当前位置: 仪器信息网 > 行业主题 > >

吡啶二羧酸

仪器信息网吡啶二羧酸专题为您提供2024年最新吡啶二羧酸价格报价、厂家品牌的相关信息, 包括吡啶二羧酸参数、型号等,不管是国产,还是进口品牌的吡啶二羧酸您都可以在这里找到。 除此之外,仪器信息网还免费为您整合吡啶二羧酸相关的耗材配件、试剂标物,还有吡啶二羧酸相关的最新资讯、资料,以及吡啶二羧酸相关的解决方案。

吡啶二羧酸相关的资讯

  • 美国发明航天器细菌快速检测新技术
    美国航天局科研人员最近开发出一种能快速检测航天器细菌的新技术。这项技术也能同时运用于军事、医疗、制药等领域,如检测可引发炭疽病的炭疽杆菌。   美航天局下属喷气推进实验室的科研人员在10月刊的《应用与环境微生物学》(Applied and Environmental Microbiology)杂志上报告说,这项新技术能找到构成细菌芽孢的主要物质吡啶二羧酸,从而发现细菌芽孢的位置。而芽孢是细菌生长到一定阶段在细菌体内形成的一种微生物体,其数量及其生长状况等是鉴定细菌的依据之一。   该项技术的工作原理是,先在被检测物表面约一角钱硬币大小的地方涂上铽 ,然后将其置于紫外线灯下照射,几分钟内,人们通过显微镜和特殊相机便能看到是否有细菌芽孢,因为铽能把细菌芽孢的主要物质吡啶二羧酸变成明亮的绿色。铽是一种化学金属元素,它的化学符号是TB,被用于生成电视机屏幕上的绿色。   参与开发这一新技术的艾德里安庞塞说,细菌芽孢可以在极其恶劣的环境下生存,可抵御高温、低温、强辐射和化学物质,并最多可以在太空存活6年之久。庞塞说,发现了细菌芽孢,就可以发现细菌本身。   目前这项被称为“航天器洁净方法”的技术已引起了美国国土安全部的兴趣。美国国土安全部化学生物研究项目负责人詹姆士安东尼认为,该技术将有助于加快生物污染事件发生后的现场检测工作,并节省时间和成本。
  • 土壤/水质中11种邻苯二甲酸酯类混标全新上市!
    11种邻苯二甲酸酯类混标迪马科技根据《ISO 13913-2014 /ISO 18856-2004土壤/水质中邻苯二甲酸酯类的测定GC/MS法》定制了11种邻苯二甲酸酯类混标。 产品信息:DIKMA NO:46907DESCRIPTION:Custom Mixed phthalate esters Standard(11 Analytes) ,1000 μg/mL in Ethyl acetate 1mL中文名称:邻苯二甲酸酯混标(11种化合物),1000 μg/mL在乙酸乙酯中,1 mL/安瓿 适用于ISO 13913-2014/ISO 18856-2004土壤/水质中邻苯二甲酸酯类的测定GC/MS法,1000 μg/mL在乙酸乙酯中,1 mL/安瓿,Cat. No.: 46907序号化合物英文名CAS1邻苯二甲酸二甲酯Dimethyl phthalate (DMP)131-11-32邻苯二甲酸二乙酯Diethyl phthalate (DEP)84-66-23邻苯二甲酸二丙酯Dipropyl phthalate(DPP)131-16-84邻苯二甲酸二异丁酯Diisobutyl phthalate (DiBP)84-69-55邻苯二甲酸二丁酯Dibuthyl phthalate (DBP)84-74-26邻苯二甲酸丁苄酯Butylbenzyl phthalate (BBzP) 85-68-77邻苯二甲酸二环己酯Dicyclohexyl phthalate (DCHP)84-61-78邻苯二甲酸二(2-乙基己)酯Bis(2-ethylhexyl) phthalate (DEHP)117-81-79邻苯二甲酸二正辛酯Dioctyl phthalate (DOP)117-84-010邻苯二甲酸二癸酯Didecyl phthalate(DDcP)84-77-5111,2-苯二羧酸双十一烷基酯Diundecyl phthalate(DUP)3648-20-2
  • 【药物一致性评价热潮】10种热门品种!
    参比制剂是指用于仿制药质量和疗效一致性评价的对照药品,通常为被仿制的对象,如原研药品或国际公认的同种药物。参比制剂应为处方工艺合理、质量稳定、疗效确切的药品。 随着药物一致性趋势不断的越演越烈,一些热门的药物也开始被各大医疗企业争相进行检测审核,cato归纳了近期一致性参比制剂备案前10品种的杂质列表 。 第一种:通用名:克拉霉素英文名:Clarithromycin主成分化学名:6-O-甲基红霉素主成分结构式:(CHP2015)主成分分子式:C38H69NO13主成分分子量:747.96主成分cas登记号:81103-11-9 品种简介:克拉霉素是红霉素的衍生物,为半合成抗生素。20世纪80年代初由日本大正公司开发成功,并以商品名Clarith注册。尔后,大正公司首先将其技术转让给美国雅培公司生产 1990年在爱尔兰、意大利上市。1991年在日本获批上市。1991年10月获FDA批准上市,商品名Biaxin,1993年以Klacid在中国香港上市,在欧洲和亚洲的商品名为克拉仙,已在全球50多个国家上市,市场用量稳步增长,并在临床中发挥了重要作用。克拉霉素剂型主要为片剂、颗粒剂或混悬剂,目前生产的剂型还有分散片、缓释片、注射剂和复方制剂。目前为WHO和多个国家的基本药物。第二种:通用名:阿莫西林英文名:amoxicillin主成分化学名:(2S,5R,6R)-3,3-二甲基-6-[(R)-(-)-2-氨基-2-(4-羟基苯基)乙酰氨基]-7-氧代-4-硫杂-1-氮杂双环[3. 2. 0]庚烷-2-甲酸三水合物 主成分分子式:C16H19N3O5S?3H2O主成分分子量:419.46主成分cas登记号:61336-70-7 品种简介:阿莫西林是青霉素类半合成抗生素,原研公司为葛兰素史克公司,最早于1972年上市,商品名为AMOXIL。 第三种:通用名:头孢拉定英文名:Cefradine主成分化学名:先锋瑞丁、头孢拉丁、头孢握定、头孢雷定、己环胺菌素、头孢环己烯、环己烯胺头孢菌素、环烯头孢菌素。主成分分子式:C16H19N3O4S主成分分子量:349.40主成分cas登记号:38821-53-3 品种简介:头孢拉定属于头孢菌素类抗菌药物,且为第一代头孢菌素,对不产青霉素酶和产青霉素酶金葡菌、凝固酶阴性葡萄球菌、A组溶血性链球菌、肺炎链球菌和草绿色链球菌等革兰阳性球菌的部分菌株具良好抗菌作用。厌氧革兰阳性菌对本品多敏感,脆弱拟杆菌对本品呈现耐药。耐甲氧西林葡萄球菌属、肠球菌属对本品耐药。本品对革兰阳性菌与革兰阴性菌的作用与头孢氨苄相似。本品对淋球菌有一定作用,对产酶淋球菌也具活性;对流感嗜血杆菌的活性较差。第四种:通用名:头孢氨苄英文名:Cephalexin主成分化学名:头孢菌素Ⅳ、先锋霉素Ⅳ、头孢力新、苯甘孢霉素、西保力、头孢立新主成分分子式:C16H17N3O4S主成分分子量:347.39主成分cas登记号:15686-71-2 品种简介:头孢氨苄,抗生素\β-内酰胺类\头孢菌素类。它能抑制细胞壁的合成,使细胞内容物膨胀至破裂溶解,杀死细菌。 第五种:通用名:氨氯地平英文名:Amlodipine主成分化学名:3-乙基-5-甲基-2-(2-氨乙氧甲基)-4-(2-氯苯基)-1,4-二氢-6-甲基-3,5-吡啶二羧酸酯苯磺酸盐主成分分子式:C20H25N2O5ClC6H6O3S主成分分子量:567.1主成分cas登记号:111470-99-6 品种简介:氨氯地平,钙离子拮抗药,可用于治疗各种类型高血压(单独或与其他药物合并使用)和心绞痛,尤其自发性心绞痛(单独或与其他药物合并使用)。氨氯地平的作用是通过松弛在动脉壁的平滑肌,降低总外周阻力从而降低血压;在心绞痛时,氨氯地平增加血液流向心肌。本品对肾脏有一定的保护作用。其制剂有苯磺酸氨氯地平片、甲磺酸氨氯地平片、马来酸左旋氨氯地平片等。 第六种:通用名:二甲双胍英文名:METFORMIN HYDROCHLORIDE TABLETS主成分分子式:C4H11N5?HCL主成分分子量:165.63主成分CAS号:1115-70-4 品种简介:二甲双胍为目前应用最广泛的糖尿病一线用药。该化合物最早于1922年开发,后期由Jean Sterne医师重新开发并于1957年在法国上市用于治疗2型糖尿病,1958年在英国上市,1972年在加拿大上市,并最终于1994年获得FDA批准,1995年上市。申请机构为施贵宝。二甲双胍口服制剂有速释片、缓释片、口服溶液,其中速释片有250mg、500mg、850mg、1g。缓释片规格为500mg、750mg、1g。我国国产上市的二甲双胍片以250mg为主。原研本地化的产品有中美上海施贵宝公司的格华止片,规格有500mg、850mg。国内有山德士(中国)制药有限公司的二甲双胍片上市,规格为250mg。进口二甲双胍片有 Alphapharm Pty Limited的迪化唐锭片上市,规格为250mg。 第七种:通用名:布洛芬英文名:Ibuprofen主成分化学名:2-(-4-异丁基苯基)丙酸;异丁苯丙酸,异丁洛芬,芬必得,α-甲基-4-(2-甲基丙基)苯乙酸主成分分子式:C13H18O2主成分cas登记号:15687-27-1 品种简介:布洛芬是世界卫生组织、美国FDA唯一共同推荐的儿童退烧药,是公认的儿童首选抗炎药。布洛芬具有抗炎、镇痛、解热作用。治疗风湿和类风湿关节炎的疗效稍逊于乙酰水杨酸和保泰松。适用于治疗风湿性关节炎、类风湿性关节炎、骨关节炎、强直性脊椎炎和神经炎等。 第八种:通用名:奥美拉唑
  • 修饰新法问世 让MOFs拥有更大孔径
    p style=" text-align: justify text-indent: 2em " MOFs是一种将桥接的有机配体和无机金属中心连接成网状结构的混合多孔材料,在催化和化学传感领域应用广泛,而且可以作为药物传递的载体。MOFs的孔径大小与其应用息息相关,如果化学家有方法能使其孔径变大,MOFs在上述领域就会发挥更大的作用。而一项最新研究表明,可以通过选择性地去除MOFs中的有机配体,来将其微孔转化为更大尺寸的介孔。 /p p style=" text-align: center text-indent: 0em " img src=" https://img1.17img.cn/17img/images/201811/uepic/785da53f-dfbf-413a-ac38-19b059f57a40.jpg" title=" ss.jpg" alt=" ss.jpg" / /p p style=" text-align: justify text-indent: 2em " 当孔径为大于2nm的介孔时,MOFs不仅可以容纳更大的药物分子,还能够防止催化应用中的气体扩散。现有增加MOFs孔径尺寸的方法主要有三种,一种是依赖于复杂的、定制的配体,这种方法成本高昂。另一种是通过简单地增加配体长度来调整孔径,这种方法虽然已有多种应用,但是使用这种方法,想在创造MOFs特定孔径尺寸的同时控制好某些反应附带衍生的缺陷,却是十分困难的。此外,还有一些使用化学或热处理手段增加MOFs孔径的方法,但这些方法往往又需要苛刻的条件。 /p p style=" text-align: justify text-indent: 2em " 为了解决这些问题,加泰罗尼亚纳米科学与技术研究所的博士后研究员Vincent Guillerm提供了一种新方法,选择那些可通过与臭氧反应被选择性剪切掉的配体合成MOFs,通过这种方法来将MOFs的微孔变成孔径较大的介孔。他和他的同事用锆团簇和两种配体(偶氮苯-4,4-二羧酸和4,4& #39 -二苯乙烯二羧酸)构建了MOFs,这两种配体的长度都在1.33nm左右。 /p p style=" text-align: justify text-indent: 2em " 然后他们将臭氧引入系统,与4,4& #39 -二苯乙烯二羧酸发生反应,让这部分配体转化为对苯二甲酸和苯甲酸,有效地切断了它们与金属中心的连接。而偶氮苯-4,4-二羧酸配体由于没有碳碳双键,不易与臭氧反应,因此不受影响。这种方法还需要一个额外的清洗步骤,来消除臭氧反应中产生的副产品。因此研究人员又还利用4,4’-联苯二甲酸和1,4-苯二丙烯酸为配体构建了另一个介孔尺寸的MOF。在这个MOF中,臭氧反应裂解的配体产物能够从材料中直接升华,无需再清洗。 /p p style=" text-align: justify text-indent: 2em " 据参与该项研究的另一位负责人Daniel Maspoch介绍,在切割配体之前,本实验所用的MOFs孔径尺寸都在1.5nm左右。经过臭氧切割,这些MOFs的孔径覆盖了2到5nm的直径范围。而不同的孔径尺寸,是由于两种配体在整个材料中的随机分布引起的。因为随机分布会造成不同区域的配体浓度差,进而影响孔径变化范围。因此,研究组希望能更好地控制这种分布,以帮助他们缩小孔径增大的范围。 /p p style=" text-align: justify text-indent: 2em " 除了扩大孔径尺寸外,这项研究成果还会带来另一个潜在的好处:配体在被剪切的过程中,可能会释放出一些可与其他化学物质发生反应的结合位点。“这很可能对MOFs以外的工程材料来带益处。”Maspoch说,“如果你能够有选择性地打破物体内部的一些化学键,你就能让这一物体生发出一些新的功能。” /p p style=" text-align: justify text-indent: 2em " 加州大学伯克利分校的Omar M.Yaghi是MOFs的专家。他高度肯定了这项研究成果,表示它为改善MOFs性能增添了新的创造性。“这项研究优雅、聪睿、精确,而且证明了在原子、分子层面,网状化学控制物质的应用已经越来越广泛。”Yaghi说。 /p
  • 文献解读丨通过M–N键长和配位调节提高质子交换膜燃料电池非贵金属M–N–C催化剂的稳定性
    质子交换膜燃料电池(PEMFC)被认为是一种有前途的可持续电化学能量转换装置,尤其是在交通应用中。目前,只有铂族金属(PGM)才能有效催化阴极上动力学缓慢的氧还原反应(ORR),但其高昂的成本和Pt的稀缺严重阻碍了PEMFC的大规模应用。因此,开发不含PGM的催化剂来部分或完全取代PGM催化剂是非常可取的。具有M-Nx/C活性位点的金属-氮-碳(M-N-C,M=Fe、Co、Mn等)催化剂,特别是Fe-N-C催化剂,在半电池和PEMFC测试中都表现出出色的初始ORR活性,可与商业Pt/C催化剂相媲美。然而,在M-N-C催化剂能够实际应用于PEMFC之前,必须克服许多艰巨的障碍,其中稳定性是最严峻的挑战。总的来说,由于对膜电极组件(MEA)的降解机制和复杂的多场(质/电/热)耦合环境了解不足,提供有效的解决方案来提高PEMFC中M-N-C催化剂的稳定性仍然极具挑战性。因此,开发具有显著增强稳定性的高性能M-N-C催化剂对于PEMFC的商业应用来说十分紧迫。方法与结果PAA-Fe-N和P(AA-MA)(5-1)-Fe-N催化剂的制备流程如图1所示。最简单的不饱和一元羧酸丙烯酸(AA)作为单体聚合成PAA,并与Fe3+螯合形成交联水凝胶。马来酸(MA)是一种二羧酸单体,用于与AA共聚合,以增加共聚物P(AA-MA)的羧酸含量。通过在共聚过程中调节AA/MA的摩尔比(5/1,3/1,1/1),可以轻易地调控共聚物中羧基的浓度和相应的与金属离子的结合常数。通过亲水性羧基和金属离子之间的螯合作用形成的交联水凝胶,可以通过随后在800°C下用氮前体进行高温处理,使所得的M–Nx/C位点原子分布在分级3D结构中。所得催化剂分别表示为PAA-Fe-N和P(AA-MA)-Fe-N。MA-Fe-N催化剂也被合成作为对照样品。图1 PAA-Fe-N和P(AA-MA)(5-1)-Fe-N催化剂制备示意图为了分析催化剂表面上C和N的价态,使用岛津的X射线光电子能谱仪(XPS)对其进行了分析表征。高分辨率C1s光谱中C-N键的形成表明N已经成功地掺杂在C骨架中。与PAA-Fe-N相比,P(AA-MA)(5-1)-Fe-N样品C-N键的位置发生了正向的位移,表明P(AA-MA)(5-1)-Fe-N样品具有更强的Fe-N相互作用。高分辨率N1s光谱表明,P(AA-MA)(5-1)-Fe-N样品具有比PAA-Fe-N更高的表面N含量(8.99 at%)和吡啶N/石墨N比例。P(AA-MA)(5-1)-Fe-N样品的表面Fe含量是PAA-Fe-N的3.5倍(0.44 vs 0.13 at%),ICP-MS分析也证实了这一趋势。可以推断,在引入MA后,P(AA-MA)(5-1)-Fe-N具有更高的Fe–Nx/C活性位点密度。57Fe Mö ssbauer(穆斯堡尔谱仪)被用来进一步探究样品中的Fe–N结构(图2c)。结果表明,具有可观QS值的D3位点(≈15%)说明PAA-Fe-N拥有比P(AA-MA)(5-1)-Fe-N更短的Fe-N键。采用X射线吸收光谱法(XAS)检测了样品的局部Fe-N配位结构。测量了P(AA-MA)(5-1)-Fe-N和PAA-Fe-N的X射线近边结构(XANES)的Fe K边。结果表明,P(AA-MA)(5-1)-Fe-N和PAA-Fe-N催化剂中的Fe都可以实现原子级分散,并且单个Fe原子与N(O)元素配位,而不是以Fe-Fe键的形式存在。P(AA-MA)(5-1)-Fe-N和PAA-Fe-N的Fe-N(O)键的平均键长分别为2.035 and 2.006 &angst ,与57Fe Mö ssbauer(穆斯堡尔谱仪)结果一致。根据文献,PAA-Fe-N样品中可能存在一些Fe-N2或Fe-N3物种(尽管Fe-N的拟合配位数仍然接近4),导致Fe-N(O)键长减少。相反,P(AA-MA)(5-1)-Fe-N中Fe-N位点的配位结构应以Fe-N4为主。