当前位置: 仪器信息网 > 行业主题 > >

正己基硼酸

仪器信息网正己基硼酸专题为您提供2024年最新正己基硼酸价格报价、厂家品牌的相关信息, 包括正己基硼酸参数、型号等,不管是国产,还是进口品牌的正己基硼酸您都可以在这里找到。 除此之外,仪器信息网还免费为您整合正己基硼酸相关的耗材配件、试剂标物,还有正己基硼酸相关的最新资讯、资料,以及正己基硼酸相关的解决方案。

正己基硼酸相关的资讯

  • ECHA开展有关环草啶和硼酸的新统一分类和标签公众意见征询
    2013年5月14日消息,欧洲化学品管理局(ECHA)邀请利益相关方提交有关环草啶(lenacil)和硼酸(boric acid)的统一分类和标签(harmonised classification and labelling,CLH)新提案的评论意见。公众咨询为期45天,将于2013年6月28日结束。   有关环草啶的CLH提案由比利时提交。环草啶是一种除草剂,目前并没有统一分类和标签。卷宗提交者计划对该物质的环境危害进行分类。   有关硼酸的CLH提案由波兰提交。硼酸已有统一分类,卷宗提交者拟议修订生殖毒性分类,即移除生育影响分类,降低发育毒性分类。ECHA提醒相关方正在进行的有关其他两种硼酸盐的公众咨询(截至6月14日),卷宗提交者(荷兰)拟议为其发育和生殖毒性制定比硼酸更为严格的分类。   在45天的咨询阶段,收到的评议意见将会定期公布在ECHA网站上。   表格一 拟议的统一分类和标签以及物质使用范例。 物质名称 EC号 CAS号 拟议统一分类和标签 使用范例 环草啶(ISO);3-环己基-1,5,6,7-四氢环戊嘧啶-2,4-(3H)二酮 218-499-0 2164-08-1 对水生环境有危害 对水生环境的危害未分类 作为一种除草剂 硼酸 233-139-2 10043-35-3 生殖毒性 硼酸被用于许多行业和专业应用,被添加在消费品中。 硼酸在杀菌剂中被用作活性物质,被添加到化肥中被用作一种植物微量元素。   *请注意使用信息不会影响分类和标签,这完全基于一种物质的内在属性。使用范例是从CLH报告中复制而来。
  • ECHA发表关于硼酸和硼酸盐化物的使用意见
    欧洲化学品管理署(ECHA)风险评估委员会(RAC)近日通过了一项关于消费者在摄影应用方面硼酸和硼酸化合物的使用意见。   该意见涉及业余摄影师在暗房打印照片时的注意事项。RAC的结论是,当不考虑其他的硼来源时,这种物质的使用不会对消费者构成危险。   其他对消费者有影响的硼暴露方式包括饮食和饮用水。当业余的摄影师使用该物质,如定影剂和液态膜显色剂时,能适当的控制风险。   然而,当合理条件下摄影时发生包括硼或其他硼来源的最坏情况时,对消费者的风险可能无法控制。   RAC已被要求评估消费者在使用摄影应用时,硼酸和硼酸盐化物是否能得到充分控制。此外,硼酸和硼酸盐化物是一种具有生殖毒性的物质,对人体的成长和生育有较大影响。
  • 宁波硼酸门认定被推翻 工商称对检测报告无核实义务
    中新网宁波5月28日电 今年1月,浙江宁波市工商局江东分局在超市抽查陆龙兄弟海蜇产品,通过第三方检测机构检测,产品被检测出含有硼酸,3月份,该案件被移交宁波市公安局江东分局。5月24日,中普检测技术服务(宁波)有限公司(简称中普检测)发布一份《致陆龙兄弟的道歉声明》,推翻此前陆蜇不合格的认定,转而认定其合格。对此,宁波市工商局江东分局副局长张建刚表示,工商部门此前所说硼酸“不得检出”的结论是根据检测机构的检测报告做出的,而对检测报告工商部门没有核实的义务。   中普检测是负责此次陆龙海蜇检测的机构。据中普检测官网介绍,该公司成立于2006年5月,是“一家公正、独立、专业的第三方检验、测试、认证公司”。3年前,中普检测开始涉足食品检测。   “我们是受江东工商委托对产品进行检测。”中普检测质量部经理李伟告诉记者,检测报告是今年1月15日出具的,送检的陆龙兄弟海蜇被检测出硼酸含量为5.9mg/kg,报告第一时间送达企业。   宁波市工商局江东分局工作人员此前接受记者采访时称,硼酸属于不得检出,一旦检出就判定是不合格,至于是添加还是自带留待公安部门调查,工商不予评论。3月份工商部门将此案移交给公安,等待进一步的调查结果。   5月24日,中普检测在诸媒体发表《致陆龙兄弟的道歉声明》,称陆龙产品检出的5.9mg/kg硼酸系本底含量,推翻了此前送检陆龙海蜇不合格的结论。据李伟介绍,新结论是在陆龙兄弟提供了诸多证据的基础上做出,中普检测并没有进行重新检测。   作为此次检测的委托方,宁波市工商局江东分局副局长张建刚表示,工商部门对检测报告没有核实的义务,检测结果由检测机构来认定,工商部门主要负责三项工作:确认检测机构是否有资质 跟被抽检人有没有利益关系 检测程序是否合法。   宁波市工商局江东分局提供的材料称,依据《食品安全法》第五十九条:“食品检验实行食品检验机构与检验人负责制。食品检验报告应当加盖食品检验机构公章,并有检验人的签名或者盖章。食品检验机构和检验人对出具的食品检验报告负责”。   “在法律上,我们不存在任何责任。”张建刚称,工商部门此前所说,硼酸不得检出的结论是根据检测机构的检测报告得出。   据介绍,宁波市工商局江东分局过去只对海蜇进行一般检测,今年开始才增加了硼酸检测项目。   针对中普检测推翻检测结论公开致歉一事,宁波市工商局江东分局在给记者的书面回复称,“这个事情我们始终是严格依法按程序办理的。根据检测报告,海蜇被检出硼酸,为了消费者的食品安全和国家的相关规定,我们依法移送公安部门,由公安部门对硼酸的来源进行侦查。在公安部门确认非人为添加的情况下,退回工商部门,由工商部门依法按程序作出处理。”
  • “硼酸盐激光自倍频晶体和小功率绿光激光器件商品化制备技术及应用”项目获国家技术发明二等奖
    1月18日,中共中央、国务院在北京隆重召开2012年度国家科学技术奖励大会。胡锦涛、习近平等党和国家领导人出席奖励大会并为获奖人员颁奖。山东大学晶体材料研究所王继扬教授完成的“硼酸盐激光自倍频晶体和小功率绿光激光器件商品化制备技术及应用”项目荣获国家技术发明二等奖。此外,山东大学作为合作单位获得一项国家科技进步二等奖。   王继扬教授及其课题组在国家自然科学基金和“973”专项支持下,在蒋民华院士学术思想指导下,坚持复合功能晶体研究,与中科院理化所许祖彦院士课题组合作,突破传统思想,发现硼酸钙氧盐类晶体的最大有效非线性系数在非主平面方向。他通过对多种硼酸钙氧盐晶体生长和激光特性的筛选研究,发现硼酸钙氧钇钕晶体综合性能优良,具有实用化前景,通过产学研结合实现了激光自倍频晶体元件和激光自倍频绿光器件模组的商品化生产,根据市场需求开发了多种产品,并已获得广泛应用,在国际上首次实现了激光自倍频晶体及其器件的商品化,开辟了激光自倍频晶体与器件应用的商品化领域,创造了具有特色和优势的小功率绿光全固态激光器新品种,发展了激光自倍频功能复合模型,丰富了功能晶体学科,是复合功能晶体研究领域的重大突破。
  • 宁波海产品牌陷“硼酸门” 检测方推翻结论致歉
    中新网宁波5月26日电 5月13日,网友微博爆料称,“宁波知名品牌陆龙海蜇头被江东工商局查出硼酸超标”。5月24日,第三方当事检测机构中普检测技术服务(宁波)有限公司(简称“中普检测”)在当地媒体上发布一份《致陆龙兄弟的道歉声明》,推翻自己4个多月前做出的陆龙海蜇检测不合格的结论,重新认定陆龙产品检出的5.9mg/kg硼酸系本底含量。中普检测称:在判定上出现了失误,错误理解了标准。   根据“陆龙兄弟”官方网站的介绍,该公司是产销量、企业规模、纳税额等经济指标均排名业内第一的中国海产领军品牌,1978年由多名陈姓兄弟共同创建成立,现已发展成为中国最大的“海产食品全品类一站式供应商”。   资料显示,硼酸俗称硼砂,可增加食品韧性、脆度以及改善食品保水性、保存性,但毒理学实验表明,硼酸在人体内有积存性,会引起食欲减退、消化不良、抑制营养素的吸收,且硼酸具有较高毒性,摄入1~3克可致中毒,成人20克、小儿5克可致死亡。   2008年以来,全国打击违法添加非食用物质和滥用食品添加剂专项整治领导小组陆续发布了5批《食品中可能违法添加的非食用物质和易滥用的食品添加剂名单》,硼酸与硼砂名列其中。   宁波江东工商分局工作人员此前接受记者采访时称,当时共抽取了15个品牌的87个批次产品,其中,江东欧尚超市抽选的样本陆龙海蜇头被检出含有硼酸。该工作人员表示,硼酸属于不得检出,一旦检出就判定是不合格,至于是添加还是自带留待公安部门调查,工商不予评论。   中普检测是负责此次陆龙海蜇检测的机构。据“中普检测”官网介绍,该公司成立于2006年5月,是"一家公正、独立、专业的第三方检验、测试、认证公司"。3年前,“中普检测”开始涉足食品检测。   “我们是受江东工商委托对产品进行检测。”中普检测负责人李伟告诉记者,检测报告是今年1月15日出具的。根据该公司工作流程,报告会在第一时间送达企业。此后一段时间,“陆龙兄弟”并没就报告提出疑义。李伟称,4月份“陆龙兄弟”与他们进行了沟通,称检测报告的结果认定有问题。   5月14日,陆龙兄弟官方微博针对此事发文《陆龙海产致社会各界的一封信》中解释,检出硼酸系原料本身自带,属不可抗的客观因素。   李伟介绍,后来工商部门也督促他们作出解释,而“陆龙兄弟”在多次沟通中也要求作出解释,“双方沟通得挺好”。   5月24日,中普检测在当地媒体上推翻自己4个多月前做出的陆龙海蜇检测不合格的结论,重新认定陆龙产品检出的5.9mg/kg硼酸系本底含量。   李伟接受记者采访时表示,公司做了3年的食品检测,以前从来没有出现过误判。他认为,这份检测报告是“中普检测”在判定上出现了失误,错误理解了标准,报告的判断依据为:SC/T3210-2001中实际表述为:“不允许使用硼酸或硼砂作防腐剂”,并非“不得检出”。   在“中普检测”发出《致陆龙兄弟的道歉声明》后,记者来到“陆龙兄弟”采访。公司前台称领导都不在公司,边上一位被其称为陈副主任的办公室工作人员称,企业现在没有什么好回复的,这件事很明显,各方面舆论、微博都讲得很清楚。陈副主任让记者有事找戴总,称对方可以代表“陆龙兄弟”发言。   此后,记者拨通了戴总的电话。不过,对方却表示自己并非“陆龙兄弟”的工作人员,也是媒体人,只是对这个事情比较了解,并不能代表“陆龙兄弟”作出回应。
