当前位置: 仪器信息网 > 行业主题 > >

苄基噁唑烷

仪器信息网苄基噁唑烷专题为您提供2024年最新苄基噁唑烷价格报价、厂家品牌的相关信息, 包括苄基噁唑烷参数、型号等,不管是国产,还是进口品牌的苄基噁唑烷您都可以在这里找到。 除此之外,仪器信息网还免费为您整合苄基噁唑烷相关的耗材配件、试剂标物,还有苄基噁唑烷相关的最新资讯、资料,以及苄基噁唑烷相关的解决方案。

苄基噁唑烷相关的资讯

  • 农业用基因编辑植物评审细则(试行)
    各有关单位:   为更好指导农业用基因编辑植物安全评审工作,扎实做好安全管理,我办制定了《农业用基因编辑植物评审细则(试行)》,现予印发。   农业用基因编辑植物评审细则(试行)   一、分子特征   (一)靶基因编辑情况。提供覆盖编辑位点的PCR扩增测序或全基因组测序等资料,对于采用全基因组测序的,还应提供在编辑位点的覆盖度分析资料。相关数据应能够说明基因编辑植物中靶基因编辑情况。   (二)载体序列残留情况。提供全基因组测序及其在转化载体上的覆盖度分析等资料。相关数据应能够说明基因编辑植物中载体序列残留情况。   (三)脱靶情况。提供预期脱靶位点的PCR扩增测序或全基因组测序等资料,应采用生物信息学等方法分析预期脱靶位点,对于采用全基因组测序的,还应提供在预期脱靶位点的覆盖度分析资料。相关数据应能够说明基因编辑植物的脱靶情况。   二、环境安全   (一)可能直接改变物种关系的基因编辑植物,如抗病虫、耐除草剂性状。应提供以下资料:   1.目标性状和功能效率评价。   2.生存竞争能力,包括株高、覆盖率、繁育系数、落粒性以及种子数量、重量和发芽率等。   3.对生态系统群落结构和有害生物地位演化的影响。   4.抗病虫基因编辑植物还应提供对可能影响的非靶标生物的室内生物测定。   5.耐除草剂基因编辑植物还应提供对至少3种其他常用(非目标)除草剂耐受性的测定。   (二)其他基因编辑植物,如抗逆(抗旱、耐盐碱、抗冻、抗高温等)、品质改良、生理性状改良(养分高效利用、生育期改变、高产等)。应提供以下资料:   1.目标性状和功能效率评价。   2.生存竞争能力,包括株高、覆盖率、繁育系数、落粒性以及种子数量、重量和发芽率等。   三、食用安全   (一)可能改变关键成分的基因编辑植物,如品质改良、高产等。应提供以下资料:   1.关键成分分析(包括营养素、功能成分、抗营养因子、内源毒素、内源过敏原等)。   2.最大可能摄入水平对人群膳食模式影响评估。   3.基因编辑导致某种蛋白质表达量显著增加的,还应提供该蛋白质的表达量及其与已知毒蛋白质、抗营养因子和致敏原氨基酸序列相似性比较。   4.基因编辑导致产生新蛋白质的,还应提供:(1)新蛋白质的表达量;(2)新蛋白质与已知毒蛋白、抗营养因子和致敏原氨基酸序列相似性比较;(3)新蛋白质体外模拟胃液蛋白消化稳定性、热稳定性试验;(4)新蛋白质毒理学试验。   5.若上述数据资料(1—4项)表明目标性状可能增加食用安全风险,还需提供大鼠90天喂养试验。   (二)不改变关键成分的基因编辑植物,如抗病虫、耐除草剂、抗逆(抗旱、耐盐碱、抗冻、抗高温等)、生理性状改良(生育期改变、养分高效利用等)。应提供以下资料:   1.关键成分分析(包括营养素、功能成分、抗营养因子、内源毒素、内源过敏原等)。   2.基因编辑导致某种蛋白质表达量显著增加的,还应提供该蛋白质与已知毒蛋白质、抗营养因子和致敏原氨基酸序列相似性比较。   3.基因编辑导致产生新蛋白质的,还应提供:(1)新蛋白质与已知毒蛋白、抗营养因子和致敏原氨基酸序列相似性比较;(2)新蛋白质体外模拟胃液蛋白消化稳定性、热稳定性试验;(3)新蛋白质毒理学试验。   4.若上述数据资料(1—3项)表明目标性状可能增加食用安全风险,还需提供大鼠90天喂养试验。   四、评审程序   上述分子特征、环境安全和食用安全评价都可在中间试验阶段进行,若中间试验阶段获得的数据资料表明目标性状不增加环境安全风险,经评价合格后可直接申请安全证书。   若中间试验阶段获得的数据资料表明目标性状可能增加环境安全风险,需开展环境释放或生产性试验,经安全评价合格后方可申请安全证书。环境释放或生产性试验应在试验植物的主要适宜生态区进行。申请生产应用安全证书,应在每个主要适宜生态区至少设一个试验点。 农业用基因编辑植物评审细则(试行).pdf
  • 我国首个植物基因编辑安全证书下发
    近日,农业农村部发布《2023年农业用基因编辑生物安全证书批准清单》,下发全国首个植物基因编辑安全证书,该证书由舜丰生物获得。  基因编辑是世界生物育种领域的前沿技术。与转基因不同,基因编辑育种仅对作物自身基因进行修饰,并不转入其他物种的基因,其原理等同于常规诱变育种,培育出的品种也与常规育种培育出的品种无异。  “目前国际上诸如美国、日本、印度等地对于没有外源基因的编辑作物不是按照转基因作物管理,而是按照传统作物来对待。因为基因编辑的原理跟传统的诱变育种是一样的,和诱变作物相比,基因编辑产品并没有增加环境安全和食品安全风险。”中国科学院院士、著名水稻育种家刘耀光表示,“《细则》的发布和第一个安全证书的发放让我们看到了基因编辑作物产业化的希望。”  刘耀光院士提及的《细则》是指农业农村部刚发布的《农业用基因编辑植物评审细则(试行)》,进一步明确基因编辑植物的分类标准和简化评审的细则。  “基因编辑育种有着先天的优势,可以快速培育出高产高附加值的优良品种。”得知舜丰生物获得全国首个植物基因编辑安全证书,中国科学院院士许智宏表示,“《细则》的发布和第一个基因编辑安全证书的下发,让我们看到了民族种业振兴的希望。”  美国科学院院士、南方科技大学前沿生物技术研究院院长,舜丰生物首席专家顾问朱健康向记者表示:“此次《细则》的发布是继2022年《农业用基因编辑植物安全评价指南(试行)》发布后的又一个里程碑事件,它从分子特征、环境安全、食品安全三个方面界定评审细则,将已有文献或产业数据表明对环境安全和食品安全没有风险的基因编辑产品,予以简化安全评估流程,这无疑会加速基因编辑的产业化进程。”
  • 默克公司推进基于基因编辑的药物研发
    p style=" text-indent: 2em text-align: justify " 据悉,德国默克公司Merck KGaA目前已进一步推进基于基因编辑的药物研发,该公司与Vertex Pharmaceuticals已达成独家研发许可协议。Vertex的许可协议是Merck KGaA针对药物开发进行基因编辑的最新尝试。 /p p style=" text-indent: 2em text-align: justify " 为了加强其在DNA损伤和修复以及免疫肿瘤学领域的现有肿瘤学研发管线,Merck KGaA& nbsp 于2017年以2.3亿美元的价格从Vertex获得了许可的四种化合物中的两种。 /p p style=" text-indent: 2em text-align: justify " Vertex 目前已获得两款DNA依赖性蛋白激酶(DNA-PK)抑制剂和另外一种临床前化合物的研发许可,在基因编辑领域用于六种遗传疾病适应症,Merck KGaA透露说它们没有包括癌症。目前该许可协议的价值尚未公布。最新的许可协议加深了Vertex在基因编辑药物开发方面的影响力,已知涵盖了M9831(原VX-984)和另外一种临床前化合物。 /p p style=" text-indent: 2em text-align: justify " M9831和临床前化合物现在是Merck KGaA DNA损伤应答(DDR)抑制剂产品组合的一部分。M9831于去年完成I期临床试验(NCT02644278),这是一项首次人体研究,旨在评估该药与聚乙二醇化脂质体多柔比星(PLD)化疗联合的安全性,耐受性和药代动力学/药效学特征。 /p p style=" text-indent: 2em text-align: justify " Merck KGaA近日表示正在研究四种DDR分子,包括两种ATR抑制剂,一种ATM抑制剂和一种研究小分子DNA-PK。已知DNA-PK可以潜在地增强许多常用的DNA损伤剂如放疗和化疗的功效。还可以起到增强CRISPR / Cas9介导的基因编辑的作用。 /p p style=" text-indent: 2em text-align: justify " Merck KGaA的执行委员会成员Belé nGarijo在一份声明中表示:我们正迅速推进在肿瘤学方面领先的DDR产品组合,并很高兴通过增强CRISPR / Cas9介导的基因编辑,看到DNA-PK在遗传疾病中的潜在益处。 /p p style=" text-indent: 2em text-align: justify " Merd KGaA生命科学业务执行董事兼首席执行官Udit Batra博士本月早些时候表示:“我们共同提出了使用我们的CRISPR-Cas9技术来开发更具代表性的啮齿动物模型的想法。这促成了这笔交易。这将有助于我们应用技术开发改进的毒理学研究,以便通过诊所更快地获得越来越多的药物。这是对我们基因编辑能力的肯定。随着其他Cas系统的出现,Merck KGaA的技术将适用。 /p p style=" text-indent: 2em text-align: justify " 他还通过CRISPR-Cas9阐述了Merck KGaA在基因编辑方面的重点领域。它们包括开发更具体的切割和替换基因组相关部分的方法,同时避免脱靶效应 开发更接近模拟人体细胞的更好细胞系进行体外毒理学研究,例如,使用基因编辑修饰Madin-Darby犬肾(MDCK)细胞,看起来更像人类肠道,或增强生物生产。 /p
  • 2016国家自然基金项目揭晓 基因编辑“揽金”超3200万!
    8月17日,备受瞩目的2016年度国家自然科学基金项目评审结果揭开面纱。37409个项目获资助,金额超过183亿元,其中,生命科学部获资助累计金额超过28亿元。那么,目前生物科学领域最火爆的CRISPR技术收获又如何呢?   37409个项目获资助 上海交大折桂  国家自然科学基金委员会官网通告显示,2016年3月1日至3月20日项目申请集中接收期间,共接收项目申请172843项,经初步审查受理169832 项。根据《国家自然科学基金条例》和国家自然科学基金相关类型项目管理办法的规定,以及专家评审意见,决定资助面上项目、重点项目等十类项目共计 37409项。具体分布如下:  依托单位科学基金管理人员及申请人可于8月17日后登录科学基金网络信息系统(https://isisn.nsfc.gov.cn)查询相关申请项目评审结果。自然科学基金委将向相关依托单位寄发纸质批准资助项目通知,并以电子邮件形式向申请人发送申请项目批准资助通知、不予资助通知及专家评审意见。  今年上海交通大学依然遥遥领先,拟资助项目共计901项,批准总金额高达5.08亿元,较去年增长超过2000万元。从获资助总金额来看,浙江大学紧随上海交通大学,批准总金额总计4.58亿元。排在第3位的北京大学获资助总金额为4.21亿元。从拟资助项数项目数量来看,上海交通大学与浙江大学依然是“冠亚军”,获得“季军”的是中山大学。  生命科学部获资助超28亿 CRISPR超3200万  在所有项目中,与我们密切相关的生命科学部获资助项目有5800多项,累计金额超过28亿元。这些项目来自免疫学、细胞生物学、遗传学与生物信息学等多个学科,涉及了干细胞、细胞治疗、基因治疗、基因编辑、微生物等若干热门细分领域。  据不完全统计,2015年,获资助的CRISPR技术相关项目近60项,较 2014年明显增长 获批总金额超过了3100万元 ,是2014年的2倍多。那么,今年CRISPR技术“收获”如何呢?  数据显示,2016年获资助的CRISPR技术相关项目共计80个,总金额超过3200万元。其中,获批金额最高的项目是复旦大学李华伟教授主导的“腺相关病毒介导的CRISPR/Cas9基因组定点编辑技术对遗传性耳聋的基因治疗研究”,资助金额高达240万元。 基因编辑领域 中国科学家正在崛起  值得注意的是,今年获批的项目中,除了大多数与最早发现的CRISPR/Cas9系统相关,还有关于新基因编辑系统CRISPR/Cpf1的项目。这一系统最早由Broad研究所的CRISPR先驱张锋提出,相关成果于2015年发表在Cell杂志上。此后,来自各国的科学家们对这一系统的结构进行了进一步的解析。  今年4月,哈尔滨工业大学生命学院黄志伟教授及其团队在Nature上发表了题为“The crystal structure of Cpf1 in complex with CRISPR RNA”重要成果,首次揭示了CRISPR-Cpf1识别crRNA的复合物结构,对认识细菌如何通过CRISPR系统抵抗病毒入侵的分子机理具有十分重要的科学意义。  近几年,基因编辑技术飞速发展,我国科学家也在这一领域开展了积极的研究。第一个CRISPR编辑猴子、河北科技大学韩春雨教授的新基因编辑工具NgAgo系统、华西医院全球首个CRISPR人体试验,这些成果和尝试都引发了全球科学界的关注。我们期待,在这些项目资金的支持下,我国科学家在基因编辑领域能够取得更多的进展。今年获资助的部分CRISPR技术相关的项目
  • 分子诊断与基因编辑服务商舒桐医疗完成数千万元融资
    珠海舒桐医疗科技有限公司(以下简称:舒桐医疗)完成数千万元融资,本轮融资由云锋基金、格力集团产投公司联合领投,中汇投资、善治投资跟投。据悉,融资资金将用于推进基因编辑诊断产品快速商业化以及创新药物申报IND,建设符合GMP要求的新药研发实验室,同时不断提升公司技术创新能力,以拓展具有全球竞争力的新药研发管线。舒桐医疗是一家具有基因编辑底层创新技术的平台公司,主攻基于CRISPR分子诊断与基因编辑治疗。在分子诊断领域,舒桐医疗率先研发出基于CRISPR技术的分子诊断产品,走在国内这一领域的前沿。基于自主知识产权的液相捕获芯片合成技术,该公司成功开发出多款检测试剂盒,覆盖肿瘤早筛、肿瘤伴随诊断、遗传病诊断及病原体检测等领域,致力于为企业级客户提供更精确快捷的定制化产品与服务。早在2009年,舒桐医疗的创始团队便开始深入研究基因编辑领域,在基因编辑工具和药物递送载体领域拥有多年的技术沉淀,同时具有创新药产业经验,形成了从研发、申报到商业化的完整新药产业转化能力。基于CRISPR技术的底层创新能力,舒桐医疗开发了多种具有自主知识产权的新型CRISPR基因编辑工具,搭建了安全高效的纳米材料及病毒递送系统,形成了以病毒清除和肿瘤治疗为核心方向的药物研发管线。其中HPV创新药物已完成研究者发起的临床研究(IIT),在药物疗效和安全方面均取得很好的结果,目前正快速推进申报IND进程。作为首批HPV基因治疗创新药,产品上市后将填补市场空白,满足大量患者群体需求,在国内和国际上具有庞大的市场潜力。此外,舒桐医疗掌握了各类精准的基因编辑技术(定点敲除、点突变、大片段插入、过表达等),建立了高通量的sgRNA筛选平台,是国内首家提供基因脱靶检测服务的公司,为科研机构及基因治疗领域企业提供高通量新药靶点筛选、基因编辑脱靶分析、药物递送系统等基因编辑CRO服务,得到了工业和科研客户的广泛认可,并将持续为工业和科研客户提供服务。目前,舒桐医疗已与多家知名高校和创新医药企业建立合作关系,包括多家知名的细胞与基因治疗的新秀企业,共同推动中国细胞基因治疗行业的发展。关于本轮融资,舒桐医疗联合创始人、CEO林华兵表示:“非常感谢国内外生物医药知名投资机构的关注、认可和支持,此次融资的顺利完成将大大加快公司的发展进程,我们将秉承“创新 敬业 融合 开放”的价值观,诚邀更多的行业内优秀伙伴加盟,加速First-in-class 药物的研发、申报、商业转化,同时不断迭代创新技术和拓展管线,为更多临床尚未解决的疾病提供全新的治疗方案,致力于把公司打造成为基因治疗领域的一流创新企业。”云锋基金董事总经理李文罡博士表示:“基因编辑技术作为生命科技和医疗健康革命性的下一代技术,在治疗和诊断领域不断突破和成熟,为产业界带来诸多惊喜。舒桐医疗作为拥有基因编辑技术底层创新的平台公司,自主研发了新一代基于CRISPR技术的分子诊断产品和创新递送系统的基因治疗药物,处于行业领先地位。我们希望舒桐医疗利用其创新的基因编辑平台技术为患者提供更多临床未被满足需求的诊断和治疗产品。”格力集团产投公司表示:“近年来高速发展的基因编辑技术在各个治疗领域发挥着越来越重要的作用。舒桐掌握的CRISPR基因编辑、纳米递送体系、基因脱靶检测等核心技术,拥有自主知识产权,且技术壁垒较高。团队构架完整,优势互补,既有精于科研的人才,又有清晰了解临床痛点的医生。格力集团产投公司通过以投促产的方式推动该项目扎实落地珠海,相信能在促进项目顺利发展的同时,增强本市先进医疗的产业影响力。”中汇投资表示,舒桐医疗在基因编辑技术、研发团队和研发管线上均具有突出优势,有望在HPV基因药物上率先取得突破,终结HPV病毒感染无药可医的局面。本次投资后,中汇资本将全力支持舒桐医疗加强国内和海外布局,助力舒桐医疗成为基因治疗领域的全球领先企业。
  • 基因编辑10大公司榜单