图2 高分辨率C1s(a)和N1s(b)XPS光谱;以及(c)P(AA-MA)(5-1)-Fe-N和PAA-Fe-N样品的室温57Fe Mö ssbauer图谱;(d)P(AA-MA)(5-1)-Fe-N、PAA-Fe-N和Fe箔样品的k3加权FT-EXAFS光谱电化学测试表明(图3a-3c),与PAA-Fe-N以及其他催化剂相比,P(AA-MA)(5-1)-Fe-N具有更好的性能和稳定性。将Fe置换为Co或者Mn等金属后,该催化剂依然具有良好的性能,证实该策略具有有效性和普适性。通过物理和结构研究了催化剂在60℃下半电池性能退化的详细机制。AST测试后的催化剂的XRD图谱和TEM图像表明测试后具有与初始时相似的衍射峰和片状结构。图3e和3f为测试前后相应的FTEXAFS光谱。对于P(AA-MA)(5-1)-Fe-N,AST测试后没有明显的Fe-Fe键形成,证实了Fe-N键的稳定性以及随后催化剂Fe去金属化的耐受性。相反,循环5000次后,PAA-Fe-N中Fe-Fe键急剧增加。该结果明确确定,在60℃的稳定性测试过程中,PAA-Fe-N催化剂中确实发生了Fe-Nx/C位点的去金属化,并且部分分离的Fe原子可能迁移并形成微量的Fe2O3团簇,这些团簇在XRD中无法识别。利用岛津的X射线光电子能谱仪(XPS),证实在AST测试后,PAA-Fe-N中的表面Fe含量从0.13%增加到8.48%,而P(AA-MA)(5-1)-Fe-N表面Fe含量明显更少(从0.44%到2.89%)。更糟糕的是,Fe-Nx/C位点的破坏会促进Fenton反应的进行,进一步加速临近Fe-N的分解,结果与之前报道的电子能量损失谱(EELS)结果一致。请注意,其他降解机制,如碳腐蚀,可能同时发生在PAA-Fe-N上,因为AST后C含量从83.62%显著降低到58.07%。图3 a、b)P(AA-MA)(5-1)-Fe-N和PAA-Fe-N催化剂在25°C(a)和60°C(b)的O2饱和0.5 m H2SO4溶液中进行5000循环AST前后的ORR极化曲线,催化剂负载量:0.6 mg非PGM cm&minus 2,圆盘转速:900 rpm。c)先前报道的M–N–C催化剂在O2饱和0.5 M H2SO4中从0.6–1.0 V的AST的不同循环次数后的E1/2损失。d)P(AA-MA)-Co-N和PAA-Co-N催化剂在AST前后的ORR极化曲线。e、 f)P(AA-MA)(5-1)-Fe-N和PAA-Fe-N(AST前后)、Fe箔和Fe2O3样品的k3加权FT-EXAFS光谱。燃料电池性能测试(图4)结果表明,P(AA-MA)(5-1)-Fe-N催化剂表现出极高的活性和稳定性,在0.55 V下电流密度37 h几乎保持不变。图4 a、b)P(AA-MA)(5-1)-Fe-N和PAA-Fe-N催化剂在H2–O2(a)和H2–空气(b)条件下的燃料电池性能,阴极负载:3.0 mg cm&minus 2;c)P(AA-MA)(5-1)-Fe-N和PAA-Fe-N催化剂在PEMFC中0.55 V恒定电压下的稳定性测试期间的电流密度保持率;d)在H2–空气燃料电池中测试的各种M–N–C催化剂前20小时的电流密度保持率密度泛函理论(DFT)计算被用于进一步探究催化剂稳定性差异巨大的根源。研究了铁原子在载体上的吸附能(Ead)和Ead与整体粘性能量(Ecoh)之间的差异。计算表明,P(AA-MA)(5-1)-Fe-N具有比PAA-Fe-N更负的Fe原子吸附能(Ead)以及Ead和本体内聚能(Ead-Ecoh)之间更负的差异。图5 a)吸附能(Ead)和b)在没有(红色)和(蓝色)溶剂化校正的情况下计算的Fe–Nx/C系统的吸附能和内聚能(Ecoh)之间的差(负值越大意味着载体中嵌入的Fe原子对金属浸出或聚集更稳定);c)Fe–N2/C、d)Fe–N3/C和e)Fe–N4/C的结构和差分电荷密度等值面(青色和黄色等值面对应于&minus 0.02和+0.02 e&angst 的电荷密度轮廓。棕色、灰色、浅灰色和白色小球分别代表Fe、C、N和H原子)总之,通过调节金属离子和催化剂前体中聚合物之间的相互作用,开发了一种提高M-N-C催化剂稳定性的通用有效策略,从而可以微调M-N键长和最终催化剂中的配位。57Fe Mö ssbauer光谱和XAS证明,与具有15%低配位Fe-N2/N3部分的PAA-Fe-N相比,具有独有的Fe-N4/C位点和更长的Fe-N键的共聚P(AA-MA)(5-1)-Fe-N催化剂性能明显更好。性能最好的P(AA-MA)(5-1)-Fe-N催化剂在半电池和H2—空气燃料电池中都表现出极高的活性和稳定性,在AST 60℃后E1/2损失仅为6 mV,在0.55 V下电流密度37 h几乎保持不变,是迄今为止报道的同类催化剂中整体性能最好的。DFT计算表明,P(AA-MA)(5-1)-Fe-N具有比PAA-Fe-N更负的Fe原子吸附能(Ead)以及Ead和本体内聚能(Ead-Ecoh)之间更负的差,这说明了其优异的结构稳定性和对脱金属的耐受性的原因。文献题目《lmproving the Stability of Non-Noble-Metal M-N-C Catalysts for Proton-Exchange-Membrane Fuel Cellsthrough M-N Bond Length and Coordination Regulation》使用仪器岛津X射线光电子能谱仪(XPS)作者苗正培等 华中科技大学Zhengpei Miao, Xiaoming Wang, Zhonglong Zhao, Wenbin Zuo, Shaoqing Chen,Zhigiang Li, Yanghua He, Jiashun Liang, Feng Ma, HsingLin Wang Gang Lu,Yunhui Huang, Gang Wu, and Oing Li
  • 色谱检测方法新标准来啦(十一)——GB/T 40845-2021 化妆品中壬二酸的检测 气相色谱法
    近年来,消费者对功效化妆品的需求与日俱增,庞大的需求吸引着越来越多的企业布局相关领域。但是,随之而来的夸大功效等乱象,严重侵害了消费者权益。为规范和指导化妆品功效宣称评价工作,2021年4月9日国家药监局网站发布了《化妆品功效宣称评价规范》,中国化妆品行业正式迈入功效评价时代。按照要求:2021年5月1日-2021年12月31日期间注册备案的化妆品,应当于2022年5月1日前按照《化妆品功效宣称评价规范》要求,上传产品功效宣称依据的摘要。 同时,《化妆品标签管理办法》也将正式施行,对标签的要求做了更进一步的释义和规范。按照要求,自2022年5月1日起,申请注册备案的化妆品,必须符合《化妆品标签管理办法》的规定和要求。此前申请注册备案的化妆品,未按照本《办法》规定进行标签标识的,应在2023年5月1日前完成产品标签的更新。中国化妆品标签监管也将迈入新台阶。 壬二酸结构 壬二酸(Azelaic acid,CAS 123-99-9),又名杜鹃花酸,是一种天然存在的直链饱和二羧酸,分子式为C9H16O4。壬二酸在医学临床上常用来治疗玫瑰痤疮及寻常型痤疮,同时可以用于美白类和祛痘类化妆品,能有效抑制皮肤上的痤疮杆菌和租房阻断脂肪酸的生成,防止黑色素的形成,可预防斑点形成,减少黑色素沉着。近年来由于其疗效显著以及相对安全性,壬二酸在皮肤保护和皮肤病治疗类化妆品中得到越来越多的使用。科学的检测方法对于目前市场上化妆品标签准确标注壬二酸成分的含量具有非常重要的意义。为此,国家市场监督管理总局和中国国家标准化管理委员会正式发布了《GB/T 40845-2021 化妆品中壬二酸的检测 气相色谱法》。 检测方法 方法原理试样在浓硫酸和乙醇条件下衍生,用正己烷萃取,浓缩后经气相色谱分离检测,根据保留时间定性,外标法定量。 气相色谱法仪器配置:GC主机+SPL+FID,可选配液体自动进样器色 谱 柱:SH-5 Cap. Column 30m x 0.25mm x 0.25um 方法参数初始温度60℃(保持2min),以10℃/min升到150℃(保持1min),以5℃/min升温至165℃(保持2min),以25℃/min升温至250℃;SPL进样口温度:260℃;FID检测器温度:280℃;分流比:5:1;进样量:1微升;标准曲线浓度:10mg/L,20mg/L,50mg/L,100mg/L,200mg/L,500mg/L,1000mg/L 壬二酸衍生物气相色谱图(壬二酸二乙酯) 灵敏度要求:本方法检出限15mg/KG,定量限50mg/kg。 岛津推荐仪器 气相色谱仪: GC-2010 Pro / AOC-20系列 GC-2010 Pro继承了高性能毛细柱气相色谱仪GC-2010Plus的基本性能。其良好的重现性确保其具备高可靠性。配备了高性能检测器使高灵敏度分析得以实现。同时,高速柱温箱冷却技术可大幅缩短分析时间,是一款高性价比气相色谱仪产品。扫码了解更多信息 气相色谱仪: Nexis GC-2030 / AOC-30系列Nexis GC-2030加强版气相色谱仪配备了全新智能交互界面,仅需触屏即可完成仪器操作并可以实时了解仪器运行状态。创新ClickTek技术全面提升用户分析体验,使色谱柱的安装和仪器维护进入徒手时代。通过不断强化Analytical Intelligence功能,优化人机交互体验,为实验室赋能。预老化功能、基线检查和系统适应性测试、远程控制和监视以及LabSolutions平台可形成从仪器启动到完成分析的全自动化工作流程。 扫码了解更多信息参考资料:1、GB/T 40845-2021 化妆品中壬二酸的检测 气相色谱法2、https://pubchem.ncbi.nlm.nih.gov/compound/Azelaic-acid3、国家药监局关于发布《化妆品功效宣称评价规范》的公告(2021年 第50号) 本文内容非商业广告,仅供专业人士参考。
  • 【瑞士步琦】SFC应用——苯基吡啶的纯化
    SFC应用—苯基吡啶的纯化3-苯基吡啶与4-苯基吡啶都是生产高附加值精细化工产品的重要有机原料,随着农药、医药等精细化工行业的蓬勃发展,对两者的需求日益增高。两者的沸点接近(分别为 144.14℃ 和 145℃),性质相似。依靠传统的分离方法,如精馏、普通的溶剂萃取无法将其分离。而采取化学转化法则会有污水量大、产率低等缺点。虽然邻苯二甲酸法和铜盐法研究较多,但相对来说步骤比较繁琐。现如今通过 SFC 可以有效将两者进行分离,高效快速的同时也解决了有机溶剂污水处理量大等难题。1SFC 分离条件设备Sepiatec SFC-50色谱柱AS-HUV波长254nm改性剂MeOH,5%进样体积15 ul流速8 ml/min压力100bar温度40℃2实验结果▲图1.SFC 在 5% MeOH 等度条件下对 3-苯基吡啶与 4-苯基吡啶分离色谱图3叠加进样▲图2. 3-苯基吡啶与 4-苯基吡啶在 6 次叠加进样状态下的分离色谱图4结论与传统的分离方式相比,通过超临界流体色谱可以快速有效的将 3-苯基吡啶与 4-苯基吡啶进行分离,并将分离时间控制在 4min 之内,除此之外,较少的改性剂使用也为用户解决溶剂成本及后续废液处理等烦恼。通过叠加进行功能,在保证两者分离度的情况下可以更加快速的对样品进行制备,避免非必要的时间等待,叠加进样功能可将每次进样时间控制在 1.6min 以内。
  • 改写教科书:张新星团队在大气微液滴中制备极不稳定的吡啶负离子
    前言2021年12月8日,南开大学化学学院硕士研究生赵玲玲打开质谱仪,开展日常的实验。当天的实验内容是在微液滴表面使用吡啶(Py)捕捉空气中的二氧化碳。然而在开始收集数据的第一时间,赵玲玲就观测到了质量为79的吡啶负离子的质谱峰。她的导师张新星研究员指着电脑屏幕上最强的那个峰道:“吡啶负离子在大气里是不可能生成的,这瓶吡啶肯定是坏了。”… … 一些小分子的负离子极不稳定本科普通化学原理和物理化学教科书均指出,像苯、吡啶这样的稳定分子,所有的成键轨道均被电子占满。若要得到它们的负离子,电子必须要填入能量极高的最低未占据轨道(LUMO),即π*反键轨道。然而这个过程需要吸收很大的能量,从而使得这些分子的电子亲和能(得到电子的能力)是很大的负值(如图1所示)。即使在极低温、高真空的环境中,科学家们此前也只通过电子照射吡啶蒸汽的方式观测到瞬态存在的吡啶负离子(Py-),并且估算了它的寿命和分子发生一次振动所需要的时间数量级相仿,即瞬间的10飞秒(1秒的一百万亿分之一)。因此在大气或水中制备吡啶负离子,违反了此前教科书中的基本常识。图1:典型分子轨道能级图吡啶负离子在微液滴表面的生成使用十分简单的氮气喷雾和质谱检测的方法,南开大学张新星团队的硕士研究生赵玲玲在大气中生成了含有吡啶的微小水滴,并在质谱中观测到了极强的Py-信号(图2)。由于这个结果十分惊人,张新星起初并不相信这些信号是真实的。然而在赵玲玲上百次的尝试之后,信号仍然存在。因此,张新星致电了斯坦福大学的美国科学院院士Richard Zare教授。Zare团队的博士后学者宋肖炜博士很快地就重复出了实验。宋博士说,在重复出实验的那一刻,“已经80多岁的Zare,开心地像个孩子”。 张新星指出,根据实验室质谱仪检测离子所需要的最短时间, Py-负离子的寿命至少高达50毫秒,比之前人们认为的10飞秒提高了一万亿倍。为了进一步证明Py-的存在,赵玲玲还使用二氧化碳捕捉到了Py-,并生成了产物(Py-CO2)-。为了避免是空气中的微量污染物促成了Py-负离子的生成,张新星课题组还搭建了一套进样口在手套箱中的质谱装置,仍然得到了极高的Py-负离子信号,证明了该反应是微液滴表面自发进行的过程。图2:A,简单的氮气喷雾产生微液滴的装置。B,吡啶负离子的质谱峰。C,吡啶负离子绝对信号强度随着浓度的变化。D,吡啶负离子生成效率随着浓度的变化。E,吡啶负离子的信号强度随着载气气压(液滴大小)的变化。F,吡啶负离子的信号强度随着温度的变化。神奇的微液滴化学近几年来,斯坦福大学的Richard Zare教授和普渡大学的Graham Cooks教授发现很多原本在水溶液中难以进行的化学反应,在通过气体喷雾或者超声雾化产生的微小水滴中(如图3中我们日常所用的加湿器产生的水雾)可以自发发生,甚至可以被加速到原本的一百万倍。而且水滴的尺寸越小,这些现象越明显。Zare认为,微液滴的表面自然带有高达109 V/m的电场。相比之下,在空气中生成闪电的击穿电压仅有106 V/m。微液滴表面的电场是如此庞大,甚至可以撕裂水中的氢氧根(OH-),生成一个自由电子和一个羟基自由基(OH)。自由电子具有极高的还原性,而OH具有极高的氧化性,这看似完全矛盾的两个性质居然同时存在,使得微液滴成为了神奇的矛盾统一体(unity of opposites)。加州大学伯克利分校的Teresa Head-Gordon教授在近期发表的论文中,也从理论上证实了微液滴表面极高电场的存在。张新星和Zare认为,该实验是微液滴表面自发生成的电子还原了吡啶生成了Py-。Zare同时也猜测,吡啶分子的振动激发态很有可能也帮助了其负离子的生成。此外,如果微液滴表面的OH-真的可以被撕裂生成一个自由电子和一个羟基自由基,那么这个羟基自由基就可能进一步氧化吡啶。赵玲玲通过改变质谱极性,也确实观测到了这些氧化产物,为微液滴“神奇的矛盾统一体”提供了进一步坚实的证据。图3:家庭中常见的产生微液滴的加湿器深远影响在记者的采访中,张新星表示,化学是一门创造新物质的科学,基于教科书常见的原理,很多时候化学家们在合成出某个物质之前,就可以根据现有的、被广泛接受的物理化学和量子力学原理,以及分析装置自身可以测量的时间和空间尺度的极限去预测这个化合物是否可以存在,可以存在多久,以及即使存在但能否可以被科学家们观测到。然而,这些预测真的靠谱吗?教科书写的金科玉律就一定正确吗?原本认为即使在真空绝对零度也只能短暂存在的吡啶负离子,被发现在大气中的水滴上就可以生成,这个例子告诉我们,充分理解现存科学,但是又敢于质疑现存的科学,是推动科学认知边界的有力途径。Sprayed Water Microdroplets Containing Dissolved Pyridine Spontaneously Generate the Unstable Pyridyl Radical Anion 作者:赵玲玲, 宋肖炜, 宫矗, 张冬梅, 王瑞靖, Richard N. Zare, 张新星, PNAS, 2022, 119, e2200991119(点击了解论文)
  • 色谱检测新标准来啦——HJ 1267-2022水质 6种苯氧羧酸类除草剂和麦草畏的测定
    苯氧羧酸类除草剂和麦草畏是一种广泛应用于农业生产的选择性除草剂,具有价格低廉、除草速度快、除草谱广等优点。然而,它们的使用会导致水质污染,残留于土壤中,并通过雨水和地下水流入河流和湖泊,对水质造成影响。随着环保要求的提高,水质监测变得越来越重要,对环境保护至关重要。因此,对苯氧羧酸类除草剂和麦草畏进行检测对于保障水质安全具有重要意义。本标准规定了测定地表水、地下水、生活污水、工业废水和海水中6 种苯氧羧酸类除草剂和麦草畏的高效液相色谱法。※本标准中结果的定性分析是根据样品中目标化合物与标准系列中目标化合物的保留时间定性,标准还提到:“必要时,可采用液相色谱-质谱法确认目标化合物”并在附录中提供了液相色谱-三重四极杆质谱法仪器条件。岛津提供LCMS-8045、LCMS-8050、LCMS-8060等多款液相色谱-三重四极杆质谱可选,满足标准要求。如需进一步了解,您可前往https://www.shimadzu.com.cn/an/lcms/index.html本文内容非商业广告,仅供专业人士参考。
  • 仪器情报,科学家利用LTSTM等先进设备分析了吡啶氮掺杂石墨烯膜在高效CO₂捕获中的机理!
