当前位置: 仪器信息网 > 行业主题 > >

白屈菜赤碱

仪器信息网白屈菜赤碱专题为您提供2024年最新白屈菜赤碱价格报价、厂家品牌的相关信息, 包括白屈菜赤碱参数、型号等,不管是国产,还是进口品牌的白屈菜赤碱您都可以在这里找到。 除此之外,仪器信息网还免费为您整合白屈菜赤碱相关的耗材配件、试剂标物,还有白屈菜赤碱相关的最新资讯、资料,以及白屈菜赤碱相关的解决方案。

白屈菜赤碱相关的资讯

  • 全国饲料工业标准化技术委员会发布《饲料添加剂中重金属限量试验 比浊法》等3项农业行业标准(公开征求意见稿)
    2.《饲料添加剂中重金属限量试验 比浊法》标准文本(公开征求意见稿.pdf.pdf3.《饲料添加剂中重金属限量试验 比浊法》编制说明(公开征求意见稿).pdf.pdf4.《饲料中黄霉素A的测定》标准文本(公开征求意见稿).pdf.pdf6.《饲料中血根碱、白屈菜红碱的测定》 标准文本(公开征求意见稿).pdf.pdf8.公开征求意见反馈表.doc.doc5.《饲料中黄霉素A的测定》编制说明(公开征求意见稿).pdf.pdf7.《饲料中血根碱、白屈菜红碱的测定》编制说明 (公开征求意见).pdf.pdf
  • 干货 | 锂离子动力电池及其关键材料的发展趋势
    p   进一步提高电池的能量密度是动力电池发展的主题和趋势, 而关键材料是其基础. 本文从锂离子动力电池正、负极材料, 隔膜及电解液等几个方面, 对锂离子动力电池关键材料的发展趋势进行评述. 开发高电压、高容量的正极新材料成为动力锂离子电池比能量大幅度提升的主要途径 负极材料将继续朝低成本、高比能量、高安全性的方向发展, 硅基负极材料将全面替代其他负极材料成为行业共识. 此外, 本文还对锂离子动力电池正极、负极材料等的选择及匹配技术、动力电池安全性、电池制造工艺等的关键技术进行了简要分析, 并提出了锂离子动力电池研究中应予以关注的基础科学问题. /p p strong   1 引言 /strong /p p   发展新能源汽车被广泛认为是有效应对能源与环境挑战的重要战略举措. 此外, 对我国而言, 发展新能源汽车是我国从“汽车大国”迈向“汽车强国”的必由之路 [1] . 近年来, 新能源汽车产销量呈现井喷式增长, 全球保有量已超过130万辆, 已进入到规模产业化的阶段. 我国也在2015年超过美国成为全球最大的新能源汽车产销国. 以动力电池作为部分或全部动力的电动汽车, 因具有高效节能和非现场排放的显著优势,是当前新能源汽车发展的主攻方向. 为了满足电动汽车跑得更远、跑得更快、更加安全便捷的需求, 进一步提高比能量和比功率、延长使用寿命和缩短充电时间、提升安全性和可靠性以及降低成本是动力电池技术发展的主题和趋势. /p p   近日,由中国汽车工程学会公布的《节能与新能源汽车技术路线图》为我国的动力电池技术绘制了发展蓝图. 该路线图提出,到2020年,纯电动汽车动力电池单体比能量达到350Wh/kg,2025年达到400Wh/kg,2030年则要达到500W h/kg 近中期在优化现有体系锂离子动力电池技术满足新能源汽车规模化发展需求的同时, 以开发新型锂离子动力电池为重点, 提升其安全性、一致性和寿命等关键技术, 同步开展新体系动力电池的前瞻性研发 中远期在持续优化提升新型锂离子动力电池的同时, 重点研发新体系动力电池, 显著提升能量密度、大幅降低成本、实现新体系动力电池实用化和规模化应用. /p p   由此可见, 在未来相当长的时间内, 锂离子电池仍将是动力电池的主流产品. 锂离子电池具有比能量高、循环寿命长、环境友好、可以兼具良好的能量密度和功率密度等优点, 是目前综合性能最好的动力电池, 已被广泛应用于各类电动汽车中 [2~7] . /p p   本文简要介绍了锂离子动力电池的产业技术发展概况, 并从锂离子动力电池正、负极材料, 隔膜及电解液等几个方面, 对锂离子动力电池关键材料的发展趋势进行评述. 本文还对锂离子动力电池正、负极材料的选择及匹配技术、动力电池安全性、电池制造工艺等关键技术进行了简要分析, 并提出了锂离子动力电池研究中应予以关注的基础科学问题. /p p strong   2 锂离子动力电池产业技术发展概况 /strong /p p   从产业发展情况来看, 目前世界知名的电动汽车动力电池制造商包括日本松下、车辆能源供应公司(AESC)、韩国LG化学和三星SDI等都在积极推进高比能量动力锂离子电池的研发工作. 综合来看, 日本锂电池产业的技术路线是从锰酸锂(LMO)到镍钴锰酸锂三元(NCM)材料. 例如, 松下的动力电池技术路线早期采取锰酸锂, 目前则发展镍钴锰酸锂三元、镍钴铝酸锂(NCA)作为正极材料, 其动力电池主要搭载在特斯拉等车型上. 韩国企业以锰酸锂材料为基础, 如LG化学早期采用锰酸锂作为正极材料, 应用于雪佛兰Volt车型, 近年来三星SDI和LG化学已经全面转向镍钴锰酸锂三元材料(表1) [8] . /p p    img src=" http://img1.17img.cn/17img/images/201803/insimg/2d0662ae-8c3d-4524-aa6c-4ba35fb5d971.jpg" title=" 1.jpg" / /p p   目前国内主流动力锂电池厂商, 如比亚迪等仍以磷酸铁锂为主, 磷酸铁锂电池在得到了大规模普及应用的同时, 其能量密度从2007年的90W h/kg提高到目前的140W h/kg. 然而, 由于磷酸铁锂电池能量密度提升空间有限, 随着对动力电池能量密度要求的大幅提升, 国内动力电池厂商技术路线向镍钴锰三元、镍钴铝或其混合材料的转换趋势明显(表2). /p p    img src=" http://img1.17img.cn/17img/images/201803/insimg/fd4ccbd7-67aa-49c0-bf98-30020d1d0ed3.jpg" title=" 2.jpg" / /p p strong   3 锂离子动力电池关键材料的发展趋势 /strong /p p   锂离子电池采用高电位可逆存储和释放锂离子的含锂化合物作正极, 低电位可逆嵌入和脱出锂离子的材料作负极, 可传导锂离子的电子绝缘层作为隔膜,锂盐溶于有机溶剂作为电解液, 如图1所示. 正极材料、负极材料、隔膜和电解液构成锂离子电池的4种关键材料. /p p   3.1 正极材料 /p p   锰酸锂(LMO)的优势是原料成本低、合成工艺简单、热稳定性好、倍率性能和低温性能优越, 但由于存在Jahn-Teller效应及钝化层的形成、Mn的溶解和电解液在高电位下分解等问题, 其高温循环与储存性能差. 通过优化导电剂含量、纯化电解液、控制材料比表面 [11] 以及表面修饰 [12] 改善LMO材料的高温及储存性能是目前研究中较为常见且有效的改性方法. /p p   磷酸铁锂(LFP)正极材料有着良好的热稳定性和循环性能, 这得益于结构中的磷酸基聚阴离子对整个材料的框架具有稳定的作用. 同时磷酸铁锂原料成本低、对环境相对友好, 因而使得LFP成为目前电动汽车动力电池中的主流材料 [12~16] . 但由于锂离子在橄榄石结构中的迁移是通过一维通道进行的, LFP材料存在着导电性较差、锂离子扩散系数低等缺点. /p p   从材料制备角度来说, LFP的合成反应涉及复杂的多相反应,因此很难保证反应的一致性, 这是由其化学反应热力学上的根本性原因所决定的 [16] . 磷酸铁锂的改进主要集中在表面包覆、离子掺杂和材料纳米化三个方面.合成工艺的优化和生产过程自动化是提高LFP批次稳定性的基本解决方法. 不过, 由于磷酸铁锂材料电压平台较低(约3.4V), 使得磷酸铁锂电池的能量密度偏低,这一缺点限制了其在长续航小型乘用车领域的应用. /p p    img src=" http://img1.17img.cn/17img/images/201803/insimg/4796d208-e8dd-4b71-a5fc-296ecba8d6c1.jpg" title=" 3.jpg" / /p p   镍钴锰三元(NCM)或多元材料优势在于成本适中、比容量较高, 材料中镍钴锰比例可在一定范围内调整, 并具有不同性能. 目前国外量产应用的动力锂电正极材料也主要集中在镍钴锰酸锂三元或多元材料, 但仍然存在一些亟需解决的问题, 包括电子导电率低、大倍率稳定性差、高电压循环定性差、阳离子混排(尤其是富镍三元)、高低温性能差、安全性能差等 [17] . 另外, 由于三元正极材料安全性能较差, 采用合适的安全机制如陶瓷隔膜材料也已成为行业共识 [18] . /p p   考虑到安全性等问题, 通过改进工艺(如减少电极壳的重量等)来提高电池能量密度的空间有限. 为了进一步提高动力锂离子电池的能量密度, 开发高电压、高容量的正极新材料成为动力锂离子电池比能量大幅度提升的主要途径(图2) [19,20] /p p   3.1.1 高电压正极材料 /p p   开发可以输出更高电压的正极材料是提高材料能量密度的重要途径之一. 此外, 高电压的另一显著优势是在电池组装成组时, 只需要使用比较少的单体电池串联就能达到额定的输出电压, 可以简化电池组的控制单元. 目前主流的高电压正极材料是尖晶石过渡金属掺杂的LiM x Mn 2?x O 4 (M=Co、Cr、Ni、Fe、Cu /p p style=" text-align: center "    img src=" http://img1.17img.cn/17img/images/201803/insimg/3b01137b-1330-47a0-a313-51c9d4f2f033.jpg" title=" 4.jpg" / /p p style=" text-align: center "   图 2 比较各种类型的高电压、高容量正极材料的体积能量密度、功率、循环性、成本和热稳定性的雷达图 [20] (网络版彩图)等) /p p   最典型的材料是LiNi 0.5 Mn 1.5 O 4 , 虽然其比容量仅有146mAh/g, 但由于工作电压可达到4.7V, 能量密度可达到686W h/kg [20,21] . 本课题组 [22] 以板栗壳状的MnO 2为锰源, 通过浸渍方法合成了由纳米级的多面体聚集而成微米球状的尖晶石镍锰酸锂(LNMO)材料. 该结构对电解液的浸入和锂离子的嵌入和脱出十分有利,且可以适应材料在充放电过程中的体积变化, 减小材料颗粒之间的张力. 该研究还发现, 含有微量Mn 3+的LNMO电化学性能更优, 充放电循环80圈后放电比容量还能保持在107mAh/g, 容量保持率接近100%.LiNi 0.5 Mn 1.5 O 4 的比容量衰减制约了它的商业化进程,其原因多与活性材料以及集流体与电解液之间的相互作用相关, 由于电解液在高电位下的不稳定性, 如传统碳酸酯类电解液会在4.5V电压以上氧化分解, 使得锂离子电池在高电压充放电下发生气胀, 循环性能变差. /p p   因此, 高电压正极材料需要解决电解液匹配问题.解决上述问题的方法包括以下3个方面. (1) 材料表面包覆 [23~25] 和掺杂 [26~28] . 例如, Kim等 [28] 近期通过表面4价Ti取代得到LiNi 0.5 Mn 1.2 Ti 0.3 O 4 材料, 透射电子显微镜显示材料表面形成了坚固的钝化层, 因此减少了界面副反应, 30℃下全电池实验结果表明在4.85V截止电压, 200个循环后, 容量保持率提高了约75%. 然而, 单独的表面涂层/掺杂似乎不能提供长期的循环稳定性(如≥500个循环), 在应用中必须考虑与其他策略相结合. (2) 使用电解液添加剂或其他新型电解质组合 [29~31] . /p p style=" text-align: center "    img src=" http://img1.17img.cn/17img/images/201803/insimg/e33aa180-4c60-4e9a-af6d-315f29391fd1.jpg" title=" 5.jpg" / /p p style=" text-align: center "   图 3 具有良好电化学稳定性的用于高电压LiNi 0.5 Mn 1.5 O 4 材料的LiFSA/DMC电解液体系.& nbsp /p p span style=" font-family: 楷体, 楷体_GB2312, SimKai " (a) LiFSA/DMC混合电解液中的组分结构示意图 (b) 两种不同配比情况下, 溶剂分子典型平衡轨迹的DFT-MD模拟 (c) 铝电极在LiFSA/DMC混合电解液中的高电压稳定性 (d) 全电池在40° C, C/5倍率下的循环性能 [31] (网络版彩图) /span /p p   如图3所示, Yamada课题组 [31] 利用简单的LiFSA/DMC(1:1.1, 摩尔比)电解液体系实现了LiNi 0.5 Mn 1.5 O 4 /石墨全电池在40℃温度下循环100次后容量保持90%, 尽管高度浓缩的系统的离子电导率降低了一个数量级(30℃时为约1.1 mS/cm), 但依然保持了与使用商业碳酸酯电解液体系相当的倍率性能. (3) 使用具有离子选择透过性的隔膜 [32~35] . 已经证明使用电化学活性的Li 4+x Ti 5 O 12 膜 [32] 以及锂化Nafion膜与商业PP膜的复合隔膜 [33] 能够极大地改善LiNi 0.5 Mn 1.5 O 4 的循环寿命. /p p   此外, 一些由LiNi 0.5 Mn 1.5 O 4 衍生的新型尖晶石结构高电压材料如LiTiMnO 4 [36] 、LiCoMnO 4 [37,38] 等, 以及橄榄石结构磷酸盐/氟磷酸盐也被广泛研究, 如LiCoPO 4 [39] 、LiNiPO 4 [40] 、LiVPO 4 F [41] 等 [42] . /p p   3.1.2 高容量正极材料 /p p   由于锂离子电池负极材料的比容量远高于正极材料, 因此正极材料对全电池的能量密度影响更大.通过简单的计算可知, 在现有的水平上, 如果将正极材料的比容量翻倍, 就能够使全电池的能量密度提高57%. 而负极材料的比容量即使增加到现有的10倍, 全电池的能量密度也只能提高47% [43] . /p p   镍钴锰三元材料中, Ni为主要活性元素, 一般来说,活性金属成分含量越高, 材料容量就越大.低镍多元材料如NCM111、NCM523等能量密度较低, 该类材料体系所能达到的动力电池能量密度为120~180Wh/kg, 无法满足更高的能量密度要求. 高容量正极材料的一个发展方向就是发展高镍三元或多元体系. /p p   高镍多元体系中, 镍含量在80%以上的多元材料(NCA或NCM811)能量密度优势明显, 用这些材料制作的电池匹配适宜的高容量负极和电解液后能量密度可达到300Wh/kg以上 [44] . 但是高镍多元材料较差的循环稳定性、热稳定性和储存性能极大地限制了其应用. 一般认为当镍的含量过高时, 会引起Ni 2+ 占据Li + 位置, 造成阳离子混排, 阻碍了Li + 的嵌入与脱出, 从而导致容量降低 [20,45,46] .另外, 材料表面与空气和电解液易发生副反应、高温条件下材料的结构稳定性差和表面催化活性较大也被认为是导致容量衰减的重要原因 [20,45,47] . /p p   解决上述问题的方法有如下3种. /p p   (1) 对材料进行有效的表面包覆或体相掺杂 [48~50] . 例如, 最近Chae等 [50] 利用湿化学法在NCM811表面包覆了一层N,N-二甲基吡咯磺酸盐,有效地阻隔了材料与电解液界面, 抑制了电解液在高镍三元材料表面的催化分解, 1C倍率下前50圈的平均库仑效率达99.8%, 容量保持率高达97.1%. /p p   (2) 开发具有浓度梯度的高镍三元体系 [51~55] . Sun课题组 [53~55] 采用共沉淀方法制备了具有双斜率浓度梯度三元材料,如图4所示, 这种材料的内部具有更高含量的镍, 有利于高容量的获得和保持, 外层有更高含量的锰, 有利于循环稳定性和热稳定性的提升. 通过Al掺杂, 具有浓度梯度的LiNi 0.61 Co 0.12 Mn 0.27 O 2 在经过3000次循环后,其容量保持率从65%大幅度提高到84%. /p p   (3) 开发与高容量正极材料相适应的电解液添加剂或新型电解液体系 [56~58] . /p p   目前高镍多元材料量产技术主要掌握在日韩少数企业手中, 如日本的住友、户田, 韩国的三星SDI、LG、GS等. 根据不同的应用领域, 材料的镍含量在78~90 mol%, 克容量集中在190~210mA h/g. 各公司正尝试将其应用于电动汽车领域, 其中尤以特斯拉采用的镍钴铝(NCA)受到广泛瞩目. 需要指出的是, NCA和NCM811两种材料在容量、生产工艺等方面具有很多相似性, 松下18650电池正极采用NCA正极, 电池能量密度约为250Wh/kg, 但NCA材料因存在铝元素分布不均、粒度难以长大等问题, 主要应用于圆柱电池领域, 圆柱型电池在在电池管理系统方面需要的技术与成本较高. /p p   除 此 之 外 , 基 于 Li 2 MnO 3 的 高 比 容 量 (200~300mAh/g) 富 锂 正 极 材 料 zLi 2 MnO 3 · (1?z)LiMO 2(0 /p p   3.2 负极材料 /p p   锂离子电池负极材料分为碳材料和非碳材料两大类. 其中碳材料又分为石墨和无定形碳, 如天然石墨、人造石墨、中间相碳微球、软炭(如焦炭)和一些硬炭等 其他非碳负极材料有氮化物、硅基材料、锡基材料、钛基材料、合金材料等 [61] . /p p style=" text-align: center "    img src=" http://img1.17img.cn/17img/images/201803/insimg/6e6b8975-e32c-4aee-9021-c6d0edef3ad9.jpg" title=" 6.jpg" / /p p style=" text-align: center "   图 4 Al掺杂的具有双斜率浓度梯度三元材料LiNi 0.61 Co 0.12 Mn 0.27 O 2 [54,55] . /p p & nbsp span style=" font-family: 楷体, 楷体_GB2312, SimKai " (a) TEM EDS元素分析成像 (b) TEM 线性元素扫描分析 (c) Al掺杂和无掺杂的三元材料循环性能对比 (网络版彩图) /span /p p   负极材料将继续朝低成本、高比能量、高安全性的方向发展, 石墨类材料(包括人造石墨、天然石墨及中间相碳微球)仍然是当前锂离子动力电池的主流选择 近到中期, 硅基等新型大容量负极材料将逐步成熟, 以钛酸锂为代表的高功率密度、高安全性负极材料在混合动力电动车等领域的应用也将更加广泛. 中远期, 硅基负极材料将全面替代其他负极材料已成为行业共识. /p p   硅基负极材料被认为是可大幅度提升锂电池能量密度的最佳选择之一, 其理论比容量可以达到4000mAh/g以上 [62,63] , 与高容量正极材料匹配后, 单体电池理论比能量可以达到843Wh/kg, 但硅负极材料在充放电过程中存在巨大的体积膨胀收缩效应, 会导致电极粉化降低首次库仑效率并引起容量衰减 [64~67] . /p p   研究者尝试了多种方法解决该问题. /p p   (1) 制备纳米结构的材料, 纳米材料在体积变化上相对较小, 且具有更小的离子扩散路径和较高的嵌/脱锂性能, 包括纳米硅颗粒 [68~70] 、纳米线/管 [71~74] 、纳米薄膜/片 [75~77] 等. /p p   (2) 在硅材料中引入其他金属或非金属形成复合材料, 引入的组分可以缓冲硅的体积变化, 常见的复合材料包括硅碳复合材料 [78~82] 、硅-金属复合材料等 [83~85] . Cui课题组 [81] 通过先后在硅纳米颗粒表面包覆二氧化硅和碳层, 再将二氧化硅层刻蚀之后得到蛋黄蛋壳结构的硅碳复合材料, 如图5所示, 并利用原位透射电镜研究了碳壳与硅核之间的空隙对材料稳定性及电化学性能的影响. 由于蛋黄蛋壳的结构在硅和碳层之间预留了充足的空间, 使硅在嵌锂膨胀的时候不破坏外层的碳层, 从而稳定材料的结构并得到稳定的SEI膜. 