常见. 因此,对于外场作用下的聚合物性质的研究也是极为重要的.当我们将荧光关联光谱应用于外场作用下的体系中时,除了分子热运动导致平动扩散引起的荧光信号涨落,还不得不考虑外场导致荧光分子定向运动通过激发体积带来的信号涨落. 带有定向运动的FCS,如果其运动的方向垂直于激光光束的方向,经过修正的模型拟合关联函数可以获得扩散系数与定向运动速率:其中,vf=w0/τf即为定向运动速率.Dong等[74]将FCS和毛细管电泳结合起来测定了量子点在极稀溶液中的表面电势. 利用FCS的自关联函数拟合得到荧光粒子的定向运动速度和扩散系数,在电泳实验中定向运动的特征时间τf和自扩散系特征时间τD之间满足:其中,Q为带电量,E为外加电场强度. 通过测定不同电场强度下定向运动和扩散的特征时间,通过线性拟合得到荧光粒子的表面电势. Wang等[75]利用FCS研究了P2VP在交变电场下的单链构象转变. 结果表明电场强度对于分子链构象的影响存在滞后转变. 这种滞后现象可以归因于单个疏水性聚电解质链的不对称双稳态能态,由于抗衡离子的解离、迁移和凝聚,其coil和globule构象之间的势垒可以通过交变电场诱导的偶极子降低到kBT以下.4. 荧光关联光谱技术的发展和应用随着FCS技术的发展,出现了双色荧光关联光谱(DC-FCCS)[76,77]、双焦点荧光关联光谱[78,79]、FCS与荧光共振能量转移(FRET)联用[80,81]、可连续改变共焦体积荧光关联光谱[82]等新技术. 这些新技术相较于传统的FCS,可以获取样品更多的热力学信息. 图15是DC-FCCS的简单示意图,采用2种波长的激光分别激发2种对应的荧光分子,然后选择性光学器件对不同波长的荧光进行分离,最后由2个APD检测器分别检测2种荧光信号,再对信号进行关联性分析. DC-FCCS的基本原理就不在此赘述,除了对2种荧光分子的荧光强度涨落进行各自的自关联分析之外,我们还可以对这2种荧光信号做交叉关联分析得到两者相互运动乃至相互作用的信息. 需要说明的是,选择的这2种荧光分子在光谱上必须分离得很好,否则会出现很大的串扰影响实验结果.图 15Figure 15. Schematic illustration of dual color fluorescence cross-correlation spectroscopyChen等[83]利用DC-FCCS和光散射相结合的方法深入研究了聚电解质溶液中单链运动之间的关联性,发现了聚电解质分子链间的运动耦合. 将DC-FCCS实验得到自关联函数的自由扩散部分转化为均方位移数据(MSD),发现其在长短2个时间尺度上分别存在具有不同扩散系数的正常扩散运动,表明链间的静电排斥相互作用带来的“笼子效应”导致了单个分子链的自扩散运动中同样存在一快一慢2种时间尺度上的扩散模式:短时间尺度上为“笼子”内的快扩散行为,长时间尺度上为跨越不同“笼子”的慢扩散行为(如图16所示). 这2种松弛模式均存在强烈的离子强度依赖性,随着外加盐浓度的增加,削弱了链间的排斥作用而弱化了“笼子效应”,导致了长短时间尺度上的动力学非均匀性减弱,甚至消失. 实验结果还表明,聚合物浓度的增加限制了聚电解质链的运动,从而削弱了链间运动的关联性(如图16(b)所示). 将其与光散射中“慢模式”对应的扩散系数对比发现,“慢模式”对应的扩散系数数值处于分子链自扩散长短时间尺度的扩散系数之间,这说明光散射观察到的“快慢模式”与长程静电相互作用引起“笼子效应”有着密切的联系,同时也说明聚电解质的多级松弛过程比我们预想的更加复杂.图 16Figure 16. (a) Values of the diffusion coefficient of the short-time diffusion (Dshort-timeDshort-time) and the long-time diffusion (Dlong-timeDlong-time) of NaPSS with three different molecular weights under different salt concentrations (b) Diffusion coefficient of single NaPSS chain with three different molecular weights at short- and long-time lag as a function of concentration Diffusion coefficients measured by DLS (the slow mode, DDLS,slowDDLS,slow) are displayed for comparison. (Reprinted with permission from Ref.[83] Copyright (2019) American Chemical Society).5. 结论荧光关联光谱技术作为一种高灵敏度的显微统计光谱方法,能够有效地在多种复杂条件下开展高分子动力学的研究,包括:极稀薄溶液、表界面等等. 这项技术出色的空间分辨能力以及由于荧光标记带来的分子识别性,赋予了更加丰富的应用能力与前景. 随着这项技术的不断发展和应用范围的进一步拓展,相信未来它会和传统的散射技术一样被越来越多的人了解和使用,在多个领域都能取得丰富且具创造性的成果.致 谢 感谢研究生及合作者的辛勤劳动与贡献.参考文献[1]Wu C, Zhou S. Phys Rev Lett, 1996, 77(14): 3053−3055 doi: 10.1103/PhysRevLett.77.3053[2]Gao J, Wu C. Macromolecules, 1997, 30(22): 6873−6876 doi: 10.1021/ma9703517[3]Liu X B, Luo S K, Ye J, Wu C. Macromolecules, 2012, 45(11): 4830−4838 doi: 10.1021/ma300629d[4]Morishima K, Ishiwari F, Matsumura S, Fukushima T, Shibayama M. Macromolecules, 2017, 50(15): 5940−5945 doi: 10.1021/acs.macromol.7b00883[5]Sedlak M, Amis E J. J Chem Phys, 1992, 96(1): 826−834 doi: 10.1063/1.462468[6]Muthukumar M. Macromolecules, 2017, 50(24): 9528−9560 doi: 10.1021/acs.macromol.7b01929[7]Zhou K, Li J, Lu Y, Zhang G, Xie Z, Wu C. Macromolecules, 2009, 42(18): 7146−7154 doi: 10.1021/ma900541x[8]Hao J, Cheng H, Butler P, Zhang L, Han C C. J Chem Phys, 2010, 132(15): 154902 doi: 10.1063/1.3381177[9]Magde D, Webb W W, Elson E. Phys Rev Lett, 1972, 