    【科学背景】随着全球气候变化问题日益突显,碳捕集技术成为减缓气候变化的重要手段之一。因此,研究人员一直致力于寻找能够高效、低成本地分离CO2的技术,以减少温室气体排放并促进碳中和。传统的CO2分离技术通常依赖于热力学过程,如化学吸收和物理吸附,但这些方法往往需要大量的能源消耗,成本高昂。因此,开发基于膜的CO2分离技术成为一种备受关注的方向,因为这种技术不依赖于热能,有望降低捕集成本。传统的膜材料如聚合物薄膜和金属有机框架等已经显示出潜在的应用前景,但它们的CO2渗透率受到选择层厚度的限制,难以进一步提高。此外,实现高CO2/N2分离因子的挑战在于难以兼顾高选择性和高渗透率。因此,本研究针对这些问题提出了一种创新的解决方案。瑞士洛桑联邦理工学院Kuang-Jung Hsu,Kumar Varoon Agrawal等研究团队利用二维孔隙结构,通过控制孔边缘的异原子掺杂来增强CO2与孔的结合亲和力。他们选择了石墨烯作为研究对象,通过将吡啶氮引入孔边缘,促进了CO2与孔之间的竞争性吸附。这种方法提高了CO2的装载量,使得即使在稀薄的CO2气流中也能实现高CO2渗透率和高CO2/N2分离因子。此外,他们采用了可扩展的化学方法,成功制备了厘米级的高性能膜,为实际应用奠定了基础。【科学亮点】(1)在本研究中,首次利用氨在室温下处理氧化的单层石墨烯,成功地在孔边缘引入了吡啶氮。这一方法使得孔边缘的吡啶氮取代成为可能。(2)实验结果表明,吡啶氮的引入导致了CO2与孔之间的高度竞争性但定量可逆的结合,这与理论预测一致。通过高分辨率X射线光电子能谱(XPS)确认了吡啶氮的引入。同时,低温扫描隧道显微镜(LTSTM)观察到了CO2的吸附和解吸过程,验证了吡啶氮引发的高亲和力。(3)此外,实验还显示了即使在稀薄的CO2气流中,也能实现高装载量,进而实现了高CO2渗透率和高CO2/N2选择性。由于化学反应的可扩展性,实验在厘米级膜上展示了高性能。【科学图文】图1:在吡啶-N-取代的石墨烯上,吸附CO2。图2. 在吡啶-N-取代的石墨烯上,吸收CO2。图3. 在吡啶-N-取代的石墨烯上,定量可逆的CO2吸附。图4:过能量色散光谱(EDS)和拉曼光谱确认吡啶氮取代石墨烯中的氮官能团。图5:吡啶氮取代石墨烯的CO2吸附和气体传输特性。图6: 竞争性CO2吸附,吡啶-N-取代石墨烯具有极好的碳捕获性能。【科学结论】这项研究为开发高效的碳捕集技术提供了科学价值。通过在石墨烯孔边缘引入功能异原子,特别是吡啶N,作者成功地改善了CO2在孔中的吸附性能,从而实现了高渗透率和高选择性的分离效果。这一发现不仅为膜科学提供了新的思路和方法,还将激发分子模拟和实验来进一步探索竞争性吸附的机制,为膜技术的进一步发展提供了重要的指导。此外,研究中采用的化学反应是基于气态反应物的,这使得相关技术具有了高度可扩展性,并且可适用于大面积样品的制备。因此,这项研究的成果不仅将对膜领域有所贡献,还将为其他领域,如高性能吸附剂、传感器和催化剂的开发提供有价值的参考。原文详情:Hsu, KJ., Li, S., Micari, M. et al. Graphene membranes with pyridinic nitrogen at pore edges for high-performance CO2 capture. Nat Energy (2024). https://doi.org/10.1038/s41560-024-01556-0
  • 液相色谱法/液相色谱质谱联用法测定苯氧羧酸类除草剂中游离酚
    引言酚类化合物是一种细胞原浆毒,其毒性作用是与细胞原浆中蛋白质发生化学反应,形成变性蛋白质,使细胞失去活性,它所引起的病理变化主要取决于毒物的浓度,低浓度时可使细胞变性,高浓度时使蛋白质凝固,低浓度对局部损害虽不如高浓度严重,但低浓度时由于其渗透力强,可向深部组织渗透,因而后果更加严重。酚类化合物可经皮肤、粘膜的接触,呼吸道吸入和经口进入消化道等多种途径进入体内。 FAO与WHO 早已对2,4-滴、2,4-滴酯类、2,4-滴钠盐、二甲铵盐、2甲4氯、2甲4氯钠、2甲4氯丁酸、2甲4氯丙酸等农药中的游离酚进行了限定,对苯氧羧酸类除草剂中的游离酚进行限量有利于减少有害杂质对农产品安全的影响,也有利于各级质量管理部门对农药产品质量实施监督。进而保证农药产品的安全性、保障人身健康和环境安全。 《GB/T 41225-2021苯氧羧酸类除草剂中游离酚限量及检测方法》新标准已于2022年7月1日正式实施,新标准共给出3种试验方法:化学显色法,高效液相色谱法,液质联用法。 岛津解决方案一、 UV-3600i Plus紫外可见近红外分光光度计高灵敏度—标配三检测器配置了三个检测器,一个检测紫外及可见区域的PMT检测器,检测近红外区域的InGaAs 和 PbS检测器。InGaAs检测器弥补了PMT和 PbS转换波长灵敏度低的特点,从而保证了在整个检测波长范围内高灵敏度测定。在1500 nm波长检测时噪声小于0.00003 Abs,达到超低的噪声水平。 高分辨率—宽测量范围及超低的杂散光采用高性能双光栅单色器,实现高分辨率(分辨率高达0.1nm)和超低杂散光(340nm处杂散光0.00005%以下)。测定波长范围为185nm-3300nm,可在紫外、可见及近红外的宽波段范围进行测定,应对不同领域的测定要求。 丰富可选的附件使用多功能大样品室和积分球附件可测定固体样品,使用保证测定精度的绝对反射测定装置ASR系列也可进行高精度的绝对反射测定。此外,可安装电子冷热式恒温池架和超微量池架等,适应广泛的应用测定。 智能化软件全新升级的LabSolutions UV-Vis软件包括光谱模块,光度模块,动力学及报告编辑模块等功能。软件具有自动光谱评价、自动Excel数据传输、自动样品测试等功能,可升级为DB或者CS版实现更强大的数据管理,确保数据完整性和可信度。 二、Prominence Plus 系列液相色谱仪深根本土,经典焕新。由精心挑选和优化的模块组成稳健的液相色谱系统,Prominence Plus 系列液相色谱仪具有优异的可扩展性和兼容性。无论是常规分析还是高效的快速分析,可让更多的用户得到一如既往的高准确性高可靠性的分析结果,成为各个领域实验室的有力工具,包括制药、生物制药、化学、环境和食品等。 灵动 Prominence Plus系列包含高效/超高效液相色谱系统,灵活兼容常规LC及快速LC分析需求; 经典的积木式设计,基于强大的系统管理器,提供优异的模块扩展性,灵活应对您多样的用需求。 高效 最高支持66Mpa高压输液; 支持2μm-3μm小粒径色谱柱,实现高分离度高灵敏度的快速分析; 可靠 延续Prominence系列一贯的高稳定性、高耐用性、低维护性的特点,助您轻松开展分析工作; 快速液相模式可实现高效而精确的梯度分析,获得理想的保留时间重复性; 专业 60年液相色谱技术沉淀之作,力求优异性能与轻松操作间的平衡; 使用功能强大的LabSolutions工作站,符合GMP法规数据完整性技术要求,匹配实验LIMS系统。 三、超快速液相色谱质谱联用仪岛津LCMS-8045三重四极杆液质联用仪 迅捷的速度,敏捷的灵敏度得益于岛津深厚的质谱研发积淀,在诺贝尔获奖者的指导下实现关键技术的突破。作为行业范围内将三重四极杆高灵敏度和高速度相结合的公司,为质谱领域带来真 正意义上的创新。为用户着想,秉承超快速分析的理念,显著提升分析通量,打 造实验室的效率之星。 优异的稳定性,值得信赖的准确性LCMS-8045重视仪器抗污染能力和整体耐用性,即使在严苛的连续分析中也可保 持出色的稳定性,提供准确可靠的分析结果。无论是食品安全还是药物分析,环 境监测还是临床研究,在面对复杂基质样品时都可以轻松应对。 功能丰富的软件,强大的MRM方法包Labsolutions LCMS集合型工作站软件,具备丰富的支持多组分定 量方法制作的便利功能,以直观的界面帮助用户迅速上手。从方 法建立、实时分析到报告编辑,化繁为简,大幅提升分析工作的 效率。更提供多领域分析方法包,无需方法摸索,即刻开展工作。 本文内容非商业广告,仅供专业人士参考。
  • 大连化物所提出光催化烯烃的卤代/吡啶双官能化新策略
    近日,中国科学院大连化学物理研究所仿生催化合成创新特区研究组研究员陈庆安团队在光催化烯烃的卤代/吡啶双官能化方面取得新进展,发展出通过调控氧化淬灭活化模式和自由基极性交叉途径,实现光催化非活化烯烃的卤代/吡啶双官能化反应新策略。该策略作为对传统Heck型反应的补充,通过自由基反应过程避免了中间体β-H消除带来的底物限制,高效地将卤代基和吡啶基团区域选择性地加成到烯烃双键。  由简单底物快速构建复杂分子是有机化学的重要研究方向。其中,烯烃的催化官能化反应由于底物成本低且来源广泛而备受关注。虽然经典的Heck反应和还原型Heck反应提供了烯烃的芳基化和氢芳基化的有效途径,但这些方法均涉及了卤原子的消除,产生了不可避免的废弃物。此外,碳卤键的选择性构建十分重要,它是多种官能团转化的重要反应位点。因此,在不牺牲卤原子的情况下,实现烯烃双键同时构建新的C-C和C-X键具有重要意义。  陈庆安团队长期致力于发展不同催化体系,以实现烯烃选择性催化转化与合成。在前期相关研究(Angew. Chem. Int. Ed.,2019;Angew. Chem. Int. Ed.,2020;Angew. Chem. Int. Ed.,2021;Angew. Chem. Int. Ed.,2021;Angew. Chem. Int. Ed.,2021)基础上,该团队最近利用卤代吡啶和非活化烯烃作为简单的反应底物,采用光催反应策略来实现非活化烯烃的卤代/吡啶双官能化。科研人员通过添加三氟乙酸,促进卤代吡啶底物发生质子化,使铱光催化剂更易于发生氧化淬灭,激发质子化的卤代吡啶产生亲电性吡啶自由基,进一步与富电子的非活化烯烃发生加成;氧化态的铱光催化剂可将生成的烷基自由基中间体氧化为碳正离子,进一步捕获体系中的卤负离子,实现C-C键和C-X键(X=Cl,Br,I)的选择性构建。此外,科研人员还进行了Stern-Volmer荧光淬灭、循环伏安法、量子产率测定等机理探究实验和动力学研究,解释了反应途径调控的机制和反应机理。为进一步验证该反应的实用性,科研人员开展了一系列转化实验:利用烯烃的卤代吡啶双官能化产物的碳卤键,可发生进一步的消除反应,以及与亚磺酸盐、硫氰酸盐、苯硫酚和叠氮钠的取代反应得到相应的转化产物。  相关研究成果以Photo-Induced Catalytic Halopyridylation of Alkenes为题,发表在《自然-通讯》(Nature Communications)上。研究工作得到国家自然科学基金、辽宁省博士科研启动基金等的支持。  论文链接
  • 中国化工学会关于《工业用2-氯-6-三氯甲基吡啶》等 4项团体标准征求意见的通知
    各有关单位及专家:由中国化工学会组织制定的《工业用2-氯-6-三氯甲基吡啶》等4项团体标准已完成征求意见稿,现公开征求意见。请于2023年4 月21日之前将征求意见表(见附件5)以电子邮件的形式反馈至中国化工学会。联系人:张颖 电话:010-64455951邮箱:zhangy@ciesc.cn附 件1.《工业用2-氯-6-三氯甲基吡啶》征求意见稿2.《电子级丙二醇甲醚》征求意见稿3.《电子级丙二醇甲醚醋酸酯》征求意见稿4.《啶氧菌酯原药》征求意见稿5. 征求意见表 中国化工学会2023年3月21日附件3《电子级丙二醇甲醚醋酸酯》征求意见稿.pdf附件1《工业用2-氯-6-三氯甲基吡啶》征求意见稿.pdf附件2《电子级丙二醇甲醚》征求意见稿.pdf附件5 征求意见表.doc《工业用2-氯-6-三氯甲基吡啶》等4项团体标准征求意见通知.pdf附件4《啶氧菌酯原药》征求意见稿.pdf
  • 公开征求氧化铁铬等4种食品相关产品新品种意见
    根据《食品相关产品新品种行政许可管理规定》和《食品相关产品新品种申报与受理规定》要求,氧化铁铬等4种食品相关产品新品种已通过专家评审委员会技术评审(具体情况见附件)。现公开征求意见。请于2024年1月21日前将书面意见反馈至我中心,如在截止日期前未反馈相关意见,视为无不同意见。邮 箱:biaozhun@cfsa.net.cn 一、氧化铁铬1.背景资料:该物质在常温下为黑色粉末,不溶于水。 美国食品药品管理局和日本化学研究检验所均允许该物质 作为着色剂用于食品接触用塑料材料及制品。2.工艺必要性。该物质为黑色无机着色剂,具有较好的 耐候性、耐温性、化学稳定性等性能,并可用于黑色塑料制 品的红外线识别。二、(1R,2R,3S,4S)-rel-二环[2.2.1]庚烷-2,3-二羧酸钙盐 (1:1) 1.背景资料:该物质在常温下为白色粉末,极微溶于水。 美国食品药品管理局和欧盟委员会均允许该物质用于聚丙 烯(PP)、聚乙烯(PE)塑料材料及制品。2.工艺必要性:加入该物质的 PP、PE 具有较低的水蒸 气渗透率和氧气透过率。三、聚丁二酸-己二酸丁二酯1.背景资料:该物质在常温下为白色颗粒,不溶于水, 可溶于氢氧化钠和氯仿。美国食品药品管理局和欧盟委员会 均允许该物质用于食品接触用塑料材料及制品。2.工艺必要性:该树脂较易熔融,加工性能良好。以该 物质为原料生产的塑料薄膜,具有较好的透明度和光泽度。四、1,3-苯二甲酸与 1,4-苯二甲酸和 1,4-二(羟甲基)环己烷的聚合物 1.背景资料:该物质在常温下为固体,不溶于水和乙醇。 美国食品药品管理局、欧盟委员会、日本厚生劳动省和南方 共同市场均允许该物质用于食品接触用塑料材料及制品。2.工艺必要性:该物质为基础树脂,相较于其他聚酯材 料密度低,可以制造较轻便的产品;有较低的吸水性,能更 好的保持尺寸稳定性,可应用于透明板材、薄膜等产品生产。
  • 傅若农:PLOT气相色谱柱的诱惑力
