当前位置: 仪器信息网 > 行业主题 > >

丙基环己基

仪器信息网丙基环己基专题为您提供2024年最新丙基环己基价格报价、厂家品牌的相关信息, 包括丙基环己基参数、型号等,不管是国产,还是进口品牌的丙基环己基您都可以在这里找到。 除此之外,仪器信息网还免费为您整合丙基环己基相关的耗材配件、试剂标物,还有丙基环己基相关的最新资讯、资料,以及丙基环己基相关的解决方案。

丙基环己基相关的资讯

  • 上海有机所金属铱催化的烯丙基取代反应研究取得新进展
    过渡金属催化惰性碳氢键的直接官能团化反应在近年来受到化学研究工作者的极大关注,并取得了重要进展,但在这类反应中,剧烈的反应条件,当量氧化剂的使用,以及选择性难以控制等依旧是其应用中的主要制约因素。此外,从烯烃出发实现烯烃碳氢键活化的工作也非常少见。 铱催化剂催化烯丙基取代反应 2009年,中国科学院上海有机化学研究所金属有机国家重点实验室的研究人员发现金属铱催化的基于自由胺基协助双键末端碳氢键活化,在[Ir(COD)Cl]2和Feringa配体的催化体系作用下,邻胺基苯乙烯类化合物与烯丙基碳酸酯可以发生直接的烯丙基烯基化反应,立体选择性地得到顺式双键产物(J. Am. Chem. Soc. 2009, 131, 8346-8346),反应条件温和,原料简单易得。这一方法为构建顺式双键提供了新的策略和思路。结果发表以后被Synfacts积极评述(Synfacts, 2009, 9, 0987)。这也是金属铱催化直接烯丙基烯基化反应的首例报道。 铱催化剂催化合成苯并氮杂七元环化合物 最近,研究人员在这一研究发现的基础上,通过巧妙的设计,在[Ir(COD)Cl]2和Feringa配体的催化下,邻胺基苯乙烯类化合物和烯丙基双碳酸甲酯反应,可以实现串联的烯丙基烯基化与分子内不对称烯丙基胺化反应,高收率、高对映选择性地合成苯并氮杂七元环类化合物。所得具有光学活性的苯并氮杂七元环类化合物,可以方便地转化为结构复杂多环化合物,为合成苯并氮杂七元环这一在许多天然产物和药物分子中都广泛存在的一类骨架提供了有效的方法。这一部分工作已发表在Angew. Chem. Int. Ed., 2010, 49, 1496-1499上。结果发表以后被Synfacts积极评述(Synfacts, 2010, 4, 0446)。 这些研究工作获得国家自然科学基金委面上项目和科技部973项目的资助。(摘自有机化学网)
  • 大连化物所铜催化不对称炔丙基转化研究取得新进展
    p   近日,中国科学院大连化学物理研究所研究员胡向平领导的研究团队在铜催化不对称炔丙基转化研究中取得新进展,通过运用一种脱硅活化的新策略,成功实现了Cu-催化的炔丙醇酯与β-萘酚及富电子苯酚间的不对称[3+2]环加成反应,相关研究结果以通讯形式发表在最新一期的《德国应用化学》(Angew. Chem. Int. Ed. 2016, 55, 5014-5018)上。 /p p   在炔丙基转化反应中,有效形成亚丙二烯基铜活性中间体是实现反应的关键。针对传统的由端基炔丙基化合物形成亚丙二烯基铜活性中间体能力不足的缺点,该研究利用铜能高效促进Csp-Si键开裂的特点,提出以三甲基硅基保护的炔丙醇酯为底物,通过脱硅活化的策略,实现亚丙二烯基铜活性中间体的不可逆形成。基于这一反应策略,研究组利用自主发展的高位阻手性P,N,N-配体,成功实现了炔丙醇酯与β-萘酚及富电子苯酚间的不对称[3+2]环加成反应。这是该研究组继2014年提出脱羧活化的炔丙基转化策略(Angew. Chem. Int. Ed. 2014, 53, 1410-1414)后,在炔丙基转化反应中实现的又一催化活化策略。这些反应策略的提出与实现有效拓展了催化不对称炔丙基转化反应研究的思路。 /p p   上述研究工作得到国家自然科学基金委的资助。 /p p style=" text-align: center " img style=" width: 500px height: 216px " title=" W020160419304595129181.jpg" border=" 0" hspace=" 0" vspace=" 0" src=" http://img1.17img.cn/17img/images/201604/insimg/dc0e2990-2b81-4183-b6ca-5d3434096321.jpg" width=" 500" height=" 216" / /p p style=" text-align: center "    span style=" font-size: 14px " 大连化物所铜催化不对称炔丙基转化研究取得新进展 /span /p p style=" text-align: center " & nbsp /p
  • 博纳艾杰尔推出丙基酰胺键合硅胶色谱柱
    Venusil HILIC亲水作用色谱柱   亲水作用色谱(Hydrophilic Interaction Chromatography,HILIC)是近年来色谱领域研究的热点,博纳艾杰尔科技推出丙基酰胺键合硅胶为基质的HILIC色谱柱, 对极性化合物,如极性代谢物,碳水化合物或肽具有极佳的分离效果。   丙基酰胺键合硅胶克服了传统正相色谱柱在水相条件下不稳定的缺点,其常使用流动相是和反相色谱相同的水相缓冲液( 40%)及有机溶剂,但是其梯度条件通常是初始为高比例有机相,逐步加大水相含量 极性丙基酰胺键合硅胶的HILIC色谱柱在反相条件下,可以有效的保留极性化合物,是一种崭新的极性化合物HPLC分离解决方式.      图1. Venusil HILIC 比传统正相色谱柱更稳定   样 品:VB1, VB6, VC, VB2   老化条件:甲醇:20 mM NaH2PO4 (pH=7.0) = 40 : 60 1.0mL/min 温度:40℃   分析条件:0.1%TFA:ACN = 90:10 流速: 1.0mL/min 温度:30℃ ,UV280nm      色谱柱: Atlantis C18 4.6×250mm,5μm   流动相:98%的0.005M的磷酸 钠 (pH=7):2% 甲醇   流 速: 1ml/min   柱 温: 25℃   检 测: UV 210nm      色谱柱:Venusil HILIC 4.6×250mm,5μm   流动相: A: 0.1%TFA水溶液,   B: 乙腈,   A:B=75:25   流 速: 1 mL/min   温 度: 25℃   检 测: UV 210 nm   图2. Venusil HILIC与C18分离井冈霉素对比色谱图   图2. 结果显示,反相C18在98%的水相条件下,几乎没有保留的强极性化合物井冈霉素,在25%的乙腈条件下,使用丙基酰胺键合硅胶的Venusil HILIC得到了很好的分离。所以,Venusil HILIC色谱柱是强极性化合物分离的有力工具。   丙基酰胺键合硅胶的HILIC色谱柱用于低聚糖的分析,显示出比氨基柱更好的稳定性,更好的分离效果,尤其在使用ELSD检测器的时候,丙基酰胺键合硅胶比氨基键合硅胶具有更低的背景噪音,图3。      图3. 丙基酰胺键合硅胶HILIC色谱柱与氨基键合硅胶柱分离葡萄糖对比   样品:葡萄糖标准品(购至Sigma)   检测:ELSD   色谱柱:4.6×250mm,5μm   色谱条件:乙腈/水(80:20),1mL/min,30℃   图3显示,丙基酰胺键合硅胶填充的HILIC色谱柱可以将葡萄糖在水溶液中存在的两个端基异构体(即α-D-葡萄糖和β-D-葡萄糖)区分开,而用氨基柱则只能得到一个相对较宽的色谱峰,结果表明了丙基酰胺键合硅胶HILIC柱在分析糖类成分方面的独特优势。   腺苷类强极性抗肿瘤药物地西他滨(Decitabine)在普通的反相C18色谱柱上检测有关物质存在杂质分离度不够或检测不出的问题,使用丙基酰胺键合硅胶的Venusil HILIC色谱柱获得了极佳的分离效果,图4。      图4. 地西他滨有关物质分析色谱图   Venusil HILIC(丙基酰胺键合硅胶),4.6×150mm,5μm,乙腈:水=96∶4,1ml/min,   UV@244nm,室温 Venusil HILIC 丙基酰胺键合硅胶.pdf
  • 上海有机所在PdH催化的不对称迁移烯丙基取代研究中获进展
    中国科学院上海有机化学研究所天然产物有机合成化学重点实验室研究员何智涛课题组在Nature Communications上,在线发表了题为Palladium-Catalyzed Regio- and Enantioselective Migratory Allylic C(sp3)-H Functionalization的研究论文。该工作利用链行走的策略为惰性烯丙位C-H键的不对称官能团化提供了新思路,揭示出亲核试剂的pKa值对迁移和取代历程的影响,并通过机理研究阐释和验证了反应的基本历程。  相较于传统带有离去基的烯丙基取代反应,不对称烯丙基C-H键的直接官能团化更为直接和步骤经济。目前,该领域的研究仍面临诸多问题。大部分相关催化工作要求烯丙位C-H被相邻的杂原子或sp2碳单元进一步活化,对非活化的烯丙位C-H键的不对称官能团化的研究相对局限。过渡金属催化的链行走策略已被证实可以有效活化远程的惰性C-H键。基于此,科研人员设想利用过渡金属参与的链行走策略来定位烯丙位的C-H金属化,由此产生的稳定烯丙基金属中间体再被分子间的亲核试剂捕获,从而实现非活化的烯丙位C-H键的高效不对称官能团化(图1)。  该反应对于不同的链长度和取代基均有较为突出的结果,兼容复杂迁移体系的同时也能实现了手性控制(图2)。此外,亲核试剂的pKa值与反应的活性密切相关。只有当亲核试剂的pKa值处于13-18间时才有相对较高的反应活性。pKa值高的亲核试剂往往无法促进开始的烯烃迁移的发生,而pKa值低的亲核试剂虽能有效实现金属迁移,但却具有相对较弱的亲核取代能力。  进一步探究反应机理(图3)并结合传统的迁移反应和烯丙基取代过程,研究推测,反应可能首先由二价钯在亲核试剂作用下还原形成零价钯启动,随后在碱的作用下被质子氧化形成二价PdH物种,与末端烯烃配位继而发生快速链行走过程得到烯丙基钯中间体,再接受亲核试剂的进攻,从而得到烯丙位C-H官能团化的产物,同时再生零价钯完成催化循环历程。研究发现,反应初期存在诱导期,为初始零价钯形成过程。该串联过程对于催化剂和亲核试剂均呈现出一级反应,而对二烯底物的动力学符合Micheaelis-Menten模型,即饱和动力学关系,由此推断反应决速步为亲核取代过程。   研究工作得到国家自然科学基金委员会、上海市科学技术委员会、中科院等的资助。
  • 卫生部公布58个食品添加剂产品标准
    中 华 人民 共 和 国 卫 生 部 公 告   2011年 第8号   根据《中华人民共和国食品安全法》、卫生部等9部门《关于加强食品添加剂监督管理工作的通知》(卫监督发〔2009〕89号)和卫生部2011年第6号公告等规定,卫生部组织中国疾病预防控制中心参照国际标准,指定D-甘露糖醇等58个食品添加剂产品标准。   特此公告。   附件:1.D-甘露糖醇等58个食品添加剂产品标准目录   2.D-甘露糖醇等58个食品添加剂产品标准.rar   二○一一年三月十八日   附件1   D-甘露糖醇等58个食品添加剂产品标准目录 编号 标准名称 1. D-甘露糖醇 2. 羟丙基甲基纤维素(HPMC) 3. 氢化松香甘油酯 4. 乳酸脂肪酸甘油酯 5. 松香季戊四醇酯 6. 乙二胺四乙酸二钠 7. 乙酰化单、双甘油脂肪酸酯 8. 乙氧基喹 9. 硬脂酸钙 10. 硬脂酸镁 11. 硬脂酰乳酸钙 12. 硬脂酰乳酸钠 13. 月桂酸 14. 羟基硬脂精(氧化硬脂精) 15. 偶氮甲酰胺 16. 抗坏血酸棕榈酸酯 17. 硫代二丙酸二月桂酯 18. 微晶纤维素 19. 丙二醇脂肪酸酯 20. 聚甘油脂肪酸酯(聚甘油单硬脂酸酯,聚甘油单油酸酯) 21. 刺云实胶 22. 柠檬酸一钠 23. 巴西棕榈蜡 24. 蜂蜡 25. 乳糖醇 26. 5'胞苷酸二钠 27. d-核糖 28. 3-环己基丙酸烯丙酯 29. 辛酸乙酯 30. 棕榈酸乙酯 31. 甲酸香茅酯 32. 甲酸香叶酯 33. 乙酸香叶酯 34. 乙酸橙花酯 35. 己醛 36. 正癸醛(癸醛) 37. 乙酸丙酯 38. 乙酸2-甲基丁酯 39. 异丁酸乙酯 40. 异戊酸3-己烯酯 41. 2-甲基丁酸3-己烯酯 42. 2-甲基丁酸2-甲基丁酯 43. γ-己内酯 44. γ-庚内酯 45. γ-癸内酯 46. δ-癸内酯 47. γ-十二内酯 48. δ-十二内酯 49. 2,6-二甲基-5-庚烯醛 50. 2-甲基-4-戊烯酸(又名浆果酸) 51. 芳樟醇 52. 乙酸松油酯 53. 二氢香芹醇 54. d-香芹酮 55. l-香芹酮 56. α-紫罗兰酮 57. 罗望子多糖胶 58. 左旋肉碱
  • 910万!广东省公安厅2023-100禁毒检测试剂消耗品采购项目
    一、项目基本情况项目编号:0809-2341GDG14250项目名称:广东省公安厅2023-100禁毒检测试剂消耗品采购项目采购方式:公开招标预算金额:9,104,695.90元采购需求:合同包1(依托咪酯快检试剂):合同包预算金额:2,400,000.00元品目号品目名称采购标的数量(单位)技术规格、参数及要求品目预算(元)最高限价(元)1-1化学试剂和助剂吗啡、甲基安非他明、氯胺酮、依托咪酯(4合1)检测试剂(胶体金法)80,000(人份)详见采购文件2,400,000.00-本合同包不接受联合体投标合同履行期限:合同服务期为一年。当1年合同服务期满或货物总额累计结算达到各包组的每年预算金额时先到为准,服务合同自动终止。合同包2(毒品标准品及对照品):合同包预算金额:1,327,726.00元品目号品目名称采购标的数量(单位)技术规格、参数及要求品目预算(元)最高限价(元)2-1化学试剂和助剂吗啡一水合物3(瓶)详见采购文件1,764.00-2-2化学试剂和助剂甲卡西酮外消旋体盐酸盐3(瓶)详见采购文件3,186.00-2-3化学试剂和助剂苯丙胺盐酸盐3(瓶)详见采购文件1,764.00-2-4化学试剂和助剂可待因3(瓶)详见采购文件1,764.00-2-5化学试剂和助剂替苯丙胺盐酸盐3(瓶)详见采购文件2,175.00-2-6化学试剂和助剂去氧麻黄碱外消旋体盐酸盐3(瓶)详见采购文件1,764.00-2-7化学试剂和助剂二亚甲基双氧安非他明盐酸盐3(瓶)详见采购文件2,175.00-2-8化学试剂和助剂氟胺酮3(瓶)详见采购文件5,850.00-2-9化学试剂和助剂4-甲氧基甲基苯丙胺盐酸盐3(瓶)详见采购文件4,746.00-2-10化学试剂和助剂盐酸去甲氯胺酮3(瓶)详见采购文件3,675.00-2-11化学试剂和助剂去甲芬太尼盐酸盐一水合物3(瓶)详见采购文件4,800.00-2-12化学试剂和助剂苯甲酰爱康宁3(瓶)详见采购文件1,764.00-2-13化学试剂和助剂氯胺酮3(瓶)详见采购文件1,764.00-2-14化学试剂和助剂盐酸曲马多3(瓶)详见采购文件4,500.00-2-15化学试剂和助剂瑞芬太尼盐酸盐3(瓶)详见采购文件5,952.00-2-16化学试剂和助剂哌替啶盐酸盐3(瓶)详见采购文件1,764.00-2-17化学试剂和助剂去环丙甲基丁丙诺啡3(瓶)详见采购文件14,256.00-2-18化学试剂和助剂可卡因3(瓶)详见采购文件1,764.00-2-19化学试剂和助剂麦角二乙胺3(瓶)详见采购文件4,800.00-2-20化学试剂和助剂芬太尼盐酸盐3(瓶)详见采购文件1,410.00-2-21化学试剂和助剂丁丙诺啡盐酸盐3(瓶)详见采购文件15,840.00-2-22化学试剂和助剂舒芬太尼3(瓶)详见采购文件4,416.00-2-23化学试剂和助剂5-二甲基-3,3-二苯基氮杂戊环高氯酸盐3(瓶)详见采购文件2,646.00-2-24化学试剂和助剂美沙酮盐酸盐3(瓶)详见采购文件1,764.00-2-25化学试剂和助剂芬特明盐酸盐3(瓶)详见采购文件3,660.00-2-26化学试剂和助剂羟考酮3(瓶)详见采购文件4,560.00-2-27化学试剂和助剂安非拉酮盐酸盐3(瓶)详见采购文件9,030.00-2-28化学试剂和助剂替来他明盐酸盐3(瓶)详见采购文件4,320.00-2-29化学试剂和助剂乙基去甲氟胺酮盐酸盐3(瓶)详见采购文件7,950.00-2-30化学试剂和助剂2-(乙氨基)-2-苯基环己-1-酮盐酸盐3(瓶)详见采购文件12,780.00-2-31化学试剂和助剂地佐辛盐酸盐一水合物3(瓶)详见采购文件13,050.00-2-32化学试剂和助剂甲胺酮盐酸盐3(瓶)详见采购文件11,940.00-2-33化学试剂和助剂哌醋甲酯盐酸盐3(瓶)详见采购文件2,865.00-2-34化学试剂和助剂依托咪酯3(瓶)详见采购文件2,925.00-2-35化学试剂和助剂甲喹酮3(瓶)详见采购文件4,260.00-2-36化学试剂和助剂地芬诺酯盐酸盐3(瓶)详见采购文件12,570.00-2-37化学试剂和助剂N-(1-氨甲酰基-2,2-二甲基丙基)-1-丁基吲唑-3-甲酰胺3(瓶)详见采购文件11,550.00-2-38化学试剂和助剂N-(1-氨甲酰基-2,2-二甲基丙基)-1-(4-戊烯基)吲唑-3-甲酰胺3(瓶)详见采购文件11,550.00-2-39化学试剂和助剂3,3-二甲基-2-[1-(4-氟丁基)吲哚-3-甲酰氨基]丁酸甲酯3(瓶)详见采购文件11,550.00-2-40化学试剂和助剂2-[1-(4-氟苄基)-1H-吲哚-3-甲酰氨基]-3-甲基丁酸甲酯3(瓶)详见采购文件11,550.00-2-41化学试剂和助剂N-(1-甲基-1-苯基乙基)-1-(4-氰基丁基)吲唑-3-甲酰胺3(瓶)详见采购文件11,550.00-2-42化学试剂和助剂2-[1-(5-氟戊基)-1H-吲哚-3-甲酰氨基]-3,3-二甲基丁酸甲酯3(瓶)详见采购文件11,550.00-2-43化学试剂和助剂N-(1-乙氧基羰基-2-甲基丙基)-1-(5-氟戊基)吲哚-3-甲酰胺3(瓶)详见采购文件11,550.00-2-44化学试剂和助剂2-[1-(4-氟丁基)-1H-吲唑-3-甲酰氨基]-3,3-二甲基丁酸甲酯3(瓶)详见采购文件11,550.00-2-45化学试剂和助剂2-[1-(5-氟戊基)-1H-吲哚-3-甲酰氨基]-3-苯丙酸甲酯3(瓶)详见采购文件11,550.00-2-46化学试剂和助剂N'-(1-(5-氟戊基)-2-氧代吲哚-3-亚基)苯甲酰肼3(瓶)详见采购文件11,550.00-2-47化学试剂和助剂3,3-二甲基-2-[1-(5-氟戊基)吲哚-3-甲酰氨基]丁酸乙酯3(瓶)详见采购文件11,550.00-2-48化学试剂和助剂3,3-二甲基-2-[1-(5-氟戊基)吲唑-3-甲酰氨基]丁酸甲酯3(瓶)详见采购文件7,470.00-2-49化学试剂和助剂3,3-二甲基-2-[1-(4-戊烯-1-基)-1H-吲唑-3-甲酰氨基]丁酸甲酯3(瓶)详见采购文件11,550.00-2-50化学试剂和助剂N'-(1-戊基-2-氧代吲哚-3-亚基)苯甲酰肼3(瓶)详见采购文件11,550.00-2-51化学试剂和助剂N'-(1-己基-2-氧代吲哚-3-亚基)苯甲酰肼3(瓶)详见采购文件11,550.00-2-52化学试剂和助剂3,3-二甲基-2-(1-戊基-1H-吲唑-3-甲酰氨基)丁酸乙酯3(瓶)详见采购文件11,550.00-2-53化学试剂和助剂[1-(4-氟苄基)-1H-吲哚-3-基](2,2,3,3-四甲基环丙基)甲酮3(瓶)详见采购文件6,720.00-2-54化学试剂和助剂N-(1-金刚烷基)-1-(4-氟丁基)吲唑-3-甲酰胺3(瓶)详见采购文件11,550.00-2-55化学试剂和助剂N-(金刚烷-1-基)-1-(5-氯戊基)-1H-吲唑-3-甲酰胺3(瓶)详见采购文件11,550.00-2-56化学试剂和助剂N-(金刚烷-1-基)-1-(环己基甲基)-1H-吲唑-3-甲酰胺3(瓶)详见采购文件11,550.00-2-57化学试剂和助剂羟基可替宁1(瓶)详见采购文件1,538.00-2-58化学试剂和助剂乙酰芬太尼1(瓶)详见采购文件1,397.00-2-59化学试剂和助剂甲氧麻黄酮1(瓶)详见采购文件749.00-2-60化学试剂和助剂去甲氟胺酮1(瓶)详见采购文件8,826.00-2-61化学试剂和助剂溴胺酮1(瓶)详见采购文件7,310.00-2-62化学试剂和助剂3-[1-(哌啶-1-基)环己基]苯酚盐酸盐1(瓶)详见采购文件1,554.00-2-63化学试剂和助剂地西泮1(瓶)详见采购文件562.00-2-64化学试剂和助剂依替唑仑1(瓶)详见采购文件8,353.00-2-65化学试剂和助剂艾司唑仑1(瓶)详见采购文件1,456.00-2-66化学试剂和助剂利多卡因盐酸盐一水合物1(瓶)详见采购文件1,058.00-2-67化学试剂和助剂盐酸甲苯噻嗪1(瓶)详见采购文件428.00-2-68化学试剂和助剂N-(1-氨基-3,3-二甲基-1-氧代丁-2-基)-1-丁基-1H-吲唑-3-甲酰胺1(瓶)详见采购文件7,084.00-2-69化学试剂和助剂3,3-二甲基-2-[1-(4-戊烯-1-基)-1H -吲唑-3-甲酰胺基]丁酸1(瓶)详见采购文件9,000.00-2-70化学试剂和助剂3,3-二甲基-2-[1-(4-丁醇)吲哚-3-甲酰氨基]丁酸甲酯1(瓶)详见采购文件9,000.00-2-71化学试剂和助剂咖啡因-D31(瓶)详见采购文件8,838.00-2-72化学试剂和助剂那可汀-D31(瓶)详见采购文件2,800.00-2-73化学试剂和助剂N-蒂巴因-D31(瓶)详见采购文件3,276.00-2-74化学试剂和助剂罂粟碱-D61(瓶)详见采购文件3,276.00-2-75化学试剂和助剂舒芬太尼-D51(瓶)详见采购文件9,000.00-2-76化学试剂和助剂去甲氟胺酮-D41(瓶)详见采购文件6,375.00-2-77化学试剂和助剂地西泮-D51(瓶)详见采购文件506.00-2-78化学试剂和助剂羟基可替宁1(瓶)详见采购文件1,538.00-2-79化学试剂和助剂去甲乙酰芬太尼盐酸盐一水合物1(瓶)详见采购文件1,648.00-2-80化学试剂和助剂4-苯胺基-N-苯乙基哌啶二盐酸盐一水合物1(瓶)详见采购文件5,860.00-2-81化学试剂和助剂可替宁3(瓶)详见采购文件3,000.00-2-82化学试剂和助剂吗啡-D33(瓶)详见采购文件18,000.00-2-83化学试剂和助剂O6-单乙酰吗啡-D33(瓶)详见采购文件18,000.00-2-84化学试剂和助剂去氧麻黄碱外消旋体盐酸盐-D53(瓶)详见采购文件7,788.00-2-85化学试剂和助剂苯丙胺-D53(瓶)详见采购文件36,000.00-2-86化学试剂和助剂氯胺酮-D43(瓶)详见采购文件22,500.00-2-87化学试剂和助剂去甲氯胺酮-D43(瓶)详见采购文件22,500.00-2-88化学试剂和助剂3,4-亚甲二氧基甲基苯丙胺-D53(瓶)详见采购文件18,000.00-2-89化学试剂和助剂3,4-亚甲二氧基苯丙胺-D53(瓶)详见采购文件22,500.00-2-90化学试剂和助剂可卡因-D33(瓶)详见采购文件18,000.00-2-91化学试剂和助剂苯甲酰爱康宁-D33(瓶)详见采购文件18,000.00-2-92化学试剂和助剂四氢大麻酸-D33(瓶)详见采购文件22,500.00-2-93化学试剂和助剂可替宁-D33(瓶)详见采购文件18,000.00-2-94化学试剂和助剂甲卡西酮-D33(瓶)详见采购文件22,500.00-2-95化学试剂和助剂氟胺酮-D43(瓶)详见采购文件19,125.00-2-96化学试剂和助剂PMMA-D33(瓶)详见采购文件19,350.00-2-97化学试剂和助剂芬太尼-D5盐酸盐3(瓶)详见采购文件7,680.00-2-98化学试剂和助剂去苯乙基芬太尼-D53(瓶)详见采购文件18,000.00-2-99化学试剂和助剂去苯乙基乙酰芬太尼-13C63(瓶)详见采购文件35,607.00-2-100化学试剂和助剂4-ANPP-D53(瓶)详见采购文件36,000.00-2-101化学试剂和助剂可待因-D63(瓶)详见采购文件36,000.00-2-102化学试剂和助剂美沙酮-D33(瓶)详见采购文件18,000.00-2-103化学试剂和助剂曲马多-D33(瓶)详见采购文件25,950.00-2-104化学试剂和助剂钯ICP标准液1(瓶)详见采购文件612.10-2-105化学试剂和助剂银ICP标准液1(瓶)详见采购文件388.02-2-106化学试剂和助剂金ICP标准液1(瓶)详见采购文件612.10-2-107化学试剂和助剂铅ICP标准液1(瓶)详见采购文件611.93-2-108化学试剂和助剂汞ICP标准液1(瓶)详见采购文件611.93-2-109化学试剂和助剂磷ICP标准液1(瓶)详见采购文件351.02-2-110化学试剂和助剂1-苄基-1H-咪唑-5-羧酸1(瓶)详见采购文件1,200.00-2-111化学试剂和助剂碘化钾1(瓶)详见采购文件92.90-2-112化学试剂和助剂甲醇中D-依托咪酯溶液3(瓶)详见采购文件900.00-2-113化学试剂和助剂甲醇中D-依托咪酯-D5溶液3(瓶)详见采购文件6,900.00-2-114化学试剂和助剂甲醇中依托咪酯酸溶液3(瓶)详见采购文件2,700.00-2-115化学试剂和助剂海洛因3(瓶)详见采购文件9,699.00-2-116化学试剂和助剂氯胺酮1(瓶)详见采购文件2,613.00-2-117化学试剂和助剂左旋甲基苯丙胺盐酸盐1(瓶)详见采购文件4,067.00-2-118化学试剂和助剂右旋甲基苯丙胺盐酸盐1(瓶)详见采购文件3,658.00-2-119化学试剂和助剂麻黄碱1(瓶)详见采购文件2,613.00-2-120化学试剂和助剂二亚甲基双氧安非他明盐酸盐1(瓶)详见采购文件2,613.00-2-121化学试剂和助剂乙酰可待因1(瓶)详见采购文件6,533.00-2-122化学试剂和助剂O3-单乙酰吗啡氨基磺酸盐1(瓶)详见采购文件5,500.00-2-123化学试剂和助剂可卡因1(瓶)详见采购文件2,613.00-2-124化学试剂和助剂吗啡一水合物1(瓶)详见采购文件2,613.00-2-125化学试剂和助剂1-苯基-2-丙酮1(瓶)详见采购文件4,800.00-2-126化学试剂和助剂3,4-亚甲基二氧苯基-2-丙酮1(瓶)详见采购文件4,800.00-2-127化学试剂和助剂胡椒醛1(瓶)详见采购文件4,800.00-2-128化学试剂和助剂N-乙酰氨基苯甲酸(N-乙酰邻氨基苯甲酸)1(瓶)详见采购文件7,060.00-2-129化学试剂和助剂邻氨基苯甲酸1(瓶)详见采购文件7,060.00-2-130化学试剂和助剂羟亚胺盐酸盐1(瓶)详见采购文件8,826.00-2-131化学试剂和助剂邻氯苯基环戊酮1(瓶)详见采购文件8,826.00-2-132化学试剂和助剂1-苯基-2-溴-1-丙酮(α-溴代苯丙酮)1(瓶)详见采购文件4,800.00-2-133化学试剂和助剂4-苯氨基-N-苯乙基哌啶1(瓶)详见采购文件5,860.00-2-134化学试剂和助剂黄樟素1(瓶)详见采购文件4,800.00-2-135化学试剂和助剂N-苯乙基-4-哌啶酮1(瓶)详见采购文件5,860.00-2-136化学试剂和助剂N-甲基-1-苯基-1-氯-2-丙胺盐酸盐1(瓶)详见采购文件4,800.00-2-137化学试剂和助剂γ-丁内酯1(瓶)详见采购文件3,768.00-2-138化学试剂和助剂3-氧-2-苯基丁腈(α-氰基苯丙酮)1(瓶)详见采购文件3,325.00-2-139化学试剂和助剂溴西泮1(瓶)详见采购文件2,613.00-2-140化学试剂和助剂可待因1(瓶)详见采购文件2,613.00-2-141化学试剂和助剂地西泮1(瓶)详见采购文件1,295.00-2-142化学试剂和助剂艾司唑仑1(瓶)详见采购文件1,786.00-2-143化学试剂和助剂美沙酮盐酸盐1(瓶)详见采购文件2,613.00-2-144化学试剂和助剂安眠酮(甲喹酮)1(瓶)详见采购文件2,613.00-2-145化学试剂和助剂Δ9-四氢大麻酚1(瓶)详见采购文件1,034.00-2-146化学试剂和助剂三唑仑1(瓶)详见采购文件3,140.00-2-147化学试剂和助剂氟胺酮1(瓶)详见采购文件4,873.00-2-148化学试剂和助剂麦角二乙胺1(瓶)详见采购文件1,600.00-2-149化学试剂和助剂芬太尼1(瓶)详见采购文件195.00-2-150化学试剂和助剂1-[1-(3-甲氧基苯基)环己基]哌啶盐酸盐1(瓶)详见采购文件8,826.00-2-151化学试剂和助剂亚甲基二氧吡咯戊酮盐酸盐1(瓶)详见采购文件8,857.00-2-152化学试剂和助剂N-甲基-N-异丙基-5-甲氧基色胺1(瓶)详见采购文件6,213.00-2-153化学试剂和助剂N-(1-氨基-3,3-二甲基-1-氧亚基丁-2-基)-1-(戊-4-烯-1-基)-1H-吲唑-3-甲酰胺 (ADB-4en-PINACA)1(瓶)详见采购文件7,084.00-2-154化学试剂和助剂3,3-二甲基-2-[1-(4-戊烯-1-基)-1H-吲唑-3-甲酰氨基]丁酸甲酯 (MDMB-4en-PINACA)1(瓶)详见采购文件7,084.00-2-155化学试剂和助剂N-(1-氨基-3,3-二甲基-1-氧亚基丁-2-基)-1-丁基-1H-吲唑-3-甲酰胺 (ADB-BUTINACA)1(瓶)详见采购文件7,084.00-2-156化学试剂和助剂1-(4-氰基丁基)-N-(2-苯基丙-2-基)-1H-吲唑-3-甲酰胺 (4CN-CUMYL-BUTINACA)1(瓶)详见采购文件7,084.00-2-157化学试剂和助剂2-[1-(5-氟戊基)-1H-吲哚-3-甲酰氨基]-3-甲基丁酸乙酯 (5F-EMB-PICA)1(瓶)详见采购文件7,084.00-2-158化学试剂和助剂2-[1-(5-氟戊基)-1H-吲哚-3-甲酰氨基]-3,3-二甲基丁酸甲酯 (5F-MDMB-PICA)1(瓶)详见采购文件7,084.00-2-159化学试剂和助剂2-[1-(4-氟丁基)-1H-吲唑-3-甲酰氨基]-3,3-二甲基丁酸甲酯 (4F-MDMB-BUTINACA)1(瓶)详见采购文件7,084.00-2-160化学试剂和助剂N-(1-金刚烷基)-1-(4-氟丁基)吲唑-3-甲酰胺 (4F-ABUTINACA)1(瓶)详见采购文件7,084.00-2-161化学试剂和助剂N-(1-氨甲酰基-2-甲基丙基)-1-(4-氟苄基)吲唑-3-甲酰胺 (AB-FUBINACA)1(瓶)详见采购文件2,452.00-2-162化学试剂和助剂赛洛新1(瓶)
  • 食药总局:网络食安问题电商平台将承担连带责任
    国家食品药品监督管理总局今日在北京召开新闻发布会,公布《网络食品安全违法行为查处办法》。据悉,该《办法》包括总则、网络食品安全义务、网络食品安全违法行为查处管理、法律责任、附则等,共五章48条,该办法将于2016年10月1日起实施。草酸二水合物 Oxalic acid dihydrate 6153-56-6双[3-(三乙氧基甲硅烷基)丙基]四硫化物 Bis[3-(triethoxysilyl)propyl] tetrasulfide 40372-72-3D-薄荷醇 D-Menthol 15356-60-2L-薄荷醇 L-Menthol 2216-51-51-十二烷醇 1-Dodecanol 112-53-81-十二烷醇 1-Dodecanol 112-53-81-十二烷醇 1-Dodecanol 112-53-81-辛醇 1-Octanol 111-87-55-甲基呋喃醛 5-Methylfurfural 620-02-0N-环己基甲酰胺 N-Cyclohexylformamide 766-93-84-甲基-2-戊醇 4-Methyl-2-pentanol 108-11-2N,N-二甲基-对苯二胺 N,N-Dimethyl-p-phenylenediamine 99-98-95,6,7,8-四氢-1-萘胺 5,6,7,8-Tetrahydro-1-naphthylamine 2217-41-6肼二盐酸盐 Hydrazine dihydrochloride 5341-61-7硫氰酸钾 Potassium thiocyanate 333-20-0二甲基硫醚 Dimethyl sulfide 75-18-3聚苯醚 Polyphenyl ether 31533-76-3叔丁基甲基醚 气相色谱级 Tert-Butyl methyl ether 1634-04-4七氟丁酸 Heptafluorobutyric acid 375-22-4甲苯二异氰酸酯 Tolylene Diisocyanate(TDI) 26471-62-53,4-二羟基苄胺氢溴酸盐 3,4-Dihydroxybenzylamine hydrobromide 16290-26-9N,N-二(羟基乙基)椰油酰胺 Coconut diethanolamide(CDEA) 68603-42-9/61791-31-9甲苯二异氰酸酯 Tolylene Diisocyanate(TDI) 26471-62-5异冰片基丙烯酸酯 Isobornyl acrylate 5888-33-5N,N' -二苯基硫脲 1,3-Diphenyl-2-thiourea 102-08-9聚合氯化铝 Aluminum chlorohydrate 1327-41-9四丁基氢氧化铵10%溶液 Tetrabutylammonium hydroxide solution 2052-49-5四丁基氢氧化铵25%溶液 Tetrabutylammonium hydroxide solution 2052-49-5L-苯基丙氨酸 L-Phenylalanine 63-91-2无水硫酸铈 Cerium(IV) sulfate 13590-82-4硫酸铈铵四水合物 Ammonium cerium(Ⅳ) sulfate tetrahydrate 18923-36-9脂蛋白脂肪酶 Lipoprotein Lipase 9004/2/8乙二胺≥99.5%标准品 Ethylenediamine 107-15-3壬二酸 Azelaic acid (Nonanedioic acid) 123-99-9N,N-二甲基-1-萘胺 N,N-Dimethyl-1-naphthylamine 86-56-6双(三氟甲烷)磺酰亚胺锂盐 Bis(trifluoromethane)sulfonimide lithium salt 90076-65-6
  • 老板再也不用担心我的多肽合成 ---来阿拉丁一站式购齐所需试剂和容器
    ALADDIN的优势多肽在基础生理学、生物化学和医药研究,尤其是医药行业新药筛选中起关键作用,新的短链肽和模拟肽在新药研发中为新药提供了较强的生物活性和蛋白酶水解抗性。短肽还可以作为分子探针,更好的阐述生物系统的功能。因此肽合成在化学生物学领域所占份额越来越大。阿拉丁为你提供高质固相和液相肽合成的一站式服务,包括带有Fmoc、Boc和Cbz保护基团的天然或非天然氨基酸合成砌块、偶联试剂、预装树脂、Linker、N-保护试剂。产品列表多肽固相合成管固相多肽合成预装树脂N-保护试剂耦合试剂Fmoc修饰的氨基酸及氨基酸衍生物列表Boc修饰的氨基酸及氨基酸衍生物列表更多相关产品耗材产品列表多肽固相合成管货号品名包装容量外径螺纹口砂板孔隙度P3597-01-1EAP3597-01 多肽固相合成管1个25ml25mm25G2P3597-02-1EAP3597-02 多肽固相合成管1个25ml25mm25G3 试剂产品列表固相多肽合成预装树脂货号品名规格包装 A116077Fmoc-Arg(Pbf)-Wang resin100-200 mesh, 1%DVB1g,5g,25g A116080Fmoc-Asn(Trt)-王氏树脂 100-200 mesh, 1%DVB,Substitution 0.41g,5g,25g A116082Fmoc-Asp(OtBu)-王氏树脂100-200 mesh, 1%DVB,Substitution 0.1g,5g,25g A118255Fmoc-氨基酸-王树脂100-200 mesh, 1%DVB,Substitution 0.3-0.8mmol/g5g,25g A118270AminoMethyl Polystyrene Resin0.5~1.5mmol/g, 100~200 mesh5g,25g,100g C110262氯甲基化聚苯乙烯树脂1% DVB交联 1.0~1.24mmol/g , 100~200 mesh, 1% DVB5g,25g,100g C1182692-Chlorotrityl Chloride Resin0.8-1.5mmol/g, 100~200 mesh5g,25g,100g G116092Fmoc-Glu(OtBu)-王氏树脂 100-200 mesh, 1%DVB,Substitution 0.1g,5g G116094Fmoc-Gly-Wang resin100-200 mesh, Substitution 0.3-0.8mmol/g5g,25g L116104Fmoc-Leu-王氏树脂100-200 mesh, Substitution 0.3-0.8mmol/g5g,25g L116107Fmoc-Lys(Boc)-王氏树脂 100-200 mesh, 1%DVB,Substitution 0.3-1g,5g,25g M118256Fmoc-Met-王氏树脂100-200 mesh, 1%DVB,Substitution 0.3-0.1g,5g,25g M118275MBHA Resin0.3~0.8mmol/g, 100~200 mesh, 1% DVB1g,5g,25g P118257Fmoc-D-Phe-王氏树脂 100-200 mesh, 1%DVB,Substitution 0.3-0.5g,25g P118258Fmoc-Phe(4-Cl)-Wang resin100-200 mesh, 1%DVB1g,5g,25g P118261Fmoc-Pro-王氏树脂 100-200 mesh, 1%DVB,Substitution 0.3-0.8m5g,25g R118279Rink Amide-AM Resin 0.3~0.8mmol/g, 100~200 mesh, 1% DVB1g,5g,25g R118280聚合物键合型 Rink 酰胺 4-甲基二苯甲胺0.3~0.8mmol/g, 100~2001g,5g,25g S118282Sieber 酰胺树脂0.3~0.8mmol/g, 100~200 mesh, 1% DVB5g,25g,100g T118264Fmoc-Thr(tBu)-王氏树脂100-200 mesh, 1%DVB,Substitution 0.31g,5g,25g T118267Fmoc-Tyr(tBu)-Wang resin100-200 mesh, 1%DVB,Substitution 0.5g,25g T118281Fmoc-Threoninol(tBu) DHP HM Resin 0.3~0.8mmol/g, 100~200 mes5g,25g V118268Fmoc-Val-Wang resin100-200 mesh, 1%DVB,Substitution 0.3-0.85g,25gN-保护试剂氨基保护是合成化学和肽合成中必须部分,有效的保护基团可以从合成的化合物易于添加和除去。货号品名规格cas号包装 B105737氯甲酸苄酯 96%,含约 0.1% 碳酸钠稳定剂501-53-125g,100g,500g,2.5kg D106158二碳酸二叔丁酯 98%24424-99-525g,100g,500g,1kg D106159二碳酸二叔丁酯 99%24424-99-525g,100g,1kg D106160二碳酸二叔丁酯 96%24424-99-5100g,500g F1061739-芴甲基-N-琥珀酰亚胺基碳酸酯 98%82911-69-15g,25g,100g F113338芴甲氧羰酰胺 99%84418-43-95g,25g,100g I105738氯甲酸异丁酯 98%543-27-125g,100g,500g耦合试剂由于肽合成中较低的消旋化是固相肽合成的一个关键指标,阿拉丁为你提供各种高质量偶联试剂,包括碳化二亚胺、脲类和磷型的偶联试剂,可以快速、有效和无消旋的缩合货号品名规格cas号包装 A1133452-(7-氮杂苯并三氮唑)-N,N,N' ,N' -四甲基脲四氟硼酸盐 98%873798-09-55g,25g,100g B106161卡特缩合剂 98%56602-33-65g,25g,100g,500g B1093122-溴-1-乙基吡啶四氟硼酸盐 98%878-23-95g,25g B113336溴代三(二甲基氨基)磷鎓六氟磷酸盐 98%50296-37-21g,5g,25g B113343三吡咯烷基溴化鏻六氟磷酸盐 98%132705-51-21g C109314N,N' -羰基二咪唑 &ge 97.0% (T)530-62-12.5kg,25g,100g,500g C109315N,N' -羰基二咪唑 99%530-62-11kg C113337N,N' -羰基二(1,2,4-三氮唑) 96%41864-22-65g,25g,100g H1061761-羟基苯并三唑一水合物 &ge 97.0%123333-53-925g,100g,250g,500g H1061773-羟基-1,2,3-苯并三嗪-4(3H)-酮 98%28230-32-25g,25g,100g H106354N-羟基邻苯二甲酰亚胺 98%524-38-92.5kg,25g,100g,500g H1093281-羟基-7-偶氮苯并三氮唑 99%39968-33-75g,25g,100g,500g H109329N-羟基-5-降冰片稀-2,3-二酰亚胺 99%21715-90-210g,50g,250gH109330N-羟基琥珀酰亚胺 98%6066-82-62.5kg,25g,100g,500g H109337N-羟基硫代琥珀酰亚胺 钠盐 98%106627-54-71g,5g,25g N102772N-琥珀酰亚胺基-N-甲基氨基甲酸酯 97%18342-66-05g,25g N113351TNTU 98%125700-73-41g,5g,25g,100g C113347多肽试剂TCTU 98%330641-16-25g,25g,100g C1171602-氯-1,3-二甲基咪唑六氟磷酸盐 98%101385-69-71g,5g,25g D1028482-(2-吡啶酮-1-基)-1,1,3,3-四甲基脲四氟硼酸盐 99%125700-71-21g,5g,25g D106162N,N' -二异丙基碳二酰亚胺(DIC) 98%693-13-010ml,25ml,100ml,500ml D106171N,N' -琥珀酰亚胺基碳酸酯 98%74124-79-15g,25g,100g D106284N,N-二甲基丙烯基脲(DMPU) 99%7226-23-525g,100g,500g D109331二吡咯烷基(N-琥珀酰亚氨氧基)碳六氟磷酸盐 98%207683-26-91g,5g,25g O113352TOTT 98%255825-38-85g,25g,100g P1091051-苯基-3-甲基-5-吡唑啉酮 99%89-25-82.5kg,100g,500g W111795伍德沃德氏试剂K 98%4156-16-51gFmoc修饰的氨基酸及氨基酸衍生物列表货号品名规格cas号包装 A107817Fmoc-L-天冬氨酸 4-烯丙酯 98%146982-24-31g,5g,25g A140203N-Fmoc-8-氨基辛酸 &ge 98.0%(HPLC)126631-93-41g,5g B116715N-Boc-N' -Fmoc-D-赖氨酸 97%115186-31-75g,25g B121679N-Boc-顺式-4-Fmoc-氨基-L-脯氨酸 97%174148-03-91g,5g C115874FMOC-&beta -环己基-L-丙氨酸 98%135673-97-11g,5g,25g C115932Fmoc-Cys(Mbzl)-OH 98%136050-67-41g,5g,25g D115880N&alpha -Fmoc-L-2,3-二氨基丙酸 97%181954-34-71g,5g,25g F100409Fmoc-S-三苯甲基-L-半胱氨酸 98%103213-32-75g,25g F100413Fmoc-O-叔丁基-L-谷氨酸 98%71989-18-95g,25g F100419Fmoc-L-谷氨酸 98%121343-82-65g,25g