在此基础上, 通过对碳包覆之后的纳米颗粒进行二次造粒,在大颗粒的表面再包覆碳膜, 最后刻蚀制备出类石榴的结构 [82] , 复合材料尺寸的增大减小了材料的比表面积, 提高了材料的稳定性, 材料的1000周循环容量保持率由74%提高到97%, 如图5所示. /p p   (3) 选用具有不同柔性、界面性质的黏结剂, 提高黏结作用 [86~88] 最近,Choi等 [88] 通过形成酯键使传统黏结剂聚丙烯酸PAA与多聚轮烷环组分PR交联结合得到具有特殊结构的双组分PR-PAA黏结剂, 如图6所示, 很大程度上提高了硅负极在充放电过程中的稳定性. /p p   (4) 采用体积变化相对缓和的非晶态硅材料, 如多孔硅材料等 [89,90] . /p p style=" text-align: center "    img src=" http://img1.17img.cn/17img/images/201803/insimg/c68c0215-a21a-4fa0-9f73-1a0fca0d02f5.jpg" title=" 7.jpg" / /p p style=" text-align: center "   图 5 具有蛋黄蛋壳的结构的硅碳复合锂离子电池负极材料 [81,82] . /p p span style=" font-family: 楷体, 楷体_GB2312, SimKai " & nbsp (a) 蛋黄蛋壳的结构合成示意图及TEM图 (b) 类石榴的结构合成示意图 (c) 硅纳米粒子、 蛋黄蛋壳结构硅碳复合材料、类石榴结构硅碳复合材料的循环性能对比 (网络版彩图) /span /p p   应用方面, 日立Maxell宣布已成功将硅基负极材料应用于高能量密度的小型电池 日本GS汤浅公司则已推出硅基负极材料锂电池, 并成功应用在三菱汽车上 特斯拉则宣称通过在人造石墨中加入10%的硅基材料, 已在其最新车型Model 3上采用硅碳复合材料作为动力电池负极材料. /p p   3.3 电解液 /p p   高安全性、高环境适应性是锂离子动力电池对电解液的基本要求. 随着电极材料的不断改善和更新, 对与之匹配的电解液的要求也越来越高. 由于开发新型电解液体系难度极大, 碳酸酯类有机溶剂配伍六氟磷酸锂盐的常规电解液体系在未来相当长一段时间内依然是动力电池的主流选择. /p p   在此情形下, 针对不同用途的动力电池和不同特性的电极材料, 优化溶剂配比、开发功能电解液添加剂就显得尤为重要.例如, 通过调整溶剂配比含量和添加特殊锂盐可以改善动力电池的高低温性能 加入防过充添加剂、阻燃添加剂可以使电池在过充电、短路、高温、针刺和热冲击等滥用条件下的安全性能得以大大提高 通过提纯溶剂、加入正极成膜添加剂可以在一定程度上满足高电压材料的充放电需求 通过加入SEI膜成膜添加剂调控SEI膜的组成与结构, 可以实现延长电池寿命 [91] . 近年来, 随着Kim等 [92] 第一次成功地将丁二腈(SN)作为电解液添加剂来提高石墨/LiCoO 2 电池的热稳定性, 以丁二腈(SN)和己二腈(ADN) [93] 等为代表的二腈类添加剂因其与正极表面金属原子极强的络合力并能很好地抑制电解液氧化分解和过渡金属溶出的优点, 已经成为学术界和工业界普遍认可的一类高电压添加剂. 而以1,3-丙烷磺酸内酯(PS [94] 和1,3-丙烯磺酸内酯(PES) [95] 等为代表的另一类高电压添加剂,即正极成膜添加剂, 则是通过在正极表面优先发生氧化反应并在正极表面形成一层致密的钝化膜, 从而达到阻止电解液和正极活性物质接触、抑制电解液在高电压下氧化分解的效果. /p p   目前, 高低温功能电解液的开发相对成熟, 动力电池的环境适应性问题基本解决, 进一步提高电池的能量密度和安全性是电解液研发的首要问题. 中远期, 锂离子动力电池电解液材料的发展趋势将主要集中在新型溶剂与新型锂盐、离子液体、添加剂等方面, 凝胶电解质与固态电解质也是未来发展的方向. 而以固态电解质为关键特征之一的全固态电池在安全性、寿命、能量密度及系统集成技术等都具有潜在的优异特性, 也是未来动力电池和储能电池领域发展的重要方向 [96] . /p p style=" text-align: center "    img src=" http://img1.17img.cn/17img/images/201803/insimg/58812389-5862-4e1d-a7b7-b4dc7b4fc4d9.jpg" title=" 8.jpg" / /p p style=" text-align: center "   图 6 SiMP负极PR-PAA黏结剂的应力释放机理 [88] .& nbsp /p p span style=" font-family: 楷体, 楷体_GB2312, SimKai " (a) 减小提起物体用力的滑轮机理 (b) PR-PAA黏结剂用于缓解因硅颗粒充放电过程中体积变化而产生应力的示意图 (c) 充放电过程中PAA-SiMP电极破碎和生成SEI膜的示意图 (网络版彩图) /span /p p   3.4 隔膜 /p p   目前, 商品化锂离子动力电池中使用的隔膜材料主要是微孔的聚烯烃类薄膜, 如聚乙烯(polyethylene,PE)、聚丙烯(polypropylene, PP)的单层或多层复合膜.聚烯烃类隔膜材料由于其制造工艺成熟、化学稳定性高、可加工性强等优点在一段时间内仍然是商品化隔膜材料的主流, 尤其是PE的热闭孔温度对抑制电池中某些副反应的发生及阻止热失控具有重要意义.发展基于聚烯烃(尤其是聚乙烯)隔膜的高性能改性隔膜材料(如无机陶瓷改性隔膜、聚合物改性隔膜等),进一步提高隔膜的安全特性和电化学特性仍将是隔膜材料研发的重点 [18] . /p p   最近, 本课题组 [97] 通过使用耐高温的聚酰亚胺做黏结剂将纳米Al 2 O 3 涂覆在商业PE隔膜单层表面将隔膜的热稳定性提高到了160℃. 本课题组 [98] 还在前期开发的SiO 2 陶瓷隔膜的基础上, 在其表面和孔径间原位聚合包覆上一层耐高温的聚多巴胺保护层, 如图7所示, 使隔膜在230℃高温下处理30min, 不但不收缩并且保持良好的机械性能, 可以有效保障电池安全. l’Abee课题组 [99] 以耐热性的聚醚酰亚胺树脂为基材, 将其用NMP加热溶解后重新浇铸成膜, 得到的聚醚酰亚胺隔膜, 其热稳定性可达到220℃.随着锂离子电池在电动汽车等领域的应用, 建立隔膜构造、隔膜孔径尺度与分布的有效调控方法, 以及引入电化学活性基团等使聚烯烃隔膜多功能化, 将是隔膜发展的重要方向. 针对耐热聚合物隔膜等的研发及产业化工作也将得到大力推进. /p p   综上所述,锂离子动力电池关键材料的发展趋势将如图8所示, 正极材料向高电压、高容量的趋势发展 负极则以发展硅碳复合材料为主, 通过发展新型黏结剂和SEI膜调控技术使得硅碳复合负极材料真正走向实际应用 电解液近期内将以发展高电压电解液和高环境适应性电解液材料为主, 中远期则将以固态电解质材料为发展目标 多种材料复合且结构可控的隔膜材料将是锂离子动力电池隔膜的重点发展方向. /p p strong   4 锂离子动力电池的关键技术和基础科学问题 /strong /p p   4.1 锂离子动力电池的关键技术 /p p   锂离子动力电池是一个复杂的系统, 单一部件、材料或组分的优化未必对电池整体性能的改善有突出效果 [100] . 发展面向电动汽车的高比能量、低成本、长寿命、安全性高的动力电池, 需对锂离子动力电池体系的关键技术予以重点关注, 解决在最终应用过程中影响性能的制约因素. /p p   4.1.1 正极、负极材料等的选择及匹配技术 /p p   锂离子动力电池的寿命、安全性和成本等基本性能很大程度上取决于其电极材料体系的选择和匹配. 因此如何选择高比能量、长寿命、高安全、低成本的材料体系是当前锂离子动力电池的重要技术. /p p   4.1.2 动力电池安全性 /p p   安全性是决定动力电池能否装车应用的先决条件 /p p style=" text-align: center "    img src=" http://img1.17img.cn/17img/images/201803/insimg/a49c15af-1975-4d11-bfe5-e1f5440c1331.jpg" title=" 9.jpg" / /p p style=" text-align: center "   .图 7 包覆上耐高温聚多巴胺保护层的SiO 2 陶瓷隔膜 [98] .& nbsp /p p span style=" font-family: 楷体, 楷体_GB2312, SimKai " (a) 隔膜结构及合成示意图 (b) 隔膜形貌表征 (c) 隔膜热收缩性能对比(网络版彩图) /span /p p style=" text-align: center "    img src=" http://img1.17img.cn/17img/images/201803/insimg/35ce98d1-12c4-439a-b44f-0aa5561115de.jpg" title=" 10.jpg" / /p p style=" text-align: center "   图 8 锂离子动力电池关键材料技术现状及发展趋势总结(网络版彩图) /p p   随着锂离子电池能量密度的逐步提升, 电池安全性问题无疑将更加突出. 导致锂离子电池安全性事故发生的根本原因是热失控, 放热副反应释放大量的热及有机小分子气体, 引起电池内部温度和压力的急剧上升 而温度的急剧上升反过来又会呈指数性加速副反应,产生更大量的热, 使电池进入无法控制的热失控状态,导致电池终发生爆炸或燃烧 [101,102] . 高比能的NCM和NCA三元正极、锰基固熔体正极均较LFP材料的热稳定性差, 使人们在发展高能量密度动力电池的同时不得不更加关注安全问题 [103] . 解决电池安全性问题至少需要从两方面着手: (1) 防止短路和过充, 以降低电池热失控的引发几率 (2) 发展高灵敏性的热控制技术,阻止电池热失控的发生 [104] . /p p   4.1.3 电池制造工艺 /p p   随着动力电池应用的不断加深, 单体电池向着大型化、易于成组的方向发展. 在这一过程中, 单体电池的制造技术尤为重要. 提高产品一致性, 从而使电池成组后的安全性、寿命更高, 使其制造成本更低将是未来锂离子电池制造工艺的发展方向. (1) 开发生产设备高效自动化技术, 研发高速连续合浆、涂布、辊切制片、卷绕/叠片等技术, 可以降低生产成本 (2)开展自动测量及闭环控制技术研发, 提高电池生产过程测量技术水平, 实现全过程实时动态质量检测, 实现工序内以及全线质量闭环控制, 保证产品一致性、可靠性 (3) 建立自动化物流技术开发, 实现工序间物料自动转运, 减少人工干预 (4) 开展智能化生产控制技术研发, 综合运用信息控制、通讯、多媒体等技术,开发有效的生产过程自动化控制及制造执行系统, 最大程度地提高生产效率, 降低人工成本. /p p   4.2 锂离子动力电池的基础科学问题 /p p   4.2.1 研究电极反应过程、反应动力学、界面调控等基础科学问题 /p p   目前, 元素掺杂、包覆等方法被广泛应用于材料改性, 但究其原因往往“知其然不知其所以然”, 如LFP可以通过异价锂位掺杂显著提高电子导电性, 但其究竟是晶格掺杂还是通过表面渗透还存在争议. 另外,一般认为LFP较低的电子导电性和离子扩散特性是导致倍率特性不佳的主要原因, 但研究表明, 锂离子在电极/电解液界面的传输也是影响LFP倍率特性的重要因素. 通过改善界面的离子传输特性, 可以获得更好的倍率特性. 因此深入研究电极上的表面电化学反应的机理, 尤其是关于SEI膜的形成、性质以及电极与电解液的相互作用等, 可以明确材料的结构演化机制和性能改善策略, 为材料及电池性能的改善提供理论指导 [6] . /p p   4.2.2 发展电极表界面的原位表征方法 /p p   锂离子电池电极材料的性能主要取决于其组成及结构. 通过原位表征技术系统研究材料的组成-结构-性能间构效关系对深入了解电极材料的反应机理,优化材料组成与结构以提高其性能及指导高性能新材料开发与应用均有十分重要意义 [105,106] . 例如, 原位Raman光谱可以通过晶格(如金属-氧配位结构)振动实时检测材料的结构变化, 为找寻材料结构劣化原因提供帮助 [107~109] . 同步辐射技术不仅可通过研究电极材料中原子周围化学环境, 获取电极材料中组成元素的氧化态、局域结构、近邻配位原子等信息, 还可原位获得电池充放电过程电极材料的结构演化、过渡金属离子氧化态以及局域结构变化等信息, 精确揭示电池反应机理 [110,111] 固体核磁共振谱(NMR)则可提供固态材料的局域结构信息, 得到离子扩散相关的动力学信息 [112,113] . /p p strong   5 结论 /strong /p p   锂离子动力电池是目前最具实用价值的动力电池, 近几年在产业化方面发展迅速, 有力地支撑了电动汽车产业的发展. 然而, 锂离子动力电池仍然存在许多有待解决的应用问题, 特别是续航能力、安全性、环境适应性和成本, 需要在动力电池基础材料、电池制造和系统技术全产业链上同时进行研究. 可以预期相关技术将在近年内取得长足进步并实现规模应用.随着电动汽车的快速发展, 锂离子动力电池将迎来爆发增长的黄金期. /p p style=" text-align: right "    strong span style=" font-family: 楷体, 楷体_GB2312, SimKai "   作者:刘波(厦门大学) 张鹏 赵金保 /span /strong /p p    /p p br/ /p
  • “快鱼吃慢鱼”时代,外企借鉴中国经验势在必行——访凯杰公司副总裁兼大中华区总经理孔谊博士
    “随着数字PCR (dPCR) 产品的创新发展与推陈出新,整体技术将向着高通量、低成本,易操作的方向发展。作为一种创新的检测技术,dPCR的应用场景会进一步拓宽,未来一定会大规模走向临床市场。”——孔谊 凯杰公司副总裁兼大中华区总经理 荣膺多个“全球第一”的凯杰(QIAGEN)凯杰(QIAGEN)于1984年由三位年轻科学家梅廷科尔潘、卡尔斯滕亨科和尤尔根舒马赫以及他们的博士生导师德特勒夫里斯纳创立,他们的目标是建立一个为分子生物学研究提供产品的研究机构。历经近40年发展,凯杰(QIAGEN)2022年全球营收额达21.42亿美元。作为一家总部位于荷兰和德国的全球性的生物技术公司,凯杰以提供整体解决方案为目标,服务于生命科学和分子诊断领域的科学家、医生以及实验室的工作人员。早年凯杰以生物样本制备技术起家并创下了多个“全球第一”——1986年研发出全球第一个质粒纯化试剂盒,1992年研发出第一款离心柱纯化试剂盒,1994年研发出全球第一款RNA纯化试剂盒,1996年推出全球第一台自动化样本制备台式机。近期仪器信息网专访了凯杰公司副总裁兼大中华区总经理孔谊博士,围绕企业本土化、dPCR技术、分子诊断领域及科学仪器行业发展进行了深入交流。孔谊博士 凯杰公司副总裁兼大中华区总经理现任凯杰公司(QIAGEN) 副总裁,大中华区总经理;在美国和中国工作19年,曾在药企(GSK, Gilead)及诊断公司(Agilent, Danaher)担任战略、商务及管理职位。清华大学学士,宾夕法尼亚大学医学院(University of Pennsylvania School of Medicine) 博士,共计发表过包括Cell, Nature及JCI在内的8篇论文,美国专利主发明人,美国心脏学会主席奖,美国血液学会年度最高奖。高效且温馨的企业文化,专注细分领域“高精尖”在孔谊眼中,凯杰是一家高效但仍保持人情味的企业。此前她曾在凯杰总部有过为期4年的任职经历,在2021年收到凯杰中国邀请时,她欣然接受并再次投入这个大家庭的怀抱中。2023年2月,凯杰大中华区被Great Place to Work评为“2022年最佳工作场所”之一。凯杰在价值观里倡导“EMPOWER”的文化,作为一家德国40强企业,充分体现了高效、合作,平易近人的企业文化。据孔博士介绍,凯杰一直努力保持扁平化管理,管理团队与一线员工互动及时,globalCEO及global高层与中国团队也一直保持着高效沟通。凯杰为全体员工营造合作共赢的氛围,很多部门同事之间不仅在工作上有交集,在生活中也成为了好朋友。就产品技术、市场定位而言,凯杰是一个独具一格并专注于细分领域的“高精尖”品牌。孔谊表示:“凯杰的产品定位于追求高品质,看重尖端技术的高端用户,也希望在特定的细分领域去做一家‘精而美’的公司。”仪器业务与试剂业务相辅相成凯杰的试剂耗材作为主要营收业务,让凯杰在生命科学及分子诊断领域占据重要的市场地位。此外,凯杰还拥有自动化核酸提取以及数字PCR系统、QFT结核检测等多项业务。科学仪器业务也积极带动了试剂耗材的业务增长,孔谊形象的比喻说:“若将dPCR等仪器比作打印机,那么试剂耗材解决方案就是墨盒和纸张。用户购买仪器的需求或许有限,但对试剂耗材等相关配套服务的需求是一直持续不断的。试剂耗材和仪器业务之间就如同墨盒、纸张和打印机的关系,紧密相关且相互推动。”凯杰收并购重点关注三要素近些年,凯杰的收并购市场动作不断,也由此获得了多种生命科学及体外诊断先进技术。凯杰相继收购了STAT-Dx Diagcore、NeuMoDx Molecular、尤其是收购来自Formulatrix的QIAcuitydPCR一体机技术平台,极大拓展了PCR自动化检测在生命科学和诊断领域的应用场景。凯杰在选择收并购仪器企业的评估要素和考量标准有三点:第一,目标产品技术要充分切合市场的需求,尤其是针对市场仍未被满足的痛点需求。第二,目标企业在细分市场的定位需与凯杰高度契合,能为用户够提供高端产品技术价值。第三,目标产品需与凯杰互补且促进,包括不限于客户群、未来发展应用场景等方面。凯杰的数字PCR:强大的技术整合和市场转化能力dPCR被认为是分子诊断赛道未来最关键的技术平台之一,早在2013年就被业界评为十大突破技术之一。经过多年的发展,此技术已逐渐在国内临床分子检测领域得以运用。时间回溯2019年,凯杰宣布收购Formulatrix公司,并2020年上市QIAcuity dPCR系统,正式进军这个赛道。基于在核酸提取的主导地位,借助qPCR应用领域以及用户市场的成熟发展,辅以收购的dPCR产品在用户群体方面的互补,凯杰得以将dPCR技术迅速转化成核心产品,从已有市场拓展到新的领域,充分体现了公司的高效技术整合能力。化繁为简,集成纳米微孔板技术打造一体化数字PCR就仪器设计而言,市面常见的dPCR需要三台不同的设备配合完成样品分区、PCR扩增、信号检测与结果读取步骤,而凯杰QIAcuity系列一体机集上述功能于一体,最大程度降低了操作的复杂程度,及人为问题导致的误差与交叉污染风险。就技术路线而言,凯杰QIAcuity数字PCR采用纳米孔板微流体技术而非用油包水技术进行样品物理分区,使得每个纳米小孔液滴的均一性更有保证,有效提高批次间实验的精准度。QIAGEN QIAcuity数字PCR系统QIAGEN QIAcuity数字PCR系统,基于纳米微孔板技术,采用集成式一体化设计理念、全自动无需值守、操作简单。同时具备多通道检测、多种规格和配置的支持高中低通量的高灵敏性检测。“内卷”的数字PCR市场,深厚的核酸检测“内功”随着数字PCR技术兴起,众多国内外仪器厂商纷纷布局这个黄金赛道,尤其国内市场非常火热。放眼全球,中国数字PCR市场竞争的激烈程度是其他市场不可比拟的,目前国内已经拥有超过20个数字PCR品牌,国产企业中亦不乏有“黑马”出现。谈及凯杰将如何在数字PCR赛道中的保持优势时,孔谊表示虽然不能准确预言未来市场格局,但在如此“内卷”且竞争激烈的赛道中巩固发展,凯杰着力于在几个方面不断践行:首先是针对用户研究领域充分开发仪器应用,提供一站式的解决方案,降低用户使用门槛;其次是基于dPCR在临床市场的快速增长,进一步加快NMPA许可进程;最后,实现仪器和试剂的本土化。位于深圳的凯杰研发及生产中心已有10余年经验积累,已经陆续实现了多种仪器及试剂的本土化。与此同时,凯杰也在积极寻求本土合作企业,通过双方的优势互补来不断实现本土化以及进一步拓展中国市场。自2020年凯杰推出dPCR以来,已被广泛应用于生命科学、环境健康等多个领域,市场表现亮眼。