    编者注:傅若农教授生于1930年,1953年毕业于北京大学化学系,而后一直在北京理工大学(原北京工业学院)从事教学与科研工作。1958年,傅若农教授开始带领学生初步进入吸附柱色谱和气相色谱的探索 1966到1976年文化大革命的后期,傅若农教授在干校劳动的间隙,系统地阅读并翻译了两本气相色谱启蒙书,从此进入其后半生一直从事的事业&mdash &mdash 色谱研究。傅若农教授是我国老一辈色谱研究专家,见证了我国气相色谱研究的发展,为我国培养了众多色谱研究人才。此次仪器信息网特邀傅若农教授亲述气相色谱技术发展历史及趋势,以飨读者。   第一讲:傅若农讲述气相色谱技术发展历史及趋势   第二讲:傅若农:从三家公司GC产品更迭看气相技术发展   第三讲:傅若农:从国产气相产品看国内气相发展脉络及现状   第四讲:傅若农:气相色谱固定液的前世今生   第五讲:傅若农:气-固色谱的魅力   看看下面这张图1,1 min 多一点时间就把苯到二甲苯几个难分离的混合物分开了,而且把间位和对位二甲苯也给分开了,遗憾的是间位和邻位二甲苯没有分开,当然只用了15 m 长的毛细管色谱柱,这种色谱柱叫做PLOT柱,这是半个世纪前在英国&ldquo 自然&rdquo 杂志(Nature)上一篇简短论文上报道的(Halasz I,Horvath C,Nature,1963,197:71-72)。这一工作是最早使用石墨化炭黑作固定相PLOT柱完成的,这一实例对想利用气相色谱用于石油和石化工业分析的人员来说有很大的诱惑力,为什么?这是因为色谱柱短、固定相耐温性好、无流失、分析时间短,可以把在气相色谱中最难分离的间、对二甲苯基线分离。   再看看图 2,这是最近云南师范大的袁黎明研究组把手性向列结构的介孔材料制备成PLOT柱分离手性化合物,这样的PLOT柱,柱高温、分辨率高、可作手性分离,扩展了PLOT柱的应用范围。在新的应用领域又体现了它的诱惑力。   图1 石墨化炭黑作固定相PLOT柱分离苯、甲苯、乙苯和二甲苯   色谱柱:15 m x 0.25mm,5.4mg 石墨化炭黑/m,柱温:245 ℃,   分流比:1:1050,进样:0.2&mu L   图2 手性相列内消旋硅胶PLOT柱分离手性化合物   (Anal Chem,2014,86:9595)   1、什么是PLOT柱   PLOT柱是多孔层开管柱(Porous Layer open tubular column)的缩写,早在上世纪50年代末毛细管色谱柱的发明人 Golay就指出:如果把光滑的毛细管壁变成均匀多孔的细颗粒,就会大大有利于毛细管柱的效能(M J R Golay,Gas Chromatography 1957),他在1960年又进一步详细阐述了这一方法,这种多孔层毛细管色谱柱可以降低相比率,同时又使固定液液膜比较薄,有利于传质阻力提高柱效,在具有多孔层毛细管内壁上涂渍一层可以增加内壁的表面积,多孔层物质可以用化学方法处理,也可以用颗粒悬浮物沉积到管壁上,于是早期的气相色谱开拓者们就循这一思路研发,1962-1963年Horvâ th等开发了这一类型的毛细管多孔层色谱柱。   大家知道Csaba Horvâ th (1930-2004)是液相色谱的开拓者之一,他是匈牙利人,上世纪50年代在匈牙利受到化学工程方面的高等教育,1962-1963年间在德国法兰克福大学(美音河畔的法兰克福)Halâ sz的实验室攻读博士期间,研究了无机色谱固定相,使用Golay的静态涂渍技术制备出多孔层气-液色谱柱(在氧化铁颗粒上涂渍聚乙二醇),这种色谱柱叫做载体涂渍开管柱(support-coated open-tubular ,SCOT),属于多孔层开管柱(PLOT)的一种,同时也制备了吸附型气-固色谱柱(见上图1)(Nature,1963,197:71-72)。   PLOT柱发展早期,很多研究是针对SCOT柱,即把填充柱使用的载体用某种胶粘附在毛细管壁上,然后再在这一载体上涂渍固定液。现在商品PLOT柱则严格地限于把多孔吸附剂以化学或物理方法粘附在毛细管内壁上,进行气-固色谱,所以有人也把它叫做&ldquo 吸附固相开管柱&rdquo (adsorption solid-phase open-tubular column,ASPOT)。   2、早期的填充毛细管柱到PLOT柱   由于填充气相色谱柱的分离能力有限,致使许多复杂的混合物无法分离,尽管开发了许许多多固定相,但是仍然由于填充柱柱效不高,无法满足实际工作的需要,而壁涂毛细管柱(WCOT),由于其液膜厚度的限制柱容量小,对低沸点物质保留作用小,对一些永久气体不能分离,而气-固色谱可以分离低沸点物质,但是柱效低对难分离的混合物受到限制,所以出现了填充毛细管气-固色谱柱,1962年Halasz和 Heine就制备了氧化铝的填充毛细管柱,他们把一根1mm直径洁净的钢丝穿入直径为2.2mm的玻璃管,在玻璃管和钢丝的空隙中装入吸附剂,把填充好吸附剂的玻璃管水平放在毛细管拉制机上,并小心地把钢丝移除,把玻璃管拉制成直径为0.3mm的毛细管。在作者的实验中使用的吸附剂是在400℃ 加热9h的氧化铝,吸附剂颗粒直径在 0.10-0.15mm之间,然后把毛细管在120℃下用氢气吹扫24h,以除去吸附剂吸附的水分。用这种10m长的色谱柱就可以把15个C5的烃类在6min 内分离开(Nature,1962,194:971),见下图3。   图3 填充毛细管气-固色谱柱分离芳烃的色谱   色谱柱:10m 柱温:80℃,色谱柱脱活:用晶体硫酸钠湿润载气   载气:氢气,流速:2.5ml/min , 分流比:1:600,FID 检测器   1&mdash 甲烷,2&mdash 乙烷,3&mdash 乙烯,4&mdash 丙烷,5&mdash 丙烯,6&mdash 乙炔,7&mdash 异丁烷,   8&mdash 正丁烷,9&mdash 丁烯-1,10&mdash 反丁烯-2,11&mdash 异丁烯,12&mdash 顺丁烯-2,   13-异戊烷,14&mdash 正戊烷,15&mdash 丁二烯(Nature,1962,194:971)   这种填充毛细管柱可能是由于制作麻烦未能普及,而1963年,Kirkland在开管柱中沉积氧化铝,制备了氧化铝PLOT柱(Anal Chem,1963,35(9):1297),之后,人们把Kirkland作为PLOT柱得第一发明人。前面我们提到Horvath C同时在1963年制备了石墨化炭黑的PLOT柱,因为Horvath C的工作发表在Nature上,可能被人忽视。不过很有意思,后来Kirkland和Horvath二人都成为赫赫有名的液相色谱先驱。由于PLOT柱在许多领域实际工作中得到应用,直到现在有大量商品化的PLOT气相色谱柱,得到广泛的应用。   3、现代商品化PLOT柱所使用的固定相和色谱柱类型   按照季振华1999年的综述(J Chromatogr. A, 1999),842:115&ndash 142),商品化PLOT柱所使用的吸附剂有:氧化铝、石墨化炭黑、分子筛、有机多孔聚合物等,见下表1。   表1 商品化PLOT柱所使用的吸附剂(固定相)   目前世界上几个著名的色谱柱生产厂家都有上述固定相的PLOT柱,比如安捷伦公司就有专门生产PLOT柱的生产线。这些PLOT柱可用于分析干气、低分子量的轻烃异构体和挥发性极性化合物(见表2)。HP家族中的PLOT柱有各种不同的规格,可满足不同领域的使用,有适用于大容量分析的530&mu m柱,如果要进行快速分析或进行GC/MS分析可以选择250&mu m或320&mu m的PLOT柱。   表2 HP-PLOT柱的应用   (1)HP-PLOT 分子筛柱   使用HP-PLOT 分子筛柱分析永久气体和惰性气体, HP-PLOT 分子筛柱是在柱内涂渍有固定化的5A分子筛,涂层厚度为12 ~50&mu m。这样可以保证对氮、氧、氩、甲烷和一氧化碳的分离。   把吸附剂键合到毛细管壁上,减少颗粒脱落的机会,以免颗粒进入系统的阀或检测器里,这样可以大大提高检测器的灵敏度和整个系统的精确性。   分析永久气体一般使用分子筛柱,HP-PLOT 分子筛柱有足够的柱效和柱容量用以很好地分离氮、氧、甲烷和一氧化碳。这种色谱柱适合于多种气体分析样品阀所要求的时间选择。在进行等温40℃分析时,氧和氩只能部分分离。如果要把它们完全分离,可以不用冷冻低温而使用厚膜HP-PLOT 分子筛柱, 可在接近环境温度下分析环境中的惰性气体。在35℃下可以把惰性气体及氧和氮很好地分离,分析时间不到10min。   HP-PLOT 分子筛柱的柱径规格为0.32和0.53mm, 为了能在不使用冷冻低温下分离氧和氩气,可以使用厚膜柱HP-PLOT MoleSieve/5A分子筛柱。薄膜HP-PLOT 分子筛柱是多种应用分析(包括常规的空气监测)的色谱柱,分析时间小于10s。使用薄膜HP-PLOT 分子筛柱可以在低温下分离氧和氩。   (2)HP-PLOT 三氧化二铝柱   HP-PLOT 三氧化二铝柱系列,包括使用三氧化二铝颗粒和各种脱活的三氧化二铝颗粒的涂层开管柱。所有HP-PLOT 三氧化二铝柱都适用于烃气流中C1-C6异构体的分离,每种类型的HP-PLOT 三氧化二铝柱都各有其特点和优点,如表3所述。   HP-PLOT 三氧化二铝柱的柱径从0.25mm到0.53mm, 0.53mm 柱的使用更为普遍,因为它的柱容量大,适合于大体积进样阀的应用。如使用0.53mm HP-PLOT 三氧化二铝KCl柱可分析乙烯和丙烯气体中的组分,用HP-PLOT 三氧化二铝柱检测烃类的检测限为10ppm。对0.32mm和0.53mm内径的所有三种色谱柱其温度上限均为200℃,对0.25mm柱可以在250℃下短时间使用。由于0.25mm柱的柱效高并且使用温度上限也较高,所以它可以用于高达C10的烃类 。   表3 HP-PLOT 三氧化二铝柱   (3)HP-PLOT Q柱   HP-PLOT Q柱是HP公司PLOT柱中应用广泛的色谱柱,HP-PLOT Q柱适合于以下对象的分离:   * 烃类(所有C1-C3异构体,一直到C14的链烃,天然气,炼厂气,乙烯,丙烯气体),   * 二氧化碳,空气/一氧化碳,水,   * 极性溶剂,含氧和含硫化合物。   HP-PLOT Q柱具有以下的点:   a 具有优良的机械稳定性,很少或没有碎片脱落,使其适合于有阀控制的分析和GC/MS的分析   b流失量小,减少老化时间,提高灵敏度   c 重复性好,节省工作时间和购置费用   d 最高恒温使用温度为270℃   4、近年出现新材料制备的PLOT柱   (1)金属有机框架材料(MOFs)制备的PLOT柱   近年金属有机框架材料(MOFs)风靡一时,趋之若鹜,尝试在各个领域中应用的文章数不胜数,在分析化学中的应用如下图 4 所示。   图4 金属有机框架材料(MOFs)在分析化学中的应用领域   何谓金属有机框架材料(MOFs)?金属有机框架化合物(MOFs)是由无机金属离子和有机配体,通过共价键或离子共价键自组装络合形成的具有周期性网络结构的晶体材料。其中,金属为顶点,有机配体为桥链。MOFs结构中的金属离子几乎包含了所有过渡金属离子。通常分为含氮杂环有机配体、含羧基有机配体、含氮杂环与羧酸混合配体三种类型。MOFs具有独特的孔道,可设计和调控它的尺寸和几何形状,并在孔道内存在开放式不饱和金属配位点,使其可用于吸附或分辨不同的气体或离子,MOFs极适宜于辨识特定的小分子或离子,在多相催化、气体分离和储存等方面有着广泛的应用(Li J, Sculley J, Zhou H,Chem Rev,2012, 112:869&ndash 932)。由于MOFs具有优异的性质,比如比表面高、热稳定性好、纳米级孔道结构均一、内孔具有功能性、外表面可修饰等,在分析化学领域有广泛的应用前景(Gu Z,Yang C, N Chang,et al,Accounts Chem Res,2012),MOFs在分析化学中有多种应用,也是气相色谱固定相很好的选项。   2006年陈邦林等(Chen B, Liang C,Yang J,Angew Chem,Inter Ed,2006, 45:1390 &ndash 1393)首次把金属有机框架化合物 MOF-508用作气相色谱固定相,用以分离直链烃和叉链烃,MOF-508的分子式为 Zn(BDC)(4,4&rsquo -Bipy)0.5(MOF-508:BDC=1,4-苯羧酸, 4,4&rsquo -Bipy=4,4&rsquo -联吡啶),其空间结构如图5,它据有简单的立方体带孔的框架,孔径可由两个互相穿插的情况来调节,其一维通道横截面大约为 0.4x0.4 nm,这样的结构对气相色谱分离烷烃具有很好的选择性。但是陈邦林是把金属有机框架材料MOF-508 制备成填充柱进行研究的。   图5 MOF-508 的空间结构   真正制备成毛细管柱,即多孔层毛细管色谱柱(PLOT柱)的研究是南开大学的严秀平研究组(Gu Z,Yan X, Angew Chem,In ted. 2010,47:1477)和云南师范大学的袁黎明研究组(Xie S,Zhang Z, Wang Z,et al, JACS,2011, 133:11892&ndash 11895)的工作。严秀平等在2010年在德国&ldquo 应用化学&rdquo 上发表了使用MOF-101作固定相分离二甲苯位置异构体和乙苯混合物以及其他苯取代化合物的工作,MOF-101是铬和对苯二甲酸的金属框架配位化合物(Cr3O(H2O)2F(BDC)3),具有较大的孔径(2.9&ndash 3.4 nm),适合于做气-固色谱的固定相,他们用动态法把MOF-101涂渍在15m长的大内径(0.53mm)石英毛细管柱上,所用的涂渍方法类似于1963年Horvath所用的方法:首先把MOF-101和乙醇制备成悬浮液,然后以气体压力灌注到毛细管(15m x 0.53mm id)中,以动态涂渍技术把固定相沉积到毛细管壁上,这一色谱柱,自然是PLOT柱了,色谱柱的横截面图如图6所示。用这一色谱柱分离三个二甲苯位置易购体得到十分漂亮的基线分离图,而且分离时间很短见图 7。   图6 MOF-101 毛细管柱的电镜横截面图   图7 MOF-101 毛细管柱分离二甲苯异构体的色谱   袁黎明研究组主要是研究MOFs的手性固定相,2011年他们合成了[{Cu(sala)}n] (H2sala = N-(2-羟苄基)-L-丙氨酸),涂渍成毛细管色谱柱,用以分离外消旋的烃类、醇类和Grob试剂,分离效果见表5。   2013年他们合成了三维开放框架手性MOF,Co(D-Cam)1/2(bdc)1/2(tmdpy) (D-Cam=D-樟脑酸 bdc=1,4-苯二羧酸酯,tmdpy=4,4&prime -三亚甲基联嘧啶),制备成毛细管手性色谱柱,这种Co(D-Cam)1/2(bdc)1/2(tmdpy)化合物具有手性构架的三维结构,具备内在手性的拓扑网络。把它制备成两种毛细管色谱柱,柱A为30m长的530&mu m的大内径柱,柱B为2m长的75&mu m小内径柱,用动态法制备毛细管色谱柱,在120℃下以正十二烷测试它们的柱效,分别为1450 plate/m和3100plate/m.