29(11): 705−708 doi: 10.1103/PhysRevLett.29.705[10]Elson E L, Magde D. Biopolymers, 1974, 13(1): 1−27 doi: 10.1002/bip.1974.360130102[11]Magde D, Elson E L, Webb W W. Biopolymers, 1974, 13(1): 29−61 doi: 10.1002/bip.1974.360130103[12]Rigler R, Mets U, Widengren J, Kask P. Eur Biophys J Biophy, 1993, 22(3): 169−175[13]Dross N, Spriet C, Zwerger M, Muller G, Waldeck W, Langowski J. PLoS One, 2009, 4(4): e5041 doi: 10.1371/journal.pone.0005041[14]Mtze J, Ohrt T, Schwille P. Laser Photonics Rev, 2011, 5(1): 52−67 doi: 10.1002/lpor.200910041[15]Schwille P, Haupts U, Maiti S, Webb W W. Biophys J, 1999, 77(4): 2251−2265 doi: 10.1016/S0006-3495(99)77065-7[16]Xie J, Nakai K, Ohno S, Butt H J, Koynov K, Yusa S. Macromolecules, 2015, 48(19): 7237−7244 doi: 10.1021/acs.macromol.5b01435[17]Caruso F, Donath E, Mohwald H. J Phys Chem B, 1998, 102(11): 2011−2016 doi: 10.1021/jp980198y[18]Vagias A, Raccis R, Koynov K, Jonas U, Butt H J, Fytas G, Kosovan P, Lenz O, Holm C. Phys Rev Lett, 2013, 111(8): 088301 doi: 10.1103/PhysRevLett.111.088301[19]Lumma D, Keller S, Vilgis T, Radler J O. Phys Rev Lett, 2003, 90(21): 218301 doi: 10.1103/PhysRevLett.90.218301[20]Cherdhirankorn T, Best A, Koynov K, Peneva K, Muellen K, Fytas G. J Phys Chem B, 2009, 113(11): 3355−3359 doi: 10.1021/jp809707y[21]Schaeffel D, Yordanov S, Staff R H, Kreyes A, Zhao Y, Schmidt M, Landfester K, Hofkens J, Butt H J, Crespy D, Koynov K. ACS Macro Lett, 2015, 4(2): 171−176 doi: 10.1021/mz500638e[22]Jee A Y, Cho Y K, Granick S, Tlusty T. P Natl Acad Sci USA, 2018, 115(46): E10812 doi: 10.1073/pnas.1814180115[23]Jee A Y, Dutta S, Cho Y K, Tlusty T, Granick S. P Natl Acad Sci USA, 2018, 115(1): 14−18 doi: 10.1073/pnas.1717844115[24]Cherdhirankorn T, Floudas G, Butt H J, Koynov K. Macromolecules, 2009, 42(22): 9183−9189 doi: 10.1021/ma901439u[25]Cherdhirankorn T, Harmandaris V, Juhari A, Voudouris P, Fytas G, Kremer K, Koynov K. Macromolecules, 2009, 42(13): 4858−4866 doi: 10.1021/ma900605z[26]Doroshenko M, Gonzales M, Best A, Butt H J, Koynov K, Floudas G. Macromol Rapid Commun, 2012, 33(18): 1568−1573 doi: 10.1002/marc.201200322[27]Michelman-Ribeiro A, Boukari H, Nossal R, Horkay F. Macromolecules, 2004, 37(26): 10212−10214 doi: 10.1021/ma048043d[28]Zustiak S P, Boukari H, Leach J B. Soft Matter, 2010, 6(15): 3609−3618 doi: 10.1039/c0sm00111b[29]Modesti G, Zimmermann B, Borsch M, Herrmann A, Saalwachter K. Macromolecules, 2009, 42(13): 4681−4689 doi: 10.1021/ma900614j[30]Sukhishvili S A, Chen Y, Muller J D, Gratton E, Schweizer K S, Granick S. Nature, 2000, 406(6792): 146 doi: 10.1038/35018166[31]Zhao J, Granick S. Macromolecules, 2007, 40(4): 1243−1247 doi: 10.1021/ma062104l[32]Zhao J, Granick S. J Am Chem Soc, 2004, 126(20): 6242−6243 doi: 10.1021/ja0493749[33]Ries J, Schwille P. Bioessays, 2012, 34(5): 361−368 doi: 10.1002/bies.201100111[34]Elson E L. Methods Enzymol, 2013, 518: 1−10 doi: 10.1016/B978-0-12-388422-0.00001-7[35]Papadakis C M, Kosovan P, Richtering W, Woll D. Colloid Polym Sci, 2014, 292(10): 2399−2411 doi: 10.1007/s00396-014-3374-x[36]Wang F, Shi Y, Luo S J, Chen Y M, Zhao J. Macromolecules, 2012, 45(22): 9196−9204 doi: 10.1021/ma301780f[37]Zheng Kaikai(郑锴锴). Dynamics of a Single Polymer Chain under Shear(剪切场下聚合物分子单链动力学行为研究). Doctoral Dissertation of University of Chinese Acdemy of Sciences((中国科学院大学博士学位论文), 2018.