当前位置: 仪器信息网 > 行业主题 > >

过氢氧化物

仪器信息网过氢氧化物专题为您提供2024年最新过氢氧化物价格报价、厂家品牌的相关信息, 包括过氢氧化物参数、型号等,不管是国产,还是进口品牌的过氢氧化物您都可以在这里找到。 除此之外,仪器信息网还免费为您整合过氢氧化物相关的耗材配件、试剂标物,还有过氢氧化物相关的最新资讯、资料,以及过氢氧化物相关的解决方案。

过氢氧化物相关的资讯

  • 溶解氧的测量方法有两种
    溶解氧的测量方法有两种:一、碘量法:水样中加入硫酸锰和碱性碘化钾,水中溶解氧将低价锰氧化成高价锰,生成四价锰的氢氧化物棕色沉淀。加酸后,氢氧化物沉淀溶解,并与碘离子反应而释放出游离碘。以淀粉为指示剂,用硫代硫酸钠标准溶液滴定释放出的碘,据滴定溶液消耗量计算溶解氧含量。二、溶解氧仪法:溶氧仪由传感器和显示仪表两个部分组成。溶解氧分析仪传感部分是由金电极(阴极)和银电极(阳极)及氯化jia或氢氧化钾电解液组成,氧通过膜扩散进人电解液与金电极和银电极构成测量回路。目前溶解氧仪可分为便携式溶解氧,台式溶解氧分析仪,在线式监测水中溶解氧仪。传感器是采用荧光猝灭原理,通过自主研发的传感膜,计算出水中的溶解氧含量。实现了实验室、污水、养殖、湖泊、地表水等各领域的水质监测。荧光法的优势就在于不消耗氧气、不需要频繁校准、没有流速和搅动的要求、不受硫化物的干扰。对于国内紧缺的溶解氧传感膜,可以毫不夸张的说,蛙视具有相当的储备及量产的能力
  • 控制氮氧化物 欧美有何良策?
    关注焦点:   ●实施多指标综合管理措施   ●制定相应的标准体系   ●推动实施区域联防联控   ●采取经济激励政策   ●披露企业污染排放信息      据估计,和上世纪80年代相比,我国机动车保有量增加24倍,机动车排放成为部分大中城市大气污染的主要来源。 CFP供图   氮氧化物是大气主要污染物之一,是光化学烟雾污染、城市灰霾天气、大气酸沉降等一系列环境问题的重要根源。由于氮氧化物可以在大气层中长距离输送,其引起的全球性或区域性污染问题也日益凸现。   发达国家较早采取了一系列政策措施防治氮氧化物污染,其中一些经验对我国“十二五”期间进行氮氧化物污染综合管理和控制有一定借鉴意义。   由于氮氧化物的控制涉及到多种二次污染物,因而既要考虑其本身的危害,又要考虑其二次污染物的危害。针对这一特点,欧美等发达国家采取了系统的防控措施,并取得了显著成效。   实施多指标综合管理措施   美国和欧盟的氮氧化物控制政策目标均是减少氮氧化物及其二次污染物的环境损害。因此,在控制氮氧化物污染时,不仅要求各类排放源达到相应的排放标准,还要求根据二次污染物的削减目标来制定区域氮氧化物的排放总量。   欧盟的酸雨政策从一开始便将酸沉降、富营养化和近地面臭氧问题纳入同一控制体系,采取一揽子控制政策。   多指标的污染控制政策可以有效避免多个单指标控制政策之间的冲突,并且更易于执行。   美国氮氧化物控制主要是以二次污染物臭氧和酸雨为最终控制目标,一方面通过州际合作解决近地面臭氧非达标区的二次污染问题,另一方面通过酸雨计划解决氮沉降问题。美国2005年颁布的《州际清洁大气法案》也考虑了多指标的大气污染控制政策,将臭氧和细颗粒物的污染控制纳入统一政策体系中。   制定相应的标准体系   美国和欧洲都制定了各类大型固定源以及机动车的氮氧化物排放标准。排放标准本身的制定就同时考虑了环境要求和相关控制技术的经济性、可行性、和费用有效性。   美国环保局以1990年《清洁大气法修正案》的第一卷“大气污染预防与控制”以及第四卷“酸沉降控制”为法律依据,通过执行酸雨中氮氧化物的削减计划来控制固定源氮氧化物污染。   酸雨计划分两个阶段在全国范围实施燃煤电厂的氮氧化物削减:第一阶段的削减对象为固态排渣墙式锅炉以及切向燃烧锅炉。第二阶段的削减对象为格状喷然器、旋风燃烧器、湿态排渣锅炉以及立式燃烧锅炉。   针对机动车排放源,美国和欧洲均出台分阶段的排放标准,通过逐步更新机动车排放控制技术削减氮氧化物的排放。   美国和欧洲均采用了包括二氧化氮、臭氧和细颗粒物的多指标体系制定环境空气质量标准来控制氮氧化物污染。欧盟及其成员国制定的二氧化氮标准均符合世界卫生组织的推荐标准。美国虽然对二氧化氮要求较为宽松,但严格控制二次污染物,对氮氧化物起到了协同控制作用。   推动实施区域联防联控   在解决氮氧化物及其二次污染物的长距离输送问题时,欧洲和美国都制定了区域污染控制政策,建立了地区间协调和合作机制,通过多地区间的协作达到减少氮氧化物区域污染的目的。   在欧洲,欧盟各成员国通过签署各类国际公约,提交国家削减计划等方式来达到控制氮氧化物区域污染的目标。   1979年,欧洲和北美各国签署了《长距离跨界大气污染公约》来解决酸雨和近地面臭氧等大气污染物跨界输送导致的问题 1988年,联合国欧洲经济委员会制定了这一公约下旨在控制氮氧化物排放和输送的《索菲亚协议》,规定到1994年止,氮氧化物排放量要冻结在1987年的水平,并且自1989年开始,10年间应削减氮氧化物30%的排放量。1999年,欧盟各成员国签署的《控制酸沉降、富营养化和臭氧协议》制定了各签署国到2010年的氮氧化物排放限制目标。   另外,欧盟于1997年通过了一项酸雨防治战略,旨在同时解决欧盟范围内的酸沉降、富营养化以及近地面臭氧问题。由于氮氧化物是这3类二次污染问题的前体物质,因此这一战略通过制定全欧盟排放总量目标来解决这些问题。2001年,欧盟委员会通过了《国家最高排放限值公约》,规定了包括氮氧化物在内的4种生态污染物到2010年的排放限值。   美国为解决氮氧化物长距离传输所引起的臭氧和细粒子污染问题,制定了区域污染控制策略,建立了地区间的有效协调和合作机制。   1994年,美国东部各州建立的臭氧输送委员会形成了谅解备忘录,实施区域性氮氧化物削减计划。第一阶段(1999~2002年)为氮氧化物配额管理方案,规定了氮氧化物的年排放总量和污染源排放配额,合作区域包括12个州和哥伦比亚特区。第二阶段(2003~2008年)为氮氧化物州际执行计划,制定了区域排放总量限值,并规定排污企业可以卖出或者存储多余排放配额,这一计划将合作区域扩大到22个州。   2009年开始,美国东部各州在《州际清洁空气法案》基础上执行氮氧化物的臭氧季节削减方案来控制夏季电力部门排放氮氧化物,合作区域增至28个州。   采取经济激励政策   近年来,发达国家将基于成本收益分析的经济激励政策引入氮氧化物的控制政策体系,成为基于法规政令的命令控制型政策的有益补充。   其中,美国最常用的是排污许可证交易制度,欧洲部分国家则借助于排污收费和排污税来控制企业的排污行为。   美国在臭氧输送委员会氮氧化物配额管理方案和氮氧化物州际执行计划中实施了氮氧化物配额交易,使得控制政策在实现了污染排放削减目标的同时,大大降低了减排成本。   据美国环保局估算,氮氧化物配额交易使臭氧输送委员会氮氧化物配额管理方案第二阶段的污染削减成本从高于13亿美元(2000年价格)降低到7亿美元水平。这一机制成功地降低了氮氧化物的排放量和近地面臭氧的环境浓度。   据美国环保局2007年的评估数据显示,在实施氮氧化物配额交易后,2006年目标排放源的氮氧化物排放量与2005年相比削减了7%,与1990年相比削减了74%。   西欧部分国家对氮氧化物征收税费,通常只是针对较大的排放源征收排污费,例如发电厂、供热厂等。   法国自1990年起即开始对大型燃烧源收取氮氧化物排污税,并将75%的收入用到减排投资和研发。缴税企业可依据减排技术类型申请补贴,标准减排技术补贴比例为增量成本的15%,先进减排技术为30%。这种税收收入分配机制调动了企业使用先进减排技术的积极性,使得1997年氮氧化物削减了13%。   1990年,瑞典开始对大型燃煤电厂收取氮氧化物排污费。收费政策实施后,瑞典1993年氮氧化物的排放总量比1990年削减了44%,提前实现了1995年减排35%的目标,取得了显著的减排效果。   2007年1月1日,挪威开始针对船舶、航空以及道路等移动源和部分工业固定源征收氮氧化物排污税,税收对象覆盖55%的氮氧化物排放源。排污税政策执行1年之后,氮氧化物排放总量削减了0.6%。   披露企业污染排放信息   企业作为削减氮氧化物的基本单元,其污染控制手段和实施情况直接影响到减排效果。发达国家将企业排放登记制度和企业污染源信息披露制度作为重要的辅助工具应用于污染物削减政策的制定和执行。   2009年10月8日,全球第一份具有法律约束效力的《污染物排放和转移登记议定书》在欧洲17个国家正式生效,并向所有联合国成员国或区域一体化组织开放。参加《议定书》的国家必须对其国内工业、农业、交通和商业等领域排放的包括氮氧化物在内的86种主要污染物污染源进行登记和通报,并将数据以网上公开登记册等方式向公众公开。   近年来,奥地利国际系统分析研究所、美国宇航局等科研机构公布了氮氧化物全球排放清单,为决策部门、科研单位和公众披露环境信息,便于有关部门实行监控氮氧化物变化趋势、制定更有效的控制措施。 我国可采取何种对策?   随着经济的持续快速发展和能源消耗量的增加,我国氮氧化物排放量也在增长。1980年的排放量约为476万吨,2008年增长到1625万吨。从排放源来看,第一次全国污染源普查的数据表明,我国97%的氮氧化物排放来自工业源和机动车尾气。其中电力热力的生产和供应是最主要的氮氧化物排放企业,排放量占到我国排放总量的40%。   随着我国机动车保有量从1990年的620万辆增长到2009年的1.86亿辆,机动车尾气在氮氧化物排放中的比例逐年上升,已由1995年的10.4%快速增长到2007年的31%。   针对这一情况,建议采取以下对策:   第一,实施多指标综合管理。就我国目前氮氧化物的污染状况而言,应该尽早形成覆盖二氧化氮、臭氧、细颗粒物以及酸沉降等多项控制指标的综合指标体系,实施氮氧化物的多目标管理,从一次污染物到二次污染物进行全生命周期控制。   第二,开展氮氧化物区域联防联控。存在严重氮氧化物污染问题的地区,有必要制定区域层面的氮氧化物污染联防联控政策,建立污染源协调和管理机制,从而有效地解决区域整体的环境污染问题。   第三,加强企业排污监管。结合氮氧化物总量控制目标加强企业监督,督促其严格执行排放标准。通过环境信息披露制度,在政府、企业与公众之间形成相辅相成的良性互动,达到更好的污染防治效果。   第四,推行经济激励。在我国氮氧化物的防控工作中引入市场化的经济政策,使命令控制方式和市场化机制互相补充。在实施氮氧化物排放总量控制时,配套实施相应的减排激励政策,鼓励多减排、早减排、尽快实施氮氧化物排污收税和排污削减量交易等措施。
  • “十二五”氮氧化物减排思路与技术路线
    摘要   “十二五”期间,氮氧化物的总量控制要突出重点行业和重点区域,推行以防治火电行业排放为核心的工业氮氧化物防治体系和以防治机动车排放为核心的城市氮氧化物防治体系。要推进能源结构持续优化,严格控制新增量 全面开展电力行业氮氧化物减排 采取综合措施加强机动车氮氧化物排放控制 推进以水泥行业为主的其他行业氮氧化物排放控制。   2011年3月14日,全国人大审议通过了“十二五”规划纲要,提出化学需氧量、二氧化硫分别减少8%,同时将氨氮和氮氧化物首次列入约束性指标体系,要求分别减少10%,氮氧化物已经成为我国下一阶段污染减排的重点。   把氮氧化物作为“十二五”减排约束性指标的必要性   ■阅读提示   由氮氧化物等污染物引起的臭氧和细粒子污染问题日益突出,威胁人民群众的身体健康,成为当前迫切需要解决的环境问题。若不加严控制,今后一段时期我国城市光化学烟雾、酸雨污染和灰霾天气还将呈迅速发展和恶化之势。   氮氧化物活性高、氧化性强,是造成我国复合型大气污染的关键污染物。随着国民经济持续快速发展和能源消费总量大幅攀升,我国氮氧化物排放量迅速增长。“十一五”期间,我国氮氧化物排放量逐年增长,2008年达2000万吨,排放负荷巨大。火力发电、工业和交通运输部门三者之和占我国氮氧化物排放总量的85%,基本呈现三足鼎立之势。氮氧化物排放量的迅速增加导致了一系列的城市和区域环境问题。北京到上海之间的工业密集区已成为对流层二氧化氮污染较为严重的地区,“十一五”期间全国降水中硝酸根离子平均浓度较2005年有较大幅度增长。由氮氧化物等污染物引起的臭氧和细粒子污染问题日益突出,威胁人民群众的身体健康,成为当前迫切需要解决的环境问题。若不加严控制,今后一段时期我国城市光化学烟雾、酸雨污染和灰霾天气还将呈迅速发展和恶化之势。综上分析,“十二五”期间我国必须对氮氧化物进行全面控制,针对氮氧化物的污染特征,进入以质量改善为切入点、以主要行业为突破口的大规模削减阶段。   从减排管理的基础条件来看,自“十一五”以来,随着污染减排三大体系能力建设的加强,氮氧化物统计、监测管理工作取得突破性进展。2006年全国环境统计中将氮氧化物因子纳入到环境统计范畴 2007年开展的污染源普查工作对全国氮氧化物排放系数和排放现状进行了全面调查。在污染源监测方面,随着国控重点源烟气排放连续监测设施建设完成,氮氧化物排放重点源大都具备了自动监测的能力,并与省、市监控中心实现了联网。此外,国内火电行业氮氧化物控制技术日趋成熟,除催化剂等核心技术外,基本实现了国产化。这些都为全面实施氮氧化物排放总量控制奠定了良好的基础。   “十二五”氮氧化物总量控制总体考虑及目标的确定   ■阅读提示   在确定国家总量控制目标的同时,也将减排任务分解到了各省(自治区、直辖市),确定了减排项目清单,真正把减排任务落到实处,这是总量控制目标制定的一次突破。   污染物排放总量控制是环境管理的重要手段,我国氮氧化物的总量控制模式要根据排放物的污染特征来确定,氮氧化物排放具有行业、区域集中的特点,因此,“十二五”期间氮氧化物的总量控制要突出重点行业和重点区域,推行以防治火电行业排放为核心的工业氮氧化物防治体系和以防治机动车排放为核心的城市氮氧化物防治体系。强化总量控制对经济发展方式、经济结构调整和能源结构调整的优化作用,严格控制增量,强化结构减排,细化工程减排,实化监管减排,确保减排约束性指标目标的完成。   值得一提的是,此次在总量控制目标确定方面,我国首次采用了“二上二下”的方式。通过印发《“十二五”主要污染物总量控制规划编制指南》(以下简称《指南》),提出了“十二五”氮氧化物减排的总体思路、减排要求、减排技术路线及总量目标测算方法,各省结合本省的环境质量状况、经济社会发展情况及减排潜力,根据《指南》要求编制总量控制规划,测算总量控制目标,提交减排项目清单。在此基础上,统筹考虑国家宏观经济政策、节能减排重大战略、产业布局和结构调整要求,确定国家总量控制目标,实现了统筹协调、上下衔接、部门联动,增强了总量控制目标确定的科学性、合理性和可行性。在确定国家总量控制目标的同时,也将减排任务分解到了各省(自治区、直辖市),确定了减排项目清单,真正把减排任务落到实处,这是总量控制目标制定的一次突破。   “十二五”氮氧化物总量控制基本思路   ■阅读提示   推进能源结构持续优化,严格控制新增量 全面开展电力行业氮氧化物减排 采取综合措施加强机动车氮氧化物排放控制 推进以水泥行业为主的其他行业氮氧化物排放控制。   推进能源结构持续优化,严格控制新增量。严格执行国家产业政策,全面落实淘汰落后产能要求,在单位面积排放强度大的地区要进一步加严产业结构调整要求,遏制高耗能、高污染产业过快发展。严格控制污染物新增量。新建项目必须按照先进的生产技术和最严格的环保要求进行控制,大幅度降低污染物排放强度。煤电及水泥行业新建项目要求配套建设烟气脱硝设施。提高机动车准入门槛,执行国家第Ⅳ阶段排放标准,部分城市提前执行国家第Ⅴ阶段排放标准,供油油品实现配套。进一步改善能源消费结构,控制煤炭消费增量,促进经济发展的绿色转型。   全面开展电力行业氮氧化物减排。电力行业属于高架源,排放的氮氧化物在大气中发生远距离传输和化学转化,不但会影响当地的环境质量,而且存在跨界污染的问题,是造成区域性环境问题的主要原因。截至目前,我国已有80%的火电机组采用了低氮燃烧技术,已建烟气脱硝设施达到9700万千瓦。目前我国正在修订火电厂大气污染物排放标准,氮氧化物的排放标准将会非常严格。这就要求在“十二五”期间,除淘汰的小火电机组外,全面推进现役机组低氮燃烧技术改造及脱硝设施的建设,加大已安装脱硝设施机组的监管力度,提高减排能力。东部地区和其他地区的省会城市单机容量20万千瓦及以上的现役燃煤机组实行脱硝改造,其他地区单机容量30万千瓦及以上的现役燃煤机组实行脱硝改造。   采取综合措施加强机动车氮氧化物排放控制。在一些大城市,机动车排放已经超过工业排放成为重要的大气污染源,氮氧化物的分担率一般在50%左右,由于其排气高度低,对人体的危害非常大,因此机动车氮氧化物的控制对改善城市环境质量具有至关重要的作用。“十二五”期间我国将在有条件的重点城市实行机动车新增量总量控制,并严格执行黄标车淘汰政策。按照东、中、西部差别化的政策,加大黄标车的淘汰力度,到“十二五”末,东部地区基本淘汰所有黄标车,即国0的汽油车和国Ⅲ以前的柴油车。提高机动车准入门槛,实施油品升级改造工程。“十二五”期间,在全国范围内严格实施国家第Ⅳ阶段机动车排放标准,部分重点区域和城市提前实施国家第Ⅴ阶段排放标准 2011年在全国范围内供应国Ⅲ标准的车用燃油,2015年底前基本实现国Ⅳ水平车用燃油的供应,实现车、油同步升级。   推进以水泥行业为主的其他行业氮氧化物排放控制。我国水泥行业氮氧化物的排放占总排放量的10%左右,是我国氮氧化物排放的第三大源。随着水泥行业落后产能淘汰工作的推进,新型干法窑的使用比例将大幅增加,在提高能源使用效率的同时,由于燃烧温度高等原因,氮氧化物排放量将显著增加。“十二五”期间需大力开展水泥行业新型干法窑降氮脱硝工作,根据水泥窑的现状和特性,推进烟气脱硝工程建设,要求长三角、珠三角、京津冀鲁等重点区域氮氧化物年排放量在1000吨以上或熟料生产规模在2000吨/日以上的现役新型干法窑实行脱硝改造。   钢铁、工业锅炉也是氮氧化物的重要排放源,为拓展氮氧化物减排领域,推进氮氧化物持续减排,“十二五”期间应加快冶金行业、工业锅炉等其他行业氮氧化物控制技术的研发和产业化进程,推进烟气脱硝示范工程建设。   “十二五”氮氧化物总量减排的难点   ■阅读提示   电力行业大规模脱硝受多种因素的影响和制约 油品质量保证和机动车排放标准实施进程直接影响到氮氧化物的减排进展 重点行业污染治理技术的发展水平将影响“十二五”氮氧化物的减排效果。   电力行业大规模脱硝受多种因素的影响和制约。为实现氮氧化物“十二五”总量控制目标,“十二五”期间我国电力行业脱硝装机容量比例需达到70%以上(包括新增机组),这将大于“十一五”期间二氧化硫的脱硫装机容量,减排压力非常大。此外,电厂脱硝还原剂氨的需求量将很大,脱硝装置中的催化剂也未实现国产化,这些因素都将增大电力行业氮氧化物减排的难度。   油品质量保证和机动车排放标准实施进程直接影响到氮氧化物的减排进展。车用燃油质量差、含硫量高是制约机动车排放控制的主要因素,尤其是当前柴油品质极不利于柴油机尾气后处理技术的使用,影响氮氧化物减排效果。目前我国还未实现国Ⅲ油品柴油的全面供应,这与“十二五”期间要基本实现国Ⅳ水平车用燃油的供应仍有较大差距,需要多部门加强协调推进这项工作。另外,提高机动车排放标准是控制机动车氮氧化物新增量的主要手段,但标准实施后减排效果需要一定的时间才能显现,因此,“十二五”期间国Ⅳ排放标准能否及时推行是保障机动车氮氧化物减排的关键。   重点行业污染治理技术的发展水平将影响“十二五”氮氧化物的减排效果。尽管我国已有电厂烟气脱硝的控制技术,但火电厂烟气脱硝的一些关键技术仍受制于国外,钢铁、水泥、工业锅炉等行业氮氧化物排放控制技术也处于研究阶段,其研发及应用的发展水平将影响“十二五”氮氧化物的减排效果。“十二五”期间,国家应该对氮氧化物控制技术研究及产业化给予更多的支持及优惠政策,尽快推动国内氮氧化物控制技术的规模化示范应用和产业化,为氮氧化物的大规模削减提供更多技术支撑。