使用烷烃、醇类、外消旋化合物和Grob试剂测试色谱柱。用柱B和商品手性柱分离一些外消旋化合物的分离因子对比见表4。   表4 [{Cu(sala)}n]柱上分离一些外消旋化合物的分离因子   2013年华南师范大学章伟光和郑盛润研究组也涉足MOFs用作气相色谱固定相的研究,他们把管状金属有机框架化合物 MOF-CJ3动态涂渍在毛细管柱中,研究色谱保留行为。MOF-CJ3是以1,3,5-苯三羧酸(TBC)为有机桥联基的管状MOFs,具有一维沿着C的方向延伸的管道,孔壁由TBC有机桥联基组成,它可以提供苯环和羧基形成超分子作用。研究者选择直链、叉链烃、二甲苯和乙苯以及芳香族位置异构体(如甲酚、对苯二酚和二氯苯)作分离测试物,并测定了麦氏常数见表5   表5 MOF-CJ3 色谱柱的麦氏常数      表6是近年使用各种MOFs作固定相的PLOT柱。   表6 各种MOFs作固定相的PLOT柱(J Chromatogr A,2014,1348:1-16)   (2) 介孔分子筛固定相的PLOT柱   1992年,Kresge等首次利用烷基季铵盐阳离子作为表面活性剂,合成了介孔分子筛如 MCM-41,此类介孔分子筛的比表面积大、孔径均一、孔径可调等特点,突破了微孔材料(如沸石)的孔径限制,扩大了用作气相色谱固定相的范围。 1998年赵东元等(现在是复旦大学教授,院士)用亲水的三嵌段共聚物聚环氧乙烷-聚环氧丙烷-聚环氧乙烷(即P123)制备了有序二维六方相介孔分子筛 SBA-15,其壁厚可达6.4nm,孔径可达30nm,并且具有较高的水热性能(100℃,50h)。SBA-15不仅弥补了MCM-41水热性能方面的不足,而且三嵌段共聚物具有可生物降解、无毒、价廉等特点,满足了环保要求,成为近年来的研究热点之一,在催化、吸附、分离、纳米组装、生物医药和传感等方面得到了广泛的应用。( 赵东元等. Science ,1998,279:548)   以前有人利用这类介孔材料的填充柱分离烃类混合物。最近袁黎明研究组把手性向列结构的介孔材料(CNMS)制备成PLOT柱分离手性化合物,这是PLOT柱向高温、高分辨、特殊分离型毛细管色谱方向发展(Anal. Chem. 2014, 86: 9595&minus 9602)。下表7是CNMS柱与典型手性色谱柱分离性能的比较。   表7 CNMS柱与环糊精和氨基酸聚硅氧烷手性色谱柱分离性能的比较   (3)碳纳米材料作固定相的PLOT柱   2005年 Mitra等首次把自组装碳纳米管使用化学蒸汽沉积(CVD)方法涂渍在长的毛细管色谱柱中,得到高的柱效,改变CVD条件会改变CNTs膜的厚度和形态,因而可调整色谱的选择性(Anal Chim Acta,2010,675 :207&ndash 212)。2006年 Mitra 等又利用鈷和鉬盐进行催化的化学蒸汽沉积方法吧单壁CNTs涂渍在毛细管色谱柱中,厚度达300nm,柱效可达每米1000理论塔板数,测试其麦氏常数属非极性固定相(Anal Chem,2006,78:2064&ndash 2070)。2003年至今发表的一些有关碳纳米材料作气相色谱固定相的研究的工作见表9   表8 有关CNTs作PLOT柱的研究的工作   小结   常规PLOT柱在石油和石化等领域有十分成功的应用,而各个大色谱柱生产商都供应各种类型通用和专用类型的PLOT柱。近年各种新材料的出现促使人们把它们制备成PLOT柱进行研究,有很成功的案例,但是没有看到有深入进行色谱柱工艺优化的研究,还没有达到商品色谱柱的性能。希望研究者自己或联合厂家协作进行深入的柱工艺研究,完成这类PLOT柱商品化的过度。下一讲和大家聊一聊&ldquo 顶空进样技术的过去和现在&rdquo 。(未完待续)   (作者:北京理工大学傅若农教授)
  • 3月回顾|质谱领域重要成果汇总
    2023年3月,质谱研究领域的新鲜成果迭出,包括一种基于电喷雾电离质谱法的新型个人健康监测仪、基于MALDITOF技术指尖涂片检测乳腺癌、基于单细胞蛋白质组学技术揭示男性更容易感染COVID-19、利用超高场离子云扫描质谱技术实现高分辨生物分子异构体分析等。仪器信息网特别将相关成果进行编译,以飨读者。  青铜时代的贸易证据(点击了解)  对于考古学家而言,陶瓷瓶中的有机残留物的GC-MS分析似乎揭示了长达公元前三千年的芳香油贸易。从土耳其的一处考古遗址出土的陶瓷瓶被怀疑曾经装有液体,直至最近研究人员对其中的残留物进行了分析!其中GC-MS鉴定了大部分样品中存在的二羧酸、油酸和棕榈酸,这表明它们可能主要含有基于植物的油。二萜类化合物也显示了松香树脂和其他植物衍生产品成分的添加。这是该地区这类商品贸易的最古老证据,突显了GC-MS在考古研究中的重要性。  硅胶手环电喷雾电离质谱法(SWESI-MS)  佩戴手腕监测器能否更好地了解我们的个人健康状况?最近的一项研究成果显示,简单的硅胶手环可能正好可以做到这一点!研究人员使用一种新的环境采样方法,被称为硅胶手环电喷雾电离质谱法(SWESI-MS),对人类暴露于环境化学物质(暴露组)和出汗代谢物进行了表征。类似于纸喷雾质谱法,分析物直接从手环表面检测出来。检测到了典型的汗液代谢物,以及一些其他的代谢物,该成果证实基于质谱检测法的手环有望作为临床监测器。不过作者指出需要进一步研究,但相信这种手环作为非侵入性可穿戴采样器,能够提供个体特征并确定外部和内部健康风险。  单细胞蛋白质组学与COVID-19感染差异  日本大阪大学的研究表明,性别特异性的Treg细胞差异可能解释了为什么男性似乎更容易感染COVID-19。他们使用单细胞蛋白质组学,展示了COVID-19患者循环Tfr细胞的比例发生变化,这是Treg细胞群体的一个子集,负责控制抗体产生,以及与抗体产生相关的其他细胞。女性拥有更多的循环Tfr细胞,而男性有更高的抗体水平,这可能导致在男性COVID-19患者中观察到的抗体产生失调。  MALDITOF助力指尖检测乳腺癌  乳腺X线检查(和活检)是筛查和诊断的黄金标准 但是它会暴露个体于辐射,其灵敏度和特异性有限,可能会使病患感觉不舒服,也可能在文化上不可接受。为了寻找替代方法,英国中塞克斯大学的研究人员结合自下而上的蛋白质组学和MALDI MS来从指尖涂片中检测乳腺癌。再将质谱数据集应用于统计分析和机器学习方法后,最高的预测方法准确率为97.8%。  超高场离子云扫描技术实现高分辨生物分子异构体分析  清华大学精密仪器系生物医学仪器与应用研究团队向高E/N场寻求突破离子迁移分析低分辨率的局限,提出一种超高场离子云扫描技术,并在离子阱质谱仪器上实现迁移分辨率超过10,000的高分辨IM分析,提升较现有技术水平一个数量级以上。研究工作中,离子云扫描方法展现出多种优点,如分析部件结构简单、操作方便、具有强大的时间/空间串级质谱能力等,可以方便地与多类质量分析器联用,用于设计混合型串联分析质谱仪器,在生物分子复杂结构解析上展现出较好的应用前景。
  • 岛津大气中PM2.5物质成分分析仪器(2)
    近来,雾霾天气频袭中国,在相关大气污染报道中,不断出现PM2.5一词。这是指在悬浮粒子状物质中粒径小于2.5&mu m的微小粒子,容易深入肺部,可对健康造成严重影响。 日本已于2009年9月设定了微小粒子状物质(PM2.5)的环境标准,在2010年3月31日修订的「基于大气污染防止法第22条规定的与大气污染状况持续监控相关的事务处理标准」中,规定按照国家指针实施PM2.5的成分分析。2011年7月29日,日本环境省分布了新的「PM2.5成分分析指针」。 继昨日介绍之后,在此继续介绍使用岛津分析装置分析PM2.5成分的应用实例。 ICP-MS分析无机元素成分例 介绍使用ICP-MS定量城市大气粉尘标准物质(NIST SRM1648)的实例。前处理采用微波分解装置分解样品,制成硝酸溶液后进行测定。下表表示大气粉尘标准物质的定量结果。结果与保证值非常一致。 ICPM-8500的特长 实现高灵敏度、多元素的同时分析 具有ppt水平的高灵敏度,并且实现多元素的同时分析。 采用等离子微炬管,降低了氩气消耗量 采用微炬管,使氩气消耗量减半,并且,可以高灵敏度同时分析从微量到高浓度的样品。 台式装置,维护简便 通过使用自动进样器AS-9和自动稀释装置ADU-1(选配件),可以实现自动分析。 X射线荧光装置(EDX)分析无机元素成分例 EDX-720的特长 简便操作,全自动测定 实现设定工作的自动化,初学者也可完成高精度的测定。 无需前处理,直接测定滤纸 如果使用能量色散型X射线荧光分析装置,则可以无化学前处理地对捕集在滤纸上的PM2.5物质进行元素分析。 可以高灵敏度地分析宽范围的元素 TOC仪(燃烧催化氧化/NDIR检测方式)分析水溶性有机物例 作为WSOC(水溶性有机碳)的主成分二羧酸的代表例,以下表示草酸分析的结果。在配制样品的纯水中含有大约0.02mg/L的TOC杂质,因此,各草酸水溶液的TOC值偏高,但都能够以3%以下的变动系数CV值进行定量。 分析条件 装置:TOC-LCPH 催化剂:高灵敏度催化剂 进样量:500&mu L 测定项目:TOC(经过酸化通气处理的TOC) 工作曲线:0-3mgC/L邻苯二甲酸氢钾水溶液 样品:特级试剂草酸2mgC/L、1mgC/L、0.2mgC/L水溶液 草酸水溶液的TOC测定结果 样品名 TOC值(mgC/L) n=3的CV值 2mgC/L草酸水溶液 2.013 0.95% 1mgC/L草酸水溶液 1.017 1.11% 0.2mgC/L草酸水溶液 0.223 2.06% TOC-L的特长 宽测量范围4&mu g/L~30000mg/L,适用于从超纯净水到高污染水(TOC-LCSH/CPH)的一切物质。 采用680℃燃烧催化氧化方式,高效率地测定所有有机成分。具备检测限为4µ g/L的高灵敏度检测能力,对应广泛领域的样品。 省空间省能源设计 与本公司以往装置相比,电力消耗降低36%,装置幅宽缩短约20%。 丰富的型号与选配件 ・ 备有方便处理测定数据的PC型号和简单操作的单机型号 ・ 安装选配件可以测定从固体样品到气体样品 ・ 安装TN单元可以测定总氮 关于岛津 岛津企业管理(中国)有限公司是(株)岛津制作所为扩大中国事业的规模,于1999年100%出资,在中国设立的现地法人公司。 目前,岛津企业管理(中国)有限公司在中国全境拥有13个分公司,事业规模正在不断扩大。其下设有北京、上海、广州、沈阳、成都分析中心;覆盖全国30个省的销售代理商网络;60多个技术服务站,构筑起为广大用户提供良好服务的完整体系。 岛津作为全球化的生产基地,已构筑起了不仅面向中国客户,同时也面向全世界的产品生产、供应体系,并力图构建起一个符合中国市场要求的产品生产体制。 以&ldquo 为了人类和地球的健康&rdquo 为目标,岛津人将始终致力于为用户提供更加先进的产品和更加满意的服务。 更多信息请关注岛津公司网站www.shimadzu.com.cn/an/ 。
  • Picarro | 人为减排增强了大气新粒子生成:2022年北京冬奥会期间的观测证据
    随着工业化和城市化的快速发展,人类活动对环境的影响日益严重。其中,大气污染是人们最为关注的问题之一。为了改善大气质量,人们采取了各种措施,其中之一就是人为减排。人为减排对大气环境的影响以及机理也成为重要的研究方向,中国科学院大气物理研究所在2022年冬奥会举办之际,开展了相关研究。研究背景气溶胶颗粒对地球-大气系统具有深远的影响。作为对流层气溶胶的重要来源,新粒子生成(NPF)在云凝结核(CCN)形成中起着重要作用,并导致中国特大城市严重的雾霾事件。在受污染的大气中,NPF和参与成核的气态物质的行为尚不清楚。硫酸(SA)是清洁大气中参与成核的主要物质,其他气态前体物,例如氨、二甲胺(DMA)和二羧酸,会在污染环境中增强成核。由于气态前体和可凝蒸气丰富,成核机制在不同位置会有所不同。COVID 19封锁期间的研究表明,NPF事件的生成率(J3)和增长率(GR)的结果各不相同。在未来空气质量改善的情况下,大气NPF在污染大气中的行为仍不确定,需要进一步评估。2022年北京冬奥会为研究人为减排对中国特大城市成核和生长过程的影响提供了难得的机会。这项研究的重点是冬季奥运会前后NPF事件和气态前体的演变,以了解它们在雾霾形成中的作用并为未来制定污染减排政策提供信息。研究方法中国科学院大气物理研究所的研究团队于2022年1月1日-3月31日在北京2022年冬季奥运会主会场附近的北京IAP场地进行观测活动。该地点代表了典型的城市区域,与北京城市的平均颗粒物水平有很好的相关性。研究人员观测了气溶胶颗粒物的粒径分布、细颗粒物化学组成(有机物(OA)、硫酸盐(SO42-)、硝酸盐(NO3-)、铵(NH4+)和氯化物(chl))、气体物质浓度(O3、NO2、CO、SO2)、PM2.5质量浓度及气象参数(温度、相对湿度、辐射、海平面气压、风速和风向)以调查NPF事件及其气态前体的演变,了解不同时期气态前体在NPF和雾霾形成中的作用。NH3排放测量利用Picarro G1103氨气分析仪测量NH3浓度结论WOG和冬季残奥会(WPG)期间成核事件有所增强,NPF事件的频率( 52.4% 38.5% )高于Pre-WOG (25.0%)和Post-WOG(27.8%),这主要是由CS较低造成的。此外,WOG(6.4±4.1 cm-3s-1 )和WPG(6.1±2.9 cm-3s-1)期间的平均J3也高于Pre-WOG(5.6±2.9 cm-3s-1)和Post-WOG(5.7±3.1 cm-3s-1),而GR ( 2.3±1.8 nmh-1,2.7±1.4 nmh-1)略高于Pre-WOG (2.1±1.5 nm&sdot h-1)和Post-WOG (2.2±1.6 nm&sdot h-1)。研究发现,硫酸和氨浓度较低,WOG和WPG期间较高的J3可能是由较高的胺贡献的。log J3和SA之间的相关性,与CLOUD实验结果高度一致,表明胺增强了硫酸成核。进一步证明了上述结果。硫酸对GR3-7nm的贡献超过20%,在WOG和WPG期间,大气氧化能力大大增强,颗粒生长到10 nm以上时,有机化合物的贡献迅速增加。此外,还发现硝酸铵在NPF引发的雾霾事件中发挥着重要作用,其特点是WOG之后,NPF事件生长后期的硝酸盐产量高于WPG,建议采取措施控制NH3和NO2排放,以减少新粒子生成和生长造成的PM2.5污染。
  • 重磅!35项食品安全国家标准立项计划公示!