    p /p p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/201808/uepic/8bc7001e-94f6-4c02-8845-6af9a4efc65c.jpg" title=" 1.jpg" alt=" 1.jpg" / /p p style=" text-align: justify " & nbsp & nbsp 前段时间,CRISPR的负面新闻可谓是此消彼长,就在上个月,Wellcome Sanger研究所的科学家报告CRISPR诱导的基因重排,对CRISPR-Cas9基因编辑的精确性提出质疑,三家专注该技术的上市公司股价瞬间由云端跌入谷底,3月9日至8月20日期间: /p p style=" text-align: justify " § CRISPR Therapeutics在7月27日从56.72美元跌至47.01美元,然后回归48.92美元。 /p p style=" text-align: justify " § Editas Medicine在8月8日从44.08美元跌至27.65美元,然后反弹至30.41美元。 /p p style=" text-align: justify " § Intellia Therpeutics在8月1日从34.95美元跌至25.78美元,然后小幅上涨至27.74美元。 /p p style=" text-align: justify " & nbsp & nbsp 尽管他们发表声明说从未使用研究中提到的方法CRISPR Therapeutics,但股价的下跌仍然在所难免。 /p p style=" text-align: justify " & nbsp & nbsp 本文详细列举了专注于开发和应用基因编辑技术十大公司的名单,张锋的公司也位列其中。其中包含五家上市公司和五家私营公司。上市公司按其2017年的收入排名,私营公司按其筹集的资本总额进行排名。每家公司最近动态的简短说明也被囊括其中。 /p p /p p style=" text-align: justify " strong 顶级上市公司 /strong /p p style=" text-align: justify " 5、Editas Medicine /p p style=" text-align: justify " 2017年收入:1372.8万美元 /p p style=" text-align: justify " & nbsp & nbsp 收入完全由合作和其他研发活动组成,比2016年增加了一倍以上,增长了近127%。这一增长其实是其合作伙伴Allergan的功劳,Allergan 在2017年3月启动的研发合作伙伴关系下,针对Editas的5个眼科疾病的早期CRISPR基因组编辑计划持有许可权,目前正在计划开发和商业化。 /p p style=" text-align: justify " 4、Intellia Therapeutics /p p style=" text-align: justify " 2017年收入:2611.7万美元 /p p style=" text-align: justify " & nbsp & nbsp 收入完全由协作收入构成,比2016年增长58.5%,这主要得益于Regeneron Pharmaceuticals授权Intellia的CRISPR-Cas基因编辑技术,根据2016年启动的合作,开发可通过编辑肝脏基因治疗的疾病治疗方法。8月1日,Intellia报告其转甲状腺素蛋白淀粉样变性(ATTR)体内计划的进展,并计划在今年晚些时候与FDA进行研究前新药会议,并在2019年底前提交IND新药临床试验申请。 /p p style=" text-align: justify " 3、Sangamo Therapeutics /p p style=" text-align: justify " 2017年收入:3656.7万美元 /p p style=" text-align: justify " & nbsp & nbsp 去年,Sangamo Therapeutics的收入几乎翻了一番,比2016年增长了近89%,这主要归功于它与辉瑞的首次合作。2017年5月,两家公司同意为血友病A开发重组腺相关病毒(AAV)基因治疗,包括SB-525。8月8日,Sangamo公布了I / II期“Alta”试验(NCT03061201)的阳性初步数据,包括治疗性因子VIII活性水平的实现。这些公司在1月份同意开发基因疗法,使用锌指蛋白转录因子进行ALS和与C9ORF72基因突变相关的额颞叶变性。 /p p style=" text-align: justify " 2、 CRISPR Therapeutics /p p style=" text-align: justify " 2017年收入:40997万美元 /p p style=" text-align: justify " & nbsp & nbsp 合作计入了CRISPR Therapeutics的所有收入,去年这一收入增长了近700%。但在5月份,该公司与Vertex制药公司合作遭遇重创,当时FDA对镰状细胞病候选人CTX001的公司IND实施临床控制,等待该机构在审查申请时提出的未公开问题的解决。在8月7日,CRISPR Therapeutics公司表示它有明确渠道来解决这一问题,并补充说,这些公司仍然有望在今年晚些时候开始进行CTX001的输血依赖性β-地中海贫血的I / II期试验。 /p p style=" text-align: justify " 1、Horizon Discovery Group /p p style=" text-align: justify " 2017年收入:3650万英镑(4653.2万美元) /p p style=" text-align: justify " & nbsp & nbsp Horizon Discovery预计将通过RNAi和CRISPR终端市场实现蓬勃发展,预计2017年至2021年之间的复合年增长率约为18%。该公司去年的收入增长了52%,并且进行了转型通过收购 GE 的 Dharmacon,赋予Horizon Discovery基因调制功能,额外收入和全球销售机会。去年年底,Horizon Discovery通过推出其CRISPR激活(CRISPRa)试剂平台增加了其Edit-R产品组合,该平台旨在实现天然基因过表达,从而实现有意义的功能。 /p p style=" text-align: justify " strong 顶级私营公司 /strong /p p style=" text-align: justify " 5、Inari Agriculture /p p style=" text-align: justify " 筹集的资金总额:5500万美元 /p p style=" text-align: justify " & nbsp & nbsp Inari Agriculture于8月9日增加了4000万美元的B轮融资,其筹资总额不到一个月,此前专注农业的CRISPR基因编辑技术开发商脱颖而出。该公司成立于2016年,现已有80多位科学家,统计学家,工程师和学术顾问。Inari表示,收益将使其能够加速技术在作物中的部署,扩大工具的开发,并增加员工。 /p p style=" text-align: justify " 4、Inscripta /p p style=" text-align: justify " 总募集资金:84.5万美元 /p p style=" text-align: justify " & nbsp & nbsp 早在2月份,Inscripta获得5550万美元的C轮融资,该资本加速了其基因编辑工具(包括仪器,试剂和软件)的开发和商业化,公司的员工也日益增加。上个月,Inscripta获得了第一个使用MAD7的美国专利,该公司的第一个免费CRISPR酶,以及使用另一种MADzyme,MAD2的系统的专利保护。Inscripta去年更名为Muse bio。 /p p style=" text-align: justify " 3、Beam Therapeutics /p p style=" text-align: justify " 筹集的资金总额:8700万美元 /p p style=" text-align: justify " & nbsp & nbsp Beam Therapeutics成立于5月,迅速成为精准基因医学开发者,其共同创始人包括CRISPR先驱张锋博士。Beam宣布自己是第一家使用CRISPR基础编辑技术开发新疗法的公司,该公司于5月14日披露,它在F-Prime Capital Partners和ARCH Venture Partners的带领下筹集了高达8700万美元的A轮融资。 /p p style=" text-align: justify " 2、Pairwise Plants /p p style=" text-align: justify " 筹集的资金总额:1.25亿美元 /p p style=" text-align: justify " & nbsp & nbsp 孟山都投资了Pairwise Plants筹集的1.25亿美元中的大部分资产,这是一家农业创业公司,致力于利用植物的自然遗传多样性开发新的基因组编辑工具。3月20日,孟山都公司表示将捐赠1亿美元用于在农作物应用中获取和开发知识产权,包括将公司合作产生的产品商业化。孟山都公司的风险投资公司Monsanto Growth Ventures加入了迪尔菲尔德管理公司,共同促成了Pairwise公司2500万美元的A轮融资。 /p p style=" text-align: justify " 1、Precision BioSciences /p p style=" text-align: justify " 筹集的资金总额:1.3565亿美元 /p p style=" text-align: justify " & nbsp & nbsp Precision BioSciences在私营基因编辑公司中名列前茅,6月26日,它由ArrowMark Partners领导认购了1.1亿美元B轮融资 ,这是上半年获得风险投资的私人生物医院的第三大融资。 Precision表示,收益将用于基于其ARCUS® 基因组编辑平台的进一步产品开发工作,该平台源自称为归巢核酸内切酶的天然基因组编辑酶。 /p p style=" text-align: justify " & nbsp & nbsp 由以上名单,我们可以看出,CRISPR绝不会因为一些负面消息而“一蹶不振”,私营公司的投资者依然相信CRISPR的广阔前景。让我们期待未来的某一天CRISPR可以“重振雄风”。 /p p br/ /p
  • 新药研究前沿丨成都先导开发出适用于DEL合成的2-取代吲唑酮类化合物的合成方法
    本文由成都先导技术团队编辑。近日,成都先导药物开发股份有限公司(以下简称“成都先导”)在2-取代吲唑酮类化合物的小分子合成方面取得突破,并成功地应用于DNA编码化合物库(DNA-Encoded Library)的合成,将2-取代吲哚酮为核心的类药分子结构引入成都先导DNA编码化合物库。该方法具有条件温和、无金属催化剂且底物适用性广等特点。目前,该成果已发表于Organic Letters。 图1 Organic Letters, DOI: 10.1021/acs.orglett.0c02032 吲唑酮类衍生物因具有抗炎、抗肿瘤、降低血糖等多种活性而被应用于药物化学领域。目前,已有多例吲唑酮类衍生物的合成方法的相关报道(图1),但这些方法仍有一些潜在的局限性,比如条件苛刻、需金属催化或底物适应性不广等问题。此次,成都先导团队(以下简称“团队”)开发的基于B2(OH)4还原的2-取代吲唑酮构建方法,成功克服了这些问题,不仅条件温和,而且具备脂肪胺和芳香胺的兼容性。 图2 吲唑酮类衍生物的合成方法 首先,团队通过条件优化,以化合物1a为起始原料成功开发了2-取代吲唑酮的小分子合成方法。在以甲醇作为溶剂的条件下,实现了89%的分离收率(图3)。其次,实验表明,该反应对质子溶剂(乙醇,水)表现出较好的兼容性,而非质子溶剂(DMA,DMSO)对该反应有抑制作用。最后,团队还优化了稀释浓度下的反应条件,通过增加B2(OH)4和NaOH的当量,实现了低浓度下的反应转化并且保持收率不降低,从而为后续On-DNA的2-取代吲唑酮类化合物的合成打下了坚实的基础。 图3 基于B2(OH)4还原的构建2-取代吲唑酮化合物的条件优化 在完成条件优化之后,团队对底物适用范围进行了拓展,验证了不同取代基的脂肪胺和芳香胺,以及母核骨架对N-N键形成的影响(图4)。实验表明,该条件具有很好的底物普适性,无论芳香胺和脂肪胺,还是不同的母核骨架都能得到较好的产率。当然也有例外,比如杂环母核骨架由于硝基的取代位置不同而导致反应活性差别较大(2w,2x)。 图4 2-取代吲唑酮合成的底物范围 在2-取代吲唑酮小分子合成条件优化和底物拓展之后,团队通过进一步的条件优化成功实现了On-DNA的2-取代吲唑酮的构建,并通过对照实验,验证了On-DNA的合成条件与小分子合成的一致性。底物适用范围方面,该On-DNA 条件表现出来很好的底物兼容性(图5)。目前,该方法已被成功运用于DNA编码化合物库的构建中(图6)。 图5 On-DNA 2-取代吲唑酮合成的底物范围图6 基于2-取代吲唑酮的化合物库 综上,该工作发展了一种高效的、底物适用范围广的2-取代吲唑酮的合成方法,并成功将其运用到DNA编码化合物库的构建中。 参考文献: Bao, Y. P. Deng, Z. F. Feng, J Zhu, W. W. Li, J. Wan, J. Q. Liu, G. S. A B2(OH)4?Mediated Synthesis of 2?Substituted Indazolone and Its Application in a DNA-Encoded Library. Org. Lett. 2020, DOI: 10.1021/acs.orglett.0c02032 后记岛津企业管理(中国)有限公司作为成都先导药物开发股份有限公司全方位的战略合作伙伴,目前已经与成都先导合作搭建了以下平台:1.借助岛津超临界流体分析平台(UC):能够对实验中涉及的手性骨架分子进行高效、精准的分析与表征;2.岛津UHPLC与LCMS-2020搭建的核酸质谱平台:可以轻松表征Mw为5-30k的核酸样品,而且仪器较高的灵敏度也足够帮助研究反应过程中产生的低含量副产物;3.岛津最新的LH-40制备工作站平台:可以实现从小分子到多肽,寡核苷酸,都能进行mg-g级的高纯度制备,包括(不限于)反相、正相、离子交换、体积排阻等体系。 关于成都先导成都先导药物开发股份有限公司是一家从事新药研发的快速发展的生物技术公司,总部位于中国成都,在美国设有子公司。成都先导为小分子新药发现建立了一个国际领先的,以DNA编码化合物库的设计、合成和筛选为核心的技术平台。目前,公司基于数百种不同的骨架结构,已经完成千亿级结构全新、具有多样性和类药性DNA编码化合物的合成,并且已有多个案例证实了其针对已知靶点和新兴靶点筛选苗头化合物的能力。同时,成都先导建立了自己的新药研发管线,部分品种已进入临床实验阶段。成都先导业务遍布北美、欧洲及亚洲等,现已与多家国际著名制药公司、生物技术公司、化学公司、基金会以及科研机构建立合作,致力于新药的发现与应用。 如您想对上述平台(或技术)有进一步的了解并有意合作,欢迎联系成都先导及岛津。
  • 可检测基因编辑脱靶效应,此技术有望完善基因编辑治疗
    p style=" text-align: center "   img src=" https://img1.17img.cn/17img/images/201903/uepic/22506cf5-5909-4022-83a3-3fd7e13aec9a.jpg" title=" 00.jpg" alt=" 00.jpg" style=" text-align: center " / /p p style=" text-align: center " 研究人员在观察胚胎培养情况。中科院神经科学研究所供图 br/ /p p   “渐冻人”(运动神经元症)、“玻璃娃娃”(成骨不全症 )、“月亮孩子”(白化病)、地中海贫血……各种各样的罕见病一直因发病率低而缺乏有效的治疗方案,给患者和家庭带来无限的痛苦。 /p p   据统计,全球有7000多种罕见病,其中80%的罕见病是单基因遗传病。近年来,随着基因编辑技术的逐渐成熟,基因治疗被人们寄予厚望。 /p p   然而,基因治疗的风险不可低估,其中“脱靶效应”是基因编辑技术最大的风险来源。 /p p   近日,中科院神经科学研究所、脑科学与智能技术卓越创新中心杨辉研究组与中科院马普计算生物学研究所、中国农科院深圳农业基因组研究所及美国斯坦福大学团队合作,开发出一种名为GOTI的全新的检测基因编辑工具脱靶技术。该技术可精准客观地评估基因编辑工具的脱靶率。该研究于3月1日在线发表于《科学》。 /p p   strong  难题: /strong /p p strong   如何有效检测基因编辑工具的安全性 /strong /p p   CRISPR/Cas9是广受关注的新一代基因编辑工具。学术界普遍认为,基于CRISPR/Cas9及其衍生工具的临床技术将为人类的健康作出巨大贡献。然而,基因编辑工具“脱靶”风险也一直备受关注。若将其应用于临床,“脱靶效应”可能会引起包括癌症在内的很多种副作用。 /p p   中科院神经科学研究所研究员杨辉在接受《中国科学报》采访时表示,临床技术对于潜在风险和副作用的容忍度极低,因此一种能突破之前限制的脱靶检测技术,将成为CRISPR/Cas9及其衍生工具能否最终走上临床的关键。 /p p   “其实,过去人们推出过多种检测脱靶的方案,但这些方法都存在局限性。传统上,对脱靶的检测依赖于算法预测,靠不靠谱无人得知 或依赖于体外扩增,但这个会引入大量的噪音,会导致检测的精确度大打折扣。”杨辉说。 /p p   由于不能高灵敏度地检测到脱靶突变,尤其是单核苷酸突变,因此关于CRISPR/Cas9及其衍生工具的真实脱靶率一直存在争议。 /p p   然而,任何科学技术归根结底都需要服务于全人类,尤其像基因编辑这样的神奇技术。想要有效地操纵这把“上帝的手术刀”,还得给它做个全方面的体检。 /p p    strong 突破: /strong /p p strong   GOTI技术精准捕捉“脱靶”逃兵 /strong /p p   要提升检测脱靶效应的精度,就必须彻底颠覆原有的脱靶检测手段。 /p p   为实现这一目标,实验人员建立了一种名叫GOTI的脱靶检测技术。“我们在小鼠受精卵分裂到二细胞期时,编辑一个卵裂球,并使用红色荧光蛋白标记。小鼠胚胎发育到14.5天时,将整个小鼠胚胎消化成为单细胞,利用流式细胞分选技术并基于红色荧光蛋白,分选出基因编辑细胞和没有基因编辑的细胞,然后通过全基因组测序比较两组差异。这样就避免了单细胞体外扩增带来的噪音问题。”中国农科院深圳农业基因组研究所研究员左二伟告诉《中国科学报》。 /p p   同时,由于实验组和对照组来自同一枚受精卵,理论上基因背景完全一致,因此直接比对两组细胞的基因组,其中的差异基本就可以认为是基因编辑工具造成的。这样便能发现此前脱靶检测手段无法发现的完全随机的脱靶位点。 /p p   随后,该团队将成功建立的GOTI投入基因编辑技术脱靶检测。 /p p   实验人员先是检测了最经典的CRISPR/Cas9系统。结果发现,设计良好的CRISPR/Cas9并没有明显的脱靶效应。但是,同样被寄予厚望的CRISPR/Cas9衍生技术BE3则存在非常严重的脱靶,而且这些脱靶大多出现在传统脱靶预测认为不太可能出现脱靶的位点。 /p p   杨辉建议,人们应冷静地分析一些新兴技术的安全性。这些脱靶位点有部分出现在抑癌基因上,因此经典版本的BE3有着很大的隐患,目前不适合作为临床技术。 /p p    strong 未来: /strong /p p strong   完善基因编辑治疗手段、建立行业标准 /strong /p p   杨辉告诉记者,团队接下来将进一步检测BE3除导致异常基因突变外还可能存在的其他问题,并在此基础上,设法改进这个系统,从而建立一种不会脱靶,也没有其他风险的单碱基突变技术。 /p p   中科院马普计算生物学研究所研究员李亦学表示,最新工作建立了一种在精度、广度和准确性上远超之前的基因编辑脱靶检测技术,显著提高了基因编辑技术的脱靶检测敏感性,有望借此开发出精度更高、安全性更好的新一代基因编辑工具。 /p p   “我们希望未来可基于这项新技术,制定一些行业标准。凡是进入临床的基因编辑技术,必须经过这套系统的检验才能证明其安全性,以便让这个领域有序、健康地发展下去。”他说。 /p p   中科院院士、中科院神经科学研究所所长蒲慕明认为,该技术针对基因编辑的安全性问题,“有了它,便可以更加客观、可靠地评估基因编辑工具的脱靶率”。 /p p   针对该技术在单碱基编辑工具BE3中发现的重大“安全隐患”,蒲慕明表示:“这能让我们重新审视基因编辑技术的安全性,但不是说这项技术不能再开展基因治疗了。正是因为已经建立新的检测技术,我们才知道如何去修正、改善BE3,从而开发安全性更高的新一代基因编辑工具,造福患者。” /p
  • 赛默飞世尔祝贺《药物分析杂志》第七届编辑委员会成功召开