[38]Wang S, Zhao J. J Chem Phys, 2007, 126(9): 091104 doi: 10.1063/1.2711804[39]Xu G, Luo S, Yang Q, Yang J, Zhao J. J Chem Phys, 2016, 145(14): 144903 doi: 10.1063/1.4964649[40]Xu G, Yang J, Zhao J. J Chem Phys, 2018, 149(16): 163329 doi: 10.1063/1.5035458[41]Ren W, Zheng K, Liao C, Yang J, Zhao J. Phys Chem Chem Phys, 2018, 20(2): 916−924 doi: 10.1039/C7CP06235D[42]Luo S J, Jiang X B, Zou L, Wang F, Yang J F, Chen Y M, Zhao J. Macromolecules, 2013, 46(8): 3132−3136 doi: 10.1021/ma302276b[43]Luo Shuangjiang(罗双江), Gao Peiyuan(高培源), Guo Hongxia(郭洪霞), Yang Jingfa(杨京法), Zhao Jiang(赵江). Acta Polymerica Sinica(高分子学报), 2017, (9): 1479−1487 doi: 10.11777/j.issn1000-3304.2017.17065[44]Jia P, Yang Q, Gong Y, Zhao J. J Chem Phys, 2012, 136(8): 084904 doi: 10.1063/1.3688082[45]Ye S, Tang Q, Yang J, Zhang K, Zhao J. Soft Matter, 2016, 12(47): 9520−9526 doi: 10.1039/C6SM02103D[46]Yang Q, Zhao J. Langmuir, 2011, 27(19): 11757−11760 doi: 10.1021/la202510d[47]Yang J F, Zhao J, Han C C. Macromolecules, 2008, 41(20): 7284−7286 doi: 10.1021/ma8015135[48]Li Z, Yang J F, Hollingsworth J V, Zhao J. RSC Adv, 2020, 10(28): 16565−16569 doi: 10.1039/D0RA02630A[49]Oosawa F. Polyelectrolytes. New York: Marcel Dekker, 1971[50]Dobrynin A V, Rubinstein M. Prog Polym Sci, 2005, 30(11): 1049−1118 doi: 10.1016/j.progpolymsci.2005.07.006[51]Forster S, Schmidt M, Antonietti M. Polymer, 1990, 31(5): 781−792 doi: 10.1016/0032-3861(90)90036-X[52]Fuoss R M. J Polym Sci, 1948, 3(4): 603−604 doi: 10.1002/pol.1948.120030414[53]Muthukumar M. J Chem Phys, 2004, 120(19): 9343−9350 doi: 10.1063/1.1701839[54]Mattoussi H, Karasz F E, Langley K H. J Chem Phys, 1990, 93(5): 3593−3603 doi: 10.1063/1.458791[55]Reed W F, Ghosh S, Medjahdi G, Francois J. Macromolecules, 1991, 24(23): 6189−6198 doi: 10.1021/ma00023a021[56]Li J, Li W, Huo H, Luo S, Wu C. Macromolecules, 2008, 41(3): 901−911 doi: 10.1021/ma071284b[57]Manning G S. J Chem Phys, 1969, 51(3): 924−933 doi: 10.1063/1.1672157[58]Manning G S. J Chem Phys, 1969, 51(3): 934−938 doi: 10.1063/1.1672158[59]Manning G S. J Chem Phys, 1969, 51(8): 3249−3252 doi: 10.1063/1.1672502[60]Manning G S. Biophys Chem, 1977, 7(2): 95−102 doi: 10.1016/0301-4622(77)80002-1[61]Schild H G, Muthukumar M, Tirrell D A. Macromolecules, 1991, 24(4): 948−952 doi: 10.1021/ma00004a022[62]Winnik F M, Ringsdorf H, Venzmer J. Macromolecules, 1990, 23(8): 2415−2416 doi: 10.1021/ma00210a048[63]Chee C K, Hunt B J, Rimmer S, Soutar I, Swanson L. Soft Matter, 2011, 7(3): 1176−1184 doi: 10.1039/C0SM00836B[64]Zhang G Z, Wu C. J Am Chem Soc, 2001, 123(7): 1376−1380 doi: 10.1021/ja003889s[65]Tanaka F, Koga T, Kojima H, Xue N, Winnik F M. Macromolecules, 2011, 44(8): 2978−2989 doi: 10.1021/ma102695n[66]Kojima H, Tanaka F. Soft Matter, 2012, 8(10): 3010−3020 doi: 10.1039/c2sm06883d[67]Grabowski C A, Mukhopadhyay A. Phys Rev Lett, 2007, 98(20): 207801 doi: 10.1103/PhysRevLett.98.207801[68]Fleer G J. Adv Colloid