    各有关单位:为贯彻落实食品安全“最严谨的标准”要求,根据《中华人民共和国食品安全法》及其实施条例规定,我委制定了《2024年度食品安全国家标准立项计划》,现印发给你们,请认真组织落实,同时提出以下要求:一、标准研制应当以保障人民健康为宗旨,以食品安全风险评估结果为依据,充分考虑我国经济发展水平和客观实际需要,参考相关国际标准和风险评估结果,深入调查研究,确保标准指标设置科学合理。二、项目牵头单位负责组建标准起草协作组,提供项目所需人员、经费、科研等方面的资源和保障条件,确保项目承担单位分工协作、密切配合、优势互补,并充分调动发挥监管部门、行业组织、企业、科研院校和专业机构等相关单位和领域专家的作用。三、项目承担单位登录食品安全国家标准管理信息系统(https://sppt.cfsa.net.cn),填报并打印2024年食品安全国家标准制定、修订项目委托协议书或购买服务合同,由项目承担单位相关负责人签字并加盖单位公章,于2024年8月10日前报送食品安全国家标准审评委员会秘书处办公室。四、项目承担单位应当制定工作计划、项目路线图和进度表,保证标准研制质量和工作进度,对所制定标准文本负全责,确保标准在起草、送审、修改、校对、印刷、解读等各环节准确无误。项目完成后,应当按规定向秘书处办公室提交经费决算报告,经费决算报告须由财务负责人和单位相关负责人签字并加盖公章。对未如期完成项目的将采取追回经费、取消再次申请资格等方式。国家卫生健康委办公厅2024年7月16日2024年度食品安全国家标准立项计划序号项目名称制定/修订承担单位食品产品标准 5项1食用油脂制品修订上海市疾病预防控制中心、上海市质量监督检验技术研究院、江南大学、国家食品安全风险评估中心、中国焙烤食品糖制品工业协会2预制菜制定国家食品安全风险评估中心、中国物流与采购联合会食材供应链分会、中国商业联合会、成都市食品检验研究院、全国畜禽屠宰质量标准创新中心、中轻食品工业管理中心、中国食品科学技术学会3复合调味料修订成都市食品检验研究院、重庆市食品药品检验检测研究院、广州质量监督检测研究院、国家食品安全风险评估中心、中国肉类食品综合研究中心4冲调谷物制品修订中国食品科学技术学会、国家食品安全风险评估中心、江南大学、北京工商大学、中国焙烤食品糖制品工业协会5湿米制品制定广东省公共卫生研究院、海南省疾病预防控制中心、云南省卫生健康综合监督中心、国家食品安全风险评估中心、上海市质量监督检验技术研究院食品添加剂质量规格标准 14项6食品添加剂 酸处理淀粉修订上海市质量监督检验技术研究院、国家食品安全风险评估中心、上海市食品添加剂和配料行业协会、四川省食品检验研究院、浙江省食品添加剂与配料行业协会7食品添加剂 氧化淀粉修订上海市质量监督检验技术研究院、国家食品安全风险评估中心、上海市食品添加剂和配料行业协会、四川省食品检验研究院、浙江省食品添加剂与配料行业协会8食品添加剂 淀粉磷酸酯钠(又名淀粉磷酸酯,磷酸酯淀粉,单淀粉磷酸酯)修订江南大学、中国食品添加剂和配料协会、江西省检验检测认证总院食品检验检测研究院、上海市食品添加剂和配料行业协会、皖南医学院9食品添加剂 磷酸酯双淀粉修订江南大学、中国食品添加剂和配料协会、江西省检验检测认证总院食品检验检测研究院、上海市食品添加剂和配料行业协会、皖南医学院10食品添加剂 磷酸化二淀粉磷酸酯修订江西省检验检测认证总院食品检验检测研究院、中国生物发酵产业协会、湖南省产商品质量检验研究院、山东省食品药品检验研究院、大连工业大学11食品添加剂 乙酰化二淀粉磷酸酯修订江西省检验检测认证总院食品检验检测研究院、中国生物发酵产业协会、湖南省产商品质量检验研究院、山东省食品药品检验研究院、大连工业大学12食品添加剂 醋酸酯淀粉修订中国食品添加剂和配料协会、发酵行业生产力促进中心、中国生物发酵产业协会、沈阳市食品药品检验所、华中农业大学13食品添加剂 乙酰化双淀粉已二酸酯修订中国食品添加剂和配料协会、发酵行业生产力促进中心、中国生物发酵产业协会、沈阳市食品药品检验所、华中农业大学14食品添加剂 羟丙基二淀粉磷酸酯修订四川省疾病预防控制中心、四川省食品检验研究院、沈阳市食品药品检验所、深圳市计量质量检测研究院、大连工业大学15食品添加剂 羟丙基淀粉修订四川省疾病预防控制中心、四川省食品检验研究院、沈阳市食品药品检验所、深圳市计量质量检测研究院16食品添加剂 氧化羟丙基淀粉修订国家食品安全风险评估中心、上海市质量监督检验技术研究院、江南大学、发酵行业生产力促进中心、广州质量监督检测研究院17食品添加剂 羧甲基淀粉钠修订国家食品安全风险评估中心、上海市质量监督检验技术研究院、江南大学、发酵行业生产力促进中心、广州质量监督检测研究院18食品添加剂 结冷胶修订国家食品安全风险评估中心、中国食品添加剂和配料协会19食品添加剂 镍修订中海油天津化工研究设计院有限公司食品中放射性物质标准 1项20食品中放射性核素碳-14的测定制定中国疾病预防控制中心辐射防护与核安全医学所、北京市疾病预防控制中心、浙江省疾病预防控制中心、福建省职业病与化学中毒预防控制中心、国家食品安全风险评估中心理化检验方法与规程标准 5项21食品粘度的测定制定山东省食品药品检验研究院、国家食品安全风险评估中心、深圳市计量质量检测研究院22食品接触材料及制品 1,2-环己二羧酸二(异壬基)酯和1,4-苯二羧酸双(2-乙基己基)酯迁移量的测定制定南京海关危险货物与包装检测中心、北京市疾病预防控制中心、南京农业大学、宁波检验检疫科学技术研究院、国家食品安全风险评估中心23食品接触材料及制品 1,4-二氯苯迁移量的测定制定广州海关技术中心、国家食品安全风险评估中心、广东省食品检验所(广东省酒类检测中心)、上海市质量监督检验技术研究院、宁波检验检疫科学技术研究院24食品接触材料及制品 苯酚与甲醛和缩水甘油醚及其羟基和氯化衍生物的测定制定北京市产品质量监督检验研究院、广州海关技术中心、湖南省产商品质量检验研究院、上海市食品接触材料协会、国家食品安全风险评估中心25食品中甘油三酯、甘油二酯和单甘酯的测定制定北京市疾病预防控制中心、青岛海关技术中心、四川省食品检验研究院、华南理工大学微生物检验方法与规程标准 2项26食品微生物学检验 金黄色葡萄球菌检验修订四川省疾病预防控制中心、国家食品安全风险评估中心、四川省食品检验研究院、北京市疾病预防控制中心、北京市食品检验研究院(北京市食品安全监控和风险评估中心)27食品微生物学检验 副溶血性弧菌检验修订深圳海关食品检验检疫技术中心、广州海关技术中心、厦门海关技术中心、浙江省疾病预防控制中心、国家食品安全风险评估中心毒理学评价方法与规程标准 1项28食品安全性毒理学评价程序修订国家食品安全风险评估中心、农业农村部农药检定所、中国兽医药品监察所、中国农业大学生产经营规范标准 2项29湿米面制品中米酵菌酸污染控制规范制定广东省疾病预防控制中心、广东省公共卫生研究院、国家食品安全风险评估中心、广州质量监督检测研究院30食品添加剂生产通用卫生规范修订国家食品安全风险评估中心、发酵行业生产力促进中心、中国食品添加剂和配料协会、中国生物发酵产业协会、上海市食品化妆品质量安全管理协会营养与特殊膳食食品标准 5项31食品营养强化剂 麦角钙化醇(维生素D2)修订江南大学、国家食品安全风险评估中心、发酵行业生产力促进中心、广州海关技术中心32食品营养强化剂 L-赖氨酸-L-谷氨酸制定东北农业大学、中国生物发酵产业协会、国家食品安全风险评估中心、山东省食品药品检验研究院、中国营养保健食品协会33食品营养强化剂 L-谷氨酸钙制定江西省检验检测认证总院食品检验检测研究院、国家食品安全风险评估中心、山东省食品药品检验研究院、江西农业大学、中国生物发酵产业协会34食品营养强化剂 L-谷氨酸钾制定国家食品安全风险评估中心、山东省食品药品检验研究院、发酵行业生产力促进中心、东北农业大学35食品营养强化剂 L-天冬氨酸镁 制定中国生物发酵产业协会、国家食品安全风险评估中心、山东省食品药品检验研究院、东北农业大学、沈阳市食品药品检验所
  • 34项食品安全国家标准立项计划(征求意见稿)发布!
    各有关单位:根据《食品安全法》及其实施条例规定,为做好食品安全国家标准制定、修订工作,经向部门、行业和社会广泛征集年度立项建议,经食品安全国家标准审评委员会各相关专业委员会审议通过,我委拟订了《2024年度食品安全国家标准立项计划(征求意见稿)》,优先制定、修订风险防控和产业急需的食品安全国家标准34项。现公开征求意见,请于2024年4月7日前将意见书面反馈秘书处。传真:010—68792408食品安全国家标准审评委员会秘书处2024年3月12日2024年度食品安全国家标准立项计划(征求意见稿)序号建议项目名称制定/修订建议承担单位食品产品标准 5项1食用油脂制品修订上海市疾病预防控制中心、上海市质量监督检验技术研究院、江南大学、国家食品安全风险评估中心、中国焙烤食品糖制品工业协会2预制菜制定国家食品安全风险评估中心、中国物流与采购联合会冷链物流专业委员会、中国商业联合会、成都市食品检验研究院、全国畜禽屠宰质量标准创新中心3复合调味料修订成都市食品检验研究院、重庆市食品药品检验检测研究院、广州质量监督检测研究院、国家食品安全风险评估中心、中国肉类食品综合研究中心4冲调谷物制品修订中国食品科学技术学会、国家食品安全风险评估中心、江南大学、北京工商大学、中国焙烤食品糖制品工业协会5湿米制品制定广东省公共卫生研究院、海南省疾病预防控制中心、云南省卫生健康综合监督中心、国家食品安全风险评估中心、上海市质量监督检验技术研究院食品添加剂标准 12项6食品添加剂 酸处理淀粉修订上海市质量监督检验技术研究院、国家食品安全风险评估中心、上海市食品添加剂和配料行业协会、四川省食品检验研究院、浙江省食品添加剂与配料行业协会7食品添加剂 氧化淀粉修订上海市质量监督检验技术研究院、国家食品安全风险评估中心、上海市食品添加剂和配料行业协会、四川省食品检验研究院、浙江省食品添加剂与配料行业协会8食品添加剂 淀粉磷酸酯钠(又名淀粉磷酸酯,磷酸酯淀粉,单淀粉磷酸酯)修订江南大学、中国食品添加剂和配料协会、江西省检验检测认证总院食品检验检测研究院、上海市食品添加剂和配料行业协会9食品添加剂 磷酸酯双淀粉修订江南大学、中国食品添加剂和配料协会、江西省检验检测认证总院食品检验检测研究院、上海市食品添加剂和配料行业协会10食品添加剂 磷酸化二淀粉磷酸酯修订江西省检验检测认证总院食品检验检测研究院、中国生物发酵产业协会、湖南省产商品质量检验研究院、山东省食品药品检验研究院11食品添加剂 乙酰化二淀粉磷酸酯修订江西省检验检测认证总院食品检验检测研究院、中国生物发酵产业协会、湖南省产商品质量检验研究院、山东省食品药品检验研究院12食品添加剂 醋酸酯淀粉修订中国食品添加剂和配料协会、发酵行业生产力促进中心、中国生物发酵产业协会、沈阳市食品药品检验所、华中农业大学13食品添加剂 乙酰化双淀粉已二酸酯修订中国食品添加剂和配料协会、发酵行业生产力促进中心、中国生物发酵产业协会、沈阳市食品药品检验所、华中农业大学14食品添加剂 羟丙基二淀粉磷酸酯修订四川省疾病预防控制中心、四川省食品检验研究院、沈阳市食品药品检验所、深圳市计量质量检测研究院15食品添加剂 羟丙基淀粉修订四川省疾病预防控制中心、四川省食品检验研究院、沈阳市食品药品检验所、深圳市计量质量检测研究院16食品添加剂 氧化羟丙基淀粉修订国家食品安全风险评估中心、上海市质量监督检验技术研究院、江南大学、发酵行业生产力促进中心、广州质量监督检测研究院17食品添加剂 羧甲基淀粉钠修订国家食品安全风险评估中心、上海市质量监督检验技术研究院、江南大学、发酵行业生产力促进中心、广州质量监督检测研究院食品中放射性物质标准 1项18食品中放射性核素碳-14的测定制定中国疾病预防控制中心辐射防护与核安全医学所、北京市疾病预防控制中心、福建省职业病与化学中毒预防控制中心、浙江省疾病预防控制中心、国家食品安全风险评估中心理化检验方法与规程标准 6项19食品粘度的测定制定山东省食品药品检验研究院、国家食品安全风险评估中心20食品接触材料及制品 1,2-环己二羧酸二(异壬基)酯和1,4-苯二羧酸双(2-乙基己基)酯迁移量的测定制定南京海关危险货物与包装检测中心、北京市疾病预防控制中心、南京农业大学、宁波检验检疫科学技术研究院、国家食品安全风险评估中心21食品接触材料及制品 1,4-二氯苯迁移量的测定制定广州海关技术中心、国家食品安全风险评估中心、广东省食品检验所(广东省酒类检测中心)、上海市质量监督检验技术研究院、宁波检验检疫科学技术研究院22食品接触材料及制品 苯酚与甲醛和缩水甘油醚及其羟基和氯化衍生物的测定制定北京市产品质量监督检验研究院、广州海关技术中心、湖南省产商品质量检验研究院、上海市食品接触材料协会、国家食品安全风险评估中心23食品中甘油三酯、甘油二酯和单甘酯的测定制定北京市疾病预防控制中心、青岛海关技术中心、四川省食品检验研究院、华南理工大学24食品中茶叶茶氨酸的测定制定厦门海关技术中心、福建省产品质量检验研究院、国家食品安全风险评估中心微生物检验方法与规程标准 2项25食品微生物学检验 金黄色葡萄球菌检验修订四川省疾病预防控制中心、国家食品安全风险评估中心、四川省食品检验研究院、北京市疾病预防控制中心26食品微生物学检验 副溶血性弧菌检验修订深圳海关食品检验检疫技术中心、广州海关技术中心、厦门海关技术中心、浙江省疾病预防控制中心、国家食品安全风险评估中心毒理学评价方法与规程标准 1项27食品安全性毒理学评价程序修订国家食品安全风险评估中心生产经营规范标准 2项28湿米面制品中米酵菌酸污染控制规范制定广东省疾病预防控制中心、广东省公共卫生研究院、国家食品安全风险评估中心、广州质量监督检测研究院29食品添加剂生产通用卫生规范修订国家食品安全风险评估中心、发酵行业生产力促进中心、中国食品添加剂和配料协会、中国生物发酵产业协会营养与特殊膳食食品标准 5项30食品营养强化剂 麦角钙化醇(维生素D2)修订江南大学、国家食品安全风险评估中心、发酵行业生产力促进中心、广州海关技术中心31食品营养强化剂 L-赖氨酸-L-谷氨酸制定东北农业大学、中国生物发酵产业协会、国家食品安全风险评估中心、山东省食品药品检验研究院、中国营养保健食品协会32食品营养强化剂 L-谷氨酸钙制定江西省检验检测认证总院食品检验检测研究院、国家食品安全风险评估中心、山东省食品药品检验研究院、江西农业大学、中国生物发酵产业协会33食品营养强化剂 L-谷氨酸钾制定国家食品安全风险评估中心、山东省食品药品检验研究院、发酵行业生产力促进中心、东北农业大学34食品营养强化剂 L-天冬氨酸镁 制定中国生物发酵产业协会、国家食品安全风险评估中心、山东省食品药品检验研究院、东北农业大学、沈阳市食品药品检验所
  • 生态环境部关于公开征求《水质 全氟辛基磺酸和全氟辛基羧酸的测定 固相萃取/液相色谱-三重四极杆质谱法》等四项国家生态环境标准意见
    各有关单位:为贯彻《中华人民共和国环境保护法》,规范生态环境监测工作,我部组织编制了《生态遥感地面观测与验证技术导则》等四项国家生态环境标准征求意见稿,现征求各有关单位意见。标准征求意见稿及其编制说明,可登录我部网站(http://www.mee.gov.cn)“意见征集”栏目检索查阅。其他各有关单位和个人也可提出意见和建议。请于2022年1月10日前将意见建议书面反馈我部,并注明联系人及联系方式,电子文档同时发送至联系人邮箱。联系人:生态环境部监测司 曹 宇电话:(010)65646228传真:(010)65646236邮箱:zhiguanchu@mee.gov.cn地址:北京市东城区东安门大街82号邮编:100006附件:1.征求意见单位名单2.生态遥感地面观测与验证技术导则(征求意见稿)3.《生态遥感地面观测与验证技术导则(征求意见稿)》编制说明4.固定污染源废气 烟气黑度的测定 林格曼望远镜法(征求意见稿)5.《固定污染源废气 烟气黑度的测定 林格曼望远镜法(征求意见稿)》编制说明6.水质 全氟辛基磺酸和全氟辛基羧酸的测定 固相萃取/液相色谱-三重四极杆质谱法(征求意见稿)7.《水质 全氟辛基磺酸和全氟辛基羧酸的测定 固相萃取/液相色谱-三重四极杆质谱法(征求意见稿)》编制说明8.土壤和沉积物 全氟辛基磺酸和全氟辛基羧酸的测定 液相色谱-三重四极杆质谱法(征求意见稿)9.《土壤和沉积物 全氟辛基磺酸和全氟辛基羧酸的测定 液相色谱-三重四极杆质谱法(征求意见稿)》编制说明生态环境部办公厅2021年12月9日(此件社会公开)附件1征求意见单位名单生态环境部各流域海域生态环境监督管理局监测与科研中心各省、自治区、直辖市生态环境监测站(中心)新疆生产建设兵团生态环境第一监测站各环境保护重点城市生态环境监测站(中心)中国科学院生态环境研究中心中国环境科学研究院中国环境监测总站生态环境部环境发展中心生态环境部南京环境科学研究所生态环境部华南环境科学研究所国家环境分析测试中心河北环境工程学院
  • 岛津应用:矿泉水中氰化物和氯化氰的检测
    2014年12月22日,日本颁布了牛奶和奶制品成分标准的相关指令,以及食品、添加物等规格基准的部分修订指令(日本厚生劳动省令第141号、厚生劳动省告示第482号;同日实施),还规定了有关试验方法(食安发1222第4号)。指令中规定,矿泉水中的氰标准值为0.01 mg/L(氰化物离子和氯化氰的总值),试验方法为离子色谱柱后衍生化法。 本文向您介绍按照修订后的清凉饮料水试验方法(以下称为“指令”),使用岛津氰化物分析系统对矿泉水中的氰化物离子和氯化氰进行分析的示例。 按照指令规定,使用离子排斥柱将氰化物离子和氯化氰分离,然后使用4-吡啶羧酸吡唑啉酮法进行柱后衍生化,在波长638nm处进行检测。柱后衍生化反应分两步进行,第一步利用氯胺T 溶液进行氯化,第二步利用 1-苯基-3-甲基-5-吡唑啉酮/4-吡啶羧酸溶液进行显色。 按照指令规定的岛津氰化物系统流路图 了解详情,敬请点击《使用离子色谱柱后衍生化法分析矿泉水中的氰化物和氯化氰》 关于岛津 岛津企业管理(中国)有限公司是(株)岛津制作所于1999年100%出资,在中国设立的现地法人公司,在中国全境拥有13个分公司,事业规模不断扩大。其下设有北京、上海、广州、沈阳、成都分析中心,并拥有覆盖全国30个省的销售代理商网络以及60多个技术服务站,已构筑起为广大用户提供良好服务的完整体系。本公司以“为了人类和地球的健康”为经营理念,始终致力于为用户提供更加先进的产品和更加满意的服务,为中国社会的进步贡献力量。 更多信息请关注岛津公司网站www.shimadzu.com.cn/an/ 。 岛津官方微博地址http://weibo.com/chinashimadzu。 岛津微信平台
  • 火速围观 | VOC/SVOC等混标新品火热上线啦!