    作为被国内外检索系统收录的我国自然科学核心期刊, 《药物分析杂志》在药物研究与分析领域拥有强大的影响力. 其编委会成员也是来自药检所,药学院,中检所,国家药典委员会的领导及专家.2008年6月21日,《药物分析杂志》第七届编辑委员会全体会议在上海光大大酒店召开。编委会委员们和药物分析界专家欢聚一堂,交流药物分析领域的最新技术进展,商讨如何进一步提高杂志质量,努力打造药物分析领域精品期刊。 中国药品生物制品检定所常务副所长及《药物分析杂志》主编金少鸿研究员出席编委会议并讲话。编辑部主任杨腊虎主任药师作了《药物分析杂志》编辑部工作报告。各位编委就办好《药物分析杂志》以及共同关心的问题进行了讨论,整个会议气氛热烈。 赛默飞世尔科技是本次会议的主要赞助商,参与学术交流和会议的组织工作。赛默飞世尔应用支持专家刘婷做了关于高分辨质谱在中药分析和药物结构确认方面的应用报告, 并详细介绍了两个应用实例: 利用配置HCD碰撞池的LTQ-Orbitrap XL高分辨质谱做绿茶和红茶指纹图谱分析, 以及利用配置HCD碰撞池的LTQ-Orbitrap XL高分辨质谱确定抗癌药伊利替康在肝微粒体孵育下代谢物的结构. 新建实验室方案经理蒋能群博士在会上介绍了赛默飞世尔科技旗下Fisher Scientific新建实验室包括咨询设计、产品供应和项目管理等全方位的能力。 金少鸿主编(左)参观赛默飞世尔展示中心 会后,金少鸿主编、杨腊虎主任等和与会的编委们兴致勃勃地来到了赛默飞世尔位于上海金桥的技术应用展示中心参观。编委们边参观,边交流,对Thermo Scientific优质LC/MS和GC/MS产品线以及今年新推出的iS10近红外光谱和拉曼光谱以及 Fisher Scientific的实验室装备等产生了浓厚的兴趣.赛默飞世尔科技产品的范围之广和技术之高给各位到场专家留下了深刻的印象。 编委参观赛默飞世尔技术应用展示中心 当晚,赛默飞世尔科技同仁与编委们共同举杯,祝贺药物分析杂志第七届编委会全体会议圆满成功。赛默飞世尔中国区市场总监毛君玲女士在致欢迎词中说到:《药物分析杂志》是中国药学分析领域非常优秀的学术性期刊,在药学类科技期影响因子排位一直是名列前茅。《药物分析杂志》以其独具的深度与广度展示我国药物分析的现状与发展。作为分析技术和实验室装备为核心的公司,赛默飞世尔的技术人员和应用专家也都是《药物分析杂志》的忠实读者。毛君玲女士也借此机会代表读者对编委们的辛勤工作表示衷心的感谢。并祝贺《药物分析杂志》越办越好! 部分编委合影 关于Thermo Fisher Scientific(赛默飞世尔科技)(原热电公司) Thermo Fisher Scientific(赛默飞世尔科技)(纽约证交所代码:TMO)是全球科学服务领域的领导者,致力于帮助客户使世界更健康、更清洁、更安全。公司年销售额超过100亿美元,拥有员工约33,000人,在全球范围内服务超过350,000家客户。主要客户类型包括:医药和生物公司,医院和临床诊断实验室,大学、科研院所和政府机构,以及环境与工业过程控制装备制造商等。公司借助于Thermo Scientific和Fisher Scientific这两个主要的品牌,帮助客户解决在分析化学领域从常规的测试到复杂的研发项目中所遇到的各种挑战。Thermo Scientific能够为客户提供一整套包括高端分析仪器、实验室装备、软件、服务、耗材和试剂在内的实验室综合解决方案。Fisher Scientific为卫生保健,科学研究,以及安全和教育领域的客户提供一系列的实验室装备、化学药品以及其他用品和服务。赛默飞世尔科技将努力为客户提供最为便捷的采购方案,为科研的飞速发展不断地改进工艺技术,提升客户价值,帮助股东提高收益,为员工创造良好的发展空间。欲获取更多信息,请浏览公司的网站:www.thermo.com.cn
  • 赛默飞世尔祝贺《药物分析杂志》第七届编辑委员会成功召开
    作为被国内外检索系统收录的我国自然科学核心期刊, 《药物分析杂志》在药物研究与分析领域拥有强大的影响力. 其编委会成员也是来自药检所,药学院,中检所,国家药典委员会的领导及专家.2008年6月21日,《药物分析杂志》第七届编辑委员会全体会议在上海光大大酒店召开。编委会委员们和药物分析界专家欢聚一堂,交流药物分析领域的最新技术进展,商讨如何进一步提高杂志质量,努力打造药物分析领域精品期刊。   中国药品生物制品检定所常务副所长及《药物分析杂志》主编金少鸿研究员出席编委会议并讲话。编辑部主任杨腊虎主任药师作了《药物分析杂志》编辑部工作报告。各位编委就办好《药物分析杂志》以及共同关心的问题进行了讨论,整个会议气氛热烈。 部分编委合影   赛默飞世尔科技是本次会议的主要赞助商,参与学术交流和会议的组织工作。赛默飞世尔应用支持专家刘婷做了关于高分辨质谱在中药分析和药物结构确认方面的应用报告, 并详细介绍了两个应用实例: 利用配置HCD碰撞池的LTQ-Orbitrap XL高分辨质谱做绿茶和红茶指纹图谱分析, 以及利用配置HCD碰撞池的LTQ-Orbitrap XL高分辨质谱确定抗癌药伊利替康在肝微粒体孵育下代谢物的结构. 新建实验室方案经理蒋能群博士在会上介绍了赛默飞世尔科技旗下Fisher Scientific新建实验室包括咨询设计、产品供应和项目管理等全方位的能力。   会后,金少鸿主编、杨腊虎主任等和与会的编委们兴致勃勃地来到了赛默飞世尔位于上海金桥的技术应用展示中心参观。编委们边参观,边交流,对Thermo Scientific优质LC/MS和GC/MS产品线以及今年新推出的iS10近红外光谱和拉曼光谱以及 Fisher Scientific的实验室装备等产生了浓厚的兴趣.赛默飞世尔科技产品的范围之广和技术之高给各位到场专家留下了深刻的印象。 金少鸿主编(左)参观赛默飞世尔展示中心   当晚,赛默飞世尔科技同仁与编委们共同举杯,祝贺药物分析杂志第七届编委会全体会议圆满成功。赛默飞世尔中国区市场总监毛君玲女士在致欢迎词中说到:《药物分析杂志》是中国药学分析领域非常优秀的学术性期刊,在药学类科技期影响因子排位一直是名列前茅。《药物分析杂志》以其独具的深度与广度展示我国药物分析的现状与发展。作为分析技术和实验室装备为核心的公司,赛默飞世尔的技术人员和应用专家也都是《药物分析杂志》的忠实读者。毛君玲女士也借此机会代表读者对编委们的辛勤工作表示衷心的感谢。并祝贺《药物分析杂志》越办越好!   关于Thermo Fisher Scientific(赛默飞世尔科技)   Thermo Fisher Scientific(赛默飞世尔科技)(纽约证交所代码:TMO)是全球科学服务领域的领导者,致力于帮助客户使世界更健康、更清洁、更安全。公司年销售额超过100亿美元,拥有员工约33,000人,在全球范围内服务超过350,000家客户。主要客户类型包括:医药和生物公司,医院和临床诊断实验室,大学、科研院所和政府机构,以及环境与工业过程控制装备制造商等。公司借助于Thermo Scientific和Fisher Scientific这两个主要的品牌,帮助客户解决在分析化学领域从常规的测试到复杂的研发项目中所遇到的各种挑战。Thermo Scientific能够为客户提供一整套包括高端分析仪器、实验室装备、软件、服务、耗材和试剂在内的实验室综合解决方案。Fisher Scientific为卫生保健,科学研究,以及安全和教育领域的客户提供一系列的实验室装备、化学药品以及其他用品和服务。赛默飞世尔科技将努力为客户提供最为便捷的采购方案,为科研的飞速发展不断地改进工艺技术,提升客户价值,帮助股东提高收益,为员工创造良好的发展空间。欲获取更多信息,请浏览公司的网站:www.thermo.com.cn
  • 超越韩春雨?新一代基因编辑技术南京大学问世
    2016年9月15日,《Genome Biology》报道了一种基于SGN的基因编辑新技术,以结构引导的内切酶(SGN,Structure-guided nuclease)实现体内外DNA任意序列的靶向和切割。论文一作为Shu Xu,论文通信作者为南京大学医学院附属金陵医院的周国华(Guohua Zhou)研究员、南京大学模式动物研究所的赵庆顺(Qingshun Zhao)教授和朱敏生(Minsheng Zhu)教授。做为基因编辑领域的从业者,读后很有感触,应BioArt主编之邀请,以半学术的方式、以随笔的形式写出,与各位分享,不严谨之处请大家各自消毒。  感触之一:构思巧妙,略有瑕疵,瑕不掩瑜。  论文中,作者巧妙地融合FEN1(Flap endonuclease-1,是一种可以特异性识别flap结构的核酸内切酶,参与DNA的复制,修复和重组过程 除此之外它还具有双链DNA特异的5‘-3’的核酸外切酶活性)和已经被成功用于ZFN和TALEN的DNA剪切结构域Fok I,结合标准化的linker(GS repeats),设计了一个chimeric protein,实现了可编程的基因编辑系统,具有以下特点:短链ssDNA导向的基因组特定位置 编辑结果是产生大片段的deletion(可以大于2.6kb) 可以在斑马鱼胚胎中成功编辑内源基因。这个构思,看得出包含ZNF以及TALEN的影子,其实这三者设计思路是一致的,其创新点在于靶向元件的选择十分巧妙,切割元件直接me too。令人惊喜的是,这种原创性工作出自我们中国科学家团队,略有遗憾的是,论文中体内靶点做的偏少,也没有以CRISPR或者TALEN为对照,导致尚不能够评估其相对低的编辑效率是来自位点特异性障碍还是来自技术本身(znf703基因编辑效率1/96≅ 1% cyp26b1基因编辑效率是3/29≅ 10%、这个位点还真不低)。另外一点,如果SGN系统编辑结果是产生大片段的deletion,那么后期的同源重组做起来要相对困难(冒昧的揣测一下:FEN-1外切酶活性是否可以dead?貌似大片段的deletion应该是5' -3' 的核酸外切酶活性引起的)。  感触之二:表述质朴谦逊,留下很大的优化空间。  通篇论文读下来,科学之外,还感觉到一种相对质朴的文风,措辞之间充盈着谦逊。这么讲,可能超出了学术范畴,所以称之为随笔,既然自己给自己开了这么一个后门,所以,干脆就谈出来,好在笔者与南京大学与作者没有关联,也就没有了套磁之嫌疑。例如,在基本术语上作者没有跟风:“SGN”而不是“ssDNA guided Nuclease”,“DNA editing”而不是“genome editing”,这些细节都能够体现出一种“独立性”。基因编辑技术的效率是极其重要的,目前看在这篇论文中,作者没有更多地报道相关的条件优化工作,例如效率瓶颈是存在于guide DNA与靶向区域的结合效率?还是存在于SGN的识别效率?整个生物学场景之中,目标区域的DNA melting究竟有多重要?是转录相关事件还是复制相关事件?(冒昧的揣测一下:是不是质粒编辑实验中采用可诱导启动子即可帮助判断?)当然,不应该要求一篇论文解决和回答这么多的科学或技术问题,但是可以预计,这个新工具可能还有较大优化空间,期待着他们更多的进一步报道。  感触之三:就是要挑战CRISPR,尽管它似乎难以逾越!  众所周知,今年5月2日《Nature Biotechnology》在线发表河北科技大学韩春雨博士“一鸣惊人”的论文,报告了一种NgAgo-gDNA基因编辑新工具,尽管因不可重复而使韩春雨“一波三折”地陷入学术诚信危机,但是,此文也算是高调地揭开了挑战CRISPR暗中竞赛的盖子。尽管CRISPR如日中天,甚至有“long live CRISPR”之类的戏言,但是,CRISPR并不完美,这种“不完美”不仅仅来自Off-target、PAM的限制性、难以实现单碱基精确编辑之类的技术瑕疵,更是来自人类对新技术的“天然贪婪”,来自根深蒂固的奥林匹克精神“更快、更高、更远”,来自我们骨子里的征服欲。正如哈佛大学医学院遗传学教授George Church所言:新技术都是脆弱的,随时可能被取代 加州大学圣迭戈分校的Prashant Mali 说的更直白“我们需要的不止这些”。所以,从技术使用者的角度看,CRISPR是大自然和几位先锋科学家送来的珍贵礼物,在欣然拥抱它的同时、当然也期待着更好的技术出现 从技术开发者的角度看,大红大紫般火热的CRISPR又是新的竞赛标杆,它令人嫉妒地、高傲地立在那里,挑逗和激发着人们超越它的冲动。  感触之四:源自天然、超越天然,从基因编辑技术演化史看“工程化”在技术工具开发中的重要性。  有人把基因编辑技术做了“断代工程”,给技术划代,很形象、也利于普及,但是有时候也比较困难。一般地,理论上可以在哺乳动物细胞中近乎任意位点切割并引发编辑的ZFN、TALEN以及CRISPR,它们在时间节点上依次出现、而且效率和便利性也越来越好,所以被称为第一代、第二代、第三代基因编辑技术(1G、2G、3G)。笔者愿意把他们称之为大众基因编辑工具,因为对应着的还有一些小众工具,鉴于其自身的技术局限和缺陷,并没有被大家普遍接受。今天,先聊一聊大众工具,随后加一些小花边,再聊聊那些正在被淘汰和被遗忘的小众工具,补充这些小众工具的演化史,可以更加清晰地看出技术发展脉络,或许从中获得另外的灵感和启发。  从大众工具看,“工程化”贯穿始终。现代中文语境中,一直有一种混淆科学与技术的“语义学”困境。科学与技术相关但不相同,有人形象地这样区分科学与技术:know what,know why是科学,know how是技术。基因编辑总体上是一种技术,其相关工具的开发,起步于科学发现,但是不止步于科学发现。例如,从现有公开文献看,CRISPR最重要的科学发现节点是2011年卡彭蒂艾(Emmanuelle Charpentier)对tracrRNA的生物学功能的阐明。但是,有时候,造物主很懒,他开辟了这个世界之随后可能置之不理了。所以,大自然留给我们的礼物,有时候配不上我们征服的野心,因此,就人类目标而言,我们从来都不吝啬和迟疑于改进和再造。果然,随后的2012年,卡彭蒂艾就会同詹妮弗刀娜(Jennifer A. Doudna)联合发表了划时代论文,把tracrRNA和guide RNA合二为一,做成了工程化的“chimeric single guide”,sgRNA由此诞生。而在CRISPR-Cas工程化、模块化方面贡献最大的,应该首推华人科学家张锋教授。除CRISPRi、 CRISPRa之外,早在2013年的综述中,张锋教授就展望了包括把Cas设计为光控模式在内的各类工程化方案。而就是在本月,又推出了两项以遥控sgRNA的方式对CRISPR实施即时控制的技术方案。哈佛和神户大学的团队先后发表了利用“工程化”措施将AID与dCas9做成chimeric protein实现了不依赖于同源重组的单碱基编辑。就在本月初,MIT的团队创建了光敏感的sgRNA技术 几乎与此同时,深圳的科学家团队报告了“化学控制”的sgRNA的控制技术。  让我们把视野再回望到ZFN和TALEN,更是工程化的杰出案例,直至今天讨论的SGN,其“动作模块”甚至“毫不动摇”地使用FokⅠ,所变换进化的是“GPS定位模块”。这堪称技术演化之中还留下了历史痕迹,好似“保守序列”一样,让人惊叹“自然进化”与“人工进化”异曲同工之奇妙。  所以,基因编辑工具开发工程化的基本方程式是:GPS定位模块+执行模块。话分两头说。  先聊“执行模块”。FokⅠ屡战屡胜,但是,一定还有其它选择,毕竟,造物主应该是慷慨的,地球生命演化了四十亿年,留下的自然遗产极为丰富。  再聊聊GPS定位模块。这个模块工作效率及操作便利性如何,是基因编辑工具“好不好使”的关键。ZFN和TALEN的主要特点是:以蛋白质特定结构域来完成靶向定位,其主要缺陷是:定位模块体外准备麻烦,工作量大成本高 相比之下,CRISPR-Cas却方便的多,所以在总体竞争中胜出。但是CRISPR-Cas还是或多或少存在Off-target的弊端,为了解决这个问题、进一步强化定位精准性,已有报道以dcas9为定位器,融合上FokⅠ,实现正义链和反义链双向定位、并形成FokⅠ二聚体造成DNA双链断裂(DSB)、引发编辑。本次讨论的南京大学的这篇文章,再一次创新了GPS定位模块,首次采用FEN-1(flap endonuclease-1)来执行定位功能,将定位指令转化为方便人工编程的guide-ssDNA,做的很巧妙。  聊到这里,下一个创新近似于呼之欲出:尽管NgAgo似乎失败了,但是它工程化改造的前景呢?pAgo做为基因组“GPS定位模块”的可能性,怎能不令工具开发者怦然心动,就连我那个简陋的实验室,都已经于几个月前就开始努力了,万一大牛们漏掉了某些创意呢?  总之,GPS定位模块+执行模块=基因编辑工具,两个模块的重点是定位模块。设计灵感源自天然存在的自然遗产、但不止步于天然存在。自然界留给我们很多的提示和启发,例如:位点特异重组酶(site specific recombinase)如何?整合酶(integrases)如何?转座酶(transpotase)如何?其它未知的recombinase如何?这个领域的干法和湿法挖掘竞赛应该一直在进行。张锋曾说到:“通过对多种酶进行探索,我们可以得到一个更强的基因组编辑工具箱。我们必须继续探索未知。”  最后的花边:从G0谈起,回顾一下“沦落”为小众的基因编辑工具。  上世纪七十年代末,利用限制性内切酶实现了质粒体外重组,标志着第一代基因工程的诞生。随后,基于同源重组的体内染色体水平的基因工程成为现实,但是由于重组率极低,必须使用抗生素抗性或营养缺陷等标记加以筛选,做不到无痕编辑。之后,尽管发展了反向筛选标记、cre位点预埋及抗性回收等技术措施,但是,还是繁琐和低效。业界对无标记的无痕基因编辑技术是十分期待的,无标记无痕的关键在于编辑效率,只要效率达到百分之一以上的数量级别,就有希望。这里让我们一起回顾一下两个小众工具,作为“绿叶”来衬托一下广为人知的大众工具。  其一,G0代的重组工程(Recombineering)。上世纪90年代末,基于λ 噬菌体的Red重组酶的重组工程(Recombineering)出现了,这个领域中,中国科学家于代冠(Daiguan Yu)跟随NIH的Donald L . Curt,做出了不少贡献,于代冠博士后来回到了中科院广州生物医药与健康研究院。基于Red系统,哈佛大学George Church于2008年在《Nature Biotechnology》上发表了改进版的MAGE,可以自动化地在数天内引发十亿计的突变 至2013年,Church又把基于ss-oligo的的重组工程从大肠杆菌扩展到酿酒酵母,这个过程还与rad51/rad54相关,被Church发展成YOGE技术,之所以特别强调Church,是因为这位伟大的科学家也是早期CRISPR的推进者之一,他采用Cas9编辑高等细胞基因组的论文,与张锋“同框”于2013年1月的Science。但是,重组工程最终没有能够再扩展到其它物种,特别是没有实现哺乳动物细胞的基因编辑。大肠杆菌的Red/ET系统,也是重组工程的重要实现工具,也是目前仍在普遍使用的分子生物学基本操作工具,这个系统源自中国科学家张友明在欧洲留学工作期间做出的开创性工作,张友明博士后来回到山东大学工作。总体上,基于寡核苷酸入侵的重组工程可扩展性不够好(局限于原核的细菌、真核最多跨到酿酒酵母),效率相对低下(在千分之一到百分之一之间),难以大幅度优化。  其二,G2.5代的Targetron。这个来自原核微生物防御机制的Targetron技术,笔者更愿意把它称之为2.5代技术,不是因为它的效率,而是因为它的GPS定位模块的工作方式,其方式是结合了“个别DNA位点的蛋白质识别”和“其它位点的RNA识别”,而且识别序列是可编辑的、可以“reprogrammable”的。这个编辑工具的大本营首推德克萨斯大学奥斯汀分校,他们有对外开放的设计软件及一些技术服务,但是,它编辑复杂、使用困难、物种可扩展性不高,梭状芽孢杆菌是可以用的,中科院微生物所李寅组和上海的杨晟组都有相关工作。总之,仍然是一个小众工具。  SGN将会如何?是小众工具还是能够发展成大众工具呢?pAgo能不能进一步W为NgAgo“正名”?能不能正名之后再发展成大众工具呢?前提是solid、可重复,并且用户友好。让我们拭目以待吧!  源于天然而超越天然,正道也!再次祝贺南京大学科学家在基因编辑领域的这项重大突破!