Interface Sci, 2010, 159(2): 99−116 doi: 10.1016/j.cis.2010.04.004[69]Granick S, Bae S C. J Polym Sci, Part B: Polym Phys, 2006, 44(24): 3434−3435 doi: 10.1002/polb.21004[70]Granick S, Kumar S K, Amis E J, Antonietti M, Balazs A C, Chakraborty A K, Grest G S, Hwaker C J, Janmey P, Kramer E J, Nuzzo R, Russell T P, Safinya C R. J Polym Sci, Part B: Polym Phys, 2003, 41(22): 2755−2793 doi: 10.1002/polb.10669[71]Guo Z Y, Cao X L, Guo L L, Zhao Z Y, Ma B D, Zhang L, Zhang L, Zhao S. J Dispersion Sci Technol, 2020, Doi:10.1080/01932691.2020.1725543 doi: 10.1080/01932691.2020.1725543[72]Skaug M J, Mabry J N, Schwartz D K. J Am Chem Soc, 2014, 136(4): 1327−1332 doi: 10.1021/ja407396v[73]Walder R, Nelson N, Schwartz D K. Phys Rev Lett, 2011, 107(15): 156102 doi: 10.1103/PhysRevLett.107.156102[74]Dong C, Ren J. Electrophoresis, 2014, 35(16): 2267−2278 doi: 10.1002/elps.201300648[75]Wang S Q, Chang H C, Zhu Y X. Macromolecules, 2010, 43(18): 7402−7405 doi: 10.1021/ma101571s[76]Schwille P, Meyer-Almes F J, Rigler R. Biophys J, 1997, 72(4): 1878−1886 doi: 10.1016/S0006-3495(97)78833-7[77]Schaeffel D, Staff R H, Butt H J, Landfester K, Crespy D, Koynov K. Nano Lett, 2012, 12(11): 6012−6017 doi: 10.1021/nl303581q[78]Goossens K, Prior M, Pacheco V, Willbold D, Mullen K, Enderlein J, Hofkens J, Gregor I. ACS Nano, 2015, 9(7): 7360−7373 doi: 10.1021/acsnano.5b02371[79]Muller C B, Loman A, Pacheco V, Koberling F, Willbold D, Richtering W, Enderlein J. Epl, 2008, 83(4): 46001[80]Price E S, Aleksiejew M, Johnson C K. J Phys Chem B, 2011, 115(29): 9320−9326 doi: 10.1021/jp203743m[81]Torres T, Levitus M. J Phys Chem B, 2007, 111(25): 7392−7400 doi: 10.1021/jp070659s[82]Masuda A, Ushida K, Okamoto T. J Photoch Photobio A, 2006, 183(3): 304−308 doi: 10.1016/j.jphotochem.2006.06.040[83]Chen K, Zheng K K, Xu G F, Yang J F, Zhao J. Macromolecules, 2019, 52(10): 3925−3934 doi: 10.1021/acs.macromol.9b00025
  • 2025年版《中国药典》2341公示稿|第三法 药材及饮片中二硫代氨基甲酸盐类农药残留量测定解决方案
    25药典专栏7月26日,国家药典委员会发布了“2341 农药残留量测定法公示稿”和“0212 药材和饮片检定通则公示稿”,一经发布,引起了行业内的广泛关注。方法主要修订了以下内容:删除原第一、二、三法;原第五法药材及饮片(植物类)中禁用农药多残留测定法,重列为第一法,并由原有的33种禁用农残扩增为47种农残;新增第二法相关药材及饮片品种中农药多残留测定法;新增第三法药材及饮片中二硫代氨基甲酸盐类农药残留量测定法。根据0212药材和饮片检定通则药典标准草案公示稿的限量值要求和第三法药材及饮片中二硫代氨基甲酸盐类农药残留量测定法的方法要求,岛津(上海)实验器材有限公司第一时间进行方案应对,具体应用详见下文。1. 实验部分1.1 分析条件GC条件仪器配置:岛津GCMS-TQ系列气相色谱-质谱联用仪; 毛细管柱:SH-I-624Sil MS(30 m×0.25 mm,1.4 μm;P/N:R221-75962-30) 程序升温:初始温度40 ℃保持3.5 min, 以30℃/min升温到250℃,保持2 min。 载气:He 载气控制方式:恒流模式,1.5 mL/min 进样口温度:180 ℃ 进样时间:1 min 进样量:1.0 μL 进样方式:分流进样,分流比5:1 质谱条件 电离模式:电子轰击电离(EI) 离子源温度: 200 ℃ 接口温度:250 ℃ 检测器电压:调谐电压+0.5 kV 溶剂延迟:1 min 数据采集模式:MRM 各化合物MRM参数如下: 1.2 样品前处理取本品,碎粉,过三号筛。精密称取1 g,置10 mL顶空瓶中,精密加入异辛烷3 mL,加盐酸-氯化亚锡溶液(取二水合氯化亚锡7.5 g,加盐酸215 mL使溶解,加水至500 mL,摇匀)5 mL,摇匀,立即密封。置80℃水浴中1小时,时时振摇。取出,冷却,摇匀,离心(5000转/min)3分钟,取上层有机相作为供试品溶液。2. 实验结果2.1 标准品溶液的MRM色谱图2.2 实际样品的测定温馨提示如果您有任何问题,请在文章下方留言,我们会第一时间为您解答!25药典专栏 订阅方式具体步骤:1. 点击下方红色图片处订阅链接2. 页面跳转后点击“订阅”按钮应用下载点击或扫码获取PDF版应用报告
  • 前沿评述│厦门大学杭纬课题组——单细胞质谱成像技术的新进展