    初秋八月,坛墨质检新品如期而至,欢迎咨询订购!VOC/SVOC定义及分类挥发性有机物:VOCs 是指常温下饱和蒸汽压大于70Pa、 常压下沸点在260℃ 以下的有机化合物,或在20℃ 条件下,蒸汽压大于或者等于10Pa 且具有挥发性的全部有机化合物。主要按其化学结构的不同,可以进一步分为八类: 烷类、芳烃类、烯类、卤烃类、酯类、醛类、酮类 和其他。半挥发性有机物: 半挥发性有机污染物(SVOCs ),是指沸点一般在170-350℃ 之间(由于分类依据模糊,经常与挥发性有机物有交叉)、蒸汽压在13.3*10 -5 Pa的有机物。主要包括:二噁英类 、 多环芳烃 、 有机农药类 、 氯代苯类 、多氯联苯类 、吡啶类、喹啉类、 硝基苯类 、 邻苯二甲酸酯类 、 亚硝基胺类 、 苯胺类 、 苯酚类 、多氯萘类和多溴联苯类等化合物。*图片仅供参考1HJ 639-2012 水质 挥发性有机物的测定 吹扫捕集/气相色谱-质谱法环境保护部2012年12月发布标准《HJ 639-2012 水质 挥发性有机物的测定 吹扫捕集/气相色谱-质谱法》自2013年3月1日起实施;本标准适用于海水、地下水、地表水、生活污水和工业废水中57种挥发性有机物的测定。检测方法:待测样品经吹扫吸附收集,再加热脱附进样,气相色谱分离,质谱检测定性,内标法定量。坛墨产品:甲醇中2种内标同位素混标(80638KA);甲醇中56种VOC混标(80032GA);甲醇中57种挥发性有机物VOC混标(80911JA);甲醇中54种挥发性有机物VOC混标(80706KA);2二氯甲烷中64种半挥发性有机物SVOC混标(80251KM)生态环境部2018年7月29号发布标准《HJ 951-2018 固体废物 半挥发性有机物的测定 气相色谱-质谱法》自2018年12月1日起实施;适用于固体废物及其浸出液中氯代烃类、邻苯二甲酸酯类、亚硝胺类、醚类、卤醚类、酮类、苯胺类、吡啶类、喹啉类、硝基芳香烃类、酚类包括硝基酚类、有机氯农药类、多环芳烃类等64种半挥发性有机物的筛查和定量分析。检测方法:固体废物和浸出液中的半挥发性有机物经提取、净化、浓缩、定容后,用气相色谱分离、质谱检测。根据质谱图、保留时间、碎片离子质荷比及其丰度定性,内标法定量。坛墨产品:二氯甲烷中6种内标同位素混标(80119QM);二氯甲烷/苯中64种半挥发性有机物SVOC混标(80251JMO,1000ppm);二氯甲烷中64种半挥发性有机物SVOC混标(80251JM,1000ppm) 二氯甲烷中64种半挥发性有机物SVOC混标 (80251KM,2000ppm);3甲醇中6种挥发性有机物VOC混标(80680JD)环境保护部2011年2月发布标准《HJ 605-2011 土壤和沉积物 挥发性有机物的测定 吹扫捕集/气相色谱-质谱法》自2011年6月1日起实施;本规定了土壤和沉积物中65种挥发性有机物的测定。检测方法:待测样品经吹扫吸附收集,再加热脱附进样,气相色谱分离,质谱检测定性,内标法定量。坛墨产品:甲醇中3种内标混标同位素(80119QM);甲醇中3种替代物混标(80047KA);甲醇中59种挥发性有机物VOC混标(80253JA,1000ppm);甲醇中59种挥发性有机物VOC混标(80648KA,2000ppm,研发中);甲醇中6种挥发性有机物VOC混标 (80903KA);4丙酮中7种苯氧羧酸农药混标(80680JD)环境保护部2019年5月发布标准《HJ 1022-2019 土壤和沉积物 苯氧羧酸类农药的测定 高效液相色谱法》自2019年9月1日起实施;本规定了土壤和沉积物中7种苯氧羧酸类农药的测定。检测方法:待测样品乙腈超声提取,提取液经固相萃取柱净化浓缩后,进液相色谱进行分离,高效液相色谱-三重四极杆质谱法定性,外标法定量。坛墨产品:丙酮中7种苯氧羧酸类农药混标(80680JD, 1000ppm);丙酮中7种苯氧羧酸类农药混标(80680GD,100ppm);
  • 离心机的世界也可以很有趣——你所不知道的“温度控制”
    相信看过美剧《CSI》(犯罪现场调查)的朋友们一定对剧中诸如指纹数据库、从带血棉签中五分钟内验出DNA等等炫酷的证据检测桥段并不陌生,虽然是源于想象的虚构,但却自然而逼真。其实,纵观司法科学鉴定技术的发展长河,《CSI》里面的许多高科技手法在现实中已被广泛应用,特别是DNA技术的应用无疑是个历史性的突破。从犯罪现场到实验室的王牌证据长期以来,作为给犯罪嫌疑人定罪的“毋庸置疑的铁证”,DNA鉴定一直被认为是目前法庭科学领域中最有效的统一认定技术,虽然说对于少数特殊情况存在一定的例外和局限性,但总的来说,DNA证据仍是当今人类世界可靠性最高的证据。尤其是在血腥的犯罪现场留有血迹、精斑、毛发等人体生物检材的命案中,DNA证据一直是对付罪犯的利器,被社会各界寄予厚望。众所周知,得到足量且纯净的DNA样本是进行准确鉴定的前提,因此DNA提取纯化技术是法医DNA检验的第一个步骤,也是最关键的步骤。通常,从犯罪现场提取到的各种生物检材难免会腐败、变质和被污染,这就对DNA提取纯化技术有了更高的要求。目前在法医实验室中,常用的提取方法无外乎五种,即Chelex100法、有机法(苯酚-氯仿提取)、磁珠法、盐析法、碱性法(NaOH提取)。不管哪种方法,提取过程大体上分为材料准备、破碎细胞或包膜以释放内容物、核酸分离纯化、沉淀或吸附核酸并去除杂质、将核酸溶解在适量缓冲液或水中。而作为整个过程当中至关重要的环节,离心分离的好坏直接决定着实验的成败。不容忽视的离心内部环境——温度控制说到DNA提取等生物样品分离实验,除了在司法鉴定中扮演着举足轻重的角色以外,在基因工程和蛋白质工程等分子生物学领域也应用极广,而样品分离实验自然离不开离心机的性能技术指标与正确使用,比如转速设定、离心时间、摆放位置等,而其中最关键也是容易被忽视的一点就是样品的温度控制。下面我们拿DNA提取实验举例,采用传统且应用最广泛的有机法在不同温度条件下提取血液DNA。在细胞的细胞核中,DNA与蛋白质结合形成染色体,因此提取DNA时既要将蛋白质等物质除尽,又要尽可能保持DNA分子的完整性,即保持DNA带不发生断裂,无外源核酸污染。实验在4℃和常温条件下分别进行。4℃条件下采用高速冷冻离心机,而常温条件采用小型台式高速离心机,实验结果显示,4℃条件提取的DNA条带整齐无拖带,而常温提取的DNA有明显的拖带现象,表明前者的DNA片段完整无断裂,未被污染,且分子大小相同,而后者的DNA有部分已断裂。在本实验采用的有机法中,由于酚类容易被氧化,产生醌、二羧酸等氧化物,可破坏核酸中的磷酸二酯键,并引起DNA链的交联,常温条件下由于离心机转子高速旋转产生大量热,加速了酚的氧化,并增加了血液中细胞释放的内源核酸酶的活性,导致部分基因组DNA降解。而在4℃条件下提取的DNA由于温度低,酚不易被氧化,内源核酸酶活性较低,因此能够保证DNA的完整性。【1】看过了上面的实验,您是不是对温度控制的重要性有了直观的认识呢?其实,对于诸如生物制药或营养物质萃取等对生物活性保留要求很苛刻的技术项目,离心萃取的温度都需要严格符合要求,与标准相差几摄氏度可能就会严重影响品质,常见的情况就是超过温度区间范围会对活性酶的指标有影响或者温度过低导致凝结,因此选用带精确温控的离心机则是重中之重。需要严格温控的实验基本上都要求样品保持在较低的温度,因此在使用带冷冻功能的离心机之前需要进行预冷,并进行温度校准和监测温度波动。现在问题来了,市面上离心机的温度传感器通常都在机腔内,而中间会隔着不同大小规格的离心管,不同型号的转子以及腔内空气等介质,所以即使准备工作做得很周全,在离心机高速运转的时候,传感器所探测到的腔体温度与样品的实际温度难免会有差值,这个差值又因为转子选择,温度、转速设置的不同而发生进一步的变化。如前所述,这个差值在那些要求极为苛刻的实验项目中是绝不允许的。奥豪斯离心机陪你玩转温度控制看了这么多,有人一定要问,有没有什么好的办法能自动解决这个温度差值呢?重点马上登场。配有强劲的冷冻系统和样品温度补偿功能的奥豪斯FC5515R高速冷冻离心机应运而生,全面瓦解让您头疼的温度控制难题!早在产品研发阶段,奥豪斯就对在不同条件下腔体温度与样品实际温度间的温差数据进行了完善的测定,建立了补偿模型,并将这个补偿模型内置在离心机的控制软件系统,传感器测得的腔体温度经过补偿,出现在显示屏上的温度数值即为离心样品的实际温度,保证离心过程在设定的样品温度进行。这样一来,通过系统内设的样品温度补偿,完美地解决了离心机设置显示的温度与离心过程中样品的实际温度不一致的问题。此外,FC5515R强劲的冷冻系统保证了即便在全速运转的情况下,也能将温度保持在所需温度。怎么样,看完了上面的精彩片段您还会为离心过程中的温度控制难题发愁吗?事实上,奥豪斯所有带冷冻功能的离心机型号都具有以上所述的特点。如果您想了解更多相关案例以及奥豪斯离心机家族的产品信息,或正在寻求更专业细致的选型指导,请及时联系我们,我们的工程师们将会在第一时间为您提供专业的解答和建议!【1】参考文献:李强子,张丽. 温度对提取DNA质量的影响[J]. 中国生物制品学杂志,2016年4月,29(4)
  • 生态环境部发布10项国家生态环境标准
    为支撑相关生态环境质量标准和污染物排放标准实施,近期,生态环境部发布《环境空气和废气 吡啶的测定 气相色谱法》(HJ 1219-2021)、《环境空气 6种挥发性羧酸类化合物的测定 气相色谱-质谱法》(HJ 1220-2021)、《环境空气 降尘的测定 重量法》(HJ 1221-2021)、《固体废物 水分和干物质含量的测定 重量法》(HJ 1222-2021)、《环境空气 挥发性有机物的应急测定 便携式气相色谱-质谱法》(HJ 1223-2021)、《环境空气 有机氯农药的测定 高分辨气相色谱-高分辨质谱法》(HJ 1224-2021)、《环境空气 臭氧的自动测定 化学发光法》(HJ 1225-2021)、《水质 硫化物的测定 亚甲基蓝分光光度法》(HJ 1226-2021)、《水质 挥发性有机物的应急测定 便携式顶空/气相色谱-质谱法》(HJ 1227-2021)、《突发环境事件应急监测技术规范》(HJ 589-2021)等10项国家生态环境标准。   《环境空气和废气 吡啶的测定 气相色谱法》(HJ 1219-2021)为首次发布,适用于环境空气、无组织排放监控点空气和固定污染源有组织排放废气中吡啶的测定,具有分析速度快、分辨率高、分离度好等特点。   《环境空气 6种挥发性羧酸类化合物的测定 气相色谱-质谱法》(HJ 1220-2021)为首次发布,适用于环境空气和无组织排放监控点空气中6种挥发性羧酸类化合物的测定,方法便捷、灵敏度高,可支撑《合成树脂工业污染物排放标准》(GB 31572-2015)、《石油化学工业污染物排放标准》(GB 31571-2015)等污染物排放标准实施。   《环境空气 降尘的测定 重量法》(HJ 1221-2021)适用于环境空气中降尘的测定。与《环境空气 降尘的测定 重量法》(GB/T 15265-94)相比,本标准细化了采样点布设等规定,修改完善了仪器设备和质量控制要求,提高了方法的操作性,可满足当前大气环境管理工作中的降尘监测需求。   《固体废物 水分和干物质含量的测定 重量法》(HJ 1222-2021)为首次发布,适用于常见固体废物中水分和干物质含量的测定,不适用于挥发性有机物含量高、易燃易爆的固体废物样品中水分和干物质含量的测定。本标准可为固体废物的分析、处理处置提供更加科学的水分和干物质含量测定方法。   《环境空气 有机氯农药的测定 高分辨气相色谱-高分辨质谱法》(HJ 1224-2021)为首次发布,适用于环境空气气相和颗粒物中25种有机氯农药的测定。本标准作为有机氯农药超痕量分析方法,可为我国履行《关于持久性有机污染物的斯德哥尔摩公约》,开展低浓度样品监测提供可靠的依据。   《环境空气 臭氧的自动测定 化学发光法》(HJ 1225-2021)为首次发布,适用于环境空气中臭氧的自动测定。本标准抗干扰能力强,与紫外光度法具有较好的一致性,可作为紫外光度法的有益补充。   《水质 硫化物的测定 亚甲基蓝分光光度法》(HJ 1226-2021),适用于地表水、地下水、生活污水、工业废水和海水中硫化物的测定。与《水质 硫化物的测定 亚甲基蓝分光光度法》(GB/T 16489-1996)相比,本标准修订了适用范围和检出限,增加了前处理方法等内容,可支撑《地表水环境质量标准》(GB 3838-2002)、《污水综合排放标准》(GB 8978-1996)等水环境质量和水污染物排放标准实施。   《环境空气 挥发性有机物的应急测定 便携式气相色谱-质谱法》(HJ 1223-2021)、《水质 挥发性有机物的应急测定 便携式顶空/气相色谱-质谱法》(HJ 1227-2021)和《突发环境事件应急监测技术规范》(HJ 589-2021),适用于突发环境事件应急监测。HJ 1223-2021和HJ 1227-2021为首次发布,可对VOCs进行现场定性分析,并准确定量。HJ 589-2021为首次修订,规定了突发环境事件应急监测关键环节的技术要求。3项标准可为突发环境事件应急处置提供技术支撑。   上述10项标准的发布实施,对于进一步完善生态环境监测标准体系,规范生态环境监测行为,提高环境监测数据质量,服务生态环境监管执法,促进生态环境保护和保障人体健康具有重要意义。
  • 6月1日起这10项环境标准将实施