F100746N-Fmoc-N' -Boc-L-鸟氨酸 96%109425-55-01g,5g,25g F100759Fmoc-Val-OSu 97%130878-68-15g,25g F100801Fmoc-L-天冬氨酸 98%119062-05-41g,5g,25g,100g F100805Fmoc-L-缬氨酸 98%68858-20-85g,25g,100g F100808Fmoc-L-亮氨酸 98%35661-60-05g,25g,100g F101115FMOC-L-炔丙基甘氨酸 98%198561-07-81g,5g,250mg F101121FMOC-D-炔丙基甘氨酸 96%220497-98-31g,250mg F101195Fmoc-D-烯丙基甘氨酸 96%170642-28-11g,250mgF101202FMOC-D-3-(4-吡啶基)-丙氨酸 98%205528-30-91g,5g F101214Fmoc-3-(3-吡啶基)-L-丙氨酸 98%175453-07-31g,5g,250mg F101220FMOC-L-3-(2-吡啶基)-丙氨酸 97%185379-40-21g,250mg F101223FMOC-D-3-(2-吡啶基)-丙氨酸 98%185379-39-91g,5g F101459Fmoc-2-氨基异丁酸 97%94744-50-05g,25g F101574FMOC-L-4-甲基苯丙氨酸 98%199006-54-71g,250mg F101598FMOC-L-3-甲基苯丙氨酸 98%211637-74-01g,250mg F101600FMOC-D-3-甲基苯丙氨酸 98%352351-64-51gBoc修饰的氨基酸及氨基酸衍生物列表td style="padding-left: 12px "98%货号品名规格cas号包装 B100726BOC-O-苄基-L-酪氨酸 98%2130-96-35g,25g,100g B100799Boc-L-谷氨酰胺 98%13726-85-75g,25gB101207BOC-D-3-(3-吡啶基)-丙氨酸 98%98266-33-21g,5g,250mg B101451BOC-D-丙氨酸 98%7764-95-65g,25g B101478Boc-D-酪氨酸 70642-86-31g,5g,25g,100g B101548BOC-L-4-甲基苯丙氨酸 98%80102-26-71g,5g,250mg B101595BOC-L-3-甲基苯丙氨酸 98%114873-06-21g,5g B101597BOC-D-3-甲基苯丙氨酸 98%114873-14-21g,5g B101616BOC-L-2-甲基苯丙氨酸 98%114873-05-11g B101623BOC-D-2-甲基苯丙氨酸 98%80102-29-01g B101627BOC-D-4-溴苯丙氨酸 98%79561-82-31g B101633BOC-L-2-溴苯丙氨酸 98%261165-02-0500mg B101661BOC-L-3,4-二氯苯丙氨酸 98%80741-39-51g,5g,250mg B101686BOC-L-2-氯苯丙氨酸 98%114873-02-81g,5g B101696BOC-D-2-氯苯丙氨酸 98%80102-23-45g B102424Boc-L-脯氨酸酰胺 97%35150-07-31g,5g B102427N-BOC-L-苯丙氨醛 97%72155-45-41g,250mg B102428Boc-L-脯氨醛 97%69610-41-91g,5g B1024361-(Boc-氨基)环戊烷羧酸 98%35264-09-61g,5g B102447N(&alpha )-Boc-L-2,3-二氨丙酸 97%73259-81-11g,5g B102996BOC-L-异亮氨酸 99%13139-16-75g,25g,100g B103072N-Boc-N' -Cbz-L-赖氨酸 98%2389-45-95g,25g,100g B103084N-Boc-4-氧-L-脯氨酸甲酯 97%102195-80-21g,5g,250mg B103160(S)-N-BOC-4-溴苯丙氨酸 98%62129-39-91g,5g,25g更多产品请访问阿拉丁官网
  • 搞大事!85项食品安全国家标准将在明年实施(附下载连接)
    关于发布《食品安全国家标准 茶叶》(GB 31608-2023)等85项食品安全国家标准和3项修改单的公告(2023年 第6号)2023年   第6号根据《中华人民共和国食品安全法》规定,经食品安全国家标准审评委员会审查通过,现发布《食品安全国家标准茶叶》(GB31608-2023)等85项食品安全国家标准和3项修改单。其编号和名称如下:(可点连接直接下载)GB   31608 - 2023         食品安全国家标准   茶叶 GB   31639 - 2023         食品安全国家标准   食品加工用菌种制剂 GB   31611 - 2023         食品安全国家标准   食品加工用植物蛋白肽 GB   1886.231- 2023   食品安全国家标准   食品添加剂   乳酸链球菌素 GB   1886. 373 - 2023   食品安全国家标准   食品添加剂甲醇钠 GB   1886. 372 - 2023   食品安全国家标准   食品添加剂L-蛋氨酰基甘氨酸盐酸盐 GB   1886. 371 - 2023   食品安全国家标准   食品添加剂ε-聚赖氨酸盐酸盐 GB   1886. 370 - 2023   食品安全国家标准   食品添加剂辛烯基琥珀酸淀粉钠 GB   1886. 369 - 2023   食品安全国家标准   食品添加剂   蓝锭果红 GB   1886. 368 - 2023   食品安全国家标准   食品添加剂   (2S,5R)-N-[4-(2-氨基-2- 氧代乙 基)苯基]-5-甲基-2-(丙基-2-)环己烷甲酰胺 GB   1886. 367 - 2023   食品安全国家标准   食品添加剂   6-甲基辛醛 GB   1886. 366 - 2023   食品安全国家标准   食品添加剂   β-胡萝卜素 GB   1886. 365 - 2023   食品安全国家标准   食品添加剂   5-甲基-2-呋喃甲硫醇 GB   1903. 61 - 2023     食品安全国家标准   食品营养强化剂碳酸铜 GB   1903. 64 - 2023     食品安全国家标准   食品营养强化剂氯化锰 GB   1903. 63 - 2023     食品安全国家标准   食品营养强化剂甘油磷酸钙 GB   1903. 62 - 2023     食品安全国家标准   食品营养强化剂还原铁 GB   1903. 59 - 2023     食品安全国家标准   食品营养强化剂氯化铬 GB   1903. 60 - 2023     食品安全国家标准   食品营养强化剂L-肉碱酒石酸盐 GB   4789.26- 2023     食品安全国家标准   食品微生物学检验商业无菌检验 GB   4789.35- 2023     食品安全国家标准   食品微生物学检验乳酸菌检验 GB   4789. 45 - 2023     食品安全国家标准   微生物检验方法验证通则 GB   4806.7- 2023       食品安全国家标准   食品接触用塑料材料及制品 GB   4806.9- 2023       食品安全国家标准   食品接触用金属材料及制品 GB   4806.11- 2023     食品安全国家标准   食品接触用橡胶材料及制品 GB   4806. 14 - 2023     食品安全国家标准   食品接触材料及制品用油墨 GB   4806. 13 - 2023     食品安全国家标准   食品接触用复合材料及制品 GB   5009.8- 2023       食品安全国家标准   食品中果糖、葡萄糖、蔗糖、麦芽糖、乳糖的测定 GB   5009.9- 2023       食品安全国家标准   食品中淀粉的测定 GB   5009.12- 2023     食品安全国家标准   食品中铅的测定GB   5009.15- 2023     食品安全国家标准   食品中镉的测定 GB   5009.16- 2023     食品安全国家标准   食品中锡的测定 GB   5009.26- 2023     食品安全国家标准   食品中 N- 亚硝胺类化合物的测定 GB   5009.35- 2023     食品安全国家标准   食品中合成着色剂的测定 GB   5009.36- 2023    食品安全国家标准   食品中氰化物的测定 GB   5009.43- 2023     食品安全国家标准   味精中谷氨酸钠的测定 GB   5009.88- 2023     食品安全国家标准   食品中膳食纤维的测定 GB   5009.89- 2023     食品安全国家标准   食品中烟酸和烟酰胺的测定 GB   5009.97- 2023     食品安全国家标准   食品 中环己基氨基磺酸 盐的测定 GB   5009.123- 2023   食品安全国家标准   食品中铬的测定 GB   5009.129- 2023   食品安全国家标准   食品中乙氧基 喹 的测定 GB   5009.140- 2023   食品安全国家标准   食品中乙酰磺胺酸钾的测定 GB   5009.154- 2023   食品安全国家标准   食品中维生素B 6 的测定 GB   5009.189- 2023   食品安全国家标准   食品中米 酵菌酸 的测定 GB   5009.210- 2023   食品安全国家标准   食品中泛酸的测定 GB   5009.225- 2023   食品安全国家标准 2 的测定 GB   5009. 297 -   食品中三氯蔗糖(蔗糖素)的测定 GB   31614 .1- 2023
  • 【科普】多相催化氢化反应在药物合成中的应用
    催化氢化反应是指还原剂或氢分子等在催化剂的作用下对不饱和化合物的加成反应。它是有机化合物还原方法中最方便、最常用、最重要的方法之一。多相催化氢化反应主要包括碳碳、碳氧、碳氮键等不饱和重键的加氢反应和某些单键发生的裂解反应。被还原的底物和氢一般吸附在催化剂表面,活化后进行反应。多相催化氢化主要有如下优点。①还原范围广、反应活性高、选择性好、速度快:有些反应(如碳碳不饱和键的加氢)应用其他方法比较复杂和困难,而应用催化氢化比较方便;②经济适用:氢气本身价格低廉,成本低,操作方便,对醛酮、硝基及亚硝基化合物都能起还原作用,不需其他任何还原剂和特殊溶剂;③后处理方便、反应条件温和、操作方便:反应完毕后,只需滤去催化剂,蒸发掉溶剂即可得到所需产物,产品纯度、收率都比较高,且干净无污染。因此,多相催化氢化在药物合成中有广泛的应用。01碳碳不饱和键的多相催化氢化1) 烯、炔的多相催化氢化:烯键和炔键均为易于氢化还原的官能团。通常用钯、铂和Raney镍作催化剂,在温和条件下即可反应。除酰胺卤和芳硝基外,分子中存在其他可还原官能团时,均可用氢化法选择性还原炔键和烯键。例如:抗精神病药物匹莫齐特(pimozide)中间体的合成。心血管系统药物艾司洛尔(Esmolol)中间体的合成。肺心病治疗药物樟磺咪芬(Trimetaphan)中间体的合成。一般规律:炔键活性大于烯键,位阻较小的不饱和键活性大于位阻较大的不饱和键,三取代或四取代烯需在较高的温度和压力下方能顺利进行反应。p-2型硼化镍能选择性地还原炔键和末端烯键,而不影响分子中存在的非末端双键,效果较Lindlar催化剂好。p-2型硼化镍在还原多烯类化合物时,不导致烯键异构化,也不导致苄基或烯丙基的氢解。在多相氢化反应中,炔烃、烯烃和芳烃的加氢常得到不同比例的几何异构体。一般认为,吸附在催化剂表面的是作用物分子不饱和结构空间位阻较小的一面,已吸附在催化剂表面的氢分步转移到作用物分子上进行同向加成(syn-addition)。因此,氢化产物的空间构型主要由作用物的空间因素和催化剂的性质两个方面决定。在炔类和环烯烃的加氢产物中,由于同向加成,产物以顺式体为主,但由于向反式体转化更稳定等因素,所以仍有一定量的反式体。雌性激素药雌酮(Estrone)中间体的合成。2)芳香环的多相催化氢化:苯为难于氢化的芳烃,芳稠环(如萘、蒽、菲)的氢化活性大于苯环。取代苯(如苯酚、苯胺)的活性也大于苯,在乙酸中用铂作催化剂时,取代基的活性为ArOhArNh2ArCOOhArCh3。不同的催化剂有不同的活性顺序,用铂、钌催化剂可在较低的温度和压力下氢化,而钯则需较高的温度和压力。如苯甲酸可用铂催化剂在较温和的条件下还原为环己基甲酸。激素药炔诺孕酮(Norgestrel)中间体的合成。某些取代苯选用铑作催化剂,可在较温和的条件下氢化,得到较好的收率。02醛酮的多相催化氢化目前,催化氢化还原是应用最广泛的将羰基还原为羟基的两种还原方法之一。醛和酮的氢化活性通常大于芳环而小于不饱和键,醛比酮更容易氢化。脂肪族醛、酮的氢化活性较芳香醛酮低,通常以Raney镍和铂为催化剂,而钯催化剂的效果较差,且一般需要在较高的温度和压力下还原。例如,由葡萄糖氢化的山梨醇(Sorbiol)。治疗帕金森病的药物左旋多巴(Levodopa)中间体的合成。与脂肪族醛、酮氢化不同,钯是芳香族醛、酮氢化十分有效的催化剂。在加压或酸性条件下,芳香族醛、酮氢化所生成的醇羟基能进一步被氢解,最终得到甲基或亚甲基。氢化法是还原芳酮为烃的有效方法之一。在温和条件下,选用适当活性的Raney镍作为还原剂,可得到醇。03羧酸衍生物的多相催化氢化1)酰卤的多相催化氢化:酰卤与加有活性抑制剂(如硫脲)的钯催化剂或以硫酸钡为载体的钯催化剂,于甲苯或二甲苯中,控制通入氢量略高于理论量,即可使反应停止在醛的阶段,得到收率良好的醛。在此条件下,分子中存在的双键、硝基、卤素、酯基等不受影响,如重要制药中间体三甲氧基苯甲醛的合成。2,6-二甲基吡啶的四氢呋喃可作为钯催化剂的抑制剂。在钯催化下,将氢 通入等当量的酰氯及2,6-二甲基吡啶的四氢呋喃溶液中,在室温下反应,即可以良好的产率得到醛。本法条件温和,特别适用于对热敏感的酰氯的还原。如8-壬酮酰氯用本法还原时,羰基不受影响。2)腈的多相催化氢化:催化氢化法是腈类化合物还原的主要方法。催化氢化还原可在常温下以钯或铂为催化剂,或在加压下以活性镍为还原剂,通常其还原产物中除伯胺外,还有较大量的仲胺,这是所生成的伯胺与反应中间物(亚胺)发生副反应的结果。为了避免生成仲胺的副反应,可以钯、铂或铑为催化剂,并在酸性溶剂中还原,使产物伯胺成为铵盐,从而阻止加成副反应的进行;或以镍为催化剂,在溶剂中加入过量的氨,使不易发生进一步脱氨,从而减少副产物的产生。例如,在抗皮炎药物维生素B6(Vitamin B6)中间体的合成中,一步催化氢化实现了硝基成氨基、氰基成氨甲基、氯被氢解掉等三个基团的转化。04含氮化合物的多相催化氢化1)硝基化合物的多相催化氢化:催化氢化法也是还原硝基化合物的常用方法,其具有价廉、后处理手续简便且无"三废"污染等优点。活性镍、钯、铂等均是最常用的催化剂。通常,使用活性镍时,氢压和温度要求较高,而钯和铂可在较温和的条件下进行。例如抗生素奥沙拉秦(Olsalazine)中间体的合成。由于催化氢化还原活性与催化剂及反应条件有关,因而可根据不同的需要,调节或控制反应活性。例如硝基苯还原,可选择合适的氢化条件,使反应停留在生成苯胲阶段,然后在酸性条件转位得对氨基酚。这是生产制药中间体对氨基酚的最简捷路线。硝基化合物尚可采用转移氢化法还原,常用的供氢体为肼、环己烯、异丙醇等。其中,应用最普遍的是肼。其反应设备及操作均十分简便,只需将硝基化合物与过量的水合肼溶于醇中,然后加入镍、钯等氢化催化剂,在十分温和的条件下,即可完成反应。分子中存在的羧基、氰基、非活化的烯键均可不受影响。2)肟和亚甲胺的多相催化氢化:催化氢化法亦是将肟和亚甲胺还原成伯胺或仲胺的有效方法,在制药工业中已广泛采用,常用的催化剂是镍和钯。抗心律失常药美西律(Mexiletine)中间体的合成。3)叠氮化合物的多相催化氢化:叠氮化合物可被多种还原剂还原生成伯胺。其最常用的方法是催化氢化和用金属氢化物。而在催化氢化法中常用的催化剂是活性镍和钯。例如降压药贝那普利(5)芳杂环类的多相催化氢化某些芳杂环类化合物也可发生多相催化氢化反应。其催化还原活性较苯类芳环大,但比醛酮类化合物小。参考:药物合成反应总结氢化反应在医药、精细化工和其他有机合成中具有非常重要的地位。氢化反应原子利用率很高,同时可以减少后续的分离和纯化过程。但氢气参与的反应在实验室和工业化生产中危险系数极大,难于控制,易造成安全事故,国家安监局把氢化反应纳入18类重点监管危险反应中。现阶段随着连续氢化技术的发展,使用连续氢化反应仪或设备将间歇式氢化反应转化成连续氢化反应,可极大的降低反应风险提高设备及操作的安全性。目前欧世盛连续氢化设备能成功实现双键还原,硝基还原,脱苄基,芳香环还原,氰基还原,氢化脱卤等反应。欧世盛研发出全自动加氢反应仪1:可配高压氢气发生器2:压力温度范围宽,满足绝大多数反应需求0-10Mpa,室温-200oC3:智能化程度高 可视智能控制界面,全自动气液分离4:工艺条件可放大至千吨级
  • 自动乌氏黏度仪在羟丙甲基纤维素中的应用
    羟丙基甲基纤维素(hydroxypropyl methyl cellulose),亦有简化作羟丙甲纤维素(缩写作HPMC),是属于非离子型纤维素混合醚中的一个品种。它是一种半合成的、不活跃的、黏弹性的聚合物,常于工业助剂、眼科学用润滑剂,又或在口服药物中充当辅料或赋型剂。在工业领域中,羟丙甲基纤维素的主要用途是为聚氯乙烯生产中做分散剂,系悬浮聚合制备PVC的主要助剂。另外,在其他石油化工、涂料、建材、除漆剂、化妆品等产品生产中,羟丙甲基纤维素也可作增稠剂、稳定剂、保水剂、成膜剂等。在合成树脂领域,添加羟丙甲基纤维素可使获得的产品具有颗粒规整、疏松、视比重适宜,加工性能优良等特点。羟丙甲基纤维素在生产和研发中关键的指标是分子量,根据分子量不同,羟丙甲基纤维素制品可用于不同的用途,低分子量级别(分子量)的羟丙甲基纤维素用于片剂包衣材料,高分子量(分子量100000)的羟丙甲基纤维素可用作片剂骨架的阻滞剂、有延缓药物释放的作用。目前羟丙甲基纤维素分子量常用的测试方式是乌氏毛细管法,乌氏毛细管法实验操作简单,数据重复性好,在大多数高分子材料研发及相关质量控制中都起到关键作用,尤其是ZVISCO自动乌氏黏度仪因其自动化程度高,节省人力的同时进一步提高了实验数据的可靠性。以IV2000系列自动乌氏黏度仪、MSB系列多位溶样块、ZPQ智能配液器一整套黏度测试设备为例: 实验流程:1. 智能配液过程使用ZPQ智能配液器进行配液,点击配液功能后,直接输入浓度和质量(可通过连接天平直接获取),可直接计算出所需要的目标体积进行移液并且精度可达0.1%。可避免因手动配液方法导致的精度差、效率低及数据误差等问题。ZPQ智能配液器还具有密度计算功能,移取液体体积后,输入质量(可与天平通讯,直接获取),即可自动计算出密度值。2. 溶样过程MSB系列多位溶样块,采用金属浴的方式进行加热溶样并具有自动搅拌功能,同时可容纳15个样品。溶样效率快、转速可调、溶样时间可调、溶样温度可调、溶样温度可达180℃。3. 测试过程IV2000系列自动乌氏黏度仪可实现自动连续测量,全程无需人员看管。并且采用的智能红外光电传感器,保证测量时间可达到毫秒级,可有效确保实验数据的精度,避免人工实验导致误差。4. 测试结果:IV2000系列自动乌氏黏度仪连接电脑端,得出结果可在计算机上直接显示,并有数据储存、多样化粘度分析报表等多种功能。
  • 自动乌氏黏度仪在羟丙甲基纤维素中的应用
    羟丙基甲基纤维素(hydroxypropyl methyl cellulose),亦有简化作羟丙甲纤维素(缩写作HPMC),是属于非离子型纤维素混合醚中的一个品种。它是一种半合成的、不活跃的、黏弹性的聚合物,常于工业助剂、眼科学用润滑剂,又或在口服药物中充当辅料或赋型剂。在工业领域中,羟丙甲基纤维素的主要用途是为聚氯乙烯生产中做分散剂,系悬浮聚合制备PVC的主要助剂。另外,在其他石油化工、涂料、建材、除漆剂、化妆品等产品生产中,羟丙甲基纤维素也可作增稠剂、稳定剂、保水剂、成膜剂等。在合成树脂领域,添加羟丙甲基纤维素可使获得的产品具有颗粒规整、疏松、视比重适宜,加工性能优良等特点。羟丙甲基纤维素在生产和研发中关键的指标是分子量,根据分子量不同,羟丙甲基纤维素制品可用于不同的用途,低分子量级别(分子量100000)的羟丙甲基纤维素可用作片剂骨架的阻滞剂、有延缓药物释放的作用。目前羟丙甲基纤维素分子量常用的测试方式是乌氏毛细管法,乌氏毛细管法实验操作简单,数据重复性好,在大多数高分子材料研发及相关质量控制中都起到关键作用,尤其是ZVISCO自动乌氏黏度仪因其自动化程度高,节省人力的同时进一步提高了实验数据的可靠性。以IV2000系列自动乌氏黏度仪、MSB系列多位溶样块、ZPQ智能配液器一整套黏度测试设备为例: 实验流程:1. 智能配液过程使用ZPQ智能配液器进行配液,点击配液功能后,直接输入浓度和质量(可通过连接天平直接获取),可直接计算出所需要的目标体积进行移液并且精度可达0.1%。可避免因手动配液方法导致的精度差、效率低及数据误差等问题。ZPQ智能配液器还具有密度计算功能,移取液体体积后,输入质量(可与天平通讯,直接获取),即可自动计算出密度值。2. 溶样过程MSB系列多位溶样块,采用金属浴的方式进行加热溶样并具有自动搅拌功能,同时可容纳15个样品。溶样效率快、转速可调、溶样时间可调、溶样温度可调、溶样温度可达180℃。3. 测试过程IV2000系列自动乌氏黏度仪可实现自动连续测量,全程无需人员看管。并且采用的智能红外光电传感器,保证测量时间可达到毫秒级,可有效确保实验数据的精度,避免人工实验导致误差。4. 测试结果:IV2000系列自动乌氏黏度仪连接电脑端,得出结果可在计算机上直接显示,并有数据储存、多样化粘度分析报表等多种功能。
  • 盘点:2016年实施的食品安全国家标准知多少