在孔谊看来,在如此“内卷”的中国数字PCR市场,凯杰所取得的市场成就不仅归功于企业自身强大的整合技术能力,也凸显了多年来公司在生命科学与分子诊断行业的深厚积淀与深耕细作。孔谊表示:“凯杰dPCR仪以及qPCR平台在中国生命科学市场表现优秀,我们正加快推进其注册进程,以期在临床的大范围应用推广,这也是凯杰全球战略中非常重要的一环。”数字PCR临床应用前景广阔据相关调研表明,2020年PCR市场规模约为60亿美元,其中数字PCR 8-10亿美元。在临床应用中,QPCR仍然是目前最为成熟且主流的分子诊断技术,广泛应用到感染性疾病病原体检测、肿瘤基因检测、血筛、遗传病基因检测等多个领域。虽然数字PCR的商业化市场日见规模,但目前主要市场还是集中于科研、制药工业等领域,主要原因在于一方面,数字PCR的临床应用价值还在被持续验证中;另一方面,临床市场与用户需要一段时间来接受新的技术与使用习惯。近年来,数字PCR因其高灵敏度和高准确性持续被业界所推崇,相关产品也不断推陈出新,带来不断的技术改革,在拷贝数变异、低丰度核酸分子的精确定量、基因表达差异、甲基化分析、二代测序辅助建库、基因编辑结果验证、肿瘤治疗的伴随诊断和实时监控、器官移植排斥监控、肠道菌群分析、药物基因组检测、无创产前筛查等众多领域具有不错的应用前景。孔谊非常看好数字PCR临床应用的市场前景,认为数字PCR的未来大规模热点应用一定在临床。她认为肿瘤分子诊断、感染性疾病领域以及辅助生殖优生优育等领域是数字PCR未来重点的发展领域。就数字PCR的未来发展,孔谊说:“dPCR整体技术向着越来越简洁和精准的方式发展,类似于qPCR一样操作简便,价格区间也趋近于qPCR。如此一来,数字PCR的应用场景会被进一步拓宽,不仅在科研领域,未来一定会大规模走向临床市场,这也是凯杰的方向与目标。” 落地中国,开启国产化新篇章早年间,很多进口企业的仪器和试剂本土化过程是非常困难的。作为全球领先的样本制备和分析技术的供应商, 凯杰一直在为中国市场提供高质量的产品和服务,为经销商提供高水准的市场支持和技术培训,也为生命科学和临床诊断客户提供整体解决方案。而凯杰在核酸提取仪和试剂等品类陆续实现了快速落地。一方面,位于深圳的凯杰研发生产中心可实现自行设计、生产仪器试剂;另一方面,凯杰积极与本土企业合作的同时学习借鉴先进的本土研发生产理念,并且依靠国产合作企业的优势进一步实现市场推广。“快鱼吃慢鱼”市场格局下,外企借鉴中国经验势在必行从改革开放至今,中国的各行各业都发生了翻天覆地的变化,孔谊认为当今中国生命科学及诊断市场日新月异的发展速度是全球任何一个别的区域不可比拟的,对于包括凯杰在内的任何一家国际化企业来说也都是至关重要的。一方面,中国市场的增速规模对于国际企业极具吸引力,另一方面,当今本土企业的很多成功经验也非常值得国外企业学习借鉴。孔博士很形象的比喻说:“大鱼吃小鱼的时代已过去,现在是快鱼吃慢鱼的时代。之所以能够实现加速本土化进程的节奏步伐,得益于凯杰面对瞬息万变的中国市场不断适应并快速反馈制定相应策略方针,在管理模式、组织架构、产品策略等方面因地制宜实现了创新与突破,从而加速战略和产品的落地。”亮眼成绩单:强势发力结核病筛查应用深耕中国多年,凯杰一直专注于生命科学和分子诊断领域,秉承Sample-to-Insight的理念,致力于为基础科研、制药、应用检测、法医等领域客户提供先进的“样本进-结果出”整体解决方案。凯杰在结核病筛查和诊断领域交出了一份亮眼的答卷:近几年凯杰在结核领域进展迅速,位于世界前列,全球市场份额超过70%。2022年其结核病辅助诊断工具——QFT实现了全球检测量突破累计1亿人次的里程碑。这一成就巩固了QFT-Plus在防治结核病方面重要的地位。如今QFT-Plus凭借其高特异性和高灵敏度在全球130个国家被广泛应用。凯杰结核病辅助诊断工具——QFT-PlusQFT-Plus,即QuantiFERON®-TB Gold Plus,是德国凯杰公司(QIAGEN, Hilden, Germany)推出的第四代QFT产品。于2015年、2017年先后获得欧盟CE和美国FDA认证,用于结核病的辅助诊断及结核潜伏感染筛查。2021年12月获得国家药品监督管理局NMPA批准在中国上市。凯杰中国同时在结核相关跨学科领域也取得了显著的成绩,尤其在针对于女性健康领域,近期正与知名专家合作生殖结核筛查应用于IVF,期望助力推进交叉学科领域专家共识与领域进步。分子诊断技术普及,奠定生命科学仪器发展基础近两年,“外企本土化”、“国产替代”等已成为科学仪器行业热点,虽然国际政治、营商环境存在着不确定因素,但中国生命科学的仪器发展利好大趋势毋庸置疑。“黑天鹅”疫情三年期间,不管对于生命的流逝,还是对全球经济政治格局影响都是灾难性的;但同时对分子诊断技术的普及推进力度也是前所未有的。孔谊认为,生命科学仪器市场的未来趋势之一应是建立在这几年积累的技术、知识、经验基础之上。就凯杰的未来发展,孔谊展望说:“在产品技术层面,dPCR技术的更新迭代、降低使用门槛实现普及推广是重中之重;另一方面,找到快速发展的应用和落地解决方案,尤其分子诊断领域的临床应用势必将成为生命科学仪器技术大规模落地的方向。”后记:在孔谊看来,中国生命科学仪器市场增长速度在全球遥遥领先,尤其从世纪之初开始的这20来年,是中国市场发展的黄金时代。进口企业本土化也是大势所趋。对于中国来说,新技术进门的同时也创造了新的就业机会和上下游的生态圈;对于外企来说,政策与环境的渐变也给了企业与民企国企交流学习的机会,为更深层次的合作发展奠定了基础。凯杰公司业务遍布全球,在超过25个国家和地区有超过35家分公司,有遍及60个国家和地区的商业伙伴。客户多达50万,遍布于80个国家和地区。在与孔谊博士的交谈过程中我们了解到,凯杰大中华在北京、上海、广州、深圳,香港,台湾都有办公室,共有几百名员工。中国是凯杰全球战略发展的重点市场之一,公司也会在市场、研发等方面持续关注并加大投入。
  • 易建联吃肯德基早餐汉堡惊见弯曲毛
    原标题:易建联吃早餐汉堡惊见毛线 肯德基官微火速道歉遭疑  肯德基官微火速道歉却遭网友质疑:如果是普通消费者会这样吗?   在食品安全的问题上,连易建联都不幸&ldquo 中奖&rdquo 了!阿联昨晨发布配图微博,抱怨吃了一半的肯德基早餐汉堡里惊现一根弯弯曲曲的毛(见右图)&hellip &hellip 有阿联粉丝猜测该毛线疑为头发以外的人类体毛,并感同身受地表示胃口大倒将罢吃肯德基。肯德基官微随后发布道歉声明,澄清毛发为&ldquo 隔热手套上的毛线&rdquo 。不过这个解释并没有被多数网友接受,有人讥讽,如果这次在汉堡中吃到异物的并非阿联这样的名人,肯德基还会如此隆重地回应吗?   太重口味了:异物疑似体毛   &ldquo 早晨出来吃个早餐,吃着吃着发现这个,顿时就毫无食欲了!&rdquo 昨日7时54分,易建联发布配图微博,显示吃了一半的肯德基汉堡里惊现疑似人类体毛的异物。   这条令人大倒胃口的微博在几个小时内获得超过5000次的转发与评论,不少网友纷纷对阿联&ldquo 中招&rdquo 表示同情:&ldquo 吃到一半才发现,真是难为阿联了&hellip &hellip &rdquo   有人还透露自己也有类似经历,&ldquo 吃到过夹有一模一样这种异物的原味鸡&hellip &hellip &rdquo 一些留言网友表示要罢吃肯德基。   对此,在4个小时后的12时03分,肯德基火速作出回应。   在新浪微博上,肯德基官微转发了阿联的这条投诉微博,并以卖萌口吻称:&ldquo 小肯今天摊上大事了。阿联来小肯家捧场,结果却在汉堡中吃到异物。经小肯紧急核实,发现是端烤盘用的隔热手套上的毛线。虽然餐厅经理已经第一时间致歉、更换食物&hellip &hellip 但错就是错了~悔~小肯在这里真诚致歉,也请大家给小肯改正的机会~&rdquo   道歉有用吗?阿联没再回应!   不过,尽管有少数人称赞肯德基危机公关做得不错,大部分留言网友认为,如果不是阿联,小肯会致歉吗?   一名网友吐槽道:&ldquo 得亏是易建联,换了我去就算吃出整双手套也没人搭理。&rdquo   网友&ldquo @穷山居士&rdquo 指责:&ldquo 上次我在北京环球贸易中心店也吃到过,而且卷曲油亮明显不是什么手套上的。店里互相推诿就是不肯给个说法你怎么看?&rdquo   网友&ldquo @荒废地Victor&rdquo 评论:&ldquo 名人待遇就是不一样,不过也是因为怕名人效应影响自身形象的公关罢了!如果是一般顾客发条微博也有如此诚恳致歉就好了!&rdquo   尽管肯德基言辞恳切,但截至昨晚截稿,当事人阿联并没有对其道歉作出任何回应。
  • 这5种蔬菜农药残留最严重,都是你最爱吃的!7妙招教你去农残!
    p   近日,农经委对市面上的44种常见蔬菜进行 a style=" color: rgb(255, 0, 0) text-decoration: underline " title=" " href=" http://www.instrument.com.cn/application/SampleFilter-S03004-T020-3-1-1.html" target=" _blank" strong span style=" color: rgb(255, 0, 0) " 农残检测 /span /strong /a 后发现,有5类蔬菜农药残留超标严重——番茄、辣椒、韭菜、芹菜、茼蒿。 /p p style=" text-align: center " img title=" initpintu_副本_副本.jpg" src=" http://img1.17img.cn/17img/images/201603/insimg/f29e7f18-4907-436f-a2fc-52b6d676393f.jpg" / /p p   中国农业大学食品学院博士生导师李里特介绍说,一般来说容易生虫、生虫后比较难防治的果蔬,常常是农药污染比较严重的品种。 /p p   相对来说,水果中的苹果、梨、李子、葡萄、草莓等农药残留比较严重,而带壳的水果如荔枝、龙眼等污染较小。 /p p   污染较重的蔬菜有叶菜和细菜,如小白菜、青菜、鸡毛菜、韭菜、菠菜、油菜等,因为农药一般打在叶子上防虫治病,农药再传递到果实上需要一段时间。加之叶菜生长快,一般20多天就上市了,打过农药的间隔期短,农药还来不及分解太多。 /p p   而根菜、瓜菜和果菜(如土豆、南瓜、黄瓜、苦瓜、窝瓜以及洋葱等)受到农药的污染相对较小,并且营养成分较高。 /p p style=" text-align: center " img title=" 1_副本_副本.jpg" src=" http://img1.17img.cn/17img/images/201603/insimg/c91cd1e4-3763-4b70-8e5e-64b39a4f1c1d.jpg" / /p p   “农残超标”只是相对而言,但如何清洗农药残留,才是大伙儿最关心的问题! /p p    span style=" color: rgb(255, 0, 0) " strong 1、去皮 /strong /span /p p   蔬菜表面有蜡质,很容易吸附农药。因此,对能去皮的蔬菜,应先去皮后再食用。 /p p style=" text-align: center " img title=" 2_副本.jpg" src=" http://img1.17img.cn/17img/images/201603/insimg/43cf9b52-179d-489f-b527-b8e4ac356874.jpg" / /p p   span style=" color: rgb(255, 0, 0) " strong  2、水洗 /strong /span /p p   一般蔬菜先用清水至少冲洗3-6遍,然后泡入淡盐水中再冲洗一遍。对包心类蔬菜,可先切开,放在清水中浸泡1-2小时,再用清水冲洗,以清除残附的农药。 /p p    span style=" color: rgb(255, 0, 0) " strong 3、碱洗 /strong /span /p p   先在水中放上一小勺小苏打,搅匀后再放入蔬菜。浸泡15分钟,把水倒出去,接着用清水漂洗干净。 /p p    strong span style=" color: rgb(255, 0, 0) " 4、用洗洁精洗涤 /span /strong /p p   用洗洁精稀释300倍先清洗一次,再用清水冲洗1-2遍,这样可去除蔬菜上的病菌、虫卵和残留的农药。 /p p    strong span style=" color: rgb(255, 0, 0) " 5、用开水烫 /span /strong /p p   对有些残留农药的最好清除方法是烫,如青椒、菜花、豆角、芹菜等,在下锅炒或烧前最好先用开水烫一下。据试验,可清除90%以上的残留农药。 /p p style=" text-align: center " img title=" 3_副本.jpg" src=" http://img1.17img.cn/17img/images/201603/insimg/b5cc65cf-9516-4089-a0af-80a9aa13599a.jpg" / /p p    span style=" color: rgb(255, 0, 0) " strong 6、阳光晒 /strong /span /p p   利用阳光中多光谱效应,会使蔬菜中部分残留农药被分解、破坏。这样经日光照射晒干后的蔬菜,农药残留较少。据测定,鲜菜、水果在阳光下照射5分钟,有机氯、有机汞农药的残留量损失达60%。对于方便贮藏的蔬菜,最好先放置一段时间,空气中的氧与蔬菜中的色酶对残留农药有一定的分解作用。购买蔬菜后,在室温下放24个小时左右,残留化学农药平均消失率为5%。 /p p    span style=" color: rgb(255, 0, 0) " strong 7、用淘米水洗 /strong /span /p p   用淘米水洗菜能除去残留在蔬菜上的部分农药。我国目前大多用甲胺磷、辛硫磷、敌敌畏、乐果等有机磷农药杀虫,这些农药一遇酸性物质就会失去毒性。在淘米水中浸泡10分钟左右,用清水冲洗干净,就能使蔬菜残留的农药成分减少。 /p p   没想到这些平时最爱吃的竟然是农药污染最严重的,还是要牢记这些清洗技巧,吃最干净放心的蔬菜。 /p p   看到这,实验室的部分妹子们可能会问: strong 蔬菜中的农药洗去容易,检测难,如何通过有效的实验方法准确地进行检测呢? /strong /p p strong    /strong 别担心,快来 strong a style=" color: rgb(255, 0, 0) text-decoration: underline " title=" " href=" http://www.instrument.com.cn/application/" target=" _blank" span style=" color: rgb(255, 0, 0) " 行业应用 /span /a /strong 栏目 strong a style=" color: rgb(255, 0, 0) text-decoration: underline " title=" " href=" http://www.instrument.com.cn/application/SampleFilter-S03004-T020-3-1-1.html" target=" _blank" span style=" color: rgb(255, 0, 0) " 食品检测 /span /a /strong 频道寻找答案吧! /p p /p
  • 投资金额约8亿 中国首家非疫区检疫监测中心项目落户赤峰
    民网赤峰6月23日电 近日,在香港召开的&ldquo 2013年内蒙古· 香港澳门经贸合作活动周&rdquo 上,赤峰市人民政府与香港亚盛公司、台湾凌越生医股份有限公司签订了《关于建设现代化农业科技园区和中国首家非疫区检疫监测中心战略合作框架协议》,标志着该项目正式落户赤峰市松山区信息科技产业园区,总投资金额约8亿元。   据赤峰市人民政府介绍,该项目旨在引进台湾凌越生医股份有限公司经济动物检测及疫病管理的先进技术,配合赤峰家育种猪生态科技有限公司所引进的顶级原种猪,最现代化全封闭猪舍及科学化的饲养管理流程,联手打造国内高科技种猪的繁育基地并筹备国内内陆地区首个非疫区建设。此外,香港亚盛公司与台湾凌越生医股份有限公司计划在三年内在松山区筹建第一个企业化的新高科技生猪现代化饲养管理及检测中心,其中包括有关饲养相关原物料、生态环境质量的检测中心、生猪疾病管理相关的生物安全监测及防治中心及引进国内外饲养管理专家培训高科技饲养管理人才的培训中心,努力将赤峰建成世界动物卫生组织认可国内第一个打口蹄疫疫苗的口蹄疫非疫区。   【原标题】总投资金额约8亿元 中国首家非疫区检疫监测中心项目落户赤峰
  • 睿科助力预制菜前处理检测,让老百姓吃得安心放心
    什么是预制菜近年来,快捷美味的预制菜受到人们的青睐和追捧,但是预制菜生产企业鱼龙混杂、生产条件参差不齐、原材料品质不达标等问题也受到消费者的关注。今年3月份,市场监管总局等六部门联合印发《关于加强预制菜食品安全监管 促进产业高质量发展的通知》,首次在国家层面上对预制菜的定义和范围进行了明确。同时食品安全国家标准之预制菜开始征求意见稿,也标志“预制菜国标”颁布进入倒计时。该征求意见稿从预制菜的原材料、食品添加剂、生产过程、营养与品质等方法提出相关的要求。睿科针对该征求意见稿,专门制定了预制菜前处理检测方案,保障食品的质量与安全,让老百姓吃得安心放心。睿科预制菜检测仪器设备和耗材解决方案仪器设备理化指标:检测项目检测标准设备技术性能设备型号过氧化值GB5009.227-2016全自动平行浓缩仪设备MPE(FOC9)真空平行浓缩仪组胺GB5009.208-2016样品振荡提取V20垂直振荡仪 原材料农残、兽残、真菌毒素指标: 检测项目检测标准设备技术性能设备型号农药残留GB2763-2021全自动完成QuECHERS方法全流程(加液、加盐、振荡、离心、净化、分取等)全自动QuECHERS净化平台兽药残留GB31650-20221.样品振荡提取2.自动完成固相萃取全过程(活化、上样、淋洗、洗脱等)3.全自动氮吹浓缩仪V20垂直振荡仪Fotector系列固相萃取仪、SPEVA系列全自动样品净化浓缩仪Auto Eva-60/80全自动氮吹浓缩仪黄曲霉毒素B1GB5009.22-2016污染物指标:检测项目检测标准设备技术性能设备型号苯并(a)芘GB5009.27-20161.样品振荡提取2.自动完成固相萃取全过程(活化、上样、淋洗、洗脱等)3.全自动氮吹浓缩仪V20垂直振荡仪Fotector系列固相萃取仪、SPEVA系列全自动样品净化浓缩仪Auto Eva-60/80全自动氮吹浓缩仪铅GB5009.12-2023自动完成样品消解XT系列微波消解仪铬GB5009.123-2023耗材检测项目耗材黄曲霉毒素B1黄曲霉毒素B1免疫亲和柱3ml-20支/盒,300ng 货号:HC-QHZ-0001农药残留(QuECHERS方法)萃取盐包4g硫酸镁+1g氯化钠+1g柠檬酸钠+0.5g柠檬酸氢二钠 50/盒 货号RC-50061等 净化管1200mg MgSO4 + 40mg PSA + 400mg C18 50/盒 货号:RC-15024等兽药残留HLB固相萃取柱:500mg/6mL;货号 RC-204-36477 MCX 固相萃取柱:60mg/3mL ;货号RC-204-72855 C18柱 500mg/6mL 货号RC-204-16004等苯并(a)芘苯并芘专用柱,500mg/6mL,30支、盒铅(以Pb计)IDC铅专用柱:1mL 25/pKg 货号RC-204-IDC01睿科是一家专注于检验检测行业效能提升自动化、智慧化实验室整体解决方案供应商,提供食品前处理检测解决方案,助力预制菜行业健康发展。
  • 锂电池材料粒度要求高 激光检测担主角