  • 中科院微生物所等发表植物基因组编辑研究综述
    p   序列特异性核酸酶使得基因组编辑成为可能,快速推动了基础和应用生物学的发展。CRISPR-Cas9系统自出现以来,作为可转化植物的基因组编辑工具已得到广泛应用。CRISPR-Cas9对基因组靶位点进行定向切割,造成DNA双链断裂。DNA双链断裂主要通过两种高度保守的机制进行修复,即非同源末端连接(Non-homologous end joining, NHEJ)和同源重组(Homologous recombination, HR)。通过NHEJ方式,断裂的DNA会重新连接,但往往是不精确的,断裂位置会产生少量核苷酸的插入或删除,通常产生基因敲除突变体 与之相反,HR方式以同源序列为模板进行合成修复,可以产生精确的定点替换或插入突变,精准编辑靶基因。通过基因组定向突变进行基因功能鉴定和性状改良在植物中已得到广泛应用。然而,在植物中进行精准基因组编辑的需求极其迫切,尤其是对于那些难以转化的物种。目前,新开发出来的Cas9变体、新型RNA导向的核酸酶、碱基编辑系统和无DNA的CRISPR-Cas9递送方法都为植物基因组工程提供了前所未有的机遇。近日,中国科学院微生物研究所邱金龙研究组最近发表文章综述了植物基因组编辑的现状,重点关注由于植物基因组编辑的自身特点(如图)所带来的特殊挑战和机遇,并介绍了新近发展出的基因组编辑工具、方法及其在植物中潜在的应用。文章最后还展望了植物基因组编辑的前景和未来方向。 br/ /p p   该文章已于近日在线发表在《自然-植物》(Nature Plants)上。邱金龙研究组助理研究员尹康权为第一作者,邱金龙和中科院遗传与发育生物学研究所研究员高彩霞为共同通讯作者。相关研究得到了国家转基因专项(2016ZX08010-002)、国家重点研发项目(2016YFD0100602)北京市科委项目(Z171100001517001)、中科院战略性先导科技专项(XDB11030500)和国家自然科学基金(31672015)等经费支持。(来源:中科院遗传与发育生物学研究所) /p p    a href=" https://www.nature.com/articles/nplants2017107" target=" _self" title=" " 文章链接 /a /p p br/ /p
  • 种业基因编辑技术引发创投机构关注
    自古以来,民以食为天,粮食安全一直被视为“国之大者”,而粮食安全的前提之一是种业安全。种业,被誉为农业的“芯片”,其发展的关键是种质资源的创制和高效育种技术的应用。当前,基因编辑技术正助力我国种业更具竞争力。  近年来,得益于第二代测序技术的商业化应用,测序成本不断降低,测序技术的应用更为广泛。业内人士表示,在畜牧业、农业等生物技术领域中,基因组编辑技术可以用来改良动植物品种,提供高产、优质、安全的食品。全基因组重测序和高通量测序技术的发展,促进了群体基因组学研究的进步,解决了许多重要的植物科学问题,并通过基因编辑、转基因、合成生物学等技术手段使得生物育种成为现实。  在此背景下,境内外资本市场颇为关注植物基因编辑技术的专利许可、新型工具的开发迭代、种质资源产品创制的创业公司,相关融资事件不断发生。  基因编辑生物育种赛道受到资本关注  公开资料显示,生物育种是现代农业生物技术育种的统称,生物育种是指利用基因工程、细胞工程和胚胎工程等现代生物技术,培育和推广一系列性能优良的动植物新品种的育种新技术和新产业。当前,现代生命科学和生物育种技术创新加快突破,孕育着新一轮农业科技革命。  此前,中国工程院院士万建民在接受媒体采访时表示,加快农业生物育种创新,构建现代种业创新体系,是贯彻落实中央决策部署实现种业科技自立自强的关键举措,是实现种源自主可控的根本路径。  近年来,植物基因编辑技术的专利许可、新型工具的开发迭代、种质资源产品创制的创业公司受到国际投资机构关注,融资事件不断发生:例如,美国某种子科技初创公司于2021年完成D轮2.08亿美元融资;总部位于美国的某农业基因编辑创业公司于2021年完成B轮9000万美元融资;此外,还有数家基因编辑公司相继获得超百万美元规模的融资,且部分公司已在资本市场上市。  国内方面,今年3月,基因编辑公司齐禾生科宣布完成了由杏泽资本领投的逾亿元种子轮融资,所募集资金将主要用于公司新一代基因编辑工具的开发,以及基因编辑技术在生物育种等各产业方向的应用。据了解,齐禾生科的联合创始人高彩霞,是中国科学院遗传与发育生物学研究所研究员。中国科学院遗传与发育生物学研究所官网显示,高彩霞主要从事植物基因组编辑技术、生物安全新型育种技术以及基因组编辑定向设计分子育种等方面的研究,致力于推动基因组编辑在分子设计育种中的应用。2013年,高彩霞团队在《自然生物技术》期刊(Nature Biotechnology)发表了世界首篇CRISPR基因编辑植物研究论文,率先将CRISPR基因编辑技术应用于植物研究。此后,高彩霞实验室陆续发表了数十篇基因编辑相关研究论文。  业内人士表示,不同于转基因技术,基因编辑技术在实现对基因组自身序列修改的同时,不会引入任何外源(其它非本物种)基因片段,具有商用领域广、安全性强、精准性高等特点,成为当下种业行业的发展焦点。私募投资机构正意识到,在国家粮食安全的大前提下,我国农业急需开发适合我国实际情况且拥有自主可控知识产权的种业“芯片”、减少粮食方面的进口依赖。  种业赛道投资需要坚持长期主义  中国科学院院士、中国科学院遗传与发育生物学研究所研究员李家洋曾公开表示,在生物育种技术中,诱变育种、杂交育种、分子标记辅助选择育种以及转基因育种都是“2.0”或“3.0”版本的技术,基因编辑技术才是当前最高的技术水平,也是全球育种业正在竞争的制高点,应该称为现代育种技术的“4.0”版本。  当前,生物育种发展得到了政策有力支持。2022年1月,农业农村部公布了《农业用基因编辑植物安全评价指南(试行)》,我国农作物基因编辑研发、应用有了更明确的规范,强化了我国基因编辑技术应用的制度保障,这对我国生物育种技术研发与产业推动具有里程碑意义。  业内人士表示,基因编辑应用于种业优势明显,具有研发周期短、成本较低、稳定性强、可以同时编辑多个性状等特点。在产品端,在保证高产、优质、多抗的前提下,更能兼顾各类营养物质的含量,实现产品订制化服务。可为产业链增效,如延长销售时间、产后保鲜和害病治理;为生产者提高粮食作物产量并获得新收益。  尽管在行业利好与需求增长的双重影响下,种业引发私募投资机构涌入,但投资人对种业赛道需要有更清晰的思考:我国种业行业集中度低,种业赛道具有周期长、投入高等特点,与资本的耐心可能形成错位,因此更需要资本与企业有共同抵抗风险的准备和耐心。  “产学研用”紧密结合是推动基因编辑育种向产业化迈进的关键。杏泽资本管理合伙人强静表示,杏泽资本秉承长期价值投资理念,将全力支持齐禾生科发展成为全球领先的解决基因编辑“卡脖子”难题的生物技术公司。“相信在国家对生物经济领域政策引领下,在我国科学家团队联合攻关的创新研发支持下,在以创新型生物企业为主体的投资产业化运营保障下,未来,我国生物经济领域战略科技力量将持续壮大,中国基因编辑技术一定会让中国饭碗端得更牢。”强静称。点击图片免费报名参加“第五届基因测序网络大会”
  • 1958万!“网红”韩春雨河北科大基因编辑中心仪器招标
    p   2016年08月31日,诺奖级“网红”韩春雨所在的河北科技大学发布基因编辑技术研究中心采购进口仪器设备招标公告,预算金额达1958万元,前不久2016国家自然科学基金名单揭晓时,还有人在问河北科技大学是否因韩春雨老师而获得大额资助?这次招标公告看来给予了很好的肯定。 /p p style=" text-align: center" & nbsp & nbsp & nbsp img src=" http://img1.17img.cn/17img/images/201608/insimg/ec9928b9-0e65-4ca5-a307-dbdd0ee9b997.jpg" title=" 1.jpg" / /p p & nbsp & nbsp 以下为招标内容: br/ /p p style=" text-align: center " class=" tc" strong 河北科技大学基因编辑技术研究中心采购进口仪器设备项目公开招标招标公告 /strong /p p   开标时间:2016年09月21日09时00分 /p p   项目名称:基因编辑技术研究中心采购进口仪器设备 /p p   机构项目编码:HB2016083601020004 /p p   项目联系人:李俊旭 /p p   项目联系电话:0311-83086827 /p p   采购人:河北科技大学 /p p   采购人地址:河北省石家庄市裕翔街26号 /p p   采购人联系方式:0311-81668206 /p p   代理机构:河北省国际招标有限公司 /p p   代理机构地址:石家庄市工农路486号 /p p   代理机构联系方式:0311-83086827 /p p   预算金额:1958万元 /p p   投标截至时间:2016年09月21日09时00分 /p p   获取招标文件开始时间:2016-08-31 /p p   获取招标文件结束时间:2016-09-07 /p p   获取招标文件地点:河北省国际招标有限公司508、516室 /p p   获取招标文件方式或事项:现金发售 /p p   招标文件售价:300元 /p p   开标地点:河北省国际招标有限公司西配楼会议中心 /p p   供应商的资格要求:投标人的资格要求:1、具有独立法人资格,且符合政府采购法第二十二条规定要求 2、具有本次招标设备生产或供应及安装调试能力 3、投标人报名时需提供:企业法人营业执照、税务登记证、组织机构代码证、法定代表人证明及身份证件或法人授权委托书及被委托人的身份证件,以上资料准备复印件一套并加盖单位公章(原件备查)。 /p p   采购数量:一批 /p p   技术要求:招标采购流式细胞仪、压力循环药品制备系统、自动灭菌器、二氧化碳培养箱、微滴式数字PCR系统、PCR仪、超低温冰箱、液氮罐、酶标仪、紫外分光光度计等设备采购具体可到招标公司进一步查阅招标文件。 /p p   备注:无 /p
  • 1853万!中国农业大学农业农村部基因编辑创新利用重点实验室建设第一次采购项目
    一、项目基本情况项目编号:BMCC-ZC23-0847项目名称:中国农业大学农业农村部基因编辑创新利用重点实验室建设第一次采购项目预算金额:1853.200000 万元(人民币)最高限价(如有):1853.200000 万元(人民币)采购需求:包号名称数量分包预算总预算是否接受进口产品01高通量荧光定量系统等1批449万元1853.2万元详见采购清单02荧光显微细胞成像仪等1批460.5万元详见采购清单03蛋白纯化仪等1批453万元详见采购清单04制备型高效液相色谱仪等1批490.7万元详见采购清单1.交货期:自签订合同之日起国产设备30工作日内交货并安装调试完毕,进口设备90个工作日内交货并安装调试完毕。2.交货地点:中国农业大学用户指定地点。3.简要采购需求:中国农业大学拟采购高通量荧光定量系统、荧光显微细胞成像仪、蛋白纯化仪、制备型高效液相色谱仪等设备一批,共分四个包,用于科研。合同履行期限:按招标文件要求。本项目( 不接受 )联合体投标。二、获取招标文件时间:2023年11月24日 至 2023年12月01日,每天上午9:00至11:30,下午13:00至17:00。(北京时间,法定节假日除外)地点:北京明德致信咨询有限公司官网(http://www.zbbmcc.com)方式:只接受电汇或网银购买(电汇或网银须于2023年12月01日17:00前到账)。售价:¥500.0 元,本公告包含的招标文件售价总和三、对本次招标提出询问,请按以下方式联系。1.采购人信息名 称:中国农业大学     地址:北京市海淀区圆明园西路2号        联系方式:卞老师,010-62731416      2.采购代理机构信息名 称:北京明德致信咨询有限公司            地 址:北京市海淀区学院路30号科大天工大厦B座17层1709室(邮编:100083)            联系方式:孙恺宁、刘亚运、吕家乐、王爽、吕绍山 010-82370045、15801412428、15910847865、bjmdzx@vip.163.com            3.项目联系方式项目联系人:孙恺宁、刘亚运、吕家乐、王爽、吕绍山电 话:  010-82370045、15801412428、15910847865、bjmdzx@vip.163.com
  • 科技部回应基因编辑婴儿事件
    p style=" text-indent: 2em text-align: justify " 今天下午,在国务院新闻办举行的“部长茶座”活动中,科技部副部长徐南平对引起社会极大关注的基因编辑婴儿事件做出回应。徐南平表示,2003年颁布的《人胚胎干细胞研究伦理指导原则》规定,可以以研究为目的,对人体胚胎实施基因编辑和修饰,但体外培养期限自受精或者核移植开始不得超过14天,而本次“基因编辑婴儿”如果确认已出生,属于被明令禁止的,将按照中国有关法律和条例进行处理。 /p
  • 衢州牵头,浙皖闽赣四省边际质量基础检验检测技术联盟成立
    6月20日,浙皖闽赣四省边际质量基础检验检测技术联盟成立大会暨“世界认可日”系列活动在浙江衢州举行,来自浙江衢州、安徽黄山、福建南平、江西上饶四省边际城市的市场监督管理部门及四地市、县两级食品、药品、计量、质量检验机构负责人等约200人参加。本次活动由衢州市市场监督管理局主办,黄山市市场监督管理局、南平市市场监督管理局、上饶市市场监督管理局协办。据了解,这次联盟成立是顺应社会发展需要:自2017年开展质量提升行动以来,我国质量总体水平显著提高,今年《质量强国建设纲要》正式印发,更对我国质量强国建设作出整体部署。为全方位推动质量升级,充分发挥认证认可检验检测助推经济稳进提质、促进全球贸易的功能和作用,进一步提升质量认证供给水平和创新能力。衢州、黄山、南平、上饶四市地缘相近、人文相通,此次共建质量基础检验检测技术联盟,有利于共同构建区域检验检测行业发展新格局,推动开放开发经济实现新增长。会上,浙江衢州、安徽黄山、福建南平、江西上饶四省边际城市检验检测机构代表进行“四省边际质量基础检验检测联盟”电子签约。衢州市食品药品检验研究院作为首届联盟轮值主席单位,发布了“共建联盟 共创未来 ”联盟倡议书,倡议推进高端人才、仪器设备、环境设施等要素合作互助、资源共享、平台共建,共同推进检验检测行业区域一体化,把联盟打造成政府认可、企业信赖、社会赞誉的四省边际检验检测品牌。与会嘉宾共同启动“四省边际质量基础检验检测技术联盟”,并为联盟成员单位进行授牌。浙江省市场监督管理局相关负责人称,衢州以“世界认可日”活动为契机,牵头成立四省边际质量基础检验检测技术联盟,是聚焦中心、服务大局的主动作为和生动实践,希望联盟聚焦中心大局,优化营商环境,坚持需求导向,协同提供精准高效服务,加强交流合作,推进区域一体化高质量发展,充分发挥技术平台作用,为产业健康可持续发展贡献更大力量。衢州市食品药品检验研究院院长宋剑锋说,下一步将充分发挥联盟平台的体制机制优势,引导更多认证认可检验检测资源要素向四省边际城市集中,进一步打通品牌链、人才链、科技链、产业链,形成“开放、协同、创新、共赢”的发展模式,最大化发挥资源优势,为建设现代化区域中心城市注入新动力。
  • 如何投稿英文期刊,来自编辑的十条建议
    对于母语并非英语的我们,在写论文投稿英文期刊时,总是会遇到这样那样的问题。最近,BioTechniques杂志的编辑们介绍了一系列英文写作技巧,希望能够帮大家把稿件写得更好。这里向大家介绍的是,如何处理好关键一步&mdash &mdash 投稿。   本文基于投稿中的常见问题,以编辑视角给出了十条宝贵的建议。以下这些窍门虽然不能保证你的稿件一定被采用,但至少能让你的投稿对编辑和审稿人更有吸引力。   1. 了解想要投稿的刊物   每一份杂志都有自己的宗旨和覆盖领域,这样的信息在它们的网站上都有介绍。近年来,新刊物如雨后春笋一般冒出来,电子投稿又逐渐成为主流,作者们很容易忽视不同杂志的投稿指南,不进行有针对性的修改。说实话,再没什么比这样的事更令编辑心烦了,了解杂志是投稿之前的必修课。   2. 了解投稿程序和格式要求   所有杂志对稿件都有一些特殊的要求,比如稿件应采取什么格式,投稿需要提供什么材料等等。有些杂志甚至对不同类型的稿件会提出不同的要求,BioTechniques杂志就是这样。如果你忽视这些要求,编辑们可能就不会认真对待你的来稿。   3. 使用主动语态   听起来很简单是不是?实际上,使用主动语态是一种表达技巧。主动语态对于投稿而言是不是真的这么重要呢?让我们来举两个例子:   例1:被动语态   &ldquo Here we have demonstrated through a variety of experiments that when three additional amplification cycles are added to the existing protocol, the final product yield can often times be increased.&rdquo   例2:主动语态   &ldquo Here we show through a variety of experiments that adding three additional amplification cycles to the existing protocol often increases the final product yield. &rdquo   看到了吧,使用主动语态的句子要容易理解得多,这样的表述还提升了语句的影响力。   4. 避免冗长的表述   我们可以将上面的句子作进一步的修改,去掉含义模糊的表述(例如&ldquo a variety of experiments&rdquo )让句子说服力更强。   例3:浓缩   &ldquo Here we show that adding three amplification cycles increases final product yield. &rdquo   我们可以看到,句子越简练就越容易引起读者的注意。   5. 进行仔细的核查   每个人都免不了犯错误,你的论文稿也不会那么容易就毁在几个错别字上。不过,语法和格式漏洞百出的论文,很难博得编辑和审稿人的好感。我们在投稿前应该仔细检查整篇文章,甚至请&ldquo 外援&rdquo 来帮忙校对。因为对文章越熟悉的人,越容易忽略掉其中的问题。在使用特殊术语或缩写时,检查用词的准确性和一致性也很重要,尤其是论文不同部分由不同作者完成的时候。   6. 好好写投稿信   写投稿信是投稿的一个关键步骤,这封信往往是杂志编辑对你的第一印象。投稿信应当用1-2句话直截了当地概括你的研究和关键发现。这句话最好不要直接从摘要中复制,应该写的更简短但不那么正式。此外你还应当说明,这篇文章符合这个杂志的宗旨和范畴。   7. 全面了解参考资料   当编辑给你的研究定位时,简介部分用到的参考资料是非常重要的。前文已经说过,现在的期刊比十年前多得多,因此彻底的文献检索和适当的引用很有必要,只有这样读者才能正确理解这项研究在整个领域中的地位。此外,彻底的文献检索也能增强你对相关领域现状的理解,有助于写出更有影响力的投稿信。   8. 注意图片和说明的格式   对于图片和说明,所有杂志都有自己的特殊规定。然而这样的规定很容易被作者们忽视,尤其是我们被拒稿后再投给另一份杂志时。这样的疏忽只会毫无疑义地拖长整个审稿过程,而你的论文会因为格式问题被打回来。   9. 别怕向编辑提问   编辑和审稿人并不总是正确的,他们有时也会犯错误,在回信时给出不清晰的修改意见。这时你不必埋头苦想修改要求到底是什么意思,有没有必要进行额外的实验。更简单的解决方法是,直接联系编辑问一问他需要些什么,以及他提出修改意见的原因。编辑们是非常乐意进行解释的,这往往是缩短审稿时间提高效率的最好办法。   10. 如何有效地进行反驳   在收到拒稿或者修改建议之后,我们可能需要对此进行反驳,这时应当采取恭敬有礼的态度。一般来说,这样的回复都是两三个编辑和几个审稿人经过深思熟虑做出的决定。因此,email里简单说一句&ldquo 你们错了,重新考虑下&rdquo ,是不能让编辑们改变决定的。成功的反驳,需要解决编辑或审稿人所担心的问题。这一阶段不要发送修改后的论文稿,如果编辑们提出的主要问题没有解决,他们可能根本就不会去看。此外,就算你成功反驳了编辑们的意见,他们通常还是会要求你做出特定修改然后再提交稿件。   原文检索:   Special Series: Manuscript Tips