    目前,国家卫生计生委已发布683项食品安全国家标准,加上待发布的400余项整合标准,共涵盖1.2万余项指标,初步构建起符合我国国情的食品安全国家标准体系。此处收集整理了2016年实施的食品安全国家标准供大家参考。  产品类  2016-09-22实施:  GB 14930.1-2015 食品安全国家标准 洗涤剂  GB 14967-2015 食品安全国家标准 胶原蛋白肠衣  GB 17400-2015 食品安全国家标准 方便面  GB 2713-2015 食品安全国家标准 淀粉制品  GB 2714-2015 食品安全国家标准 酱腌菜  GB 2720-2015 食品安全国家标准 味精  GB 2721-2015 食品安全国家标准 食用盐  GB 2730-2015 食品安全国家标准 腌腊肉制品  GB 7099-2015 食品安全国家标准 糕点、面包  GB 7100-2015 食品安全国家标准 饼干  GB 31603-2015 食品安全国家标准 食品接触材料及制品生产通用卫生规范  GB 31604.1-2015 食品安全国家标准 食品接触材料及制品迁移试验通则  食品安全国家标准 方便面(征求意见稿)     2016-11-13实施:  GB 10136-2015 食品安全国家标准 动物性水产制品  GB 10146-2015 食品安全国家标准 食用动物油脂  GB 15196-2015 食品安全国家标准 食用油脂制品  GB 17325-2015 食品安全国家标准 食品工业用浓缩液(汁、浆)  GB 19299-2015 食品安全国家标准 果冻  GB 19641-2015 食品安全国家标准 食用植物油料  GB 24154-2015 食品安全国家标准 运动营养食品通则  GB 2733-2015 食品安全国家标准 鲜、冻动物性水产品  GB 2749-2015 食品安全国家标准 蛋与蛋制品  GB 2759-2015 食品安全国家标准 冷冻饮品和制作料  GB 7098-2015 食品安全国家标准 罐头食品  GB 7101-2015 食品安全国家标准 饮料  GB 31601-2015 食品安全国家标准 孕妇及乳母营养补充食品  GB 31602-2015 食品安全国家标准 干海参  食品营养强化剂类  2016-03-22实施:  GB 30604-2015 食品安全国家标准 食品营养强化剂 1,3-二油酸-2-棕榈酸甘油三酯  2016-05-13实施:  GB 1903.10-2015 食品安全国家标准 食品营养强化剂 葡萄糖酸亚铁  GB 1903.11-2015 食品安全国家标准 食品营养强化剂 乳酸锌  GB 1903.1-2015 食品安全国家标准 食品营养强化剂 L-盐酸赖氨酸  GB 1903.12-2015 食品安全国家标准 食品营养强化剂 L-硒-甲基硒代半胱氨酸  GB 1903.2-2015 食品安全国家标准 食品营养强化剂 甘氨酸锌  GB 1903.3-2015 食品安全国家标准 食品营养强化剂 5’单磷酸腺苷  GB 1903.4-2015 食品安全国家标准 食品营养强化剂 氧化锌  GB 1903.6-2015 食品安全国家标准 食品营养强化剂 维生素E琥珀酸钙  GB 1903.7-2015 食品安全国家标准 食品营养强化剂 葡萄糖酸锰  GB 1903.8-2015 食品安全国家标准 食品营养强化剂 葡萄糖酸铜  GB 1903.9-2015 食品安全国家标准 食品营养强化剂 亚硒酸钠  检测方法类  2016-03-21实施:  GB 5009.11-2014 食品安全国家标准 食品中总砷及无机砷的测定  GB 5009.211-2014 食品安全国家标准 食品中叶酸的测定  GB 5009.74-2014 食品安全国家标准 食品添加剂中重金属限量试验  GB 5009.75-2014 食品安全国家标准 食品添加剂中铅的测定  GB 5009.76-2014 食品安全国家标准 食品添加剂中砷的测定  GB 5009.88-2014 食品安全国家标准 食品中膳食纤维的测定  食品添加剂类  2016-01-05实施:  GB 1886.109-2015 食品安全国家标准 食品添加剂 羟丙基甲基纤维素(HPMC) (有关问题的复函)  GB 1886.109-2015 食品安全国家标准 食品添加剂 羟丙基甲基纤维素(有关问题复函)  2016-03-22实施:  GB 1886.100-2015 食品安全国家标准 食品添加剂 乙二胺四乙酸二钠  GB 1886.10-2015 食品安全国家标准 食品添加剂 冰乙酸(又名冰蜡酸)  GB 1886.103-2015 食品安全国家标准 食品添加剂 微晶纤维素  GB 1886.107-2015 食品安全国家标准 食品添加剂 柠檬酸一钠  GB 1886.111-2015 食品安全国家标准 食品添加剂 甜菜红  GB 1886.112-2015 食品安全国家标准 食品添加剂 聚氧乙烯木糖醇酐单硬脂酸酯  GB 1886.113-2015 食品安全国家标准 食品添加剂 菊花黄浸膏  GB 1886.114-2015 食品安全国家标准 食品添加剂 紫胶(又名虫胶)  GB 1886.115-2015 食品安全国家标准 食品添加剂 黑豆红  GB 1886.116-2015 食品安全国家标准 食品添加剂 木糖醇酐单硬脂酸酯  GB 1886.117-2015 食品安全国家标准 食品添加剂 羟基香茅醛  GB 1886.118-2015 食品安全国家标准 食品添加剂 杭白菊花浸膏  GB 1886.119-2015 食品安全国家标准 食品添加剂 1,8-桉叶素  GB 1886.1-2015 食品安全国家标准 食品添加剂 碳酸钠  GB 1886.120-2015 食品安全国家标准 食品添加剂 己酸  GB 1886.121-2015 食品安全国家标准 食品添加剂 丁酸  GB 1886.12-2015 食品安全国家标准 食品添加剂 丁基羟基茴香醚(BHA)  GB 1886.122-2015 食品安全国家标准 食品添加剂 桃醛(又名γ -十一烷内酯)  GB 1886.123-2015 食品安全国家标准 食品添加剂 α -己基肉桂醛  GB 1886.124-2015 食品安全国家标准 食品添加剂 广藿香油  GB 1886.125-2015 食品安全国家标准 食品添加剂 肉桂醇  GB 1886.126-2015 食品安全国家标准 食品添加剂 乙酸芳樟酯  GB 1886.128-2015 食品安全国家标准 食品添加剂 甲基环戊烯醇酮(又名 3-甲基-2-羟基-2-环戊烯-1-酮)     GB 1886.129-2015 食品安全国家标准 食品添加剂 丁香酚  GB 1886.130-2015 食品安全国家标准 食品添加剂 庚酸乙酯  GB 1886.131-2015 食品安全国家标准 食品添加剂 α -戊基肉桂醛  GB 1886.13-2015 食品安全国家标准 食品添加剂 高锰酸钾  GB 1886.132-2015 食品安全国家标准 食品添加剂 己酸烯丙酯  GB 1886.133-2015 食品安全国家标准 食品添加剂 枣子酊  GB 1886.134-2015 食品安全国家标准 食品添加剂 γ -壬内酯  GB 1886.135-2015 食品安全国家标准 食品添加剂 苯甲醇  GB 1886.136-2015 食品安全国家标准 食品添加剂 丁酸苄酯  GB 1886.137-2015 食品安全国家标准 食品添加剂 十六醛(又名杨梅醛)  GB 1886.138-2015 食品安全国家标准 食品添加剂 2-乙酰基吡嗪  GB 1886.139-2015 食品安全国家标准 食品添加剂 百里香酚  GB 1886.140-2015 食品安全国家标准 食品添加剂 八角茴香油  GB 1886.14-2015 食品安全国家标准 食品添加剂 没食子酸丙酯  GB 1886.142-2015 食品安全国家标准 食品添加剂 α -紫罗兰酮  GB 1886.143-2015 食品安全国家标准 食品添加剂 γ -癸内酯  GB 1886.144-2015 食品安全国家标准 食品添加剂 γ -己内酯  GB 1886.145-2015 食品安全国家标准 食品添加剂 δ -癸内酯  GB 1886.146-2015 食品安全国家标准 食品添加剂 δ -十二内酯  GB 1886.147-2015 食品安全国家标准 食品添加剂 二氢香芹醇  GB 1886.148-2015 食品安全国家标准 食品添加剂 芳樟醇  GB 1886.149-2015 食品安全国家标准 食品添加剂 己醛  GB 1886.150-2015 食品安全国家标准 食品添加剂 甲酸香茅酯  GB 1886.151-2015 食品安全国家标准 食品添加剂 甲酸香叶酯  GB 1886.15-2015 食品安全国家标准 食品添加剂 磷酸  GB 1886.152-2015 食品安全国家标准 食品添加剂 辛酸乙酯  GB 1886.153-2015 食品安全国家标准 食品添加剂 乙酸 2-甲基丁酯  GB 1886.154-2015 食品安全国家标准 食品添加剂 乙酸丙酯  GB 1886.155-2015 食品安全国家标准食品添加剂 乙酸橙花酯  GB 1886.156-2015 食品安全国家标准 食品添加剂 乙酸松油酯  GB 1886.157-2015 食品安全国家标准 食品添加剂 乙酸香叶酯  GB 1886.158-2015 食品安全国家标准 食品添加剂 异丁酸乙酯  GB 1886.159-2015 食品安全国家标准 食品添加剂 异戊酸 3-己烯酯     GB 1886.160-2015 食品安全国家标准 食品添加剂 正癸醛(又名癸醛)  GB 1886.161-2015 食品安全国家标准 食品添加剂 棕榈酸乙酯  GB 1886.16-2015 食品安全国家标准 食品添加剂 香兰素  GB 1886.162-2015 食品安全国家标准 食品添加剂 2,6-二甲基-5-庚烯醛  GB 1886.163-2015 食品安全国家标准 食品添加剂 2-甲基-4-戊烯酸  GB 1886.164-2015 食品安全国家标准 食品添加剂 2-甲基丁酸 2-甲基丁酯  GB 1886.165-2015 食品安全国家标准 食品添加剂 2-甲基丁酸 3-己烯酯  GB 1886.166-2015 食品安全国家标准 食品添加剂 γ -庚内酯  GB 1886.167-2015 食品安全国家标准 食品添加剂 大茴香脑  GB 1886.168-2015 食品安全国家标准 食品添加剂 γ -十二内酯  GB 1886.17-2015 食品安全国家标准 食品添加剂 紫胶红(又名虫胶红)  GB 1886.2-2015 食品安全国家标准 食品添加剂 碳酸氢钠  GB 1886.23-2015 食品安全国家标准 食品添加剂 小花茉莉浸膏  GB 1886.24-2015 食品安全国家标准 食品添加剂 桂花浸膏  GB 1886.27-2015 食品安全国家标准 食品添加剂 蔗糖脂肪酸酯  GB 1886.29-2015 食品安全国家标准 食品添加剂 生姜油  GB 1886.31-2015 食品安全国家标准 食品添加剂 对羟基苯甲酸乙酯  GB 1886.33-2015 食品安全国家标准 食品添加剂 桉叶油(蓝桉油)  GB 1886.35-2015 食品安全国家标准 食品添加剂 山苍子油  GB 1886.36-2015 食品安全国家标准 食品添加剂 留兰香油  GB 1886.37-2015 食品安全国家标准 食品添加剂 环己基氨基磺酸钠(又名甜蜜素)  GB 1886.38-2015 食品安全国家标准 食品添加剂 薰衣草油  GB 1886.39-2015 食品安全国家标准 食品添加剂 山梨酸钾  GB 1886.41-2015 食品安全国家标准 食品添加剂 黄原胶  GB 1886.42-2015 食品安全国家标准 食品添加剂 dl-酒石酸  GB 1886.43-2015 食品安全国家标准 食品添加剂 抗坏血酸钙  GB 1886.46-2015 食品安全国家标准 食品添加剂 低亚硫酸钠  GB 1886.48-2015 食品安全国家标准 食品添加剂 玫瑰油  GB 1886.50-2015 食品安全国家标准 食品添加剂 2-甲基-3-巯基呋喃  GB 1886.51-2015 食品安全国家标准 食品添加剂 2,3-丁二酮  GB 1886.5-2015 食品安全国家标准 食品添加剂 硝酸钠  GB 1886.52-2015 食品安全国家标准 食品添加剂 植物油抽提溶剂(又名己烷类溶剂)  GB 1886.53-2015 食品安全国家标准 食品添加剂 己二酸  GB 1886.54-2015 食品安全国家标准 食品添加剂 丙烷  GB 1886.55-2015 食品安全国家标准 食品添加剂 丁烷  GB 1886.56-2015 食品安全国家标准 食品添加剂 1-丁醇(正丁醇)  GB 1886.58-2015 食品安全国家标准 食品添加剂 乙醚  GB 1886.59-2015 食品安全国家标准 食品添加剂 石油醚  GB 1886.62-2015 食品安全国家标准 食品添加剂 硅酸镁  GB 1886.65-2015 食品安全国家标准 食品添加剂 单,双甘油脂肪酸酯  GB 1886.67-2015 食品安全国家标准 食品添加剂 皂荚糖胶  GB 1886.68-2015 食品安全国家标准 食品添加剂 二甲基二碳酸盐(又名维果灵)  GB 1886.70-2015 食品安全国家标准 食品添加剂沙蒿胶  GB 1886.71-2015 食品安全国家标准 食品添加剂 1,2-二氯乙烷  GB 1886.7-2015 食品安全国家标准 食品添加剂 焦亚硫酸钠  GB 1886.73-2015 食品安全国家标准 食品添加剂 不溶性聚乙烯聚吡咯烷酮  GB 1886.79-2015 食品安全国家标准 食品添加剂 硫代二丙酸二月桂酯  GB 1886.80-2015 食品安全国家标准 食品添加剂 乙酰化单、双甘油脂肪酸酯  GB 1886.81-2015 食品安全国家标准 食品添加剂 月桂酸  GB 1886.84-2015 食品安全国家标准 食品添加剂 巴西棕榈蜡  GB 1886.87-2015 食品安全国家标准 食品添加剂 蜂蜡  GB 1886.88-2015 食品安全国家标准 食品添加剂 富马酸一钠  GB 1886.90-2015 食品安全国家标准 食品添加剂 硅酸钙  GB 1886.93-2015 食品安全国家标准 食品添加剂 乳酸脂肪酸甘油酯  GB 1886.95-2015 食品安全国家标准 食品添加剂 聚甘油蓖麻醇酸酯(PGPR)  GB 1886.97-2015 食品安全国家标准 食品添加剂 5‘-肌苷酸二钠  GB 1886.99-2015 食品安全国家标准 食品添加剂 L-α -天冬氨酰-N-(2,2,4,4-四甲基-3-硫化三亚甲基)-D-丙氨酰胺(又名阿力甜)  2016-05-13实施:  GB 1886.104-2015 食品安全国家标准 食品添加剂 喹啉黄  GB 1886.106-2015 食品安全国家标准 食品添加剂 罗望子多糖胶  GB 1886.108-2015 食品安全国家标准 食品添加剂 偶氮甲酰胺  GB 1886.109-2015 食品安全国家标准 食品添加剂 羟丙基甲基纤维素(HPMC)  GB 1886.110-2015 食品安全国家标准 食品添加剂 天然苋菜红  GB 1886.18-2015 食品安全国家标准 食品添加剂 糖精钠  GB 1886.19-2015 食品安全国家标准 食品添加剂 红曲米  GB 1886.30-2015 食品安全国家标准 食品添加剂 可可壳色  GB 1886.32-2015 食品安全国家标准 食品添加剂 高粱红  GB 1886.34-2015 食品安全国家标准 食品添加剂 辣椒红  GB 1886.40-2015 食品安全国家标准 食品添加剂 L-苹果酸  GB 1886.4-2015 食品安全国家标准 食品添加剂 六偏磷酸钠  GB 1886.60-2015 食品安全国家标准 食品添加剂 姜黄  GB 1886.61-2015 食品安全国家标准 食品添加剂 红花黄  GB 1886.63-2015 食品安全国家标准 食品添加剂 膨润土  GB 1886.64-2015 食品安全国家标准 食品添加剂 焦糖色  GB 1886.66-2015 食品安全国家标准 食品添加剂 红曲黄色素  GB 1886.74-2015 食品安全国家标准 食品添加剂 柠檬酸钾  GB 1886.76-2015 食品安全国家标准 食品添加剂 姜黄素  GB 1886.8-2015 食品安全国家标准 食品添加剂 亚硫酸钠  GB 1886.82-2015 食品安全国家标准 食品营养强化剂 5‘-尿苷酸二钠  GB 1886.86-2015 食品安全国家标准 食品添加剂 刺云实胶
  • 2024年3月6日!78项食品安全国家标准正式实施(附下载链接)
    2023年9月25日,国家卫生健康委员会与市场监管总局联合发布了第6号公告,发布了85项新的食品安全国家标准和3项。《茶叶》等3项食品产品标准、《婴幼儿配方食品良好生产规范》等5项生产经营规范标准、《食品接触用塑料材料及制品》等6项食品相关产品标准、《化学分析方法验证通则》等46项理化检验方法标准和1项修改单、《微生物检验方法验证通则》等3项微生物检验方法标准、《动物性水产品及其制品中颚口线虫的检验》等6项寄生虫检验方法标准,以及《食品添加剂β-胡萝卜素》等16项食品添加剂、食品营养强化剂质量规格标准和2项修改单。其中78项新标准将于2024年3月6日开始生效。剩余7项食品接触材料新标准将于2024年9月6日正式实施。小编已将7项食品接触材料新标准进行整理解读:多项食品接触材料新标准将于2024年9月正式实施! 以下是3月6日正式实施的78项食品国家标准及其涉及到的检测方法。标准名称(可点击下载)备注理化检验方法标准(35项)GB 5009.8- 2023 食品安全国家标准   食品中果糖、葡萄糖、蔗糖、麦芽糖、乳糖的测定增加离子色谱为第二法GB   5009.9- 2023 食品安全国家标准   食品中淀粉的测定GB   5009.12- 2023 食品安全国家标准   食品中铅的测定第一法:石墨炉原子吸收光谱;第二法:电感耦合等离子体质谱法 ICP-MS为新增方法GB   5009.15- 2023     食品安全国家标准   食品中镉的测定GB   5009.16- 2023     食品安全国家标准   食品中锡的测定GB   5009.123- 2023   食品安全国家标准   食品中铬的测定GB   5009. 297 - 2023  食品安全国家标准 食品中钼的测定GB   5009.36- 2023     食品安全国家标准   食品中氰化物的测定增加了GC-MS、离子色谱、流动注射/连续流动-分光光度法GB   5009.43- 2023     食品安全国家标准   味精中谷氨酸钠的测定GB   5009.88- 2023     食品安全国家标准   食品中膳食纤维的测定新增HPLC方法GB   5009.89- 2023     食品安全国家标准   食品中烟酸和烟酰胺的测定GB   5009.97- 2023     食品安全国家标准   食品 中环己基氨基磺酸 盐的测定GB   5009.26- 2023     食品安全国家标准   食品中 N- 亚硝胺类化合物的测定新增水蒸气蒸馏-gc-ms/ms、QuEChERS-gc-ms/ms、水蒸气蒸馏-Lc-ms/ms、GB   5009.129- 2023   食品安全国家标准   食品中乙氧基 喹 的测定新增HPLC方法GB   5009.140- 2023   食品安全国家标准   食品中乙酰磺胺酸钾的测定GB   5009.154- 2023   食品安全国家标准   食品中维生素B 6 的测定新增LC-MS、LC-MS/MS方法GB   5009.189- 2023   食品安全国家标准   食品中米 酵菌酸 的测定新增LC-MS/MS方法GB   5009.210- 2023   食品安全国家标准   食品中泛酸的测定新增LC-MS方法GB   5009.225- 2023   食品安全国家标准   酒和食用酒精中乙醇浓度的测定GB   5009.227- 2023   食品安全国家标准   食品中过氧化值的测定GB   5009.240- 2023   食品安全国家标准   食品 中伏马菌素 的测定GB   5009.259- 2023   食品安全国家标准   食品中生物素的测定新增LC-MS方法GB   5009.270- 2023   食品安全国家标准   食品中肌醇的测定GB   5009. 295 - 2023   食品安全国家标准   化学分析方法验证通则GB 5009.294-2023 食品安全国家标准 食品中色氨酸的测定GB   5009. 293 - 2023   食品安全国家标准   食品中单辛酸甘油酯的测定第一法:GC;第二法:GC-MSGB   5009. 292 - 2023   食品安全国家标准   食品中β-阿朴-8 ’ -胡萝卜素醛的测定HPLC方法GB   5009. 289 - 2023   食品安全国家标准   食品 中低聚半乳糖 的测定HPLC方法GB   5009. 291 - 2023   食品安全国家标准   食品中氯酸盐和高氯酸盐的测定LC-MS方法GB   5009. 290 - 2023   食品安全国家标准   食品中维生素K 2 的测定GB   5009.35- 2023     食品安全国家标准   食品中合成着色剂的测定GB   5009. 288 - 2023   食品安全国家标准   食品中 胭脂虫红的 测定GB   5009. 296 - 2023   食品安全国家标准   食品中维生素D的测定新增二维液相色谱法GB   31614 .1- 2023     食品安全国家标准   食品中唾液酸的测定GB   5009. 298 - 2023   食品安全国家标准   食品中三氯蔗糖(蔗糖素)的测定新增LC-MS方法食品接触材料(10项)GB   31604.7- 2023     食品安全国家标准   食品接触材料及制品脱色试验  GB   31604.46- 2023   食品安全国家标准   食品接触材料及制品游离 酚 的测定和迁移量的测定GB   31604.47- 2023   食品安全国家标准   食品接触材料及制品纸、纸板及纸制品中荧光性物质的测定  GB   31604. 58 - 2023   食品安全国家标准   食品接触材料及制品   9 种抗氧化剂迁移量的测定检测方法:液相/液质方法GB   31604. 