    p style=" text-indent: 2em " span style=" font-family:宋体" 锂电行业近年来正在快速增长,并对多类光学、物性检测领域的仪器设备有着强烈需求。对于锂电池的电池材料来说,粒度、细度的检测是重要的相关参数,因而对激光粒度仪仪器厂商,锂电行业就此成为了他们书写市场红利新篇章的重要笔墨。 /span /p p style=" text-align: center text-indent: 2em " img src=" http://img1.17img.cn/17img/images/201806/insimg/a0946e4d-f5d6-4005-b98d-768e0013fd6b.jpg" title=" 1.jpg" / /p p style=" text-align: center text-indent: 2em " strong span style=" font-family:宋体" 锂电池 /span /strong /p p style=" text-indent: 2em " span style=" font-family:宋体" 粒度和粒径分布影响着锂电池材料性能的方方面面,特别是在生产流程,粒度粒径的检测有助于试验阶段的通过 /span / span style=" font-family:宋体" 失败检测、过程控制、以及每个工厂的出货控制。对锂电池,特别是聚焦舆论大量视线的锂离子电池,在原材料管控阶段,主要有三类电池材料需要进行粒度检测——正极材料、负极材料和隔膜材料,所需的粒径检测范围在 /span 10nm span style=" font-family:宋体" 到 /span 5mm span style=" font-family:宋体" 之间。 /span /p p style=" text-indent: 2em " span style=" font-family:宋体" 以锂离子电池的正极材料为例,粒径 /span D50 span style=" font-family:宋体" 是关键性的质量控制指标之一,无论是磷酸铁锂电极还是其他主流锂合金氧化物电极都不例外。 /span D50 span style=" font-family:宋体" 是表示粒径大小的典型值,其标准定义是累计分布百分数达到 /span 50% span style=" font-family:宋体" 时对应的粒径值,又名中值粒径、中位径。电池正极对原材料的粒径要求波动范围较大,一般在 /span 1-20 span style=" font-family:宋体" μ /span m span style=" font-family:宋体" 之间。具体指标主要受到材料种类和工艺要求的双重限制。负极材料的粒径对电池的初始放电容量和首次效率等参数有重要影响,还是以锂离子电池为例,其负极石墨材料的平均粒径较为集中地分布在 /span 16-18 span style=" font-family:宋体" μ /span m span style=" font-family:宋体" 之间时,最为合适。电池隔膜,介于正负极材料之间,也是电池结构重要的组成部分,其中需要添加氧化铝等阻燃材料,这些阻燃材料的粒径需求则呈现随着隔膜层厚度不断提升,粒径不断减小的趋势,目前甚至需要达到亚微米甚至纳米级的要求。 /span /p p style=" text-align: center text-indent: 2em " img src=" http://img1.17img.cn/17img/images/201806/insimg/9c1cbb85-5a43-475e-978d-bc165aef7207.jpg" title=" 2.jpg" / /p p style=" text-align: center text-indent: 2em " strong span style=" font-family:宋体" 锂电池结构示意图 /span /strong /p p style=" text-indent: 2em " span style=" font-family:宋体" 电池的工艺特性、充放电容量、体积能量密度等重要参数都会受到电池材料粒度的影响, /span span style=" font-family:宋体" 而在各种粒度检测方法中,激光粒度仪因具有操作简便、可测颗粒数、等效概念明确、速度快、准确性好等优点,受到锂电市场的青睐。在激光粒度仪的各类技术指标中,“分辨能力”对于电池材料的检测有着极为重要的意义。分辨能力是指激光粒度仪对样品中不同粒径之间的区分能力。这种能力对电池材料的检测非常重要,例如,过小颗粒的石墨粉中往往具有较多的菱方结构,用参有这种石墨材料的锂电池,储锂容量就会比较小,而分辨能力高的激光粒度仪,就能较容易地检测出石墨原材料中的菱方结构。 /span /p p style=" text-align: center text-indent: 2em " img src=" http://img1.17img.cn/17img/images/201806/insimg/f3d5ee0f-102d-47ac-9a4e-773ee5e791bc.jpg" title=" 3.jpg" / /p p style=" text-align: center text-indent: 2em " strong span style=" font-family:宋体" 激光粒度仪原理示意图 /span /strong /p p style=" text-indent: 2em " span style=" font-size:14px font-family:宋体" 评估激光粒度仪分辨能力的方法有很多,最常见的就是测量在已知粒径的标准样品中加入少量比例已知的大 /span span style=" font-size:14px font-family:& #39 Calibri& #39 ,& #39 sans-serif& #39 " / /span span style=" font-size:14px font-family:宋体" 小颗粒样品,看测试结果是否能满足真实的差异。目前在市场上,激光粒度仪的分辨能力往往从散射光能分布角度、信噪比光学电子设计、高精度的模数转换及反演计算水平等角度改进。而具有高品质高分辨率元器件、装配工艺及算法数控优化水平高的激光粒度仪,也越来越为锂电行业所重视。 /span /p
  • 百特参加高比能固态电池关键材料技术大会,助力电池产业转型升级
    2021年3月11日,由中国粉体网联合中国颗粒学会能源颗粒材料专委会主办的“第二届高比能固态电池关键材料技术大会暨第四届能源颗粒材料制备及应用技术高峰论坛”在湖南长沙吉美国际会展酒店隆重开幕。来自全国各地300余名电池材料界专家和厂家代表参加了本次会议。丹东百特仪器有限公司携激光粒度仪和粉体综合特性测试仪参会,为电池厂家提供粒度、物性分析一站式解决方案。相较于传统的锂电池来说,全固态电池具有不易燃、无腐蚀性、不漏液等特性,从而提升了电池使用的安全性。它功率密度较低,能量密度较高,在轻薄化后柔性程度也会有明显的提高,是电动汽车的理想电池。作为传统电池行业的一个新领域,全固态电池的开发是机遇,更面临着挑战。如何满足正负极和固体电解质的离子传输?循环过程中,正负极材料如何良好接触?金属锂电极的体积变化等都是研发团队需要克服的问题。在本次会议上,丹东百特技术总监李雪冰博士做了《固态电池中关键材料颗粒检测面临的问题和挑战》的报告。粒度分布作为电池行业质量把控的重要指标之一,样品分散、数据的稳定性一直是业内关注的焦点。李博士通过应用案例和实测数据就目前颗粒检测面临的问题做出详细分析,提供合理详尽的解决方案,赢得阵阵热烈的掌声。在仪器展示区,丹东百特展出了Bettersize2600激光粒度仪和BT-1001智能粉体特性测试仪。Bettesize2600激光粒度仪采用正反傅里叶技术,量程达到0.02-2600μm,高精度的数据采集与处理系统使测试结果达到同类进口仪器水平,它还具有一键式SOP智能化操作,十分钟就可以学会操作流程。BT-1001智能粉体特性测试仪可测试包含安息角、平板角、振实密度、松装密度、分散度、流动性等14个项目,通过自动控制技术、CCD摄像技术和触摸屏等现代技术,使粉体物性测试进入了科学化、智能化和精确化时代,是电池材料行业物性分析的标准仪器。 作为国内专业的粒度、粒形、粉体物性检测仪器的研究制造企业,丹东百特仪器有限公司始终致力于创新发展,在提供具有国际先进水平的粒度粒形分析仪器的同时,还为各个材料行业提供颗粒检测应用方案。未来,百特将继续发挥技术优势,助力电池材料行业蓬勃发展。
  • 重庆梁平区:中国西部预制菜之都食品检验检测中心建成投用 预制菜产业发展再添新动能
    3月6日,中国西部预制菜之都食品检测检验中心投用活动在重庆市梁平区中国西部预制菜之都运营中心召开。该中心的建成投用锚定打造中国西部示范性食品检验检测标杆,提升中国西部预制菜之都产品质量,再塑产品核心竞争力,推动全市食品安全监管再上新台阶。据悉,本次建成投用的中国西部预制菜之都食品检验检测中心占地3600平方米,目前已完成投资5000万元,配备检测人员28名、8个实验室、10个辅助车间和163台仪器设备的食品检验检测中心。目前中心可承接食品添加剂、啤酒色度、蛋白质、脂肪等13项食品参数检测,已较高水平达到投用条件。重庆市食药检院党委书记、院长熊有明表示:“该中心的建成投用为梁平区提升食品检验技术能力,保障食品安全,推动预制菜产业高质量发展注入了澎湃动力。”近年来,梁平区委、区政府抢抓成渝地区双城经济圈建设和全市“一区两群”协调发展重大战略机遇,抢抓万亿预制菜市场机遇,全力打造中国西部预制菜之都,加速进入预制菜赛道,荣获工信部赛迪研究院“2023预制菜产业基地百强”榜首、人民网“全国十大预制菜美食地标城市”首位、“中国预制菜美食地标城市”等多项殊荣,全区食品与农产品加工产业发展如火如荼。产业发展昂首阔步,食品安全问题也从未被忽视。梁平区政府副区长、高新区党工委书记唐俊义介绍,梁平区始终坚持将食品安全作为“底线”“红线”“生命线”。本次建成投用的食品检验检测中心不仅满足了梁平区预制菜产业园区长期发展的实际需要,更为我国中西部预制菜产业高质量发展,增添了坚实有力的技术支撑和保障。记者在现场看到,投用当天上午,中心接收食品样品的窗口前就已经排满了前来送样品的企业负责人。“现在我们做检验就方便多了!”重庆市梁平谢鸭子食品有限公司负责人谢松伦高兴地说,“原来我们检验检测产品要把样品邮寄到外地,手续更多,成本更高。现在园区里面就可以做(样品)检测,走路都可以把样品送过来!”据中国西部食品检验检测中心有关负责人介绍,下一步,中心将力争在1年内取得CMA检测认证资质,实现农残检测参数184项,兽残参数56项,食品大类参数266项,共计506项检测参数。中心将努力创成国家级食品检验检测中心,为梁平区中国西部预制菜之都建设充分赋能,为全国食品和农产品加工高质量发展贡献梁平力量。
  • 51.56万!赤峰市农牧业综合检验检测中心采购实验室设备和试剂耗材
    项目概况采购实验室设备和试剂耗材项目(二次)采购项目的潜在供应商应在内蒙古自治区政府采购网获取采购文件,并于2022年01月03日 09时00分(北京时间)前提交响应文件。一、项目基本情况项目编号:2021CG115HW.1B1项目名称:采购实验室设备和试剂耗材项目(二次)采购方式:竞争性磋商预算金额:515,607.00元采购需求:合同包1(化学试剂和助剂):合同包预算金额:515,607.00元品目号品目名称采购标的数量(单位)技术规格、参数及要求品目预算(元)最高限价(元)1-1化学试剂和助剂化学试剂和助剂1(批)详见采购文件515,607.00-本合同包不接受联合体投标合同履行期限:自合同签订之日起9个工作日二、申请人的资格要求:1.满足《中华人民共和国政府釆购法》第二十二条规定 2.落实政府采购政策需满足的资格要求: 无。3.本项目的特定资格要求:合同包1(化学试剂和助剂)特定资格要求如下:(1)若投标人为经销商须提供《危险化学品经营许可证》 ,若投标人为生产商须提供《危险化学品生产许可证》。三、获取采购文件时间:2021年12月22日至2021年12月28日,每天上午00:00:00至12:00:00,下午12:00:00至23:59:59(北京时间,法定节假日除外)地点:内蒙古自治区政府采购网方式:在线获取。获取采购文件时,需登录“政府采购云平台”,按照“执行交易→应标→项目应标→未参与项目”步骤,填写联系人相关信息确认参与后,即为成功“在线获取”。售价:免费获取四、响应文件提交截止时间:2022年01月03日 09时00分00秒(北京时间)地点: 内蒙古自治区政府采购网(政府采购云平台)五、开启时间:2022年01月03日 09时00分00秒(北京时间)地点:内蒙古自治区赤峰市市辖区赤峰市公共资源交易中心三楼开标一室政采开-1六、公告期限自本公告发布之日起3个工作日。七、其他补充事宜无八、凡对本次采购提出询问,请按以下方式联系。1.釆购人信息名 称:赤峰市农牧业综合检验检测中心地 址:赤峰市新城区全宁街7号 赤峰市农牧局联系方式:134048703722.釆购代理机构信息名 称:赤峰市政府采购中心地 址:内蒙古自治区赤峰市松山区兴安街道联系方式:0476-82888143.项目联系方式项目联系人:马斯竞电 话:0476-8288814赤峰市政府采购中心2021年12月21日
  • 235万!内蒙古自治区环境监测总站赤峰分站2022年分析仪器耗材等采购项目
    项目编号:NMGZC-C-H-220034项目名称:2022年分析仪器耗材、化学试剂、玻璃器皿、标准物质、高纯气体项目采购方式:竞争性磋商预算金额:2,350,000.00元采购需求:合同包1(标准物质项目):合同包预算金额:440,000.00元品目号品目名称采购标的数量(单位)技术规格、参数及要求品目预算(元)最高限价(元)1-1化学试剂和助剂标准物质1(批)详见采购文件440,000.00-本合同包不接受联合体投标合同履行期限:合同签订之日起60个日历日合同包2(玻璃器皿、化学试剂、高纯气体项目):合同包预算金额:420,000.00元品目号品目名称采购标的数量(单位)技术规格、参数及要求品目预算(元)最高限价(元)2-1玻璃仪器及实验、医疗用玻璃器皿玻璃器皿1(批)详见采购文件218,719.00-2-2化学试剂和助剂化学试剂1(批)详见采购文件101,281.00-2-3化学试剂和助剂高纯气体1(批)详见采购文件100,000.00-本合同包不接受联合体投标合同履行期限:自合同签订之日起60个日历日合同包3(现场、应急室耗材):合同包预算金额:650,000.00元品目号品目名称采购标的数量(单位)技术规格、参数及要求品目预算(元)最高限价(元)3-1环境污染防治设备零部件现场及应急耗材1(批)详见采购文件650,000.00-本合同包不接受联合体投标合同履行期限:自合同签订之日起60个日历日合同包4(实验室分析仪器耗材及配件项目):合同包预算金额:840,000.00元品目号品目名称采购标的数量(单位)技术规格、参数及要求品目预算(元)最高限价(元)4-1环境污染防治设备零部件实验室耗材及配件1(批)详见采购文件840,000.00-本合同包不接受联合体投标合同履行期限:自合同签订之日起60个日历日
  • 锂电行业都在关注丨电池材料清洁度检测新方案
    CATL 作为领先的锂离子电池研发制造公司,在清洁度管控方面的研发投入、经验积累都处于行业领先地位。如今,CATL 已采用新一代基于扫描电镜 + 能谱的全自动解决方案,帮助其清洁度控制。01 为什么要做电池材料的杂质分析?既然大家都在做锂电池杂质分析,那这小小的杂质,到底怎么不好了呢? 其实,锂离子电池的性能与正负极材料的质量息息相关。当在正极材料中存在铁(Fe)、铜(Cu)、铬(Cr)、镍(Ni)、锌(Zn)、银(Ag)等金属杂质时,这些金属会先在正极氧化再到负极还原,当负极处的金属单质累积到一定程度,其沉积金属坚硬的棱角就会刺穿隔膜,造成电池自放电。当然,负极材料中的杂质元素同样严重影响电池的电化学性能,有可能刺穿隔膜,造成安全隐患。这小小杂质可不得了。 图片来源于网络 所以,在锂电池行业,对于正负极材料的杂质,大家都在想尽办法去把控。 02 现在大多数还在使用等离子体发射光谱法(ICP-OES)测定,这种测试方法需要将磁选出的杂质颗粒溶解到酸液中,并给出各个成分的含量均值。 这种方法测出来的元素含量的准确性很高,但也存在 2 个主要问题:无法定量锂电杂质颗粒的形态和数量无法区分锂电杂质颗粒的种类(如铁类、铜类) 03 我们先来看一下这个新方案,能帮我们解决哪些烦恼~ 每个杂质颗粒的形貌,尺寸,成分,以及分类都能看! 自动识别并采集所有杂质颗粒的形貌及成分信息。清晰的表面形貌有助于分析杂质的产生机理(如摩擦磨损等),成分信息有助于分析杂质产生的来源。 每个杂质颗粒的形貌,尺寸,成分,和分类信息都能呈现 不同种类的杂质颗粒的数量及成分信息都能看! 杂质的分析结果严格按照 VDA19 要求的格式呈现,颗粒分类统计结果更有助于评估锂电池生产的清洁度情况,方便不同批次样品的对比,以及生产工艺调整的验证。 能检测到的所有杂质颗粒的数量和成分信息, 一目了然 各种杂质颗粒的分布情况都能看! 将杂质颗粒的分类统计结果更直观的体现在直方图中,结果一目了然。 各种杂质颗粒的分布情况(按体积分布) 04 检测原理:以扫描电镜 + 能谱仪为硬件基础,通过背散射成像的明暗衬度识别颗粒,进而对颗粒进行能谱成分分析,根据颗粒形貌和成分信息对其智能分类,并且可以一键生成检测结果的报告。 Particle X 杂质自动分析系统的工作原理 一键生成检测报告时,可以选择您感兴趣的信息,也可以选择不同的报告存储格式。不管是用于汇报或存档(PDF 格式)还是调用数据(Excel 格式),都非常方便。 一键生成检测报告(PDF 和 Excel 格式均可) 让我们看一下大家最关注的几种杂质颗粒的检测结果(截取自检测报告)~ 以下是系统自动筛选出的杂质颗粒的部分结果,可以直观地看出杂质的形态,成分,种类等信息。 当然,Particle X 系统除了可以智能分析电池清洁度外,还可以用来分析钢铁夹杂物,汽车清洁度等。 ParticleX 参数 图像分辨率:优于 8nm放大倍数:250,000x灯丝材料:1,500 小时 CeB6 灯丝抽真空时间:小于 30 秒探测器:背散射电子探测器(选配二次电子探测器)样品室尺寸:100mm x 100mm应用场景:电池清洁度检测,钢铁夹杂物检测,汽车清洁度检测
  • 耐驰热分析技术在电池检测与电极材料研究中的应用
    温度对于锂离子电池的稳定性和安全性有较大的影响,因而热分析表征在锂电研究中具有重要意义。在热分析仪器领域,耐驰拥有60余年的应用经验,其产品覆盖了热分析的各个分支领域,从差热、热重到热机械、热膨胀及热质/热红联用,都能提供一系列具有高精度及高稳定性的仪器,高温领域可达2800℃,低温可达-180℃。仪器信息网整理了2020年耐驰热分析技术在锂电研究中的最新应用。  点击报告题目,即可进入视频页面进行观看。报告题目主讲人锂电行业热分析解决方案介绍耐驰科学仪器商贸(上海)有限公司应用支持经理 王荣电极材料中碳含量的综合热质联用分析德国耐驰仪器制造有限公司 市场与应用总监 曾智强
  • 海洋光学任命肖强为亚太区财务总监
    海洋光学(Ocean Optics)新近任命肖强为亚太区财务总监,他将全面负责海洋光学亚太区的财务、人力资源、行政与IT管理。肖强将直接向海洋光学亚太区副总裁孙玲博士汇报。 肖强拥有17年工作经验,曾经服务于多家国际性公司;在财务、运营、物流等领域积累了丰富的经验。 履 新之前,他是Polaris Limited China的财务总监,他还曾在Veeder Root Petroleum (为Danaher子公司)任职七年半,先后担任财务总监和运营总监。他最早在一家交通部下属的国资公司任职四年,之后加盟惠普计算机并任职三年。 肖强1996年毕业于南京理工大学,获得会计专业学位;并于2006年获得加拿大英属哥伦比亚大学与上海交通大学安泰管理学院联合主办的IMBA学位。 海 洋光学亚太区副总裁孙玲博士表示:&ldquo 肖强拥有包括财务管理在内的丰富工作与管理经验,这些对于我们都是非常宝贵的财富。随着海洋光学在亚太及中国市场业务 的不断拓展,我们迫切需要一位拥有丰富管理经验的财务总监。肖强的加盟将极大增强并优化海洋光学亚太区管理层,促进公司进一步发展。&rdquo
  • 聚焦预制菜检测,你吃的外卖还安全吗?