  • 赛默飞发布食品样品中硼砂(硼酸)的检测方案
    2015年2月3日,上海——科学服务领域的世界领导者赛默飞世尔科技(以下简称:赛默飞)近日发布食品样品中硼砂(硼酸)的检测方案。一些不良商贩在食品中非法添加硼砂或硼酸,以起到增筋、保水、改良口感和防腐等作用。硼摄入量过高会表现毒性,可致脑组织氧消耗受抑制,酶活力丧失活性。国家食品整治办于2008年将硼酸、硼砂列为禁用添加剂第一批,明令严格监查食品中硼违法添加等行为。 目前食品中硼的检测的方法主要有比色法、ICP-OES法和ICP-MS(www.thermo.com.cn/Category226.html)法等,其中比色法操作非常繁琐,而ICP-OES法和ICP-MS则是总硼测试的良好解决方案。动植物体中的硼往往存在多种形态(主要有水溶游离态、半束缚态和束缚态),而外源性添加硼酸则主要以游离态存在,因此对于游离态的硼酸准确则更有意义。离子色谱柱的分离机理使其容易保留游离态的硼,因此在ICP-OES或ICP-MS前端增加分离单元可以准确样品中的游离硼。赛默飞发布食品样品中硼酸的检测方法,采用ICS-900基础型离子色谱仪配备IonPac ICE-Borate排斥色谱柱,在等度淋洗条件下即可良好保留游离态硼酸,而络合态硼酸不干扰测定。利用电感耦合等离子光谱仪作为检测手段则可大大增强检测的选择性,排除了食品中常见有机酸对于硼酸的干扰,具有较好的检测效果。ICS-900 基础型离子色谱系统产品详情:http://www.thermo.com.cn/Product6477.html iCAP 7000系列电感耦合等离子体光谱仪产品详情:http://www.thermo.com.cn/Product6694.html 下载应用纪要:离子色谱-电感耦合等离子体光谱联用检测食品样品中硼砂(硼酸)http://www.thermo.com.cn/Resources/201501/1616106789.pdf ----------------------------------------------------------------------关于赛默飞世尔科技赛默飞世尔科技(纽约证交所代码:TMO)是科学服务领域的世界领导者。公司年销售额170亿美元,在50个国家拥有员工约50,000人。我们的使命是帮助客户使世界更健康、更清洁、更安全。我们的产品和服务帮助客户加速生命科学领域的研究、解决在分析领域所遇到的复杂问题与挑战,促进医疗诊断发展、提高实验室生产力。借助于Thermo Scientific、Life Technologies、Fisher Scientific和Unity? Lab Services四个首要品牌,我们将创新技术、便捷采购方案和实验室运营管理的整体解决方案相结合,为客户、股东和员工创造价值。欲了解更多信息,请浏览公司网站:www.thermofisher.com 赛默飞世尔科技中国赛默飞世尔科技进入中国发展已有30多年,在中国的总部设于上海,并在北京、广州、香港、台湾、成都、沈阳、西安、南京、武汉等地设立了分公司,员工人数超过3800名。我们的产品主要包括分析仪器、实验室设备、试剂、耗材和软件等,提供实验室综合解决方案,为各行各业的客户服务。为了满足中国市场的需求,现有8家工厂分别在上海、北京和苏州运营。我们在全国共设立了6个应用开发中心,将世界级的前沿技术和产品带给国内客户,并提供应用开发与培训等多项服务;位于上海的中国创新中心结合国内市场的需求和国外先进技术,研发适合中国的技术和产品;我们拥有遍布全国的维修服务网点和特别成立的中国技术培训团队,在全国有超过2000名专业人员直接为客户提供服务。我们致力于帮助客户使世界更健康、更清洁、更安全。欲了解更多信息,请登录网站 www.thermofisher.cn
  • 硼酸盐零膨胀新材料:可用于低温高精度光学仪器
    ZBO晶体的近零膨胀性质、优异的透过性能以及良好的生长习性  热胀冷缩是自然界物体的一种基本热学性质。然而也有少数材料并不遵循这一基本物理规则,存在着反常的热膨胀性质,即其体积随着温度的升高反常缩小(或不变)。其中,有一类材料的体积在一定温区内保持不变,称为零膨胀材料,在很多重要的科学工程领域具有重要的应用价值。目前已有的绝大多数零膨胀材料是通过将具有负热膨胀性质的材料加入到其它不同材料中,通过化学修饰的手段控制其膨胀率,形成零膨胀状态。而纯质无掺杂的零膨胀晶体材料因为能够更好地保持材料固有的功能属性,在各个领域更具应用价值。但由于在完美晶格中实现负热膨胀与正膨胀之间的精巧平衡十分困难,纯质无掺杂晶体材料中的零膨胀现象非常罕见。迄今为止仅在七种晶体中发现了本征的零膨胀性质。同时,在目前已有的零膨胀晶体材料中含有过渡金属或重原子,其透光范围仅仅截止于可见波段,因此探索具有良好透光性能的纯质无掺杂零膨胀晶体材料是热功能材料领域及光学功能材料领域里极具科学价值的研究热点。  中国科学院理化技术研究所人工晶体研究发展中心研究员林哲帅课题组与北京科技大学教授邢献然课题组合作,首次在单相硼酸盐材料体系中发现了新型零膨胀材料。相关研究成果发表在国际材料科学期刊《先进材料》上(Near-zero Thermal Expansion and High Ultraviolet Transparency in a Borate Crystal of Zn4B6O13, Adv. Mater.,DOI:10.1002/adma.201601816)。他们创新性地提出利用电负性较强的金属阳离子限制刚性硼氧基团之间的扭转来实现零膨胀性质,并在立方相硼酸盐Zn4B6O13(ZBO)中实现了各向同性的本征近零膨胀性质。  ZBO晶体具有硼酸盐晶体中罕见的方钠石笼结构:[BO4]基团共顶连接形成方钠石笼,[Zn4O13]基团被束缚在方钠石笼中,[BO4]基团之间的连接处被较强的Zn-O键固定住。通过变温X射线衍射实验,证明了ZBO晶体在13K-270K之间的平均热膨胀系数为1.00(12)/MK,属于近零膨胀性质,其中在13K-110K之间的热膨胀系数仅为0.28(06)/MK,属于零膨胀性质。他们利用第一性原理计算结合粉末XRD数据精修揭示了ZBO的近零膨胀性质主要来源于其特殊的结构所导致的声子振动特性:低温下对热膨胀有贡献的声子模式主要来源于刚性[BO4]基团之间的扭转,刚性 [BO4]基团之间的扭转被较强的Zn-O所限制,使得其在13K-270K之间呈现出非常低的热膨胀系数。  ZBO晶体具有良好的生长习性。林哲帅课题组与中科院福建物质结构研究所吴少凡课题组合作,获得高光学质量的厘米级晶体。经过测试表明,ZBO的透光范围几乎包含了整个紫外、可见以及近红外波段,紫外截止边是所有零膨胀晶体中最短的。同时其还具有良好的热稳定性、高的力学硬度以及优异的导热性能。综合其优良性能,ZBO晶体在应用于低温复杂环境中的高精度光学仪器,例如超低温光扫描仪、空间望远镜和低温光纤温度换能器中具有重要的科学价值。  许多硼酸盐晶体材料在紫外波段具有良好的透过性能。同时,由于硼氧之间强的共价相互作用,硼氧基团内部的键长键角随温度基本保持不变,而硼氧基团之间的扭转能够引起骨架结构硼酸盐的反常热膨胀效应。林哲帅课题组率先在国际上对硼酸盐体系展开了反常热膨胀性质的探索。在前期工作中,他们与理化所低温材料及应用超导研究中心研究员李来风课题组合作,发现了两种具有罕见二维负热膨胀效应的紫外硼酸盐晶体(Adv. Mater. 2015, 27, 4851 Chem. Comm. 2014, 50, 13499),并对其机制进行了阐明(J. Appl. Phys. 2016,119, 055901)。  相关工作得到了理化所所长基金、国家自然科学基金以及国家高技术研究发展计划(“863”计划)的大力支持。
  • 科学家利用高分辨太赫兹光谱方法揭示水溶液中硼酸的氟化反应机理