29 - 2023   食品安全国家标准   食品接触材料及制品丙烯酸和甲基丙烯酸及其酯类迁移量的测定增加了检测方法,针对分析目标物种类较多、性质差异较大等问题,新增“液相色谱法”。GB   31604. 49 - 2023   食品安全国家标准   食品接触材料及制品多元素的测定和多元素迁移量的测定新增电感耦合等离子体发射光谱方法GB   31604. 57 - 2023   食品安全国家标准   食品接触材料及制品二苯甲酮类物质迁移量的测定检测方法:液相/液质方法GB   31604. 56 - 2023   食品安全国家标准   食品接触材料及制品月桂内酰胺迁移量的测定检测方法:液相/液质方法GB   31604. 54 - 2023   食品安全国家标准   食品接触材料及制品双酚F和双酚S迁移量的测定检测方法:液相/液质方法GB   31604. 55 - 2023   食品安全国家标准   食品接触材料及制品   异噻唑 啉 酮类化合物迁移量的测定检测方法:液相/液质方法水产品(6项)GB   31610 .1- 2023     食品安全国家标准   动物性水产品及其制品中 颚口线虫 的检验方法一:肺囊检查法(显微镜镜检);方法二:胃蛋白酶消化法(显微镜镜检);方法三:PCR方法;GB   31610 .2- 2023     食品安全国家标准   动物性水产品及其制品 中异尖线虫 的检验GB   31610 .3- 2023     食品安全国家标准  动物性水产品及其制品中 广州管圆线虫 的检验GB   31610 .4- 2023     食品安全国家标准   动物性水产品及其制品中华支 睾 吸虫的检验GB   31610 .5- 2023     食品安全国家标准   动物性水产品中及其制品中并 殖 吸虫的检验GB   31610 .6- 2023     食品安全国家标准   动物性水产品及其制品中 曼氏迭宫绦虫 裂头蚴的检验产品标准(3项)GB   31608 - 2023 食品安全国家标准 茶叶GB   31639 - 2023 食品安全国家标准   食品加工用菌种制剂GB   31611 - 2023 食品安全国家标准   食品加工用植物蛋白肽食品添加剂(10项)GB   1886.231- 2023   食品安全国家标准   食品添加剂   乳酸链球菌素GB   1886. 373 - 2023   食品安全国家标准   食品添加剂甲醇钠GB   1886. 372 - 2023   食品安全国家标准   食品添加剂L-蛋氨酰基甘氨酸盐酸盐GB   1886. 371 - 2023   食品安全国家标准   食品添加剂ε-聚赖氨酸盐酸盐GB   1886. 370 - 2023   食品安全国家标准   食品添加剂辛烯基琥珀酸淀粉钠GB   1886. 369 - 2023   食品安全国家标准   食品添加剂   蓝锭果红GB   1886. 368 - 2023   食品安全国家标准   食品添加剂   (2S,5R)-N-[4-(2-氨基-2- 氧代乙 基)苯基]-5-甲基-2-(丙基-2-)环己烷甲酰胺GB   1886. 367 - 2023   食品安全国家标准   食品添加剂   6-甲基辛醛GB   1886. 366 - 2023   食品安全国家标准   食品添加剂   β-胡萝卜素GB   1886. 365 - 2023   食品安全国家标准   食品添加剂   5-甲基-2-呋喃甲硫醇食品营养强化剂(6个)GB   1903. 61 - 2023     食品安全国家标准   食品营养强化剂碳酸铜GB   1903. 64 - 2023     食品安全国家标准   食品营养强化剂氯化锰GB   1903. 63 - 2023     食品安全国家标准   食品营养强化剂甘油磷酸钙GB   1903. 62 - 2023     食品安全国家标准   食品营养强化剂还原铁GB   1903. 59 - 2023     食品安全国家标准   食品营养强化剂氯化铬GB   1903. 60 - 2023     食品安全国家标准   食品营养强化剂L-肉碱酒石酸盐方法通则(3个)GB   4789.26- 2023     食品安全国家标准   食品微生物学检验商业无菌检验GB   4789.35- 2023     食品安全国家标准   食品微生物学检验乳酸菌检验GB   4789. 45 - 2023     食品安全国家标准   微生物检验方法验证通则生产规范(5个)GB   12693- 2023 食品安全国家标准   乳制品良好生产规范GB   19303- 2023 食品安全国家标准   熟肉制品生产卫生规范GB   22923- 2023 食品安全国家标准   特殊医学用途配方食品良好生产规范GB  23790- 2023 食品安全国家标准 婴幼儿配方食品良好生产规范GB   31612 - 2023 食品安全国家标准   食品加工用菌种制剂生产卫生规范
  • 这才是食品添加剂的正确标示方法
    1.食品添加剂应当标示《食品安全国家标准食品添加剂使用标准》(GB 2760-2014)中的食品添加剂通用名称如果《食品安全国家标准食品添加剂使用标准》(GB 2760-2014)中对一个食品添加剂规定了两个及以上的名称,每个名称均是等效的通用名称。以“环己基氨基磺酸钠(又名甜蜜素)”为例,“环己基氨基磺酸钠”和“甜蜜素”均为通用名称。2.应如实标示产品所使用的食品添加剂,但不强制要求建立“食品添加剂项”在同一预包装食品的标签上,所使用的食品添加剂及可以选在以下三种形式之一标示:(1)全部标示食品添加剂的具体名称,食品添加剂的名称不包括其制法,如加氨生产、普通法、亚硫酸铵法生产的焦糖色,在标签上可统一标注为“焦糖色”;(2)是全部标示食品添加剂的功能类别名称及国际编码(INS号),如果某种食品添加剂尚不存在相应的国际编码,或因致敏物质标示需要,可以标示其具体名称,如“磷脂”可以表示为“大豆磷脂”;(3)全部标示食品添加剂的功能类别名称,同时标示具体名称。一种食品添加剂可能具有多种功能,《食品安全国家标准食品添加剂使用标准》(GB 2760-2014)列出了食品添加剂的主要功能,供使用参考。生产经营企业应当按照食品添加剂在产品的实际功能在标签上标示功能类别名称。举例:食品添加剂“丙二醇”可以选择标示为:a.丙二醇;b.增稠剂(1520);c.增稠剂(丙二醇)。食品中添加了两种以上同一功能的食品添加剂,可选择分别标示各自的具体名称;或者选择先标示功能类别名称,再在其后加标示各自的具体名称或国际编码(INS号)。举例:可以标示为“卡拉胶、瓜尔胶”“增稠剂(卡拉胶、瓜尔胶)”或“增稠剂(407,412)”。如果某一种食品添加剂没有INS号,可同时标示其具体名称。举例:“增稠剂(卡拉胶,聚丙烯酸钠)”或“增稠剂(407,聚丙烯酸钠)”。3.复配食品添加剂的标示应当在食品配料表中标示在终产品中具有功能作用的每种食品添加剂。若标注复配食品添加剂的名称,需注意复配食品添加剂的命名规则应符合《食品安全国家标准复配食品添加剂通则》(GB 26687-2011)的规定。应以“复配”+“GB 2760中食品添加剂功能类别名称”或“复配”+“食品类别”+“GB 2760中食品添加剂功能类别名称”,如复配水分保持剂,或复配肉制品水分保持剂等。例如:某食品添加剂了复配着色剂,可标示为“复配着色剂(天然胡萝卜素、苋菜红)”或在配料表中直接标注“天然胡萝卜素、苋菜红”。4.食品添加剂中辅料的标示食品添加剂含有的辅料不在终产品中发挥功能作用时,不需要再配料表中标示。食品添加剂中的辅料是为了单一或复配的食品添加剂的加工、贮存、标准化、溶解等工艺目的而添加的食品原料和食品添加剂。这些物质在使用该食品添加剂的食品中不发挥功能作用,不需要再配料中标示。如含有食用植物油、糊精、抗氧化剂等辅料的叶黄素可直接标示为“叶黄素”,或者“着色剂(叶黄素)”“着色剂(161b)”。5.酶制剂的标示酶制剂如果在终产品中已经失去酶活力的,不需要标示;如果在终产品中仍然保持酶活力的,应按照食品配料表标示的有关规定,按制造或加工食品时酶制剂的加入量,排列在配料表的相应位置。对于不需要标示的加工助剂、酶制剂、食品添加剂中的不发挥工艺的辅料等,企业也可以在配料表中标注。6.食品营养强化剂的标识食品营养强化剂应当按照《食品营养强化剂使用标准》(GB 14880-2012)或原卫计委公告的名称标示。既可以作为食品添加剂或食品营养强化剂又可以作为其他配料使用的配料,应按其在终产品中发挥的作用规范标示。当作为食品添加剂使用,应当标示其在《食品安全国家标准食品添加剂使用标准》(GB 2760-2014)中规定的名称;当作为食品营养强化剂使用,应标示其在《食品营养强化剂使用标准》(GB 14880-2012)中规定的名称;当作为其他配料发挥作用,应当标示其相应具体名称。例如,味精(谷氨酸钠)既可以作为调味品有可以作为食品添加剂,当作为食品添加剂使用时,应标示为谷氨酸钠,当作为调味品使用时,应当标示味精。
  • 应用速递:药物安全—缬沙坦制剂中亚硝胺杂质的测定
    背景介绍缬沙坦是血管紧张素II受体阻滞剂(ARB)、联苯四氮唑结构的沙坦类化合物,用于各类轻中度高血压的治疗,尤其适用于ACE抑制剂不耐受的患者。2018年7月,药品监管部门首次在含有缬沙坦的产品中发现亚硝胺杂质——N二甲基亚硝胺(NDMA)。随后在沙坦类其他药物和雷尼替丁中都检测到各类亚硝胺杂质,例如N-二乙基亚硝胺(NDEA)、N-二异丙基亚硝胺(NDIPA)、N-乙基异丙基亚硝胺(NEIPA)和N-亚硝基二丁胺 (NDBA)。因此,对使用缬沙坦原料药的药品进行了全球召回,导致缬沙坦药品暂时短缺。 图1 N-亚硝胺的分子结构 根据世界卫生组织 (WHO) 的国际癌症研究机构 (IARC)的研究,大多数亚硝胺会对动物和人类具有致癌和遗传毒性。沙坦类药物大多含有四唑环,四唑环的形成需要亚硝酸钠;药物的生产设备、生产用试剂和溶剂(例如普通溶剂DMF中的二甲胺)也可能会带来污染,都有可能形成亚硝胺。欧洲药典 (Ph. Eur.) 委员会将 API 中亚硝胺的临时限值设定为低于 1 ppm,且于2020年底降至30 ppb。 低限值设定就需要使用灵敏度高和选择性好的分析方法。本应用参照美国FDA指南的方法进行优化,通过GC/MS/MS在EI源 MRM模式下痕量检测缬沙坦药品中的5种亚硝胺杂质 (NDMA、NDEA、NEIPA、NDIPA 和 NDBA),并根据USP要求进行方法学验证。 实验条件GC-MS/MS 方法检测不同的亚硝胺化合物,使用液体直接进样方式。与FDA方法相比,选择了膜厚更薄(0.5µm而不是1µm)的Supelcowax® 柱,符合USP通则中色谱法的规定。色谱条件以及质谱条件见表1-3。 表1 色谱条件色谱柱SUPELCOWAX® 10, 30 m x 0.25 mm I.D., 0.5µm (24284)检测器MS/MS进样口温度250℃柱温箱程序40℃保持0.5min,20℃/min至200℃, 60℃/min 至250℃保持3min载气及流速氦气,1.0mL/min衬管4 mm单径锥衬管带玻璃棉进样量2 µL进样模式脉冲不分流样品稀释剂二氯甲烷样品制备使用切片工具,取药片的四分之一放入15mL离心管,加入5mL二氯甲烷。将样品涡旋1分钟,并置于离心机中以4000 rpm离心2.5min。取二氯甲烷层上清液2mL,用0.45µm PVDF膜过滤。取续滤液0.5mL到2mL样品小瓶中并加盖。标准溶液二氯甲烷作为溶剂,配制得到浓度分别2.5、5.0、10、20、40、80、100ng/mL的5种亚硝胺(NDMA/NDEA/NEIPA/NDIPA/NDBA)校准溶液。 表2 质谱条件调谐自动调谐离子源及采集模式EI源,MRM碰撞气体氮气 @ 1.5mL/min淬灭气体氦气@ 4.0mL/min 溶剂延迟7 min离子源温度230°C四极杆温度150°C电离电压70 eV驻留时间50 ms 表3 MRM 离子对参数列表峰化合物Transition保留时间1N二甲基亚硝胺MRM274→426.952N二甲基亚硝胺MRM174→446.9522N-二乙基亚硝胺MRM 1102→857.533N-二乙基亚硝胺MRM2102→567.5283N-乙基异丙基亚硝胺MRM1116→997.784N-乙基异丙基亚硝胺MRM271→567.7874N-二异丙基亚硝胺MRM1130→427.971N-二异丙基亚硝胺MRM2130→887.9765N-亚硝基二丁胺MRM1158→999.497N-亚硝基二丁胺MRM284→569.494 五种亚硝胺化合物在10分钟内完全分离,且目标峰与溶剂和基质杂质得到了很好的分离(图 2)。由于使用了0.5µm膜厚的色谱柱,与 FDA 方法相比,分离时间更短。图2:40 ng/mL系统适用性溶液色谱图,峰表见表3.实验得出:N-二乙基亚硝胺(NDEA)和N-二异丙基亚硝胺(NDIPA)的多反应监测MRM Transition最低检测限浓度为2.5ppb,如图3所示。图3 NDEA(上图)和 NDIPA(下图)最低检测限谱图 方法适用性经验证的 FDA-OTR 方法要求 40 ng/mL 标准品六次重复进样的 RSD%≤ 5%。 使用我们的方法,连续6次进样 40 ng/mL 的5种亚硝胺杂质,在两种 MRM 下的 RSD%远小于 5,如表4所示。化合物MRM1 RSD%MRM2 RSD% N二甲基亚硝胺1.81.3N-二乙基亚硝胺1.11.1N-乙基异丙基亚硝胺4.21.5N-二异丙基亚硝胺0.92.2N-亚硝基二丁胺4.33.0表4 40ng/mL 亚硝胺标准品连续六次进样的精密度此外,线性校准曲线的相关系数R2应≥ 0.998。本方法中五种亚硝胺杂质的两个 MRM都超过了这一标准(表 5)。杂质MRM 1MRM 2N二甲基亚硝胺0.99940.9995N-二乙基亚硝胺0.99910.9995N-乙基异丙基亚硝胺0.99950.9995N-二异丙基亚硝胺0.99960.9994N-亚硝基二丁胺0.99830.9981表5 两种MRM定量中两种亚硝胺的相关系数 (R2)缬沙坦制剂中亚硝酸胺的检测在药店购买的缬沙坦药品中加入亚硝胺杂质,浓度为10 ppb(NDBA为40 ppb),5种亚硝胺的回收率在94.5%~105.7%之间。(表6)。杂质10ppb回收率NDMA99 %NDEA103.5 %NEIPA94.5 %NDIPA103.9 %NDBA105.7 %表6缬沙坦药品中5种亚硝胺的加标回收率对于缬沙坦药品中5种亚硝胺的检测,OTR 方法的定量限 (LOQ) 范围是 8 – 40 ppb,本实验方法的 LOQ见表 7。 LOQ 是根据每种化合物校准曲线信噪比 (S/N) 为 10 浓度计算得出的,并且通过缬沙坦片剂的标准添加实验进行了验证。 检出限LOD是信噪比 (S/N) 为 3 的浓度计算得到 。杂质FDA方法 LOQ [ppb]本实验方法LOQ [ppb]NDMA133NDEA85NEIPA83NDIPA85NDBA4032表7 OTR和实验方法LOQ结果结论综上,参考FDA 建议方法,使用 SUPELCOWAX® 色谱柱通过 GC-MS/MS在 MRM 模式下可以轻松实现亚硝胺杂质的测定。所有亚硝胺化合物之间以及与溶剂和基质峰的分离良好,满足所有系统适用性要求。 该方法已成功应用于缬沙坦药物中亚硝胺类杂质的分析。 相关产品描述货号链接SUPELCOWAX® 10 气相毛细管柱30 m × 0.25 mm,0.50 μm24284 https://www.sigmaaldrich.cn/CN/zh/product/supelco/24284 SupraSolv® GC-MS二氯甲烷 1.00668 https://www.sigmaaldrich.cn/CN/zh/product/mm/100668 N二甲基亚硝胺NDMA认证参考物质 5000 µg/mL甲醇溶液CRM40059 https://www.sigmaaldrich.cn/CN/zh/product/supelco/crm40059N-二乙基亚硝胺NDEA 认证参考物质 5000 µg/mL甲醇溶液40334 https://www.sigmaaldrich.cn/CN/zh/product/supelco/40334N-亚硝基二丁胺NDBA 分析标准品442685 https://www.sigmaaldrich.cn/CN/zh/product/supelco/442685 N-乙基异丙基亚硝胺NEIPA EP标准品Y0002262 https://www.sigmaaldrich.cn/CN/zh/product/supelco/y0002262N-二异丙基亚硝胺NDIPA EP 标准品Y0002263 https://www.sigmaaldrich.cn/CN/zh/product/supelco/y0002263
  • 【繁星伴月 阖家同福】福立仪器为中秋佳节送祝福守安全
    中秋佳节渐至,各种口味和样式的月饼层出不穷。月饼作为重要的节令食品,在中秋佳节期间,被大批量制作,一些不良商家为了追求利润,可能会使用劣质原料,或添加超量的食品添加剂。因此加强检测、控制月饼质量安全,显得尤为重要。根据相关标准要求对食品进行严格监管,是每一位检测人需要重视的责任。福立仪器不仅送祝福,也为您守护月饼安全!月饼检测指标项目月饼检测分析仪器月饼食品安全检测方案食品中苯甲酸、山梨酸和糖精钠的测定苯甲酸、山梨酸和糖精钠标准溶液谱图1、苯甲酸 2、山梨酸 3、糖精钠山梨酸、苯甲酸、糖精钠是常见的食品添加剂,山梨酸、苯甲酸是食品加工工艺中最常用的防腐剂。糖精钠——人们熟知的糖精,甜度是蔗糖的300-500倍,短时间内大量摄入会影响人体肠胃、肝脏、肾脏功能。参考GB 5009.28-2016《食品安全国家标准 食品中苯甲酸、山梨酸和糖精钠的测定》,福立LC5090Plus高效液相色谱仪,凭借稳定的检测性能以及高灵敏度、低检出限能够准确测定食品中食品添加剂含量。杜绝食品添加剂使用超标,福立守卫食品安全!食品中脱氢乙酸的测定 脱氢乙酸标准溶液谱图第一法 气相色谱法第二法 高效液相色谱法脱氢乙酸及其钠盐是一种广普低毒的防腐剂,作为食品添加剂,其使用量需符合GB 2760-2014《食品安全国家标准 食品添加剂使用标准》要求:月饼中,脱氢乙酸及其钠盐(以脱氢乙酸计)最大使用量为0.5g/kg。使用福立F80气相色谱仪和LC5190低压超高效液相色谱仪,可以完全满足《GB 5009.121-2016 食品中脱氢乙酸的测定》气相色谱法和高效液相色谱法的检测需求,同时能够多方法快速、高效、经济地检测食品中的脱氢乙酸的含量。食品中环己基氨基磺酸钠(甜蜜素)的测定环己基氨基磺酸钠标准溶液谱图环己基氨基磺酸钠(甜蜜素)是一种十分常见的食品添加剂,福立LC5090Plus高效液相色谱仪测定食品中环己基氨基磺酸钠(甜蜜素),方法稳定可靠,其结果满足《食品安全国家标准 食品中环己基氨基磺酸钠的测定》(GB 5009.97-2016)第二法 高效液相色谱法要求。食品中合成着色剂的测定合成着色剂标准溶液谱图1.柠檬黄 2.新红 3.苋菜红 4.胭脂红 5.日落黄 6.诱惑红 7.亮蓝 8.赤藓红合成着色剂是用人工合成方法所制得的有机着色剂,常用于食品行业的着色、润色等方面,但其所添加到食品中的量则需经过严格的限定和控制。福立LC5190低压超高效液相色谱仪,能够以高分离、高灵敏度对其的复杂组分进行有效分析和检测,为食品快速检测提供了强有力的支撑,同时仪器智能高效,具有精准的控制系统,给用户带来极佳的使用体验。食品中黄曲霉毒素B族和G族的测定黄曲霉毒素B族和G族标准溶液谱图1.AFT G2 2.AFT G13.AFT B2 4.AFT B1黄曲霉毒素来自于黄曲霉和寄生曲霉所产生的一种次生代谢物,具有急慢性毒性、致突变性、致癌性和致畸性,其中黄曲霉毒素 B1 毒性是氰化钾的10倍,砒霜的68倍,被世界卫生组织( WHO) 列为一级致癌物。福立仪器参考国家标准:食品中黄曲霉毒素B族和G族的测定(GB5009.22-2016),使用LC5090Plus高效液相色谱仪建立了食品中黄曲霉毒素B族和G族的测定方法,该方法采用光化学衍生,无需衍生试剂,无腐蚀性液体流经检测器,方案操作简单,成本低,设备通用性佳。食品中果糖、葡萄糖、蔗糖、麦芽糖、乳糖的测定糖混合标准溶液典型谱图1.果糖 2.葡萄糖3.蔗糖4.乳糖 5.麦芽糖采用福立 LC5190低压超高效液相色谱仪测定食品中果糖、葡萄糖、蔗糖、麦芽糖和乳糖, 方法稳定可靠,具有很好的准确度、精密度和检出限,仪器配置也具有优异的检测性能,可以完全满足标准方法要求。福立仪器将一直践行着“用科技创新,实现人类美好生活”的企业使命,致力于为客户提供高品质、高性能的仪器产品和整体应用解决方案,为消费者筑起坚实的健康防线,守护他们的食品安全!福立祝您中秋佳节,月圆人圆事事圆!
  • 生态环境部《土壤和沉积物中甲基汞和乙基汞测定》 (征求意见稿) 标准解读