    # 预制菜现状 #预制菜在近几年逐渐兴起,在人们的餐桌上出现的频次越来越高,第七次人口普查显示,中国国内人口结构出现较明显的单身化、家庭规模小型化特点,且懒人经济、宅经济的出现,加速消费者对预制菜的需求。有需求潜力的市场伴随着中央厨房流程的优化、冷链运输技术的进步,以及消费者的观念变化,预制菜的飞速发展和普及可以说是大势所趋。#预制菜定义#不同地区对预菜定义稍有不同,根据团体标准T/GDIFST 006.1-2022《预制菜 术语和分类方法》中的对预制菜的定义,预制菜是以食用农产品及其制品为主要原料,添加或不添加调味料等辅料,经净化、切分、烹饪/熟调味、物制、包装、杀菌等全部或部分序及不同顺序的预制处理并一定条件下贮运,可即食和非即食的菜肴等食品,包括预制菜品、预制汤羹、预制餐食。在日常生活中,预制菜的身影并不少见,可以说是相当普及,比如春节期间非常火爆的佛跳墙预制菜,甚至有些饭店、外卖所用的都是料理包,对其稍做加工、加热,最后制成一道面向顾客的菜品,从“菜篮子”到“菜盘子”,使大众的现代饮食更加地便捷快速并且打破了食材的季节限制和地域限制。然而预制菜的飞速发展势必伴随产生一些不良现象。比如,在缺乏系统的标准化监控下,预制菜生产企业鱼龙混杂、生产条件参差不齐、原材料品质堪忧等,相关现象都会引发食品安全问题,而目前消费者对于预制菜最关心的问题也还是食品安全,其次是价格,再其次是营养问题。上图摘自人民网Detelogy参考广东省食品学会发布的团体标准T/GDIFST 006.2-2022《预制菜 质量安全通用要求》和GB 31658.17-2021,提供预制菜中动物源性原料磺胺类药物残留的测定方案。#实验步骤#01 样品提取称取试样1g,加入EDTA2Na-Mcllvaine缓冲溶液8mL于MultiVortex多样品涡旋混合器涡旋1min后超声20min,-2℃下10000rpm冷冻离心5min,取上清液后,残渣加入磷酸盐缓冲溶液8mL,重复提取一次,合并两次提取液。02 样品净化收集所有提取液,将HLB柱固定于iSPE-864全自动智能固相萃取仪进行萃取净化iSPE-864固相萃取条件溶剂用量(mL)流速(mL/min)活化甲醇5.02活化水5.02上样样品提取液162淋洗水5.02淋洗20%甲醇水5.02洗脱洗脱液102洗脱液为:取甲醇150 mL,加入乙酸乙酯150 mL、浓氨水6 mL混匀。03 浓缩定容收集洗脱液置于FV32Plus全自动高通量智能平行浓缩仪45 ℃水浴氮气吹干加入复溶液 1.0 mL,MultiVortex多样品涡旋混合器涡旋1 min,14000rpm离心5min后过滤膜,待测。复溶液为:取水40mL,加入甲醇5mL、乙睛5mL、甲酸0.05 mL,混匀。#Detelogy优选仪器#iSPE-864全自动智能固相萃取仪✦ 8通道同时进行萃取,可批量做64个样品✦ 自动切换不同溶剂输送,配备氮吹干燥功能✦ 柱塞杆密封过柱技术,有效避免失速、堵柱等情况✦ 智能控制终端和主机一体化设计,10.1寸高清彩色触屏✦ 与FV32Plus全自动高通量智能平行浓缩仪实现无缝连接FV32Plus全自动高通量智能平行浓缩仪✦ 32位氮吹高通量,兼容多规格样品管✦ 兼容针追随式氮吹和涡旋式氮吹针✦ 各通道独立控制,多种工作模式保证定容准确性✦ 具备氮吹延时和延时压力功能,支持近干浓缩✦ 13.3寸超大触屏控制,智能终端实时显示MultiVortex多样品涡旋混合器✦ 兼容性高,转速可调范围:200-3000rpm✦ 小巧极简机身,主机低重心设计,运行噪声低✦ 5寸高清彩色触屏,实时显示转速和运行时间,随时启停✦ 支持自动和手动双模式,中英文界面自由切换
  • 飞纳电镜点亮亚太电池展,带来锂电池材料高效检测方案
    8 月 16 日 - 18 日,2017 第二届亚太电池技术展览会在广州琶洲国际会展中心举行。飞纳电镜作为锂电材料形貌成份高效检测工具,盛装出席此次会议,现场展示了飞纳电镜高分辨率专业版 Phenom Pro 和飞纳电镜大样品室卓越版 Phenom XL,其中 Phenom XL 集成了背散射电子成像,二次电子成像与能谱分析等功能,两台台式扫描电镜吸引了众多参观者的目光。由于新能源汽车的高速增长,各锂电池企业纷纷扩产。相对以往单纯追求产能的突破外,行业内先行企业把目光投射到材料研发带来的电池产品性能提升上。锂电池主要由五部分构成,即正极材料、负极材料、电解液、隔膜和包装材料。其中,包装材料和石墨负极技术相对成熟,成本占比不高。锂离子电池的核心材料主要是正极材料、电解液和隔膜。其中,正极材料是锂电池最为关键的原材料,占锂电池成本的 30% 以上。材料的研发少不了一双“眼睛”,这双眼睛就是扫描电镜。扫描电镜可以对锂电池材料的正极材料,负极材料,隔膜,极片等进行微观的形貌检测及元素成份分析。飞纳台式扫描电镜使用独特的 CeB6 灯丝,提高了扫描电镜的分辨率,保证了图像质量。由于操作简单,维护方便,抽真空时间短,大大地提高检测效率,受到锂电池企业客户的青睐。设计精巧,完全防震,省去了客户为精密仪器安装环境要求高的担忧。即时在展会现场喧闹的环境中,飞纳电镜仍然能高效运行,30 秒成像,持续稳定地工作。锂电池正极材料由于中国大型锂电正极材料近十年迅速发展,产品质量大幅度提高,并具备较强的成本优势,近年来日韩锂电企业开始逐步从中国进口锂电正极材料,据悉目前中国锂电正极材料市场份额已占据全球一半左右,未来发展空间仍广阔。飞纳电镜拍摄的锂电池正极材料锂电池负极材料负极材料作为锂电池的四大关键材料之一,决定了锂电池充放电效率、循环寿命等性能。锂电池负极材料国内技术成熟,碳材料种类繁多,成本比重最低,在 5-10% 左右。现阶段负极材料研究的主要方向如下:石墨化碳材料、无定型碳材料、氮化物、硅基材料、锡基材料、新型合金和其他材料。飞纳电镜拍摄的锂电池负极材料隔膜隔膜在成本构成上仅次于正极材料,占 20-30%,隔膜的性能决定了电池的界面结构、内阻等,直接影响电池的容量、循环以及安全性能。飞纳电镜拍摄的锂电池隔膜更多体验,尽在飞纳电镜飞纳台式扫描电镜 VR 之旅手套箱版台式电镜有些锂电池材料很容易与空气发生反应,影响形貌成份分析,飞纳电镜发布全球首款手套箱版台式电镜,实现扫描电镜放置在手套箱内,制样-观察全程惰性气体保护。原位通电样品杯允许用户将电探针连接到样品进行原位测量
  • 1240万!新疆医科大学新疆医科大学中心、成都市成华区疾病预防控制中心和河池市疾病预防控制中心检测仪器、耗材采购项目
    一、项目一(一)项目基本情况项目编号:XJDH-YKD2024-112项目名称:新疆医科大学新疆医科大学中心实验室超高分辨冷场发射扫描电镜等设备采购项目项目采购方式:公开招标预算金额(元):5186000最高限价(元):5176000采购需求: 标项名称:新疆医科大学新疆医科大学中心实验室超高分辨冷场发射扫描电镜等设备采购项目 数量:5 预算金额(元):5186000 简要规格描述或项目基本概况介绍、用途:包括:超高分辨冷场发射扫描电镜、能谱仪、气相色谱仪、顶空进样器(配套气相色谱仪)、傅立叶变换红外光谱仪 备注:合同履约期限:标项 1,详见招标文件本项目(否)接受联合体投标。(二)获取招标文件时间:2024年07月15日至2024年07月22日,每天上午00:00至12:00,下午12:00至23:59(北京时间,法定节假日除外)地点:政采云平台线上方式:供应商登录政采云平台https://www.zcygov.cn/在线申请获取采购文件(进入“项目采购”应用,在获取采购文件菜单中选择项目,申请获取采购文件),或者点击采购公告底部潜在供应商“获取采购文件”,页面跳转后登陆,直接获取采购文件。售价(元):0(三)对本次采购提出询问,请按以下方式联系1.采购人信息名 称:新疆医科大学地 址:新医路393号新疆医科大学联系方式:0991-21101652.采购代理机构信息名 称:新疆德鸿项目管理咨询有限公司地 址:乌鲁木齐沙依巴克区友好北路706号昊泰明慧园B座18楼1803室联系方式:0991-48332033.项目联系方式项目联系人:吴楚、李娟娟电 话:0991-4833203二、项目二(一)项目基本情况项目编号:HCZC2024-G1-990227-GXYD项目名称:河池市疾病预防控制中心检测仪器、监测检测实验用试剂及耗材采购预算金额:416.978400 万元(人民币)最高限价(如有):416.978400 万元(人民币)采购需求:详见附件合同履行期限:1分标、2分标、3分标:自签订合同之日起至全部安装调试合格完毕并交付使用。4分标、5分标、6分标、7分标:自签订合同之日起至全部货物交货验收完毕质保期结束止。本项目( 不接受 )联合体投标。(二)获取招标文件时间:2024年07月15日 至 2024年08月05日,每天上午8:00至14:00,下午12:00至21:00。(北京时间,法定节假日除外)地点:广西政府采购云平台(https://www.gcy.zfcg.gxzf.gov.cn/)方式:在电子交易平台注册,并在系统上下载招标文件,逾期下载无效。 注:本供应商登录广西政府采购云平台https://www.gcy.zfcg.gxzf.gov.cn/在线申请获取采购文件(进入“项目采购”应用,在获取采购文件菜单中选择项目,申请获取采购文件),如在操作过程中遇到问题或者需要技术支持,请致电政采云客服热线:95763。售价:¥0.0 元,本公告包含的招标文件售价总和(三)对本次招标提出询问,请按以下方式联系。1.采购人信息名 称:河池市疾病预防控制中心     地址:河池市金城江区金城东路4号         联系方式:联系方式:韦明会 联系电话:0778-2278091      2.采购代理机构信息名 称:广西一鼎项目咨询有限公司            地 址:河池市金城江区澳东路二巷 41 号            联系方式:覃筱茜 联系电话:0778-2271915            3.项目联系方式项目联系人:覃筱茜电 话:  13667787711三、项目三(一)项目基本情况项目编号:N5101082024000172项目名称:疾控机构能力提升项目仪器设备采购项目采购方式:公开招标预算金额:3,059,000.00元采购需求:详见采购需求附件合同履行期限:采购包1:自合同签订之日起30日采购包2:自合同签订之日起30日采购包3:自合同签订之日起30日本项目是否接受联合体投标:采购包1:不接受联合体投标采购包2:不接受联合体投标采购包3:不接受联合体投标(二)获取招标文件时间:2024年07月16日至2024年07月23日,每天上午00:00:00至12:00:00,下午12:00:00至23:59:59(北京时间)途径:项目电子化交易系统-投标(响应)管理-未获取采购文件中选择本项目获取招标文件方式:在线获取售价:0元(三)对本次招标提出询问,请按以下方式联系。1.采购人信息名称:成都市成华区疾病预防控制中心地址:青龙街道龙绵街1991号联系方式:曹老师028-843183402.采购代理机构信息名称:四川国际招标有限责任公司地址:中国(四川)自由贸易试验区成都市高新区天府四街66号2栋22层1号联系方式:李紫薇、王宇、陈海芳028-87797776-6703.项目联系方式项目联系人:李紫薇、王宇、陈海芳电话:028-87797776-670
  • 基于屈曲不稳定性编码的非均质磁化实现软材料结构动态形貌的调控
    拥有主动变形能力的三维可变形结构在自然界中广泛存在,可有效提高生物对复杂环境的适应性。受这一特性启发,研究人员已开发了多种基于水凝胶、液晶高分子、硅胶弹性体等的软材料体系,在外界不同条件的刺激下(如化学溶剂、温度、酸碱度、光等),实现了各式三维结构的可控形貌变换(Nature 2021, 592, 386;Nature 2019, 573, 205;Nature 2017 , 546, 632)。 但是,目前已有的方案主要基于软材料形貌的准静态调制,如何实现多种尺度下多模态各向异性形貌与结构的动态调控,非常具有挑战性。近期,香港中文大学张立教授团队与哈尔滨工业大学(深圳)金东东副教授,联合香港城市大学张甲晨教授、中国科学技术大学王柳教授,提出了一种新型的软材料结构动态形貌调控方法。该团队结合硬磁性颗粒与弹性体制备得到磁性弹性体,并使其在一端受限的条件下溶胀产生可控的屈曲结构,接着加以磁化形成各向异性的三维磁畴分布。得到的磁性弹性体在外界可编程磁场的驱动下,能够实现多模态三维形貌的动态可控变换,在微流体操纵、软体机器人等领域中具有广阔的应用前景。相关研究成果以 “Dynamic morphological transformations in soft architected materials via buckling instability encoded heterogeneous magnetization” 为题发表在国际著名期刊《Nature Communications》。 图 1. 条带形与晶格状磁性弹性体的动态形貌调控示意图。如图1所示,该研究首先将未充磁的钕铁硼微颗粒掺入硅胶弹性体前驱体中,在亲水修饰的玻璃基底上固化形成一端固定的条形或晶格结构。接着将其置于与硅胶极性相似的有机溶剂中(如甲苯、正己烷等),由于溶剂分子被弹性体吸收并扩散至高分子网络中,引发磁性弹性体的溶胀行为。但是,由于一端受到基板约束,磁性弹性体溶胀形成的轴向压缩力只能使其非均质变形,最终产生屈曲结构。屈曲结构的具体三维形貌可通过弹性体的三维尺寸、人造缺陷乃至晶格连接方式进行精准调控。此后,将屈曲变形的磁性弹性体置于强脉冲磁场下(约2.5T)磁化,再浸泡于不相溶的溶剂中(如乙醇)收缩至原始的条形或晶格结构,能够得到一定程度上“记忆”屈曲变形形貌的三维磁畴分布。此时,施加不同强度、方向或梯度的外加驱动磁场,磁性弹性体基于内部磁畴与外加磁场的磁偶极相互作用,便可产生如波浪、褶皱等的多模态动态三维变形。这种基于不稳定性屈曲变形设计并排布软材料内部磁畴取向(即“磁编程”)的方法,无需额外的模板设计与辅助,便可快速实现各向异性的非均匀磁化分布的。结合外加可调制磁场的精准驱动,能够产生自由度远超准静态形貌调制的多模态动态形貌变换。此外,如图2所示,为了阐明磁性弹性体的调控机制,该研究团队开发了一套分析模型与有限元计算方法,在条形和晶格结构屈曲变形、充磁乃至磁控变形的过程中,可有效反映并预测各参数对动态形貌的影响行为,可为今后磁性软体材料的设计和开发提供一定参考。 图 2. 屈曲变形编码的磁性弹性体的理论分析模型。(a-b)条带形与晶格状磁性弹性体的屈曲变形模型。(c-d)条带形磁性弹性体的理论与实际屈曲变形行为。(e)条带形磁性弹性体的磁化与磁驱动变形模型。(f-g)条带形磁性弹性体在不同几何尺寸与连接条件下的理论与实际屈曲变形行为。(h-i)条带形磁性弹性体的理论与实际磁畴取向分布。(j)条带形磁性弹性体的理论与实际磁驱动变形行为。最后,通过利用各式屈曲变形产生的不同微流体行为(如定向流体、混合流体、涡流),该研究结合高精度3D打印技术(nanoArch S130,摩方精密)制备的微型模板、微流控芯片和尺寸定制的微颗粒,成功将磁性弹性体用于液滴的可控融合与精准操控(图3),颗粒的尺寸筛选,微液滴的富集检测,微流控的混合增强,以及软体机器人的可控驱动(图4)。总之,香港中文大学张立教授团队与哈尔滨工业大学(深圳)金东东副教授提出了一种利用屈曲不稳定现象编码的新型磁编程方式,用以实现软材料结构形貌的动态调控,为今后磁性软材料跨尺度的多模态变形行为提供了一种研究手段,有助于今后更好地理解自然界中复杂形貌变换的潜在机制,拓展可变形结构在格式工程领域的应用价值。 图 3. 屈曲变形编码的条形磁性弹性体在外加驱动磁场下的动态行为。a-c. 不同磁场参数下产生的不同微流体分布。d-e. 在液滴融合与可控运输中的应用。 图 4. 屈曲变形编码的磁性弹性体在微颗粒尺寸筛选(a),微液滴富集检测(b),微流控辅助混合(c),软体机器人运动控制(d)中的应用示例。
  • 锂电池材料水分检测解决方案
    导语 锂电池是一种高新技术产品,同时也是一种新型高容量长寿命环保电池,主要用于电动车,数码产品,UPS电源等。随着新能源汽车和手机等3C数码产品产业的爆发式增长,锂电池作为其关键组成部分也发展迅速。锂电池由四大材料组成,分别为正极材料(核心),负极材料,电解液,隔膜。这些材料都有相应的水分控制要求,一般在数百ppm范围以内,不同厂家不同规格产品要求略有不同,如果超出过多,可能会导致电极涂覆不均或者引发电解液分解,导致HF生成继而引发电极鼓包等不良反应。 因为电极材料非常容易吸水,不能长时间暴露于空气中,所以不宜采用常规的加热失重法测试,通过卡式加热进样的方式再结合卡尔费休库仑法水分测试是目前较好的解决办法。 解决方案卡尔费休库仑法测试石墨粉中的水分卡尔费休库仑法测试磷酸铁锂中的水分卡尔费休库仑法测试正极极片中的水分卡尔费休库仑法测试隔膜中的水分卡尔费休库仑法测试负极极片中的水分卡尔费休库仑法测试电解液中的水分卡尔费休库仑法测试锰粉中的水分卡尔费休库仑法测试钴酸锂中的水分相关仪器推荐 AKF-CH6锂电池卡尔费休水分测定仪是集水分测量模块和加热进样模块于一体的卡尔费休水分测定设备,仪器完全按照锂电行业用户的需求打造,外观设计新颖,使用维护方便,能够涵盖锂电行业从正负极材料、极片、隔膜到电解液;水分范围从1ppm到100%的使用需求。
  • 蔡司《新能源汽车电池质量保证白皮书》:工业检测助推动力电池高质量发展