    氟在化学世界中具有重要地位。氟在所有原子中电负性最高、极化率最低。同时,氟是所有非惰性气体和非氢元素中半径最小的元素。通常,氟的引入使得有机化合物和无机化合物产生独特的物理性能、化学性能和生物性能。地壳中氟元素的丰度排在第13位,是自然界中含量最丰富的卤素。当前,氟已应用于制药、催化、生物、农业和材料等领域。在无机氧化物体系中,氟和氧的离子半径相似,具有较好的可替代性。因此,利用氟替代氧/羟基成为增强氧化物/羟基氧化物物化性质的有效途径之一。尽管氟化策略已在无机氧化物/羟基氧化物结构和性能改性中受到重视,但反应产物的结构分析仍是化学表征的难题。由于氟和氧对X射线和电子束的散射能力相近,致使准确区分和鉴别这两类元素变得困难。更复杂的是,X射线和电子束几乎不和氢原子相互作用,故X射线和电子束方法难以区分氟和羟基。因此,氟化产物中氟和氧/羟基的准确区分是确定取代位点、研究氟化反应规律以及明晰反应路径等课题的研究基础。近日,中国科学院新疆理化技术研究所潘世烈团队与内蒙古医科大学教授额尔敦、台湾大学教授Hayashi Michitoshi、日本静冈大学教授Tetsuo Sasaki、日本神户大学教授Keisuke Tominaga,以水溶液中硼酸的氟化反应为研究对象,发展了基于高分辨率太赫兹光谱的结构解析方法。该团队利用这一方法测定了反应产物中功能基元上氟和羟基的位点。结果表明,该反应体系中氟原子只出现在BO2F2阴离子功能基元上。在结构测定的基础上,该研究推导了水溶液中硼酸的氟化机理,提出了两步氟化历程。第一步是氟离子和硼酸分子B(OH)3形成配位共价键,促使硼的电子轨道经历从sp2到sp3的转变,形成B(OH)3F中间体。第二步是氟化剂产生的酸性环境使该中间体上的一个OH质子化,形成OH2+优势离去基团。进而,氟离子通过亲核取代路径取代OH2+基团,完成第二步氟化。基于高分辨率太赫兹光谱的结构分析方法,适应于含氟/氧、铍/硼、碳/氮等X射线难以识别元素对的结构体系以及用于研究其他羟基氧化物/氧化物氟化反应机理。该方法为无机氟化学晶体结构基元精确解析和反应理论研究提供了新途径。相关研究成果发表在《德国应用化学》上。新疆理化所为第一完成单位。研究工作得到科学技术部、国家自然科学基金委员会、中国科学院和新疆维吾尔自治区等的支持。
  • 使用Avio ICP-OES对硼酸锂熔融地矿样品进行稳定分析
    地矿样品的分析由于其基体组成以及将样品转换为溶液的制备过程而颇具挑战。最常用的制备技术是锂熔融,熔融过程包括将样品与过量硼酸锂混合并加热,直至硼酸锂熔化并溶解样品形成均质物后,将得到的固体溶解在酸中进行分析。硼酸锂熔融样品因其含有高浓度的IA族元素,如锂 (Li)、钠 (Na) 和钾 (K) ,使得采用电感耦合等离子体发射光谱(ICP-OES)分析时遇到以下难点:雾化器和进样器内出现沉积物,导致信号漂移,测量结果不稳定。石英炬管很快变得不透明,测量结果的精密度受到很大影响。通过选择合适的样品导入组件,上述困难和挑战均可在珀金埃尔默 Avio ICP-OES 上得到圆满解决:采用配有Elegra™ 氩气加湿器的SeaSpray™ 雾化器来避免雾化器阻塞,并减少中心管头处沉积物形成。采用陶瓷炬管,同时使用1.2mm中心管以减少等离子体负载,减轻不透明现象。图1显示了锂熔融样品12.5小时分析过程中内标元素(钇)的回收率稳定在95~105%之间。图2显示了锂熔融样品12.5小时分析过程中Si、Al、Ca、Mg和Mn元素的回收率稳定在95~105%之间。另外,Avio ICP-OES的PlasmaShear™ 技术也有助于提高高盐基体样品分析的稳定性。该技术可产生空气流来切除等离子体尾焰(图3),避免基体沉积接口窗口。上述结果表明,Elegra™ 氩气加湿器与SeaSpray™ 雾化器、旋流雾室、细孔中心管和陶瓷炬管的联合使用,以及PlasmaShear™ 等离子体尾焰切割技术可以减少盐沉积,从而实现ICP-OES对高盐样品进行准确、稳定的分析。欲了解珀金埃尔默《采用 Avio ICP-OES 对偏硼酸锂熔融样品进行稳定分析》及Avio系列ICP-OES的详细内容,请扫描下方二维码即刻获取应用资料。更多详情请联系当地销售。
  • 征集|化妆品原料禁用化学成分和动植物品种的意见
    科学与技术飞速发展,化妆品的研制和开发越来越多的融入高科技的含量,以满足人们越来越高的要求。各种功能性化妆品应运而生,为保证化妆品的使用安全,进一步加强化妆品原料安全监管,1月22日,中检院向各级药品监管部门和检验检测机构、相关行业协会、生产企业及科研机构等征集关于化妆品原料禁用目录的意见和建议。要求于2021年2月18日前,填写《征求意见反馈表》(见附件),以电子邮件方式发送至hzpbwh@nifdc.org.cn。目前,中检院对化妆品禁用原料目录等文件进行了修订,包括1309项化学成分目录(附件1)、112项植(动)物品种目录(附件2)、化学成分修订前后对比(附件3)、植(动)物品种修订前后对比(附件4)。《化妆品禁用原料目录》制修订说明为贯彻落实《化妆品监督管理条例》(以下简称《条例》)要求,进一步加强化妆品原料管理,保证化妆品的质量安全,规范和促进化妆品行业健康发展,国家药品监督管理局组织启动了对《化妆品禁用原料目录》(以下简称《禁用目录》)的制修订工作,现将有关情况说明如下: 一、必要性(一)满足化妆品行业发展需要近年来,我国化妆品生产和消费均呈现快速发展的趋势。化妆品原料的使用与化妆品的质量安全密切相关,随着化妆品行业的发展和科学认识的提高,根据我国对一些化妆品原料风险评估结果,同时参考近几年欧盟、美国等化妆品行业发达国家或地区对一些化妆品评估和法规调整情况,发现部分原料急需调整管理使用要求。为切实保障消费者的使用安全,按照从严管理原则,我国《化妆品安全技术规范》(2015版)中禁用原料管理规定亟待调整。(二)满足化妆品安全监管的需要《条例》第十五条规定,禁止用于化妆品生产的原料目录由国务院药品监督管理部门制定、公布。随着科学技术的发展,新的检测方法和安全评估方法的出现,逐步发现部分原料可能存在潜在安全风险,需要加强管理。为了贯彻落实《条例》关于禁用原料的管理规定,结合化妆品行业发展和监管工作需要,急需在《化妆品安全技术规范》(2015版)中禁用组分的基础上制修订《禁用目录》,用于指导和规范化妆品行业和化妆品禁用原料的管理工作。二、制定目标和原则(一)制定目标以《化妆品安全技术规范》(2015版)为基础,制修订化妆品禁用原料要求,提高《禁用目录》的适应性和可操作性,满足化妆品监管工作的需要。(二)制定原则一是继承发展的原则。以《化妆品安全技术规范》(2015版)第二章化妆品禁用组分的内容为基础,对适用的部分予以充分保留,并根据最新的风险评估结果,将具有潜在安全风险的原料纳入《禁用目录》,满足监管工作的需要,切实保障消费者的使用安全。二是科学规范的原则。在充分考虑当前化妆品相关学科领域科研成果的基础上,参考国内外权威机构对原料的命名原则要求,对部分原料名称进行修改完善,力求科学规范。三是与时俱进的原则。根据化妆品技术研究进展和化妆品监管工作需要,对《禁用目录》内容进行修订和补充。三、制定要点《禁用目录》以《化妆品安全技术规范》(2015版)第二章化妆品禁限用组分的内容和体例为基础,结合评估结果、近期国际和国内化妆品安全监管的要求及变化,参考相关规范性文件编写而成。一是参考最新的评估结果,按从严原则,《化妆品安全技术规范》(2015版)中的限用、准用组分表或《已使用化妆品原料名称目录》中的评估结论认为可能存在安全风险的物质,纳入至《禁用目录》。二是针对近几年化妆品安全监管工作中发现的问题,为严厉打击不法企业添加禁用目录中具体药物名称外的药物,对易发生非法添加进而凸显化妆品功效的抗感染药物、激素和抗组胺药,不仅限于原目录中的具体名称,进行类别管理。三是规范部分禁用原料名称及内容。四是规范部分禁用植物原料名称。四、主要内容(一)新增17种化妆品禁用原料一是参考国际法规相关规定,结合我国对《化妆品安全技术规范》(2015版)限用、准用组分列表和《已使用化妆品原料名称目录》中部分已收录原料的评估结果,将可能存在安全风险的原料纳入《禁用目录》。例如,3-亚苄基樟脑、新铃兰醛、万寿菊花(TAGETES ERECTA)提取物、万寿菊花(TAGETES ERECTA)油、2-氯对苯二胺、2-氯对苯二胺硫酸盐、硼酸、硼酸盐、四硼酸盐和其他硼酸盐类和酯类、过硼酸钠、甲醛、多聚甲醛、二氯甲烷等。二是根据我国安全评估结论,将在化妆品中使用可能存在安全风险的原料纳入《禁用目录》,如非那西丁等。三是参考其他国家或地区的法规调整,结合我国的评估情况,考虑其可能存在安全风险,新增纳入《禁用目录》,例如苔黑醛、氯化苔黑醛、苄氯酚、环己胺、咪唑等。(二)修订13种化妆品禁用原料一是对部分原料名称进行规范,如“抗生素类”修改为“抗感染类药物”等。二是补充部分禁用原料的CAS号,如右丙氧芬、地芬诺酯、石棉、氢醌、羟苯异丙酯及其盐、羟苯异丁酯及其盐、羟苯苯酯、羟苯苄酯、羟苯戊酯、短杆菌素等。三是补充部分禁用原料的EC号,如联邻甲苯胺基染料等。四是对部分原料的CAS号勘误,如常压塔处理的残液(石油)等。(三)按照技术法规文件要求对文字内容进行调整规范考虑到下一步《禁用目录》将作为单独的技术法规文件或者强制性国家标准进行发布,有必要对《化妆品安全技术规范》(2015版)载明的禁用组分表1和表2的内容和体例进行调整规范,将原禁用组分中引用的部分在新《禁用目录》里进行相应调整。例如将“表1”改为“本表”, “表2”改为“化妆品禁用植(动)物原料”,“表3”改为“化妆品限用组分”,“表4”改为“化妆品准用防腐剂”,“表6”改为“化妆品准用着色剂”,“组分”改为“原料”。(四)将禁用药物成分进行分类合并参考《中国药典》(2020年版)、《临床用药须知》(2015年版)、《马丁代尔氏大药典》对《化妆品安全技术规范》(2015版)禁用组分表收录的药物成分进行分类合并,将三溴沙仑、抗生素、二氢速甾醇、乙硫异烟胺、呋喃唑酮、酮康唑、甲硝唑、呋喃妥因、磺胺类药物(磺胺和其氨基的一个或多个氢原子被取代的衍生物)及其盐类、甲巯咪唑等合并为抗感染类药物;将溴苯那敏及其盐类、氯苯沙明、苯海拉明及其盐类、多西拉敏及其盐类、羟嗪、曲吡那敏等合并为抗组胺药;将甾族结构的抗雄激素物质、肾上腺素、糖皮质激素类(皮质类固醇)、雌激素类、孕激素类、具有雄激素效应的物质等合并为激素类。