  • 大连化物所研制出固体氧化物电解池制氢样机
    近日,大连化物所燃料电池研究部燃料电池系统科学与工程研究中心(DNL0301组)研制出固体氧化物电解池制氢样机,额定产氢量为2Nm3/h。固体氧化物电解池(Solid Oxide Electrolysis Cell,SOEC)是固体氧化物燃料电池(Solid Oxide Fuel Cell,SOFC)的逆过程,可在中高温(700至900℃)下将电能和热能转化为燃料化学能,具有能量转化效率高、不使用贵金属催化剂等优点。SOEC利用富余的可再生能源电力,以及核电、化工、钢铁等行业伴生的工业余热实现电解制氢,效率有望达到90%以上,是未来大规模制取氢气的重要技术之一。与国外相比,我国SOEC技术起步较晚,在电堆和系统制备等方面差距较为明显。近年来,该团队围绕SOEC关键材料、电堆与系统集成等方面,取得系列进展。团队发展了对称密封技术,展现出优异的密封性能,实现多次重启后电堆开路电位未见明显降低;研究开发了大功率电堆的气体分配技术,单堆功率达到10kW级;自主设计了高集成度的供水单元、供气单元和热管理单元,集成出额定产氢量2Nm3/h的SOEC制氢系统,直流能耗约3.30kWh/Nm3,水蒸气转化率达到70%以上。相关成果有望为进一步开发大规模固体氧化物电解池制氢系统奠定技术基础。上述工作得到大连化物所创新基金的支持。
  • 欧波同发布全自动光学显微矿物分析系统新品
    1、背景介绍随着我国钢铁行业的高速发展,对各个检验及研发环节要求越来越高。无论是生产装备还是检验研发设备,降本增效是发展根本。产品结构已经完成了“普转特、特转优、优转精”的战略转型,提供优质的铁水、钢水是对于生产的保障,而合理的原料供应是得以保障持续发展的必要条件。选矿是整个生产过程中最重要的环节,选矿工艺的合理制定也直接决定了后续的产品质量。Fe在矿石中的主要存在形式有磁铁矿、赤铁矿、褐铁矿、菱铁矿,对不同种类矿石的区分以及硬度、密度、湿度、解离度等方面的评估是制定后续的选矿工艺的理论基础。所以更好、更深入地了解铁矿资源而不仅仅局限于铁含量的检测非常重要,其不仅能够准确地评估铁矿价值、推断铁矿品质对下游工艺的影响,还能够优化生产工艺以节约成本提高产能。2、工作原理3、产品功能(1)识别并定量分析铁矿石矿相,从而评估铁矿价值,优化矿石处理工艺流程及预测铁矿品质对下游工艺的影响;(2)识别并定量分析烧结和球团矿矿相,研究烧结球团矿微观结构与性能的关系,优化配矿和烧结焙烧工艺,从而改善烧结矿品质降低配矿成本;(3)分析焦炭微观结构,预测焦炭性能及其对炼铁、冶金工艺的影响。4、产品优势(1)相对于传统的电镜矿物分析系统,该产品的性价比更高、效率更高。与人工计点法相比,其评价的面积更大,精度更高,速度会有几十倍的提升。同时该系统配备的完善的数据库以及极高的自动化程度降低了对操作人员技术水平的要求,能够节约一部分人工成本。对于整个钢铁行业而言能够快速的推动选矿、配矿等工艺的发展,提高整个行业的发展水平。(2)该系统基于丰富的高质有效矿物信息能够实现更高层次的特征表征;(3)直观的反映出相同结构、相似性质的矿石颗粒的结构差异,对下游工艺流程的预测具有重要指导意义。下图为四种具有不同类型组织结构特征的赤铁矿颗粒(从致密到多孔不等)。这些不同的组织结构使得它们在硬度、耐磨性和吸湿性等方面表现出差异,同时在粉碎、选矿造粒和烧结过程中也表现出不同特点。(4)基于反射光显微镜的工作原理能够有效地鉴别不同种类的铁氧化物和氢氧化物,比电镜矿物分析和拉曼光谱等分析速度更快、分辨率更高、更经济实用。(5)H = 赤铁矿(假象赤铁矿),HH = 水赤铁矿,vG = 玻璃针铁矿,oG = 赭色针铁矿,K = 高岭石,P = 孔隙,E = 环氧树脂创新点:(1)相对于传统的电镜矿物分析系统,该产品的性价比更高、效率更高。 (2)该系统基于丰富的高质有效矿物信息能够实现更高层次的特征表征; (3)直观的反映出相同结构、相似性质的矿石颗粒的结构差异,对下游工艺流程的预测具有重要指导意义。 (4)基于反射光显微镜的工作原理能够有效地鉴别不同种类的铁氧化物和氢氧化物,比电镜矿物分析和拉曼光谱等分析速度更快、分辨率更高、更经济实用。 全自动光学显微矿物分析系统
  • 全碱度和酚酞碱度的关系及区别是什么?
    全碱度和酚酞碱度是水质中常用的两个指标,用于评估水样中的碱性程度。 它们之间关系和区别如下: 全碱度(Total Alkalinity):全碱度是指水样中所有能够中和酸的物质的总量。它包括碳酸盐、碳酸氢盐、氢氧化物等碱性物质。全碱度可以通过滴定法测定,常用指示剂为酞。全碱度的测量结果以mg/L(或以相应的单位)表示。 酚酞碱度(Phenolphthalein Alkal):酚酞碱度是指水样中能够中和碳酸氢盐的物质的总量。它只包括碳酸氢盐和氢氧化物等碱性物质,不包括碳酸盐。酚酞碱度也通过滴定法测定,使用酚酞作为指示剂。酚酞碱度的测量结果以mg/L(或以相应的单位)表示。 两者之间区别: - 成分不同:全碱度包括碳酸盐、碳酸氢盐和氢氧化物等碱性物质,而酚酞碱度只包括碳氢盐和氢氧化物等碱性物质。 - 测定方法不同:全碱度和酚酞碱度都是通过滴定法测定,但使用的指示剂不同,全碱度使用酚酞作为指示剂,而酚酞碱度也使用酚酞作为指示剂。 - 含义不同:全碱度是水样中所有能够中和酸的物质总量,而酚酞碱度只是指水样中能够中和碳酸氢盐的物质的总量。 总的来说,全碱度是一个更广义的指标,包括更多的碱性物质,而酚碱度是一个相对较窄的指标,只括碳酸氢盐和氢氧化物等物质。在实际应用中根据需要选择合适的指标进行水质分析和评估。
  • 第十七届二氧化硫 氮氧化物 征文与参会报名通知
    关于召开“第十七届二氧化硫 氮氧化物汞污染防治暨细颗粒物(PM2.5)监测技术研讨会”征文与参会报名通知   各有关单位:   当前我国大气环境形势十分严峻,在传统煤烟型污染尚未得到控制的情况下,以臭氧、细颗粒物(PM2.5)和酸雨为特征的区域性复合型大气污染日益突出,区域内空气重污染现象大范围同时出现的频次日益增多,严重制约社会经济的可持续发展,威胁人民群众身体健康。“十二五”时期,我国工业化和城市化仍将快速发展,资源能源消耗持续增长,大气环境将面临前所未有的压力。为深入贯彻落实国家《节能减排“十二五”规划》和《重点区域大气污染防治“十二五”规划》,促进重点区域大气污染联防联控,全面提升我国大气环境质量改善的综合技术能力,我会联合浙江大学等单位拟定于2013年5月16-17日在浙江省杭州市举办“第十七届二氧化硫、氮氧化物、汞污染防治暨细颗粒物(PM2.5)监测技术研讨会”。会议的主题:推进大气污染联防联控,改善大气环境质量。   现将研讨会的有关事项通知如下:   一、会议征文及研讨的主要议题   (一)区域管理机制与政策   1. 大气复合污染控制政策与措施   2. 区域大气质量管理体系建设   3. 区域大气污染联防联控机制建设与运行管理   (二)大气污染防治技术与设备   1. 重点行业多污染物协同控制技术   2. 城市群大气复合污染综合防治技术与集成示范   3. 燃煤工业锅炉高效脱硫、脱硝、除尘技术及设备研发   4. 水泥行业窑炉低氮燃烧改造和脱硝技术   5. 钢铁行业烧结烟气同时脱硫脱硝脱及高效除尘技术   6. 催化剂关键原材料和催化剂再生及催化剂处理技术   7. 大气汞排放污染防治技术   8. 光化学烟雾、灰霾的污染机理与控制对策研究   9. 烟气脱硫脱硝装置中防腐技术。   (三)烟气在线监测技术与设备   1. 固定污染源烟气排放连续监测系统及检测方法   2. 重点污染源自动监测系统和运行维护   3. 烟气污染在线监测仪器及设备。   (四)细颗粒物(PM2.5)监测技术与设备   1. PM2.5源解析及污染控制对策与技术   2. 细颗粒物(PM2.5)的监测方法及技术开发   3. 空气细颗粒物应急检测技术及仪器应用。   二、特邀报告   1.拟邀请相关部委领导介绍我国“十二五”期间大气污染联防联控及空气质量管理相关政策与措施   2.拟邀请相关领导就我国细颗粒物(PM2.5)污染防治相关政策进行解读与分析   3.邀请知名专家就我国烟气脱硫、脱硝技术创新与运行管理领域作主旨报告演讲。   三、会议形式   会议将安排大会特邀主旨报告、特邀专家报告、专题交流、墙报交流、成果展示等学术交流活动。   四、论文征集   1.请按照会议征文及研讨的内容提交论文,论文摘要不超过500字,全文不超过5000字,所投稿件应符合“第十七届二氧化硫、氮氧化物、汞污染防治暨细颗粒物(PM2.5)监测技术研讨会”的征稿要求,如与相关要求不符,主办单位有权删改。   2.论文文件格式为word文档。具体要素包括:论文题目、作者姓名、工作单位、论文摘要、关键词、正文、主要参考文献等。   3.请在论文后面标注作者的通讯地址、邮政编码和电话,以便进一步沟通。   会前将印刷论文集作为会议资料,请拟提交论文人员在2013年4月15日前提交电子版论文全文至desox2@163.com信箱。   五、企业展览   会议设置了大气污染防治相关企业推介展览环节,将邀请国内外知名公司与企业参与,展示企业文化、技术成果和成功经验。   六、参会人员   1.相关政府管理部门、行业协会、学会、社团、环境监测站、环境信息中心、环评机构 燃煤锅炉、燃煤炉窑、电力、钢铁、水泥、石油、化工等主管部门、设计单位、高校、科研院所等方面的专家、学者和相关技术人员   2.环境监测仪器设备生产企业 脱硫、脱硝、脱汞、除尘、防腐等工艺研发、工程设计、设备制造、施工运营、安装调试、环保咨询、环境污染治理公司相关领导和技术人员。   七、会务费用   会议费:1800元/人,学生1200元/人(含会务、餐饮、晚宴、茶歇、论文资料等费用)。住宿统一安排,费用自理。   八、会后考察   会后将安排工程考察和生态考察。   九、联系方式   (一)中国环境科学学会   饶 阳 王国清 张鹏   电话:010-68637874   手机:13381170552   传真:010-68630714   邮箱:desox2@163.com   (二)浙江大学环境与资源学院 官宝红   电话:0571-88273687   邮箱:guanbaohong@zju.edu.cn   附件:1.会议组织形式   2.参会回执表   附件一:   会议组织形式   一、组织机构   指导单位: 环境保护部   中国科学技术协会   主办单位: 中国环境科学学会   浙江大学   支持单位: 清华大学   中国电力企业联合会   中国钢铁工业协会   中国水泥协会   中国电力投资集团公司   协办单位: 浙江天蓝环保技术股份有限公司   浙江省环境科学学会   浙江省工业锅炉炉窑烟气污染控制工程技   术研究中心   二、学术委员会   1、主席   王玉庆 中国环境科学学会理事长   2、副主席   郝吉明 中国工程院院士、清华大学教授   3、委员   柴发合 中国环境科学研究院副院长研究员   杨金田 环境保护部环境规划院副总工程师   林 翎 中国标准化研究院资源与环境分院院长   吴忠标 浙江大学环境与资源学院教授   李俊华 清华大学环境学院教授   闫克平 浙江省工业锅炉炉窑烟气污染控制工程技术研究中 心副主任   尹华强 国家烟气脱硫工程技术研究中心主任   高 翔 国家环境保护燃煤大气污染控制工程技术中心主任   徐明厚 煤燃烧国家重点实验室主任   段钰锋 东南大学能源与环境学院教授   何 洪 北京工业大学催化化学与纳米科学研究室主任   岑超平 环保部华南所大气环境与污染防治中心主任   杜云贵 烟气脱硝产业技术创新战略联盟理事长   刘汉强 国电新能源技术研究院创新技术研究中心副主任   三、会议组织委员会   王志轩 中国电力企业联合会秘书长   张长富 中国钢铁工业协会副会长   孔祥忠 中国水泥协会秘书长   许纲熙 浙江省环境科学学会秘书长   吴险峰 环保部污染物排放总量控制司大气总量处处长   程常杰 浙江天蓝环保技术股份有限公司总经理   四、会议执行主席   任官平 中国环境科学学会秘书长   吴忠标 浙江大学环境与资源学院教授   五、会议秘书处   姜艳萍、王国清、张鹏、饶阳   电 话:010-68637874   手 机:13381170552   邮 箱:desox2@163.com   网 址:www.chinacses.org www.dsdne.net   附件二:   第十七届二氧化硫、氮氧化物、汞污染防治暨细颗粒物(PM2.5)监测技术研讨会 参会回执表   时间:2013年5月16日-17日 地点:浙江杭州 单位名称 邮 编 通讯地址 手 机 姓 名 部 门 职 称 电 话 传 真 电子邮箱 是否提 交论文 是否出 席会议 是否确定 大会发言 否 参会代表登 记 姓 名 职 称 手 机 电子邮箱 提交论文 题 目 大会发言 题 目 发言人 职务或职称 发票抬头 是否参加 会后考察 备 注 费用总计: 元人民币,付款日期: 年 月 日 款项请汇至大会指定帐号: 开户名:北京国研中科环境科技有限公司 开户行:建行玉泉支行 帐 号:11001018000059261219 参会单位签字或盖章: 日期:2013年 月 日 联系人:张鹏 饶 阳 王国清 电 话:010-68637874 13381170552 传 真:010-68630714 邮 箱:desox2@163.com   注:准备参会的代表收到通知后请及时将参会回执表反馈过来,以便为您安排参会事宜。
  • 2014年3月1日起实施的有色金属检测行业标准
    日前,工业和信息化部批准了《甲基丁烯醇聚醚》等811项行业标准,其中有色行业标准105项,涉及有色金属检测方法的标准项目共48项,均将在2014年3月1日起实施,相关标准由中国标准出版社出版。 有色行业 标准编号 标准名称 标准主要内容 代替标准 YS/T 501-2013 钨钍合金中二氧化钍量的测定 重量法 本标准规定了钨钍合金中二氧化钍量的测定方法。 本标准适用于钨钍合金中二氧化钍量的测定。测定范围:0.5%~5.0%。 YS/T 501-2006 YS/T 500-2013 钨铈合金中铈量的测定 氧化还原滴定法 本标准规定了钨铈合金中铈量的测定方法。 本标准适用于钨铈合金中铈量的测定方法。测定范围:0.50%~5.00%。 YS/T 500-2006 YS/T 895-2013 高纯铼化学分析方法 痕量杂质元素的测定 辉光放电质谱法 本标准规定了高纯铼中痕量元素含量的测定方法。 本标准适用于高纯铼中痕量元素含量的测定。各元素测定范围如下:硫、硒和汞元素的测定范围为50µ g/kg~5000µ g/kg,其余元素的测定范围为5µ g/kg~5000µ g/kg。   YS/T 896-2013 高纯铌化学分析方法 痕量杂质元素的测定 电感耦合等离子体质谱法 本标准规定了高纯铌中锂、铍、硼、镁、钛、钒、锰、铁、钴、镍、铜、锌、镓、砷、锶、锆、钽、钼、镉、锡、锑、铪、钨、铅和铋量的测定方法。 本标准适用于高纯铌中痕量杂质的测定。测定范围:0.0001%~0.010%。   YS/T 897-2013 高纯铌化学分析方法 痕量杂质元素的测定 辉光放电质谱法 本标准规定了高纯铌中痕量杂质元素的测定方法。 本标准适用于高纯铌中痕量杂质元素的测定。除钽、钼、钨外各元素测定范围:1.0µ g/kg~5000µ g/kg,钽的测定范围:1.0µ g/kg~300000µ g/kg,钼和钨的测定范围:1.0µ g/kg~100000µ g/kg。   YS/T 891-2013 高纯钛化学分析方法 痕量杂质元素的测定 辉光放电质谱法 本标准规定了高纯钛中痕量元素含量的测定方法。 本标准适用于高纯钛中痕量元素含量的测定。各元素测定范围:1.0µ g/kg~5000µ g/kg。   YS/T 892-2013 高纯钛化学分析方法 痕量杂质元素的测定 电感耦合等离子体质谱法 本标准规定了高纯钛中钒、锰、镓、锶、锆、钼、镉、锑、锡和铅量的测定方法。 本标准适用于高纯钛中钒、锰、镓、锶、锆、钼、镉、锑、锡和铅量的测定。测定范围:0.0001%~0.0050%。   YS/T 898-2013 高纯钽化学分析方法 痕量杂质元素的测定 电感耦合等离子体质谱法 本标准规定了高纯钽中锂、铍、硼、镁、钛、钒、锰、铁、钴、镍、铜、锌、镓、砷、锶、锆、铌、钼、镉、锡、锑、铪、钨、铅和铋量的测定方法。 本标准适用于高纯钽中痕量杂质的测定,测定范围:0.0001%~0.010%。   YS/T 899-2013 高纯钽化学分析方法 痕量杂质元素的测定 辉光放电质谱法 本标准规定了高纯钽中痕量元素含量的测定方法。 本标准适用于高纯钽中痕量元素含量的测定。除铌、钼、钨外各元素测定范围:1µ g/kg~5000µ g/kg,铌、钼和钨的测定范围:1µ g/kg~100000µ g/kg。   YS/T 900-2013 高纯钨化学分析方法 痕量杂质元素的测定 电感耦合等离子体质谱法 本标准规定了高纯钨中锂、铍、硼、铬、钛、钒、锰、铁、钴、镍、铜、镓、砷、锶、锆、钽、铌、钼、镉、锑、铪、铅和铋量的测定方法。 