    新能源汽车行业竞争迈入新阶段,市场呈现多元化趋势,产品不断升级与创新。在此竞争环境下,动力电池企业成为关键角色,致力于提高电池性能、安全性和降低成本,以满足市场需求。加强质量管控成为动力电池企业提升竞争力和行业可持续发展的关键举措。近日,蔡司正式发布《新能源汽车电池质量保证白皮书》,该报告通过趋势解读、技术解析和未来挑战等方面,解析了动力电池企业如何运用质量控制手段来实现技术创新和降本增效,并从"更高性能、更高安全、更优成本"三个角度出发,阐述了工业检测在动力电池研发和生产中扮演的重要角色。白皮书首先从电芯入手,分析多种检测维度,如何通过探索电池材料和结构,提高电池性能,推动新能源汽车电池基础研究取得更大突破。一、对新型电芯的探索,永无止境动力电池产品的高安全性、高能量密度、高倍率性能、经久耐用和更低成本,是决定其是否能取得市场成功的关键因素。竞争打法的全面升级,意味着在"性能"、"安全性"、"成本"这三 个方面的全面升级。电池企业都想在这些关键因素上表现优异,这就需要超过同行的质量控制手段。首先就要在研发环节,充分了解和控制电池相关材料的特性,选择良好的材料。材料从根本上决定着电池性能。通过改进材料提高电池性能、优化电池老化机制、应用新型材料、改变电芯结构是电芯研发的主要方向。例如,材料体系方面,采用新型材料体系(高镍正极、硅基负极、锂金属负极、固态电解质等),提高单体能量密度;或者研制出磷酸锰铁锂,探索钠离子电池的商业化应用,降低成本;或者加快固态电池的研发进程,使电池性能更高,更耐久。电芯形状方面,方形电池,尤其是LFP短刀兼顾性能、集成与制造,成为主流企业的优选方案之一;大圆柱电池也是热门方向,特斯拉和宝马均已提出具体的实施规划。快充技术方面,多家主机厂开始导入800V高电压平台,并联合电池企业推出2C~4C快充方案。材料的改性、新型材料的研制、电芯结构的设计,往往多策并举,促成电池的升级和创新。诸如,从2020年到现在,由特斯拉开局,国内电池企业共同推进的大圆柱电池拥有极其独特的杀手锏:1. 由于采用钢壳的圆柱外壳以及定向泄压技术,电芯本身的束缚力比较均匀,有效抑制膨胀,为电池包的整体安全提供第一层的有力保障。这也使大圆柱电池在材料上的探索更加大胆,当下高比能路线下的主流用材,高镍三元正极材料、硅基负极材料在大圆柱电池上的使用更为广泛。2. 全极耳设计,电池直接从正极/负极上的集流体引出电流,成倍增大电流传导面积,缩短电流传导距离,从而大幅降低电池内阻,提高充放电峰值功率。对于更低成本的锰铁锂电池体系,宁德时代的M3P电池将在第三季度搭载于特斯拉国产Model 3改款车型。网络不断有消息指出M3P电池就是LFMP磷酸锰铁锂电池。宁德时代则在调研中表示,准确说来,M3P不是磷酸锰铁锂,还包含其他金属元素——该公司将其称为"磷酸盐体系的三元"。容百科技在8月10日的全球化战略发布会上指出,其LFMP率先实现了73产品(锰铁比)大批量供货,并以此为基推进LFMP与三元的复合产品M6P以及下一代工艺产品。他们认为,到2030年,广义的三元材料和磷酸盐仍旧占据主体,三元里面的高镍材料、磷酸盐里面锰铁锂以及钠电都会迎来非常高速的增长。另一方面,行业也需要支持更高倍率的动力电池。这就需要电池企业在加强电池热管理的同时,还要从电池材料(尤其是负极材料的选择和微观结构的设计)、电极设计、电池形状等出发,降低内阻、加强散热,提高电池的倍率性能。目前已有多个企业推出快充电池方案。欣旺达在今年上海车展着重推出其闪充电池,在核心材料上部署了专有技术,自主设计闪充硅材料技术、高安全中镍正极和新型硅基体系电解液技术等关键技术,支持电动汽车10分钟可从20%充至80%SOC,让充电像加油一样快。二、工欲善其事,必先利其器在电池企业为大众剖析"高性能"、"高安全"、"低成本"电池新品之时,"自研"、"微观"、"纳米级包覆"、"掺杂"、"原位固态化技术"等关键词频频闪现,为主流电池材料进行改性之外,加速LFMP、固态电池等新类型电池的应用。以近年火热的LMFP为例,该类型电池原存在导电性能、倍率性能以及循环性能较差等问题,但随着碳包覆、纳米化、离子掺杂等改性技术的进步,其电化学性能得以改善。甚至,目前企业正在研究将LFMP或NCM组合使用,兼具低成本、高安全性及高能量密度的优势。蔚来使用的150kW半固态电池,由卫蓝新能源提供,采用了原位固态化技术。该技术是通过注液保持良好的电解质与电极材料的原子级接触,之后将液体电解质部分或全部转换为固体电解质,这样的好处是能够做到原子尺度的结合,而不是宏观的把电极材料和固态电解质压在一起。凡此种种,不一而足,充分展现出电池基础研发人的耐心值和创造力,犹如炉火纯青的雕刻家,对微观结构有着清晰的掌握,将每一个微小的纹路都打磨得精雕细琢。正所谓"工欲善其事,必先利其器",更优秀的动力电池产品离不开更高效有力的检测工具。材料的微观结构表征是电芯研发的关键,目前多种材料表征方法被推出并得到广泛应用。在研发环节,工程师利用光学显微镜、X 射线显微镜、3D 检测来观察电极材料,检测电极缺陷并分析电池失效原理。还可观察材料的粒径尺寸、各种成分的配比及分布情况等,加深研发人员的认识和理解。这些都可以在提高研发效率的同时更好的改善电池性能,进而为材料、工艺的改进提供依据。三、电池材料的二维显微成像和表征光学显微镜利用光学原理对物体进行放大,最早成型于 17 世纪。光学显微镜的分辨率与可见光的波长(390~780nm)有关,其最大放大倍数可达 1000 多倍,实现微米级别分辨率,在生命科学、材料科学等领域被广泛应用。在动力电池研发中,光学显微镜可用来观察电极结构,检测电极缺陷并分析电池失效原理、观察锂枝晶的生长行为等,进而为材料、工艺的改进提供依据。不过,由于受制于可见光的波长,光学显微镜的放大倍数有限,无法实现对更微观结构的观测,而电子显微镜则很好的解决了这个问题。电子显微镜最早由英国物理学家卢卡斯于 1931 年发明,利用电子束代替光束,最大放大倍数可达 300 万倍,实现纳米级别分辨率。由于电子显微镜具备更高的分辨率,在电池研发中,搭配不同的探头,可以得到多维度的信息(成分、表征信息,粒度尺寸,配料占比等),实现对正负极材料、导电剂、粘结剂及隔膜等更微观结构的检测(观察材料的形貌、分布状态、粒径大小、存在的缺陷等)。常用的观察样品表面形貌的电子显微镜是扫描电子显微镜(SEM)。由于具备高分辨率,SEM 能清楚地反映和记录材料的表面形貌特征,因此成为表征材料形貌最为便捷的手段之一。配合氩离子抛光技术(又称 CP 截面抛光技术),SEM可以完成对样品内部结构微观特征的观察和分析。这也是目前最有效的制备锂电池材料极片解剖截面的制样方式。SEM还可以用来观测电池颗粒循环老化的情况。目前,经分析发现,颗粒碎裂表征成为学者改善正极材料性能的切入点。四、电池检测:从 2D 走向 3D传统的检测手段通常局限在 2D 平面,但 2D 图像会有局部偏差(比如,制备样品时刚好切到没有问题的部位),3D 图像可以更好的表征材料结构,使检测结果更为直观,有助于加深研发人员的认识和理解,提高研发效率的同时更好的改善电池性能。在不对电池进行拆解的情况下,通过 X 射线显微镜可以对电池内部特定区域进行高分辨率成像,实现样品的 3D 无损成像,分辨电极颗粒与孔隙、隔膜与空气等,可以大大简化流程,节省时间。高分辨率显微 CT 可以实现电池内部结构的三维可视化,解决因拆卸等原因造成的内部结构二次损伤等难题,清晰地展示出电池内部的真实情况。在此,X 射线显微镜技术得到应用。当前,CT 成像的精度进入亚微米阶段,可以对电池材料及孔隙进行分析检测。在 X 射线显微镜的基础上,蔡司推出了可以实现随时间(4D)变化的微观结构演化表征方法。利用空间分辨率可达 50nm、体素尺寸低至 16nm 的真正的纳米级三维 X 射线成像,可以获得更多信息,识别更微小的细节特征。目前,X 射线显微镜可达到最高 50nm 级别的分辨率,当需要研究更高分辨率的细节时,则需要用到新一代聚焦离子束(FIB)技术。FIB 利用高强度聚焦离子束(通常为镓离子)对材料进行纳米加工,配合扫描电镜(SEM),可同时实现对样品的加工和观察。目前,蔡司和赛默飞都推出了聚焦离子束显微镜。蔡司双束电镜 Crossbeam 系列结合了高分辨率场发射扫描电镜 (FESEM) 的出色成像和分析性能和 FIB 的优异加工能力,无论是用于多用户实验平台还是科研或工业实验室,利用 Crossbeam 系列模块化的平台设计理念,都可基于自身需求随时升级仪器系统(例如使用Laser+FIB 进行大规模材料加工)。在加工、成像或是实现三维重构分析时,Crossbeam 系列将大大提升 FIB 的应用效率。当需要分析各种成分的分布,需要模拟仿真,需要看到内部结构时,FIB 可以依托低电压成像,能扫描更多 3D 细节,可以做多种测试,令研发工作成效更高。五、电池的原位测试和多技术关联应用无论是光学显微镜,电子显微镜,还是 X 射线显微镜和工业 CT,不同的测试手段各具优势,适用于不同的场景。但一种检测手段常常无法完全表征材料属性。所以,行业将不同的测试设备协同应用,实现多手段的关联,则可以在测试中得到多维度的信息,使结果更为直观。早期,多手段关联的出发点,是以不同分辨率来观察被测对象的需求。例如,CT和X 射线显微镜可以无损探测,但分辨率相对较低,因此,初看材料时,就可以利用二者先观看形貌特征。扫描电镜具有更高分辨率,例如蔡司以扫描电镜为基础,推出 FIB-SEM 产品,可以实现高分辨率(3nm)的 3D 成像。如此,利用 CT→X 射线显微镜→ FIB-SEM,选定区域并逐级放大,就可以得到更为全面和精确的信息,同时可以实现快速定位,使检测更为高效。电子显微镜上设有多个拓展口,来添加不同的探头。但在电池研发中,配备的 SE、BSE 和 EDX 探测器,不足以完全表征材料的属性。尤其在样品尺寸大的情况下,不容易聚焦到同一特定颗粒。拉曼探头则可以帮助分析分子结构与组成,界面结构等。但一般情况下,拉曼电子显微镜是独立分开的。因此,如果能对同一被测对象使用BSE、EDS 和拉曼,拍摄三重图像的重叠信息,就能实现原位多角度分析。显微镜厂商在做如上努力。如德国 WITec、捷克 Tescan、蔡司等推出了 RISE 系统,可以实现拉曼成像与 SEM 等技术的联合应用,通过电池表面形貌(SEM)、元素分布(EDS)与电极材料分子组成信息(Raman 图谱)结合,实现材料的原位多角度分析,了解电池状态以及不同位置材料的形貌、元素和分子组成,进而评价电池性能。材料测试通常伴随制样过程,由于 FIB-SEM 需要对同一个样品进行多次制样测试来构建 3D 图像,采用常规制样方法需要消耗很长时间。为解决这个问题,蔡司提出了一组非常巧妙的联合方案。首先,可以用 Versa 大视野范围、无损情况下得到 3D 成像,发现可疑位置。然后,为了对可疑位置进行更深入的分析,需要剖切到指定位置。使用 Fs-laser 飞秒激光可以实现样品高速率切割(107μm3/sec),进行快速粗制样,迅速完成样品深处的分析,同时不影响 FIB-SEM的高性能和高分辨率。最后,再用 FIB 精细抛光,并拍照分析。通过 Versa、FIB-SEM 和 Fs-laser 的联合应用,实现对检测对象的快速定位和制样,使检测更为简单快捷,帮助研发人员提高工作效率。
  • 新冠检测公司,有的在讨债,有的花218亿去理财
    “这不是做核酸的那家公司吗?”佛山的陈小姐一脸疑问地说。7月初,她去当地一家三甲医院做孕期检查,当护士将样本采集袋递给她时,袋子上的“金域医学”四个字让她眼前一亮。医护人员向她解释,医院的部分检验由金域医学(603882.sh)承担,他们向金域医学支付费用。疫情三年,金域医学从一家名不见经传的第三方医学检验公司,摇身变成了“全球核酸检测之王”,以至于很多人都忘了它的主业。如今,随着疫情结束,新冠检测公司躺着赚钱的时代已经一去不复返。他们的营收、股价开始大幅度下跌,与此同时,其应收账款则居高不下,有公司的应收账款高达100亿元,但这并不会让他们伤筋动骨,因为此前赚到的钱已经足够多。凭借核酸检测赚到的钱,不少公司忙着重操旧业,扩大主业,抢占市场,或者将数十亿,甚至上百亿的闲置资金用于购买理财产品。这样的投资规模,放在整个A股市场都不多见。追缴应收账款、投资理财,已经成为了这些赚到大钱的新冠检测公司时下至关重要的工作事项。赚的多,被欠的也多在A股,活跃着十几家“核酸概念股”,头部企业包括金域医学、迪安诊断(399244.sz)、达安基因(002030.sz)等。得益于核酸检测的市场红利,这些公司赚得盆满钵满。比如金域医学,疫情三年的营收总额为356.64亿元,而疫情前的三年,营收总额仅为135.86亿元。与之类似,迪安诊断的这两项数据分别为440.1亿元、204.2亿元,达安基因的这两项数据则分别是250.55亿元和41.2亿元。除了核酸检测公司之外,一些销售抗原试剂盒的公司业绩也在暴涨。九安医疗(002432.sz)是抗原试剂盒的销售大户,他们在2021年底及次年初,国内尚未全面认可抗原检测结果时,就从海外市场获得了上百亿的巨额订单。2022年,其营收高达263.2亿元,净利润更是高达160.3亿元,毛利率达到惊人的79.6%。而在疫情之前,九安医疗的年度营收最高才7.1亿元,净利润则多年为负数。自2010年上市到2019年,9年的时间里,扣除非经常性损益后,公司累计亏损9.1亿元。与此同时,这些核酸公司、抗原试剂盒公司的股价也迎来高光时刻。2021年1月25日,金域医学的股价飙升至历史最高的175.49元,而在疫情之前,股价徘徊在45元左右。九安医疗的股价更是在去年4月来到95.92元的顶峰,在疫情之前,它的股价常年未超过2元,近50倍的涨幅,让九安医疗一度获得A股的“妖股之王”的称号。此后,随着疫情防控措施的调整,这些“核酸概念股”的营收、股价也开始大幅度下滑。根据公开财报,2023年第一季度,金域医学的营收同比下降50.19%,迪安诊断同比下降30.48%,达安基因同比下降89.86%,九安医疗更是降幅达到93.12%。而更令这些核酸检测公司头疼的,应该是居高不下的“应收账款”。财报显示,截至2022年底,金域医学、迪安诊断、达安基因三家公司的应收账款分别为70.3亿元、99.6亿元、40.7亿元。这些应收账款也已成为了他们资产的重要部分,2022年,这三家公司的应收账款分别占他们资产总额的50.57%、47.3%、27.5%。到了2023年,在几乎没有核酸检测业务的情况下,这些核酸公司的应收账款并没有明显减少,有的甚至还在增多。比如,今年第一季度,金域医学的应收账款仅比去年减少4.4亿元,为65.9亿元,迪安诊断的应收账款甚至比去年多了3.9亿元,为103.5亿元。与之相比,由于九安医疗的抗原试剂盒主要销往海外,并且海外客户的履约能力强,其应收账款相对较少,2022年在营收高达263.2亿元的情况下,应收账款仅为3.9亿元。为讨债,将客户告上法庭加强对应收账款的追缴,如今已经成为了不少核酸公司的重要工作。在2022年的财报中,金域医学提到,由于应收账款坏账准备的计提对于财务报表具有重要影响,应收账款预期信用损失准备金额存在重大风险,并将应收账款的坏账准备认定为关键的审计事项。迪安诊断的应收账款最多,他们在2022年财报中写道,将加大应收账款责任制的实施力度,优化业务人员在收款工作方面的绩效考评,控制坏账的发生。一位熟悉医疗行业的人士向作者分析,在核酸检测产业链上,金域医学、迪安诊断这些检测公司处于产业链的中游,它的上游是耗材提供商,下游则是医院、基层政府、其他第三方医学检验室等,检测公司的债务人一般也都是下游机构。2022年11月8日,许昌博奥润康医学检验实验室的一份《关于新冠核酸样本暂停接收的通知》在网上流传。通知写道,他们从2021年1月开始承担许昌城区大规模核酸检测任务,试剂耗材及人工费用投入费用较高,但各区县均未及时回款,导致机构运转压力太大,从当年11月11日起暂停接收核酸样本,待资金到位后再恢复检测工作。根据天眼查的信息,2023年以来,为了追缴账款,达安基因就将珠海市思达医学检测实验室、北京方圆平安医学检测实验室等4家第三方医学检验室告上法庭。公开资料显示,这4家第三方医学检验室都曾为地方提供过新冠核酸检测服务,而这些实验室有的已经注销或破产。根据达安基因董秘办的公开回应,将这些已经破产、注销的实验室告上法庭,可以通过法院强制执行的方式来达成回款。因合同纠纷而对簿公堂的现象,在核酸检测公司当中并不少见。作者以核酸检测、合同纠纷、核酸公司名称等关键词在裁判文书网上进行检索,查询到了部分案例。比如,2020年,北京美因医学检验实验室参与北京近郊某镇的核酸检测,由于未收到检测费用,就将该镇政府及当地的妇幼保健院告上法庭,要求对方按照180元/人次的价格标准支付检测费用。在疫情早期,核酸检测费用价格相对较高。2020年5月到12月,广州华银医学检验中心为中山华晟医院提供核酸检测服务,但后者一直拖欠检测费用,最终被告上法庭。不过,裁判文书上披露的这些案件大多发生在疫情早中期。如今,各大核酸检测公司的应收账款居高不下,在未来的不久,可能会有更多的核酸公司、医院、地方政府对簿公堂。现金没地放,花218亿去理财“如果没有疫情,普通人可能都不知道金域医学、迪安诊断这些医疗公司。”上述熟悉医疗行业的人士向作者表示。据该人士介绍,在医疗行业里,这些公司属于ICL(独立医学检验实验室),他们会从医疗机构承包部分检测业务,金域医学、迪安诊断就是ICL领域的两大龙头企业。在国外,ICL已经有一个相对成熟的市场,但在国内,这个市场一直不温不火。国家卫健委披露的数据显示,2020年,我国的ICL市场渗透率仅有6%左右,远低于日本的67%、欧洲的50%和美国的35%。过去三年,在核酸检测市场上赚到的钱,让他们在ICL这个领域的竞争中获得了足够丰厚的资金。比如,金域医学在2022年的财报中提到,他们加快了宏基因、肾脏病理、质谱、血 液、神经免疫、染色体等多中心建设,新增检测中心20余个。2022年12月,华大基因CEO赵立见在接受媒体采访时也表示,核酸检测业务的开拓让他们在全球快速建立起了公共卫生体系渠道,为他们的出海奠定了基础,他们有多项常规检测业务已经在海外获得了资质。不过,除了加大对主业的投入之外,不少公司也斥巨资用于投资理财。2023年1月18日,华大基因发布公告称,他们拟使用不超15亿元的闲置资金进行投资。同时,他们还将使用不超过9亿元的闲置募集资金用于理财。2020年,华大基因曾募集了19亿元,但没有花完,又得益于核酸检测带来的现金流,这笔资金就闲置下来了。2023年4月,达安基因和迪安诊断两家也纷纷披露,将使用不超过25亿元和40亿元的闲置资金进行理财。值得注意的是,根据财报信息,在疫情之前,上述三家公司的自有资金从未超过他们今年用于理财的资金规模。不过,与九安医疗相比,这三家公司用于理财的资金规模都是小巫见大巫。九安医疗是一家成立于1995年的老牌医疗器械公司,2014年时,小米科技对其战略投资了2500万美元,使其成为了小米生态链的合作伙伴,主营产品包括额温计、血压仪、血糖仪等。九安医疗的业务相对简单,其市场规模也有限,并不需要新增太多的投入。同时,与核酸检测公司相比,九安医疗的应收账款也微乎其微,2022年仅为3.9亿元。投资理财,就成为了他们手握的数百亿现金的重要出口。2023年2月,九安医疗公告称,他们将使用不超过170亿元的自有资金进行委托理财,并使用不超过30亿元的自有资金进行证券投资。两个半月后,公司理财资金再新增18亿元。财报显示,截至今年一季度,九安医疗的总资产为221.3亿元。218亿的理财现金,意味着占据了公司总资产的98.6%。“用闲置资金进行理财,提高闲置资金的利用率,从而保障公司业绩和股东利益,这是无可厚非的。”一位投资人士向作者分析,“但是,一家公司累计使用不超过218亿元的资金进行理财,这在A股历史上并不多见。”
  • 北京市昌平区财政局本级421.78万元采购VOC检测仪