(五)修订27种禁用植(动)物原料一是规范原料名称。将禁用植(动)物组分表2中名称不规范的原料名称进行统一调整规范,如将“八角科八角属植物(八角茴香除外)”调整为“五味子科八角属植物(八角除外)”。二是规范原料命名格式。调整植物组分(属)的拉丁文学名或英文名的格式为“属(科)拉丁名”,如“羊角拗类”调整为“夹竹桃科羊角拗属植物”。 调整植物组分(种)的拉丁文学名或英文名的格式为“拉丁名(部位/描述/英文名)”,如土木香根油、无花果叶净油、月桂树籽油。三是统一原料拉丁文学名或英文名。若植物原料(种)有多个拉丁文学名或英文名,将其学名(正名)放首位,异名后置,异名格式对属名+种加词,并用synonym标记,如魔芋、威灵仙、铃兰、藤黄等。参考中国植物志,若植物原料(种)的中文名称对应多个拉丁文学名的,各拉丁文学名所述并非同一种植物原料,则将其拆分,如魔芋、威灵仙、大风子、牵牛、商陆;若一个条目包括2种原料,也将其拆分,如芥、白芥。四是规范正名和异名。参考中国植物志,将植物原料(种)的中文名称和拉丁文学名均以学名(正名)表述,原名称为异名/俗名的原料,保留原名称并增加其学名(正名)。学名(正名)置于首位,异名/俗名后置,异名格式对属名+种加词,并用synonym标记。包括海芋、吐根及其近缘种、木香根油、野百合(农吉利)、茅膏菜、莨菪、夹竹桃、北五加皮(香加皮)、牵牛、补骨脂、除虫菊、一叶萩、(白)海葱、马鞭草油、白附子。五、需要重点说明的问题(一)药物成分分类管理参考《中国药典》(2020年版)、《临床用药须知》(2015年版)、《马丁代尔氏大药典》对《化妆品安全技术规范》(2015版)禁用组分表收录的部分种类药物成分按种类进行合并,合并类别为抗感染类药物、抗组胺药和激素类,并将原分散于禁用组分表中的药物成分作为具体实例体现在合并后药物类别中。但类别药物的涵盖范围包括但不限于举例的药物成分,凡是属于该类别的药物成分,均属于该类药物的涵盖范围。(二)序号调整本次制修订工作涉及多个条目合并为一条(如类别药物,抗感染类药物、抗组胺药、激素类),也涉及一个条目拆分为多条(如魔芋、芥、白芥、威灵仙、牵牛、商陆)。为保证《禁用目录》的延续性,在原有的编号顺序基础上进行调整。将因合并而空出的序号删除;将因拆分而变多的原料赋予新序号,原序号删除。附件下载:附件1.xlsx附件2.xlsx附件3.xlsx附件4.xlsx征求意见反馈表.xlsx
  • 生态环境部《土壤和沉积物中甲基汞和乙基汞测定》 (征求意见稿) 标准解读
    生态环境部办公厅2020年12月31日发布《土壤和沉积物 甲基汞和乙基汞的测定 吹扫捕集/气相色谱-冷原子荧光光谱法(征求意见稿)》 (环办标征函〔2020〕62号) ,我国国内第一个土壤和沉积物中甲基汞和乙基汞的测定方法标准公开征求意见。 该标准的主要起草单位是由中国环境监测总站和江苏省环境监测中心,验证单位包括:山东省生态环境监测中心、广西壮族自治区生态环境监测中心、四川省生态环境监测总站、湖南省长沙生态环境监测中心、贵阳市环境监测中心站和合肥市环境监测中心站等七家单位。为什么需要对土壤和沉积物中的甲基汞和乙基汞进行测定呢?土壤中的汞主要包括金属汞、无机化合态汞和有机化合态汞。有机化合态汞以有机汞(烷基汞)和有机络合汞普遍存在。其中烷基汞主要包括甲基汞和乙基汞;甲基汞是有机汞中毒性最大的一种形态,甲基汞很容易穿过血脑屏障,对人神经系统进行侵害,尤其对妇女和儿童有很大的影响;土壤中的甲基汞易被植物吸收,通过食物链在生物体内富集,从而暴露给人体;而土壤中的腐殖质与汞结合形成的络合物不易被植物吸收。另外,乙基汞也属于亲脂性化合物,中毒后可引起急性肠胃炎以及造成严重的肾脏损伤等。土壤和沉积物中的甲基汞和乙基汞国内是否有相关限值控制标准? 2018年6月,生态环境部与国家市场监督管理总局联合发布了《土壤环境质量 建设用地土壤污染风险管控标准(试行)》(GB36600—2018)国家环境质量标准,该标准于2018年8月1日正式实施,标准中明确了不同类型建设用地中甲基汞的筛选值和管制值,其中甲基汞在第一类用地的筛选值为5mg/kg。 目前国内暂无涉及土壤和沉积物中乙基汞的限值控制标准。《土壤和沉积物 甲基汞和乙基汞的测定 吹扫捕集/气相色谱-冷原子荧光光谱法(征求意见稿)》内容简介原理:土壤或沉积物样品经碱液提取后,提取液中的甲基汞和乙基汞经四丙基硼化钠衍生,生成挥发性的甲基丙基汞和乙基丙基汞,经吹扫捕集、热脱附和气相色谱分离后,再高温裂解为汞蒸气,用冷原子荧光光谱仪检测。根据保留时间定性,外标法定量。 方法检出限和定量下限:当取样量为0.5 g 时,甲基汞和乙基汞的方法检出限均为0.2 μg/kg,测定下限均为0.8 μg/kg 前处理过程:分析过程:标准曲线:8 个40 ml 棕色进样瓶,分别加入实验用水约35 ml,再分别加入0 pg,2.00 pg,5.00 pg,10 pg,50 pg,100 pg,500 pg,1500 pg的甲基汞和乙基汞混合标准溶液,,然后加入300 μl 乙酸-乙酸钠缓冲溶液及50 μl 四丙基硼化钠溶液(如果只进行甲基汞的分析,可加入四乙基硼酸钠溶液进行衍生化反应),迅速加入实验用水至瓶满,不留空隙,盖紧盖子静置10 min ~15 min。实际样品:40 ml 进样瓶中加入实验用水约35 ml 至瓶颈处,取试样150 μl 至进样瓶中,依次加入300 μl 乙酸-乙酸钠缓冲溶液及50 μl 四丙基硼化钠溶液(如果只进行甲基汞的分析,可加入四乙基硼酸钠溶液进行衍生化反应),最后迅速加入实验用水至瓶满,盖紧盖子静置10 min ~15 min 上机分析:标准内部验证和外部验证均采用美国知名仪器厂家Brooks Rand公司生产的MERX全自动烷基汞分析系统:MERX全自动烷基汞分析系统异位吹扫捕集,样品满瓶式进样,衍生化效率和烷基汞分析结果不受环境空气的影响三通道Tenax 捕集阱交替捕集,效率高液体传感器,水汽进入捕集阱会报警精密流量控制,气流波动小,避免因吹扫气流量过大造成大量水汽进入吸附阱或因流量过小造成的吸附不完全甲基汞检出限可达0.002ng/L;乙基汞检出限可达0.005ng/L宽线性范围:甲基汞0.0125-50ng/L,乙基汞0.025-50ng/L残留低:高浓度样品运行后仪器残留低于2‰重复性好,数据结果可靠国内销售数量超过300家,用户的普遍选择MERX全自动烷基汞分析系统同时还是《水质烷基汞的测定吹扫捕集/气相色谱-冷原子荧光光谱法》(HJ 977-2018)的验证仪器。该仪器数据质量稳定可靠,在国内饱受好评。谱图:质量控制:空白试验:每20 个样品或每批次样品(<20 个/批)应至少做一个空白试样,空白试样的测定值应低于方法检出限(甲基汞和乙基汞的方法检出限均为0.2 μg/kg)校准:建议每次分析前均应建立工作曲线,若采用线性回归法,相关系数≥0.995;若采用响应因子法,校准系数RSD≤15%(工作曲线绘制后,每批样品测定时需要测定工作曲线中间浓度点的标准溶液,其相对误差值应该控制在±20%以内。否则,需重新绘制工作曲线)平行样:每20 个或每批次样品(<20 个/批)应至少测定一个平行双样,测定结果的相对偏差应≤30%基体加标:每20 个样品或每批次样品(<20 个/批)应至少测定一个基体加标样品或一个土壤或沉积物的有证标准物质。甲基汞加标回收率控制在75%~130%之间;乙基汞加标回收率控制在70%~120%之间标准物质测定:测定甲基汞有证标准物质的允许相对误差在﹣40%~+10%之间展望:本标准的检出限、精密度等性能指标能满足《土壤环境质量 建设用地土壤污染风险管控标准(试行)》(GB 36600-2018)的相应要求,相信该标准正式出台后,会使涉及土壤和沉积物中甲基汞和乙基汞分析检测的单位有据可依,并为相关分析检测人员提供新的思路和手段。 参考文献:1. 关于征求《土壤和沉积物 甲基汞和乙基汞的测定吹扫捕集/气相色谱-冷原子荧光光谱法》国家环境保护标准意见的通知 (链接:http://www.mee.gov.cn/xxgk2018/xxgk/xxgk06/202012/t20201231_815730.html);2. 《土壤和沉积物 甲基汞和乙基汞的测定 吹扫捕集/气相色谱-冷原子荧光光谱法(征求意见稿)》及编制说明;3. 《土壤环境质量 建设用地土壤污染风险管控标准(试行)》(GB36600—2018)。
  • 原装进口高纯助熔剂特价回报客户