本标准适用于高纯钨中痕量杂质的测定,测定范围:0.0001%~0.010%。   YS/T 901-2013 高纯钨化学分析方法 痕量杂质元素的测定 辉光放电质谱法 本标准规定了高纯钨中痕量元素含量的测定方法。 本标准适用于高纯钨中痕量元素含量的测定。各元素测定范围:1µ g/kg~5000µ g/kg。   YS/T 902-2013 高纯铼及铼酸铵化学分析方法 铍、钠、镁、铝、钾、钙、钛、铬、锰、铁、钴、镍、铜、锌、砷、钼、镉、铟、锡、锑、钡、钨、铂、铊、铅、铋量的测定 电感耦合等离子体质谱法 本标准规定了高纯铼及铼酸铵中铍、钠、镁、铝、钾、钙、钛、铬、锰、铁、钴、镍、铜、锌、砷、钼、镉、铟、锡、锑、钡、钨、铂、铊、铅、铋含量的测定方法。 本标准适用于高纯铼及铼酸铵中铍、钠、镁、铝、钾、钙、钛、铬、锰、铁、钴、镍、铜、锌、砷、钼、镉、铟、锡、锑、钡、钨、铂、铊、铅、铋含量的测定。测定范围:0.0001%~0.0050%。   YS/T 903.1-2013 铟废料化学分析方法 第1部分:铟量的测定 EDTA滴定法 本部分规定了铟废料中铟量的测定方法。 本部分适用于ITO靶材废料中铟量的测定,测定范围:50.00%~80.00%。   YS/T 903.2-2013 铟废料化学分析方法 第2部分:锡量的测定 碘量法 本部分规定了铟废料中锡量的测定方法。 本部分适用于ITO靶材废料中锡量的测定,测定范围:2.00%~10.00%。   YS/T 904.1-2013 铁铬铝纤维丝化学分析方法 第1部分:氮量的测定 惰性气体熔融热导法 本部分规定了铁铬铝纤维丝中氮量的测定方法。 本部分适用于铁铬铝纤维丝中氮量的测定,测定范围:0.0005%~0.040%。   YS/T 904.2-2013 铁铬铝纤维丝化学分析方法 第2部分:铬、铝量的测定 电感耦合等离子体原子发射光谱法 本部分规定了铁铬铝纤维丝中铬、铝量的测定方法。 本部分适用于铁铬铝纤维丝中铬、铝量的测定,铬测定范围为10.00%~30.00%,铝测定范围为2.00%~10.00%。   YS/T 904.3-2013 铁铬铝纤维丝化学分析方法 第3部分:硅、锰、钛、铜、镧、铈 量的测定 电感耦合等离子体原子发射光谱法 本部分规定了铁铬铝纤维丝中硅、锰、钛、铜、镧、铈量的测定方法。 本部分适用于铁铬铝纤维丝中硅、锰、钛、铜、镧、铈量的测定。   YS/T 904.4-2013 铁铬铝纤维丝化学分析方法 第4部分:磷量的测定 钼蓝分光光度法 本部分规定了铁铬铝纤维丝中磷量的测定方法。 本部分适用于铁铬铝纤维丝中磷量的测定,测定范围0.001%~0.050%。   YS/T 904.5-2013 铁铬铝纤维丝化学分析方法 第5部分:碳、硫量的测定 高频燃烧红外吸收法 本部分规定了铁铬铝纤维丝中碳量和硫量的测定方法。 本部分适用于铁铬铝纤维丝中碳量和硫量的测定,碳量测定范围为0.005%~0.50%,硫量测定范围为0.0005%~0.050%。   YS/T 820.21-2013 红土镍矿化学分析方法 第21部分:铬量的测定 硫酸亚铁铵滴定法 本部分规定了红土镍矿中铬量的测定方法。 本部分适用于红土镍矿中铬量的测定。测定范围:0.30%~3.50%。   YS/T 461.1-2013 混合铅锌精矿化学分析方法 第1部分:铅量与锌量的测定 沉淀分离Na2EDTA法 本部分规定了混合铅锌精矿中铅量与锌量的测定方法。 本部分适用于混合铅锌精矿中铅量与锌量的测定。测定范围:铅10.00%~40.00% ,锌10.00%~45.00%。本部分不适用于钡含量大于1%的混合铅锌精矿。 YS/T 461.1-2003 YS/T 461.2-2013 混合铅锌精矿化学分析方法 第2部分:铁量的测定 Na2EDTA滴定法 本部分规定了混合铅锌精矿中铁含量的测定方法。 本部分适用于混合铅锌精矿中铁含量的测定。测定范围:2.00%~20.00%。本部分不适用于铋含量大于0.3%的混合铅锌精矿。 YS/T 461.2-2003 YS/T 461.3-2013 混合铅锌精矿化学分析方法 第3部分:硫量的测定 燃烧-中和滴定法 本部分规定了混合铅锌精矿中硫含量的测定方法。 本部分适用于混合铅锌精矿中硫含量的测定。测定范围:15.00%~38.00%。 YS/T 461.3-2003 YS/T 461.4-2013 混合铅锌精矿化学分析方法 第4部分:砷量的测定 碘滴定法 本部分规定了混合铅锌精矿中砷量的测定方法。 本部分适用于混合铅锌精矿中砷量的测定。测定范围: 0.10%~1.00%。 YS/T 461.4-2003 YS/T 461.5-2013 混合铅锌精矿化学分析方法 第5部分:二氧化硅量的测定 钼蓝分光光度法 本部分规定了混合铅锌精矿中二氧化硅含量的测定方法。 本部分适用于混合铅锌精矿中二氧化硅含量的测定。测定范围:1.00%~10.00% 。 YS/T 461.5-2003 YS/T 461.6-2013 混合铅锌精矿化学分析方法 第6部分:汞量的测定 原子荧光光谱法 本部分规定了混合铅锌精矿中汞量的测定方法。 本部分适用于混合铅锌精矿中汞量的测定。测定范围:0.0002%~0.10%。 YS/T 461.6-2003 YS/T 461.7-2013 混合铅锌精矿化学分析方法 第7部分:镉量的测定 火焰原子吸收光谱法 本部分规定了混合铅锌精矿中镉量的测定方法。 本部分适用于混合铅锌精矿中镉量的测定。测定范围:0.050%~1.00%。 YS/T 461.7-2003 YS/T 461.8-2013 混合铅锌精矿化学分析方法 第8部分:铜量的测定 火焰原子吸收光谱法 本部分规定了混合铅锌精矿中铜含量的测定方法。 本部分适用于混合铅锌精矿中铜含量的测定。测定范围:铜:0.10%~5.00%。 YS/T 461.8-2003 YS/T 461.9-2013 混合铅锌精矿化学分析方法 第9部分:银量的测定 火焰原子吸收光谱法 本部分规定了混合铅锌精矿中银量的测定方法。 本部分适用于混合铅锌精矿中银量的测定。测定范围:50g/t~500g/t。 YS/T 461.9-2003 YS/T 461.10-2013 混合铅锌精矿化学分析方法 第10部分:金量与银量的测定 火试金法 本部分规定了混合铅锌精矿中金量与银量的测定方法。 本部分适用于混合铅锌精矿中金量与银量的测定。测定范围:银:500g/t~3000g/t。金:0.5g/t~15.0g/t。 YS/T 461.10-2003 YS/T 917-2013 高纯镉化学分析方法 痕量杂质元素含量的测定 辉光放电质谱法 本标准规定了高纯镉中痕量元素含量的测定方法。 本标准适用于高纯镉中痕量元素含量的测定。各元素测定范围如下:硫、硒元素的测定范围为100µ g/kg~5000µ g/kg,其余元素的测定范围为1µ g/kg~5000µ g/kg。   YS/T 229.1-2013 高纯铅化学分析方法 第1部分:银、铜、铋、铝、镍、锡、镁和铁量的测定 化学光谱法 本部分规定了高纯铅中银、铜、铋、铝、镍、锡、镁和铁量的测定方法。 本部分适用于高纯铅中银、铜、铋、铝、镍、锡、镁和铁量的测定。 YS/T 229.1-1994 YS/T 229.2-2013 高纯铅化学分析方法 第2部分:砷量的测定 原子荧光光谱法 本部分规定了高纯铅中砷量的测定方法。 本部分适用于高纯铅中砷量的测定。测定范围:0.05× 10-4﹪~0.6× 10-4﹪(质量分数)。 YS/T 229.2-1994 YS/T 229.3-2013 高纯铅化学分析方法 第3部分:锑量的测定 原子荧光光谱法 本部分规定了高纯铅中锑量的测定方法。 本部分适用于高纯铅中锑量的测定。锑含量的测定范围:0.05× 10-4﹪~1.0× 10-4﹪(质量分数)。 YS/T 229.3-1994 YS/T 229.4-2013 高纯铅化学分析方法 第4部分:痕量杂质元素含量的测定 辉光放电质谱法 本部分规定了高纯铅中痕量元素含量的测定方法。 本部分适用于高纯铅中痕量元素含量的测定。各元素测定范围如下: 硫、硒元素的测定范围为100µ g/kg~5000µ g/kg,其余元素的测定范围为1µ g/kg~5000µ g/kg。   YS/T 922-2013 高纯铜化学分析方法 痕量杂质元素含量的测定 辉光放电质谱法 本标准规定了高纯铜中痕量元素含量的测定方法。 本标准适用于高纯铜中痕量元素含量的测定。各元素测定范围如下: 硫、硒元素的测定范围为10µ g/kg~5000µ g/kg,其余元素的测定范围为1µ g/kg~5000µ g/kg。   YS/T 923.1-2013 高纯铋化学分析方法 第1部分: 铜、铅、锌、铁、银、砷、锡、镉、镁、铬、铝、金和镍量的测定 电感耦合等离子体质谱法 本部分规定了高纯铋中铜、铅、锌、铁、银、砷、锡、镉、镁、铬、铝、金和镍量的测定方法。 本标准适用于高纯铋中铜、铅、锌、铁、银、砷、锡、镉、镁、铬、铝、金和镍量的测定。   YS/T 923.2-2013 高纯铋化学分析方法 第2部分: 痕量杂质元素含量的测定 辉光放电质谱法 本部分规定了高纯铋中痕量元素含量的测定方法。 本标准适用于高纯铋中痕量元素含量的测定。各元素测定范围为5.0µ g/kg~5000µ g/kg。   YS/T 928.1-2013 镍、钴、锰三元素氢氧化物化学分析方法 第1部分:氯离子量的测定 氯化银比浊法 本部分规定了镍、钴、锰三元素氢氧化物中氯离子量的测定方法。 本部分适用于镍、钴、锰三元素氢氧化物中氯离子量的测定。测定范围:0.01%~0.15%。   YS/T 928.2-2013 镍、钴、锰三元素氢氧化物化学分析方法 第2部分:镍量的测定 丁二酮肟重量法 本部分规定了镍、钴、锰三元素氢氧化物中的镍量的测定方法。 本部分适用于镍、钴、锰三元素氢氧化物中的镍量的测定。测定范围:35.00%~60.00%。   YS/T 928.3-2013 镍、钴、锰三元素氢氧化物化学分析方法 第3部分:镍、钴、锰量的测定 电感耦合等离子体原子发射光谱法 本部分规定了镍、钴、锰三元素氢氧化物中的镍、钴、锰量的测定方法。本部分适用于镍、钴、锰三元素氢氧化物中的镍、钴、锰量的测定。测定范围Ni 15.00~35.00%,Co 2.00~25.00%,Mn 2.00~35.00%   YS/T 928.4-2013 镍、钴、锰三元素氢氧化物化学分析方法 第4部分:铁、钙、镁、铜、锌、硅、铝、钠量的测定 电感耦合等离子体原子发射光谱法 本部分规定了镍、钴、锰三元素氢氧化物中的铁、钙、镁、铜、锌、硅、铝、钠量的测定方法。 本部分适用于镍、钴、锰三元素氢氧化物中的铁、钙、镁、铜、锌、硅、铝、钠量的测定。   YS/T 928.5-2013 镍、钴、锰三元素氢氧化物化学分析方法 第5部分:铅量的测定 电感耦合等离子体质谱法 本部分规定了镍、钴、锰三元素氢氧化物中的铅量的测定方法。 本部分适用于镍、钴、锰三元素氢氧化物中的铅量的测定。测定范围:0.0001%~0.005%。   YS/T 928.6-2013 镍、钴、锰三元素氢氧化物化学分析方法 第6部分:硫酸根离子量的测定 离子色谱法 本部分规定了镍、钴、锰三元素氢氧化物中硫酸根离子量的测定方法。 本部分适用于镍、钴、锰三元素氢氧化物中硫酸根离子量的测定。测定范围:0.10%~2.00%。   YS/T 938.1-2013 齿科烤瓷修复用金基和钯基合金化学分析方法 第1部分:金量的测定 亚硝酸钠还原重量法 本部分规定了齿科烤瓷修复用金基和钯基合金中金量的测定方法。 本部分适用于齿科烤瓷修复用金基和钯基合金中金量的测定。测定范围:15.00%~90.00%。   YS/T 938.2-2013 齿科烤瓷修复用金基和钯基合金化学分析方法 第2部分:钯量的测定 丁二酮肟重量法 本部分规定了齿科烤瓷修复用金基和钯基合金中钯量的测定方法。 本部分适用于齿科烤瓷修复用金基和钯基合金中钯量的测定。测定范围:15.00%~60.00%。   YS/T 938.3-2013 齿科烤瓷修复用金基和钯基合金化学分析方法 第3部分:银量的测定 火焰原子吸收光谱法和电位滴定法 本部分规定了齿科烤瓷修复用金基和钯基合金中银量的测定方法。 本部分适用于齿科烤瓷修复用金基和钯基合金中银量的测定。测定范围:0.10%~5.00%。 本部分规定了齿科烤瓷修复用金基和钯基合金中银量的测定方法。 本部分适用于齿科烤瓷修复用金基和钯基合金中银量的测定。测定范围:5.00%~25.00%。   YS/T 938.4-2013 齿科烤瓷修复用金基和钯基合金化学分析方法 第4部分:金、铂、钯、铜、锡、铟、锌、镓、铍、铁、锰、锂量的测定 电感耦合等离子体原子发射光谱法 本部分规定了齿科烤瓷修复用金基和钯基合金中金、铂、钯、铜、锡、铟、锌、镓、铍、铁、锰、锂量的测定方法。 本部分适用于齿科烤瓷修复用金基和钯基合金中金、铂、钯、铜、锡、铟、锌、镓、铍、铁、锰、锂量的测定。
  • 逾九成氮氧化物颗粒物来自汽车排放
    《2012年中国机动车污染防治年报》显示,我国已连续三年成为世界机动车产销第一大国,机动车污染已成为我国空气污染的重要来源,是造成灰霾、光化学烟雾污染的重要原因。环保部新闻发言人陶德田今日向媒体通报说,监测表明,随着机动车保有量的快速增加,我国城市空气开始呈现出煤烟和机动车尾气复合污染的特点,直接影响群众健康,机动车污染防治的紧迫性日益凸显。   据介绍,今天公布的年报统计的是2011年全国机动车污染排放状况。年报显示,2011年全国汽车产、销量分别达到1841.9万辆和1850.5万辆。与1980年相比,全国机动车保有量增加了30倍,达到20754.6万辆。按环保标志分类,“绿标车”占83.6%,高排放的“黄标车”仍占16.4%。   “随着机动车保有量的快速增加,我国城市空气开始呈现出煤烟和机动车尾气复合污染的特点。”陶德田说,2011年全国机动车排放污染物4607.9万吨,比2010年增加3.5%,其中氮氧化物(NOx)637.5万吨,颗粒物(PM)62.1万吨,碳氢化合物(HC)441.2万吨,一氧化碳(CO)3467.1万吨。   汽车是污染物总量的主要贡献者,其排放的NOx和PM超过90%,HC和CO超过70%。年报显示,全国货车排放的NOx和PM明显高于客车,其中重型货车是主要“贡献”者 仅占汽车保有量16.4%的“黄标车”却排放了63.7%的NOx、86.6%的PM、55.9%的CO和60.4%的HC。   陶德田说,新修订的环境空气质量标准以及《重点区域大气污染防治“十二五”规划》发布后,各地区和有关部门纷纷制定机动车污染减排工作方案和配套政策,在机动车保有量比1980年增加30倍的情况下,尾气排放总量仅增加了14倍。   陶德田表示,环保部将全面实施机动车氮氧化物总量控制,切实加强机动车生产、使用、淘汰等全过程环境监管,同时会同有关部门,从行业发展规划、城市公共交通、清洁燃油供应等方面采取综合措施,协调推进“车、油、路”同步发展,大力防治机动车尾气排放对大气环境和人民群众健康的影响。
  • 环保部召开减排核查会 氮氧化物首次下降
    环境保护部6月27日在京召开2013年上半年主要污染物减排核查核算视频会。环境保护部副部长翟青部署2013年上半年主要污染物减排核查核算工作,并对2013年环保专项行动和环境安全检查工作提出要求。   翟青说,2013年年初,环境保护部会同有关部门对2012年主要污染物减排情况进行了核查核算。总体情况看,2012年全国四项污染物排放量均同比下降,尤其是氮氧化物首次实现下降,达到了预期目标。2012年国家目标责任书要求完成1272个重点项目,实际完成1131个,完成率近90% 全国水泥行业烟气脱硝及农业源、机动车等新增领域减排工作均取得突破性进展。根据《&ldquo 十二五&rdquo 主要污染物总量减排考核办法》和《&ldquo 十二五&rdquo 节能减排综合性工作方案》,环境保护部对3省区、1个企业集团和6个地级市实行了环评限批,对32家企业实行挂牌督办并予以经济处罚。2013年以来,总量减排各项工作正在稳步推进。从监测数据看,1至5月,全国907个地表水国控断面高锰酸盐指数和氨氮月均值分别为3.86和1.04毫克/升,同比下降5.6个百分点和6.3个百分点。325个地级以上城市二氧化硫和氮氧化物浓度分别为39微克/立方米和33微克/立方米,同比基本持平。   翟青指出,在充分肯定工作取得成绩的同时,我们也要看到总量减排工作面临的压力和困难:一是一些地方对减排约束性要求思想上有所淡化,对面临的严峻形势分析不够深入,导致减排推进力度有所减弱。二是一些地方对减排考核的&ldquo 三条红线&rdquo 认识还不到位。所谓&ldquo 三条红线&rdquo ,第一条是指年度四项污染物总量减排目标全部完成,第二条是指重点减排项目按目标责任书要求全部落实,第三条是指监测体系建设运行情况达到相关要求。三是由于部分行业产能过剩,企业效益普遍较差,治污设施的运行效率出现滑坡。   在部署2013年环保专项行动时,翟青要求,要进一步提高对执法监管工作重要性的认识,不断强化信息公开,及时发布专项行动进展情况、查处情况、挂牌督办案件等相关信息,保障群众的环境知情权、表达权、监督权和参与权。要强化责任追究,对排查不到位、整治工作没有实质进展的,要公开点名批评,约谈地方人民政府或有关部门主要负责人 对环境违法案件没有查处、隐瞒案情、包庇纵容违法行为的,要依法依纪严肃追究相关人员的责任 对群众反映强烈、社会影响恶劣的重大环境污染问题和环境违法案件,要实行挂牌督办,督促其查处到位、整改到位、责任追究到位 对经整改仍不到位、突出问题没有得到有效解决的,要实施限批 情节严重的违法案件,各地应按照新出台的司法解释,移送司法机关依法处理。   在强调环境安全检查时,翟青指出,国务院召开常务会议研究加强安全生产工作,要求各地区、各部门开展一次彻底的安全生产大检查。各级环保部门要利用好这次机会,向地方政府和相关部门汇报好、解释好安全生产和环境安全的关系,将环境安全检查纳入政府安全生产大检查工作中,提高地方政府、相关部门和企业对环境安全重要性的认识,在处置各类事故时高度重视保障环境安全。   环境保护部相关司局、在京相关派出机构、直属单位负责人以及中石油、中石化、华能、大唐、华电、国电、中电投、神华集团公司等相关人员在主会场参加了会议。各省、自治区、直辖市和新疆生产建设兵团环境保护厅(局)主要负责人、负责减排工作的同志和各环保督查中心相关人员在分会场参加会议。
  • 重金属废水处理技术汇总!