    html, body { -webkit-user-select: text } * { padding: 0 margin: 0 } .web-box { width: 100% text-align: center } .wenshang { margin: 0 auto width: 80% text-align: center padding: 20px 10px 0 10px } .wenshang h2 { display: block color: #900 text-align: center padding-bottom: 10px border-bottom: 1px dashed #ccc font-size: 16px } .site a { text-decoration: none } .content-box { text-align: left margin: 0 auto width: 80% margin-top: 25px text-indent: 2em font-size: 14px line-height: 25px } .biaoge { margin: 0 auto /* width: 643px */ width: 100% margin-top: 25px } .table_content { border-top: 1px solid #e0e0e0 border-left: 1px solid #e0e0e0 font-family: Arial /* width: 643px */ width: 100% margin-top: 10px margin-left: 15px } .table_content tr td { line-height: 29px } .table_content .bg { background-color: #f6f6f6 } .table_content tr td { border-right: 1px solid #e0e0e0 border-bottom: 1px solid #e0e0e0 } .table-left { text-align: left padding-left: 20px } 详细信息 [昌平]昌平区财源智慧平台系统项目通用应用软件开发服务采购项目公开招标公告 北京市-昌平区 状态:公告 更新时间: 2022-09-02 招标文件: 附件1 项目概况 昌平区财源智慧平台系统项目通用应用软件开发服务采购项目 招标项目的潜在投标人应在北京市政府采购电子交易平台获取招标文件,并于2022-09-26 13:30(北京时间)前递交投标文件。 一、项目基本情况 项目编号:11011422210200002678-XM001 项目名称:昌平区财源智慧平台系统项目通用应用软件开发服务采购项目 预算金额:421.77745 万元(人民币) 采购需求: 基于财源收入、区内横向部门所提供的社保、政策补贴、落户、子女入学指标、楼宇产业用地等、企业榜单、企业舆情内外部数据深度融合及二次数据加工形成的财源智慧系统基础数据,运用云计算、大数据等先进的可视化和数据挖掘分析手段,实现全区财源建设从数据融合、数据查询、数据分析、数据可视、监控预警、招商引资、走访服务、督办反馈、考核评价等为一体的全流程工作及服务,为领导总揽全局财源、实时掌握和开展财源调度提供数据支撑。详见第五章。 合同履行期限:在本项目合同签订之日起90日内完成系统上线运行,具体包括完成业务功能的设计开发、测试、安装部署、培训等 本项目不接受联合体投标。 二、申请人的资格要求: 1.满足《中华人民共和国政府采购法》第二十二条规定; 2.落实政府采购政策需满足的资格要求: 2.1 中小企业政策 本项目专门面向小微企业预留采购份额。 2.2 其它落实政府采购政策的资格要求: 依据财库〔2016〕125号文,投标人“信用中国”( www.creditchina.gov.cn)、中国政府采购网网站查询的投标单位信用记录无列入失信被执行人、重大税收违法案件当事人名单、政府采购严重违法失信行为记录名单及其他不符合《中华人民共和国政府采购法》第二十二条规定条件。 3.本项目的特定资格要求: 3.1本项目不接受分支机构参与投标; 3.2本项目不属于政府购买服务; 3.3其他特定资格要求:无。 三、获取招标文件 时间:2022-09-05 至 2022-09-09 ,每天上午00:00至12:00,下午12:00至24:00(北京时间,法定节假日除外) 地点:北京市政府采购电子交易平台 方式: 供应商持CA数字认证证书登录北京市政府采购电子交易平台(http://zbcg-bjzc.zhongcy.com/bjczj-portal-site/index.html#/home)获取电子版招标文件。 售价:¥0 元,本公告包含的招标文件售价总和 四、提交投标文件截止时间、开标时间和地点 2022-09-26 13:30(北京时间) 地点:北京市东城区崇文门外大街16号便宜坊大厦15层1515单元会议室 五、公告期限 自本公告发布之日起5个工作日。 六、其他补充事宜 代理机构项目编号:ZCA-BJZC-ZX22031 1.本项目需要落实的政府采购政策:扶持贫困地区、监狱企业、中小企业和残疾人福利性单位发展,支持节能减排、环境保护,严格贯彻落实挥发性有机物(VOCs)治理工作。 2.本项目采用线上线下相结合的采购方式,请供应商认真学习北京市政府采购电子交易平台发布的相关操作手册,办理CA认证证书、进行北京市政府采购电子交易平台注册绑定,并认真核实数字认证证书情况确认是否符合本项目电子化采购流程要求。 CA认证证书服务热线 010-58511086 技术支持服务热线 010-86483801 2.1办理CA认证证书 供应商登录北京市政府采购电子交易平台查阅 “用户指南”—“操作指南”—“市场主体CA办理操作流程指引”,按照程序要求办理。 2.2注册 供应商登录北京市政府采购电子交易平台“用户指南”—“操作指南”—“市场主体注册入库操作流程指引”进行自助注册绑定。 2.3驱动、客户端下载 供应商登录北京市政府采购电子交易平台“用户指南”—“工具下载”—“招标采购系统文件驱动安装包”下载相关驱动。 供应商登录北京市政府采购电子交易平台“用户指南”—“工具下载”—“投标文件编制工具”下载相关客户端。 2.4获取电子招标文件 供应商持CA数字认证证书登录北京市政府采购电子交易平台获取电子招标文件。未在规定期限内通过北京市政府采购电子交易平台获取招标文件的投标无效。 七、对本次招标提出询问,请按以下方式联系。 1.采购人信息 名 称:北京市昌平区财政局本级 地址:北京市昌平区东环路 联系方式:陈晓祯,69742890 2.采购代理机构信息 名 称:中诚安管理咨询有限公司 地 址:北京市东城区崇文门外大街16号便宜坊大厦15层1515单元 联系方式:黄然,13269517188;13691201381 3.项目联系方式 项目联系人:黄然 电 话: 13269517188;13691201381 招标公告-ZX22031.doc × 扫码打开掌上仪信通App 查看联系方式 $('.clickModel').click(function () { $('.modelDiv').show() }) $('.closeModel').click(function () { $('.modelDiv').hide() }) 基本信息 关键内容:VOC检测仪 开标时间:2022-09-26 13:30 预算金额:421.78万元 采购单位:北京市昌平区财政局本级 采购联系人:点击查看 采购联系方式:点击查看 招标代理机构:中诚安管理咨询有限公司 代理联系人:点击查看 代理联系方式:点击查看 详细信息 [昌平]昌平区财源智慧平台系统项目通用应用软件开发服务采购项目公开招标公告 北京市-昌平区 状态:公告 更新时间: 2022-09-02 招标文件: 附件1 项目概况 昌平区财源智慧平台系统项目通用应用软件开发服务采购项目 招标项目的潜在投标人应在北京市政府采购电子交易平台获取招标文件,并于2022-09-26 13:30(北京时间)前递交投标文件。 一、项目基本情况 项目编号:11011422210200002678-XM001 项目名称:昌平区财源智慧平台系统项目通用应用软件开发服务采购项目 预算金额:421.77745 万元(人民币) 采购需求: 基于财源收入、区内横向部门所提供的社保、政策补贴、落户、子女入学指标、楼宇产业用地等、企业榜单、企业舆情内外部数据深度融合及二次数据加工形成的财源智慧系统基础数据,运用云计算、大数据等先进的可视化和数据挖掘分析手段,实现全区财源建设从数据融合、数据查询、数据分析、数据可视、监控预警、招商引资、走访服务、督办反馈、考核评价等为一体的全流程工作及服务,为领导总揽全局财源、实时掌握和开展财源调度提供数据支撑。详见第五章。 合同履行期限:在本项目合同签订之日起90日内完成系统上线运行,具体包括完成业务功能的设计开发、测试、安装部署、培训等 本项目不接受联合体投标。 二、申请人的资格要求: 1.满足《中华人民共和国政府采购法》第二十二条规定; 2.落实政府采购政策需满足的资格要求: 2.1 中小企业政策 本项目专门面向小微企业预留采购份额。 2.2 其它落实政府采购政策的资格要求: 依据财库〔2016〕125号文,投标人“信用中国”( www.creditchina.gov.cn)、中国政府采购网网站查询的投标单位信用记录无列入失信被执行人、重大税收违法案件当事人名单、政府采购严重违法失信行为记录名单及其他不符合《中华人民共和国政府采购法》第二十二条规定条件。 3.本项目的特定资格要求: 3.1本项目不接受分支机构参与投标; 3.2本项目不属于政府购买服务; 3.3其他特定资格要求:无。 三、获取招标文件 时间:2022-09-05 至 2022-09-09 ,每天上午00:00至12:00,下午12:00至24:00(北京时间,法定节假日除外) 地点:北京市政府采购电子交易平台 方式: 供应商持CA数字认证证书登录北京市政府采购电子交易平台(http://zbcg-bjzc.zhongcy.com/bjczj-portal-site/index.html#/home)获取电子版招标文件。 售价:¥0 元,本公告包含的招标文件售价总和 四、提交投标文件截止时间、开标时间和地点 2022-09-26 13:30(北京时间) 地点:北京市东城区崇文门外大街16号便宜坊大厦15层1515单元会议室 五、公告期限 自本公告发布之日起5个工作日。 六、其他补充事宜 代理机构项目编号:ZCA-BJZC-ZX22031 1.本项目需要落实的政府采购政策:扶持贫困地区、监狱企业、中小企业和残疾人福利性单位发展,支持节能减排、环境保护,严格贯彻落实挥发性有机物(VOCs)治理工作。 2.本项目采用线上线下相结合的采购方式,请供应商认真学习北京市政府采购电子交易平台发布的相关操作手册,办理CA认证证书、进行北京市政府采购电子交易平台注册绑定,并认真核实数字认证证书情况确认是否符合本项目电子化采购流程要求。 CA认证证书服务热线 010-58511086 技术支持服务热线 010-86483801 2.1办理CA认证证书 供应商登录北京市政府采购电子交易平台查阅 “用户指南”—“操作指南”—“市场主体CA办理操作流程指引”,按照程序要求办理。 2.2注册 供应商登录北京市政府采购电子交易平台“用户指南”—“操作指南”—“市场主体注册入库操作流程指引”进行自助注册绑定。 2.3驱动、客户端下载 供应商登录北京市政府采购电子交易平台“用户指南”—“工具下载”—“招标采购系统文件驱动安装包”下载相关驱动。 供应商登录北京市政府采购电子交易平台“用户指南”—“工具下载”—“投标文件编制工具”下载相关客户端。 2.4获取电子招标文件 供应商持CA数字认证证书登录北京市政府采购电子交易平台获取电子招标文件。未在规定期限内通过北京市政府采购电子交易平台获取招标文件的投标无效。 七、对本次招标提出询问,请按以下方式联系。 1.采购人信息 名 称:北京市昌平区财政局本级 地址:北京市昌平区东环路 联系方式:陈晓祯,69742890 2.采购代理机构信息 名 称:中诚安管理咨询有限公司 地 址:北京市东城区崇文门外大街16号便宜坊大厦15层1515单元 联系方式:黄然,13269517188;13691201381 3.项目联系方式 项目联系人:黄然 电 话: 13269517188;13691201381 招标公告-ZX22031.doc
  • 锂电池材料试验第一讲|锂离子电池隔膜拉伸测试
    随着科技的日新月异,智能手机、清洁机器人、无人机、新能源汽车等已越来越多的走进人们的日常生活。作为能量与动力的重要载体 - 锂离子电池也在被越来越多的应用。锂离子电池的性能,直接决定了科技设备的续航时间、行驶里程、载荷能力和安全性等因素。锂离子电池主要由正极材料、负极材料、隔膜和电解液等四个主要部分组成,其中隔膜是核心关键材料之一,是制约电池安全性、循环寿命、电性能的关键组件。其中隔膜是核心关键材料之一,是制约电池安全性、循环寿命、电性能的关键组件。隔膜的性能决定了电池的界面结构、内阻等,直接影响电池的容量、循环以及安全性能等特性,性能优异的隔膜对提高电池的综合性能具有重要的作用。LLOYD材料力学试验机提供完整的锂电池隔膜力学性能测试,主要包括隔膜拉伸强度、延伸率、穿刺强度,剥离强度(涂层复合膜)等。同时LLOYD材料力学测试系统(Lloyd材料试验机)可以完成高精度的锂电池强制内短路测试,确保锂电池更加安全。今天我们首先来介绍阿美特克锂电池材料试验解决方案第一讲——锂电池隔膜拉伸测试。锂电池隔膜拉伸测试隔膜的主要作用是分隔电池的正、负极材料,防止两极接触而短路,同时还能使电解质离子通过其中。在厚度尽可能薄的前提下,需保证具有一定的物理力学强度,以满足隔膜在生产和使用过程中的种种环境。因电池生产工艺中,隔膜需要与正负极材料一同卷曲以形成我们常见的圆柱体或软包电池,足够的拉伸强度可保证隔膜在卷曲过程中不发生破裂,顺利成型。LLOYD隔膜拉伸测试采用气动夹具夹紧,在避免操作人员往复手动操作夹紧的同时,极大的提高了测试速度;同时气动夹紧排出了人为夹持过松导致的打滑现象,进一步的提高了数据稳定性。脚踏式开关可解放出操作人员的双手,以更方便和轻松的放置试样。同时为满足不同人员的操作习惯,还可通过气动辅具上的手动开关进行闭合、松开操作,为用户提供极大的便利性。拉伸试验可测定材料的一系列强度指标和塑性指标、弹性极限、伸长率、弹性模量、比例极限、面积缩减量、拉伸强度、屈服点、屈服强度和其它拉伸性能指标等。LLOYD 具有多种测试行程的主机可满足多类型隔膜的拉伸试验,同时还有单柱1400mm行程的机型可选,充分满足定制化需求的同时兼顾经济性。LLOYD材料力学试验机(Lloyd材料试验机)LLOYD(劳埃德)测试系统源自英国,是美国AMETEK(阿美特克)集团旗下产品。LLOYD材料试验系统专注于轻工检测,以读数级精度,高达8000Hz的单通道数据采样率,最高2032mm/min的测试速度广泛应用于世界500强企业中。LLOYD材料测试系统可准确、便捷的完成材料拉伸,压缩,弯曲,穿刺,剥离,撕裂,摩擦,蠕变,松弛,低频疲劳等多种测试项目。丰富的治具方案可在保证数据准确性的同时为用户提供极大的操作便利性。同时,作为测控系统的核心,专业的Nexygen Plus 操作软件广受广大用户的认可。软件自带庞大的国际标准库,除了ASTM, DIN, EN, ISO, JIS等国际标准,用户也可便捷的自建标准文件。
  • 离子印迹固相萃取:目标离子的“锁和钥匙”
    2023年11月21日,宁夏化学分析测试协会批准发布了高盐食品中镉、镍、铅的测定,均采用离子印迹固相萃取前处理,之后用石墨炉原子吸收光谱进行含量测定。 何为离子印迹固相萃取?标准中采用离子印迹固相萃取柱进行前处理。离子印迹固相萃取柱利用离子印迹技术对目标离子进行分离纯化,类似于针对目标离子的“锁和钥匙”,其主要的填充材料为离子印迹聚合物(IIPs)。离子印迹技术来源于分子印迹技术,采用金属离子作为模板,利用模板与功能单体之间的静电或配位作用,然后加入引发剂及交联剂,通过进一步聚合反应,得到所需金属离子的印迹材料。洗脱模板金属离子后,在聚合物内部留下与目标离子相同的三维孔洞结构,对模板金属离子具有较强的专一识别特性。因为IIPs优异的选择性、较高吸附容量和强大的环境稳定性,在分离纯化、污染物去除等方面应用广泛。目前,离子印迹技术相关的研究越来越多,以后会更广泛的应用在标准化检验过程中。
  • 高温高压光学浮区法单晶炉在锂离子电池领域最新应用进展
    锂离子电池由于具有能量密度高、寿命长、充电快、安全可靠、绿色环保等诸多优异性能,与当今人民的日常生活已密不可分,在手机、电脑、电动车、电动汽车、航空航天等领域均有广泛的应用。 其中,Li2FeSiO4作为新一代锂离子电池阴材料,由于具有价格低廉、环境友好、安全性好等优势,在大型动力锂离子电池应用方面具有良好的前景。然而,Li2FeSiO4材料在不同温度具有不同的结构相(∼ 400 °C :Pmn21, , ∼ 700 °C :P121/n1, and ∼ 900 °C :Pmnb),因此,研究其不同结构的电化学性质对于进一步对其进行改性研究尤为重要。 Waldemar Hergetta等人[1]采用高压光学浮区法获得了高温相(Pmnb)Li2FeSiO4单晶,并研究了晶体生长工艺参数对杂相的影响,相关结果已发表在Journal of Crystal Growth。作者所采用的高压光学浮区炉为德国SciDre公司的HKZ高压光学浮区法单晶炉。温度梯度分布[1]XRD图谱及晶体实物图片[1] 德国SciDre公司推出的HKZ高温高压光学浮区法单晶炉高可实现3000℃及以上的生长温度,晶体生长腔大压力可达300 bar,可实现10-5 mbar的高真空环境,适用于生长各种超导材料、介电材料、磁性材料、电池材料等各种氧化物及金属间化合物单晶生长。德国SciDre公司推出的HKZ系列高温高压光学浮区炉外观图参考文献:[1]. Waldemar Hergett, Christoph Neef, Hans-Peter Meyer, Rüdiger Klingeler, Challenges in the crystal growth of Li2FeSiO4, Journal of Crystal Growth, Volume 556, 2021, 125995,ISSN 0022-0248, https://doi.org/10.1016/j.jcrysgro.2020.125995.