    为回报中国广大新老用户对我公司总代理的澳大利亚XRF Scientific Ltd公司高纯助熔剂产品的厚爱,我公司决定: 对澳大利亚XRF Scientific Ltd高纯助熔剂以特惠价1200元/千克进行促销,每位客户最低多限订购100千克,有效期为2009年9月1日至2009年12月31日 在熔融中加入硼酸盐助熔剂是一种*的粉末样品熔融处理技术。这样品处理方法在X-射线荧光光谱(XRF)、原子吸收光谱(AA)、电感耦合等离子体发射光谱(ICP)等分析技术中有着广泛的应用。因为这种助熔剂是一种样品溶剂,选择这种溶剂对实现质量分析具有非常重要的作用。 澳大利亚XRF Scientific Ltd公司在助熔剂技术方面20多年来的专业技术值得信耐,并能帮您改进分析技术。我们提供的硼酸盐助熔剂有以下显著特点: &bull 熔融物获得完美的均质性 &bull 严格可控的粒度分布 &bull 高密度:1.2-1.4 g/cm3 &bull 极低的灼烧减量:一般<0.05% &bull 防尘,易流动 &bull 高纯品质:>99.98% &bull 分析保证:经过分析认证 XRF Scientific 的助熔剂由四硼酸锂(Li2B4O7),四硼酸钠(Na2B4O7)或偏硼酸锂(LiBO2)制得。 我们也提供完整的其它添加剂,如氧化剂、除湿剂 (NWA)等。 通过认证的批量生产硼酸盐助熔剂的纯度:99.98%+ 我们可按您的要求定制助熔剂。 关于XRF Scientific Ltd 澳大利亚XRF Scientific Ltd公司是世界领先的激光诱导击穿光谱仪(LIBS)、熔样机、高纯助熔剂、铂金/铂合金器皿制造商。 它生产的助熔剂以其高品质在世界钢铁行业内被广泛使用,已成为X荧光光谱用户首选的进口助溶剂之一。 关于上海凯来实验设备有限公司 总部设在中国上海,成立于2004年。作为德国Haver & Boecker公司、Bϋ rkle公司、英国Optical Activity公司和Index Instruments公司、美国Ahura公司、Inorganic Venture公司、Reichert公司和W.S. Tyler公司、澳大利亚XRF Scientific 公司、瑞士SONOSWISS公司等在中国的总代理,以及作为德国Hirschmann、HosokawaAlpine的南方区总代理和Dionex液相产品上海区总代理。凯来公司致力于为生命科学和化学分析实验室用户提供优质的科学仪器及服务,同时希望不断完善自身,为客户提供更多更好的解决方案。 更多信息请登录www.chemlabcorp.com了解。
  • 深圳某单位批量采购94类试剂、标物
    深圳某终端单位,批量采购以下试剂、标物,共计94类,能做的厂商请联系,清单如下:试剂名称要求数量硫酸痕量金属级3硝酸痕量金属级3过氧化氢痕量金属级1氢氟酸痕量金属级3硼酸优级纯3氢溴酸优级纯3高氯酸优级纯3硼氢化钾优级纯1高锰酸钾痕量金属级3硼氢化钠痕量金属级1氢氧化钠痕量金属级1氯化钠优级纯1盐酸羟胺优级纯3二苯碳酰二肼优级纯1重铬酸钾标准物质优级纯3丙酮优级纯1正磷酸优级纯3铁氰化钾优级纯1氢溴钾优级纯1四氟硼酸痕量金属级3硫脲优级纯1草酸优级纯3邻菲罗啉优级纯1抗坏血酸优级纯3四氢硼酸钾痕量金属级3四氢硼酸钠痕量金属级3四氢氯金四水化合物痕量金属级1多孔颗粒状硅藻土优级纯1N-甲基吡咯烷酮(NMP)优级纯1碳酸钠优级纯3无水氯化镁优级纯1PH标准缓冲液(4.00,6.86,9.18)优级纯1铬酸铅优级纯3甲苯优级纯1二苯卡巴肼溶液优级纯1叔丁基甲醚(CAS:1634-04-04)优级纯1乙腈优级纯1连二亚硫酸钠(纯度≧87%)优级纯34-氨基偶氮苯标准溶液(1000mg/L)优级纯1蒽-d10(CAS:1719-06-8)优级纯1乙醚优级纯1硫酸亚铁溶液优级纯3正己烷(色谱纯或更高)优级纯1乙酸酐优级纯3无水碳酸钾优级纯3无水硫酸钠优级纯3硝酸钾优级纯3硫酸钠优级纯3乙酰丙酮溶液优级纯1乙酸铵优级纯3冰乙酸溶液优级纯3双甲酮(二甲基-二羟基-间苯二酚或5,5-二甲基环己烷-1,3-二酮)优级纯1乙醇优级纯1四氢呋喃(109-99-9)(色谱纯或更高)优级纯1氯化钾优级纯1酸性汗液优级纯3乙酸钠优级纯3无水硫酸钠优级纯3四乙基硼化钠(NaBEt4)优级纯1醋酸铵优级纯3冰醋酸优级纯3碘液0.05M(12.68g碘/L)优级纯1硫代硫酸钠优级纯3淀粉优级纯1十二烷基磺酸钠优级纯3柠檬酸盐缓冲液0.06M优级纯3甲醇优级纯1尿素优级纯1DL-乳酸:质量分数大于0.88,p=1.21g/mL优级纯3氨水:质量分数为0.25,p=0.91g/mL优级纯1正庚烷优级纯1二氯甲烷(分析纯或色谱纯)优级纯1环己烷(色谱纯或更高)优级纯1硼氰化钾痕量金属级1标物详情数量18 PAHs 混标1000mg/L0-1000mg/L①扩展不确定度0.1%2AZO混标1000mg/L0-1000mg/L①扩展不确定度0.1%2PBB,PBDE混标1000mg/L0-1000mg/L①扩展不确定度0.1%2PH标准缓冲溶液套装5g0-14①扩展不确定度0.1%2钡标准溶液1000mg/L0-1000mg/L①扩展不确定度0.7%2单丁基锡500mg0-1000ppm①扩展不确定度0.1%2二丁基锡500mg0-1000ppm①扩展不确定度0.1%2镉标准溶液1000mg/L0-1000mg/L①扩展不确定度0.7%2铬标准溶液1000mg/L0-1000mg/L①扩展不确定度0.7%2汞标准溶液1000ppm0-1000ppm①扩展不确定度0.7%2甲醛标准溶液1000mg/L0-1000mg/L①扩展不确定度3%2邻苯6p混标1000ppm0-1000ppm①扩展不确定度0.2%2六价铬标准溶液1000mg/L0-1000mg/L①扩展不确定度0.7%2镍标准溶液1000mg/L0-1000mg/L①扩展不确定度0.7%2铅标准溶液1000mg/L0-1000mg/L①扩展不确定度0.7%2三丁基锡500mg0-1000ppm①扩展不确定度0.1%2砷标准溶液1000mg/L0-1000mg/L①扩展不确定度0.7%2四,五氯苯酚1000mg/L0-1000mg/L①扩展不确定度0.1%2锑标准溶液1000mg/L0-1000mg/L①扩展不确定度0.7%2硒标准溶液1000mg/L0-1000mg/L①扩展不确定度0.7%2联系方式:为避免过度打扰,请添加仪器信息网工作人员微信获取采购方联系方式:
  • 欧盟肯定列表新增六种欧盟杀生剂物质
    2011年7月28日消息,英国健康和安全执行委员会(HSE)日前宣布,从2011年9月1日起,将有六种新的活性物质被添加至欧盟杀生剂产品指令附录I中,这六种活性物质分别为:   ◆磷化铝(Aluminium phosphide)   ◆氮气(Nitrogen)   ◆硼酸(Boric acid)   ◆氧化硼(Boric oxide)   ◆四水八硼酸钠(Disodium octoborate tetrahydrate)   ◆四硼酸钠(Disodium tetraborate)   英国健康和安全执行委员会称所有经《英国农药管理法规》(COPR)批准的产品已经发出告示,并将从2011年8月31日起撤销COPR原先的批准。委员会还提醒企业人员,务必根据《英国生物农药产品法规》(BPR)申请授权,以保证在9月1日截止期后,企业还可在英国市场上销售其抗杀生剂产品。
  • 帕纳科与XRF Scientific合作推出熔融机新品
    帕纳科公司是思百吉集团下属的X射线分析技术公司,而XRF Scientific公司是材料表征领域的样品制备专家。近日,帕纳科与XRF Scientific两家公司结成了XRF样品制备领域的OEM战略联盟。在此协议下,由Steve Prossor领导的XRF Scientific子公司Automated Fusion Technology公司将向帕纳科公司提供样品制备设备。   Pittcon2010上首次发布的Eagon 2 全自动台式双样品熔融系统,是此项合作签署后经过12个多月的技术和商业讨论后的成功成果,“在纵观所有的熔融技术之后,我们更加清楚的看到,与XRF Scientific公司一起,我们可以把最安全、实用,功能齐全、强大的自动化熔融设备推向市场:the Eagon 2是一种高性能、低成本的解决方案。”帕纳科公司XRF产品经理Simon Milner先生说到。此合作协议包括:合作双方互相发展和共享知识产权,合作推出的仪器设备将在2010年初开始生产。   在低熔融硼酸锂盐存在情况下,熔融或溶解一个样品将阻止测量过程中的一些不利,如:矿物学的,晶粒尺寸或方向的影响,当制备一种助熔剂或硼酸锂盐玻璃时,不必使其熔融即可产生均匀的样品。这是一个用在采矿工业的特殊方法,其使拥有丰富矿产资源的澳大利亚成为相关公司的天堂。   截止2009年6月30日,XRF Scientific公司12个月的营业额达1710万澳元时,其净收入达200万澳元,与前一年相比,公司的收入增长了14% 而截止12月31日的6个月内,公司的收入急速下降了36%,只有660万澳元 此次下降抹去了公司的净利润,公司的净利润下降了82%,只有27万澳元。在今年的开端,XRF Scientific公司没有债务并且在银行拥有450万澳元的现金。另外,大量新推出的仪器设备,以及采矿工业市场的复苏,预示着2010年将有一个很好的前景,XRF Scientific公司的常务董事,Terry Sweet先生评论到。
  • 课堂 | 金相典型特征样品图谱 (七) : 有色金属合金组织