    生态环境部办公厅2020年12月31日发布《土壤和沉积物 甲基汞和乙基汞的测定 吹扫捕集/气相色谱-冷原子荧光光谱法(征求意见稿)》 (环办标征函〔2020〕62号) ,我国国内第一个土壤和沉积物中甲基汞和乙基汞的测定方法标准公开征求意见。 该标准的主要起草单位是由中国环境监测总站和江苏省环境监测中心,验证单位包括:山东省生态环境监测中心、广西壮族自治区生态环境监测中心、四川省生态环境监测总站、湖南省长沙生态环境监测中心、贵阳市环境监测中心站和合肥市环境监测中心站等七家单位。为什么需要对土壤和沉积物中的甲基汞和乙基汞进行测定呢?土壤中的汞主要包括金属汞、无机化合态汞和有机化合态汞。有机化合态汞以有机汞(烷基汞)和有机络合汞普遍存在。其中烷基汞主要包括甲基汞和乙基汞;甲基汞是有机汞中毒性最大的一种形态,甲基汞很容易穿过血脑屏障,对人神经系统进行侵害,尤其对妇女和儿童有很大的影响;土壤中的甲基汞易被植物吸收,通过食物链在生物体内富集,从而暴露给人体;而土壤中的腐殖质与汞结合形成的络合物不易被植物吸收。另外,乙基汞也属于亲脂性化合物,中毒后可引起急性肠胃炎以及造成严重的肾脏损伤等。土壤和沉积物中的甲基汞和乙基汞国内是否有相关限值控制标准? 2018年6月,生态环境部与国家市场监督管理总局联合发布了《土壤环境质量 建设用地土壤污染风险管控标准(试行)》(GB36600—2018)国家环境质量标准,该标准于2018年8月1日正式实施,标准中明确了不同类型建设用地中甲基汞的筛选值和管制值,其中甲基汞在第一类用地的筛选值为5mg/kg。 目前国内暂无涉及土壤和沉积物中乙基汞的限值控制标准。《土壤和沉积物 甲基汞和乙基汞的测定 吹扫捕集/气相色谱-冷原子荧光光谱法(征求意见稿)》内容简介原理:土壤或沉积物样品经碱液提取后,提取液中的甲基汞和乙基汞经四丙基硼化钠衍生,生成挥发性的甲基丙基汞和乙基丙基汞,经吹扫捕集、热脱附和气相色谱分离后,再高温裂解为汞蒸气,用冷原子荧光光谱仪检测。根据保留时间定性,外标法定量。 方法检出限和定量下限:当取样量为0.5 g 时,甲基汞和乙基汞的方法检出限均为0.2 μg/kg,测定下限均为0.8 μg/kg 前处理过程:分析过程:标准曲线:8 个40 ml 棕色进样瓶,分别加入实验用水约35 ml,再分别加入0 pg,2.00 pg,5.00 pg,10 pg,50 pg,100 pg,500 pg,1500 pg的甲基汞和乙基汞混合标准溶液,,然后加入300 μl 乙酸-乙酸钠缓冲溶液及50 μl 四丙基硼化钠溶液(如果只进行甲基汞的分析,可加入四乙基硼酸钠溶液进行衍生化反应),迅速加入实验用水至瓶满,不留空隙,盖紧盖子静置10 min ~15 min。实际样品:40 ml 进样瓶中加入实验用水约35 ml 至瓶颈处,取试样150 μl 至进样瓶中,依次加入300 μl 乙酸-乙酸钠缓冲溶液及50 μl 四丙基硼化钠溶液(如果只进行甲基汞的分析,可加入四乙基硼酸钠溶液进行衍生化反应),最后迅速加入实验用水至瓶满,盖紧盖子静置10 min ~15 min 上机分析:标准内部验证和外部验证均采用美国知名仪器厂家Brooks Rand公司生产的MERX全自动烷基汞分析系统:MERX全自动烷基汞分析系统异位吹扫捕集,样品满瓶式进样,衍生化效率和烷基汞分析结果不受环境空气的影响三通道Tenax 捕集阱交替捕集,效率高液体传感器,水汽进入捕集阱会报警精密流量控制,气流波动小,避免因吹扫气流量过大造成大量水汽进入吸附阱或因流量过小造成的吸附不完全甲基汞检出限可达0.002ng/L;乙基汞检出限可达0.005ng/L宽线性范围:甲基汞0.0125-50ng/L,乙基汞0.025-50ng/L残留低:高浓度样品运行后仪器残留低于2‰重复性好,数据结果可靠国内销售数量超过300家,用户的普遍选择MERX全自动烷基汞分析系统同时还是《水质烷基汞的测定吹扫捕集/气相色谱-冷原子荧光光谱法》(HJ 977-2018)的验证仪器。该仪器数据质量稳定可靠,在国内饱受好评。谱图:质量控制:空白试验:每20 个样品或每批次样品(<20 个/批)应至少做一个空白试样,空白试样的测定值应低于方法检出限(甲基汞和乙基汞的方法检出限均为0.2 μg/kg)校准:建议每次分析前均应建立工作曲线,若采用线性回归法,相关系数≥0.995;若采用响应因子法,校准系数RSD≤15%(工作曲线绘制后,每批样品测定时需要测定工作曲线中间浓度点的标准溶液,其相对误差值应该控制在±20%以内。否则,需重新绘制工作曲线)平行样:每20 个或每批次样品(<20 个/批)应至少测定一个平行双样,测定结果的相对偏差应≤30%基体加标:每20 个样品或每批次样品(<20 个/批)应至少测定一个基体加标样品或一个土壤或沉积物的有证标准物质。甲基汞加标回收率控制在75%~130%之间;乙基汞加标回收率控制在70%~120%之间标准物质测定:测定甲基汞有证标准物质的允许相对误差在﹣40%~+10%之间展望:本标准的检出限、精密度等性能指标能满足《土壤环境质量 建设用地土壤污染风险管控标准(试行)》(GB 36600-2018)的相应要求,相信该标准正式出台后,会使涉及土壤和沉积物中甲基汞和乙基汞分析检测的单位有据可依,并为相关分析检测人员提供新的思路和手段。 参考文献:1. 关于征求《土壤和沉积物 甲基汞和乙基汞的测定吹扫捕集/气相色谱-冷原子荧光光谱法》国家环境保护标准意见的通知 (链接:http://www.mee.gov.cn/xxgk2018/xxgk/xxgk06/202012/t20201231_815730.html);2. 《土壤和沉积物 甲基汞和乙基汞的测定 吹扫捕集/气相色谱-冷原子荧光光谱法(征求意见稿)》及编制说明;3. 《土壤环境质量 建设用地土壤污染风险管控标准(试行)》(GB36600—2018)。
  • 重磅:生态环境部《土壤和沉积物 甲基汞和乙基汞的测定》 (HJ 1269—2022) 标准发布
    生态环境部办公厅2023年1月29日正式发布《土壤和沉积物 甲基汞和乙基汞的测定 吹扫捕集/气相色谱-冷原子荧光光谱法》(HJ 1269—2022),该标准为我国国内第一个土壤和沉积物中甲基汞和乙基汞的测定方法标准,标准将于2023年6月16日正式实施。 该标准的主要起草单位是由中国环境监测总站和江苏省环境监测中心,验证单位包括:山东省生态环境监测中心、广西壮族自治区生态环境监测中心、四川省生态环境监测总站、湖南省长沙生态环境监测中心、贵阳市环境监测中心站和合肥市环境监测为什么需要对土壤和沉积物中的甲基汞和乙基汞进行测定呢?土壤中的汞主要包括金属汞、无机化合态汞和有机化合态汞。有机化合态汞以有机汞(烷基汞)和有机络合汞普遍存在。其中烷基汞主要包括甲基汞和乙基汞;甲基汞是有机汞中毒性最大的一种形态,甲基汞很容易穿过血脑屏障,对人神经系统进行侵害,尤其对妇女和儿童有很大的影响;土壤中的甲基汞易被植物吸收,通过食物链在生物体内富集,从而暴露给人体;而土壤中的腐殖质与汞结合形成的络合物不易被植物吸收。另外,乙基汞也属于亲脂性化合物,中毒后可引起急性肠胃炎以及造成严重的肾脏损伤等。土壤和沉积物中的甲基汞和乙基汞国内是否有相关限值控制标准? 2018年6月,生态环境部与国家市场监督管理总局联合发布了《土壤环境质量 建设用地土壤污染风险管控标准(试行)》(GB36600—2018)国家环境质量标准,该标准于2018年8月1日正式实施,标准中明确了不同类型建设用地中甲基汞的筛选值和管制值,其中甲基汞在第一类用地的筛选值为5mg/kg。目前国内暂无涉及土壤和沉积物中乙基汞的限值控制标准。《土壤和沉积物 甲基汞和乙基汞的测定 吹扫捕集/气相色谱-冷原子荧光光谱法》(HJ 1269—2022)内容简介原理:土壤或沉积物样品经碱液提取后,提取液中的甲基汞和乙基汞与四丙基硼化钠发生衍生化反应,生成挥发性的甲基丙基汞和乙基丙基汞,经吹扫捕集、热脱附和气相色谱分离后,再高温裂解为汞蒸气,用冷原子荧光光谱法测定。根据保留时间定性,外标法定量。 方法检出限和定量下限:当取样量为0.5 g 时,提取液体积为 30 ml 时,甲基汞和乙基汞的方法检出限均为0.2 μg/kg,测定下限均为0.8 μg/kg 前处理过程:分析过程:标准曲线:8 个40 ml 棕色进样瓶,分别加入实验用水约35 ml,再分别加入0 pg,2.00 pg,5.00 pg,10 pg,50 pg,100 pg,500 pg,1000 pg的甲基汞和乙基汞混合标准溶液,,然后加入300 μl 乙酸-乙酸钠缓冲溶液及50 μl 四丙基硼化钠溶液,迅速加入实验用水至瓶满,不留空隙,盖紧盖子静置20 min实际样品:40 ml 进样瓶中加入实验用水约35 ml 至瓶颈处,取试样150 μl 至进样瓶中,依次加入300 μl 乙酸-乙酸钠缓冲溶液及50 μl 四丙基硼化钠溶液,最后迅速加入实验用水至瓶满,盖紧盖子静置20 min 上机分析:标准内部验证和外部验证均采用美国知名仪器厂家Brooks Rand公司生产的MERX全自动烷基汞分析系统:异位吹扫捕集,样品满瓶式进样,衍生化效率和烷基汞分析结果不受环境空气的影响三通道Tenax 捕集阱交替捕集,效率高液体传感器,水汽进入捕集阱会报警精密流量控制,气流波动小,避免因吹扫气流量过大造成大量水汽进入吸附阱或因流量过小造成的吸附不完全甲基汞检出限可达0.002ng/L;乙基汞检出限可达0.002ng/L宽线性范围:甲基汞0.0125-50ng/L,乙基汞0.025-50ng/L残留低:高浓度样品运行后仪器残留低于2‰重复性好,数据结果可靠国内销售数量超过350家,用户的普遍选择来源:《土壤和沉积物 甲基汞和乙基汞的测定 吹扫捕集/气相色谱-冷原子荧光光谱法(征求意见稿)》编制说明第65页MERX全自动烷基汞分析系统同时还是《水质烷基汞的测定吹扫捕集/气相色谱-冷原子荧光光谱法》(HJ 977-2018)的验证仪器。该仪器数据质量稳定可靠,在国内饱受好评。 谱图:质量控制:空白试验:每20 个样品或每批次样品(<20 个/批)应至少做一个空白试样,空白试样的测定值应低于方法检出限(甲基汞和乙基汞的方法检出限均为0.2 μg/kg)校准:每次分析样品前均应建立不少于 6 个点的校准曲线,采用线性回归法计算结果,曲线的相关系数≥0.995;采用校准系数法计算结果,校准系数 CFi的相对标准偏差≤15%。每20 个样品测定一个校准曲线中间浓度点的标准溶液,其相对误差值应该控制在±20%以内,否则应重新建立校准曲线平行样:每 20 个或每批次样品(少于 20 个样品)应至少测定 1 个平行双样,平行双样测定结果的相对偏差应在±30%以内基体加标:每 20 个样品或每批次样品(少于 20 个样品)应至少测定 1 个基体加标样品或1 个有证标准物质。甲基汞加标回收率控制在 75%~130%之间;乙基汞加标回收率控制在 65%~120%之间 展望:本标准的检出限、精密度等性能指标能满足《土壤环境质量 建设用地土壤污染风险管控标准(试行)》(GB 36600-2018)的相应要求,该标准会使涉及土壤和沉积物中甲基汞和乙基汞分析检测的单位有据可依,并为相关分析检测人员提供新的手段。 参考文献:1. 土壤和沉积物 甲基汞和乙基汞的测定 吹扫捕集/气相色谱-冷原子荧光光谱法 (HJ 1269—2022)(链接:https://www.mee.gov.cn/ywgz/fgbz/bz/bzwb/jcffbz/202301/t20230128_1014026.shtml);2. 土壤和沉积物 甲基汞和乙基汞的测定 吹扫捕集/气相色谱-冷原子荧光光谱法(征求意见稿)及编制说明(链接:http://www.mee.gov.cn/xxgk2018/xxgk/xxgk06/202012/t20201231_815730.html);3. 土壤环境质量 建设用地土壤污染风险管控标准(试行)(GB36600—2018)。
  • 吹扫捕集-气相色谱冷原子荧光光谱法 测定水中烷基汞解决方案
    吹扫捕集-气相色谱冷原子荧光光谱法测定水中烷基汞解决方案北分瑞利水质与土壤等环境中烷基汞由于生物富集的作用,其毒性远远高于无机汞,为了人类的身体健康,准确检测环境中的烷基汞含量就显得十分重要,然而由于环境中烷基汞的含量一般为超痕量,使得一般的分析仪器难以满足检测要求。吹扫捕集-气相色谱-冷原子荧光光谱法(PT-GC-AFD)由于进样量小、检出限低、灵敏度高、分析速度快及环境污染小等优点特别适合分析环境中超痕量的烷基汞。在《HJ 977-2018水质烷基汞的测定吹扫捕集-气相色谱-冷原子荧光光谱法》标准条件下测定样品中甲基汞、乙基汞的含量,使用峰面积进行计算。该方法在0.1-4ng/L的浓度范围内标准曲线的线性相关系数R在0.999以上,甲基汞的检出限为0.11pg,乙基汞检出限为0.16pg,具有较好的方法回收率和重复性。1 标准依据及测试原理测试结果符合2019年3月1日起实施的《HJ 977-2018水质烷基汞的测定吹扫捕集-气相色谱-冷原子荧光光谱法》。水样蒸馏后馏出液中的烷基汞经四丙基硼化钠衍生,生成挥发性的甲基丙基汞和乙基丙基汞,吹扫后被Tenax管捕集,热脱附出来的组分经气相色谱分离,再高温裂解为汞蒸气,用冷原子荧光检测器检测。2 仪器设备与测试条件仪器配置仪器品牌型 号气相色谱仪北分瑞利SP-3530配毛细注样器和小型冷原子荧光检测器吹扫捕集北分瑞利BFRL-APT30S北分瑞利小型冷原子荧光检测器专利证书测试条件吹扫捕集测试条件吹扫温度:常温;吹扫气体:氩气(99.999%);吹扫时间:30min;吹扫流量:80mL/min;干吹时间:5min;捕集管解析温度:250℃;解析时间:1min;解析流量:15mL/min;烘烤温度:280℃;烘烤时间:10min;烘烤流量:300mL/min。气相色谱仪测试条件载气:氩气(99.999%),流量15mL/min,恒流模式;柱温箱升温程序:起始温度90℃,保持1min,以5℃/min升至100℃,保持2min;进样口温度220℃;进样方式:不分流模式;AFD设置:灯电流25mA,负高压630V,裂解温度800℃,补充气流量65mL/min。3 测试结果测试谱图图 1 烷基汞测试谱图序号中文名称保留时间min检出限/pg1甲基丙基汞2.0330.112乙基丙基汞3.3680.163丙基丙基汞4.630——甲基汞乙基汞结论吹扫捕集-气相色谱-冷原子荧光光谱法(PT-GC-AFD)测定环境中烷基汞的分析方法,符合《HJ 977-2018水质烷基汞的测定吹扫捕集-气相色谱-冷原子荧光光谱法》。甲基汞和乙基汞的检出限分别为0.11pg和0.16pg,达到国际先进水平。PT-GC-AFD在安装AFD的同时还可以加装FID、ECD、TCD等多种气相色谱仪检测器,增加了仪器的通用性和适用范围,使仪器除了测量烷基汞之外,还可以轻松扩项进行多种样品的分析。北分瑞利公司拥有原子吸收分光光度计、原子荧光光谱仪、原子发射光谱仪、紫外/可见分光光度计、傅立叶变换红外光谱仪、气相色谱仪、液相色谱仪等光谱与色谱分析仪器,为各行业提供全套应用解决方案。
  • 2023版食品安全监督抽检计划与2022版检测项目对比
    近日,网上流传一份《国家食品安全监督抽检实施细则(2023年版)》电子版,以下是该版资料与2022年版的检测项目的增减对比,大家可以参考一下有备无患。33大类名称与2022版基本相同,无变化。本文列举了前19大类检测项目增减情况。以下内容红色字体部分为2023版新增;蓝色字体部分为2022版原有,于2023版删除。1、粮食加工品类别检验项目通用小麦粉、专用小麦粉镉(以Cd计)、玉米赤霉烯酮、脱氧雪腐镰刀菌烯醇、赭曲霉毒素A、黄曲霉毒素B1、苯并[a]芘、过氧化苯甲酰、偶氮甲酰胺大米铅(以Pb计)、镉(以Cd计)、黄曲霉毒素B1、无机砷(以As计)、苯并[a]芘挂面铅(以Pb计)、脱氢乙酸及其钠盐(以脱氢乙酸计)、黄曲霉毒素B1谷物加工品铅(以Pb计)、镉(以Cd计)、黄曲霉毒素B1玉米粉、玉米片、玉米渣黄曲霉毒素B1、赭曲霉毒素A、玉米赤霉烯酮、苯并[a]芘米粉铅(以Pb计)、镉(以Cd计)、总汞、无机砷(以As计)、苯并[a]芘其他谷物碾磨加工品铅(以Pb计)、赭曲霉毒素A、铬(以Cr计)生湿面制品铅(以Pb计)、苯甲酸及其钠盐(以苯甲酸计)、山梨酸及其钾盐(以山梨酸计)、脱氢乙酸及其钠盐(以脱氢乙酸计)、二氧化硫残留量发酵面制品山梨酸及其钾盐(以山梨酸计)、苯甲酸及其钠盐(以苯甲酸计)、脱氢乙酸及其钠盐(以脱氢乙酸计)、糖精钠(以糖精计)、大肠菌群、菌落总数、沙门氏菌、金黄色葡萄球菌米粉制品山梨酸及其钾盐(以山梨酸计)、苯甲酸及其钠盐(以苯甲酸计)、脱氢乙酸及其钠盐(以脱氢乙酸计)、糖精钠(以糖精计)、大肠菌群、菌落总数、沙门氏菌、金黄色葡萄球菌、二氧化硫残留量其他谷物粉类制成品铅(以Pb计)、黄曲霉毒素B1、苯甲酸及其钠盐(以苯甲酸计)、山梨酸及其钾盐(以山梨酸计)、菌落总数、大肠菌群、沙门氏菌、金黄色葡萄球菌、脱氢乙酸及其钠盐(以脱氢乙酸计)2、食用油、油脂及其制品类别检验项目食用植物油酸值/酸价、过氧化值、铅(以Pb计)、黄曲霉毒素B1、苯并[a]芘、溶剂残留量、丁基麦芽酚、特丁基对苯二酚(TBHQ)食用植物油(煎炸过程用油)酸价、极性组分食用动物油脂酸价、过氧化值、丙二醛、总砷(以As计)、苯并[a]芘、铅(以Pb计)食用油脂制品酸价(以脂肪计)、过氧化值(以脂肪计)、大肠菌群、霉菌、铅(以Pb计)3、调味品类别检验项目酱油氨基酸态氮、全氮(以氮计)、铵盐(以占氨基酸态氮的百分比计)、苯甲酸及其钠盐(以苯甲酸计)、山梨酸及其钾盐(以山梨酸计)、脱氢乙酸及其钠盐(以脱氢乙酸计)、防腐剂混合使用时各自用量占其最大使用量的比例之和、糖精钠(以糖精计)、菌落总数、大肠菌群、对羟基苯甲酸酯类及其钠盐 (以对羟基苯甲酸计)、三氯蔗糖食醋总酸(以乙酸计)、不挥发酸(以乳酸计)、苯甲酸及其钠盐(以苯甲酸计)、山梨酸及其钾盐(以山梨酸计)、脱氢乙酸及其钠盐(以脱氢乙酸计)、防腐剂混合使用时各自用量占其最大使用量的比例之和、糖精钠(以糖精计)、菌落总数、对羟基苯甲酸酯类及其钠盐(以对羟基苯甲酸计)、三氯蔗糖酿造酱氨基酸态氮 、黄曲霉毒素B1、苯甲酸及其钠盐(以苯甲酸计)、山梨酸及其钾盐(以山梨酸计)、脱氢乙酸及其钠盐(以脱氢乙酸计)、防腐剂混合使用时各自用量占其最大使用量的比例之和、糖精钠(以糖精计)、大肠菌群、三氯蔗糖调味料酒氨基酸态氮 、苯甲酸及其钠盐(以苯甲酸计)、山梨酸及其钾盐(以山梨酸计)、脱氢乙酸及其钠盐(以脱氢乙酸计)、糖精钠(以糖精计)、甜蜜素(以环己基氨基磺酸计)、三氯蔗糖香辛料调味油铅(以Pb计)、酸价/酸值、过氧化值辣椒、花椒、辣椒粉、花椒粉铅(以Pb计)、罗丹明B、苏丹红I-IV、脱氢乙酸及其钠盐(以脱氢乙酸计)、沙门氏菌、二氧化硫残留量其他香辛料调味品铅(以Pb计)、丙溴磷、氯氰菊酯和高效氯氰菊酯、多菌灵、沙门氏菌、脱氢乙酸及其钠盐(以脱氢乙酸计)、二氧化硫残留量鸡粉、鸡精调味料谷氨酸钠、呈味核苷酸二钠、糖精钠(以糖精计)、甜蜜素(以环己基氨基磺酸计)、菌落总数、大肠菌群其他固体调味料铅(以Pb计)、总砷(以As计)、苏丹红I-IV、苯甲酸及其钠盐(以苯甲酸计)、山梨酸及其钾盐(以山梨酸计)、脱氢乙酸及其钠盐(以脱氢乙酸计)、防腐剂混合使用时各自用量占其最大使用量的比例之和、糖精钠(以糖精计)、甜蜜素(以环己基氨基磺酸计)、罂粟碱、吗啡、可待因、那可丁、阿斯巴甜、二氧化硫残留量蛋黄酱、沙拉酱金黄色葡萄球菌、沙门氏菌、乙二胺四乙酸二钠、二氧化钛坚果与籽类的泥(酱)酸价/酸值、过氧化值、铅(以Pb计)、黄曲霉毒素B1、沙门氏菌辣椒酱苯甲酸及其钠盐(以苯甲酸计)、山梨酸及其钾盐(以山梨酸计)、脱氢乙酸及其钠盐(以脱氢乙酸计)、防腐剂混合使用时各自用量占其最大使用量的比例之和、甜蜜素(以环己基氨基磺酸计)、二氧化硫残留量火锅底料、麻辣烫底料铅(以Pb计)、苯甲酸及其钠盐(以苯甲酸计)、山梨酸及其钾盐(以山梨酸计)、脱氢乙酸及其钠盐(以脱氢乙酸计)、防腐剂混合使用时各自用量占其最大使用量的比例之和、罂粟碱、吗啡、可待因、那可丁其他半固体调味料罗丹明B、苯甲酸及其钠盐(以苯甲酸计)、山梨酸及其钾盐(以山梨酸计)、脱氢乙酸及其钠盐(以脱氢乙酸计)、防腐剂混合使用时各自用量占其最大使用量的比例之和、甜蜜素(以环己基氨基磺酸计)、罂粟碱、吗啡、可待因、那可丁、铅(以Pb计)蚝油、虾油、鱼露氨基酸态氮、苯甲酸及其钠盐(以苯甲酸计)、山梨酸及其钾盐(以山梨酸计)、脱氢乙酸及其钠盐(以脱氢乙酸计)、防腐剂混合使用时各自用量占其最大使用量的比例之和、糖精钠(以糖精计)、菌落总数、大肠菌群其他液体调味料苯甲酸及其钠盐(以苯甲酸计)、山梨酸及其钾盐(以山梨酸计)、脱氢乙酸及其钠盐(以脱氢乙酸计)、防腐剂混合使用时各自用量占其最大使用量的比例之和、糖精钠(以糖精计)、甜蜜素(以环己基氨基磺酸计)、菌落总数、大肠菌群味精谷氨酸钠、铅(以Pb计)普通食用盐氯化钠、碘(以I计)、钡(以Ba计)、铅(以Pb计)、总砷(以As计)、镉(以Cd计)、总汞(以Hg计)、亚铁氰化钾/亚铁氰化钠(以亚铁氰根计)低钠食用盐氯化钾、碘(以I计)、钡(以Ba计)、铅(以Pb计)、总砷(以As计)、镉(以Cd计)、总汞(以Hg计)、亚铁氰化钾/亚铁氰化钠(以亚铁氰根计)风味食用盐碘(以I计)、钡(以Ba计)、铅(以Pb计)、总砷(以As计)、镉(以Cd计)、总汞(以Hg计)、亚铁氰化钾/亚铁氰化钠(以亚铁氰根计)特殊工艺食用盐氯化钠、碘(以I计)、钡(以Ba计)、铅(以Pb计)、总砷(以As计)、镉(以Cd计)、总汞(以Hg计)、亚铁氰化钾/亚铁氰化钠(以亚铁氰根计)食品生产加工用盐铅(以Pb计)、总砷(以As计)、镉(以Cd计)、总汞(以Hg计)、亚铁氰化钾/亚铁氰化钠(以亚铁氰根计)、亚硝酸盐(以NaNO2计)4、肉制品类别检验项目调理肉制品(非速冻)铅(以Pb计)、氯霉素、苯甲酸及其钠盐(以苯甲酸计)、山梨酸及其钾盐(以山梨酸计)、铬(以Cr计)、脱氢乙酸及其钠盐(以脱氢乙酸计)腌腊肉制品过氧化值(以脂肪计)、总砷(以As计)、氯霉素、亚硝酸盐(以亚硝酸钠计)、苯甲酸及其钠盐(以苯甲酸计)、山梨酸及其钾盐(以山梨酸计)、胭脂红、铅(以Pb计)发酵肉制品氯霉素、亚硝酸盐(以亚硝酸钠计)、大肠菌群、单核细胞增生李斯特氏菌、沙门氏菌、金黄色葡萄球菌、致泻性大肠埃希氏菌酱卤肉制品铅(以Pb计)、镉(以Cd计)、铬(以Cr计)、总砷(以As计)、氯霉素、酸性橙Ⅱ、亚硝酸盐(以亚硝酸钠计)、苯甲酸及其钠盐(以苯甲酸计)、山梨酸及其钾盐(以山梨酸计)、脱氢乙酸及其钠盐(以脱氢乙酸计)、防腐剂混合使用时各自用量占其最大使用量的比例之和、胭脂红、糖精钠(以糖精计)、菌落总数、大肠菌群、沙门氏菌、金黄色葡萄球菌、单核细胞增生李斯特氏菌、致泻性大肠埃希氏菌、商业无菌熟肉干制品铅(以Pb计)、镉(以Cd计)、铬(以Cr计)、氯霉素、苯甲酸及其钠盐(以苯甲酸计)、山梨酸及其钾盐(以山梨酸计)、脱氢乙酸及其钠盐(以脱氢乙酸计)、防腐剂混合使用时各自用量占其最大使用量的比例之和、胭脂红、菌落总数、大肠菌群、沙门氏菌、金黄色葡萄球菌、单核细胞增生李斯特氏菌、致泻性大肠埃希氏菌熏烧烤肉制品铅(以Pb计)、苯并[a]芘、氯霉素、亚硝酸盐(以亚硝酸钠计)、菌落总数、大肠菌群、单核细胞增生李斯特氏菌、沙门氏菌、金黄色葡萄球菌、致泻性大肠埃希氏菌、苯甲酸及其钠盐(以苯甲酸计)、山梨酸及其钾盐(以山梨酸计)、纳他霉素、胭脂红熏煮香肠火腿制品亚硝酸盐(以亚硝酸钠计)、苯甲酸及其钠盐(以苯甲酸计)、山梨酸及其钾盐(以山梨酸计)、脱氢乙酸及其钠盐(以脱氢乙酸计)、防腐剂混合使用时各自用量占其最大使用量的比例之和、胭脂红、菌落总数、大肠菌群、氯霉素、沙门氏菌、金黄色葡萄球菌、单核增生李斯特菌、致泻性大肠埃希氏菌、铅(以Pb计)、纳他霉素5、乳制品类别检验项目液体乳(巴氏杀菌乳)蛋白质、酸度、三聚氰胺、菌落总数、大肠菌群、金黄色葡萄球菌、沙门氏菌、丙二醇液体乳(灭菌乳)脂肪、非脂乳固体、蛋白质、酸度、三聚氰胺、商业无菌、丙二醇液体乳(发酵乳)脂肪、蛋白质、酸度、乳酸菌数、三聚氰胺、大肠菌群、金黄色葡萄球菌、沙门氏菌、酵母、霉菌、山梨酸及其钾盐液体乳(调制乳)脂肪、蛋白质、铅(以Pb计)、铬(以Cr计)、黄曲霉毒素M1、三聚氰胺、菌落总数、大肠菌群、金黄色葡萄球菌、沙门氏菌、商业无菌脱盐乳清粉、非脱盐乳清粉、浓缩乳清蛋白粉、分离乳清蛋白粉蛋白质、三聚氰胺乳粉(全脂乳粉、脱脂乳粉、部分脱脂乳粉、调制乳粉)蛋白质、三聚氰胺、菌落总数、大肠菌群其他乳制品(炼乳)蛋白质、三聚氰胺、菌落总数、大肠菌群、商业无菌其他乳制品(干酪、再制干酪、干酪制品)干酪:铅(以Pb计)、黄曲霉毒素M1、三聚氰胺、大肠菌群、金黄色葡萄球菌、沙门氏菌、单核细胞增生李斯特氏菌、酵母、霉菌;再制干酪:脂肪(干物中)、干物质含量、铅(以Pb计)、黄曲霉毒素M1、三聚氰胺、菌落总数、大肠菌群、金黄色葡萄球菌、沙门氏菌、单核细胞增生李斯特氏菌、酵母、霉菌其他乳制品(奶片、奶条等)三聚氰胺、脱氢乙酸及其钠盐(以脱氢乙酸计)、沙门氏菌其他乳制品(奶油)脂肪、酸度、三聚氰胺、菌落总数、大肠菌群、沙门氏菌、霉菌、商业无菌6、饮料类别检验项目饮用天然矿泉水界限指标、镍、锑、溴酸盐、硝酸盐(以NO3-计)、亚硝酸盐(以NO2-计)、大肠菌群、铜绿假单胞菌、总汞(以 Hg 计)、铅(以Pb计)、镉(以Cd计)、总砷(以 As 计)饮用纯净水电导率、耗氧量(以O2计)、亚硝酸盐(以NO2-计)、余氯(游离氯)、三氯甲烷、溴酸盐、大肠菌群、铜绿假单胞菌、阴离子合成洗涤剂、铅(以Pb计)、镉(以Cd计)、总砷(以 As 计)其他饮用水耗氧量(以O2计)、亚硝酸盐(以NO2-计)、余氯(游离氯)、溴酸盐、大肠菌群、铜绿假单胞菌、三氯甲烷、阴离子合成洗涤剂、铅(以Pb计)、镉(以Cd计)、总砷(以 As 计)果、蔬汁饮料铅(以Pb计)、展青霉素、苯甲酸及其钠盐(以苯甲酸计)、山梨酸及其钾盐(以山梨酸计)、脱氢乙酸及其钠盐(以脱氢乙酸计)、纳他霉素、防腐剂混合使用时各自用量占其最大使用量的比例之和、糖精钠(以糖精计)、安赛蜜、甜蜜素(以环己基氨基磺酸计)、合成着色剂(苋菜红、胭脂红、柠檬黄、日落黄、亮蓝)、菌落总数、大肠菌群、霉菌、酵母蛋白饮料蛋白质、三聚氰胺、脱氢乙酸及其钠盐(以脱氢乙酸计)、菌落总数、大肠菌群、沙门氏菌碳酸饮料(汽水)二氧化碳气容量、苯甲酸及其钠盐(以苯甲酸计)、山梨酸及其钾盐(以山梨酸计)、防腐剂混合使用时各自用量占其最大使用量的比例之和、甜蜜素(以环己基氨基磺酸计)、菌落总数、霉菌、酵母茶饮料茶多酚、咖啡因、甜蜜素(以环己基氨基磺酸计)、菌落总数、脱氢乙酸及其钠盐(以脱氢乙酸计)固体饮料蛋白质、铅(以Pb计)、赭曲霉毒素A、苯甲酸及其钠盐(以苯甲酸计)、山梨酸及其钾盐(以山梨酸计)、防腐剂混合使用时各自用量占其最大使用量的比例之和、糖精钠(以糖精计)、合成着色剂(苋菜红、胭脂红、柠檬黄、日落黄、亮蓝)、菌落总数、大肠菌群、霉菌、相同色泽着色剂混合使用时各自用量占其最大使用量的比例之和其他饮料苯甲酸及其钠盐(以苯甲酸计)、山梨酸及其钾盐(以山梨酸计)、脱氢乙酸及其钠盐(以脱氢乙酸计)、防腐剂混合使用时各自用量占其最大使用量的比例之和、糖精钠(以糖精计)、甜蜜素(以环己基氨基磺酸计)、合成着色剂(苋菜红、胭脂红、柠檬黄、日落黄、亮蓝)、菌落总数、大肠菌群、霉菌、酵母、沙门氏菌16、蔬菜制品类别检验项目酱腌菜