  • 线上直播 | 锂离子电池关键材料的全生命周期评价
    随着化石能源的日益枯竭,以及“碳达峰”和“碳中和”的紧迫要求,发展先进的清洁能源和可替代能源势在必行。动力电池尤其是锂离子电池被全球广泛认为是“双碳行动”发展的重中之重。阿美特克集团多个产品在锂离子电池关键材料的开发、工艺、测试、分析、诊断及梯次回收利用中被广泛使用,随着多年来技术的开发与改进,新设备、新技术、新方案、新应用不断涌现,推动了锂离子电池的快速发展。如何实现锂离子电池更高安全性?更高能量密度?更长寿命?更高功率?阿美特克技术大咖将会在本次直播中为您划重点!直播主题:《锂离子电池关键材料的全生命周期评价》直播时间:3月29日-31日欢迎扫描以下二维码,报名参加直播日期直播主题2022/3/2914:00-16:00正负极材料及电解质分析(上)APT和SIMS在锂离子电池研究中的应用GATAN &EDAX助力锂离子电池电子显微分析2022/3/3014:00-16:00正负极材料及电解质分析(下)ICP等离子体光谱仪在锂离子电池材料分析中的应用锂离子电池浆料及电解液中的粘度与流变分析技术应用2022/3/3110:00-11:00锂离子电池性能评价锂离子电池测试的挑战及策略2022/3/3114:00-16:00锂离子电池隔膜检测锂离子电池隔膜物理强度测试与锂电池强制内短路测试锂离子电池的软包装阻隔性能检测解决方案表面检测系统在锂离子电池隔膜领域的应用关于阿美特克阿美特克是电子仪器和机电设备的全球领导者,年销售额约为50亿美金。为材料分析、超精密测量、过程分析、测试测量与通讯、电力系统与仪器、仪表与专用控制、精密运动控制、电子元器件与封装、特种金属产品等领域提供技术解决方案。全球共有18,000多名员工,150多家工厂,在美国及其它30多个国家设立了100多个销售及服务中心。
  • 燃料电池关键部件丨碳纸的拉伸、压缩、三点弯曲和剥离强度的全面测试
    质子交换膜燃料电池(Proton Exchange Membrane Fuel Cell,简称PEMFC)作为一种新兴的低温燃料电池,具有效率高、工作温度低、零排放等优点,是新型绿色能源的主要发展方向之一。燃料电池是将化学能转化为电能的在线发电装置,由于突破了传统内燃机的效率限制,成为未来汽车动力装置发展的重要方向。燃料电池单体内部最重要的部件就是膜电极(Membrane Electrode Assembly,简称MEA),是燃料电池乃至新能源汽车动力部分的关键组成部分。 碳纸 —气体扩散层(GDL)基材最理想材料PEMFC的核心部件是膜电极组件,由两个催化层(CL)、两个气体扩散层(GDL)和一个质子交换膜(PEM)组成。气体扩散层是膜电极中的关键部分,起到支撑催化层、收集电流、传导气体和排出反应产物水的作用。常用的气体扩散层(GDL)基材主要有:碳纸、碳布、炭黑纸、金属材料等,其中碳纸因具有高导电性、耐腐蚀性以及出色的尺寸稳定性,是GDL基材的最理想材料。 质子交换膜燃料电池工作原理图 碳纸,又称为碳纤维纸,是质子交换膜燃料电池(PEMFC)的专用材料,即气体扩散层,主要作用是传导电流,引导反应气体从石墨板导流到触媒层,并把反应水排除在触媒层之外,是燃料电池膜电机组(MEA)中不可或缺的材料。 强度性能是碳纸的重要指标之一,具有较好强度的碳纸可为质子交换膜燃料电池的安装和使用带来保障,同时稳定整个电极的结构,提高电池的寿命。 因此,对碳纸材料进行拉伸、压缩、三点弯曲和剥离强度测试,可以有效检验碳纸强度,在碳纸材料的开发与规模化生产中发挥极为重要的作用。 岛津方案目前,碳纸作为新能源领域的新材料,仍然处于大规模生产的初级阶段,不同国家不同的碳纸制造商,因为技术与工艺的差异,对碳纸产品的技术参数尚未达成统一。国内多数企业参考《GB/T 20042.7-2014 质子交换膜燃料电池 第7部分碳纸特性测试方法》的要求,结合各自工艺水平,对碳纸材料从拉伸、压缩、弯曲、剥离多个方面进行测试评估。 岛津电子万能试验机,选择合适的夹具,按标准要求设定好试验方法,能够很方便地获取测试数据与曲线,大大提高碳纸力学测试的效率。 1拉伸测试将碳纸裁切为120×10mm的长条形试样,此次试验用碳纸厚度为0.19mm。裁切边缘尽量保持光滑平整。将裁切好的碳纸拉伸试样夹在1KN气动双推夹具上完成测试。碳纸拉伸测试与夹具碳纸拉伸测试应力-应变曲线 表1. 测试结果 从上图可知,试验机获取了客户所需的应力曲线,通过观察,6个试样的应力-应变曲线形态相似,从而判断碳纸拉伸性能比较均一。结合表中数据可知,最大应力分布在36~40MPa的区间内,拉伸强度的离散型也保持较好。 2压缩测试将碳纸裁成50×50mm的正方形,推荐选择带有调平功能的压盘夹具来完成超薄材料的压缩测试。碳纸压缩测试与可调平压盘 碳纸压缩测试载荷-行程曲线 表2. 测试结果如上图可知,根据岛津AGS-X电子万能试验机获取的压缩测试载荷-行程曲线,观察3个试样的测试曲线形态相似,从表中数据可知,最大应力分布在0.008-0.009MPa的区间内,数值稳定,说明三个碳纸试样的抗压性相似。 3三点弯曲测试将碳纸裁切成120×20mm长方形试样,保证切口光滑平整。碳纸三点弯曲试验选择岛津1KN塑料三点弯曲夹具。视频点击查看:https://mp.weixin.qq.com/s/9Aut652JEjR6-n6ay7Wo-Q 碳纸三点弯曲测试载荷-时间曲线 表3. 测试结果 从图表和三点弯曲载荷-时间曲线,以及抗弯强度差异不大,可判断3个试样的抗弯强度和断裂点载荷保持稳定,进而可判断本批次样品的抗压水平保持在一个水平。 4剥离测试将碳纸粘贴在不锈钢基板上,碳纸表面再贴上胶带。选用1KN气动拉伸夹具来完成拉伸测试。 使用岛津试验机与夹具进行碳纸180°剥离试验 结语使用岛津的AGS-X或AGX-V电子万能试验机,配合拉伸、压缩、三点弯曲、剥离各种不同的夹具与附件,符合现行标准或行业客户的自身测试要求,可以满足您对碳纸的各种力学测试与质量控制的需要,为碳纸规模化制造保驾护航。 撰稿人:王正宇 *本文内容非商业广告,仅供专业人士参考。
  • 燃料电池关键部件丨碳纸的拉伸、压缩、三点弯曲和剥离强度的全面测试
    质子交换膜燃料电池(Proton Exchange Membrane Fuel Cell,简称PEMFC)作为一种新兴的低温燃料电池,具有效率高、工作温度低、零排放等优点,是新型绿色能源的主要发展方向之一。燃料电池是将化学能转化为电能的在线发电装置,由于突破了传统内燃机的效率限制,成为未来汽车动力装置发展的重要方向。燃料电池单体内部最重要的部件就是膜电极(Membrane Electrode Assembly,简称MEA),是燃料电池乃至新能源汽车动力部分的关键组成部分。 碳纸 —气体扩散层(GDL)基材最理想材料PEMFC的核心部件是膜电极组件,由两个催化层(CL)、两个气体扩散层(GDL)和一个质子交换膜(PEM)组成。气体扩散层是膜电极中的关键部分,起到支撑催化层、收集电流、传导气体和排出反应产物水的作用。常用的气体扩散层(GDL)基材主要有:碳纸、碳布、炭黑纸、金属材料等,其中碳纸因具有高导电性、耐腐蚀性以及出色的尺寸稳定性,是GDL基材的最理想材料。质子交换膜燃料电池工作原理图 碳纸,又称为碳纤维纸,是质子交换膜燃料电池(PEMFC)的专用材料,即气体扩散层,主要作用是传导电流,引导反应气体从石墨板导流到触媒层,并把反应水排除在触媒层之外,是燃料电池膜电机组(MEA)中不可或缺的材料。 强度性能是碳纸的重要指标之一,具有较好强度的碳纸可为质子交换膜燃料电池的安装和使用带来保障,同时稳定整个电极的结构,提高电池的寿命。 因此,对碳纸材料进行拉伸、压缩、三点弯曲和剥离强度测试,可以有效检验碳纸强度,在碳纸材料的开发与规模化生产中发挥极为重要的作用。 岛津方案目前,碳纸作为新能源领域的新材料,仍然处于大规模生产的初级阶段,不同国家不同的碳纸制造商,因为技术与工艺的差异,对碳纸产品的技术参数尚未达成统一。国内多数企业参考《GB/T 20042.7-2014 质子交换膜燃料电池 第7部分碳纸特性测试方法》的要求,结合各自工艺水平,对碳纸材料从拉伸、压缩、弯曲、剥离多个方面进行测试评估。 岛津电子万能试验机,选择合适的夹具,按标准要求设定好试验方法,能够很方便地获取测试数据与曲线,大大提高碳纸力学测试的效率。 1拉伸测试将碳纸裁切为120×10mm的长条形试样,此次试验用碳纸厚度为0.19mm。裁切边缘尽量保持光滑平整。将裁切好的碳纸拉伸试样夹在1KN气动双推夹具上完成测试。碳纸拉伸测试与夹具碳纸拉伸测试应力-应变曲线 表1. 测试结果从上图可知,试验机获取了客户所需的应力曲线,通过观察,6个试样的应力-应变曲线形态相似,从而判断碳纸拉伸性能比较均一。结合表中数据可知,最大应力分布在36~40MPa的区间内,拉伸强度的离散型也保持较好。 2压缩测试将碳纸裁成50×50mm的正方形,推荐选择带有调平功能的压盘夹具来完成超薄材料的压缩测试。碳纸压缩测试与可调平压盘碳纸压缩测试载荷-行程曲线 表2. 测试结果如上图可知,根据岛津AGS-X电子万能试验机获取的压缩测试载荷-行程曲线,观察3个试样的测试曲线形态相似,从表中数据可知,最大应力分布在0.008-0.009MPa的区间内,数值稳定,说明三个碳纸试样的抗压性相似。 3三点弯曲测试将碳纸裁切成120×20mm长方形试样,保证切口光滑平整。碳纸三点弯曲试验选择岛津1KN塑料三点弯曲夹具。视频观看请点击:https://mp.weixin.qq.com/s/TzDqFlZRp7Gjnsyxl7sZ9Q碳纸三点弯曲测试载荷-时间曲线 表3. 测试结果 从图表和三点弯曲载荷-时间曲线,以及抗弯强度差异不大,可判断3个试样的抗弯强度和断裂点载荷保持稳定,进而可判断本批次样品的抗压水平保持在一个水平。 4剥离测试将碳纸粘贴在不锈钢基板上,碳纸表面再贴上胶带。选用1KN气动拉伸夹具来完成拉伸测试。使用岛津试验机与夹具进行碳纸180°剥离试验 结语 使用岛津的AGS-X或AGX-V电子万能试验机,配合拉伸、压缩、三点弯曲、剥离各种不同的夹具与附件,符合现行标准或行业客户的自身测试要求,可以满足您对碳纸的各种力学测试与质量控制的需要,为碳纸规模化制造保驾护航。 撰稿人:王正宇 *本文内容非商业广告,仅供专业人士参考。
  • 第四届AQUATECH CHINA国际水展即将在沪举行
    “水是生命之源、生产之要、生态之基”, 2011年的中央一号文件第一次把水问题提升到关系经济安全、生态安全、国家安全的战略高度。随着一号文件的落实和“十二五”规划纲要的出台,我国水市场的灿烂“钱景”正逐步展现。   据中投顾问产业研究中心提供的数据显示,仅污水处理及其再生利用行业2010年1-5月份期间就实现了累计产品销售收入4,912,220,000元,比上年同期增长了24.29% 同时实现累计利润总额278,256,000元,比上年同期增长了1471.71%。中国环保产业协会副秘书长郝淳表示,“十二五”期间,工业污水处理厂以及市政污水处理厂等领域会有超过1万亿元的投资空间。业内人士指出,随着我国工业化的进一步加速以及人口数量的持续增长,污水处理市场将在未来10年仍保持高增长,我国水市场也将同步进入高速发展期。   在中国水处理市场这块巨大“蛋糕”的引诱下,国内外水业巨头纷纷加快了拓展中国水市场的步伐。记者日前获悉,即将于2011年6月1日至3日在上海展览中心召开的第四届AQUATECH CHINA国际水展上,800余家国内外水行业精英将携其最先进的水处理技术、设备和解决方案到场“亮剑”。据主办方透露,今年参展的企业中,海外展商占50%。   AQUATECH国际水展1964年创立于荷兰,在欧洲、北美、亚洲等世界各地赢得行业盛誉。从2008年登陆中国以来,AQUATECH CHINA国际水展迅速成为国内最大规模的专业水展。本届AQUATECH CHINA国际水展规模达32000平米,GE、西门子、巴斯夫、ITT、陶氏化学、格兰富、得利满技术、滨特尔、ABB、亚什兰、凯发水务、宾泰克、帕萨旺-盖格、康丽根、A.O.史密斯、怡口净水、3M、伊瑞尔、熊津豪威等国际水行业领军企业纷纷亮相。海南立昇、碧水源、爱思特水务、景津压滤机、艾科、沃隆、南方泵业、巨龙、航天动力、九洲龙、山东志伟、侨兴等国内水行业精英也竞相参展。此外,以色列水技术展团、美国展团、WQA展团、台湾净水联盟展团等国家和地区的实力展团也将悉数到场。到场企业将涵盖污水处理、泵管阀、仪器仪表、膜及膜组件、杀菌消毒药剂及设备以及终端净水等水行业的各个方面。其中污水处理板块和泵阀板块作为独立展区面向专业买家。业内人士认为,AQUATECH CHINA在展示全球顶尖产品、技术和解决方案、构建互动交流平台的同时,也成为国内外企业拓展中国水务市场的重要渠道。   全球最大的泵业集团ITT带来的是 Flygt飞力N3000系列水泵,该水泵在原有Flygt飞力N系列水泵的技术基础上对叶轮进行了革新,增加了叶轮在泵送过程中向上跳动调节的能力,这一创新也使得N3000系列水泵具有更广泛的应用范围,更加节能高效。   西门子公司带来的IPS污泥堆肥系统。据西门子相关人士表示:西门子IPS污泥堆肥系统设计可以接纳脱水污泥和其它类型的有机废物,混合使用膨松剂使物料转化成高质量的堆肥产品。经过美国EPA认证,IPS污泥堆肥系统已经达到了深度杀灭病原体(PFRP)的要求。西门子有限公司工业业务领域工业解决方案集团副总裁、西门子水处理技术部总经理吴惠德表示,我国污泥处理市场、海水淡化市场与高难度废水处理市场前景看好,这些市场的需求将会给西门子的发展带来新的机遇。   国内企业在水展上也将亮出最新力作。隶属中国航天推进技术研究院的上海航天动力科技工程有限公司将展示其新型节能环保叠压给水设备,该设备采用环保的旁通管理设计以及航天特有的变流恒压泵等先进技术,能够充分保证供水水质环保卫生、水压稳定,且比传统的出口恒压设备节能15%。山东德天环保科技有限公司将在展会展示其主打产品连续式砂滤机,该设备除了滤砂与空气外,不需动力机械设备及阀类,可有效降低设备保养所需之人力、物力。业内人士表示,这些行业顶尖的技术应用将成为各企业打开广阔水处理市场的“金钥匙”。   展会同期还将举行“水”整合解决方案论坛(IAS大会)、市政高层论坛、IWA国际水协会高端研讨会、第二届二氧化氯与水处理药剂研讨会、第五届全国污泥处理及资源利用大会、2011石油和化工行业水处理新技术、新设备交流研讨会等30多场高端论坛,诸多会议将汇聚全球水业精英共商最新水解决方案。同时,如何抓住水行业发展机遇提升企业竞争力、拓宽企业发展空间,也将是本届大会精英论坛的重要议题。   专家指出,随着水资源状况日益恶化,水问题的严重性和重要性已日益成为社会各界的共识。在这样的背景下,我国的水务市场将继续得到政策的鼓励,水行业将成为中国未来发展最快的产业之一。同时,随着国际水巨头的介入,水处理市场竞争日趋激烈,“有实力,更爱表现”的企业将会获得更多的市场机会。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制