    近期,厦门大学杭纬教授在JACS上发表了题为“Nanoscale three-dimensional imaging of drug distributions in single cells via laser desorption post-ionization mass spectrometry”的高水平论文,中央民族大学再帕尔阿不力孜教授对该课题组近些年的工作进行了评述。中央民族大学 再帕尔阿不力孜教授再帕尔• 阿不力孜:中央民族大学原副校长,现任药学院院长、中央民族大学生物成像与系统生物学研究中心负责人、“质谱成像与代谢组学”国家民委重点实验室主任,二级教授。中国医学科学院药物研究所研究员、博士生导师,天然药物活性物质与功能国家重点实验室副主任,北京协和医学院药物分析学系主任。北京市政协常委,国务院学位委员会第七届药学学科评议组成员,教育部科技委药学与中医药学部委员;中国分析测试协会副理事长,中国化学会质谱分析专业委员会副主任委员等。首批“新世纪百千万人才工程”国家级人选,享受国务院政府特殊津贴专家,国家民委领军人才。APSB、RCM、JANPR以及《分析化学》、《药学学报》、《化学进展》、《质谱学报》、《分析测试学报》和《分析仪器》等国内外学术期刊编委。长期从事基于质谱技术的分析方法、新技术及其生物医药的应用研究。曾担任国家“863”计划项目首席专家,现任国家重点研发计划项目负责人。作为主要作者发表学术论文约120篇。获得教育部自然科学奖一等奖(第3完成人);以第一完成人分别获得北京市科技进步二等奖1项,中国分析测试协会科学技术奖二等奖3项、一等奖1项、特等奖1项等。随着1997年R. Caprioli教授等首次将MALDI-TOF MS技术用于生物组织中多肽和蛋白质成像分析后,极大地推动了质谱成像技术(MSI)的发展。这20多年来,因不同原理及多种类型MSI技术的发展及其应用领域的拓展,使其成为质谱领域乃至分析化学、分子影像技术以及生物医药等领域的前沿与热点方向之一而备受关注。此外,单细胞水平的研究可以揭示生命活动规律、疾病发病机制、药物靶向治疗等重大科学问题,是当前生命科学中最热点的研究领域之一。目前,从分析化学与技术角度来看,荧光显微镜技术在单细胞分析领域的应用最为普遍,但该技术因需引入能发荧光的探针分子,这为单细胞内源物质、小分子药物及其代谢物的发现与表征带来了严重的限制。与之相比,质谱成像技术以其免标记、多元素/分子同时检测等优点,为单细胞分析提供了新的研究手段。其中,SIMS技术因具有高空间分辨率等优势发挥着重要作用;而应用面更广的MALDI-MSI等激光解吸电离质谱技术常常受限于空间分辨率等关键问题,遇到巨大挑战。为解决激光解吸电离质谱单细胞成像技术面临的空间分辨率等瓶颈问题,近年来,厦门大学杭纬课题组相继研发出3个新技术,并取得了一系列的创新成果。1)针尖增强解吸质谱仪的研制。创新性地将激光照射贵金属针尖所产生等离激元共振增强效应作为解吸机制,并采用自制的TOF MS质量分析器,展现了纳米尺度弹坑并采集相应质谱信号的能力和重现性,实现了多种无机盐残留物的多元素分析,获得了50 nm横向分辨率的钾盐残留物质谱成像。该方法为化学组成在纳米尺度的分析与成像提供了新的途径。2)近场解吸成像质谱仪的研制。采用有孔光纤传导激光、光纤尖端开孔仅200 nm以及尖端的瞬逝光进行解吸等手段,通过原子力自动控制光纤尖端到样品表面的距离,无需使用探针,获得空间分辨率为250 nm的多种药物在单细胞内的分布成像结果。该质谱仪将近场解吸的分子通过深紫外激光后电离,具有离子效率高、传输性好等特点,达到amol级绝对检出限;克服了样品表面起伏产生误信号的问题,精准实现形貌和化学成分清晰的共成像图。3)微透镜光纤激光解吸电离质谱仪的研制与单细胞质谱成像分析新进展。首先,该课题组研制了微透镜光纤激光解吸电离质谱仪(MLF-LDPI-TOF MS),即借助物理研磨手段,在单模光纤的一端加工得到曲率半径极小的微球面(R=4.5 μm),以此微球作为微型平凸透镜,将激光聚焦在样品表面,实现对样品的解吸与离子化,并通过自主研制的飞行时间型质量分析器进行检测。因采用极短的焦距,在样品表面获得采样弹坑直径约为350 nm的结果。通过将抗癌药物柔红霉素(DRB)负载在叶酸修饰的Fe3O4颗粒表面并与癌细胞共同培养,对不同培养时间的癌细胞进行质谱成像分析,同时获得细胞内纳米颗粒、纳米颗粒表面的叶酸修饰基团和所负载药物在细胞器水平上的分布,直观地揭示出药物随着培养时间的增加,从纳米颗粒表面释放、进入细胞核,并最终诱导癌细胞凋亡这一动态过程的结果。该课题组进一步采用MLF-LDPI-TOF MS技术,成功实现单细胞3D成像分析,在纳米尺度实现了2种抗肿瘤药物在单个细胞内三维空间分布成像,获得500 nm×500 nm×500 nm的空间分辨率。通过采用微透镜光纤实现在细胞表面纳米尺度的采样,并引入157 nm后电离激光提高了离子化效率、检测灵敏度及电离源的信号稳定性。同时提出了一种基于嵌入式均匀圆形聚苯乙烯微球的三维定位方法,可用于准确重构还原药物在单细胞内的三维分布分析。在此基础上,通过自主设计具有三通结构的样品剥蚀池,将微透镜光纤激光采样技术与ICP-MS相结合,构建微透镜光纤激光溅射-ICP-MS的单细胞质谱成像技术平台,实现低至400 nm空间分辨率的生物组织和单细胞内多种化合物的质谱成像分析。该装置还可实现可调分辨率的成像模式,如对同一小鼠小肠剖面组织切片进行从500 nm至10 μm空间分辨率的药物成像分析,高分辨模式的成像能够更直观、更精准地描绘出小肠组织内微小细节和药物的分布,获得小肠对药物的吸收和作用机理相关的关键信息。此外,将HeLa细胞与金纳米棒、卡铂等药物同时培养后进行成像分析,结果发现金纳米棒主要位于细胞的溶酶体内;而卡铂药物被癌细胞摄取后主要分布在细胞核内,通过与核内DNA的相互作用诱导癌细胞的凋亡。杭纬课题组长期致力于激光溅射/解吸质谱技术与装置的研制,其中在基于激光解吸电离的高空间分辨质谱成像技术中,微透镜光纤激光解吸电离质谱技术尤为出色。该技术首次提出了一种经济可靠、操作简单、普适性强、具有纳米空间分辨率的激光解吸电离质谱成像手段,其空间分辨率远超目前商品化的激光采样质谱技术,并成功实现了对细胞内多种元素和分子在细胞器水平上的可视化分析与定位,有望在生命科学、医学和药学等多个领域拓展应用。doi: 10.7538/zpxb.2022.2000杭纬:厦门大学南强特聘教授,厦门大学化学化工学院教授、博士生导师。主要从事分析仪器的研究和发展,包括质谱仪器的研制、信号检测新技术的开发、离子源及其接口技术的研究、其他分析仪器与质谱分析法的联用新技术;分析仪器的应用,包括以质谱为核心的各种分析仪器在生物、医药、环境、材料、冶金、矿产、安检和商检等领域的应用。在Sci. Adv., J. Am. Soc. Chem., Angew. Chem. Int. Ed., ACS Nano, Anal. Chem.等期刊发表SCI论文170余篇。主持国家自然科学基金国家重大科研仪器研制项目、科学仪器基础研究专款、面上项目和国家863计划等课题以及美国能源部、国土安全部、疾病防治与预防中心资助课题。
  • 免费试用/国内现货—超高性价比教育版辐射粒子探测器MiniPIX EDU来咯!