  • 《自然-生物技术》首声明否定韩春雨基因编辑,明年1月完成调查
    北京时间11月29日日凌晨, 在围绕河北科技大学韩春雨NgAgo实验的可重复性问题上争论达半年之久后, 发表该论文的《自然—生物技术》(NBT)终于发布声明称,其于今日发表的Toni Cathomen及同事(编注:美德韩三国的研究团队)的通信文章,可能会否定韩春雨原论文所称的有效编辑内源性基因的这一主要发现。如果一篇论文在发表后遭到批评,NBT会对各种批评进行审慎和全面的评估,其将在2017年1月底之前完成对韩春雨NgAgo实验的调查。以下是“声明”全文。  关于韩春雨及同事发表于《自然-生物技术》的“DNA-guided genome editing using the Natronobacterium gregoryi Argonaute”(利用NgAgo进行DNA引导的基因组编辑)一文的声明  《自然-生物技术》今天就此前发表的韩春雨及同事所著论文“利用NgAgo进行DNA引导的基因组编辑”发表了“编辑部关注”,并发表Toni Cathomen及同事的通信文章,题为“利用Natronobacterium gregoryi Argonaute(NgAgo)未能检测到DNA引导的基因组编辑”。  《自然-生物技术》已审慎考虑过所有关于韩春雨及同事原著论文的评论。在任何情况下,如果一篇论文在发表后遭到批评,我们都会对各种批评进行审慎和全面的评估,此次也不例外。今天,我们不仅发表了Toni Cathomen及同事的通信文章,这可能会否定原论文所称的有效编辑内源性基因的这一主要发现 而且我们还连同原论文一起发表了“编辑部关注”,以确保读者知晓Cathomen及同事的论文,以及另外一篇在别处发表的论文(doi:10.1007/s13238-016-0343-9)所提出的担忧。目前,原论文的作者中有两位,即韩春雨和沈啸,已同意我们的发表这一“编辑部关注”,而高峰、姜峰和Yongqiang Wu则认为这并不合适。  《自然-生物技术》认为,让原作者在能力所及的情况下对上述通信文章所提出的担忧展开调查,并补充信息和证据来给原论文提供依据是非常重要的。因此,我们将继续与原论文的作者保持联系,并为他们提供机会,以在2017年1月底之前完成其调查。届时,我们会向公众公布最新进展。  编辑部关注:利用NgAgo进行DNA引导的基因组编辑  《自然-生物技术》的编辑就上述论文发表“编辑部关注”,以提醒读者人们对原论文结果的可重复性存有担忧。此次,我们发表三个团队的实验结果(http://dx.doi.org/10.1038/nbt.3753),他们都设法去重复韩春雨及同事发表在原论文中图4的结果,这一关键图表展示了对哺乳动物细胞内源性基因位点的编辑。这些团队无一能在任何位点,或在任何高于检测方法敏感度的条件下观察到NgAgo所诱发的变异。另外一组作者在《蛋白质与细胞》期刊也报告了类似结果(doi:10.1007/s13238-016-0343-9)。  我们和论文作者进行了沟通,他们正在调查造成可重复性缺乏的潜在原因。我们向其告知了这一声明。尽管调查仍在进行中,但韩春雨和沈啸同意我们的发布这一编辑部关注,高峰、姜峰和Yongqiang Wu则认为目前并不合适。这些调查一旦完成,我们会向读者提供最新信息。  以下为英文原文  Statement regarding“DNA-guided genome editing using the Natronobacterium gregoryi Argonaute” by Han Chunyu and colleagues, published in Nature Biotechnology  Nature Biotechnology is today publishing an Editorial Expression of Concern, alongside a Correspondence entitled “Failure to detect DNA-guided genome editing using Natronobacterium gregoryi Argonaute” by Toni Cathomen and colleagues, in relation to a previously published paper “DNA-guided genome editing using the Natronobacterium gregoryi Argonaute” by Chunyu Han and colleagues.  Nature Biotechnology has carefully considered all comments relating to the original paper by Han and colleagues. As in all cases where apaper encounters criticisms after publication, we have undertaken a careful and thorough evaluation of these criticisms. Today, we are publishing not only a Correspondence by Cathomen and colleagues that may refute the main finding of efficient editing of an endogenous gene claimed in the original paper, but alsoan Editorial Expression of Concern alongside the original paper to ensure that readers are aware of the concerns raised by the paper by Cathomen and colleagues and a report published elsewhere in the literature(doi:10.1007/s13238-016-0343-9). At this time, two authors of the original paper, Chunyu Han and Xiao Shen, agree with this Editorial Expression of Concern, whereas Feng Gao, Feng Jiang and Yongqiang Wu do not feel that it is appropriate.  Nature Biotechnology believes that it is important for authors to be able to investigate the concerns raised by the Correspondence and to provide additional information andevidence to support their paper if they are able to do so. Thus, we will continue to liaise with the authors of the original paper to provide them with the opportunity to do that by January 2017. An update will be provided to the community at that time.  Editorial Expression of Concern: DNA-guided genome editing using the Natronobacterium gregoryi Argonaute  The editors of Nature Biotechnology are issuing an editorial expression of concern regarding this article to alert our readers to concerns regarding the reproducibility of the original results. At this time, we are publishing the results of three groups (http://dx.doi.org/10.1038/nbt.3753) that have tried to reproduce the results in the critical Figure 4 in the original paper by Han and colleagues, which demonstrates editing of endogenous genomic loci in mammalian cells. None of the groups observed any induction of mutations by NgAgo at any of the loci or underany of the conditions tested above the sensitivity of the assays used. Similar results have been recently reported by a different group of authors in Protein& Cell(doi:10.1007/s13238-016-0343-9).  We are in contact with the authors, who are investigating potential causes for the lack of reproducibility. The authors have been informed of this statement. While the investigations are ongoing, Chunyu Han and Xiao Shen agree with this editorial expression of concern. Feng Gao, Feng Jiang and Yongqiang Wu do not feel that it is appropriate at this time. We will update our readers once these investigations are complete.    三国科学家表示使用NgAgo无法检测到基因组编辑效果  《自然-生物技术》发表的韩国首尔大学、德国弗莱堡大学和美国梅奥研究生院的10位学者的来信显示,三个独立的实验小组利用NgAgo未能发现基因组编辑的迹象。  “三个小组都合成了5’磷酸化的gDNA序列,使用高峰等人在Addgege提供的NgAgo质粒去转染相同的细胞系,并分析了基因组DNA寻找基因编辑的迹象。”  “尽管在报道的三种细胞系中做优化NgAgo介导的基因组编辑的不同尝试,但未能检测到成功编辑靶向序列的证据。”这十位科学家在来信中说。  “我们认为,在设计用于复制Gao等人的条件下,同时转染编码NgAgo的质粒DNA和单独的5'磷酸化单链gDNA不足以诱导在原始研究中报道的培养的人细胞中的indel,实现基因编辑。”  10位署名作者名单  Seung Hwan Lee,韩国基础科学研究院基因组工程中心   Giandomenico Turchiano,德国弗莱堡大学医学中心细胞与基因治疗研究所、慢性免疫缺陷中心   Hirotaka Ata,美国明尼苏达州梅奥研究生院   Somaira Nowsheen,美国明尼苏达州梅奥研究生院   Marianna Romito,德国弗莱堡大学医学中心细胞与基因治疗研究所、慢性免疫缺陷中心,德国弗莱堡大学生物研究院   Zhenkun Lou,美国明尼苏达州梅奥诊所肿瘤研究部   Seuk-Min Ryu,韩国基础科学研究院基因组工程中心,国立首尔大学化学系   Stephen C Ekker,美国明尼苏达州梅奥诊所生物化学和分子生物部   Toni Cathomen,德国弗莱堡大学医学中心细胞与基因治疗研究所、慢性免疫缺陷中心,德国弗莱堡大学医学部   Jin-Soo Kim,韩国基础科学研究院基因组工程中心,国立首尔大学化学系。
  • 哈佛学者宣布进行精子基因编辑,10月曾来华寻求胚胎项目合作
    p style=" text-indent: 2em " 据《麻省理工科技评论》11 月 29 日的报道,来自美国哈佛大学的科学家 Werner Neuhausser 对基因编辑技术的科研应用提出了他自己的研究意向,并计划于几周内开展实验。他曾在今年 10 月到访中国,探索在中国研究胚胎的可能性。 br/ /p p   Werner Neuhausser 希望,通过 CRISPR 技术对人类精子进行编辑,修改精子的 ApoE 基因,进而减少新生试管婴儿患有阿尔茨海默症的风险。Neuhausser 及他的团队暂未与中国任何组织或个人达成项目合作。同时,他强调在自己目前的计划中,并不包括婴儿出生这一目标选项。这位来自奥地利的不孕不育专家仍旧对生殖细胞的基因编辑持乐观和开放态度。 /p p   他预测,在不久的将来,人们会在怀孕前对胚胎进行深入的分析、筛选,甚至使用 CRISPR 技术进行编辑。未来,人们可以在诊所完成基因组检测,并获得最健康的孩子。“很可能整个体外受精领域的重心将从生育转向疾病预防。” /p p   对于 CRISPR 断开 DNA 双链进行基因编辑所可能带来的不确定性,该研究团队选择了“基因魔剪”的升级版——碱基编辑。该技术由同样来自哈佛大学的 David Liu (刘如谦)教授开发,这种编辑方法并不需要剪断双链,而是直接对单个碱基进行更改,进而将可能引入的编辑错误风险降到最低。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201812/uepic/357f7695-dd80-4442-b527-d3057e773316.jpg" title=" 1.png" alt=" 1.png" / /p p style=" text-align: center " span style=" color: rgb(127, 127, 127) " Werner Neuhausser (来源:麻省理工科技评论) /span /p p   可就在 Neuhausser 及他的团队即将开始实验之际,12 月初,美国生命科学界收到一则消息:特朗普政府要求受雇于国立卫生研究院(NIH)的科学家停止获取新的人类胎儿组织用于实验。NIH 官员表示,禁令直接影响到 NIH 的两个实验室,并且其中一项关于艾滋病病毒最初如何在人体组织中“定位”的研究更是直接被中断。 /p p   这一禁令的催化剂显然是最近公布的基因编辑婴儿事件。基因编辑婴儿的诞生迫使整个学术共同体直面胚胎编辑问题。在 11 月 29 日于香港举办的第二届人类基因组编辑国际峰会上,多名学者一致表示,现在正是为胚胎基因编辑临床试验制定严格、负责任的转化途径的关键时刻。 /p p style=" text-align: center " span style=" color: rgb(0, 0, 0) " strong 有所为,有所不为 /strong /span /p p   随着人类将基因与性状联系起来,越来越多的疾病开始被认定为基因遗传疾病。目前已经确定的单基因遗传疾病超过 6600 种,并以每年数十种的速度递增。在人群中,大约每 10 个人就有一个人携带了至少一种单基因遗传疾病的致病基因。 /p p   但携带不等同于致病,对于一些常染色体隐形遗传疾病来说,当父母双方均携带有致病基因,孩子就有可能患病。这种巧合是不幸的,人们希望用科学的工具进行“纠错”,改写生命,而 CRISPR/Cas9 就是这样一种可以对基因进行编辑的强力工具。 /p p   识别目标序列,进行 DNA 双链切割,凭借精准的切割和低廉的成本,近年来 CRISPR 成为基因编辑技术的主流,几乎席卷整个生物界,被应用于农业、医疗、临床等方方面面的前沿研究中。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201812/uepic/3741ae0e-4195-49af-95e0-8d064b96cff8.jpg" title=" 2.png" alt=" 2.png" / /p p style=" text-align: center " span style=" color: rgb(127, 127, 127) " (来源:Genetic Literacy Project) /span /p p   但 CRISPR 并不完美。精准的识别和切割并不意味着完美无瑕,脱靶效应使这个过程变成了一个“黑箱”,在 CRISPR 的“作业”过程中,会发生什么,编辑效率会是多少,谁也不知道。 /p p   不仅如此,人类虽然在不断的认识自我,但从未做到认清自我。我们远比自己想象的更复杂,绝大多数情况下,基因与性状并不是一一对应的关系。这就意味着任何一个基因的增或缺都可能有着意料之外的影响,牵一发而动全身,因而在有万全的把握之前,没有人愿意、也不敢拿人“赌一把”。 /p p   即使是顾虑重重、饱受争议,但基因编辑这项技术却是真实且具有价值的。更不可否认的是,这项技术最终会被应用于人类。 /p p   事实上,人类已经开展了体细胞编辑的临床试验,2017 年 11 月,美国完成了首例人类活体基因编辑实验,目标是治疗一种叫做“亨特综合征”(Hunter syndrome)的代谢性疾病,这是一种由于基因突变导致的遗传性疾病。而就在 一周前,美国 FDA 又通过了另外一项关于先天性黑朦病患者基因编辑的临床试验。 /p p   与在体细胞基因编辑方面形成开放的共识不同,生殖细胞一直是一个颇具争议的话题。对生殖细胞进行基因编辑,意味着这种修改将会随遗传信息传递给下一代。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201812/uepic/a89e2418-7dde-4c91-8dec-d61df13a1d02.jpg" title=" 3.png" alt=" 3.png" / /p p style=" text-align: center " span style=" color: rgb(127, 127, 127) " (图源:Genetic Literacy Project) /span /p p   Werner Neuhausser 和他的团队希望通过 CRISPR 技术对精子中的 ApoE 基因进行编辑的研究实验计划正是在此时一片批判声中进行着准备工作,预计将会在几周后展开实验将用到来自波士顿 IVF(这是一个大型的国家生育诊所网络)的精子, strong span style=" color: rgb(12, 12, 12) " 该项目最终将不会有胚胎或是婴儿产生 /span /strong 。这项实验的目标是基于之前的研究发现,ApoE 基因与与阿尔茨海默症的患病风险高度相关,遗传了两个高危拷贝的人,最终患有阿尔茨海默症的风险高达 60%。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201812/uepic/1bad067f-b16d-47fa-b62a-6fdd3ab711f7.jpg" title=" 4.png" alt=" 4.png" / /p p style=" text-align: center " span style=" color: rgb(127, 127, 127) " (来源:QUARTZ) /span /p p style=" text-align: center " strong 造物?or 救世? /strong /p p   相比于技术上的不完善,道德伦理、社会公平等问题则显得更为棘手,甚至面对这些问题,没有人能够给出确切的答案。 /p p   在技术成熟之后,我们面临的第一个问题将是:一部分掌握技术的人是否有资格代表全人类做出选择,修改人类基因库?没有人可以预见这种基因修改在演化的漫漫长河中意味着什么,况且即便可以预测,也没有个人或团体能够承担这份风险。 /p p   目前,基因编辑根据目的可以划分为治疗和增强两类,通俗的讲,可以将其比喻为“救世”和“造物”。对于罕见的严重遗传缺陷,如果不对患者基因进行遗传修正,新生儿面对的很可能就只有死亡这条路,这是一类目的为治疗或避免疾病发生所进行的基因编辑。而另外一类被称为增强的方法则是对性状的升级,让下一代跑得更快、身体更健康、智力更高,可以说是用科技制造一个 Superman。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201812/uepic/7d4fe0d8-63cf-4618-8ddc-fae71f62353f.jpg" title=" 5.png" alt=" 5.png" / /p p style=" text-align: center " span style=" color: rgb(127, 127, 127) " (图源: VERDICT) /span /p p   对于前者,学界的态度是谨慎但值得考虑的,但对后者就没有那么宽容。对于这种严厉的态度,人群中不禁发出这样的疑问:如果基因编辑可以使人生“更完美”,那为什么不可以做? /p p   针对这一疑问,回答却是另一个问句:谁会先用到这种“完美”的工具?换句话说,目前持激进和支持态度的人,会是可能享受到这种科技“福利”的人群么? /p p   对后代进行基因编辑,考量的实际上是孩子背后父母的财力与权力,如果这一问题不加以限定,未来很可能形成“富人靠科技,穷人靠变异”的滑稽局面,如果基因多样性带来的幸存者偏差最终也被消磨掉,社会公平与平等将会有新的定义。 /p p   父母总想给孩子最好的,但孩子会认同这种“好”么?与可以被赋予特定性状的物件、游戏、甚至设定都不同,婴儿同样是或者也将会成为一个具有独立人格的思考者。那么他人是否可以为他做决定,更何况是一个将会伴随一生、决定了整个游戏规则的决定? /p p style=" text-align: center " strong 争论的价值 /strong /p p   当然,技术的发展就是为了应用,换句话说,在基因编辑技术出现之初,基因编辑婴儿的出现就已经可以预见,不过是早晚的事情。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201812/uepic/444c33c5-47b6-448a-93f0-14adc67b05b0.jpg" title=" 6.png" alt=" 6.png" width=" 466" height=" 412" style=" width: 466px height: 412px " / /p p style=" text-align: center " span style=" color: rgb(127, 127, 127) " (图源:Genetic Literacy Project) /span /p p   但恰恰这个时机的问题,包含了对技术的完善、伦理的讨论等方方面面的考量,其中决定“可以做而不去做”的重要一点,就是对规则的认同。 /p p   锋利的刀刃既能救人也能伤人,而手持科学这把利刃的勇士则需要有更坚定和完整的心智。在科幻故事中,科学怪人甚至可以将致命病毒与流感病毒编辑在一起完成自己的疯狂目标,现实中这将是难以想象的灾难。而目前人类之所以得以安宁,正是因为科学家们坚守心中的底线。 /p p   而此次基因编辑婴儿事件的发生,必将会给整个生命科学界带来一股强力的冲击。短期内人们对于基因编辑的态度可能会变得更为严格甚至抵触,社会上也可能引发相关的争论。也许某一天,此时的某些观点最终被证明是错误的,但这个辩证的认知过程是永不应该被否定的。 /p p    strong span style=" color: rgb(0, 0, 0) " 参考资料 /span /strong /p p   Despite CRISPR baby controversy, Harvard University will begin gene-editing sperm Despite CRISPR baby controversy, Harvard University will begin gene-editing sperm /p
  • 科技部:科普正当时!双碳/基因编辑/量子科技等包括在内
    原文标题:新时代加强科学技术普及工作情况发布会举行——让科学普及与科技创新“两翼齐飞”“这是党中央推进科技强国建设的又一重大举措。”9月5日,在国新办举行的新时代加强科学技术普及工作有关情况发布会上,科技部副部长李萌表示,中办、国办印发《关于新时代进一步加强科学技术普及工作的意见》(以下简称《意见》),强调党对科普工作的领导,强化价值引领;提出全民参与、惠及全民,强调全社会都有科普责任;突出科普能力建设,打造与新时代科技创新工作相适应的科普内容、科普队伍、传播方式、技术手段和工作范式,这标志着新时代推进科普工作的系统布局已经形成。  科学普及要与科技创新“同频共振”  习近平总书记指出,科技创新、科学普及是实现创新发展的两翼,要把科学普及放在与科技创新同等重要的位置。此次出台的《意见》将怎样助力“两翼”同频共振?  李萌说,《意见》提出了落实“同等重要”的工作思路、制度安排和政策措施,特别强调加强制度保障,要求各级党委政府要保障对科普工作的投入。同时,完善科普奖励激励机制,加强科普工作的监督和评估,完善科普的法律法规体系,积极推动修订《中华人民共和国科学技术普及法》。  “《意见》坚持问题导向,着力解决当前科普工作面临的突出问题、短板和不足。”李萌以科普场馆覆盖不足的问题为例说,目前,全国共有1500多个科技类场馆,场馆数量远低于公众的实际需求,大部分场馆多为综合性场馆,且内容形式相对比较单一,吸引力和感染力有待进一步提升。  为此,《意见》提出,要鼓励建设具有地域、产业、学科等特色的科普基地,全面提升科普场馆服务能力。  “我们现在很多的前沿科普是通过热点问题来促进的,比如新冠疫情带来了病毒学的大普及。”李萌坦言,从病毒传播等科技知识通过热点问题在公众中广泛普及的现象可以看出,广大群众迫切需要了解前沿的最新知识。  对此,《意见》要求,要发挥科技创新对科普工作的引领作用,聚焦基础研究和前沿领域,向公众普及科学新发现、技术新成果,推动科技资源科普化。  多措并举构建大科普发展格局  《意见》提到,要树立大科普理念,构建政府、社会、市场等协同推进的社会化科普发展格局。那么,科技部将通过什么举措推动落实?  “(科技部)依托全国科普工作联席会议机制,加强科普工作统筹协同。强化关键部门责任,推动形成分工明确、资源共享、优势互补的协同推进机制,设置央地、部门科普合作项目,构建上下联动、全国一盘棋的科普工作格局。”李萌指出,要推出一批感染力强、影响力大的科普作品,比如聚焦绿色“双碳”、人工智能、基因编辑、量子科技等关注度较高的前沿科技,采取项目式定制、特约创作的方式推出一批优质科普作品。  此外,科技部还支持高水平专业化的科普场馆建设,不断提升科技场馆展示能力和智能化水平,在与各部门、各地方共同打造国家科普基地的基础上,将推出一批代表国家水平、公众深度参与互动的场景基地,用场景驱动科普工作。此外,鼓励和引导社会资金投入科普事业,打造有国际影响力的科普论坛。  “新时代赋予我们一个重大历史责任”  谈及科协组织如何落实强化科普工作职能要求,中国科协专职副主席、书记处书记孟庆海说,《意见》明确提出各级科协组织要发挥科普工作主要社会力量作用,首次提出要强化科普工作职能。“作为科协组织,我认为这是新时代赋予我们的一个重大历史责任。”  针对落实好《意见》,孟庆海表示,将从4个方面做好工作:提高政治站位,突出科普价值引领;构建“六位一体”高质量科普服务体系,提升科普服务能力;发挥科协组织优势,完善四级联动基层科普组织动员体系;加大优质科普资源供给。  “科协组织做科普工作,最大的优势是组织优势和人才优势。”孟庆海表示,为落实中共中央关于深化群团改革的要求,中国科协通过推动各级科协工作重心下移,构建起了省域统筹政策和机制、市域构建资源集散中心、县域组织落实,以新时代文明实践中心、党群服务中心、社区服务中心等为阵地,以志愿服务为重要手段的基层科普组织动员体系。  截至目前,中国科协已在全国500个文明新时代实践中心实现科技志愿全覆盖,有实名注册的科技志愿服务者345万名,1200万“科普中国”信息员活跃在基层一线。  孟庆海透露,近期,中国科协将联合主流媒体和网络平台,共同实施“科普中国”平台建设工程和“科普中国”创作联合行动,以求打通科普创作的内容供给、评价认证、渠道传播、体系联动、社会协同的全链条发展路径,向全社会提供更多更优质的科普资源。
  • 中科院PLOS发表RNA编辑新成果
    7月28日,来自中科院上海生命科学研究院植物生理生态研究所李轩研究组、上海巴斯德研究所郝沛研究组以及密歇根州立大学王红兵教授,在国际著名遗传学期刊《PLOS Genetics》发表一项合作研究,题为“The Landscape of A-to-I RNA Editome Is Shaped by Both Positive and Purifying Selection”。这项研究通过对多生物物种RNA编辑事件的系统发现和分析,首次揭示了RNA编辑表观遗传学位点的系统进化规律,以及其在动物神经功能和神经发育中发挥的主要作用。 自从20年前第一次被发现以来,RNA编辑已经成为多种生命形式的遗传编码变异的重要来源。RNA编辑的一个突出机制是,前体mRNA分子中腺苷的去氨基。脱氨基的事件,即A-to-I编辑,将特殊的腺苷(A)转换为肌苷(I)。在翻译中,肌苷被解码为鸟苷(G),从而导致密码子的变化,往往会引起蛋白质产物中的氨基酸替换。除了遗传再编码,A-to-I编辑已知也影响可变剪接,修改microRNA,和改变microRNA靶位点。A-to-I RNA编辑机械的主要组成部分,是作用于RNA(ADAR)家族酶的所谓的腺苷脱氨酶,ADAR酶作用于底物分子内的双链RNA(dsRNA)。关于底物靶向和编辑活性调节的细节,还是较少的;但是,有证据表明A-to-I编辑是共转录的,并且ADAR靶位点倾向于某些非随机的序列模式,并且很大程度上依赖于双链RNA的三级结构。 A-to-I RNA编辑生成的遗传变异,可扩展转录组的多样性和复杂性,它作为一个重要的机制可帮助支持关键的生物学功能。由于ADAR突变而缺乏A-to-I RNA编辑的动物模型,可导致小鼠胚胎或出生后致死,或在果蝇中显示神经缺陷。以前的研究在人类、小鼠、猴和果蝇中记录了许多A-to-I编辑靶基因。报道的编辑靶标情况,包括神经受体、离子转运蛋白和免疫反应受体。虽然多年来,科学家们都知道某些关键基因上A-to-I RNA编辑的例子,但是从进化的角度看,A-to-I编辑如何使转录组和蛋白质组多样化,以及到了何种程度,还是完全没有表征的。我们对于RNA编辑本身在进化中如何受到选择性力量的限制,还知之甚少。关于A-to-I RNA编辑提供的适应潜能,有各种不同的观点。 新一代测序技术和Model Organism ENCyclopedia Of DNA Elements (modENCODE)项目,成为模式生物的一种前所未有的资源,像果蝇和秀丽隐杆线虫,使得我们能够进行多基因组规模分析,以比较进化中的RNA编辑模式。 为了探讨RNA编辑的全景以及表征进化过程中施加在A-to-I编辑上的选择性限制,该研究小组基于modENCODE资源构建了一项研究,涉及这七种果蝇,它们有相应的参考基因组和转录组测序数据可用。该研究还补充了来自其他资源的数据,包括NCBI Sequence Read Archive (SRA)、NCBI Gene Expression Omnibus (GEO)、FlyBase和FlySNPdb数据库。 利用果蝇属作为一个模型系统——其代表了大约4500万年的进化时间,研究人员共确定了9281个A-to-I RNA编辑事件。通过与前人的研究成果,以及来自果蝇组织/发育样本或ADAR突变体的数据进行比较,并进行大规模阵列为基础的验证性实验,研究人员验证了这些事件。 通过系统发育分析,研究人员基于编辑位点的保守性,将A-to-I RNA编辑事件归类为三种不同类型。第一类位点发生在单基因家族基因上 第二类发生在多基因家族基因上,但位点不保守 第三类发生在多基因家族基因上,且位点保守。对这三类位点及其基因进行选择分析发现,第一和第二类位点均受到纯化选择(负选择)影响,而只有第三类位点受到正选择压力。重要的是,发现第三类位点高度富集于神经系统的元件和功能中。通过对这三类编辑位点进行不同组织、不同发育时期以及动物变态发育过程中的分布及变化分析,第一次发现了A-to-I RNA编辑在动物发育、交配(mating)等生理过程中动态变化的证据,进一步支持了三类不同编辑位点的重要功能。这些结果都指向神经系统功能,说明了RNA编辑表观遗传作用的适应性主要通过神经系统功能实现。神经系统功能是检验有益RNA编辑位点主要标准。以上发现,揭示了由RNA编辑表观遗传机制引入的编码可塑性,而产生一类新的二分变异。在二倍体有性生殖系统中,它是维持基因表达杂合性的一个重要机制,对克服等位杂合子分离有不可替代的优势。
  • “沉睡”古菌随基因组编辑技术“重现江湖”