    为发挥北京科技大学材料学科专业优势,服务材料相关专业实验教学,北京科技大学材料国家级教学示范中心与北京科大分析检验中心有限公司联合开发了一系列金相典型特征样品,并使用徕卡智能型显微镜DM4 M采集了所有样品的显微组织,为广大教师和实验室技术人员提供参考。此次为您准备了以下8个系列的金相样品图谱,本篇是第七篇,将为您展示有色金属合金组织样品图谱。一、铁碳平衡组织二、钢的热处理组织三、工模具钢组织四、不锈钢组织五、铸钢组织六、铸铁组织七、有色金属合金组织八、塑性变形组织有色金属合金组织 纯铜材料状态:退火浸蚀剂:三酸乙醇溶液显微组织:α固溶体黄铜材料状态:退火浸蚀剂:三酸乙醇溶液显微组织:α固溶体+β相亚共晶铝硅合金材料状态:铸态浸蚀剂:氟硼酸溶液电解浸蚀显微组织:α固溶体+共晶硅共晶铝硅合金材料状态:铸态浸蚀剂:氟硼酸溶液电解浸蚀显微组织:共晶硅过共晶铝硅合金材料状态:铸态浸蚀剂:氟硼酸溶液电解浸蚀显微组织:初晶硅+共晶硅ZL102材料状态:铸态未变质处理浸蚀剂:氟硼酸溶液电解浸蚀显微组织:α固溶体+共晶硅ZL104材料状态:变质处理浸蚀剂:氟硼酸溶液电解浸蚀显微组织:α固溶体+变质硅铝铜合金材料状态:铸态浸蚀剂:氟硼酸溶液电解浸蚀显微组织:α固溶体+Al2Cu共晶体亚共晶铅锡合金材料状态:铸态浸蚀剂:氟硼酸溶液电解浸蚀显微组织:先共晶α相+共晶相共晶铅锡合金材料状态:铸态浸蚀剂:氟硼酸溶液电解浸蚀显微组织:共晶相过共晶铅锡合金材料状态:铸态浸蚀剂:氟硼酸溶液电解浸蚀显微组织:先共晶β相+共晶相以上的清晰图片都是采用徕卡 DM4 M智能型金相显微镜采集。Leica DM4 M智能型金相显微镜德国进口显微镜,主要应用于材料科学研究:- 载物台移动范围:100x100mm- 放大倍率: 50-1000- 2 齿轮手动调焦驱动器- 6 位或7位编码物镜转盘- 手动/电动载物台,6个符合人体工学设计的可编程按钮- 照明管理系统- 对比度管理器- LED 照明装置可实现所有对比度模式- 相衬模式:明场、暗场、微分干涉相衬、偏振、荧光- Leica Application Suite (LAS X) 软件关于徕卡显微系统Leica Microsystems 徕卡显微系统是全球显微科技与分析科学仪器之领导厂商,总部位于德国维兹拉(Wetzlar, Germany)。主要提供显微结构与纳米结构分析领域的研究级显微镜等专业科学仪器。自公司十九世纪成立以来,徕卡以其对光学成像的极致追求和不断进取的创新精神始终得到业界广泛认可。徕卡在复合显微镜、体视显微镜、数码显微系统、激光共聚焦扫描显微系统、电子显微镜样品制备和医疗手术显微技术等多个显微光学领域处于全球领先地位。 徕卡显微系统在全球有七大产品研发与生产基地,在二十多个国家拥有服务支持中心。徕卡在全球一百多个国家设有区域分公司或销售分支机构,并建有遍及全球的完善经销商服务网络体系。
  • 【瑞士步琦】凯氏定氮仪测定鱼肉产品的挥发性盐基氮 (TVB-N)
    测定鱼肉产品总挥发性盐基氮 (TVB-N)凯氮应用”1简介挥发性盐基氮(TVB-N)指动物性食品由于酶和细菌的作用,在腐败过程中,使蛋白质分解而产生氨以及胺类等碱性含氮物质,是反映原料鱼和肉的鲜度的主要指标。挥发性盐基氮越高,营养价值越低,如果挥发性盐基氮超标,则表明产品已经开始腐败,如果继续食用,可能会引起肠胃不适等症状,严重者会导致食物中毒。本文介绍了如何测定鱼类样品中的挥发性盐基氮氮(TVB-N)。用 0.6 mol/L 高氯酸制备均匀鱼类样品后,用步琦 MultiKjel 进行蒸馏和硼酸滴定。所得结果为49.96mg/100g,与认证参考值(52.49±5.35mg/100g)吻合比较好,RSD 低(0.27%)。本文介绍了一种简便、可靠的测定鱼类样品中总挥发性碱性氮(TVB-N)的方法。该方法符合 GB5009.228—2016。TVB-N 化合物包括氨、二甲胺和三甲胺,是微生物降解胺的产物。因此,它们被用作水产,肉类新鲜度的指标。2设备步琦凯氏定氮仪 K-365步琦均质仪 B-400分析天平(精度±0.1mg)移液管 -20mL, 50mL3试剂高氯酸 60%盐酸 0.01mol/L酚酞溶液 1%氢氧化钠 32%2% 硼酸 pH 调节至 4.65为了安全操作,请注意所有相应的 MSDS!4实验过程取至少 100 克的鱼样本(最好是整条鱼片),通过均质仪彻底均匀化。去除较大的骨刺和皮等,取可食用部分。用高氯酸对样品进行脱蛋白处理。将 10.0g 均匀的鱼样称重到锥形瓶中。使用移液管将 90.0 mL 0.6N 的高氯酸溶液加入锥形瓶中,用力充分振摇 1min,静置 15min 待蛋白质沉淀后过滤。滤液应及时使用,不能及时使用的滤液置冰箱内 0℃~4℃ 冷藏备用。提取物在 2°C - 6°C 条件下可保存至少 7 天。根据 表1 中列出的参数对样品进行蒸馏。表1:用 MultiKjel 和 Eco 滴定仪进行蒸馏和滴定的参数。5计算TVB-N 浓度以 mg/ 100g 样品表示。试样中挥发性盐基氮的含量按 式(1) 计算:式中:X — 试样中挥发性盐基氮的含量,单位为毫克每百克(mg/100g)或毫克每百毫升(mg/100mL)V1 — 试液消耗盐酸或硫酸标准滴定溶液的体积,单位为毫升(mL)V2 — 试剂空白消耗盐酸或硫酸标准滴定溶液的体积,单位为毫升(mL)c — 盐酸或硫酸标准滴定溶液的浓度,单位为摩尔每升(mol/L)14 — 滴定1.0mL盐酸[c(HCl)=1.000mol/L]或硫酸[c(1/2H2SO4)=1.000mol/L]标准滴定溶液相当的氮的质量,单位为克每摩尔(g/mol)m — 试样质量,单位为克(g),或试样体积,单位为(mL)V — 准确吸取的滤液体积,单位为毫升(mL),本方法中 V=10V0 — 样液总体积,单位为毫升(mL),本方法中V0=1006结果测定结果见表2。表2:鱼中TVB-N的测定结果(认证含量52.49±5.35 mg/100 g)。7结论利用步琦凯氏定氮仪全自动进行测定鱼类产品中的TVB-N可提供可靠和可重复的结果。结果与 52.49±5.35 mg/100g 的认证参考值吻合较好,相对标准偏差较小。MultiKjel 无需人工处理可实现轻松自动化。步琦同时也提供 Easy/BasicKjel,可实现从半自动到全自动蒸馏滴定及全自动进样器多种凯氏定氮解决方案的流程,助您提高实验效率。5参考文献Official Journal of the European Communities, No 853/2004.ISO 19615 Meat and fish products - Determination of volatile basic nitrogen.GB5009.228—2016 食品安全国家标准 食品中挥发性盐基氮的测定Application Note K355-006, Determination of Total Volatile Basic Nitrogen (TVB-N) in fish and shrimps.
  • 口腔清洁护理用品,IC-ICP-MS法验证《GB/T 38791》
    IC-ICP-MS可以很好的分离硼的不同种形态,有助于硼酸和硼酸盐含量的准确测定,且可同时实现溴、碘元素形态分析。 2020年4月28日,《GB/T 38791-2020口腔清洁护理用品 牙膏中硼酸和硼酸盐含量的测定 电感耦合等离子体原子发射光谱法》正式发布,2020年11月1日正式实施。 硼酸,是一种外用杀菌剂,消毒剂和防腐剂。对多种细菌,霉菌都有抑制作用。可在临床上常常用于止血和防腐剂,但是如果不慎食用了,就会出现恶心,呕吐,腹痛,腹泻等胃肠道症状。 硼砂有杀菌作用,在医学上,硼砂用于皮肤黏膜的消毒防腐、氟骨症等的治疗,近年来还用于肿瘤的治疗,但口服对人体有害。 根据GB/T 38791-2020前处理方法,提取的是可溶性的含硼化合物,然后采用ICP-OES进行总量测定,但标准后面提到可以采用IC-ICP-MS方法对测定结果进行验证。 IC-ICP-MS 可以将硼酸根离子与其他可溶性硼离子进行有效分离,从而准确得到硼酸根离子的含量。 由于ICP-MS具有多元素同时检测的功能,通过不同质量数通道可以检测不同种元素,通过实验发现,在该实验条件下,溴、碘的形态分析可同时得到很好的分离。 IC-ICP-MS 即在一次进样中,同时分析B、Br、I的形态;且IC的惰性能更适合与ICP-MS联用,可有效避免金属等杂质的溶出,同时可降低测定元素的残留。采用IC-ICP-MS的方法,可以高效的同时分离、定量分析硼、溴、碘离子及酸根离子的形态,该方法适用于牙膏等样品的常规分析,更多详细信息请致电岛津。 IC-ICP-MS
  • 首个气流调谐液滴激光器出现
    荷叶沾水珠而不湿,日本科学家借助这一“荷叶效应”,利用简单的方法,制造出了一种新型离子液滴,这种微滴可用作灵活、持久而可调谐的激光器。与现有不能在大气中工作的“液滴激光器”不同,最新进展有望使激光器在日常环境中使用,从而催生出更便宜的光纤通信设备。相关研究刊发于最近的《激光与光子学评论》杂志。荷叶具有显著的自洁特性,在荷叶表面,水滴不会变平,而是会形成近乎完美的球体并滚落,带走灰尘。这种“荷叶效应”由叶片内的微小突起造成。在最新研究中,筑波大学科学家利用人工“荷叶效应”,创造出了可以像激光一样工作的液滴,而且,这种液滴激光器可在长达一个月的时间里保持稳定,而目前的“液滴激光器”不能在开放环境条件下使用,只能将其封闭在容器内,否则它们会蒸发。在新研究中,科学家将名为“1-乙基-3-甲基咪唑四氟硼酸盐”(EMIBF4)的离子液体与一种染料混合,使其成为激光介质。之所以选择这种液体,是因为它蒸发得非常缓慢,并且具有相对较大的表面张力。然后研究团队在石英衬底上涂上微小的氟化二氧化硅纳米颗粒,使其表面排斥液体。当EMIBF4沉积其上时,液滴几乎能完美地保持球形,持续时间长达30天。研究人员表示,数学计算显示,即使暴露在气流中,这种新液滴的理想形态和光学性质也会保持不变。据目前所知,这是第一个可通过气流调谐的液体激光振荡器。此外,研究人员利用3D打印方法,打印出了这种液滴激光器,且打印出来的液滴阵列无需进一步处理即可工作。研究团队指出,这种产品具有高度的可扩展性和易用性,很容易用于制造廉价的传感器或光通信设备,有望催生更灵敏的气流探测器或更便宜的光纤通信设备。