    p style=" text-indent: 2em " 一、 沉淀法 /p p style=" text-indent: 2em " 1.氢氧化物沉淀法 /p p style=" text-indent: 2em " 往重金属废水中加入碱性溶液,利用OH-与重金属离子反应生成难溶的金属氢氧化物沉淀,通过过滤予以分离。氢氧化物沉淀法包括分步沉淀法和一次沉淀法两种。分步沉淀法是分段加入石灰乳,利用不同的金属氢氧化物在不同的pH值下沉淀析出的特性,依次回收各金属氢氧化物。一次沉淀法则是一次性投加石灰乳,使溶液达到额定的pH值,从而使废水中的各种重金属离子同时以氢氧化物沉淀的形式析出。 /p p style=" text-indent: 2em " 2 .硫化物沉淀法 /p p style=" text-indent: 2em " 将重金属废水pH值凋节为一定碱性后,再通过向重金属废水中投加硫化钠或硫化钾等硫化物,或者直接通人硫化氢气体,使重金属离子同硫离子反应生成难溶的金属硫化物沉淀,然后被过滤分离。由于金属硫化物的溶度积比相应的金属氢氧化物的溶度积小得多,因此,硫化物沉淀法比氢氧化物沉淀法具有更多的优点,比如沉渣量少,容易脱水,沉渣金属品位高,有利于金属的回收。可是硫化物沉淀法也有不足之处,比方说硫化物结晶比较细小,难以沉降,因而应用也不是很广。 /p p style=" text-indent: 2em " 3. 还原一沉淀法 /p p style=" text-indent: 2em " 这种方法的原理是,用还原剂将重金属废水中的重金属离子还原为金属单质或者价态较低的金属离子,先将金属过滤收集,然后再往处理液中加入石灰乳,使得还原态的重金属离子以氢氧化物的形式沉淀收集。铜和汞等的回收可以利用这种方法。该法也常用于含铬废水的处理。较常使用的还原剂有硫酸亚铁、亚硫酸氢钠、铁粉等。 /p p style=" text-indent: 2em " 4. 絮凝浮选沉淀法 /p p style=" text-indent: 2em " 通过添加絮凝剂使得重金属废水中的小胶体颗粒稳定性变差,聚集形成大颗粒胶体物质,最终通过重力作用沉淀下来。为增大胶体颗粒的尺寸,采用浮选的办法,用于将不稳定的胶体粒子变为固相絮凝物。这一浮选过程一般包括两个重要的步骤,一是调节pH值,二是加入含铁或铝盐的絮凝剂,以克服离子间静电排斥导致的稳定作用。 /p p style=" text-indent: 2em " 二、 物理化学法 /p p style=" text-indent: 2em " 1. 吸附法 /p p style=" text-indent: 2em " (1)物理吸附法。活性炭是最早使用的吸附剂,也是目前使用最广泛的吸附剂。之所以能够进行物理吸附,是因为活性炭具有高的比表面积以及高度发达的孔隙结构。后来在此基础上又出现了活性炭纤维等衍生物,去除效率高,但价格比较昂贵。能够用于物理吸附的材料还有各种矿物质以及分子筛等。 /p p style=" text-indent: 2em " (2)树脂吸附。环保是树脂吸附法的一个重要的特点,这种方法能够分离、纯化、回收重金属,效果显着。主要是由于树脂中含有各种活性基团,比较典型的有羟基、羧基、氨基等,能够与重金属离子进行螯合,因而这些功能性树脂材料能有效的吸附重金属离子。根据活性基团的种类不同,分为阳离子交换树脂和阴离子交换树脂。 /p p style=" text-indent: 2em " (3)生物吸附。近些年来,很多研究者将各种生物(如植物、细菌、真菌、藻类以及酵母)经处理加工成生物吸附剂,用于处理含重金属废水。生物体具有特定的化学结构以及成分特征, /p p style=" text-indent: 2em " 而生物吸附法的主要原理,就是利用生物体的这些特性来吸附溶于水中的重金属离子。生物吸附法具有几个特点:①生物吸附剂可以降解,一般不会发生二次污染;②来源广泛,容易获取并且价格便宜;③生物吸附剂容易解析,能够有效地回收重金属。 /p p style=" text-indent: 2em " 2. 浮选法 /p p style=" text-indent: 2em " 往重金属废水中通人气体产生气泡,废水中的胶体颗粒会附着在气泡表面,这些胶体粒子可随气泡的上浮从而实现将依附在粒子上的重金属离子加以分离。该方法具有如下优点:对粒子的去除效果好,操作省时,费用低廉,在一定条件下,既可消除重金属污染,又可回收金属,并且还能避开某些重金属氢氧化物或碳酸盐过滤困难的问题。 /p p style=" text-indent: 2em " 3. 离子交换法 /p p style=" text-indent: 2em " 用离子交换树脂把废水中的重金属离子交换出来,从而除去重金属离子。不过,离子交换树脂价格昂贵,其再生费用也比较高,所以,在废水处理中使用很少。但对于少量有回收价值的有毒金属来说是个不错的方法。 /p p style=" text-indent: 2em " 4.溶剂萃取分离 /p p style=" text-indent: 2em " 溶剂萃取法是分离和净化物质常用的方法。由于液一液接触,可连续操作,分离效果较好。使用这种方法时,要选择有较高选择性的萃取剂,废水中重金属一般以阳离子或阴离子形式存在,例如在酸性条件下,与萃取剂发生络合反应,从水相被萃取到有机相,然后在碱性条件下被反萃取到水相,使溶剂再生以循环利用。这就要求在萃取操作时注意选择水相酸度。尽管萃取法有较大优越性,然而溶剂在萃取过程中的流失和再生过程中能源消耗大,使这种方法存在一定局限性,应用受到很大的限制。 /p p style=" text-indent: 2em " 三、 电化学处理技术 /p p style=" text-indent: 2em " 1. 电解法& nbsp br/ /p p style=" text-indent: 2em " 电解法的主要原理,是对重金属废水进行电解时,重金属离子在阴极得到电子被还原,这些重金属要么沉淀在电极表面,要么沉淀到反应槽底部,从而起到降低废水中重金属含量的效果。 /p p style=" text-indent: 2em " 2 .电沉积& nbsp br/ /p p style=" text-indent: 2em " 这种方法的原理是,在传统的化学沉淀方法中,加入电压,通过改变溶液的电势,促进重金属离子更好地沉淀。电沉积在酸性和碱性废液中都适用。 /p p style=" text-indent: 2em " 3. 膜分离技术 /p p style=" text-indent: 2em " 膜分离法是利用高分子所具有的选择性来进行物质分离的技术,包括电渗析、反渗透、膜萃取、超过滤等。用电渗析法处理电镀工业废水,处理后废水组成不变,有利于回槽使用。含Cu2+、Ni2+、Zn2+、Cr6+等金属离子废水都适宜用电渗析处理,已有成套设备。反渗透法已大规模用于镀Zn、Ni、Cr漂洗水和混合重金属废水处理。采用反渗透法处理电镀废水,已处理水可以回用,实现闭路循环。液膜法治理电镀废水的研究报道很多,有些领域液膜法已由基础理论研究进入到初步工业应用阶段,如我国和奥地利均用乳状液膜技术处理含Zn废水,此外也应用于镀Au废液处理中。膜萃取技术是一种高效、无二次污染的分离技术,该项技术在金属萃取方面有很大进展。 /p p style=" text-indent: 2em " 四、生物化学法 /p p style=" text-indent: 2em " 1. 生物塘净化法& nbsp br/ /p p style=" text-indent: 2em " 该方法的原理,是利用复合的水生生态系统的协同作用,完成对重金属污染物的吸收、积累、分解以及净化作用。 /p p style=" text-indent: 2em " 2. 动物处理 /p p style=" text-indent: 2em " 动物法处理重金属废水现今尚处于起步阶段。尤其是无脊椎动物对Zn和Cd具有很大的富集能力。可见,利用水生动物处理重金属废水存在一定的可行性。研究发现,利用双壳(河蚌)处理重金属废水,在重金属浓度为3.125 mg/L时,双壳生物对重金属Zn、Cd、Pb2+ 、Ag 的脱除系数达到72.0%~89.9%,对双壳法处理重金属废水的可行性作了肯定。 /p p style=" text-indent: 2em " 3. 微生物及藻类处理 /p p style=" text-indent: 2em " 通过生物絮凝,生物吸附,生物沉淀等作用实现废水中重金属的转化,沉积和固定。研究表明,废水中金属污染浓度为10~l000 时,传统的处理工艺成本很高,而廉价、易得的微生物可从稀溶液中富集、分离,通常能将浓缩几千倍或更多。目前,微生物处理工艺得到工业应用较多的是生物硫化法,其他的如,生物吸附,生物絮凝等尚未得到大规模的工业应用。 /p p style=" text-indent: 2em " 4. 植物修复法& nbsp br/ /p p style=" text-indent: 2em " 重金属污染植物修复,是指利用植物的生命活动,提取,吸收并固定被污染水体中的重金属离子,从而达到减轻重金属废水危害的目的。 /p p style=" text-indent: 2em " 5.生物絮凝法 /p p style=" text-indent: 2em " 生物絮凝法是利用微生物或微生物产生的代谢物进行絮凝沉淀的一种除污方法。微生物絮凝剂是一类由微生物产生并分泌到细胞外,具有絮凝活性的代谢物。一般由多糖、蛋白质、DNA、纤维素、糖蛋白、聚氨基酸等高分子物质构成,分子中含有多种官能团,能使水中胶体悬浮物相互凝聚沉淀。至目前为止,对重金属有絮凝作用的约有十几个品种,生物絮凝剂中的氨基和羟基可与Cu2+、 Hg2+、Ag+、Au2+等重金属离子形成稳定的鳌合物而沉淀下来。应用微生物絮凝法处理废水安全方便无毒、不产生二次污染、絮凝效果好,且生长快、易于实现工业化等特点。此外,微生物可以通过遗传工程、驯化或构造出具有特殊功能的菌株。因而微生物絮凝法具有广阔的应用前景。 /p p style=" text-indent: 2em " 6. 生物吸附法 /p p style=" text-indent: 2em " 生物吸附法是利用生物体本身的化学结构及成分特性来吸附溶于水中的金属离子,再通过固液两相分离去除水溶液中的金属离子的方法。利用胞外聚合物分离金属离子,有些细菌在生长过程中释放的蛋白质,能使溶液中可溶性的重金属离子转化为沉淀物而去除。生物吸附剂具有来源广、价格低、吸附能力强、易于分离回收重金属等特点,已经被广泛应用。 /p p style=" text-indent: 2em " 7.生物化学法 /p p style=" text-indent: 2em " 生物化学法指通过微生物处理含重金属废水,将可溶性离子转化为不溶性化合物而去除。硫酸盐生物还原法是一种典型生物化学法。该法是在厌氧条件下硫酸盐还原菌通过异化的硫酸盐还原作用,将硫酸盐还原成H2S,废水中的重金属离子可以和所产生的H2S反应生成溶解度很低的金属硫化物沉淀而被去除,同时H2S的还原作用可将SO42-转化为S2-而使废水的pH值升高。因许多重金属离子氢氧化物的离子积很小而沉淀。有关研究表明,生物化学法处理含Cr6+浓度为30~40mg/L的废水去除率可达99.67%~99.97%。有人还利用家畜粪便厌氧消化污泥进行矿山酸性废水重金属离子的处理,结果表明该方法能有效去除废水中的重金属。赵晓红等人用脱硫肠杆菌(SRV)去除电镀废水中的铜离子,在铜质量浓度为246.8 mg/L的溶液,当pH为4.0时,去除率达99.12%。 /p p br/ /p
  • 锂电新能源材料 | 从硫酸盐到三元前驱体,TOC把关有机物残留
    导 读电动车正以其丝滑加速、便捷操控、环保和静音等优越体验俘获着一众新老司机,大街小巷悄然增多的电动车不断刷新着新能源车销量记录。工信部官微“工信微报”1月披露,2021年,我国新能源汽车销售完成352.1万辆,同比增长1.6倍,连续7年位居全球第一。电动车的核心是电池,电池的关键是正极材料,正极材料性能的基础在于前驱体,而电池级硫酸盐是制备三元前驱体的重要原料。近年来,前驱体生产企业发现,硫酸盐原料中引入的有机物残留会显著影响前驱体的合成,引起形貌变化和振实密度降低,最终导致电池容量显著下降。通过使用总有机碳分析仪(TOC)监测硫酸盐中的有机物残留,可保证前驱体的稳定生产。 三元前驱体生产工艺三元前驱体指镍钴锰的氢氧化物,是生产三元正极材料的重要上游材料,通过与锂源混合后,烧结制得三元正极成品,其性能直接决定三元正极材料核心理化性能。 图1 三元前驱体单颗粒中Ni、Co、Mn和O元素分布(由岛津电子探针EPMA-8050G拍摄) 目前三元路线的前驱体主要以共沉淀法合成,将镍、钴、锰的硫酸盐配制成可溶性的混合溶液,然后与氨、碱混合,通过控制反应条件形成类球形氢氧化物。 三元前驱体溶液中有机残留物的影响在镍钴锰硫酸盐的提纯过程中,会使用260#溶剂油、P204和P507等萃取剂,这些有机萃取剂残留在盐溶液中,将严重影响前驱体的合成,在沉淀生成过程中导致形貌疏松,无法成球,粒度分布宽化,振实密度下降。马跃飞在《高镍多元前驱体的制备与研究》[1]中评估了类似有机物残留的“油分”指标对形貌的影响,并提出需要控制溶液中油分在5ppm以下。由华友钴业等企业起草的团体标准《T/ATCRR10-2020电池级硫酸钴溶液》、《T/ATCRR11-2020电池级硫酸锰溶液》和《T/ATCRR12-2020电池级硫酸镍溶液》中,对优等品硫酸盐溶液中油分的限值分别为0.0100g/L、0.0100g/L和0.0050g/L。 图2 料液对高镍前驱体形貌影响(沉淀时间36h)(a)油分为9.5ppm(4000倍)(b)油分为2ppm(4000倍)图片引自http://www.cbcu.com.cn/shushuo/jishu/2021031635652.html 三元前驱体溶液中有机物残留分析方案为了控制前驱体溶液中有机物残留,保证前驱体的稳定合成,精确而稳定的监测十分重要。三元前驱体溶液中盐含量非常高,通常在30%以上,因此对测试仪器的耐盐性提出了更高的要求。岛津TOC-L总有机碳分析仪,以680℃催化氧化样品中有机物,通过精确测定生成二氧化碳的量来确定总有机碳含量。TOC-L用于三元前驱体溶液中有机残留物的测试,结果精确度高、稳定性好,配合八通阀在线加酸去除无机碳和自动稀释功能测试,操作简便,分析速度快。 01 方法评估在0-20ppm范围内建立标准曲线,试样6次重复测试RSD同时进行了加标实验,回收率为95.8%,具有良好的稳定性和准确度。 表2 样品回收率结果02耐盐性实验鉴于前驱体溶液中盐含量较高,且硫酸钴熔点仅98℃,易熔融,为了评估岛津TOC-L对前驱体溶液分析的耐受性,进行了耐盐性评估实验。对120g/L的硫酸钴(以Co计)溶液仅稀释五倍后进样,在五天内24h不间断连续分析,所得结果如图3。比较再生后的催化剂,表面附着的钴盐再生后已被清洗干净,催化剂效率无影响。 图3 120g/L(Co)硫酸钴溶液中TOC重复分析结果图4 催化剂状态图5 催化剂表面附着元素情况(使用岛津EDX-7000分析) 结语针对前驱体溶液中有机物残留的影响,使用岛津TOC-L总有机碳分析仪建立了有机物残留量的分析方法,并考察了仪器对高盐样品的耐受性。岛津TOC-L 680℃催化燃烧法操作简便,分析速度快,重现性好,适用于锂电原材料Ni、Co、Mn高盐样品中残留有机物的分析。岛津TOC-L稳定发挥,严格监控,在锂电上下游守护三元前驱体的合成工艺。 参考文献[1]马跃飞 高镍多元前驱体的制备与研究 [J]. 当代化工研究 2018.03 P45-47 撰稿人:刘洁 *本文内容非商业广告,仅供专业人士参考。
  • 锂电新能源材料 | 从硫酸盐到三元前驱体,TOC把关有机物残留
    导 读电动车正以其丝滑加速、便捷操控、环保和静音等优越体验俘获着一众新老司机,大街小巷悄然增多的电动车不断刷新着新能源车销量记录。工信部官微“工信微报”1月披露,2021年,我国新能源汽车销售完成352.1万辆,同比增长1.6倍,连续7年位居全球第一。电动车的核心是电池,电池的关键是正极材料,正极材料性能的基础在于前驱体,而电池级硫酸盐是制备三元前驱体的重要原料。近年来,前驱体生产企业发现,硫酸盐原料中引入的有机物残留会显著影响前驱体的合成,引起形貌变化和振实密度降低,最终导致电池容量显著下降。通过使用总有机碳分析仪(TOC)监测硫酸盐中的有机物残留,可保证前驱体的稳定生产。 三元前驱体生产工艺三元前驱体指镍钴锰的氢氧化物,是生产三元正极材料的重要上游材料,通过与锂源混合后,烧结制得三元正极成品,其性能直接决定三元正极材料核心理化性能。 图1 三元前驱体单颗粒中Ni、Co、Mn和O元素分布(由岛津电子探针EPMA-8050G拍摄) 目前三元路线的前驱体主要以共沉淀法合成,将镍、钴、锰的硫酸盐配制成可溶性的混合溶液,然后与氨、碱混合,通过控制反应条件形成类球形氢氧化物。 三元前驱体溶液中有机残留物的影响在镍钴锰硫酸盐的提纯过程中,会使用260#溶剂油、P204和P507等萃取剂,这些有机萃取剂残留在盐溶液中,将严重影响前驱体的合成,在沉淀生成过程中导致形貌疏松,无法成球,粒度分布宽化,振实密度下降。马跃飞在《高镍多元前驱体的制备与研究》[1]中评估了类似有机物残留的“油分”指标对形貌的影响,并提出需要控制溶液中油分在5ppm以下。由华友钴业等企业起草的团体标准《T/ATCRR10-2020电池级硫酸钴溶液》、《T/ATCRR11-2020电池级硫酸锰溶液》和《T/ATCRR12-2020电池级硫酸镍溶液》中,对优等品硫酸盐溶液中油分的限值分别为0.0100g/L、0.0100g/L和0.0050g/L。 图2 料液对高镍前驱体形貌影响(沉淀时间36h)(a)油分为9.5ppm(4000倍)(b)油分为2ppm(4000倍)图片引自http://www.cbcu.com.cn/shushuo/jishu/2021031635652.html 三元前驱体溶液中有机物残留分析方案为了控制前驱体溶液中有机物残留,保证前驱体的稳定合成,精确而稳定的监测十分重要。三元前驱体溶液中盐含量非常高,通常在30%以上,因此对测试仪器的耐盐性提出了更高的要求。岛津TOC-L总有机碳分析仪,以680℃催化氧化样品中有机物,通过精确测定生成二氧化碳的量来确定总有机碳含量。TOC-L用于三元前驱体溶液中有机残留物的测试,结果精确度高、稳定性好,配合八通阀在线加酸去除无机碳和自动稀释功能测试,操作简便,分析速度快。 01方法评估在0-20ppm范围内建立标准曲线,试样6次重复测试RSD同时进行了加标实验,回收率为95.8%,具有良好的稳定性和准确度。 表2 样品回收率结果02耐盐性实验鉴于前驱体溶液中盐含量较高,且硫酸钴熔点仅98℃,易熔融,为了评估岛津TOC-L对前驱体溶液分析的耐受性,进行了耐盐性评估实验。对120g/L的硫酸钴(以Co计)溶液仅稀释五倍后进样,在五天内24h不间断连续分析,所得结果如图3。比较再生后的催化剂,表面附着的钴盐再生后已被清洗干净,催化剂效率无影响。图3 120g/L(Co)硫酸钴溶液中TOC重复分析结果 图4 催化剂状态 图5 催化剂表面附着元素情况(使用岛津EDX-7000分析) 结语针对前驱体溶液中有机物残留的影响,使用岛津TOC-L总有机碳分析仪建立了有机物残留量的分析方法,并考察了仪器对高盐样品的耐受性。岛津TOC-L 680℃催化燃烧法操作简便,分析速度快,重现性好,适用于锂电原材料Ni、Co、Mn高盐样品中残留有机物的分析。岛津TOC-L稳定发挥,严格监控,在锂电上下游守护三元前驱体的合成工艺。 参考文献[1]马跃飞 高镍多元前驱体的制备与研究 [J]. 当代化工研究 2018.03 P45-47 撰稿人:刘洁 *本文内容非商业广告,仅供专业人士参考。
  • 化学实验室的废液怎么处理,倒哪里去?