    “最近,这种菌都脱销了,订单有两厘米厚。”中国普通微生物菌种保藏管理中心(CGMCC)高级工程师辛玉华近日在接受《中国科学报》记者采访时说。她所说的菌叫作格氏嗜盐碱杆菌。自河北科技大学副教授韩春雨因利用该菌实现基因组编辑技术NgAgo-gDNA而出名之后,这种在保藏室里睡了20年“大觉”的古菌也跟着火了。  据透露,该菌种是1996年由中科院微生物所老所长周培瑾从苏格兰交换到中国的,其最先分离自肯尼亚马加迪湖。这种菌只是CGMCC保藏的数千种微生物中的一员。通常,它们或是通过真空冷冻干燥法,或是通过-190℃左右的液氮超低温冻结法处于休眠状态,其中一些甚至已在冷藏室中睡了半个多世纪。然而,一旦有需求,它们就会被唤醒并投入工作。  “CGMCC就像一个‘生物银行’,通过整合大家的力量,汇集研究中获得的各种微生物菌种,并将其功能转变为生物技术服务于社会。”微生物所副所长东秀珠对《中国科学报》记者说。  生命的“银行”  据悉,目前CGMCC保存的各类微生物资源超5700种,5万多株。它们按保藏形式可分为公开、非公开以及专利程序保藏等。“若从专利微生物保藏数量来看,我们的保藏量已超过1万株,在全球位居第2位。”辛玉华说。  与其他知识产权专利不同,微生物是唯一一种可通过专利保护的生命形式。过去几年来,我国专利微生物年保藏量增长速度一直位居世界第一。若加上武汉大学典型培养物保藏中心(CCTCC)的相关数据,我国在78个《国际承认用于专利程序的微生物保存布达佩斯条约》签约国中,保藏量已仅次于美国。  “CGMCC是公益性机构,一株菌只有500~1000元,不仅价格不贵,而且质量有保证。”东秀珠说。否则,如果科研人员自己分离菌种,在国际上得不到承认就会造成麻烦 同时,新微生物物种也需要经过权威鉴定、保藏才能在国际期刊生效发表,而CGMCC就具有这样的权威性。  该中心可保证微生物不会死、不被污染、避免退化。以放线菌为例,东秀珠介绍说,临床所用抗生素药物的70%来自微生物中的放线菌,而这类细菌在生产中最怕传代,因为反复传代就会退化。而该中心已经保藏了7000余株状态良好的放线菌。  战略性宝藏  关于菌种保藏的意义,东秀珠给记者讲了一个故事。聚合酶链式反应(PCR)就像“DNA复印机”一样,能实现体外DNA扩增,对分子生物学具有划时代的意义,美国生化学家凯利?穆利斯也因发明该技术获得了诺奖。但穆利斯一开始使用的大肠杆菌DNA聚合酶不耐高温,每次循环都要重新加入,非常麻烦。后来,他从美国生物保藏中心找到产生耐高温Taq酶的嗜热微生物,才使PCR广泛应用。  目前,CGMCC已经汇集了我国(除高致病菌外)80%的微生物物种。随着知识的积累,很多微生物正在被“唤醒”,并在各个领域一展身手。  例如,抗癌药物紫杉醇来源于生长速度缓慢的红豆杉,但若将其基因放在微生物中生产该蛋白并合成药物,就能大批量快速生产 生产汽车轮胎需要大量橡胶树,微生物所研究人员已在CGMCC找到了相应的微生物前体 该所研究人员还筛选制备了可用于多种青草的青储饲料菌剂,促进了西部数省畜牧业的发展。  此外,CGMCC还打造了一支以博士牵头的技术团队。“他们一半时间做管理,一半时间做科研,不断提高保藏技术并满足日益提升的科研需要。”东秀珠说。正因如此,很多国家级微生物项目直接落到了该中心的头上。比如,环保部指定CGMCC为进口环保菌剂的鉴定部门。国家质检总局、中国海关等也在技术层面与中心合作,建立检疫性真菌检测的国家标准。  支撑未来发展  今年5月,美国宣布启动“国家微生物组计划”,这是继2012~2014年美国在微生物学研究领域投资9.22亿美元之后的又一重大举措。目前,在微生物所科学家的倡导下,我国正在推进微生物组研究计划,竞争国际微生物领域战略高地。东秀珠认为,CGMCC必将发挥更大的支撑作用。“微生物资源是生物技术创新的重要源泉。未来,微生物资源保藏一定要保证,这个要是丢了,几代人都积攒不起来。”她严肃地说。  “至今为止,地球上99%的微生物我们还不知道如何培养。”东秀珠说,“只有经过培养,才知道它们适宜什么样的环境,能够做什么,也才能实现利用,所以未来发展空间很大。”  好消息是,当前我国专利微生物菌种年保藏量每年都达到4位数。不仅如此,2011年,世界微生物数据中心(WDCM)作为我国生命科学领域的第一个世界数据中心从日本落户中国,也体现了我国在微生物研究领域的竞争实力。  然而,我国生物保藏仪器设备研发却依旧存在短板。作为全国最先进的微生物资源服务中心,CGMCC有着全世界一流的实验设备,然而记者在实验室里看到,诸如氨基酸分析仪、紫外可见分光光度计、变性高效液相色谱仪等必备高端设备均产自德国、美国、日本,而国产的仅有普通冰箱、电磁炉、色谱仪等低端设备。“我们的工业制造确实需要提升,否则怎么竞争?”辛玉华说,当前我国在科研设备方面尤其需要自主创新。
  • 韩春雨:“冷板凳”上坐出科学新秀
    韩春雨火了。这位曾经没有任何名誉标签的科学新星,近日遭到了多家媒体的轮番“轰炸”。  今年42岁的韩春雨现任河北科技大学生物科学与工程学院生命科学系副教授、硕士研究生导师。今年5月,他作为通讯作者在《自然—生物技术》杂志提出的新基因编辑技术NgAgo-gDNA,向当前最火热的“第三代”基因编辑技术CRISPR-Cas9发起了挑战。  韩春雨及其团队的发现被一些人称作是“第四代”基因编辑技术。然而,在成名之前,这位科学“新秀”曾坐了十多年的“冷板凳”。  “科研在这里也有退路”  十年寒窗无人问,一举成名天下知。这正是韩春雨科研生涯的写照。  让韩春雨一朝成名的研究成果是他与团队利用格氏嗜盐碱杆菌实现DNA引导的基因组编辑技术(NgAgo-gDNA)。该方法不同于已有最时兴的技术(CRISPR-Cas9)通过RNA寻找替换序列,而是通过DNA作为介导寻找替换目标,可对基因组的任意位置进行切割,将基因编辑的可能性推入到微生物、植物和动物的精准基因改造,以及乙肝、艾滋病或一些遗传性疾病的基因治疗等更广泛的应用领域。  然而,这个被称为首个“中国创造”的尖端生物技术的发明者,之前却也有过“落魄”经历。曾是中国协和医科大学理学博士生的韩春雨没有踏进一些知名单位的大门,更别提他十年来没有发表过什么重要论文了。若在一些知名单位,他可能要不了几年就会被扫地出门。  幸运的是,河北科技大学却给了他潜下心来做事的机会。“在大部分高校,一个副教授很难拥有自己的独立实验室。河北科大不仅给了我实验室,还提供了25万元的学科建设资金。”韩春雨在接受《中国科学报》记者采访时说。  当韩春雨决定在NgAgo技术研究上“搏一把”之时,河北科大又从并不富裕的科研经费中提供了另一笔支持,加上他个人申请到的国家自然科学基金、国家科技重大专项等经费,以约40万元的资金维持实验室的日常运转。  “科研在这里(河北科大等普通高校)也有退路:这里没有严苛的考核指标,可以让我静心科研。成果没出来时,我还可以当一个好的授课老师,这里就是我的‘MIT’(麻省理工学院)。”韩春雨说。  宽松的文化土壤  或许,正是因为河北省科协常委、河北科技大学党委书记计卫舸当年慧眼识才,引进韩春雨并给予其足够的包容和理解,才使得河北科大涌现出了以韩春雨为代表的科研典型,使得河北科大得以“一夜成名”。  “让学生们能够得到最好的成长,让老师们能够充分展示自己的才华,以‘和谐、活力’的文化特征构建良好的校园文化氛围,谁先搞明白谁先受益。”计卫舸对《中国科学报》记者说。  “我能感受到河北科大与其他学校在人才培养模式上、校园文化氛围上有很大的不同,而这种氛围正是我想要的。”韩春雨说。  在计卫舸看来,河北科大对大学体制的独到理解是指导学校人才建设、学科建设的第一主力。除了发现、培养人才的能力,河北科大对于成熟人才自身发展的态度也同样值得借鉴。  “如果大家认为韩春雨的科学贡献是属于全人类的,那他的贡献就不只属于国家,这样韩春雨在世界上任何一个地方继续科研都是合理的,我们都应该支持。”计卫舸说,韩春雨的成功可以证明,河北科大提供的实验条件是能够使其做出成绩的。学校有宽松的文化土壤、合适的技术装备,科大很有信心能留住韩老师。  人文素养和科学修养相互融通  韩春雨认为,人文素养和科学修养是相互融通的,就好比文理科也是相通的,文科可以滋养理科。中国文化讲的修养,与很多西方科学家以谦卑的姿态面对科学的行为不谋而合。  “人文素养对科学家来说至关重要。如果没有丰富的想象力、坚定的信念和执着的追求是不行的,通过文学培养的想象,比科学自身培养的有时更丰富。”计卫舸说。  “做原创的事也可以体现一个科学家的修养。”韩春雨说。他一开始也是做跟随性的研究,白干了半年,但因为想法不同,感觉要做有意义的事,要有负责任的态度,不能始乱终弃,也不能随意功亏一篑。  “科学哲学告诉我,自信也应该是一个科学家应具备的素养。坚信存在,然后求证,迟早都会实现(目标)。”韩春雨说。
  • 基因编辑巨头Horizon Discovery与罗格斯大学合作开发碱基编辑技术
    p style=" text-indent: 2em text-align: justify " Horizon Discovery Group 基因编辑和基因调控技术的全球领军者,宣布和新泽西州立大学(美国)罗格斯大学建立独家战略合作伙伴关系,共同开发一种称为碱基编辑的新的基因编辑技术并使之商业化。 /p p style=" text-indent: 2em text-align: justify " 获悉,2019年1月28日, Horizon Discovery Group plc(LSE:HZD),基因编辑和基因调控技术的全球领军者,宣布和新泽西州立大学(美国)罗格斯大学建立独家战略合作伙伴关系,共同开发一种称为碱基编辑的新的基因编辑技术并使之商业化。该技术将应用于新细胞疗法的开发,同时也将丰富Horizon集团的现有技术,帮助拓展其服务范围。 /p p style=" text-indent: 2em text-align: justify " 本次合作将进一步开发Rutgers Robert Wood Johnson医学院药理学副教授Shengkan Jin博士实验室的新型碱基编辑平台。作为协议的一部分,Horizon已向Rutgers提供了独家许可的碱基编辑技术,以用于所有治疗应用。此外,该集团还将在罗格斯大学进行基础编辑的进一步研究,并在集团内部继续进行评估和概念证明研究。& nbsp /p p style=" text-indent: 2em text-align: justify " 碱基编辑是一种新颖的技术平台,用于在细胞中设计DNA或基因,并通过使用酶修饰基因,纠正DNA中的错误或突变。与目前可用的基因编辑方法(例如CRISPR / Cas9)相比,这种新技术可以更准确地进行基因编辑,同时减少意外的基因组变化,避免在基因中产生可能导致负面影响的“切割”。 /p p style=" text-indent: 2em text-align: justify " 该技术将对通过临床开发和商业化促进细胞疗法的发展产生重大影响。Horizon集团首席执行官Terry Pizzie说:“碱基编辑对于基因编辑技术领域来说就像一场潜在的革新,极有可能实现靶向治疗众多迄今无法医治的疾病的目标。此次Horizon集团与Jin博士和罗格斯大学的合作将帮助我们在研究与应用市场扩展科学和知识产权能力。作为我们五年投资战略的一部分,Horizon将致力于投资保持市场领导地位的高价值技术,碱基编辑技术就是一个很好的例子。” /p p style=" text-indent: 2em text-align: justify " 罗格斯大学的Shengkan Jin博士表示:“单独使用该技术的胞苷脱氨酶可用于开发离体疗法,如用于镰状细胞贫血和β地中海贫血的基因修饰细胞、用于艾滋病的HIV抗性细胞,用于白血病的现成CAR-T细胞以及遗传性疾病的治疗,可谓潜力巨大。” /p p style=" text-indent: 2em text-align: justify " 罗格斯大学研究与经济发展部的临时高级副总裁David Kimball博士认为:“基因编辑技术真正彻底改变了科学家们思考如何在疾病治疗方面寻求更好结果的方法。我们期待通过与Horizon合作,发展这一新型碱基编辑平台以改善人类健康。” /p p style=" text-indent: 2em text-align: justify " 美国早在2018年1月就宣布将在未来6年出资1.9亿美元支持体细胞基因编辑研究,以开发安全有效的基因编辑工具,治疗更多人类疾病。显然,美国政府也对基因编辑市场前景十分看好。 /p p style=" text-indent: 2em text-align: justify " 另据中商产业研究院最新报告,预计2020年,全球精准医疗市场规模将破千亿,达到1050亿美元,而基因编辑技术将是撬动千亿级大市场的一把钥匙。 /p p style=" text-indent: 2em text-align: justify " 关于Horizon Discovery Group plc /p p style=" text-indent: 2em text-align: justify " Horizon Discovery Group plc(LSE:HZD)是基因编辑和基因调控技术的全球领军者,总部位于英国剑桥。 /p p style=" text-indent: 2em text-align: justify " Horizon集团提供广泛的技术产品和相关研究服务,以支持医学界和生物学界更好地了解所有物种的基因功能、人类疾病的遗传驱动因素以及个性化分子、细胞和基因疗法的发展。这些技术和产品已经被全球10000多家学术机构、药物研发机构、药物制造商和临床诊断公司所采用。 /p p style=" text-indent: 2em text-align: justify " 关于罗格斯大学 /p p style=" text-indent: 2em text-align: justify " 罗格斯大学,全称新泽西州立罗格斯大学,简称罗大(Rutgers, The State University of New Jersey )是美国新泽西州的最大高等学府,也是一所公立研究型大学。罗格斯大学的主要校园位于新布朗斯维克和皮斯卡特维,另有两所分校在纽瓦克和肯顿。 /p
  • 沃特世超高效合相色谱获匹兹堡编辑金奖
    UPC2技术架起了联接LC与GC的桥梁,为实验室解决复杂分析问题提供了一种新选择奥兰多,福罗里达州沃特世公司(WAT:NYSE)的新产品沃特世ACQUITY UPC2™ (ACQUITY 超高效合相色谱)系统,今天在2012年分析化学和应用光谱学匹兹堡会议上荣膺最佳新产品,获得了颇具声誉的2012匹兹堡编辑金奖。ACQUITY UPC2系统运用了超高效合相色谱(UPC2)的原理扩展了反相液相色谱法(LC)和气相色谱法(GC)分离的界限,提供了一种能够补充正相色谱的选择。沃特世的ACQUITY UPC2系统成为一种新型的分析系统,为科研人员解决疏水性和手性化合物、脂类、热不稳定的样品和聚合物等难分析化合物提供了一种不可或缺的工具。沃特世公司总裁Art Caputo致辞说:“我们谨代表沃特世公司遍布全世界的所有员工,最诚挚地感谢匹兹堡大会的编辑们对全新ACQUITY UPC2系统,及其为分离科学带来的新范畴的认可。”“自从61年前成立以来,匹兹堡大会就已经跻身于重要年会的行列,科研人员借此之际了解能够帮助他们加快研发速度、揭示全新真相,以及进一步推动科学发展的最新实验室科技发展。2004年匹兹堡大会的编辑们授予了ACQUITY UltraPerformance LC® (UPLC® )最佳金奖。从此之后,全世界数以千计的知名实验室采用了ACQUITY UPLC系统,从而改变了色谱分析的模式和影响。我们坚信,ACQUITY超高效合相色谱在LC和GC技术之间架起了一座桥梁,因此她具备同样的潜质——很显然,知名的科学编辑们也同意这一点。”控制压缩的CO2拓宽了分离的选择压缩二氧化碳是UPC2的主要流动相,比过去液相色谱的液体流动相和气相色谱的载气有很多突出优势。一方面,二氧化碳单独使用或与其他助溶剂混合,都是低粘度的流动相,和液相色谱的液体相比,能够获得较高的扩散率,并有利于传质。另一方面,和气相色谱相比,二氧化碳是一种可以在较低温度进行分离的流动相。科学家们可以利用UPC2技术分析LC或GC难以分析的化合物,如样品中含有的化合物极性差别很大的应用等。配以业界领先的亚2微米颗粒色谱柱,沃特世的ACQUITY UPC2系统使得科学家能够更加精确地改变流动相的强度、系统压力和温度。从而调整出系统的分离度和选择性,科学家分离、检测和定量结构类似物、异构体、对映体和非对映异构体混合物时,能够更好的控制分析物的保留——这些化合物以任何其他方法分离通常都是困难的。沃特世的ACQUITY UPC2系统一个主要优势就是使用廉价、无毒的压缩二氧化碳作为主要流动相,代替了购买和处理昂贵的有毒、挥发性的有机溶剂。ACQUITY UPC2系统是沃特世公司高品质产品设计与研发经验悠久历史的结晶,它体现了沃特世品牌的耐用性、可靠性和易用性。它的主要特点包括: 10微升的固定进样环可实现所载样品进行体积为0.5微升至10微升的部分进样,消除了更换进样环的需求。 减少了系统容积,可以缩短运行时间、优化梯度性能、减小带宽,使用更小粒径的色谱柱。 助溶剂和色谱柱切换功能,可以快速地筛选溶剂和色谱柱,提高了方法开发的灵活性。 梯度的准确性与精确性保证了保留时间的重现性。 改善了光学检测和MS的兼容性,可以进行定量和定性分析。 由于其具有溶剂载量少、分离度高、峰形窄、分离速度快等特点,因此也可以作为MS的完美接口。无论您需要对天然产物、传统药物、药品、食品添加剂或污染物、杀虫剂、表面活性剂、聚合添加剂、脂质或生物燃料进行分析,沃特世ACQUITY UPC2系统都能呈现给您无与伦比的分离性能和峰形。与所有以ACQUITY为基础的产品一样,ACQUITY UPC2系统将沃特世在化学行业领先的信息软件以及专家支持方面最大化的优势。目前,ACQUITY UPC2系统已经与LC和GC并驾齐驱,成为实验室应对极其困难分离问题的有力武器。了解更多信息:www.waters.com/upc2关于沃特世公司 (www.waters.com)50多年来,沃特世公司(NYSE:WAT)通过提供实用和可持续的创新,使医疗服务、环境管理、食品安全和全球水质监测领域有了显著进步,从而为实验室相关机构创造了业务优势。作为一系列分离科学、实验室信息管理、质谱分析和热分析技术的开创者,沃特世技术的重大突破和实验室解决方案为客户的成功创造了持久的平台。2011年沃特世公司拥有18.5亿美元的收入,它将继续带领全世界的客户探索科学并取得卓越成就。###联系方式:叶晓晨沃特世科技(上海)有限公司 市场服务部xiao_chen_ye@waters.com周瑞琳(GraceChow)泰信策略(PMC)020-8356928813602845427grace.chow@pmc.com.cn