  • 火锅底料添加剂标准或今年起草
    火锅底料最近成为市民关注的新焦点,随着一些媒体报道“火锅底料大量添加化学添加剂”后,网络上掀起一片热议。虽然中国烹饪协会火锅专业委员会于上月底公布中国火锅企业食品安全状况,称占全国市场七成份额的100家知名火锅企业底料检查100%合格,但相当一部分消费者仍然对火锅底料持不信任态度。近日,广东省食品学会食品专家范瑞副教授指出,其实火锅底料内添加剂有没有超量使用,消费者很容易通过感官辨别。   现状 在标准内使用添加剂属合法   范瑞指出,火锅底料中会使用到添加剂和调味料。现在网络上都在热炒火锅底料滥用“添加剂”,这一说法是不规范的。   目前火锅底料中出现的有3类物质:调味料(包括复合调味料)、食品添加剂和非食用物质。   其中,调味料包括一些天然的香辛料,例如姜、蒜、胡椒,也包括从天然香辛料中提取的成分,例如辣椒油、姜油,也包括味精等。还有是一些专业生产的复合调味料,例如猪肉膏、牛肉膏、鸡粉之类。   而食品添加剂,包括香精、鲜味剂、防腐剂等,这部分食品添加剂是允许使用的,是受到GB2760(食品添加剂使用卫生标准)的限制和要求的。因此,火锅底料中即使出现10种以上的食品添加剂是完全正常的,关键是其使用是否符合GB2760的要求。目前食品添加剂的使用主要问题是超量和超范围使用。   至于“非食用物质”,罂粟壳、苏丹红,均属于此类。   问题 火锅底料配方目前仍无标准可循   而辣椒素是目前火锅底料中广泛使用的一种提供辛辣感材料,主要是从印度种植的一种辣椒中提取而来,由于其性质过于强烈,其使用必须受到限制,但是目前存在的问题是还没有相应的管理依据。   火锅底料配方目前仍无标准可循。记者了解到,2011年商务部和卫生部正在征询的食品安全标准征集课题,有关部门已报送拟计划起草《火锅底料和调味品标准》,正在等待批准。   专家 市民外出吃火锅应去正规餐馆   专家提醒市民,外出吃火锅时,应尽量选择卫生环境好,经营规范,有一定经营规模,有信誉保障的餐馆。用餐时可通过感官鉴定火锅底料:非常辣、颜色非常鲜艳、非常红、非常香的火锅,其中往往香精添加量较大,对于此类火锅和火锅底料,尽量不吃。据悉,火锅底料传统的做法是用鸡、肉、骨、油脂打底,配合一些香辛料,但是这种方法成本高,并且其鲜味、辣味等指标不突出。目前生产火锅底料主要是用一些油脂、肉粉、骨粉打底,配合香辛料、香精加工而成。因此消费者不要长期大量食用火锅底料。   若购买火锅底料用于家庭消费,建议去正规的超市、商店购买。购买时要看产品的外观、包装是否完整,包装上的制造和经营企业的名称、生产地址、生产日期、净含量、配料表、QS标志、产品标准号等7项内容必须标示完整。这其中,QS是“全国工业生产许可证”的资格,QS后面有12位数字,一个QS号码就对应一个具体的生产企业,因此通过QS号码的查询就可以获得产品和生产企业的基本信息,消费者可以登陆国家质量监督局的官方网站查询真伪。   相关报道   肉丸比肉便宜?小心添加剂过量!   肉丸是火锅配料里的重要角色,然而爽脆、香喷喷的肉丸里,也可能存在用添加剂来冒充肉丸口感和香味的行为。餐饮界资深人士伍先生向记者透露,目前市面普遍存在肉丸、腊肠比猪肉便宜的现状,要做到肉的深加工食品比原料还便宜,当然是添加各种替代品。   价格倒挂不正常   伍先生表示,以潮州牛肉丸为例,牛肉现在要二十几元一斤,如果以传统方法制造牛肉丸,应该卖到三十元以上才是正常的价格。而现在火锅店里的牛肉丸拿货价普遍在十元左右,价格倒挂的背后,就是用添加剂来节省成本。广东省食品学会食品专家范瑞副教授在接受记者采访时指出,肉丸的传统做法,主要材料是肉(猪肉、牛肉、羊肉、鱼肉),肉的肥瘦比例依据不同风味有不同,一般来说“肥三瘦七”。肉丸的配料主要是鸡蛋、淀粉、葱、姜、香油、味精、盐及其他各种风味调料,鸡蛋的作用是调节控制肉丸的水分,尤其是在瘦肉较多的肉丸中可以提高肉丸的柔软度和口感,淀粉的作用主要是提高肉丸的保水性,改善肉丸的口感,使肉丸不会太硬,并有合适的咬口感。其他配料的作用都是调味的作用。目前肉丸已有工业化生产的方法,一般是采用速冻食品的形式,主要的用途是火锅搭配的食品。   出于降低成本的要求,很多肉丸的生产厂家都大量使用替代材料来减少肉的含量。肉的减少会导致肉丸出现两个问题,一是组织上会比较松散,缺少肉的弹性,二是风味上缺少肉的风味和香气。目前替代肉的材料主要是大豆(4513,-24.00,-0.53%)蛋白和淀粉,淀粉使用过多在口感上很容易品尝出来,而使用大豆蛋白,在组织和口感上比较接近肉,但是没有肉所特有、完整的风味,同时其口感上也不能完全达到肉的要求。在潮式牛肉丸等特别要求爽脆度的产品中,传统做法的爽脆度是依靠新鲜的牛肉、减少水(基本不加水)、反复搅拌的特殊工艺来实现,而对于肉很少的肉丸,基本上是达不到这种爽脆的要求。   为爽脆添加违规添加剂   有一些生产者在产品中使用卡拉胶、魔芋胶等海藻胶,这些胶体属于食品添加剂,对于提高肉丸的脆度有一定帮助,但是不能完全替代肉的作用。于是一部分肉丸的生产者为了追求肉的口感和弹性,违规添加硼砂。硼砂可以使肉馅膨胀,产生好的弹性,并且使肉馅的颜色鲜亮。近年来有很多关于沙县小吃中云吞和饺肉中使用硼砂的报道。   范瑞指出,硼砂为硼酸钠的俗称,为白色或无色结晶性粉末,因为毒性较高,世界各国多禁用为食品添加物。硼砂对人体健康的危害性很大,连续摄取会在体内蓄积,妨害消化道的酶的作用,其急性中毒症状为呕吐、腹泻、红斑、循环系统障碍、休克、昏迷等所谓硼酸症。人体若摄入过多的硼,会引发多脏器的蓄积性中毒。   由于减少肉的使用,必然导致肉的香气和口感不足,部分生产者为了补足香气,就会添加一些增香味剂(鲜香膏),这些增香味剂的主要成分是各种肉味香精和味精等鲜味剂。肉味香精在使用上是合法的,但是出于假冒目的而使用香精则是不符合法规的。
  • 标准品和高纯试剂的区别
    标准品,国内和国际上有很多叫法,不同体系的称呼也不同,这里只是遵循国际上常规的称呼,即用RM即Reference Materials作为标准品的统称。在ISO体系中有参考物质(RM)和认证参考物质(CRM)两种计量的标准物质。根据ISO Guide 30规定, 参考物质/标准物质是含有一种或多种特定属性值并且足够均匀和稳定的物质,专用于测量过程,评价测量方法或给材料赋值的材料或物质。认证参考物质的特点是通过可计量的有效程序指定一个或多个属性,并连同一证书,提供指定属性的值,相关的不确定度,以及计量的可追溯性的声明。认证参考物质和参考物质的相同点和不同点主要见下表:标准品是按照ISO 17034:2016《标准物质/标准样品生产者能力认可准则》来指导生产,那么什么是ISO 17034?• ISO 17034是标准物质/标准样品生产者能力认可的国际标准。• 从原材料选择、生产、质量控制、运输和储存到售后实行质量监管。• 生产:原材料选择和纯化,生产计划和控制;• 描述:检测方法、不确定度、溯源性;• 批次稳定性评估;• ISO Guide 34 从2016年11月已经正式更名ISO 17034。试剂规格基本上按纯度(杂质含量的多少)划分,共有高纯、光谱纯、基准、分光纯、优级纯、分析和化学纯等7种。国家和主管部门颁布质量指标的主要优级纯、分级纯和化学纯3种。1.优级纯(GR:Guaranteed reagent),又称一级品或保证试剂,99.8%,这种试剂纯度zui高,杂质含量zui低,适合于重要jing密的分析工作和科学研究工作,使用绿色瓶签。2.分析纯(AR),又称二级试剂,纯度很高,99.7%,略次于优级纯,适合于重要分析及一般研究工作,使用红色瓶签。3.化学纯(CP),又称三级试剂,≥99.5%,纯度与分析纯相差较大,适用于工矿、学校一般分析工作。使用蓝色(深蓝色)瓶签。4.实验试剂(LR:Laboratory reagent),又称四级试剂。纯度远高于优级纯的试剂叫做高纯试剂(≥99.99%)。高纯试剂是在通用试剂基础上发展起来的,它是为了专门的使用目的而用特殊方法生产的纯度zui高的试剂。它的杂质含量要比优级试剂低2个、3个、4个或更多个数量级。因此,高纯试剂特别适用于一些痕量分析,而通常的优级纯试剂就达不到这种jing密分析的要求。除对少数产品制定国家标准外(如高纯硼酸、高纯冰乙酸、高纯氢氟酸等),大部分高纯试剂的质量标准还很不统一,在名称上有高纯、特纯(ExtraPure)、超纯、光谱纯等不同叫法。[1]高纯试剂通常应用于色谱使用的色谱纯试剂、光谱使用的光谱纯试剂,此外,电路、液晶等领域都有各自行业标准的高纯试剂。但是高纯试剂通常不使用在分析纯试剂使用的领域,如配制标准溶液、滴定剂等,高纯的单质例外。也就是说高纯试剂不是一个计量学概念的物质,而标准品是在计量学范畴内的。高纯试剂遵循的生产标准是ISO9001。不同行业使用的高纯试剂有各自的标注方式,通用的标注是用9的数目来表示。例如,纯度为99.999%,含五个九则表示为5N;纯度为99.995%,含四个九一个五,表示为4.5N。高纯试剂不需要确定不确定度,溯源性,主要是对试剂的纯度和杂质的控制,没有计量学的要求,所以标准品的生产在jing准方面,要求会更高。月旭提供的A2S在生产有机标准品方面已经通过ISO9001, ISO Guide 34 (现ISO17034)资质认证,目前可以提供高品质纯品型标准品、单标溶液、混标溶液,并且可以为客户提供混标个性化定制服务,如GB2763、GB23200系列多农残查混标定制,欢迎大家咨询选购!