  • 广东检出10批次不合格食品,涉及微生物污染、农兽药残留、食品添加剂等问题
    5月19日,广东省市场监督管理局发布2023年第12期通告,检出不合格食品10批次,涉及微生物污染、农兽药残留、重金属污染及食品添加剂超限量使用等问题。   6批次食品检出农兽药残留问题   6批次食品检出农兽药残留问题,分别为佛山市信大易购商贸有限公司销售的泥鳅,恩诺沙星不符合食品安全国家标准规定;梅州市梅县区石扇张小明禽肉档销售的广西鸡,氯霉素不符合食品安全国家标准规定;沃尔玛(广东)商业零售有限公司广州白云新城分店销售的活鲈鱼(淡水鱼),恩诺沙星不符合食品安全国家标准规定;广州市荔湾区宾玉蔬菜经营部销售的小黄姜,吡虫啉不符合食品安全国家标准规定;深圳市南山区启富蔬菜经营部销售的豇豆,克百威不符合食品安全国家标准规定;广州市南沙区李塘艳珍菜档销售的长豆角(豇豆),倍硫磷不符合食品安全国家标准规定。   克百威又名呋喃丹,是氨基甲酸酯类农药中常见的一种杀虫剂、杀螨、杀线虫剂。少量的农药残留不会引起人体急性中毒,但长期食用克百威超标的食品,可能对人体健康有一定影响。《食品安全国家标准 食品中农药最大残留限量》(GB 2763-2021)中规定,克百威在豆类蔬菜中的最大残留限量值为0.02mg/kg。豇豆中克百威超标的原因,可能是菜农为控制病情不遵守休药期规定,致使上市销售时产品中的药物残留量未降解至标准限量以下。   吡虫啉属氯化烟酰类杀虫剂,具有广谱、高效、低毒等特点。长期食用吡虫啉超标的食品,会对人体产生一定危害。《食品安全国家标准 食品中农药最大残留限量》(GB 2763-2021)规定,吡虫啉在姜中的最大残留限量值为0.5mg/kg。吡虫啉残留量超标的原因,可能是为快速控制虫害,加大用药量或未遵守采摘间隔期规定,致使上市销售的产品中残留量超标。   倍硫磷是有机磷神经毒剂,对害虫具有触杀和胃毒作用,对蚜虫等有较好防效。少量的残留不会引起人体急性中毒,但长期食用倍硫磷超标的食品,对人体健康可能有一定影响。《食品安全国家标准 食品中农药最大残留限量》(GB 2763-2021)中规定,倍硫磷在豆类蔬菜中的最大残留限量值为0.05mg/kg。豇豆中倍硫磷残留量超标的原因,可能是为快速控制虫害,加大用药量或未遵守采摘间隔期规定,致使上市销售的产品中残留量超标。   恩诺沙星属第三代喹诺酮类药物,是一类人工合成的广谱抗菌药,用于治疗动物的皮肤感染、呼吸道感染等,是动物专属用药。长期食用恩诺沙星残留超标的食品,可能在人体中蓄积,进而对人体机能产生危害,还可能使人体产生耐药性菌株。《食品安全国家标准 食品中兽药最大残留限量》(GB 31650-2019)中规定,恩诺沙星(以恩诺沙星和环丙沙星之和计)可用于牛、羊、猪、兔、禽等食用畜禽及其他动物,在牛、禽和其他动物的肌肉中的最大残留限量值为100μg/kg。长期食用恩诺沙星超标的食品,可能会对人体健康有一定影响。   2批次食品检出重金属污染问题   2批次食品检出重金属污染问题,分别为中山市石岐区海更丰水产品档销售的花蟹,镉(以Cd计)不符合食品安全国家标准规定;中山火炬开发区沈德科水产品档销售的冬蟹,镉(以Cd计)不符合食品安全国家标准规定。   镉是一种蓄积性的重金属元素,可通过食物链进入人体。长期食用镉超标的食品,可能会对人体肾脏和肝脏造成损害,还会影响免疫系统,甚至可能对儿童高级神经活动有损害。《食品安全国家标准 食品中污染物限量》(GB 2762-2017)中规定,镉(以Cd计)在蟹类中的限量值为0.5mg/kg。镉(以Cd计)检测值超标的原因,可能是其养殖过程中富集环境中的镉元素导致。   此外,还有2批次食品分别检出微生物污染问题、食品添加剂超限量使用问题,具体为清远市清城区新盈丰商行销售的标称清远旭福嘉食品有限公司生产的野山椒凤爪(辐照食品),菌落总数不符合食品安全国家标准规定;深圳市惠万佳连锁管理有限公司销售的标称广东康拜恩食品有限公司生产的逍遥八仙果,甜蜜素(以环己基氨基磺酸计)不符合食品安全国家标准规定。   菌落总数是指示性微生物指标,不是致病菌指标,反映食品在生产过程中的卫生状况。如果食品的菌落总数严重超标,将会破坏食品的营养成分,使食品失去食用价值;还会加速食品腐败变质,可能危害人体健康。《食品安全国家标准 熟肉制品》(GB 2726-2016)中规定,熟肉制品(除发酵肉制品外)同一批次产品5个样品的菌落总数检测结果均不得超过105CFU/g,且最多允许2个样品的检测结果超过104CFU/g。酱卤肉制品中菌落总数超标的原因,可能是企业未按要求严格控制生产加工过程的卫生条件,也可能与产品包装密封不严或储运条件不当等有关。   甜蜜素,化学名称为环己基氨基磺酸钠,是食品生产中常用的甜味剂之一,其甜度是蔗糖的40—50倍。长期摄入甜蜜素超标的食品,可能会对人体的肝脏和神经系统造成一定危害。《食品安全国家标准 食品添加剂使用标准》(GB 2760-2014)中规定,蜜饯类中甜蜜素的最大使用量分别为1.0g/kg。蜜饯中甜蜜素(以环己基氨基磺酸计)检测值超标的原因,可能是生产企业为增加产品甜度,超量使用甜蜜素;也可能是使用的复配添加剂中甜蜜素含量较高;还可能是添加过程中未准确计量等。   广东省市场监督管理局已要求辖区市场监管部门及时对不合格食品及其生产经营者进行调查处理,责令企业查清产品流向,采取下架、召回不合格产品等措施控制风险,并分析原因进行整改;同时要求辖区市场监管部门将相关情况记入生产经营者食品安全信用档案,并按规定在监管部门网站上公开相关信息。 不合格产品信息肉制品监督抽检不合格产品信息抽样编号序号标称生产企业名称标称生产企业地址被抽样单位名称被抽样单位地址食品名称规格型号商标生产日期不合格项目║检验结果║标准值分类公告号任务来源/项目名称检验机构备注GZJ234400000049310591清远旭福嘉食品有限公司清远市新城B47号区洲心工业园清远市清城区新盈丰商行广东省清远市清城区威达8#楼1-3卡首层野山椒凤爪(辐照食品)52克/袋醇厨娘2022-11-14菌落总数║2.6×10⁵,2.7×10⁵,2.8×10⁵,1.6×10⁵,2.0×10⁵(CFU/g)║n=5,c=2,m=10000,M=100000(CFU/g)肉制品2023年第12期广东/总局国抽广东产品质量监督检验研究院水果制品监督抽检不合格产品信息抽样编号序号标称生产企业名称标称生产企业地址被抽样单位名称被抽样单位地址食品名称规格型号商标生产日期不合格项目║检验结果║标准值分类公告号任务来源/项目名称检验机构备注GZJ234400000049307361广东康拜恩食品有限公司里湖镇和平凉果城深圳市惠万佳连锁管理有限公司广东省深圳市宝安区石岩街道浪心社区青年西路15号106逍遥八仙果132克/包图案+顺宝2022-12-16甜蜜素(以环己基氨基磺酸计)║3.18g/kg║≤1.0g/kg水果制品2023年第12期广东/总局国抽广东产品质量监督检验研究院食用农产品监督抽检不合格产品信息抽样编号序号标称生产企业/进货来源名称标称生产企业地址/进货来源地址被抽样单位名称被抽样单位地址食品名称规格型号商标生产(购进、检疫)日期不合格项目║检验结果║标准值分类公告号任务来源/项目名称检验机构备注GC224400005962567141供货商:帆东水产/佛山市信大易购商贸有限公司佛山市南海区里水镇新兴社区沿江西路3号里水第一城1座2层B02号泥鳅散装称重/2022-11-17恩诺沙星║260μg/kg║≤100μg/kg食用农产品2023年第12期广东/总局国抽广东省食品检验所(广东省酒类检测中心)GC224400005962483852供货商:中山市南朗镇黄英信水产档/中山市石岐区海更丰水产品档中山市石岐区张溪路38号之三(张溪市场)花蟹散装称重/2022-11-17镉(以Cd计)║1.4mg/kg║≤0.5mg/kg食用农产品2023年第12期广东/总局国抽广东省食品检验所(广东省酒类检测中心)GC224400005962527493供货商:中山市石岐区永利虾档/中山火炬开发区沈德科水产品档中山市火炬开发区康祥路28号张家边中心市场2号楼肉菜市场1层H239A卡冬蟹散装称重/2022-11-17镉(以Cd计)║1.4mg/kg║≤0.5mg/kg食用农产品2023年第12期广东/总局国抽广东省食品检验所(广东省酒类检测中心)GC220000008060304164供货商:石扇农贸市场/梅州市梅县区石扇张小明禽肉档梅州市梅县区石扇镇市场广西鸡//2022-08-22氯霉素║0.492μg/kg║不得检出食用农产品2023年第12期总局/本级重庆海关技术中心GC220000001002310655供货商:深圳市亨得利农产品有限公司/沃尔玛(广东)商业零售有限公司广州白云新城分店广州市白云区云城南二路187号103房活鲈鱼(淡水鱼)//2022-10-25恩诺沙星║1.04×10³μg/kg║≤100μg/kg食用农产品2023年第12期总局/本级初检机构:谱尼测试集团股份有限公司;复检机构:华测检测认证集团有限公司GC220000001002311116供货商:广州江南果菜批发市场干货区C72档/广州市荔湾区宾玉蔬菜经营部广州市荔湾区中南街道天嘉大街196号1012号铺小黄姜//2022-10-31吡虫啉║1.33mg/kg║≤0.5mg/kg食用农产品2023年第12期总局/本级谱尼测试集团股份有限公司PJ220000003613302967供应商:深圳市水盛果蔬配送有限公司/深圳市南山区启富蔬菜经营部深圳市南山区南头街道南山大道北南山农批市场A区7栋A22豇豆//2022-11-27克百威║0.075mg/kg║≤0.02mg/kg食用农产品2023年第12期总局/本级厦门海关技术中心GC220000006018301078供应商:广州市番禺区大龙郑旭峰蔬菜档/广州市南沙区李塘艳珍菜档广州市南沙区大涌市场菜档3号长豆角(豇豆)//2022-12-09倍硫磷║0.36mg/kg║≤0.05mg/kg食用农产品2023年第12期总局/本级谱尼测试集团股份有限公司(来源:广东省市场监督管理局)
  • 卫生部公布14种食品添加剂质量规格标准
    根据《中华人民共和国食品安全法》和卫生部等9部门《关于加强食品添加剂监督管理工作的通知》(卫监督发〔2009〕89号)规定,经审核,现公布磷酸酯双淀粉等14个食品添加剂的质量规格标准。   特此公告。   附件:磷酸酯双淀粉等14个食品添加剂的质量规格标准.doc 一、磷酸酯双淀粉 项目 指标 干燥失重/(g/100g) ≤ 谷类淀粉: 15.0;土豆淀粉: 21.0;其他单体淀粉: 18.0 SO2残留量/(mg/kg) ≤ 30 重金属(以Pb计)/(mg/kg) ≤ 20 铅/(mg/kg) ≤ 1.0 砷/(mg/kg) (以As计) ≤ 0.5 磷酸盐残留量(以P计)/(%) ≤ 马铃薯和小麦淀粉0.5;其他淀粉0.4 注:用三偏磷酸钠或三氯氧磷为酯化剂 二、醋酸酯淀粉 项目 指标 干燥失重/(%) ≤ 谷类淀粉: 15.0;土豆淀粉: 21.0;其他单体淀粉: 18.0 SO2残留量/(mg/kg) ≤ 30 重金属(以Pb计)/(mg/kg) ≤ 20 铅/(mg/kg) ≤ 1.0 砷/(mg/kg) (以As计) ≤ 0.5 乙酰基含量/(%) ≤ 2.5 乙酸乙烯酯/ (mg/kg) ≤ (仅限用乙酸乙烯酯作为酯化剂) 0.1 注:用乙酸酐作酯化剂时,其用量不超过8.0%(w/w,占淀粉干基),用乙酸乙烯酯作酯化剂时,其用量不超过7.5%(w/w,占淀粉干基)。 三、辛烯基琥珀酸淀粉钠和辛烯基琥珀酸铝淀粉 项目 指标 干燥失重/(%) ≤ 谷类淀粉: 15.0;土豆淀粉: 21.0;其他单体淀粉: 18.0 SO2残留量/(mg/kg) ≤ 30 重金属(以Pb计)/(mg/kg)≤ 20 砷/(mg/kg) (以As计) ≤ 0.5 铅/(mg/kg) ≤ 1.0 辛烯基琥珀酸基团/(%) ≤ 3.0 辛烯基琥珀酸残留量/(%) ≤ 0.3 注:生产辛烯基琥珀酸淀粉钠时,辛烯基琥珀酸酐用量不超过3.0%(占淀粉干基,w/w);生产辛烯基琥珀酸铝淀粉时,辛烯基琥珀酸酐用量不超过2.0%,硫酸铝用量不超过2.0%(均为占淀粉干基,w/w)。 四、氧化羟丙基淀粉 项目 指标 干燥失重/(%) ≤ 谷类淀粉: 15.0;土豆淀粉: 21.0;其他单体淀粉: 18.0 SO2残留量/(mg/kg) ≤ 30 重金属(以Pb计)/(mg/kg) ≤ 20 铅/(mg/kg) ≤ 1.0 砷/(mg/kg) (以As计) ≤ 0.5 氯丙醇/(mg/kg) ≤ 1.0 羧基含量/(%) ≤ 1.1 羟丙基含量/(%) ≤ 7.0 注:用次氯酸钠作氧化剂,使用量中的有效氯不超过5.5%(占淀粉干基,w/w),用过氧化氢作氧化剂,使用量中的活性氧不超过0.45%(占淀粉干基,w/w);用环氧丙烷作醚化剂,使用量不超过25%(占淀粉干基,w/w)。 五、羧甲基淀粉钠 项目 指标 干燥失重/(%) ≤ 10 SO2残留量/(mg/kg) ≤ 30 重金属(以Pb计)/(mg/kg) ≤ 20 铅/(mg/kg) ≤ 1.0 砷/(mg/kg) (以As计) ≤ 0.5 氯化物(以cl计)/(%) ≤ 0.43 硫酸盐(以SO4计)/(%) ≤ 0.96 注:一氯乙酸为醚化剂。 六、淀粉磷酸酯钠 项目 指标 干燥失重/(%) ≤ 谷类淀粉: 15.0;土豆淀粉: 21.0;其他单体淀粉: 18.0 SO2残留量/(mg/kg) ≤ 30 重金属(以Pb计)/(mg/kg) ≤ 20 铅/(mg/kg) ≤ 1.0 砷/(mg/kg) (以As计) ≤ 0.5 磷酸盐残留量(以P计)/ (%) ≤ 马铃薯和小麦淀粉0.5;其他淀粉0.4 注:用正磷酸、磷酸钠、磷酸钾或三聚磷酸钠酯化。 七、氧化淀粉 项目 指标 干燥失重/(%) ≤ 谷类淀粉: 15.0;土豆淀粉: 21.0;其他单体淀粉: 18.0 SO2残留量/(mg/kg) ≤ 30 重金属(以Pb计)/(mg/kg) ≤ 20 铅/(mg/kg) ≤ 1.0 砷/(mg/kg) (以As计) ≤ 0.5 羧基含量/(%) ≤ 1.1 注:用次氯酸钠作氧化剂,使用量中的有效氯不超过5.5%(占淀粉干基,w/w)。 八、酸处理淀粉 项目 指标 干燥失重/(%) ≤ 谷类淀粉: 15.0;土豆淀粉: 21.0;其他单体淀粉: 18.0 SO2残留量/(mg/kg) ≤ 30 重金属(以Pb计)/(mg/kg) ≤ 20 铅/(mg/kg) ≤ 1.0 砷/(mg/kg) (以As计) ≤ 0.5 注:采用盐酸、正磷酸或硫酸处理。 九、乙酰化双淀粉己二酸酯 项目 指标 干燥失重/(%) ≤ 谷类淀粉: 15.0;土豆淀粉: 21.0;其他单体淀粉: 18.0 SO2残留量/(mg/kg) ≤ 30 重金属(以Pb计)/(mg/kg) ≤ 20 铅/(mg/kg) ≤ 1.0 砷/(mg/kg) (以As计) ≤ 0.5 乙酰基含量/(%) ≤ 2.5 己二酸盐/(%) ≤ 0.135 注:用已二酸酐(用量占淀粉干基不超过0.12%,w/w)交联,乙酸酐(用量占淀粉干基不超过8.0%,w/w)酯化。 十、羟丙基淀粉 项目 指标 干燥失重/(%) ≤ 谷类淀粉: 15.0;土豆淀粉: 21.0;其他单体淀粉: 18.0 SO2残留量/( mg/kg ) ≤ 30 重金属(以Pb计)/(mg/kg)≤ 20 铅/(mg/kg) ≤ 1.0 砷/(mg/kg) (以As计) ≤ 0.5 氯丙醇/(mg/kg) ≤ 1.0 羟丙基含量/(%) ≤ 7.0 注:用环氧丙烷作醚化剂(用量占淀粉干基不超过25%,w/w)。 十一、磷酸化二淀粉磷酸酯 项目 指标 干燥失重/(%) ≤ 谷类淀粉: 15.0;土豆淀粉: 21.0;其他单体淀粉: 18.0 SO2残留量/(mg/kg) ≤ 30 重金属(以Pb计)/(mg/kg) ≤ 20 铅/(mg/kg) ≤ 1.0 砷/(mg/kg) (以As计) ≤ 0.5 磷酸盐残留量(以P计)/ (%) ≤ 马铃薯和小麦淀粉0.5;其他淀粉0.4 注:采用三聚磷酸钠和三偏磷酸钠作酯化剂。 十二、乙酰化二淀粉磷酸酯 项目 指标 干燥失重/(%) ≤ 谷类淀粉: 15.0;土豆淀粉: 21.0;其他单体淀粉: 18.0 SO2残留量/(mg/kg) ≤ 30 重金属(以Pb计)/(mg/kg)≤ 20 铅/(mg/kg) ≤ 1.0砷/(mg/kg) (以As计) ≤ 0.5 磷酸盐残留量(以P计)/ (%) ≤ 马铃薯和小麦淀粉0.14;其他淀粉0.04 乙酰基含量/(%) ≤ 2.5 乙酸乙烯酯残留量/(mg/kg) ≤ (仅限用乙酸乙烯酯作酯化剂) 0.1 注:用乙酸酐作酯化剂时,其用量不超过8.0%(w/w,占淀粉干基),用乙酸乙烯酯作酯化剂时,其用量不超过7.5%(w/w,占淀粉干基)。 十三、羟丙基二淀粉磷酸酯 项目 指标 干燥失重/(%) ≤ 谷类淀粉: 15.0;土豆淀粉: 21.0;其他单品淀粉: 18.0 SO2残留量/(mg/kg) ≤ 30 重金属(以Pb计)/(mg/kg) ≤ 20 铅/(mg/kg) ≤ 1.0 砷/(mg/kg) (以As计) ≤ 0.5 磷酸盐残留量(以P计)/(%) ≤ 马铃薯和小麦淀粉0.14;其他淀粉0.04 羟丙基含量/(%) ≤ 7.0 氯丙醇/(mg/kg) ≤ 1.0 注:采用三氯氧磷(用量占淀粉干基不超过0.1%,w/w)或三偏磷酸钠酯化交联,环氧丙烷醚化(用量占淀粉干基不超过10%,w/w)。 十四、聚丙烯酸钠 项 目 指 标 硫酸盐(以SO4计),w/ % ≤ 0.49 重金属(以Pb计)/(mg/kg) ≤ 20.0 砷(以As计)/(mg/kg) ≤ 2.0 残存单体,w/ % ≤ 1.0 低聚合物,w/ % ≤ 5.0 干燥失重,w/ % < 6.0 烧灼残渣,w/ % ≤ 76.0 pH(0.1%水溶液) 8~10 0.2%水溶液粘度 (60rpm.20℃) 250~430 cps 注:生产工艺,丙烯酸+NaOH→中和催化剂→聚合→精制→干燥→粉碎→成品。 分送:各省、自治区、直辖市卫生厅局,新疆生产建设兵团卫生局,部直属各单位。 卫生部办公厅 2010年7月21日印发
  • 用户之声|和黄白猫洗洁精的表面活性剂分析神器—CAD检测器