  • 澳门大学李绍平教授任国际顶级药物分析学期刊JPBA编辑
    p style=" text-align: center " & nbsp img title=" 微信图片_20180126101011.jpg" src=" http://img1.17img.cn/17img/images/201801/noimg/24fc3160-6b1c-4d4c-a7e6-e97f48058b59.jpg" / /p p & nbsp & nbsp & nbsp 澳门大学中医药研究院教授、中药质量研究国家重点实验室副主任李绍平,获世界最大医学与其他科学文献出版社爱思唯尔邀请,从2018年1月起担任该公司旗下期刊《药物和生物医学分析》(Journal & nbsp of Pharmaceutical and Biomedical Analysis)编辑,是该期刊自1983年创刊以来首位或任编辑的中国学者。 /p p   附原文:澳门大学中華醫藥研究院教授、中藥質量研究國家重點實驗室副主任李紹平,獲世界最大的醫學與其他科學文獻出版社愛思唯爾(Elsevier)邀請,從2018年1月起擔任該公司旗下權威的國際藥物分析領域學刊《藥物和生物醫學分析》(Journal of Pharmaceutical and Biomedical Analysis)編輯,成為該學刊自1983年創刊以來首位獲任編輯的中國學者。 /p p   由愛思唯爾出版的國際學刊《藥物和生物醫學分析》專門刊登藥物和生物醫學分析方面最新研究成果,內容亦涉及藥物、生物醫學和臨床科學相關的分析技術,包括方法、儀器和數據處理等各個層面,是生物化學家、分析化學家、微生物學家、藥物製劑學家,以及制藥企業、臨床化學實驗室、學術機構和政府部門相關管理者的重要參考資料。《藥物和生物醫學分析》影響因數居分析化學領域76種《科學引文索引》(SCI)雜誌第18位(Q1區)。該學刊編輯均為世界分析化學或藥物分析領域的傑出學者,是次李紹平獲任編輯再次顯示了澳大中醫藥質量評價研究水平獲國際高度認可。 /p p   自2002年加入澳大以來,李紹平一直致力於中藥質量評價研究,多個項目先後獲國家自然科學基金、澳門科學技術發展基金和澳門大學研究基金資助,三七系列6個標準獲《美國藥典》收載,發表SCI論文等300多篇,是國際上在中藥/藥用植物品質控制領域的知名學者,對美國市場靈芝保健品的質量評價更是引起美國業界的關注。同時,李紹平是《美國草藥典》顧問、《中國藥典》委員會委員,以及SCI雜誌《分離科學》、《中醫藥學報》和《國際分析化學》的副主編。此外,他也是中國藥學會藥物分析專業委員會副主任委員、中華中醫藥學會中藥分析專業委員會副主任委員、中國中藥協會中藥品質與安全專業委員會副主任委員。 /p
  • 国家卫健委、科技部、中国科协、基因编辑国际峰会、NIH回应“基因编辑婴儿”事件
    p   span style=" text-indent: 2em " “基因编辑婴儿”事件一经公布,引起学界和社会广泛关注,特别引发了法律和伦理方面的争议。29日,国家卫生健康委员会、科学技术部、中国科学技术协会、基因编辑国际峰会、NIH、等部门负责人接受采访表示:此次事件性质极其恶劣,已要求有关单位暂停相关人员的科研活动,对违法违规行为坚决予以查处。以下为回应详细内容: /span /p p    span style=" color: rgb(0, 112, 192) " strong 国家卫健委 /strong /span :对违法违规行为坚决予以查处 /p p   国家卫健委高度关注近期有关“免疫艾滋病基因编辑婴儿”的信息,第一时间派出工作组赴当地和当地政府共同认真调查核实。 /p p   国家卫健委副主任曾益新在接受记者采访时表示,我们始终重视和维护人民的健康权益,开展科学研究和医疗活动必须按照有关法律法规和伦理准则进行。 /p p   “目前媒体所报道的情况,严重违反国家法律法规和伦理准则,相关部门和地方正在依法调查,对违法违规行为坚决予以查处。”曾益新说。 /p p   曾益新呼吁,当前科学技术发展迅速,科学研究和应用更要负责任,更要强调遵循技术和伦理规范,维护人民群众健康,维护人类生命尊严。 /p p    span style=" color: rgb(0, 112, 192) " strong 科技部 /strong /span :已要求有关单位暂停相关人员的科研活动 /p p   科技部副部长徐南平在接受记者采访时表示,开展以生殖为目的的人类胚胎基因编辑临床操作在中国是明令禁止的,此次媒体报道的基因编辑婴儿事件,公然违反国家相关法规条例,公然突破学术界伦理底线,令人震惊,不可接受,我们坚决反对。 /p p   徐南平介绍,科技部已要求有关单位暂停相关人员的科研活动。 /p p   “下一步,科技部将在全面客观调查事件真相的基础上,会同有关部门依法依规予以查处。”徐南平说。 /p p    strong span style=" color: rgb(0, 112, 192) " 中国科协 /span /strong :取消贺建奎第十五届“中国青年科技奖”参评资格 /p p   日前,中国遗传学会、中国细胞生物学会、中国科协生命科学学会联合体以及一批科技工作者已相继发出严正声明,表明中国科技界的鲜明立场和坚定态度,反对挑战科学伦理的任何言行。 /p p   中国科协党组书记、常务副主席怀进鹏在接受记者采访时表示,此次事件性质极其恶劣,严重损害了中国科技界的形象和利益。我们对涉事人员和机构公然挑战科研伦理底线、亵渎科学精神的做法表示愤慨和强烈谴责。 /p p   “中国科技界坚决捍卫科学精神和科研伦理道德的意志决不改变,坚决捍卫中国政府关于干细胞临床研究法规条例的决心决不改变,坚守科技始终要造福人类、服务社会持续健康发展的初心决不改变。”怀进鹏说。 /p p   据悉,中国科协将进一步加大面向科技界的科研伦理道德的教育力度,以“零容忍”的态度处置严重违背科研道德和伦理的不端行为,取消贺建奎第十五届“中国青年科技奖”参评资格。 /p p   “我们将继续加大在全社会弘扬科学家精神工作力度,为科技创新的持续健康发展和创新型国家建设营造良好的文化和生态环境。”怀进鹏说。 /p p    strong span style=" color: rgb(0, 112, 192) " 中国医学科学院的声明 /span /strong /p p strong span style=" color: rgb(0, 112, 192) " /span /strong /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201811/uepic/6f37ae99-063c-4f6a-b9dc-a1d1156fdcc7.jpg" title=" 医学科学院声明.png" alt=" 医学科学院声明.png" / /p p style=" text-indent: 2em " strong style=" color: rgb(0, 112, 192) text-indent: 2em " 基因编辑国际峰会宣读组委会关于人类基因编辑声明 /strong /p p style=" text-indent: 2em " 声明第一部分 /p p   在2015年12月,美国国家科学院、美国国家医学院、英国皇家学会和中国科学院在美国华盛顿举办了一次国际峰会,峰会上讨论了人类基因编辑的科学、伦理和处理方法的问题。峰会组委会发表了一项声明,明确了能在现有规章和管理协议下进行的研究和临床应用领域。组委会同时强调,对任何可遗传的“生殖系”编辑进行临床使用都是不负责任的。另外,组委会也呼吁,对待这项飞速更新的技术,国际社会应该就它的益处、风险、前景进行更多的交流和讨论。 /p p   以在人类基因组编辑领域促进深刻的国际讨论为己任,香港科学院,英国皇家学会、美国国家科学院及美国国家医学院在香港举办了第二届人类基因组编辑国际峰会,以评估正在持续变化的科学前景、可能发生的临床应用,以及随之而来的、对人类基因组编辑的社会反响。作为第二届峰会的组织委员会,我们一方面为体细胞基因编辑进入临床试验阶段的飞速突破而喝彩,另一方面则继续认为任何将生殖系编辑引入临床应用的举措在目前仍是不负责任的。 /p p style=" text-indent: 2em " strong span style=" color: rgb(0, 112, 192) " NIH对于贺建奎事件的声明 /span /strong /p p style=" text-indent: 2em " 美国国立健康研究院对贺建奎博士在香港举行的第二届人类基因组编辑国际峰会上刚刚提出的科研工作深表关注,他描述了在人类胚胎中使用CRISPR-Cas9来敲除CCR5基因。他声称这两个被编辑后的胚胎随后被植入母体,并且女婴双胞胎已经出生。这项科研工作表明了贺建奎博士及其团队在研究过程中对国际伦理规范的有意忽视,这种行为是非常令人不安的。该科研项目主要是秘密进行的,在这些婴儿中抑制CCR5基因的必要性完全不能令人信服,知情同意过程似乎也非常值得怀疑,并且破坏脱靶效应的可能性也没有得到充分的考虑和探讨。非常不幸的是,这种强有力的技术首次明显应用于人类生殖细胞系却是如此不负责任。 /p p   目前正在香港进行迫切讨论,是否需要就此类研究的限制制定具有约束力的国际共识。如果没有这种限制,世界将面临大量同样考虑不周和不道德的科研项目带来的严重风险。如果这种史诗般的科学不幸事件继续发生,那么对于预防和治疗疾病具有巨大潜力的技术将会被无可非议的公愤,恐惧和厌恶所掩盖。 /p p   为了避免出现任何疑问,正如我们之前所说,NIH不支持在人类胚胎中使用基因编辑技术。 /p p style=" text-indent: 2em " strong span style=" color: rgb(0, 112, 192) " 贺建奎临时不参与29号的报告 /span /strong br/ /p p style=" text-indent: 2em " span style=" color: rgb(0, 0, 0) " 11月28日晚23点24分左右,基因编辑国际峰会给参会者发送邮件,贺建奎将不会出席29日下午的会议。 /span /p p style=" text-indent: 2em " strong span style=" color: rgb(0, 112, 192) " /span /strong /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201811/uepic/033e75d9-33a9-46a0-ab95-6d300d4d9414.jpg" title=" 1.jpg" alt=" 1.jpg" width=" 289" height=" 510" style=" width: 289px height: 510px " / /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201811/uepic/9058cbad-060e-458d-a820-90023ee6d8be.jpg" title=" 2.jpg" alt=" 2.jpg" / /p p style=" text-indent: 2em " strong span style=" color: rgb(0, 112, 192) " Science将基因编辑宝宝剔出2018年重大突破的评选 /span /strong /p p style=" text-indent: 2em " 2018年11月28日上午,Science评选了2018年重大突破的科研进展。基因编辑“中国宝宝& #39 强势入围,这也是众多参选的一匹大黑马。此消息一出,也是引来众多舆论,一时间满城风雨。11月29号上午,Science也悄悄把基因编辑宝宝剔出2018年重大突破的评选活动,并附上一则说明:“我们最初把基因编辑婴儿列为候选名单 现在我们删除了它,以避免给人一种错误的印象,认为Science杂志认可了这一有悖道德科学研究工作。” /p p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/201811/uepic/ef1b2618-c7c0-4cc1-b9ba-4b8028c8b166.jpg" title=" 3.jpg" alt=" 3.jpg" / span style=" text-indent: 2em " /span /p
  • 仕家万联携手安田精机制作所——打造AI智能化实验室
    2023年8月,株式会社 安田精机制作所(Yasuda)中国市场业务代表成经理来我司进行拜访交流。此次交流既是对上一年度仕家万联在中国市场取得突出业绩的感激与肯定,也是对双方合作前景的乐观展望。拜访交流期间,双方就如何进一步开拓中国市场进行了深入的讨论并达成一致意见,未来旨在持续推动智能化设备面向中国市场,契合行业需求,助力打造AI智能化实验室,帮助企业用户更好地应对发展挑战,加速科技创新。同时,仕家万联作为安田精机指定售后服务机构,将继续致力为用户提供一站式高质量服务,涵盖设备的供应、定制、安装、培训、定期保养与维护等环节,确保设备的长期可靠。此外,成经理还带来了一封安田精机的感谢信,信里,安田精机表达了对合作伙伴的诚挚感激与认可肯定。仕家万联作为安田精机中国区代理,双方已经风雨同舟携手并进十余年,未来也将继续在智能化精密物性分析仪器的领域紧密合作,为中国市场带来更多高品质的产品和服务。仕家万联期待在新的一年双方共同取得更加辉煌的成绩。//性能 质量 服务//编辑:十佳同学声明:本图文部分内容来源于公开资料或者互联网,转载的目的在于传递更多信息及用于网络分享,若您发现图文内容(包含文字、图片、表格等)等对您的知识产权或者其他合法权益造成侵犯,请及时与我们取得联系。
  • 中科院金属所预算2410万元采购电镜、试验机、三坐标等仪器设备
    中国科学院金属研究所成立于1953年,是新中国成立后中国科学院新创建的首批研究所之一,现已建设成为材料科学与工程领域国内一流并具有重要国际影响的研究机构,是我国高性能材料研究与发展的重要基地。金属研究所拥有材料制备与加工、结构分析表征、性能测试评价、多层次过程计算模拟的各类关键设备,为开展材料科学技术研究提供技术支撑。基础研究方面,在纳米金属材料、碳纳米材料、材料微观结构表征、疲劳断裂行为等领域涌现出一系列国际上同领域有影响的创性成果;应用研究方面,为载人航天、大飞机、航空发动机、高速铁路、三峡工程、核电工程、跨海大桥、海洋工程等一系列国之重器提供关键材料和技术支持。为进一步开展研究,金属研究所于近日公布了一批仪器设备采购意向,采购品目涉及纳米压痕仪、液压伺服疲劳试验机、三坐标测量机、激光扫描共聚焦显微镜、场发射扫描电镜、透射电镜配套装置等,预算金额相加达2410万元,预计采购时间为2022年6至8月。金属研究所2022年6至8月仪器设备采购意向序号采购项目预算采购日期需求概况1纳米压痕仪190万元6月最大载荷:10 mN;载荷(力量)分辨率:≤1 nN;载荷噪音背景:≤30 nN;位移分辨率:≤0.006 nm;位移噪音背景:≤0.2 nm;原位扫描成像及定位系统:可以进行3D原位扫描成像,控制精度±10 nm。2透射电镜配套用高温高载荷原位装置130万元7月最高加载温度:1200 ℃;温度控制及测量方式:四电极;温度精确度:≥95%;应力加载方式:面内加载;最大驱动力:>2 mN驱动;位移:>2 μm;α倾转角:≥20° ;β倾转角:≥10°;加载耦合:力热耦合条件下全过程自由正交双轴倾转;信号传输与控制:采用固定电极的连接方式,确保倾转过程中信号输入输出稳定连续无干扰。3液压伺服疲劳试验机180万元7月额定动态载荷100 KN,动态行程150 mm,载荷精度0.5级;伺服阀和液压油源流量不低于35 LPM,动态频率不低于20 Hz; 配置全数字控制系统,并配置符合ASTM相关标准的低周疲劳软件、高周疲劳软件、断裂韧性K1c测试软件;要求疲劳软件在非室温环境测试中具有计算和纠正热膨胀的功能;所提供的测试软件的底层软件需开放于用户,可以进行定制化试验模板的编辑。4Φ8m级大型轴承机加、装配、检验、包装、运输260万元7月根据图纸要求,制定表淬和机加工艺,对各零件进行表面淬火、机加工、检测、装配、评价,并将2套检验合格的Φ8m级大型轴承包装后,运送至指定地点。5电热脱芯釜330万元7月主体尺寸:Ф1065 mm×1800mm;设计压力:1.0 Mpa;工作压力:0.0-0.8 Mpa;(可调)釜体最高加热温度:200 ℃;额定工作温度:160-180 ℃。6三坐标测量机130万元7月主要进行叶片的全尺寸高精度检测。被测工件最大重量:1300 kg;3D运动速度:520 mm/s;3D运动加速度:1730 mm/s2;最大允许示值误差(μm):2.3+3.3L/1000;最大允许探测误差(μm):2.3。7氩气雾化制粉设备350万元8月坩埚容量:200 Kg;极限真空度:≤6.67×10-3Pa(空炉冷态);工作真空度:≤1 Pa;压升率:≤2 Pa/h;最高温度:1700 ℃;雾化压力:6~10 MPa;浇注方式:翻转浇注。8场发射扫描电镜480万元8月1.扫描电镜加速电压20V-30KV;分辨率1KV不低于1.2 nm,15KV不低于0.7 nm。2.样品台XY方向移动范围不小于110 mm,Z方向范围不小于50 mm;T方向角度范围不小于-4度;样品台五轴电动优中心。9微区扫描探针电化学工作站180万元8月扫描范围(X、Y):100mm × 100mm;扫描移动分辨率(X、Y、Z):≤1n分辨率;全功能锁相放大器频率范围:0.001Hz - 250KHz 电化学工作站最大输出电压: ≥± 12 V电化学工作站最大输出电流:±2 A。10激光扫描共聚焦显微镜180万元8月1.五根泵浦固体激光器,且每根激光器可以独立调节,独立更换。2.四个独立的荧光检测器。3.全自动倒置显微镜系统最小Z 轴步进精度≤10 nm。4.光谱分辨率(最小光谱检测范围):2 nm。5.光谱最小调节步进:1 nm 。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制