    运用了由CERN开发的、NASA在太空中使用过的X射线探测器技术,MiniPIX EDU是一款为以教育为用途而设计和定价的微型USB、光子计数X射线探测器。MiniPIX EDUNASA在太空中使用的是标准版MiniPIX。此前标准版MiniPIX就已经出现在欧洲的学校课堂上了,但通常教师和学生的需求对设备的要求没有那么高,所以ADVACAM开发了教育版的MinIPIX,即MiniPIX EDU。 教育版初始为实验教学而设计,此外也能用于某些工业应用。它把现代的辐射成像技术带进课堂,让学生可以探索我们周围看不见的电离辐射世界。学生将探索不同类型辐射的起源,并了解放射性同位素如何在自然环境和像人类房屋、城市、工业的人造环境中迁移,他们可以了解人们如何从电离辐射和放射性中受益:医学成像方法,工业中的非破坏性测试,用于治疗癌症的核医学方法,安全应用,核电̷̷MiniPIX EDU可记录非常低的放射性强度,这种强度无处不在。学生可以记录到普通材料和物体的放射性强度,如口罩上、花岗岩、灰烬或纸袋上的放射性强度。 MiniPIX在高中实验课堂上测验矿物质发出的的辐射类型及强度参数规格如下:感光材料Si有效输入面积14 mm x 14 mm像素数量256 x 256像素尺寸55 μm分辨率9 lp/mm读出速度55 frames/s阈值分辨率0.1 keV能量分辨率0.8 keV (THL) and 2 keV (ToT)最低能量检测限5 keV for X-rays光子计数率up to 3 x 106 photons/s/pixel读出芯片Timepix操作模式Counting,Time-over-Threshold, Time-of-Arrival接口USB 2.0尺寸89 mm x 21 mm x 10 mm (L x W x H)重量30 g软件Pixet PRO or ask for RadView radiation visualization softwareMiniPIX EDU使用非常简单,只需要将其插入PC的USB端口并启动软件,就能观测到神奇的电离粒子图像。 典型图像:粒子造成的圆形大斑点,宇宙介子引起的长轨迹,电子造成的弯曲、蠕虫形状,伽玛射线或X射线产生的小点有时会观察到更罕见的现象:δ电子,反冲核,两个或多个核跃迁的级联,质子轨道现货供应:MinIPIX EDU光子计数X射线探测器有大量现货供应,如需询购,欢迎新老客户致电众星联恒:010-86467571,或联系我们的销售工程师,我们也可提供试用与演示服务。MiniPIX EDU 相关阅读https://www.instrument.com.cn/netshow/SH102943/news_554493.htmhttps://www.instrument.com.cn/netshow/SH102943/news_553389.htmhttps://www.instrument.com.cn/netshow/SH102943/news_540282.htmhttps://www.instrument.com.cn/netshow/SH102943/news_538177.htmhttps://www.instrument.com.cn/netshow/SH102943/news_515926.htmAdvacam S.R.O.源至捷克技术大学实验及应用物理研究所,致力在多学科交叉业务领域提供硅传感器制造、微电子封装、辐射成像相机和X射线成像解决方案。Advacam最核心的技术特点是其X射线探制器(应用Timepix芯片)、没有拼接缝隙(No Gap),因此在无损检测、生物医学、地质采矿、艺术及中子成像方面有极其突出的表现。Advacam同NASA(美国航空航天局)及ESA(欧洲航空航天局)保持很好的项目合作关系, 其产品及方案也应用于航空航天领域。北京众星联恒科技有限公司作为捷克Advacam公司在中国区的总代理,也在积极探索和推广光子计数X射线探测技术在中国市场的应用,目前已有众多客户将Minipix、Advapix和Widepix成功应用于空间辐射探测、X射线小角散射、X射线光谱学、X射线应力分析和X射线能谱成像等领域。
  • 四川省第五届环境和食品安全学术年会召开
    “四川省第五届环境和食品安全学术年会”于2019年10月11-13日在四川省都江堰市召开。本届学术年会是四川省分析测试学会第三届环境和食品安全专业委员会(以下简称专委会)首次主持召开的学术年会,来自环境系统、疾控系统、食药系统、给排水、科研院所、高校、第三方检测公司、仪器公司等行业的110余人参加会议。会议就上届学术年会以来,环境和食品安全面临的新形势、新任务、新成就、新进展和加快我省环境与食品安全工作进行了学术交流和讨论。 APL奥普乐科技集团公司做为会员单位,参与本次学术年会!四川省分析测试学会秘书长南毅到会致辞,对专委会取得成绩给予充分肯定。专委会主任委员方正在会上发表致辞,代表第三届专委会承诺继续为我省环境和食品安全行业搭建交流平台,以促进行业发展。专委会名誉主任委员,学术委员会主任但德忠由于身体原因未到现场,向大会发来书面祝词,表达了对专委会工作的肯定及对环境和食品安全行业分析检测技术的创新和进步的殷切期望。随后学术年会就目前环境和食品安全领域关注的问题开展了专题报告,邀请了中国科学院生态中心的高丽荣研究员、四川省疾病控制中心的徐先顺主任技师、四川省环境工程评估中心的吴官胜高级工程师、成都海关技术中心的陈世界研究员、四川大学化学学院的郑成斌教授、四川农业大学的杨刚教授、四川晟实科技有限公司的尹辉研究员、岛津企业管理(中国)有限公司的包晓明以及赛默飞世尔科技(中国)有限公司的车金水经理针对环境样品分析方法及装置、光谱分析在食品安全风险监测中的应用、排污许可证制度改革、国际食品安全形势、土壤监测发展方向、仪器设备为环境和食品安全监测解决方案等方面做了专题报告。本界学术年会共收到来自于环境监测机构、疾控系统、食药系统、科研院所、高校、给排水公司、第三方检测公司、仪器公司等行业60篇学术论文,经专家严格评审,评选出一等奖论文7篇,2等奖12篇,三等奖17篇,优秀奖24篇。其中一等奖论文将推荐到《中国测试》杂志社,进行评审,内容符合要求的将在《中国测试》正刊上发表。 在各方的积极参与、主办方认真负责的组织下,本次学术年会内容充实,讨论严肃认真,取得圆满成功。 本界学术年会共收到来自于环境监测机构、疾控系统、食药系统、科研院所、高校、给排水公司、第三方检测公司、仪器公司等行业60篇学术论文,经专家严格评审,评选出一等奖论文7篇,2等奖12篇,三等奖17篇,优秀奖24篇。其中一等奖论文将推荐到《中国测试》杂志社,进行评审,内容符合要求的将在《中国测试》正刊上发表。 在各方的积极参与、主办方认真负责的组织下,本次学术年会内容充实,讨论严肃认真,取得圆满成功。
  • 中美烟草分子育种联合实验室在昆明揭牌
    近日,由美国北卡罗来纳州立大学、浙江大学、云南省烟草农业科学研究院联合组建的“中美烟草分子育种联合实验室”在昆明揭牌。   联合实验室将通过项目合作、人才培养、学术交流等方式,全方位、深层次开展烟草分子育种、生物技术减害、优质特色品种选育等研究。据介绍,我省将以联合实验室为平台,利用国际先进科技资源,力争在烟草分子育种、生物技术减害等烟草科技“瓶颈”上实现突破,尽快培育出3至5个在抗病性、低危害等方面有突破的烟草品种。   据介绍,云南省烟草育种研究水平全国领先。云南省烟草农业科学研究院通过自育与引进相结合、传统技术与高新技术互动,培育出的云烟85、云烟87、云烟97等一批具有自主知识产权的优良品种,已成为我国烟草种植的主栽品种。2009年,我省面向全国22个省区市供种,占全国烤烟种植面积的75%以上,彻底扭转了我国烤烟品种长期依赖进口的被动局面。
  • 最新到货—超高性价比教育版辐射粒子探测器MiniPIX EDU来咯!