    废液应根据其化学特性选择合适的容器和存放地点,通过密闭容器存放,不可混合贮存,容器标签必须标明废物种类、贮存时间,定期处理。一般废液可通过酸碱中和、混凝沉淀、次氯酸钠氧化处理后排放,有机溶剂废液应根据性质进行回收。废液处理原则对高浓度废酸、废碱液要经中和至中性时排放。对于含少量被测物和其他试剂的高浓度有机溶剂应回收再用。用于回收的高浓度废液应集中储存,以便回收 低浓度的经处理后排放,应根据废液性质确定储存容器和储存条件,不同废液一般不允许混合,避光、远离热源、以免发生不良化学反应。废液储存容器必须贴上标签、写明种类、储存时间等。废液处理方法含汞、铬、铅、镉、砷、酚、氰的废液必须经过处理达标后才能排放,实验室处理方法如下:1、含铜废液的处理实验用过的硫酸铜废液通过加适量铁粉回收金属铜,母液再经沉淀、过滤、稀释排放。2、含汞废液的处理排放标准:废液中汞的最高容许排放浓度为0.05mg/L(以Hg计)。处理方法:①硫化物共沉淀法:先将含汞盐的废液的pH值调至8-10,然后加入过量的Na2S,使其生成HgS沉淀。再加入FeS04(共沉淀剂),与过量的S2-生成FeS沉淀,将悬浮在水中难以沉淀的HgS微粒吸附共沉淀.然后静置、分离,再经离心、过滤,滤液的含汞量可降至0.05mg/L以下。②还原法:用铜屑、铁屑、锌粒、硼氢化钠等作还原剂,可以直接回收金属汞。3、含镉废液的处理①氢氧化物沉淀法:在含镉的废液中投加石灰,调节pH值至10.5以上,充分搅拌后放置,使镉离子变为难溶的Cd(OH)2沉淀.分离沉淀,用双硫腙分光光度法检测滤液中的Cd离子后(降至0.1mg/L以下),将滤液中和至pH值约为7,然后排放。②离子交换法:利用Cd2+离子比水中其它离子与阳离子交换树脂有更强的结合力,优先交换.4、含铅废液的处理在废液中加入消石灰,调节至pH值大于11,使废液中的铅生成Pb(OH)2沉淀.然后加入Al2(S04)3(凝聚剂),将pH值降至7-8,则Pb(OH)2与Al(OH)3共沉淀,分离沉淀,达标后,排放废液。5、含砷废液的处理在含砷废液中加入FeCl3,使Fe/As达到50,然后用消石灰将废液的pH值控制在8-10。利用新生氢氧化物和砷的化合物共沉淀的吸附作用,除去废液中的砷。放置一夜,分离沉淀,达标后,排放废液。6、含酚废液的处理酚属剧毒类细胞原浆毒物,处理方法:低浓度的含酚废液可加入次氯酸钠或漂白粉煮一下,使酚分解为二氧化碳和水。如果是高浓度的含酚废液,可通过醋酸丁酯萃取,再加少量的氢氧化钠溶液反萃取,经调节pH值后进行蒸馏回收.处理后的废液排放。7、综合废液处理用酸、碱调节废液PH为3-4、加入铁粉,搅拌30min,然后用碱调节p H为9左右,继续搅拌10min,加入硫酸铝或碱式氯化铝混凝剂、进行混凝沉淀,上清液可直接排放,沉淀于废渣方式处理。8、含 铬废液的处理含铬废液中加入还原剂,如硫酸亚铁、亚硫酸钠、铁屑,在酸性条件下将六价铬还原成三价铬,然后加入碱,如氢氧化钠、氢氧化钙碳酸钠等,使三价格形成Cr(OH)3沉淀,清液可排放。沉淀干燥后可用焙烧法处理,使其与煤渣一起焙烧,处理后可填埋。9、含 氰废液的处理低浓度废液可加入氢氧化钠调节PH为10以上,再加入高锰酸钾粉末(3%),使氰化物分解。若是高浓度的,可使用碱性氯化法处理,先用碱调至PH为10以上,加入次氯酸钠或漂白粉。经充分叫板,氢化物分解为二氧化碳和氮气,放置24小时排放。含氰化物费也不得乱倒或与酸混合,生成挥发性氰化氢气体有剧毒。10、三氯甲烷的回收将三氯甲烷废液一次用水、浓硫酸(三氯甲烷量的十分之一)、纯水、盐酸羟胺溶液(0.5% AR)洗涤。用重蒸馏水洗涤两次,将洗好的三氯甲烷用污水氯化钙脱水,放置几天,过滤,蒸馏。蒸馏速度为每秒1~2滴,收集沸程为60~62摄氏度的馏出液(标框下),保存于棕色试剂瓶中(不可用橡胶塞)。11、实验室废液处理注意事项1)、尽量回收溶剂,在对实验没有妨碍的情况下,把它反复使用2)、为了方便处理,其收集分类往往分为:a)可燃性物质b)难燃性物质c)含水废液d)固体物质等。3)、可溶于水的物质,容易成为水溶液流失。因此,回收时要加以注意。但是,对甲醇、乙醇及醋酸之类溶剂,能被细菌作用而易于分解。故对这类溶剂的稀溶液经,用大量水稀释后,即可排放。4)、含重金属等的废液,将其有机质分解后,作无机类废液进行处理。12、生物实验室废液处理生物实验室产生的废液污染主要是化学性污染和生物性污染,另外还有放射性污染,化学性污染包括有机物污染和无机物污染。有机物污染主要是有机试剂污染和有机样品污染。在大多数情况下,实验室中的有机试剂并不直接参与发生反应,仅仅起溶剂作用,因此消耗的有机试剂以各种形式排放到周边的环境中,排放总量大致就相当于试剂的消耗量。日复一日,年复一年,排放量十分可观。有机样品污染包括一些剧毒的有机样品,如农药、苯并(α)芘、黄曲霉毒素、亚硝胺等。无机物污染有强酸、强碱的污染,重金属污染,氰化物污染等。其中汞、砷、铅、镉、铬等重金属的毒性不仅强,且有在人体中有蓄积性。生物性污染包括生物废弃物污染和生物细菌毒素污染。生物废弃物有检验实验室的标本,如血液、尿、粪便、痰液和呕吐物等 检验用品,如实验器材、细菌培养基和细菌阳性标本等。生物实验室的通风设备设计不完善或实验过程个人安全保护漏洞,会使生物细菌毒素扩散传播,带来污染,甚至带来严重不良后果。2003年非典流行肆虐后,许多生物实验室加强对SAS病毒的研究,之后报道的非典感染者,多是科研工作者在实验室研究时被感染的。注意事项:废液的浓度超过规定的浓度时,必须进行处理。但处理设施比较齐全时,往往把废液的处理浓度限制放宽。最好先将废液分别处理,如果是贮存后一并处理时,虽然其处理方法将有所不同,但原则上要将可以统一处理的各种化合物收集后进行处理。处理含有络离子、螯合物之类的废液时,如果有干扰成份存在,要把含有这些成份的废液另外收集。以下所列废液不能相互混合:①过氧化物与有机物 ②氰化物、硫化物、次氯酸盐与酸 ③盐酸、氢氟酸等挥发性酸与不挥发性酸 ④浓硫酸、磺酸、羟基酸、聚磷酸等酸类与其它的酸 ⑤铵盐、挥发性胺与碱。要选择没有破损及不会被废液腐蚀的容器进行收集。将所收集的废液的成份及含量,贴上明显的标签,并置于安全的地点保存。特别是毒性大的废液,尤要十分注意。对硫醇、胺等会发出臭味的废液和会发生氰、磷化氢等有毒气体的废液,以及易燃性大的二硫化碳、乙醚之类废液,要把它加以适当的处理,防止泄漏,并应尽快进行处理。含有过氧化物、硝化甘油之类爆炸性物质的废液,要谨慎地操作,并应尽快处理。含有放射性物质的废弃物,用另外的方法收集,并必须严格按照有关的规定,严防泄漏,谨慎地进行处理。小 结实验室每天都会产生很多含有酸、碱、有机等有毒有害废液。如果随意排放或处理必将会对水质和环境产生危害,所以作为实验室的分析人员,小编认为大家有必要强化自身安全意识,不随意倾倒化学废液,减少有毒有害废液对人体、环境的伤害。
  • 中科院用纳米技术成功去除饮用水微污染物
    据新华社电 8月21日从中科院合肥物质研究院了解到,以该院智能所为首席单位的科技部国家重大研究计划项目“应用纳米技术去除饮用水中微污染物的基础研究”取得成果。这套包括新型纳米材料及配套处理程序的技术,对控制饮用水源砷、氟等污染具有重要意义。   目前,这项技术已在我国部分农村地区现场使用,为改善当地农民饮用水质作出了突出贡献。这也是我国第一次在饮用水处理上使用纳米材料及其处理程序。   据了解,常规饮用水处理方式下,部分重金属等微污染物会有明显残留,长期饮用会对人体造成伤害。所以,饮用水中微污染物的处理是饮用水安全领域最富有挑战性的前沿课题。   据负责此项研究的中科院合肥物质研究院智能所刘锦淮研究员介绍,富有活力的纳米材料具备常规材料无法比拟的高吸附效率等优势,为解决这些关键问题提供了新的机遇。   刘锦淮及其合作团队设计合成了一系列同时具有微米级材料的易处理性和纳米级材料高效率、高活性等优点的三维微纳分级结构材料,包括花状镁铝双氢氧化物、花状氧化镁、类棉花糖状氧化铜、铁基金属有机骨架等,对于砷、氟等微污染物具有快速吸附动力和超大吸附容量。同时,科研人员还配套设计了有别于常规自来水处理的应用程序。   科研人员在内蒙古呼和浩特市托克托县伍什家镇兴旺庄村建立了纳米技术去除饮用水中微污染物的示范基地。   在近日举行的现场会上,来自中科院高能物理研究所、合肥物质研究院、国家自然科学基金委等单位的专家,对这项技术的处理效果给予了很高评价。
  • 传统锂电迎来新挑战!新工艺解决锂空气电池关键瓶颈
    随着全球变暖的加剧,减少对化石燃料的依赖并转向可持续的绿色能源已成为当务之急。电动汽车就是这一过程的“关键一步”。然而,电动汽车需要高能量密度的电池才能更好地工作,而传统的锂离子电池在这方面已略显疲态。理论上,锂空气电池比锂离子电池能提供更高的能量密度。然而,在实际应用之前,这些电池需要提高能效,提高循环特性,降低氧化还原反应充放电所需的过电位。为了解决这些问题,需要一种合适的催化剂来加速电池内部的析氧反应(OER)。OER是一种极其重要的化学反应,涉及到水的分解,可以提高电池的性能。稀有和昂贵的贵金属氧化物如钌氧化物(RuO2)和铱氧化物(IrO2),通常被用作加速金属-空气电池OER的催化剂。更便宜的催化材料包括过渡金属,如钙钛矿型氧化物和氢氧化物,它们对OER具有高活性。CoSn(OH)6(CSO)就是一种钙钛矿型氢氧化物,是一种很有前途的OER催化剂。然而,目前合成CSO的方法十分缓慢——需要超过12小时,而且还需要多个步骤。日本芝浦工业大学(Shibaura Institute of Technology)最近在这方面取得了突破。他们仅用了一个步骤、且在20分钟内就合成了CSO。据悉,该团队使用了溶液等离子体工艺,这是一种在非热反应领域合成材料的尖端方法。最新研究成果已于近期发表在了《可持续能源与燃料》杂志上。该团队使用X射线衍射仪显示,通过将PH值调整到大于10到12的值,可以从前体溶液合成高度结晶的CSO。通过透射电子显微镜,他们进一步注意到CSO晶体呈立方体形状,尺寸约为100-300纳米。此外,该团队还使用电化学方法研究了CSO作为OER催化剂的特性。他们观察到,在电流密度为10 mA/cm2时,合成的CSO具有350 mV的过电位。在pH12下合成的CSO在所有合成样品中具有最好的催化性能。而且,根据研究人员的说法,该样品的催化性能甚至比商业级的RuO2还要好。总的来说,上述研究首次描述了一种简单高效的合成CSO的方法,为开发新一代锂空气电池铺平了道路。“合成的CSO对OER表现出优异的电催化性能。我们希望钙钛矿型CSO材料将应用于能源设备,并将有助于电动汽车的提高能效,”研究人员补充说。
  • 中科院应用纳米技术去除饮用水微污染物取得成效
    记者21日从中科院合肥物质研究院了解到,以该院智能所为首席单位的科技部国家重大研究计划项目“应用纳米技术去除饮用水中微污染物的基础研究”取得成果,这套包括新型纳米材料及配套处理程序的技术对控制饮用水源砷、氟等污染具有重要意义。   目前这项技术已在我国部分农村地区现场使用,为改善当地农民饮用水质作出了突出贡献。这也是我国第一次在饮用水处理上使用纳米材料及其处理程序。   据了解,常规饮用水处理方式下,部分重金属等微污染物会有明显残留,长期饮用会对人体造成伤害。所以,饮用水中微污染物的处理是饮用水安全领域最富有挑战性的前沿课题。   负责此项研究的中科院合肥物质研究院智能所刘锦淮研究员介绍,富有活力的纳米材料具备常规材料无法比拟的高吸附效率等优势,为解决这些关键问题提供了新的机遇。   刘锦淮及其合作团队设计合成了一系列同时具有微米级材料的易处理性和纳米级材料高效率、高活性等优点的三维微纳分级结构材料,包括花状镁铝双氢氧化物、花状氧化镁、类棉花糖状氧化铜、铁基金属有机骨架等,对于砷、氟等微污染物具有快速吸附动力和超大吸附容量。同时,科研人员还配套设计了有别于常规自来水处理的应用程序。   科研人员在内蒙古呼和浩特市托克托县伍什家镇兴旺庄村建立了纳米技术去除饮用水中微污染物的示范基地。   兴旺庄村的饮用水主要来自于地下水,水质非常恶劣,砷超出国家标准(10ppb)10倍以上,氟离子含量接近国标限值(1.0ppm)的3倍.另外,水呈淡黄色并有微臭味,一些具危害性的有机物含量非常高。   经过近一年努力,科研人员在兴旺庄村实现了对饮用水中的砷、氟以及有机物的有效去除,经过处理的饮用水已经基本达到国家生活饮用水卫生标准(GB5749-2006)。当地各族老百姓终于能喝上安全的饮用水。   在近日举行的现场会上,来自中科院高能物理研究所、合肥物质研究院、国家自然科学基金委等单位的专家对这项技术的处理效果给予很高评价。
  • 污染排放控制增氨氮和氮氧化物两项指标
    环保部污染物排放总量控制司司长赵华林表示,“十二五”期间,除了“十一五”期间已经实施的二氧化硫(SO2)和化学需氧量(COD)外,氨氮(NH3-N)和氮氧化物(NOX)也将纳入总量控制。   赵华林日前在“2010(第八届)城市水业战略论坛”上表示,“十二五”期间会对氨氮和氮氧化物进行总量控制,同时也会将重金属、可吸入物等减少污染的责任放在地方政府。   他说,现在空气中含有的氨氮已经超过了二氧化硫,成为空气中的主要污染物,“现在的酸雨已由硫酸型酸雨转向硝酸型酸雨,”而水中的氮氧化物也使得水体酸化和富营养化,出现了大量的蓝藻问题。   “最近重金属污染也出了很多事”,赵华林表示,会根据不同地区在重金属、磷等问题上要求地方政府有总量控制。   链接   氮氧化物   包括多种化合物,如一氧化二氮、一氧化氮、二氧化氮等。氮氧化物都具有不同程度的毒性,可刺激肺部,使人较难抵抗感冒之类的呼吸系统疾病。以一氧化氮和二氧化氮为主的氮氧化物是形成光化学烟雾和酸雨的一个重要原因,氮氧化物与空气中的水反应生成的硝酸和亚硝酸是酸雨的成分。   氨氮   是水体中的重要耗氧污染物,氨氮对自然环境和人体有很大的危害,如水源中氨氮浓度过高,将导致自来水中加氯量增加,从而使自来水中有机氯量随之相应增加,对人体健康产生不利影响。氨氮也可导致水富营养化现象产生,是水体中的主要耗氧污染物,对鱼类及某些水生生物有毒害。
  • 兰州化物所高熵氧化物红外辐射性能研究获进展
    高温红外辐射涂层作为高效节能新材料,通过热辐射方式提高传热效率,在火力发电、钢铁、电力、石油化工、冶金和焦化行业颇具应用前景。近年来,高熵材料尤其是高熵氧化物具有可调控的主元组分和独特的晶体结构,使其在功能材料研究与应用领域备受关注。然而,鲜有关于高熵材料在高温红外辐射方面的研究报道。中国科学院兰州化学物理研究所清洁能源化学与材料实验室低碳能源材料组高祥虎研究员团队在新型高温红外辐射材料的设计与制备方面开展了系统研究。针对传统尖晶石氧化物在短波长红外区域发射率低、热稳定性不佳的问题,研究提出了利用高熵概念进行材料性能优化设计。科研人员通过简便、低成本的固相合成反应,制备出(CuMnFeCr)3O4尖晶石型高熵氧化物红外辐射材料,重点研究了高熵多主元设计对材料红外辐射性能和高温热稳定性的影响。结果表明,多主元设计可有效提高0.78-2.5μm和2.5-16μm波段的红外发射率,且高熵效应利于长效的化学热稳定性。近日,该团队通过理论与实验相结合的方式,进一步阐明了高熵氧化物的微观结构、元素组分、电子分布与红外辐射性能的构效关系,揭示了高熵工程对材料红外辐射性能提升的内在机制。结果表明,高熵策略产生的轨道杂化可有效增强电子跃迁几率,通过变价金属元素引入大量氧空位,从而减小材料的带隙(图1)。同时,晶格畸变效应降低了晶格振动的对称性。因此,(MnCrFeCoCu)3O4高熵尖晶石氧化物具有优异的近黑体辐射能力。经1300°C退火热处理100h后,材料仍保持单相尖晶石结构,红外辐射衰减率仅为2.1%(图2)。此外,研究人员利用冷喷涂技术将高熵氧化物红外辐射材料沉积在不锈钢基底。该红外辐射涂层具有高的辐射热效率和显著的热稳定性,在0.78-16μm波段红外发射率可达0.943。这种新型高熵红外辐射材料在高温工业热辐射领域颇具应用潜力。相关研究成果以High-Entropy Engineering for Broadband Infrared Radiation为题,发表在《先进功能材料》(Advanced Functional Materials)上。研究工作得到中国科学院战略性先导科技专项(A类)-煤炭清洁燃烧与低碳利用专项、中国科学院洁净能源创新研究院-榆林学院联合基金、兰州化物所“十四五”规划重大突破项目等的支持。图1. 高熵氧化物红外辐射材料宽波段高发射率机理研究图2. 高熵氧化物红外辐射材料宽波段发射率及高温热稳定性评估图3. 高熵氧化物红外辐射材料辐射传热性能验证
  • 明星产品——即插即用型氮氧化物检测光源模块
    近年来,我国环境污染问题日趋严重,新出现的有机污染物的危害不断加深,环境风险也在不断加大,已经引起了政府的高度重视。德国贺利氏特种光源作为行业领导者,除了可用于测量挥发性有机物(VOCs)和其他气体的光离子化灯,还最新研制了用于烟气和汽车尾气中氮氧化物在线监测仪中的NOX光源模块。氮氧化物是啥?氮氧化物(NOX)是一氧化氮(NO)和二氧化氮(NO2)的总称,它们在大气中会形成各种有毒物质,也是对流层中臭氧形成的元凶。氮氧化物的来源主要是人为的:燃烧用于能源发电的化石燃料,比如燃煤电厂、燃油电站、垃圾焚烧炉某些化学工艺和用于各种水陆空交通工具的石油燃料 传统检测NOX的方法有化学发光法和电化学法,但是这些方法的缺点是需要将NO2转化为NO再进行测量。NOX也可以用红外法检测,但是样品中的水和二氧化碳会产生干扰。 而紫外吸收法则是更加精确的方法,而且在紫外区域测量可以避免水和二氧化碳的干扰。然而,过去基于紫外共振法的系统在调制灯的时候会有问题,也就是说灯的寿命和能量不能发挥到最优。 充入氮气和氧气的无极放电NOX模块则能够辐射200-600nm的光谱,200nm以上可用于检测NO,NO2,H2S和SO2等等。 基于此,贺利氏特种光源新推出了用于烟气和汽车尾气中氮氧化物在线监测仪中的即插即用型NOX检测模块,模块包含预调制好的紫外光源,仪器厂商可以很容易的将其整合到仪器中。其具有尺寸小巧,即插即用,精确度高,直接测量NO和NO2等特点,受到广大仪器厂商的好评。 明星产品 即插即用型氮氧化物检测光源模块贺利氏氮氧化物检测光源模块整合了调制好的无极放电灯及电源。 为啥是明星产品? 1、尺寸小巧 2、无需调制,即插即用,12V直流供电 3、易于整合和维护更换,减少维护费用 4、精确度高,直接测量NO和NO2 5、没有H2O,CO和CO2的干扰 6、寿命可达一年 7、使用时无耗材消耗年来,我国环境污染问题日趋严重,新出现的有机污染物的危 德国贺利氏特种光源作为行业的领导者,始终致力于在线监测仪器用光源的开发。 欢迎大家莅临环博会E3.3521展位,贺利氏的应用专家期待你与您深入交流。展会现场,更有抽奖活动和技术研讨会精彩纷呈,跟贺利氏光博士一起开启绿色环保之旅吧!