    6月1日起这10项环境标准将实施我们从国家生态环境部了解到6月1日起有10项环境标准将实施,主要是水质、空气和土壤相关的环境标准,涉及到空气颗粒物检测仪器、液质联用仪器、气质联用仪器、分光光度计、不溶性微粒检测仪、气相色谱仪器、便携式傅里叶变换红外光谱仪器。HJ 653-2021 环境空气颗粒物(PM10和PM2.5)连续自动监测系统技术要求及检测方法该标准为替代标准,替代“HJ 653-2013”。本标准规定了环境空气颗粒物 (PM 10 和 PM 2.5 )连续自动监测系统(以下简称 PM 10 和 PM 2.5 自动 监测系统”)的技术要求、性能指标和检测方法。本次修订的主要内容有:—— 术语和定义中增加了“动态加热系统”“ 挥发性颗粒物补偿系统 ”和“实际状态”,并将本标准性能检测中颗粒物的浓度值由标准状态下浓度值修改为实际状态下浓度值;—— 系统组成中增加了“动态加热系统”和“ 挥发性颗粒物补偿系统 ”的要求,删除了 方法原理”的要求;—— 技术要求中增加了系统铭牌内容和切割器应具有唯一性标识的要求,修订了对数据显示、记录和输出功能要求,增加了对参数的显示、记录和输出要求;—— 性能指标中增加了“检出限”“湿度测量示值误差”“断电影响测试” 3项指标,调整和删除了部分性能指标,适当加严“参比方法比对测试”性能指标要求,将“切割器性能”“加载测试” 2项性 能指标调整至功能要求,检测方法见 HJ 93 的相关要求;—— 检测方法对应修改后的性能指标进行了调整,对“参比方法比对测试”的测试地点、测试程序等提出了更加全面和具体的要求。HJ 1210—2021土壤和沉积物 13 种苯胺类和 2 种联苯胺类化合物的测定 液相色谱-三重四极杆质谱法本标准为首次发布。本标准规定了测定土壤和沉积物中13种苯胺类和2种联苯胺类化合物的液相色谱 - 三重四极杆质谱法 。本标准适用于土壤和沉积物中联苯胺、苯胺、4-甲基苯胺、 2-甲氧基苯胺、 3-甲基苯胺、 2-甲基苯 胺、 2,4 -二甲 基苯胺、 4-硝基苯胺、 3-硝基苯胺、 4-氯苯胺、 2-萘胺、 2,6 -二甲基苯胺、 3-氯苯胺、 3,3 ' -二氯联苯胺和 N-亚硝基二苯胺共 13 种苯胺类和 2种联苯胺类化合物的测定。HJ 1214-2021水质 可吸附有机卤素(AOX ) 的测定 微库仑法 本标准为替代标准,替代“GB/T 15959—1995”本标准规定了测定水中叠氮化物的分光光度法 。本标准规定了地表水、地下水、生活污水和工业废水中可吸附有机卤素的微库仑测定方法。本标准与《水质可吸附有机卤素( AOX)的测定 微库仑法》( GB/T 15959—1995)相比,主要 差异如下:——修改了方法适用范围 、方法原理以及样品的采集和保存条件 ;——删除了样品吹脱步骤 ;——完善了标准核查溶液和试样制备的要求 ;——细化了校准 、样品测定和结果表示等内容 ;——增加了干扰和消除 、质量保证与质量控制等条款 。自本标准实施之日起,原国家环境保护局1995年 12月 21日批准发布的《水质 可吸附有机卤素(AOX)的测定 微库仑法》( GB/T 15959—1995)在相应的国家污染物排放标准实施中停止执行。HJ 1215-2021水质 浮游植物的测定 滤膜-显微镜计数法本标准为首次发布。本标准规定了测定地表水中浮游植物的滤膜 - 显微 镜 计数法 。本标准适用于地表水中浮游植物的快速测定。HJ 1216-2021水质 浮游植物的测定 0.1 ml计数框-显微镜计数法 本标准为首次发布。本标准规定了测定地表水中浮游植物的0.1 ml计数框 - 显微镜计数法 。本标准适用于地表水中浮游植物的密度测定。HJ 1219-2021环境空气和废气 吡啶的测定 气相色谱法本标准为首次发布。本标准规定了测定环境空气和废气中吡啶的气相色谱法 。本标准适用于环境空气、无组织排放监控点空气和固定污染源有组织排放废气中吡啶的测定。HJ 1220-2021环境空气 6 种 挥发性羧酸类化合物的测定 气相色谱-质谱法本标准为首次发布。本标准规定了测定环境空气中6种挥发性羧酸类化合物的气相色谱 - 质谱法。本标准适用于环境空气和无组织排放监控点空气中乙酸、丙酸、正丁酸、丙烯酸、异戊酸和正戊酸等6种挥发性羧酸类化合物的测定。HJ 1221-2021环境空气 降尘的测定 重量法本标准规定了测定环境空气中降尘的重量法。本标准与《环境空气降尘的测定重量法》( GB/T 15265 94)相比,主要差异如下——修改了集尘缸的材质要求和实验工具——细化了采样点布设的技术要求 删除了清洁对照点 增加了防鸟措施——明确了样品保存要求 补充完善了质量控制要求和实验记录信息——将降尘总量中可燃物的测定调整至附录自本标准实施之日起,原国家环境保护总局1994年10月26日批准发布的《环境空气降尘的测定重量法》(GB/T 15265—94)在相应的国家生态环境标准实施中停止执行。HJ 1222-2021固体废物 水分和干物质含量的测定 重量法本标准为首次发布。本标准规定了测定固体废物中水分和干物质含量的重量法。本标准适用于常见固体废物中水分和干物质含量的测定,不适用于挥发性有机物含量高、易燃易爆的固体废物样品中水分和干物质含量的测定。HJ 1240-2021固定污染源废气 气态污染物(SO2、NO、NO2、CO、CO2)的测定 便携式傅立叶变换红外光谱法本标准为首次发布。本标准规定了测定固定污染源废气中气态污染物(SO2、NO 、NO2、CO 、CO2)的便携式傅立叶变 换红外光谱法 。本标准适用于固定污染源废气中气态污染物(SO2、NO 、NO2、CO 、CO2)的测定。Get√小技巧:在仪器信息网APP里,可以免费下载上述标准→↓扫码到APP免费下载目前仪器信息网资料库 有近75万篇资料,内容涉及检测标准、物质检测方法/仪器应用、仪器操作/仪器维护维修手册、色谱/质谱/光谱等谱图。资料库每月有近20万人访问,上万人下载资料,诚邀您分享手头上的资源,与人分享于己留香!
  • 全国特殊食品标准化技术委员会发布国家标准《保健食品中吡啶甲酸铬含量的测定》征求意见稿
    国家标准计划《保健食品中吡啶甲酸铬含量的测定》由 TC466(全国特殊食品标准化技术委员会)归口 ,主管部门为国家市场监督管理总局(特殊食品司)。主要起草单位 中轻技术创新中心有限公司 、中国食品发酵工业研究院有限公司 、北京市疾病预防控制中心 、中轻检验认证有限公司 。附件:国家标准《保健食品中吡啶甲酸铬含量的测定》编制说明.pdf国家标准《保健食品中吡啶甲酸铬含量的测定》征求意见稿.pdf
  • 江西省市场监督管理局发布《水质 吡啶的测定 顶空/气相色谱-质谱法》等6项江西省地方标准征求意见稿
    各有关单位及专家:《生态环境监测质量管理技术规范》《水质 吡啶的测定 顶空/气相色谱-质谱法》《水质 丙烯醛、丙烯腈和乙醛的测定 顶空/气相色谱法》《水质 高锰酸盐指数的测定 氧化还原自动滴定法》《土壤和沉淀物 碲的测定 酸溶原子荧光法》《危险废物全过程监管物联网终端技术规范》地方标准现已形成征求意见稿,欢迎各有关单位及专家对标准进行审阅,并于2024年7月13日前返回具体的修改意见。审评中心联系人:高汉、胡昭君、刘磊联系电话:0791-85773380 电子邮箱:jxbzhy@126.com起草单位联系人:罗木根联系电话:18507000681地址:江西省标准技术审评中心,南昌市南昌县金沙二路1899号。 2024年6月13日附件:附件 (1).zip1.标准文本和编制说明2.省地方标准(征求意见稿)意见汇总表
  • 江西省生态环境厅公开征求《水质 吡啶的测定 顶空/气相色谱-质谱法(征求意见稿)》等五项地方生态环境标准意见
    各有关单位:根据《江西省市场监管局关于下达2023年第六批江西省地方标准制修订计划的通知》(赣市监标函〔2023〕20号)要求,我厅组织编制了《生态环境监测质量管理技术规范》等五项地方生态环境标准征求意见稿,现公开征求意见。标准征求意见稿及其编制说明,可登陆我厅网站“政务公开-公示公告”(http://sthjt.jiangxi.gov.cn)栏目检索查阅。请于2024年7月12日前将意见建议书面反馈我厅,并注明联系人及联系方式,电子文档请同时发送至联系人邮箱。联系人:邓 磊、刘燕红;电 话:0791-86866660、0791-86866791;邮 箱:Fenzc2023@163.com。附件:1.生态环境监测质量管理技术规范(征求意见稿)2.《生态环境监测质量管理技术规范(征求意见稿)》编制说明3.水质 吡啶的测定 顶空/气相色谱-质谱法(征求意见稿)4.《水质 吡啶的测定 顶空/气相色谱-质谱法(征求意见稿)》编制说明5.水质 丙烯醛、丙烯腈和乙醛的测定 顶空/气相色谱法(征求意见稿)6.《水质 丙烯醛、丙烯腈和乙醛的测定 顶空/气相色谱法(征求意见稿)》编制说明7.水质 高锰酸盐指数的测定 氧化还原自动滴定法(征求意见稿)8.《水质 高锰酸盐指数的测定 氧化还原自动滴定法(征求意见稿)》编制说明9.土壤和沉积物 碲的测定 酸溶/原子荧光法(征求意见稿)10.《土壤和沉积物 碲的测定 酸溶/原子荧光法》(征求意见稿)》编制说明11.意见反馈表12.征求意见单位名单江西省生态环境厅2024年6月11日(此件主动公开)
  • 你需要知道的液质使用禁忌,千万别踩雷!
    p style=" text-align: center " strong 正负离子的分析 /strong /p p & nbsp /p p 酸性物质适合做负离子检测,所以流动相偏碱性较合适,促使其解离,碱性物质适合做正离子检测,流动相中适当的加入酸,促使其形成正离子,流动相中适当加一些醋酸钠(或者醋酸铵),可形成加钠的正离子或者加铵的正离子。 /p p & nbsp /p p 推荐使用的流动相和添加剂: /p p & nbsp /p p 有机溶剂:反相:乙腈/甲醇/乙醇/异丙醇/二氯甲烷 /p p 正相:吐仑/己烷/苯/环己烷/四氯化碳 /p p & nbsp /p p 缓冲液:乙酸铵/甲酸铵 /p p & nbsp /p p 酸:甲酸/乙酸/三氟乙酸(正离子) /p p & nbsp /p p 碱:氨水 /p p & nbsp /p p 不推荐使用/尽量不用的: /p p & nbsp /p p 有机溶剂:四氢呋喃 /p p & nbsp /p p 缓冲液:磷酸盐/柠檬酸盐/碳酸盐 /p p & nbsp /p p 酸:硫酸/磷酸/盐酸/高氯酸/磺酸 /p p & nbsp /p p 碱:季胺/强碱/三乙胺 /p p & nbsp /p p 其他:清洁剂/表面活性剂/离子对试剂/不挥发的盐 /p p style=" text-align: center " & nbsp /p p style=" text-align: center " strong 糖苷类/盐类分析 /strong /p p & nbsp /p p 糖苷类的物质在做FAB和esi(+)时,峰往往比其他峰要强,此为经验,原因只是推测可能和天然产物的提取过程有关;盐类化合物如盐酸盐、硫酸盐在质谱中酸的部分一般不会出现;二羧酸盐(esi负离子模式)除了分子离子峰外,会出现连续掉44的两个峰,为失去羧酸根的离子,这三个峰非常特征,但是会受锥孔电压的影响,调低电压谱图会更漂亮。 /p p & nbsp /p p style=" text-align: center " strong 胺类分析 /strong /p p & nbsp /p p 胺类物质做esi质谱时要注意进样量要少,因为很容易离子化,不易冲洗干净,会影响后面样品的测定。像三乙胺在液质联用时不能用于调节流动相pH值。若不慎引入三乙胺,在正离子检测时总会出现很强的102峰(三乙胺的)。 /p p & nbsp /p p style=" text-align: center " strong 水和氮气的选择 /strong /p p & nbsp /p p 质谱用水一般用娃哈哈纯净水之类的就很好;质谱用甲醇和乙腈,换用了很多品牌,发现Merck的还是稍微好一些;Finnigan用的氮气不一定要用到液氮瓶,用普通的钢瓶气就可以了,可能还省钱些;建议大家买一个好一点的手电筒和一个放大镜,手电筒用来看源里面,放大镜看你割的毛细管平整。 /p p & nbsp /p p style=" text-align: center " strong 基线问题 /strong /p p & nbsp /p p 质谱的基线其实跟液相的紫外检测器和荧光检测器一样,基线高的原因不外乎内部和外部的原因。 /p p & nbsp /p p 1)你选择的流动相在质谱的响应比较高,比如水相比较多的时候,噪音比较大些;还有如果盐含量比较大的时候,噪音更大些。 /p p & nbsp /p p 2)检测器的灵敏度越高的时候,噪音应该越高。如果质谱的污染比较严重时,基线肯定比较高。比如离子阱检测器,用得久了,阱中的离子就会增多,一方面降低了质谱的灵敏度,另一方面增加了基线噪音。 /p p & nbsp /p p 3)质谱的基线很多时候还跟你选择的离子宽度有关。比如你作选择离子扫描的时候,基线就低些。你作选择反应扫描的时候,离子宽度不要选得太宽,太宽噪音就高些。 /p p & nbsp /p p 4)多级质谱一般做二级或三级质谱,基线噪音就低很多。 /p p & nbsp /p p style=" text-align: center " strong 质谱维护经验 /strong /p p & nbsp /p p 做样前-检查氮气,流动相,质谱仪的真空度,毛细管温度& #8230 /p p & nbsp /p p 1) 最好不用直接进样(容易污染离子源)。 /p p & nbsp /p p 2) 做联用时最好分流(a可以使用常规柱,b缩短分析时间,c 延长质量分析器寿命)。 /p p & nbsp /p p 3) 最好使用在线切换阀,降前每个样品的前后1-2分钟的流动相切入废液(避免样品中的盐进入质谱,做Sequence时可以把平衡柱子的流动相切入废液)。 /p p & nbsp /p p 4 )开始联用前,直接运行质谱数分钟,可以先将温度(毛细管温度和离子源温度(APCI))加热到预设定值(如果是APCI源还可以避免将烧掉heater,太贵了,最好别烧)。 /p p & nbsp /p p 5) 待机时将切换阀置于waste,避免刚开液相时将流动相打入离子源。 /p p & nbsp /p p 6) 关机前毛细管的温度先降下来,稳定一段时间后再关闭电源,避免风扇停止转动后毛细管外围的热量向里扩散,容易引起内部线路及电子元器件老化加速。 /p p & nbsp /p p 7) 每天清理毛细管口外部,擦洗干净,每次停机时注意清洗Skimmer,用无尘擦拭纸,kimberly那种。 /p p & nbsp /p p 8 )如果用的是钢瓶而且天天做样的话,将两个钢瓶并联,当然,一月不做一次的话就算了。 /p p & nbsp /p p 9) 做定量时注意离子源喷针的具体位置,否则标准曲线就不能用了。 /p p & nbsp /p p 10)不要不经过柱子分离进行定量分析,结果不可靠(竞争性抑制目标分子离子化)。 /p p & nbsp /p p 11 )如果是负离子检测的话,可以相流动相中加入少量异丙醇。 /p p & nbsp /p p 12) 不要使用不挥发性盐,如果使用挥发性盐,但浓度不要超过20mmol/l。 /p p & nbsp /p p 13) 需要使用酸的情况下可以用甲酸,乙酸,三氟乙酸可以用,但能用甲酸或乙酸时就别用TFA。 /p p & nbsp /p p style=" text-align: center " strong 缓冲液浓度选择 /strong /p p & nbsp /p p 理论上液质联用禁止使用任何不挥发性的缓冲盐,如果需要尽量使用诸如乙酸氨等挥发性盐,浓度不要超过20mmol/l。 /p p & nbsp /p p 对于不挥发性的缓冲盐,如果你的仪器有吹扫捕集的话也可使用,但一定要小心。万不得已也不要用,首先有不挥发盐是得不到好的离子流的,其次盐留在质谱中很难除掉,除非停机清洗,不然一直会影响其他样品的分析。 /p p & nbsp /p p 可以找质谱友好的条件来做液质联机,例如色谱条件为20mM磷酸盐的水/乙腈流动相,做液质联机的时候就可以用醋酸铵代替,然后用醋酸调节pH值与磷酸盐的一致即可。 /p p & nbsp /p p 除了难挥发的盐,三乙胺、表面活性剂、还有高浓度(& gt 0.5%)的TFA,都对质谱不好,液质联用的流动相中应该避免。 /p p br/ /p
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制