    运用了由cern开发的、nasa在太空中使用过的x射线探测器技术,minipix edu是一款为以教育为用途而设计定价的掌上usb、光子计数型x射线探测器。众星现有该款 minipix edu 光子计数x射线探测器 限量款 现货供应!欢迎新老客户来电垂询:010-86467571;或联系我们的销售工程师,我们也同时提供试用与演示服务。minipix edu 最新到货minipix 验证口罩的放射性粒子防护演示实验图1minipix eduNASA在太空中使用的是标准版minipix。此前标准版minipix就已经出现在欧洲的学校课堂上了,但通常教师和学生的需求对设备的要求没有那么高,所以advacam开发了教育版的minipix,即minipix edu。 教育版初始为实验教学而设计,此外也能用于某些工业应用。它把现代的辐射成像技术带进课堂,让学生可以探索我们周围看不见的电离辐射世界。学生将探索不同类型辐射的起源,并了解放射性同位素如何在自然环境和像人类房屋、城市、工业的人造环境中迁移,他们可以了解人们如何从电离辐射和放射性中受益:医学成像方法,工业中的非破坏性测试,用于治疗癌症的核医学方法,安全应用,核电… … minipix edu可记录非常低的放射性强度,这种强度无处不在。学生可以记录到普通材料和物体的放射性强度,如口罩上、花岗岩、灰烬或纸袋上的放射性强度。图2minipix在高中实验课堂上测验矿物质发出的的辐射类型及强度参数规格如下:感光材料si有效输入面积14 mm x 14 mm像素数量256 x 256像素尺寸55 μm分辨率9 lp/mm读出速度55 frames/s阈值分辨率0.1 kev能量分辨率0.8 kev (thl) and 2 kev (tot)最低能量检测限5 kev for x-rays光子计数率up to 3 x 106 photons/s/pixel读出芯片timepix操作模式counting,time-over-threshold, time-of-arrival接口usb 2.0尺寸89 mm x 21 mm x 10 mm (l x w x h)图3粒子造成的圆形大斑点,宇宙介子引起的长轨迹,电子造成的弯曲、蠕虫形状,伽玛射线或x射线产生的小点图4有时会观察到更罕见的现象:δ电子,反冲核,两个或多个核跃迁的级联,质子轨道
  • 黄超兰团队与合作者全面揭示新冠肺炎不同阶段的免疫分子图谱
    图. 免疫功能紊乱、胆固醇代谢障碍和心肌功能受损贯穿于新冠肺炎的不同阶段(BBA-Proteins and Proteomics期刊2022年度封面)研究者对来自不同疾病进展阶段的新冠肺炎患者的血清和尿液样本开展了基于DIA-PASEF方法的定量蛋白质组学分析。结果显示,与健康对照组相比,免疫反应在无症状患者中被激活,但在轻中症和重症患者中则出现不同程度的紊乱,免疫反应发生变化的转折点在于中性粒细胞功能的改变。此外,康复患者体内呈现出显著的免疫抑制,这一现象会一直持续到患者康复后的12个月。本研究表明,免疫反应、胆固醇代谢和心血管功能的长期失调可能是潜在后遗症发生的关键诱因,相关研究结果全面揭示了新冠肺炎不同阶段的免疫分子图谱,有助于未来进一步探索有效改善复杂疾病后遗症的早期干预策略。本研究基于具有超高鉴定深度和准确度的血清和尿液蛋白质组学数据,为全面探索新冠肺炎患者的预后评估提供了可靠的重要分子基础和机制信息。多组学中心在黄超兰教授的带领下,基于临床,前沿技术和基础学科的深度交叉融合,已在新冠科研攻关研究中取得了多个重要成果。此前黄超兰主任领衔的多组学中心团队与高福院士领衔的多学科团队紧密合作,发现早期新型冠状病毒感染主要为免疫抑制并或存在“两阶段”机制1,并通过描绘新冠刺突蛋白糖基化图谱,首次揭示了“O-Follow-N”的糖基化新规律2。此外,与本研究结果一致,黄超兰团队还与浙江大学第一附属医院郑敏教授团队开展合作研究,首次关注新冠肺炎康复患者的血清蛋白表达变化,提出康复患者在1个月后仍会出现胆固醇代谢紊乱和心肌受损3。在黄超兰教授的带领下,多组学中心团队始终坚持以具有重要意义的科学和临床问题为起源,开发质谱和蛋白组学的创新方法,探究和揭示生命科学的未知领域,得到能贡献生命科学和人类健康的真正产出。中国科学院高福院士,中国疾控中心病毒病所刘军研究员和北京大学医学部精准医疗多组学研究中心主任黄超兰教授为论文共同通讯作者,北京大学医学部精准医疗多组学研究中心陈扬副研究员、张楠博士,中国疾控中心病毒病所张杰博士,北京大学医学部精准医疗多组学研究中心郭江涛,湖北省麻城市疾控中心董少波研究员为论文共同一作。原文链接:https://www.sciencedirect.com/science/article/pii/S1570963921001424?via%3Dihub相关文章:1. Tian, W. M. et al. Immune suppression in the early stage of COVID-19 disease. Nat Commun 11, doi:10.1038/s41467-020-19706-9 (2020).2. Tian, W. M. et al. O-glycosylation pattern of the SARS-CoV-2 spike protein reveals an "O-Follow-N" rule. Cell Res 31, 1123-1125, doi:10.1038/s41422-021-00545-2 (2021).3. Chen, Y. et al. Proteomic Analysis Identifies Prolonged Disturbances in Pathways Related toCholesterol Metabolism and Myocardium Function in the COVID-19 Recovery Stage. J Proteome Res 20, 3463-3474, doi:10.1021/acs.jproteome.1c00054 (2021).
  • 屠呦呦捐资100万设立北京大学屠呦呦医药人才奖励基金