  • 蔚县环保局108.90万元采购氮氧化物分析,硫氮分析仪
    html, body { -webkit-user-select: text } * { padding: 0 margin: 0 } .web-box { width: 100% text-align: center } .wenshang { margin: 0 auto width: 80% text-align: center padding: 20px 10px 0 10px } .wenshang h2 { display: block color: #900 text-align: center padding-bottom: 10px border-bottom: 1px dashed #ccc font-size: 16px } .site a { text-decoration: none } .content-box { text-align: left margin: 0 auto width: 80% margin-top: 25px text-indent: 2em font-size: 14px line-height: 25px } .biaoge { margin: 0 auto /* width: 643px */ width: 100% margin-top: 25px } .table_content { border-top: 1px solid #e0e0e0 border-left: 1px solid #e0e0e0 font-family: Arial /* width: 643px */ width: 100% margin-top: 10px margin-left: 15px } .table_content tr td { line-height: 29px } .table_content .bg { background-color: #f6f6f6 } .table_content tr td { border-right: 1px solid #e0e0e0 border-bottom: 1px solid #e0e0e0 } .table-left { text-align: left padding-left: 20px } 基本信息 关键内容: 氮氧化物分析,硫氮分析仪 开标时间: 2021-09-22 08:30 采购金额: 108.90万元 采购单位: 蔚县环保局 采购联系人: 王建明 采购联系方式: 立即查看 招标代理机构: 蔚县恒鹏项目管理有限公司 代理联系人: 贾志福 代理联系方式: 立即查看 详细信息 更换县职教中心省控空气自动站监测设备及配套设施项目公开招标公告 河北省-张家口市-蔚县 状态:公告 更新时间:2021-08-27 V2020 更换县职教中心省控空气自动站监测设备及配套设施项目公开招标公告 发布时间: 2021-08-27 采购项目编号:HPXMGL-2021-053 需要落实的政府采购政策: 采购人名称:蔚县环保局 采购人地址 :蔚县蔚州镇康居南大街 采购人联系方式:王建明 0313-7012749 采购代理机构地址 :张家口市蔚县蔚州镇前进东路金海居第7幢2单元202号 采购代理机构联系方式 :贾志福 0313-7018979 采购预算金额:1089000.00 采购用途 : 更换县职教中心省控空气自动站监测设备及配套设施采购,包括二氧化硫分析仪、氮氧化物分析仪、PM2.5分析仪等。 项目实施地点 : 投标人的资格要求 :无 招标文件发售地点 :前往E招冀成电子招标投标交易平台/www.hebeibidding.com自行下载招标文件及相关资料,并在系统中及时查看有无澄清及变更。 招标文件发售方式 :其它 招标文件售价 :0 获取文件开始时间:2021-08-30 获取文件结束时间:2021-09-03 时刻说明:9:00-12:00-12:00-17:00 投标截止时间:2021-09-22 08:30 开标时间:2021-09-22 08:30 开标地点:蔚县公共资源交易中心一楼开标室(地址:蔚县正和路中段路南) 供货时间:签订合同后2个月内完成供货并通过验收 简要技术要求/采购项目的性质: 传真电话: 受理质疑电话: 备注:1、本次招标不采用其他形式的招标资料发送。本项目采取电子方式参与投标,拟投标的单位,应在“E招冀成电子招标投标交易平台/www.hebeibidding.com”上获取招标文件截止时间前在完成招标文件的获取,未及时获取的,造成的后果由供应商自行承担 2、招标文件等资料发布后,即视为已送达所有潜在供应商。潜在供应商未从E招冀成电子招标投标交易平台下载相关资料,或未获取到完整资料,导致投标被否决的,自行承担责任。请及时关注网站本项目的撤销、变更等公告。 3、发布媒体:河北省政府采购网、河北省公共资源交易平台、E招冀成电子招标投标交易平台/www.hebeibidding.com。 本公告发布媒体: 项目概况 更换县职教中心省控空气自动站监测设备及配套设施项目招标项目的潜在投标人应在 前往E招冀成电子招标投标交易平台/www.hebeibidding.com自行下载招标文件及相关资料,并在系统中及时查看有无澄清及变更。获取招标文件,并于 2021年09月22日08点30分2021年09月22日08点30分 (北京时间)前递交投标文件。 更换县职教中心省控空气自动站监测设备及配套设施项目公开招标公告 发布时间: 2021-08-27 一、项目基本情况 项目编号: HPXMGL-2021-053 项目名称: 更换县职教中心省控空气自动站监测设备及配套设施项目 采购方式: 公开招标 预算金额: 1089000.00 最高限价: 909500.00 采购需求: 更换县职教中心省控空气自动站监测设备及配套设施采购,包括二氧化硫分析仪、氮氧化物分析仪、PM2.5分析仪等。 合同履行期限: 签订合同后2个月内完成供货并通过验收 本项目(是/否)接受联合体投标: 0 二、申请人的资格要求 1.满足《中华人民共和国政府采购法》第二十二条规定;2.落实政府采购政策需满足的资格要求: 无 3.本项目的特定资格要求: 无 三、获取招标文件 时间: 2021年08月30日至 2021年09月03日, 9:00-12:00-12:00-17:00(北京时间,法定节假日除外) 地点: 前往E招冀成电子招标投标交易平台/www.hebeibidding.com自行下载招标文件及相关资料,并在系统中及时查看有无澄清及变更。 方式: 其它 售价: 0 四、提交投标文件截止时间、开标时间和地点 2021年09月22日08点30分(北京时间) 地点: 蔚县公共资源交易中心一楼开标室(地址:蔚县正和路中段路南) 四、响应文件提交 截止时间: 五、开启 时间: 2021年09月22日08点30分 地点: 蔚县公共资源交易中心一楼开标室(地址:蔚县正和路中段路南) 五、公告期限 自本公告发布之日起5个工作日。 六、公告期限 自本公告发布之日起3个工作日。 六、其他补充事宜 七、其他补充事宜 1、本次招标不采用其他形式的招标资料发送。本项目采取电子方式参与投标,拟投标的单位,应在“E招冀成电子招标投标交易平台/www.hebeibidding.com”上获取招标文件截止时间前在完成招标文件的获取,未及时获取的,造成的后果由供应商自行承担 2、招标文件等资料发布后,即视为已送达所有潜在供应商。潜在供应商未从E招冀成电子招标投标交易平台下载相关资料,或未获取到完整资料,导致投标被否决的,自行承担责任。请及时关注网站本项目的撤销、变更等公告。 3、发布媒体:河北省政府采购网、河北省公共资源交易平台、E招冀成电子招标投标交易平台/www.hebeibidding.com。 七、对本次招标提出询问,请按以下方式联系。 八、对本次招标提出询问,请按以下方式联系。 1.采购人信息 名 称: 蔚县环保局 地址: 蔚县蔚州镇康居南大街 联系方式: 王建明 0313-7012749 2.采购代理机构信息 名 称: 蔚县恒鹏项目管理有限公司 地 址: 张家口市蔚县蔚州镇前进东路金海居第7幢2单元202号 联系方式: 贾志福 0313-7018979 3.项目联系方式 项目联系人: 贾志福 电 话: 0313-7018979 × 扫码打开掌上仪信通App 查看联系方式 $('.clickModel').click(function () { $('.modelDiv').show() }) $('.closeModel').click(function () { $('.modelDiv').hide() }) 基本信息 关键内容:氮氧化物分析,硫氮分析仪 开标时间:2021-09-22 08:30 预算金额:108.90万元 采购单位:蔚县环保局 采购联系人:点击查看 采购联系方式:点击查看 招标代理机构:蔚县恒鹏项目管理有限公司 代理联系人:点击查看代理联系方式:点击查看详细信息 更换县职教中心省控空气自动站监测设备及配套设施项目公开招标公告 河北省-张家口市-蔚县 状态:公告 更新时间: 2021-08-27 V2020 更换县职教中心省控空气自动站监测设备及配套设施项目公开招标公告发布时间: 2021-08-27 采购项目编号:HPXMGL-2021-053 需要落实的政府采购政策: 采购人名称:蔚县环保局 采购人地址 :蔚县蔚州镇康居南大街 采购人联系方式:王建明 0313-7012749 采购代理机构地址 :张家口市蔚县蔚州镇前进东路金海居第7幢2单元202号 采购代理机构联系方式 :贾志福 0313-7018979 采购预算金额:1089000.00 采购用途 : 更换县职教中心省控空气自动站监测设备及配套设施采购,包括二氧化硫分析仪、氮氧化物分析仪、PM2.5分析仪等。 项目实施地点 : 投标人的资格要求 :无 招标文件发售地点 :前往E招冀成电子招标投标交易平台/www.hebeibidding.com自行下载招标文件及相关资料,并在系统中及时查看有无澄清及变更。 招标文件发售方式 :其它 招标文件售价 :0 获取文件开始时间:2021-08-30 获取文件结束时间:2021-09-03 时刻说明:9:00-12:00-12:00-17:00 投标截止时间:2021-09-22 08:30 开标时间:2021-09-22 08:30 开标地点:蔚县公共资源交易中心一楼开标室(地址:蔚县正和路中段路南) 供货时间:签订合同后2个月内完成供货并通过验收 简要技术要求/采购项目的性质: 传真电话: 受理质疑电话: 备注:1、本次招标不采用其他形式的招标资料发送。本项目采取电子方式参与投标,拟投标的单位,应在“E招冀成电子招标投标交易平台/www.hebeibidding.com”上获取招标文件截止时间前在完成招标文件的获取,未及时获取的,造成的后果由供应商自行承担 2、招标文件等资料发布后,即视为已送达所有潜在供应商。潜在供应商未从E招冀成电子招标投标交易平台下载相关资料,或未获取到完整资料,导致投标被否决的,自行承担责任。请及时关注网站本项目的撤销、变更等公告。 3、发布媒体:河北省政府采购网、河北省公共资源交易平台、E招冀成电子招标投标交易平台/www.hebeibidding.com。 本公告发布媒体: 项目概况 更换县职教中心省控空气自动站监测设备及配套设施项目招标项目的潜在投标人应在 前往E招冀成电子招标投标交易平台/www.hebeibidding.com自行下载招标文件及相关资料,并在系统中及时查看有无澄清及变更。获取招标文件,并于 2021年09月22日08点30分2021年09月22日08点30分 (北京时间)前递交投标文件。 更换县职教中心省控空气自动站监测设备及配套设施项目公开招标公告 发布时间: 2021-08-27 一、项目基本情况 项目编号: HPXMGL-2021-053 项目名称: 更换县职教中心省控空气自动站监测设备及配套设施项目 采购方式: 公开招标 预算金额: 1089000.00 最高限价: 909500.00 采购需求: 更换县职教中心省控空气自动站监测设备及配套设施采购,包括二氧化硫分析仪、氮氧化物分析仪、PM2.5分析仪等。 合同履行期限: 签订合同后2个月内完成供货并通过验收 本项目(是/否)接受联合体投标: 0 二、申请人的资格要求 1.满足《中华人民共和国政府采购法》第二十二条规定; 2.落实政府采购政策需满足的资格要求: 无 3.本项目的特定资格要求: 无 三、获取招标文件 时间: 2021年08月30日至 2021年09月03日, 9:00-12:00-12:00-17:00(北京时间,法定节假日除外) 地点: 前往E招冀成电子招标投标交易平台/www.hebeibidding.com自行下载招标文件及相关资料,并在系统中及时查看有无澄清及变更。 方式: 其它 售价: 0 四、提交投标文件截止时间、开标时间和地点 2021年09月22日08点30分(北京时间) 地点: 蔚县公共资源交易中心一楼开标室(地址:蔚县正和路中段路南) 四、响应文件提交 截止时间: 五、开启 时间: 2021年09月22日08点30分 地点: 蔚县公共资源交易中心一楼开标室(地址:蔚县正和路中段路南) 五、公告期限 自本公告发布之日起5个工作日。 六、公告期限 自本公告发布之日起3个工作日。 六、其他补充事宜 七、其他补充事宜 1、本次招标不采用其他形式的招标资料发送。本项目采取电子方式参与投标,拟投标的单位,应在“E招冀成电子招标投标交易平台/www.hebeibidding.com”上获取招标文件截止时间前在完成招标文件的获取,未及时获取的,造成的后果由供应商自行承担 2、招标文件等资料发布后,即视为已送达所有潜在供应商。潜在供应商未从E招冀成电子招标投标交易平台下载相关资料,或未获取到完整资料,导致投标被否决的,自行承担责任。请及时关注网站本项目的撤销、变更等公告。 3、发布媒体:河北省政府采购网、河北省公共资源交易平台、E招冀成电子招标投标交易平台/www.hebeibidding.com。 七、对本次招标提出询问,请按以下方式联系。 八、对本次招标提出询问,请按以下方式联系。 1.采购人信息 名 称: 蔚县环保局 地址: 蔚县蔚州镇康居南大街 联系方式: 王建明 0313-7012749 2.采购代理机构信息 名 称: 蔚县恒鹏项目管理有限公司 地 址: 张家口市蔚县蔚州镇前进东路金海居第7幢2单元202号 联系方式: 贾志福 0313-7018979 3.项目联系方式 项目联系人: 贾志福 电 话: 0313-7018979
  • 新生实验误操作致上海有机所发生火灾
    今天中午有网友爆料,零陵路上的中科院上海有机化学研究所实验室发生一起火灾。从现场图片看,大楼有浓烟。据消防部门消息大火于11点左右被扑灭。  从消防部门了解到,起火原因系新生做金属钠试验,误操作引发火灾,后经过黄沙覆盖和废液清洗等方法将初期火灾扑灭,东安消防队到场时火已被灭。  金属钠的物化性质和危险特性  金属钠Na 23.0:本品属于GB4.3类遇湿易燃物品格  物化性质 银白色有光泽的极活泼轻金属。无臭。在低温(-20℃)时性质脆硬,常温时质软如蜡,容易用刀切开。呈棒状、丸粒、颗粒或块状。暴露在空气中即生成灰白色氧化膜、覆盖在金属表面。相对密度0.968。熔点97.8℃。沸点881.4℃。蒸汽压133.3Pa(400℃)。100℃时开始蒸发、蒸汽可侵蚀玻璃。易与氧反应、产生黄色的火焰而燃烧。溶于金属汞而形成钠汞齐。遇水剧烈反应、生成氢氧化钠并放出氢气。不溶于苯类和煤油。  危险特性 高度反应性的易燃,易爆物品。自燃点115℃(干空气中)。遇水或潮气猛烈反应生成氢氧化钠并放出氢气,大量放热,引起着火或爆炸。金属钠暴露在空气中或氧气中能自行着火并爆炸使熔融物飞溅。与卤素、磷、许多氧化物、氧化剂和酸类剧烈反应。金属钠的毒性是基于它有溶解蛋白质的作用,而对局部有刺激和腐蚀作用。吸入钠的蒸汽或烟雾和钠发火时产生的氧化钠烟雾等对上呼吸道粘膜有强烈的刺激和腐蚀作用,而引起化学性上呼吸道炎。潮湿的皮肤和粘膜接触则可引起严重的腐蚀性灼伤。  应急措施 消防方法:不可用水、卤代烃(如12111灭火剂)、碳酸氢钠、碳酸氢钾作用灭火剂。而应使用干燥氯化钠粉末、干燥、石墨粉、碳酸钠干粉、干砂等灭火。急救:接触金属钠能吸湿放热引起灼伤。钠与水反应生成氢氧化钠、具有强腐蚀性、使眼睛和皮肤造成灼伤。眼睛刺激用大量水冲洗并就医诊治。皮肤接触应擦去附着金属、用大量水冲洗、灼伤须就医诊治。误服立即漱口、并送医院诊治。  储运须知 包装标志:遇湿易燃物品。包装方法:(Ⅱ)类。1)浸没在装有闪点在50℃以上的矿物油(煤油等)或液体石蜡的坚固金属容器内、油面高出金属钠5~10cm,严密封口再装入水箱内 2)装入盛有闪点在50℃以上矿物油(煤油等)或固体石蜡的玻璃瓶内。或装入盛有矿物油或固体石蜡的金属容器、物品必须完全浸没,严封后装入木箱,金属钠不可浸入含有水份的矿物油中、同时也不可浸入卤代烃中。储运条件:储存于阴凉、通风、干燥的仓间内。避免高温,严禁屋顶漏水。防止容器破损。库房内应备有矿物油罐,必要时可将渗漏听浸入罐内,不可接触酸、水。两天不可搬运,并与酸类、卤素、硅酸盐、硫酸盐、硝酸盐、磷酸盐及重金属氧化物或氢氧化物和含水物品隔离储运。  辨识事故类型:火灾、爆炸、腐蚀、灼伤。
  • 新增紫外法 固定污染源废气氮氧化物/二氧化硫的测定标准征求意见
    p   近日,生态环境部印发《固定污染源废气 氮氧化物的测定 紫外吸收法(征求意见稿)》和《固定污染源废气 二氧化硫的测定 紫外吸收法(征求意见稿)》两项国家环境保护标准。两项标准均为首次发布。 /p p   对于两项标准中提到的氮氧化物以及二氧化硫的危害,我们不得不知。 /p p   随着工业及交通运输等事业的迅速发展,特别是煤和石油的大量使用,将产生的大量有害物质如二氧化硫、氮氧化物、一氧化碳等排放到大气中,当其浓度超过环境所能允许的极限并持续一定时间后,就会改变大气特别是空气的正常组成,破坏自然的物理、化学和生态平衡体系,从而危害人们的生活、工作和健康。 /p p   在自然界中含硫物质及硫元素在燃烧过程中都能产生二氧化硫(SO sub 2 /sub )形成大气污染。但与自然源相比,造成大气污染的硫氧化物,主要来自有色金属冶炼(例如:铜、锌、铅的粗炼等)和硫酸制造以及化石燃料(煤、石油等)燃烧过程等人为排放。SO sub 2 /sub 对人及植物的危害很大:如SO sub 2 /sub 进入血液能破坏酶的活动,损害肝脏;当大气中SO sub 2 /sub 的浓度为400μmol/mol时会使人呼吸困难,机体免疫受到明显抑制等。其危害程度与SO sub 2 /sub 的浓度和暴露时间有关。 /p p   作为公认的三种主要的大气污染物(即烟尘、二氧化硫、氮氧化物)中的两种,氮氧化物以及二氧化硫受到人们的高度关注,其测定方法也尤为重要。 /p p    img src=" /admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_pdf.gif" style=" vertical-align: middle margin-right: 2px " / a href=" https://img1.17img.cn/17img/files/201909/attachment/362996a1-700a-4877-8dff-8e4d8c50ec04.pdf" target=" _self" title=" 2.pdf" textvalue=" 固定污染源废气 氮氧化物的测定 紫外吸收法(征求意见稿).pdf" style=" text-decoration: underline color: rgb(0, 112, 192) " span style=" color: rgb(0, 112, 192) " 固定污染源废气 氮氧化物的测定 紫外吸收法(征求意见稿).pdf /span /a /p p span style=" color: rgb(0, 112, 192) "    /span img src=" /admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_pdf.gif" style=" vertical-align: middle margin-right: 2px " / a href=" https://img1.17img.cn/17img/files/201909/attachment/b702ec86-7a68-4506-8bb7-e733479c70bd.pdf" target=" _self" title=" 3.pdf" textvalue=" 《固定污染源废气 氮氧化物的测定 紫外吸收法(征求意见稿)》编制说明.pdf" style=" text-decoration: underline color: rgb(0, 112, 192) " span style=" color: rgb(0, 112, 192) " 《固定污染源废气 氮氧化物的测定 紫外吸收法(征求意见稿)》编制说明.pdf /span /a /p p   本标准为首次发布。 /p p   本标准规定了测定固定污染源废气中氮氧化物的紫外吸收法。 /p p    strong img src=" /admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_pdf.gif" style=" vertical-align: middle margin-right: 2px " / /strong a href=" https://img1.17img.cn/17img/files/201909/attachment/bfd6ebec-432b-4d6d-91ba-e76376bdbc12.pdf" target=" _self" title=" 4.pdf" textvalue=" 固定污染源废气 二氧化硫的测定 紫外吸收法(征求意见稿).pdf" style=" text-decoration: underline color: rgb(0, 112, 192) " span style=" color: rgb(0, 112, 192) " 固定污染源废气 二氧化硫的测定 紫外吸收法(征求意见稿).pdf /span /a /p p span style=" color: rgb(0, 112, 192) "    /span img src=" /admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_pdf.gif" style=" vertical-align: middle margin-right: 2px " / a href=" https://img1.17img.cn/17img/files/201909/attachment/f78ec9f0-393a-47f2-94f0-bc6067f9e48a.pdf" target=" _self" title=" 5.pdf" textvalue=" 《固定污染源废气 二氧化硫的测定 紫外吸收法(征求意见稿)》编制说明.pdf" style=" text-decoration: underline color: rgb(0, 112, 192) " span style=" color: rgb(0, 112, 192) " 《固定污染源废气 二氧化硫的测定 紫外吸收法(征求意见稿)》编制说明.pdf /span /a /p p   本标准为首次发布。 /p p   本标准规定了测定固定污染源废气中二氧化硫的紫外吸收法。 /p p   与现行有效的定电位电解和非分散红外吸收方法相比,紫外吸收法具有预热时间快、分析精度高、抗干扰能力强等优势,对我国固定污染源中二氧化硫测定的技术体系是一个良好的补充。 /p p style=" text-align: center "    img src=" https://img1.17img.cn/17img/images/201909/uepic/aa06461c-44b7-4514-958f-41f82d8f7d68.jpg" title=" 绿· 仪社.jpg" alt=" 绿· 仪社.jpg" style=" text-align: center max-width: 100% max-height: 100% " / /p p style=" text-align: center " span style=" font-family: 楷体, 楷体_GB2312, SimKai " 扫二维码加“绿· 仪社”为好友 了解更过环境监测精彩资讯! /span br/ /p
  • 北京兴东达泰公司完成氮氧化物分析仪清华大学服务
    我公司日前已顺利完成清华大学尾气转化实验监测氮氧化物用分析仪的安装服务,高浓度氮氧化物监测中普遍存在因样品气的酸性,粒性杂质和含水问题,造成氮氧化物分析仪使用寿命严重缩短的问题,我公司使用自有的独特技术,从根本上解决了这个问题. 作为国际知名品牌,我公司的氮氧化物分析仪,碳氢分析仪,一氧化碳分析仪,二氧化碳分析仪,顺磁氧分析仪在世界范围内已经有13000多台的使用和近三十年的使用历史,广泛应用在石油化工,科研,尾气排放分析,脱硝,烟气高精度分析等领域,对于恶劣样品环境具有极好的表现.在中国已经被用户十年以上使用验证的历史.