    今天赛默飞就带大家跟随“和黄白猫”,探寻下最常用的日用品之一——洗洁精。洗洁精由多种表面活性剂及助剂复配而成。可能的成分有:“烷基苯磺酸钠(LAS),脂肪醇聚氧乙烯醚硫酸钠(AES)和烯基/羟基磺酸钠(AOS)̷̷”,这些阴离子表面活性剂去油污能力强,在皮肤上残留会有干燥紧绷的感觉;因此,很多厂家会添加比较温和的两性离子表面活性剂进行复配,如椰油酰胺丙基甜菜碱,椰油酰胺丙基氧化胺,非离子表面活性剂脂肪醇聚氧乙烯醚等,以取得更好的清洁效果并降低对人体皮肤的刺激。椰油酰胺丙基甜菜碱结构式 由于成分复杂,开发合适的检测方法对这类产品进行质控分析,是一项高难度挑战。1两性表面活性剂在酸性条件下以阳离子形式存在,会影响其他阴离子表面活性剂的定量,无法用化学滴定法定量;2大部分表面活性剂无紫外吸收,缺乏标准物质,紫外检测器很难检测所有组分;3示差折光检测器重复性差、只能等度洗脱无法完全分离;4质谱检测器只能检测可以离子化的化合物,而且长时间使用离子源和四极杆会难以清洗造成交叉污染;自从接触了赛默飞的电雾式检测器CAD,以上这些难题都迎刃而解。“通过调研我们发现:CAD的重现性和灵敏度远高于示差折光检测器,与ELSD相比也具有较明显优势。2016年我们研发部门配置了CAD和紫外双检测器的Ultimate 3000双三元液相色谱,通过一个二位六通阀连接,实现了一台仪器当两台液相使用的强大功能,方便了我们的工作,降低了购买成本。”——和黄白猫公司上海和黄白猫有限公司是洗涤清洁用品行业的知名企业,在国内同行业中技术领xian、设备先进、质量过硬,享有相当高的市场信誉度;“白猫”品牌,几乎成为国内洗涤清洁用品的代名词。 电雾式检测器(CAD)电雾式检测器(CAD),是一种新型通用型检测器,重现性好,能检测大部分非挥发性和半挥发性的有机物,并提供几乎一致的响应,且不受化合物紫外吸收基团的影响,在定量分析中具有明显的优势。 赛默飞带您来看和黄白猫公司使用CAD检测器对洗洁精中表面活性剂的日常分析色谱条件数据结果分析由于表面活性剂中包含不同碳链的非极性基团,检测中会出现多个连续峰,如AES和LAS的CAD图谱无法完全分离,但由于LAS有紫外吸收,可使用紫外检测器定量;AES无紫外吸收,使用CAD检测器定量。椰油酰胺丙基氧化胺(上)和月桂酰胺丙基甜菜碱(下)标准品CAD图谱脂肪醇聚氧乙烯醚硫酸钠(AES)和烷基苯磺酸钠(LAS)标准品CAD图谱烷基苯磺酸钠(LAS)的CAD图谱和UV(254nm)图谱 对于二者同时存在的情况,可以依据CAD响应一致性的特性,使用CAD检测器以AES为标品,计算二者的总量,再减去用紫外检测器得到LAS含量,即为AES的含量,对比使用其他方法的检测结果,无显著性差异。洗洁精实际样品的CAD和UV图 以上可知,赛默飞表面活性剂专用色谱柱Acclaim Surfactant Plus(可同时提供反相机制和阴、阳离子交换保留机制),配合DAD和CAD检测器串联使用,可以有效、准确的检测各表面活性剂成分的含量。 在对某些进口品牌的洗涤剂配方研究中我们发现,大部分产品都不同程度添加了相应的两性离子表面活性剂,使同时具有良好的乳化性和分散性,其对织物有优异的柔软平滑性和抗静电性。CAD检测器为洗涤剂类产品的配方优化和产品质量控制提供了良好的检测手段。 鸣谢:感谢和黄白猫公司的徐艳丽工程师提供的实验数据!色谱质谱明星产品前处理气相色谱离子色谱液相色谱气质联用液质联用AA/ICP/ICPMS软件 更多仪器配置和方案推荐色谱质谱全流程食品安全固废专项临床检测RoHS检测中药分析化药分析代谢组学
  • 6月白酒新国标落地,珀金埃尔默检测方案助力白酒行业品质提升
    一白酒新标准中国作为一个酒文化的大国,有非常久远的制酒、饮酒历史。白酒作为酒类产品的重要组成部分,它的质量情况与公众的身体健康和生命安全密切相关。为此,国家制定了一系列法规标准,对酒类的管理及生产进行相关规定。2022年6月1日,《白酒工业术语》(GB/T15109-2021)及《饮料酒术语和分类》(GB/T 17204-2021)两项国家标准正式实施。1白酒必须以粮谷为主要原料2白酒生产企业不得使用呈色呈香呈味食品添加剂二珀金埃尔默白酒检测方案珀金埃尔默公司作为全球高端分析仪器产品供应商,多年来一直致力服务于国内主流酿酒企业和行业检测机构,通过与用户深入沟通了解,我们开发了全套针对白酒行业的解决方案,力求从原料把控,到成酒品质鉴定做到全过程监控,分析对象涵盖酿酒原料和成品白酒的重金属元素、微量元素、农药残留、风味组分等测定,以及白酒中的塑化剂甜蜜素等违禁物质的检测,同时为用户提供近红外光谱仪以及质构仪等产品对酿造过程中进行监控,还提供红外光谱仪,荧光光谱仪,液体闪烁计数器等产品进行成品白酒指纹图谱和年份酒的研究,下面重点介绍几个项目。1白酒氰化物的检测白酒里面含有氰化物的情况多是与制作和原料有关 ,一般来说,以粮谷为原料,经蒸馏的纯粮酒不会出现氰化物的情况。因此标准也规定了白酒必须以粮谷为主要原料。相对而言薯类原料酿造的蒸馏酒成本比较低,但出现氰化物超标的情况比较普遍。不乏商家为压缩成本,铤而走险直接使用木薯等原料酿酒,导致氰化物超标。氰化物是酒类中一项重要安全指标。氰化物对人体的伤害主要是神经方面的,可能导致中枢神经系统迅速丧失功能,继而使人体出现心跳停止、多脏器衰竭等症状而中毒,还可能引起后续的致癌反应。《食品安全国家标准 蒸馏酒及其配制酒》(GB 2757—2012)中规定,蒸馏酒及其配制酒中氰化物(以HCN计)的最大限量值为8mg/L(按100%酒精度折算)。白酒中氰化物的检测依据的是GB 5009.36-2016食品安全国家标准食品中氰化物的测定,其中分光光度法的测定,操作繁琐,误差较大,灵敏度较低,随着顶空进样器的技术发展,可以突破常规化学手段的限制,采用HS+GC/ECD,或者是GC/MS测定,有效提升了氰化物的检测方便性和灵敏度,操作简单,并且样品用量少。珀金埃尔默专利的顶空压力平衡时间进样技术无需使用进样阀,最大限度减少与样品接触的组件。能够几乎完全消除由于吸附和死体积导致的峰形失真,同时还可以消除样品残留,无需运行系统空白即可让您获得真正的高精度,快速获得白酒氰化物的含量,保证白酒的安全。HS+GC/ECD专利的压力平衡时间进样技术2白酒甜蜜素的检测新的白酒标准中要求白酒生产企业不得使用呈色呈香呈味食品添加剂,对于甜蜜素等甜味剂的监控也是十分必要的。白酒甜蜜素的检测标准主要是依据国标《GB 5009.97- 2016 食品安全国家标准食品中环己基氨基磺酸钠的测定》,规定了食品中环己基氨基磺酸钠(甜蜜素)的三种测定方法——气相色谱法、液相色谱法和液相色谱-质谱/质谱法。 其中气相色谱法里食品中的环己基氨基磺酸钠用水提取,在硫酸介质中环己基氨基磺酸钠与亚硝酸反应,生成环己醇亚硝酸酯 ,由于白酒可能含有环己醇及含环己基的物质,在硫酸介质中也易与亚硝酸反应生成环己醇亚硝酸酯,而导致实验的假阳性,所以气相色谱法不适于白酒。珀金埃尔默推荐采用液相质谱联用的方法对白酒中的甜蜜素进行检测。LCMSMS甜蜜素的提取离子色谱图,正负离子通道的灵敏度都完全满足要求详情请见塑化剂政策刚刚出台,甜蜜素风波再起,白酒的江湖一言难尽三白酒主要成分快速分析 (红外光谱法)白酒的总酸,总酯等成分是白酒基酒和成品酒的重要指标,也是很多白酒不合格的主要原因。一般需要用滴定法和气相色谱法检测白酒酒中各理化指标。检测不仅过程复杂、费时费力、而且在人工检测过程中会带入大量的不确定因素从而影响检测结果,因此,需要一种快速、无污染的检测方法来替代来自珀金埃尔默的中红外光谱分析仪FTB型仪器可用于基酒质量监控、生产过程原酒基酒快速分级、FTA可同时测定基酒中的总酸,总酯,酒度,己酸乙酯,乙酸乙酯, 乳酸乙酯、乙醛、甲醇、正丙醇、仲丁醇、乙缩醛、异丁醇、正丁醇、丁酸乙酯、异戊醇。整个分析过程小于1分钟,而且整个过程简单,无需任何化学试剂,减少对生产环境的污染,也不需特别的人员培训成本。白酒成分分析仪更多资料,请扫码下载。
  • 塑化剂政策刚刚出台,甜蜜素风波再起,白酒的江湖一言难尽
    2012年,白酒塑化剂超标事件发生,引发公众恐慌,伴随着公众对“塑化剂”的关注,推动了“塑化剂”相关标准的出台,2019年11月市场监管总局于近日正式发布关于食品中“塑化剂”污染风险防控的指导意见,得以让白酒行业更加稳健的发展。2019年12月20日,有媒体报道“酒鬼酒被举报非法添加甜蜜素”,同样引发公众关注。进入2020年,酒鬼酒“甜蜜素”事件正陷入一场拉锯战。这场由原酒鬼酒代理商实名举报引发的风波,至今仍在发酵中。 珀金埃尔默的液相质谱可以对白酒中的甜蜜素含量进行检测,而白酒中甜蜜素来源何处,如何管控的问题则需要社会各方力量来共同努力应对。甜蜜素是什么?化学名为“环己基氨基磺酸钠”,是一种甜味剂,其甜度是蔗糖的30到40倍,在我国是一种常见的合法添加剂,常用于蜜饯,糕点,酱菜,调味料和饮料等食品中,国家标准中有食品类别和最大使用量的限制。从摄入量角度来说,FAO/WHO食品添加剂联合专家委员会(JECFA)制定的甜蜜素的每日允许摄入量(ADI)为11mg/kg bw。换句话说,对于一个体重60kg的成年人来说,即使每天都吃到甜蜜素,只要其每天摄入量不超过660mg,就不会给人体的身体健康带来危害。但是法规层面上,根据上面GB 2760-2014食品安全国家标准食品添加剂使用标准的要求,配制酒中可以限量使用甜蜜素,但是白酒里是不允许添加甜蜜素的。另外关于甜蜜素的安全性,学术界仍无定论。《世界卫生组织国际癌症研究机构致癌物清单》(2017版显示),甜蜜素(sodium cyclamate)被归类在3类致癌物清单(第120项),即属于“对人类致癌性可疑,尚无充分的人体或动物数据”。综合以上可知,中国白酒中是不允许添加甜蜜素的,并且甜蜜素对人体的安全性尚待研究,目前无充分数据。因此对白酒中的甜蜜素含量监控很有必要。日前市场监管局发布的《关于公开征求2020年食品安全抽检计划意见的公告》在白酒品类下,甜蜜素被列为白酒的主要抽检项目。白酒中为什么会添加甜蜜素?既然白酒中不允许添加,那为什么白酒中还有人会添加甜蜜素?个别白酒企业为为改善产品的口感,在白酒加入甜蜜素进去,能喝出绵甜回甘之感。或白酒企业购入了含有甜蜜素的白酒作为原料,导致成品酒中检出甜蜜素。白酒甜蜜素的检测白酒甜蜜素也并非个例,根据新京报记者初步查询2014年至2019年以来的国家和各地食品安全抽检公布结果显示,关于白酒的抽检,全国各市场监管部门近6年共检出约1055批次不合格白酒,不合格的主要原因是酒精度不合格、检出甜蜜素。甜蜜素不合格的365批次,占不合格批次的34.59%。因此采用适合的甜蜜素检测方法,做好甜蜜素的监测工作对于白酒行业健康发展,保障人民身体健康具有重要的现实意义。食品甜蜜素的检测标准主要是依据国标《GB 5009.97- 2016 食品安全国家标准食品中环己基氨基磺酸钠的测定》,规定了食品中环己基氨基磺酸钠(甜蜜素)的三种测定方法——气相色谱法、液相色谱法和液相色谱-质谱/质谱法。 其中气相色谱法里食品中的环己基氨基磺酸钠用水提取,在硫酸介质中环己基氨基磺酸钠与亚硝酸反应,生成环己醇亚硝酸酯 ,由于白酒可能含有环己醇及含环己基的物质,在硫酸介质中也易与亚硝酸反应生成环己醇亚硝酸酯,而导致实验的假阳性,所以气相色谱法不适于白酒。珀金埃尔默推荐采用液相质谱联用的方法对白酒中的甜蜜素进行检测。扫描下方二维码,即可下载珀金埃尔默白酒中甜蜜素的LC-MS/MS分析方法测定相关文献资料。
  • 成果:可拉伸离子二极管
    p   随着对软性和柔性器件需求的稳步增长,凝胶材料演示的离子应用受到了人们的关注。本文介绍了由聚电解质水凝胶制成的可拉伸可穿戴式离子二极管(SIDs)。采用甲基丙烯酸酯化多糖对聚电解质水凝胶进行了机械改性,同时保留了聚(磺丙基丙烯酸酯)钾盐(PSPA)和聚([丙烯酰胺丙基]氯化三甲铵(PDMAPAA‐Q)的离子选择性,形成了离子共聚物。然后将聚电解质共聚物水凝胶组成的小岛屿发展中国家在VHB基板上制作成可拉伸的透明绝缘层,用激光刻蚀而成。sid在水凝胶与弹性体基体之间的良好粘附作用下,在拉伸超过3倍的范围内表现出整流行为,并在数百个周期内保持整流状态。可穿戴式离子电路在手指运动过程中对离子电流进行整流,并在正向偏压下点亮LED灯,从而实现SID的操作可视化。 /p p 原文链接: /p p a href=" https://onlinelibrary.wiley.com/doi/full/10.1002/adfm.201806909" target=" _blank" A Stretchable Ionic Diode from Copolyelectrolyte Hydrogels with Methacrylated Polysaccharides /a /p p style=" line-height: 16px " img style=" margin-right: 2px vertical-align: middle " src=" /admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_pdf.gif" / a title=" 10.1002@adfm.201806909.pdf" style=" color: rgb(0, 102, 204) font-size: 12px " href=" https://img1.17img.cn/17img/files/201812/attachment/bbee6195-d2c0-439f-81d4-023f7d38927d.pdf" 10.1002@adfm.201806909.pdf /a /p p /p
  • 日日更新 月月不同 | 更多的全氟和阻燃剂筛查方案它来了
    日日更新 月月不同 | 更多的全氟和阻燃剂筛查方案它来了原创 飞飞 赛默飞色谱与质谱中国 关注我们,更多干货和惊喜好礼牛夏梦由于新污染物本身具有的生物毒性、环境持久性、生物累积性以及对人体健康存在的潜在风险引起大家的广泛关注。目前国际上广泛关注的新污染物包括全氟化合物(per-and polyfluoroalkyl substances,PFAS)、抗生素(Antibiotic)、阻燃剂(Flame Retardant,FR)、持久性有机污染物(Persistent Organic Pollutants,POPs)、内分泌干扰物(Endocrine-Disrupting Chemicals,EDCs)、微塑料(Microplastics),药物与个人护理品(Pharmaceuticals and personal care products,PPCP)等。健康风险有毒物质和疾病登记局(ATSDR)显示根据全氟化合物的动物试验研究发现PFAS 会对肝脏和免疫系统造成损害,还会导致实验动物出生体重低、出生缺陷、发育迟缓以及新生儿死亡;复旦大学医学研究院比较了全球范围内不同人群经呼吸道和胃肠道暴露于OPFRs的水平以及其在体内的负荷水平;归纳和总结了长期低水平的OPFRs暴露对儿童神经发育、成年人的生殖系统以及甲状腺功能等方面的潜在危害;抗生素的耐药性则是全球需要面对的公共卫生挑战,抗菌素耐药性增加是导致严重感染、并发症、住院时间延长和死亡率增加的原因。赛默飞新污染物解决方案新污染物覆盖种类较为广泛,目前除了主要关注的新污染物除了抗生素以外,热度比较高的新污染物还有全氟化合物PFAS以及阻燃剂,其中阻燃剂中添加型阻燃剂中的有机磷阻燃剂则是目前使用较多的一种,也是目前污染较为广泛的一类。赛默飞为了满足客户检测筛查更多种类的全氟化合物以及更广泛新型有机污染物的需求,进行了新污染物种类的扩项。本次方案更新亮点:更多的全氟化合物,赛默飞推出市面覆盖最多的全氟化合物的谱图库(Library)以及数据库(Database),100多种全氟化合物可供筛选,其中包括磺酸类、羧酸类、酰胺类及醇类;新类别的有机磷阻燃剂的筛查方案,增加了40多种有机磷阻燃剂,扩大大家对于新污染物的发现范畴,覆盖更广更全面;同一个的方法,有效数据级别up,新添加的化合物均存在出峰时间、分子式以及碎片的全部信息,方便大家实现更高级别的鉴定;当前最新方法包的新污染物类别组成如下:图1 数据库中新污染物类别分布(点击查看大图)有机磷阻燃剂存在较多的异构体,该方法包可以实现异构体的有效分离:图2 磷酸三(1-氯-2-丙基)酯和三(3-氯丙基)磷酸酯(上)、磷酸三丙酯和磷酸三异丙基酯(下)(点击查看大图)该方案基于赛默飞高分辨仪器平台Orbitrap Exploris系列静电场轨道阱质谱,Orbitrap超高的分辨率(12W以上)尽可能的实现分子量相近化合物的分离分析;精确的质量精度,在标配的Easy-IC功能下,可以做到小于1ppm的质量偏差,最大程度的解析未知物的元素组成;正负切换,得到的更多方向的二级碎片以及更多种类的化合物,更有利于目标物质的高通量筛查。赛默飞高分辨新污染物筛查数据库目前已更新400多种,之后也会进一步持续更新,助力更广度的新污染物筛查工作持续有效进行。赛默飞依托完整的产品线以及优异的质谱性能,助力新污染筛查分析,致力于世界更健康、更清洁、更安全。赛默飞推出的全新高分辨新污染物筛查方法包已上线,该方法包种包括仪器进样方法、数据处理方法、报告模板以及新污染物的具体信息,如需该方案致电联系相关销售即可免费获得。推荐阅读:● 重磅来袭|赛默飞新污染监测高通量方案再升级 ► 点击阅读 ● 磨砺以须 倍道而进|新污染物高分辨液质筛查方案就现在! ► 点击阅读 ● 简单上手 快速落地 | 新污染物液质解决方案看这里 ► 点击阅读 如需合作转载本文,请文末留言。
  • 季胺化反应的发展及P-SAX季胺盐高分子聚合物的使用场景
    季铵盐中由于含有季铵基甚至有的还含有双键,故可以和诸多的不饱和单体共聚,在水溶液中带正电荷,生成阳离子型或两性离子型水溶性聚合物,很容易吸附于固一液或固一气界面上而被用作絮凝剂、抗静电剂、导电纸涂层及油田化学剂。另外,在现代社会中,表面活性剂的应用日趋广泛。季按盐类表面活性剂具有重要的用途,此外也可被用作柔软剂、抗静电剂、颜料分散剂、矿物浮选剂和沥青乳化剂、金属缓蚀剂及相转移催化剂等,在纺织印染、塑料加工、医疗卫生、日用化工、石油化工、金属加工等行业得到广泛应用。能够合成季铵盐的反应就是季胺化反应。过去几年,大部分是通过简单的合成反应获得季铵盐,例如:○ 在乙酸乙酯作溶剂的条件下与三乙胺混合加热、回流、搅拌进行季胺化反应得到三乙基对(邻)硝基苄基氯化铵;○ 以N-乙基苯胺为原料,经羟乙基化、氯乙基化、季铵化合成N-苯基-N-乙基氨基乙基三甲基氯化铵;○ 通过γ-氯丙基甲基硅氧烷—二甲基硅氧烷共聚物和N,N-二甲基苄基胺的季铵化反应合成了带有苄基二甲基γ-硅丙基氯化铵侧基的聚硅氧烷;○ 用雌二醇经溴乙基化、咪唑乙基化、季铵化和水解反应,合成一类新型的取代苯甲基雌甾咪唑鎓盐;○ 由1,3,5-三甲基-2,4,6-三(咪唑甲基)苯与1,3,5-三(溴甲基)苯直接合成了洞状咪唑鎓环番3(C30H33N63+Br-33H2O)等。P-SAX季铵盐高分子聚合物就是Welchrom® P-SAX固相萃取小柱中主要的填料原料,其聚合物的合成方法就是会用到季胺化的反应方法。P-SAX是一种混合型阴离子交换反相吸附剂,对酸性化合物具有高的选择性和灵敏度。Welchrom® P-SAX固相萃取小柱设计用于克服传统高分子聚合物基质混合型固相提取吸附剂的局限性。它是一种在pH0~14范围内稳定的混合型强阴离子交换、水可浸润性合物吸附剂。现在可使用可靠的固相提取来检测、确认或定量各种样品基质中的酸性化合物及其代谢物。利用Welchrom® P-SAX固相萃取小柱的选择性和稳定性,可通过固相提取步骤从复杂的样品中将分析物分成两部分:酸性化合物和碱性/中性化合物。分流提取物可通过多种分析方法或多种联用分析技术(LC/MS和GC/MS)进行分析。Welchrom® P-SAX固相萃取小柱广泛应用于净化不同基质如血清、尿液、塑料制品或者食品中的酸性和中性化合物,如奶粉及奶制品中三聚氰酸的检测。
  • 卫生部扩大部分食品中添加剂使用量
    2012年 第1号   根据《中华人民共和国食品安全法》和《食品添加剂新品种管理办法》的规定,经审核,现批准苯甲酸及其钠盐等17种食品添加剂和酪蛋白磷酸肽等4种营养强化剂扩大使用范围及用量,批准食品工业用加工助剂珍珠岩可作为助滤剂用于淀粉糖工艺。   特此公告。   二○一二年一月十日   附件1:苯甲酸及其钠盐等17种扩大使用范围及用量的食品添加剂 名称 类别 食品分类号 食品名称/分类 最大使用量(g/kg) 备注 1. 苯甲酸及其钠盐 防腐剂 14.04.02.01 特殊用途饮料(包括运动饮料、营养素饮料等) 0.2 以苯甲酸计 2. 番茄红素(合成) 着色剂 01.01.03 调制乳 0.015 以纯番茄红素计。 01.02.01 发酵乳 0.01506.06 即食谷物 ,包括碾轧燕麦(片) 0.05 07.0 焙烤食品 0.05 16.01 果冻 0.05 以纯番茄红素计。 如用于果冻粉,按冲调倍数增加使用量。 3. 环己基氨基磺酸钠(又名甜蜜素),环己基氨基磺酸钙 甜味剂 07.01 面包 1.6 以环己基氨基磺酸计 07.02 糕点 1.6 4. 焦磷酸钠 水份保持剂 01.06.04 再制干酪 14 可单独或与其他磷酸盐混合使用,最大使用量以磷酸根(PO43-)计 5. 焦糖色(苛性硫酸盐法) 着色剂 15.01.04 威士忌 按生产需要适量使用 6. 焦糖色(亚硫酸铵法) 着色剂 14.05.03 植物饮料类(包括可可饮料、谷物饮料等) 0.1 7. 可可壳色 着色剂 07.01 面包 0.5 8. 磷酸三钠 水份保持剂 01.06.04 再制干酪 14 可单独或与其他磷酸盐混合使用,最大使用量以磷酸根(PO43-)计 9. 六偏磷酸钠 水份保持剂 01.06.04 再制干酪 14 可单独或与其他磷酸盐混合使用,最大使用量以磷酸根(PO43-)计 10. 麦芽糖醇和麦芽糖醇液 甜味剂 04.01.02 加工水果 按生产需要适量使用 06.10 粮食制品馅料 12.10.02 半固体复合调味料 11. 日落黄及其铝色淀 着色剂 14.04 水基调味饮料类 0.1 以日落黄计 12. 氢氧化钙 酸度调节剂 01.01.03 调制乳 按生产需要适量使用 13. 三氯蔗糖 甜味剂 04.05.02 加工坚果与籽类 1.0 14. 山梨酸及其钾盐 防腐剂 09.04 熟制水产品(可直接食用) 1.0 以山梨酸计 09.06 其他水产品及其制品 15. 山梨糖醇和山梨糖醇液 甜味剂 04.01.02.05 果酱 按生产需要适量使用 07.04 焙烤食品馅料及表面用挂浆(仅限焙烤食品馅料) 按生产需要适量使用 16. 甜菊糖苷 甜味剂 03.0 冷冻饮品 0.5 16.01 果冻 17. 辛烯基琥珀酸淀粉钠 其他 13.01.01 婴儿配方食品 1 作为DHA/ARA 载体,以即食食品计。 13.01.02 较大婴儿和幼儿配方食品 50   附件2:酪蛋白磷酸肽等4种扩大使用范围及用量的营养强化剂 名 称 类别 食品分类号 食品名称/分类 使用量 备注 1. 酪蛋白磷酸肽 营养强化剂 01.01.03 调制乳 ≤1.6 g/kg 01.02.02 风味发酵乳 2. 聚葡萄糖 营养强化剂 13.01 婴幼儿配方食品 15.6-31.25 g/kg 3. 维生素D 营养强化剂 14.02.03 果蔬汁(肉)饮料(包括发酵型产品) 2-10 μg/kg 4. 左旋肉碱(L-肉碱) 营养强化剂 14.06 固体饮料类 6-30 g/kg
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制