    这是一个简约的签约仪式,这更是一个充满温馨、祥和、幽默、快乐的“家宴”。与诺贝尔生理学或医学奖获得者、北大校友屠呦呦老师零距离,她是一位令晚辈感到亲切慈祥的长者,是一位关心国家前途命运的科学家,是一位关注北大、北医发展的校友。她更是一位有着率真的童心和怀揣一颗感恩之心的真诚质朴的老人。置身于86岁的屠呦呦老师家中,那其乐融融的氛围,感染了每一个人。那阵阵的笑声,由衷地发自现场每个人的心中。  2016年12月25日下午3时,全国政协副主席韩启德,北京大学党委书记郝平,北京大学常务副校长、北医校友会会长柯杨,医学部主任詹启敏,医学部党委书记刘玉村,医学部副主任肖渊、药学院党委书记徐萍等师生一行16人如约来到屠呦呦老师家中,为了完成两件事情:一是共同见证屠呦呦校友捐资设立“北京大学屠呦呦医药人才奖励基金”的签约 一是为即将86岁生日的屠呦呦老师祝寿。  一个小时,不长,一行人却都收获到满满的快乐,更收获到屠呦呦校友对母校的感恩之情和对北大学子的谆谆嘱托。  北京大学屠呦呦医药人才奖励基金  屠呦呦老师为支持母校教育事业的发展,培养优秀的医药卫生人才,激励医学部在校学生勤奋学习,努力掌握专业知识,并鼓励医药卫生领域中青年教师不断进取、追求卓越,向北京大学教育基金会捐资100万,在北京大学医学部设立“北京大学屠呦呦医药人才奖励基金”。  现场,肖渊请屠呦呦老师进行签约时,因屠老师腰不好,韩启德、郝平劝她坐椅子而不要坐沙发,屠呦呦老师则风趣地说,“听你们的,你们让我坐哪儿我就坐哪儿。”尽管腰不好,为了便于签约,她还是坐在了茶几旁的沙发上,像小学生一样,一笔一划地在捐赠协议上签上了自己的名字。那认真的态度令人肃然起敬。柯杨代表北京大学、詹启敏代表北京大学医学部在捐资协议上签字。  屠呦呦老师告诉大家,几天前她就催促家人把款打到北医账户,并叮嘱老伴转告北医校友会注意查收。屠呦呦老师一再表达,我有今天的成绩,要感谢母校的培养,我1951年考入北京大学医学院,1955年毕业于北京医学院,是学校和老师们培养了我,我要感谢学校、感谢老师。她举出了楼之岑等教授的名字。  刘玉村代表医学部向屠呦呦老师颁发了证书。他说:“屠老师您设立的这个基金,一定会激励我们的学生、中青年科研人员,积极进取,做出优异成绩。”  关注母校的变化发展  得知大家已到,屠呦呦老师和老伴李老师在客厅迎候大家,当韩启德向屠呦呦老师介绍新任北京大学党委书记郝平时,她说,“知道,知道,我看报纸了,也有朋友打来电话告诉我。”  当听到柯杨说北大、北医有不少校友回国服务,有许多校友为母校做贡献时,屠呦呦老师说:“多好啊!”  此时老人也道出了心中的遗憾,自己还有很多研究没有完成。希望北大、北医年轻人能进一步完成。  当听到詹启敏介绍,此时正在接受科技部验收的药学院天然药物及仿生药物国家重点实验室成绩突出时,屠呦呦高兴地连连说:“太好了!太好了!我看到了新闻,药学院周德敏教授的团队有一项关于疫苗的突破性研究,做得非常好。他们一定能够成功。”  屠呦呦老师说:“当前形势大好,党和国家鼓励创业、倡导创新。现在的科研环境非常好,年轻人可以自主选择。我们那个时候,条件艰苦,因是国家的需要,任务紧,压力大。我衷心地希望母校出更多人才,获得更多奖项。中国科学界获诺奖不会只是我一个人。”  互赠“大礼”,凸显“礼尚往来”背后的深意  签约仪式前的互赠“大礼”、亲切交谈,成为当日活动的重要组成部分,也烘托出“家”的浓浓暖意与“家人”间的亲近与快乐。  韩启德将其墨宝“德音孔昭,示我周行”的题词送给屠呦呦老师,他解释了引自诗经“小雅鹿鸣”中的这两句话。屠呦呦老师点头称是。她还说,“老校长”的书法应该让更多人看到。86岁长者一句“老校长”引得笑声一片,韩启德诙谐地说:“这说明北大、北医后继有人啊。”  学生代表、药学院2014级秦川同学带来了生日贺卡,代表医学部学生祝屠老师健康长寿,引领年轻人继续攀登科学高峰,并把手绘的老北医明信片送给老人留念。屠呦呦老师高兴地接受,向朝气蓬勃、昂扬向上的青年学子表达谢意。鼓励他们努力学习,为社会多做贡献。  《北医》报在2015年为获诺奖的屠呦呦老师特出两个专版,其中一个专版为“屠呦呦获诺奖,北医师生一席谈”,特邀了院士、中青年老师专家和青年学子近30人,谈他们的真实感受。北医报主编傅冬红请屠呦呦老师看相关报纸内容的时候,她说:“真是太好了,让你们费心了!”  屠呦呦老师向韩启德、郝平、柯杨、詹启敏、刘玉村等赠送了她的著作《青蒿及青蒿类药物》,并欣然逐一合影留念。  生日蛋糕成为“家宴”,感受屠呦呦及家人的温暖  距屠呦呦老师86岁生日还有4天,韩启德、郝平一行把祝寿提前了。肖渊端上来生日蛋糕,代表全校师生祝屠老生日快乐,身体健康!在场的人一起鼓掌。屠呦呦老师坚持要切开蛋糕,大家一同分享。看到外科大夫出身的刘玉村娴熟的“刀工”快速将蛋糕切成了20多等分,屠呦呦老师笑着予以夸奖,说切得真好。  在屠呦呦老师和老伴的坚持下,到场的人均有幸与屠呦呦老师共享了生日蛋糕,也感受到屠呦呦老师家人般的亲切慈祥。而刚一进门,屠老师的老伴就给大家准备了咖啡、茶和巧克力,并坚持每人一定要一颗巧克力。  尽管郝平端给屠呦呦老师的蛋糕已经在她手里端了挺长时间,但与大家亲切交谈的屠老师坚持一定要吃完,不能剩。其间,不时地,她还提醒大家来吃蛋糕,说你们没完成任务。  关于“北京大学屠呦呦新药创新研究院”  了解到医学部考虑成立北京大学屠呦呦新药创新研究院的设想,郝平予以充分肯定和支持。他提议詹启敏向屠呦呦老师简单介绍一下。  听到北京大学屠呦呦新药创新研究院中“屠呦呦”这三个字,执着做事、做人低调的屠呦呦老师马上说:“不要用我的名字,我已经够张扬的了”。去年获诺奖的屠呦呦老师一时间被社会“热炒”,至今让她心有余悸。  詹启敏介绍说:“老药新用是当今研发的一个新思路、新理念。我们要组织专门团队,多学科联合研究,在您研究的基础上,不仅要搞清楚青蒿素的作用机理,还应深入研究它新的适应症。”  听到詹启敏、郝平和韩启德的解释,转而屠老师又说,“我的名字不要乱用,如果我的名字对母校真正有用,还是可以的。今天来这里的都是母校的人吧。”在场的所有人不约而同地鼓掌欢呼。  韩启德对屠哟哟老师说:“今天这个时代跟您做研究的那个时代不同,现在我们有经费,有人才,您的工作要积极地向前推进。北大人、北医人不仅要传承您的科学精神,也要传承您的事业。”  郝平向身边的詹启敏强调了三点:一,屠呦呦老师捐赠冠名的基金要管好、用好 二、北京大学屠呦呦新药创新研究院的工作要积极推进 三、母校要授予屠呦呦老师荣誉教授。  郝平转而又对屠呦呦老师说:“您获诺奖激励北大师生做出更大的成绩。您不能闲,还要回母校做贡献。”  屠呦呦老师笑了,在场的人鼓掌,笑了。  请转达对全校师生的谢意,祝大家新年好  韩启德一行与屠呦呦老师话别前,屠老师还特别叮嘱北京大学党委书记郝平、医学部主任詹启敏、党委书记刘玉村,一定要转达她对全校师生的感谢与祝福。送韩启德一行到电梯口,屠呦呦老师与大家挥手道别,互道“新年好”!  “德音孔昭,示我周行”。“韩校长”给屠呦呦老师的题词不仅表达了他个人对屠呦呦老师人品的敬仰及对她科学精神的崇尚,也应该是北大人、北医人做人、做事的追求:坚持真理,执着科学。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制