  • 《在用柴油车颗粒物与氮氧化物排放污染协同治理技术指南》印发
    p   近日,中国环境保护协会印发了《在用柴油车颗粒物与氮氧化物排放污染协同治理技术指南》。据介绍,该指南规定了在用柴油车颗粒物与氮氧化物排放污染协同治理中车辆技术条件、排放污染治理组合后处理装置技术性能、与车辆匹配安装、治理后验收和维护保养等内容,可作为车辆主管部门、车辆所有者、维修单位、后处理装置生产企业、第三方检测机构等相关方,开展在用柴油车颗粒物和氮氧化物排放污染治理工作的技术参考。 /p p   《在用柴油车颗粒物与氮氧化物排放污染协同治理技术指南》适用于安装有电控燃油喷射系统、最大总质量大于3.5吨的在用柴油车颗粒物与氮氧化物排放污染协同治理。 /p p   详情如下: /p p style=" text-align: center "    strong 中环协〔2020〕22号 /strong /p p style=" text-align: center " strong   关于印发《在用柴油车颗粒物与氮氧化物排放污染协同治理技术指南》的通知 /strong /p p   各有关单位: /p p   为提供在用柴油车颗粒物与氮氧化物排放污染治理技术参考,我会组织制定了《在用柴油车颗粒物与氮氧化物排放污染协同治理技术指南》,现予印发。本指南基于当前柴油车排放污染控制技术发展和应用现状制定,中环协〔2017〕175号文发布的《在用柴油车排放污染治理技术指南》自本指南发布之日起废止。 /p p   附件:《在用柴油车颗粒物与氮氧化物排放污染协同治理技术指南》 /p p style=" text-align: right "   中国环境保护产业协会 /p p style=" text-align: right "   2020年3月31日 /p p    /p p style=" line-height: 16px "    img style=" vertical-align: middle margin-right: 2px " src=" /admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_doc.gif" / a href=" https://www.instrument.com.cn/download/shtml/948130.shtml" target=" _self" title=" 1-3在用柴油车颗粒物与氮氧化物排放污染协同治理技术指南.docx" textvalue=" 1-3在用柴油车颗粒物与氮氧化物排放污染协同治理技术指南.docx" style=" color: rgb(0, 112, 192) text-decoration: underline " span style=" color: rgb(0, 112, 192) " 1-3在用柴油车颗粒物与氮氧化物排放污染协同治理技术指南.docx /span /a /p
  • 贺乐氏科技中标北京工业大学氮氧化物(NOx)分析仪采购项目
    北京工业大学14科技成果转化—提升计划—低温SCR脱硝催化剂及工程技术开发政府采购项目中标公告基本信息:所属地区:北京所属行业:其他项目名称:北京工业大学14科技成果转化—提升计划—低温SCR脱硝催化剂及工程技术开发政府采购项目中标公告招标编号:BJJQ-2014-415-06招标机构:北京汇诚金桥国际招标有限公司中标结果正文:项目名称:北京工业大学14科技成果转化—提升计划—低温SCR脱硝催化剂及工程技术开发政府采购项目采购人名称:北京工业大学采购人地址:北京市朝阳区平乐园100号采购人联系方式:67392339采购代理机构全称:北京汇诚金桥国际招标有限公司采购代理机构地址:北京市朝阳区建外大街永安东里甲3号通用国际中心B座五层采购代理机构联系方式:65915024、65910924-824/823采购数量:氮氧化物(NOx)分析仪1套(详见招标文件)采购用途:专用教学设备采购(详见招标文件)简要技术要求:为北京工业大学提供优质的产品及服务,详见招标文件第四章货物需求一览表及技术规格。合同履行期:详见合同招标公告日期:2014年10月11日定标日期:2014年11月04日(招标文件编号:BJJQ-2014-415-06)中标供应商名称:北京乐氏联创科技有限公司中标供应商地址:北京市海淀区曙光花园望山园2号楼12层15E(住宅)中标金额:人民币大写:贰拾壹万玖仟元整人民币小写:¥219000.00评标委员会成员名单:陈冰、徐庆卫、门增霞、赵吉斌、朱海涛项目联系人:王鑫国、刘欢联系方式:65915024、65910924-824/823本公告同时在中国政府采购网(http://www.ccgp.gov.cn)、北京市财政局网站政府采购(http://www.bjcz.gov.cn/zfcg/index.htm)以及北京汇诚金桥国际招标有限公司网站(http://www.hcjq.net/)发布。
  • 701项有色金属、化工石化等行业标准将制修订
    工信部下达2010年第二批行业标准制修订计划(以下简称计划)。计划共701项,其中制定405项,修订296项 产品类标准700项,节能与综合利用标准1项 涉及通信、电子、机械、轻工等4个行业,其中通信行业标准项目111项、电子行业标准项目173项、机械行业标准项目21项、轻工行业标准项目396项。   计划是根据工信部《2010年标准化工作要点》和行业标准制修订工作的总体安排,继下达2010年第一批2620项行业标准制修订计划后,编制完成的第二批行业标准制修订计划,提出了标准项目的编制原则、重点和具体要求。   计划按照产业发展需求、市场需要、协调配套的三大原则,优先编制有利于实施产业政策,推动行业技术进步,引导产业结构调整和优化,规范市场经济秩序的标准项目 突出做好高新技术推广应用和科研成果产业化,推动产业升级、自主创新、促进新型工业化的标准项目 产业发展规划中确定的重点领域、重点产品、重大装备及先进设计、工艺等方面的标准项目 经复审急需修订的标准项目。   计划要求:标准起草单位要注意做好标准制定与技术创新、试验验证、知识产权处置、产业化推进、应用推广的统筹协调 标准化技术归口单位、技术组织等要做好意见征求和技术审查等工作,把好技术审查关。 附件:2010年第二批行业标准制修订计划中部分行业标准,详细请参见“2010年第二批行业标准制修订计划.doc” 序号 申报号 项目名称 性质 制修订 代替标准 完成年限 申报司局 技术委员会或技术归口单位 主要起草单位 备注 9 YSFFZT3933-2010 冰晶石-元素分析 波长色散X射线荧光光谱法 压片法 推荐 制定 2011 原材料工业司 全国有色金属标准化技术委员会 多氟多化工股份有限公司 10 YSFFZT3934-2010 采用ICP-MS分析精制三氯氢硅中杂质含量 推荐 制定 2011 原材料工业司 全国有色金属标准化技术委员会 峨嵋半导体材料研究所 11 YSFFZT3935-2010 采用高质量分辨率辉光放电质谱仪测定高纯铋中杂质含量 推荐 制定 2011 原材料工业司 全国有色金属标准化技术委员会 峨嵋半导体材料研究所 23 YSJCZT3947-2010 电子薄膜用高纯金属溅射靶材的纯度等级及杂质含量分析 推荐 制定 2011 原材料工业司 全国有色金属标准化技术委员会 有研亿金新材料股份有限公司 30 YSFFZT3955-2010 氟化铝-元素分析 波长色散X射线荧光光谱法 压片法 推荐 制定 2011 原材料工业司 全国有色金属标准化技术委员会 多氟多化工股份有限公司 33 YSFFZT3958-2010 高纯铋化学分析方法 痕量杂质元素的测定 电感耦合等离子体质谱法 推荐 制定 2011 原材料工业司 全国有色金属标准化技术委员会 北京有色金属研究总院 34 YSFFZT3959-2010 高纯铋化学分析方法 痕量杂质元素的测定 辉光放电质谱法 推荐 制定 2011 原材料工业司 全国有色金属标准化技术委员会 北京有色金属研究总院 36 YSFFZT3961-2010 高纯铼化学分析方法 痕量杂质元素的测定 辉光放电质谱法 推荐 制定 2011 原材料工业司 全国有色金属标准化技术委员会 北京有色金属研究总院 37 YSFFZT3962-2010 高纯铝化学分析方法 钴、钼、镉、铟、锡、锑、铂、砷量的测定 电感耦合等离子体质谱法 推荐 制定 2011 原材料工业司 全国有色金属标准化技术委员会 北京有色金属研究总院 38 YSFFZT3963-2010 高纯铝化学分析方法 辉光质谱法测定高纯铝中钾、锂、钠、钍、铀、镁、钙、铬、铁、镍、锌、硅、锡、磷等痕量杂质 推荐 制定 2011 原材料工业司 全国有色金属标准化技术委员会 北京有色金属研究总院 39 YSFFZT3964-2010 高纯铌化学分析方法 痕量杂质元素的测定 电感耦合等离子体质谱法 推荐 制定 2011 原材料工业司 全国有色金属标准化技术委员会 北京有色金属研究总院 40 YSFFZT3965-2010 高纯铌化学分析方法 痕量杂质元素的测定 辉光放电质谱法 推荐 制定 2011 原材料工业司 全国有色金属标准化技术委员会 北京有色金属研究总院 41 YSFFXT3966-2010 高纯铅化学分析方法 砷量的测定 砷钼蓝吸光光度法 推荐 修订YS/T 229.2-1994 2011 原材料工业司 全国有色金属标准化技术委员会 峨嵋半导体材料厂 42 YSFFXT3967-2010 高纯铅化学分析方法 锑量的测定 孔雀绿吸光光度法 推荐 修订 YS/T 229.3-1994 2011 原材料工业司 全国有色金属标准化技术委员会 峨嵋半导体材料厂 43 YSFFZT3968-2010 高纯铅化学分析方法 锌、银、铜、铝、镁、镍、锡、铁、镉、锑、砷含量的测定 辉光放电质谱法 推荐 制定 2011 原材料工业司 全国有色金属标准化技术委员会 峨嵋半导体材料厂 44 YSFFXT3969-2010 高纯铅化学分析方法 银、铜、铋、铝、镍、锡、镁、铁量的测定 化学光谱法 推荐 修订 YS/T 229.1-1994 2011 原材料工业司 全国有色金属标准化技术委员会 峨嵋半导体材料厂 46YSFFZT3971-2010 高纯三氧化二镓化学分析方法 化学光谱法测定杂质含量 推荐 制定 2011 原材料工业司 全国有色金属标准化技术委员会 峨嵋半导体材料研究所 47 YSFFZT3972-2010 高纯钛化学分析方法 痕量杂质元素的测定 电感耦合等离子体质谱法 推荐 制定 2011 原材料工业司 全国有色金属标准化技术委员会 北京有色金属研究总院 48 YSFFZT3973-2010 高纯钛化学分析方法 痕量杂质元素的测定 辉光放电质谱法 推荐 制定 2011原材料工业司 全国有色金属标准化技术委员会 北京有色金属研究总院 49 YSFFZT3974-2010 高纯钽化学分析方法 痕量杂质元素的测定 电感耦合等离子体质谱法 推荐 制定 2011 原材料工业司 全国有色金属标准化技术委员会 北京有色金属研究总院 50 YSFFZT3975-2010 高纯钽化学分析方法 痕量杂质元素的测定 辉光放电质谱法 推荐 制定 2011 原材料工业司 全国有色金属标准化技术委员会 北京有色金属研究总院 51 YSFFZT3976-2010 高纯铜化学分析方法 痕量杂质元素的测定 辉光放电质谱法 推荐 制定 2011 原材料工业司 全国有色金属标准化技术委员会 北京有色金属研究总院 52 YSFFZT3977-2010 高纯钨化学分析方法 痕量杂质元素的测定 电感耦合等离子体质谱法 推荐 制定 2011 原材料工业司 全国有色金属标准化技术委员会 北京有色金属研究总院 53 YSFFZT3978-2010 高纯钨化学分析方法 痕量杂质元素的测定 辉光放电质谱 推荐 制定 2011 原材料工业司 全国有色金属标准化技术委员会 北京有色金属研究总院 56 YSFFZT3981-2010 高纯铟化学分析方法 苯芴酮-溴代十六烷基三甲胺吸光光度法测定锡量 推荐 制定 2011 原材料工业司 全国有色金属标准化技术委员会 北京有色金属研究总院 57 YSFFZT3982-2010 高纯铟化学分析方法 电感耦合等离子体质谱法测定高纯铟中 Cu、Pb、Zn、Sn、Cd、Mg、Al、Ni、Ag 推荐 制定 2011 原材料工业司 全国有色金属标准化技术委员会 北京有色金属研究总院 58 YSFFZT3983-2010 高纯铟化学分析方法 电感耦合等离子体质谱法测定高纯铟中 Cu、Pb、Zn、Sn、Cd、Mg、Al、Ni、Ag、Fe 推荐 制定 2011 原材料工业司 全国有色金属标准化技术委员会 北京有色金属研究总院 59 YSFFZT3984-2010 高纯铟化学分析方法 硅钼蓝吸光光度法测定硅量 推荐 制定 2011 原材料工业司 全国有色金属标准化技术委员会 北京有色金属研究总院 60 YSFFZT3985-2010 高纯铟化学分析方法 罗丹明B吸光光度法测定铊量 推荐 制定 2011 原材料工业司 全国有色金属标准化技术委员会 北京有色金属研究总院 64 YSFFZT3992-2010 硅粉中磷、硼杂质的测定方法 推荐 制定 2011 原材料工业司 全国有色金属标准化技术委员会 四川新光硅业科技有限责任公司 69 YSFFZT3997-2010 红土镍矿化学分析方法 多成分的测定 波长色散X射线荧光光谱法 推荐 制定 2011 原材料工业司 全国有色金属标准化技术委员会 宁波出入境检验检疫局 70 YSFFZT3998-2010 红土镍矿化学分析方法 分析试样中湿存水量的测定-重量法 推荐 制定 2011 原材料工业司 全国有色金属标准化技术委员会 天津出入境检验检疫局 71 YSFFZT3999-2010 红土镍矿化学分析方法 氟硅酸钾滴定法测定二氧化硅量 推荐 制定 2011 原材料工业司 全国有色金属标准化技术委员会 河南纳士科技股份有限公司 72 YSFFZT4000-2010 红土镍矿化学分析方法 钼蓝分光光度法测定磷量 推荐 制定 2011 原材料工业司 全国有色金属标准化技术委员会 河南纳士科技股份有限公司 73 YSFFZT4001-2010 红土镍矿化学分析方法 重铬酸钾滴定法测定铁量 推荐 制定 2011 原材料工业司 全国有色金属标准化技术委员会 河南纳士科技股份有限公司 74 YSFFZT4002-2010 红土镍矿化学分析方法 灼烧减量的测定 重量法 推荐 制定 2011 原材料工业司 全国有色金属标准化技术委员会 常熟出入境检验检疫局 75 YSFFZT4003-2010 红土镍矿石化学分析方法 化合水含量的测定 推荐 制定 2011 原材料工业司 全国有色金属标准化技术委员会 鲅鱼圈出入境检验检疫局综合技术服务中心 76 YSFFZT4004-2010 红土镍矿石化学分析方法 镍含量的测定 丁二酮肟光度法 推荐 制定 2011 原材料工业司 全国有色金属标准化技术委员会 鲅鱼圈出入境检验检疫局综合技术服务中心 88 YSFFZT4016-2010 铝中间合金化学分析方法 第12部分 铜含量的测定 推荐 制定 2011 原材料工业司 全国有色金属标准化技术委员会 中国铝业股份有限公司郑州研究院 89 YSFFZT4017-2010 铝中间合金化学分析方法 第13部分 钒含量的测定 推荐 制定 2011 原材料工业司 全国有色金属标准化技术委员会 中国铝业股份有限公司郑州研究院 90 YSFFZT4018-2010 铝中间合金化学分析方法 第14部分 锶含量的测定 推荐 制定 2011 原材料工业司 全国有色金属标准化技术委员会 中国铝业股份有限公司郑州研究院 91 YSCPZT4019-2010 慢走丝放电加工用黄铜线 推荐 制定 2011 原材料工业司 全国有色金属标准化技术委员会 宁波博威集团有限公司 92 YSFFZT4020-2010 铌钛合金化学分析方法 电感耦合等离子体发射光谱法测定铝、镍、硅、铁、铬、铜、钽量 推荐 制定 2011 原材料工业司 全国有色金属标准化技术委员会 西部金属材料股份有限公司 93 YSFFZT4021-2010 铌钛合金化学分析方法 惰气熔融红外/热导法同时测定氧、氮含量 推荐 制定 2011 原材料工业司 全国有色金属标准化技术委员会 西部金属材料股份有限公司 94 YSFFZT4022-2010 铌钛合金化学分析方法 惰性气氛熔融热导法测定氢量 推荐 制定 2011 原材料工业司 全国有色金属标准化技术委员会 西部金属材料股份有限公司 95 YSFFZT4023-2010 铌钛合金化学分析方法 高频燃烧红外吸收法测定碳量 推荐 制定 2011 原材料工业司 全国有色金属标准化技术委员会 西部金属材料股份有限公司 96 YSFFZT4024-2010 铌钛合金化学分析方法 硫酸铁铵滴定法测定钛量 推荐 制定 2011 原材料工业司 全国有色金属标准化技术委员会 西部金属材料股份有限公司 97 YSFFZT4025-2010 镍、钴、锰三元素氢氧化物化学分析方法 氯离子量的测定 氯化银目视比浊法 推荐 制定 2011 原材料工业司 全国有色金属标准化技术委员会 金川集团有限公司 98 YSFFZT4026-2010 镍、钴、锰三元素氢氧化物化学分析方法 镍量的测定 丁二酮肟重量 推荐 制定 2011 原材料工业司 全国有色金属标准化技术委员会 金川集团有限公司 99 YSFFZT4027-2010 镍、钴、锰三元素氢氧化物化学分析方法 铅量的测定 电感耦合等离子体质谱法 推荐 制定 2011 原材料工业司 全国有色金属标准化技术委员会 金川集团有限公司 101 YSFFZT4029-2010 镍钴锰三元素氢氧化物化学分析方法 硫酸根离子量的测定 电感耦合等离子体发射光谱法和硫酸钡重量法 推荐 制定 2011 原材料工业司 全国有色金属标准化技术委员会 金川集团有限公司 102 YSFFZT4030-2010 镍钴锰三元素氢氧化物化学分析方法 镍、钴、锰量的测定 电感耦合等离子体原子发射光谱法 推荐 制定 2011 原材料工业司 全国有色金属标准化技术委员会 金川集团有限公司 103 YSFFZT4031-2010 镍钴锰三元素氢氧化物化学分析方法 铁、钙、镁、铜、锌、硅、铝、钠量的测定 电感耦合等离子体发射光谱法 推荐 制定 2011 原材料工业司 全国有色金属标准化技术委员会 金川集团有限公司 104 YSFFZT4062-2010 镍钴锰酸锂化学分析方法 第1部分:镍钴锰总量的测定-EDTA滴定法 推荐 制定 2011 原材料工业司 全国有色金属标准化技术委员会 中信国安盟固利电源技术有限公司 105 YSFFZT4063-2010 镍钴锰酸锂化学分析方法 第2部分:锂、镍、钴、锰、钠、镁、铝、钾、铜、钙和铁量的测定 电感耦合等离子体原子发射光谱法 推荐 制定 2011 原材料工业司 全国有色金属标准化技术委员会 中信国安盟固利电源技术有限公司
  • 实验室环境污染,绝对不是小事!
    1 实验室环境污染种类及危害1.1 按污染性质分1.1.1化学污染化学污染包括有机物污染和无机物污染。有机物污染主要是有机试剂污染和有机样品污染。在大多数情况下,实验室中的有机试剂并不直接参与发生反应,仅仅起溶剂作用,因此消耗的有机试剂以各种形式排放到周边的环境中,排放总量大致就相当于试剂的消耗量。日复一日,年复一年,排放量十分可观。有机样品污染包括一些剧毒的有机样品,如农药、苯并(α)芘、黄曲霉毒素、亚硝胺等。无机物污染有强酸、强碱的污染,重金属污染,氰化物污染等。其中汞、砷、铅、镉、铬等重金属的毒性不仅强,且有在人体中有蓄积性。1.1.2生物性污染生物污染包括生物废弃物污染和生物细菌毒素污染。生物废弃物有检验实验室的标本,如血液、尿、粪便、痰液和呕吐物等;检验用品,如实验器材、细菌培养基和细菌阳性标本等。开展生物性实验的实验室会产生大量高浓度含有害微生物的培养液、培养基,如未经适当的灭菌处理而直接外排,会造成严重后果。生物实验室的通风设备设计不完善或实验过程个人安全保护漏洞,会使生物细菌毒素扩散传播,带来污染,甚至带来严重不良后果。2003年非典流行肆虐后,许多生物实验室加强对SAS病毒的研究,之后报道的非典感染者,多是科研工作者在实验室研究时被感染的。1.1.3 放射性污染物放射性物质废弃物有放射性标记物、放射性标准溶液等。1.2 按污染物形态分1.2.1 废水实验室产生的废水包括多余的样品、标准曲线及样品分析残液、失效的贮藏液和洗液、大量洗涤水等。几乎所有的常规分析项目都不同程度存在着废水污染问题。这些废水中成分包罗万象,包括最常见的有机物、重金属离子和有害微生物等及相对少见的氰化物、细菌毒素、各种农药残留、药物残留等。1.2.2 废气实验室产生的废气包括试剂和样品的挥发物、分析过程中间产物、泄漏和排空的标准气和载气等。通常实验室中直接产生有毒、有害气体的实验都要求在通风橱内进行,这固然是保证室内空气质量、保护分析人员健康安全的有效办法,但也直接污染了环境空气。实验室废气包括酸雾、甲醛、苯系物、各种有机溶剂等常见污染物和汞蒸汽、光气等较少遇到的污染物。1.2.3 固体废物实验室产生的固体废物包括多余样品、分析产物、消耗或破损的实验用品(如玻璃器皿、纱布)、残留或失效的化学试剂等。这些固体废物成分复杂,涵盖各类化学、生物污染物,尤其是不少过期失效的化学试剂,处理稍有不慎,很容易导致严重的污染事故。 2 对实验室污染物的处理办法为防止实验室的污染扩散,污染物的一般处理原则为:分类收集、存放,分别集中处理。尽可能采用废物回收以及固化、焚烧处理,在实际工作中选择合适的方法进行检测,尽可能减少废物量、减少污染。废弃物排放应符合国家有关环境排放标准。2.1 化学类废物一般的有毒气体可通过通风橱或通风管道,经空气稀释排出。大量的有毒气体必须通过与氧充分燃烧或吸收处理后才能排放。废液应根据其化学特性选择合适的容器和存放地点,通过密闭容器存放,不可混合贮存,容器标签必须标明废物种类、贮存时间,定期处理。一般废液可通过酸碱中和、混凝沉淀、次氯酸钠氧化处理后排放,有机溶剂废液应根据性质进行回收。2.1.1 含汞废液的处理排放标准3:废液中汞的最高容许排放浓度为0.05mg/L(以Hg计)。处理方法:①硫化物共沉淀法:先将含汞盐的废液的pH值调至8-10,然后加入过量的Na2S,使其生成HgS沉淀。再加入FeS04(共沉淀剂),与过量的S2-生成FeS沉淀,将悬浮在水中难以沉淀的HgS微粒吸附共沉淀.然后静置、分离,再经离心、过滤,滤液的含汞量可降至0.05mg/L以下。②还原法:用铜屑、铁屑、锌粒、硼氢化钠等作还原剂,可以直接回收金属汞。2.1.2 含镉废液的处理①氢氧化物沉淀法:在含镉的废液中投加石灰,调节pH值至10.5以上,充分搅拌后放置,使镉离子变为难溶的Cd(OH)2沉淀分离沉淀,用双硫腙分光光度法检测滤液中的Cd离子后(降至0.1mg/L以下),将滤液中和至pH值约为7,然后排放。②离子交换法:利用Cd2+离子比水中其它离子与阳离子交换树脂有更强的结合力,优先交换。2.1.3 含铅废液的处理在废液中加入消石灰,调节至pH值大于11,使废液中的铅生成Pb(OH)2沉淀,然后加入Al2(S04)3(凝聚剂),将pH值降至7-8,则Pb(OH)2与Al(OH)3共沉淀,分离沉淀,达标后,排放废液。2.1.4 含砷废液的处理在含砷废液中加入FeCl3,使Fe/As达到50,然后用消石灰将废液的pH值控制在8-10。利用新生氢氧化物和砷的化合物共沉淀的吸附作用,除去废液中的砷。放置一夜,分离沉淀,达标后,排放废液。2.1.5 含酚废液的处理酚属剧毒类细胞原浆毒物,处理方法:低浓度的含酚废液可加入次氯酸钠或漂白粉煮一下,使酚分解为二氧化碳和水。如果是高浓度的含酚废液,可通过醋酸丁酯萃取,再加少量的氢氧化钠溶液反萃取,经调节pH值后进行蒸馏回收.处理后的废液排放。2.1.6 综合废液处理用酸、碱调节废液pH为3-4、加入铁粉,搅拌30min,然后用碱调节pH为9左右,继续搅拌10min,加入硫酸铝或碱式氯化铝混凝剂、进行混凝沉淀,上清液可直接排放,沉淀于废渣方式处理。 2.2 生物类废物生物类废物应根据其病源特性、物理特性选择合适的容器和地点,专人分类收集进行消毒、烧毁处理,日产日清。
  • 太酷了,实验室也可以测XAFS?已成功发表多篇能源高水平文献!
    随着同步辐射光源的大量应用,XAFS技术(包含XANES和EXFAS)逐渐发展成为一种非常实用的结构分析方法。XAFS对中心吸收原子的局域结构(尤其是在0.1 nm范围内)及其化学环境十分敏感,因而可以在原子尺度上给出某一特征原子周围几个临近配位壳层的结构信息,包括配位原子种类及其与中心原子的距离、配位数、无序度等,在物理、化学、材料、生物和环境科学等领域发挥着难以替代的作用。然而,由于XAFS技术通常依赖于同步辐射X射线光源,大地限制了XAFS技术在各领域的广泛应用。近年来,实验室用台式XAFS谱仪的出现,使得在实验室日常使用XAFS技术进行材料的精细结构分析成为了可能。美国easyXAFS公司推出的台式X射线吸收精细结构谱仪-XAFS/XES在常规的实验室环境中即可实现X射线吸收精细结构的测量和分析,以高的灵敏度和光源质量,得到了可以媲美同步辐射水平的X射线吸收谱图,实现对元素的定性和定量分析、价态分析、配位结构解析等。 台式设计,可以在实验室内随时满足日常样品分析;可集成辅助设备,控制样品条件,适用于对空气敏感的样品的检测或一些原位测试,如原位的锂电池或电催化实验测试,监测电/催化材料的结构变化;台式XAFS/XES谱仪测得的谱图效果可以媲美同步辐射数据操作便捷,维护成本低,安全可靠 目前easyXAFS公司的实验室用台式X射线吸收精细结构/发射谱仪(XAFS/XES)已经在全球拥有众多用户,并在电池能源、催化剂、陶瓷、环境材料、放射性核素、矿物、地质材料等领域发表了多篇高水平文章,本文将简要介绍近期科研工作者使用该仪器发表的能源类代表性文章: 文章1:阳离子无序岩盐 (DRS) 材料研究(Chem. Mater. 2021, 33, 8235−8247)因具有优异的初始可逆性和较为容易的 Li+嵌入和脱出结构,是一种很有潜力的高比能正材料。特别是Mn基无序岩材料,因其具有无毒、低价格等特性,得到广泛的关注和研究。然而,目前该类材料都存在循环寿命短和严重的容量衰减等问题。德国卡尔斯鲁厄理工大学的Maximilian Fichtner教授及其他合作者结合了利用高价Ti4+离子及部分F-离子取代O等策略,使得该材料展现了长循环条件下更加优异的电化学性能和库伦效率。值得注意的是,该团队利用了台式X射线吸收精细结构谱仪(台式easyXAFS300+),成功的揭示了不同含量Ti4+替代对材料中Ti元素和Mn元素的价态影响,进一步验证了高价Ti离子替代策略背后的作用机理及对电化学性能的影响。 图1. (a) 不同Ti含量样品的Ti k edge XANES对比谱图(b)XANES放大图谱(c)不同Ti含量样品的Mn k edge XANES对比谱图(d)XANES放大图谱 文章2:锂离子电池充放电过程中黑磷局域结构演变(Advanced Materials, 2021, 33, 2101259)近些年来,黑磷材料因其在电子器件、能源存储及催化转化方面的优异性能,而被广泛应用和研究。作为锂离子电池负材料,黑磷拥有高达2592 mAh g−1的理论容量。然而在实际应用中,黑磷材料在电化学反应后体积变化程度达到300%,会带来电池安全等诸多问题。为了更好设计黑磷负结构,对于充分了解充放电过程中黑磷与Li+的相互作用机制非常重要。为了更加深入的解析充放电过程,有必要利用更加深入和高的表征手段来研究黑磷局域结构的变化和演变。基于此,加拿大西安大略大学的Xueliang Sun教授及其合作者结合了原位/非原位XRD,非原位XAS和XES等技术,揭示了其中的结构演变:Li3P7,LiP,Li3P。值得一提的是,研究人员结合美国easyXAFS公司的台式X射线发射谱仪(XES)的相关结构设计,并和该公司技术人员合作实现了惰性气体保护下的XES表征。图2. BP/G/CNTs样品的放电(a)和充电(b) P Kα ex-situ XES谱图 文章3:NMC811正材料研究(Journal of The Electrochemical Society, 2021, 168, 050532)高比能富镍层状氧化物正材料,如LiNi0.8Mn0.1Co0.1O2 (NMC811),由于充电后潜在的氧气损失及循环过程中的降解会导致容量衰减和相关的安全问题。为了解决这些问题,2019年诺奖得主,纽约州立大学的Stanley Whittingham教授在通过连续共沉淀方法实现用铝替代锰,使得NMC811正材料的电化学性能得到了大的提高。并使用美国easyXAFS公司台式XAFS仪器成功实现了高质量XANES图谱的采集,进一步证明了Al参杂对过渡金属价态的影响。该项研究为该锂电领域中进一步提升电池容量和稳定性提供了重要的借鉴和指导意义。 图3. (a) 不同Al3+掺杂量下,合成样品的XRD图谱; (b) 不同掺杂量样品的Ni K-edge XANES谱图 文章4:CeO2-Nb2O5复合氧化物陶瓷材料研究(Journal of Rare Earths, 2021, 39, 596-599)CeO2-Nb2O5复合氧化物,作为一种复合稀土氧化物陶瓷材料,常被应用于固体氧化物燃料电池、氧气传感器及异相催化等众多领域。之前不少的研究数据表明在高温固相法合成该复合稀土氧化物时,会部分形成Ce3NbO7+δ化合物。然而在大气氛围下的高温固相法合成这种带有部分还原的Ce氧化物是不太合理的。为了更加合理的验证CeO2-Nb2O5复合氧化物在高温固相法合成条件下得到的产物信息,谢菲尔德大学的研究人员综合利用了粉末X射线衍射(XRD)和台式X射线吸收精细结构谱(easyXAFS300+,美国easyXAFS公司)等数据进行验证,并证实了之前研究中的一些错误观点,证明了Ce3NbO7+δ化合物并不存在。 图4. 样品,CeO2及CePO4的XANES Ce L3-edge谱及线性组合拟合谱 文章5:水系锌电池研究(Nano Energy, 2020, 70, 104519)美国华盛顿大学曹国忠教授等人通过水热合成法引入Al3+,有效的改善了水合氧化钒 (VOH) 正材料用于水系锌电池中的缺点:包括提升其离子迁移率和循环稳定性等。该团队通过利用台式X射线吸收精细结构谱仪(台式easyXAFS300+,美国easyXAFS公司)获得了V K-edge的边前及近边结构谱图,并对Al3+掺杂的VOH 正材料进行了深入的研究,从而揭示了引入Al3+后,VOH的结构变化及充放电过程中的有利作用等。图5. (a) 充放电前后Al-VOH的Zn2+ XPS表征图 (b) 充放电后Al-VOH及常见钒氧化物的V k边边前及近边吸收结构 文章6:NiFe双金属氢氧化物研究(Journal of Materials Chemistry A, 2021, 9, 14432-14443)郑州大学科研工作者成功揭示了NiFe双金属氢氧化物纳米片中表面缺陷对于OER反应的巨大提升作用,同时通过台式X射线吸收精细结构谱仪(台式easyXAFS300+,美国easyXAFS公司),成功揭示了表面缺陷在催化反应中的作用机制,揭示了氧化前后催化剂的精细结构变化,为进一步的反应机理研究提供的强有力的支持。图6. (a) Ni1/2Fe1/2(OH)2/CNT-24及其他样品的XAFS图,Ni K-edge(b)径向距离χ(R)空间谱,(c)χ(R)空间拟合曲线图,(d)k2χ(k)空间谱拟合曲线 部分发表文章:1. J. Am. Chem. Soc. 2017, 139, 8718−87242. Anal. Chem. 2018, 90, 6587 –65933. Chem. Mater. 2018, 30, 5373−53794. Chem. Mater. 2018, 30, 6377−63885. J. Mater. Chem. A, 2019,7, 17966-179736. ACS Appl. Mater. Interfaces, 2019, 11, 16647-166557. Small, 2019, 15, 19017478. Chem. Mater. 2020, 32, 8203−82159. J. Mater. Chem. A, 2020,8, 16332-1634410. Nano Energy, 2020,70, 10451911. Energy Stor. Mater. 2020, 29, 9-1612. Angew. Chem. Int. Ed. 2021, 60, 9127–913413. Chem. Mater. 2021, 33, 8235−824714. J. Mater. Chem. A, 2021, 9, 14432-1444315. Angew. Chem. Int. Ed. 2021, DOI: 10.1002/anie.20211250816. Green Chem. 2021, DOI: 10.1039/D1GC02024B17. Adv. Mater. 2021, DOI: 10.1002/adma.202101259
  • 科学家利用金属—氧化物相互作用构建纳米团簇阵列
    近日,中国科学院大连化学物理研究所催化基础国家重点实验室纳米与界面催化研究组(502组)包信和院士、傅强研究员和宁艳晓副研究员团队在负载纳米团簇催化剂的结构控制和微观表征方面取得新进展,利用金属—氧化物相互作用调控金属纳米团簇的尺寸与稳定性,揭示了载体氧化物表面氧原子p-带中心可用于定量描述金属—氧化物界面作用。负载纳米团簇在许多催化反应中表现出高活性、高选择性以及高原子利用率,基于原子规整的模型催化剂和原子可视的表面表征方法可以对纳米团簇的稳定机制和催化作用提供微观理解。在前期研究中,该团队发现单层分散、亚稳态、高活性氧化物纳米结构可以在贵金属表面稳定,并提出界面限域催化概念(Science,2010;Acc. Chem. Res.,2013;JPCC,2015;ACS Nano,2017)。近期,团队进一步揭示了金属表面和环境气氛对氧化物纳米结构动态变化的协同限域效应(PNAS,2022)。在本工作中,研究人员在FeO/Pt(111)和FeO2-x/Pt(111)表面上构建了结构规整的金属(Cu、Ce等)单原子和纳米团簇阵列结构。对这些团簇结构的选择性落位以及热稳定性研究发现,氧化物载体表面氧原子活性决定了金属原子与氧化物的作用强度。基于理论研究发现,可以利用表面氧原子p带中心来描述表面氧活性,并与Cu在氧化物上相互作用强度实现很好的关联。据此,团队提出了表面氧原子p带中心可以作为金属—氧化物相互作用的定量描述符。相关研究成果以“Periodic Arrays of Metal Nanoclusters on Ultrathin Fe-Oxide Films Modulated by Metal-Oxide Interactions”为题,发表在JACS Au上。该工作的第一作者是中国科学院大连化学物理研究所502组博士研究生罗序达。该工作得到了国家重点研发计划、国家自然科学基金、辽宁省兴辽英才计划等项目的资助。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制