  • 我国成唯一制造实用深紫外全固态激光器的国家
    由中科院承担的深紫外固态激光源系列前沿装备日前通过验收,我国成为世界上唯一能够制造实用化深紫外全固态激光器的国家。   &ldquo 这是我国自主研发高精尖仪器的一个成功范例。&rdquo 9月6日,由中科院承担的国家重大科研装备研制项目&mdash &mdash &ldquo 深紫外固态激光源前沿装备研制项目&rdquo 通过验收,验收委员会给出了如是评价。   该系列前沿装备中的深紫外非线性光学晶体与器件平台、深紫外全固态激光源平台,以及基于这两个平台研制的8台新型深紫外激光科研装备各项既定目标全面完成,使我国成为世界上唯一能够制造实用化深紫外全固态激光器的国家。   中科院院长白春礼表示,该项目是中科院相关研究所和科学家在长期科研工作积累的基础上,协同攻关、自主创新取得的重要成果,也是中科院近年来&ldquo 致力重大创新突破、服务创新驱动发展&rdquo 的具体体现。   开启深紫外时代   项目从一个晶体开始。   这是一种名为氟硼铍酸钾(KBBF)的晶体。上世纪90年代初,在发现硼酸盐系列非线性光学晶体后,中科院院士陈创天的研究团队经过10余年努力,在国际上首先生长出大尺寸KBBF晶体。   KBBF晶体是目前唯一可直接倍频产生深紫外激光的非线性光学晶体,是在非线性光学晶体研究领域中,继硼酸钡、三硼酸锂晶体后的第三个&ldquo 中国产&rdquo 非线性光学晶体。   深紫外非线性光学晶体问世后,如何将其研制成实用化、精密化激光源,则成为一个棘手的问题。   KBBF晶体是层状结构,难以切割,而要做到深紫外倍频又必须切割。为此,陈创天携手激光技术专家、中国工程院院士许祖彦,开始摸索解决办法。   &ldquo 当时中国大陆还没有这方面的实验装置,我们不得不跑到香港科技大学,借用他们的实验室。&rdquo 许祖彦回忆说,两个人窝在实验室里,每天工作到深夜一两点,终于搞出了KBBF棱镜耦合器件。   该器件在国际上首次实现了1064nm激光的6倍频输出,将全固态激光波长缩短至177.3nm,首次将深紫外激光技术实用化、精密化,并已获中、日、美专利。   之后两人密切配合,在国际上首次实现KBBF晶体倍频输出深紫外激光,并最终发展出实用化的深紫外固态激光源(DUV-DPL)。   从此,中国开启了深紫外的时代。   从激光源到8台装备   DUV-DPL的研制成功,不仅使得我国激光科技研究突破了200nm以内的&ldquo 深紫外壁垒&rdquo ,实现了实用化、精密化,还极大推进了我国科研人员在激光科技研究领域的继续深入。   许祖彦形容自己的工作是&ldquo 二传手&rdquo ,&ldquo 跟上游讨论晶体该长成什么样,向下游询问要什么样的激光&rdquo 。   他花了一年多时间,跑了二三十个实验室,&ldquo 推销&rdquo DUV-DPL。   深紫外波段(指波长短于200nm的光波)科研装备目前主要使用同步辐射和气体放电等非相干光源。相对于同步辐射而言,在体积方面,配有KBBF晶体棱镜耦合器件的全固态激光器体积变得很小 在能量分辨率方面,比同步辐射提高5~10倍以上 在光子流密度方面,提高了3~5个量级。   2007年年底,财政部专门设立&ldquo 深紫外固态激光源前沿装备研制&rdquo 项目,对搭建深紫外非线性晶体和器件研制平台、深紫外固态激光器研发平台,以及研制8台新型DUV-DPL科学仪器,予以专项支持。陈创天、许祖彦担任项目首席科学家。   &ldquo 为使仪器保持领先,科研人员必须不断调整技术方案。为此,总体部还设立了一个工程监理部,这在国内的科研项目中很少见。&rdquo 项目总体部总经理、中科院理化所研究员詹文山说。   这样一来,经常要&ldquo 推倒重来&rdquo 。身为&ldquo 二传手&rdquo 的许祖彦深有体会:在5年多的时间里,满足了仪器研制人员变更技术方案的多项技术要求,解决了光源与8台仪器对接的工程问题。   打造自主创新链   如今,这8台科学仪器已经在石墨烯、高温超导、拓扑绝缘体、宽禁带半导体和催化剂等研究中获得了重要结果。   以深紫外激光光发射电子显微镜(PEEM)为例,目前国际上最先进的光发射电子显微镜空间分辨率最高为20nm,而采用全固态激光器后能提高到3.9nm。中科院大连化物所利用这台仪器开展了石墨烯/Ru(0001)表面插层反应原位观测,为石墨烯等光电子材料发展和应用提供了强有力的研究手段。   詹文山透露,目前2mm以下的KBBF晶体已可小批量生产,满足国内市场需求。8台科学仪器中,PEEM正在逐步进行产业化尝试。   &ldquo 晶体&mdash 光源&mdash 装备&mdash 科研&mdash 产业化,深紫外固态激光源前沿装备研制项目打造了一条自主创新链,涵盖了从提出原创科学思想到实现应用成果这一完整的科学价值链,为学科交叉面广、跨度大、探索性和工程性很强的原创性重大科研装备创新积累了经验,也为中科院各业务管理单元合理分工、深度融合、协力创新提供了典型样本。&rdquo 白春礼评价道。   &ldquo 这仅仅是深紫外波段仪器应用的开始。&rdquo 许祖彦透露,项目二期将从物理、化学、材料拓展到信息、资环、生命等领域,开展6台国际领先水平的仪器设备研制工作,继续推动深紫外技术的深度开发。   同时,在一期任务顺利完成基础上,去年中科院理化所联合北京中科科仪等单位,在科技部支持下启动了深紫外仪器设备产业化开发工作,逐步将研制成功的深紫外仪器设备推向市场。
  • 我国公布首批非食用物质及易滥用食品添加剂名单
    新华网北京12月15日电(记者周婷玉)为配合全国打击违法添加非食用物质和滥用食品添加剂专项整治工作的开展,中国食品专项整治领导小组日前下发通知,公布第一批“食品中可能违法添加的非食用物质和易滥用的食品添加剂品种名单”,其中包括17种非食用物质和10种易滥用的食品添加剂。 17种非食用物质包括:吊白块、苏丹红、王金黄块黄、蛋白精三聚氰胺、硼酸与硼砂、硫氰酸钠、玫瑰红B、美术绿、碱性嫩黄、酸性橙、工业用甲醛、工业用火碱、一氧化碳、硫化钠、工业硫磺、工业染料、罂粟壳。 食品加工过程中易滥用的食品添加剂品种和行为包括:在渍菜(泡菜等)中超量使用着色剂胭脂红、柠檬黄等,或超范围使用诱惑红、日落黄等;水果冻、蛋白冻类食品中超量或超范围使用着色剂、防腐剂,超量使用酸度调节剂(己二酸等);腌菜中超量或超范围使用着色剂、防腐剂、甜味剂(糖精钠、甜蜜素等);面点月饼馅中超量使用乳化剂(蔗糖脂肪酸酯等),或超范围使用(乙酰化单甘脂肪酸酯等);面条、饺子皮的面粉超量使用面粉处理剂;糕点中使用膨松剂过量(硫酸铝钾、硫酸铝铵等),造成铝的残留量超标准,或超量使用水分保持剂磷酸盐类(磷酸钙、焦磷酸二氢二钠等)、增稠剂(黄原胶、黄蜀葵胶等)及甜味剂(糖精钠、甜蜜素等);馒头违法使用漂白剂硫磺熏蒸;油条过量使用膨松剂(硫酸铝钾、硫酸铝铵),造成铝的残留量超标准;肉制品和卤制熟食超量使用护色剂(硝酸盐、亚硝酸盐);小麦粉违规使用二氧化钛、超量使用过氧化苯甲酰、硫酸铝钾等。 通知指出,判定一种物质是否属于非法添加物,根据相关法律、法规、标准的规定,可以参考以下原则:不属于传统上认为是食品原料的;不属于批准使用的新资源食品的;不属于卫生部公布的食药两用或作为普通食品管理物质的;未列入中国食品添加剂的;其他中国法律法规允许使用物质之外的物质。 食品中可能违法添加的非食用物质名单(第一批) 序号 名称 主要成分 可能添加的主要食品类别 可能的主要作用 检测方法 1 吊白块 次硫酸钠甲醛 腐竹、粉丝、面粉、竹笋 增白、保鲜、增加口感、防腐 GB/T 21126-2007 小麦粉与大米粉及其制品中甲醛次硫酸氢钠含量的测定;卫生部《关于印发面粉、油脂中过氧化苯甲酰测定等检验方法的通知》(卫监发〔2001〕159号)附件2 食品中甲醛次硫酸氢钠的测定方法 2 苏丹红 苏丹红I 辣椒粉 着色 GB/T 19681-2005 食品中苏丹红染料的检测方法高效液相色谱法 3 王金黄、块黄 碱性橙II 腐皮 着色 4 蛋白精、三聚氰胺 乳及乳制品 虚高蛋白含量 GB/T 22388-2008 原料乳与乳制品中三聚氰胺检测方法GB/T 22400-2008 原料乳中三聚氰胺快速检测液相色谱法 5 硼酸与硼砂 腐竹、肉丸、凉粉、凉皮、面条、饺子皮 增筋 6 硫氰酸钠 乳及乳制品 保鲜 7 玫瑰红B 罗丹明B 调味品 着色 8 美术绿 铅铬绿 茶叶 着色 9 碱性嫩黄 豆制品 着色 10 酸性橙 卤制熟食 着色 11 工业用甲醛 海参、鱿鱼等干水产品 改善外观和质地 SC/T 3025-2006 水产品中甲醛的测定 12 工业用火碱 海参、鱿鱼等干水产品 改善外观和质地 13 一氧化碳 水产品 改善色泽 14 硫化钠 味精 15 工业硫磺 白砂糖、辣椒、蜜饯、银耳 防腐 20080820 16 工业染料 小米、玉米粉、熟肉制品等 着色 17 罂粟壳 火锅 食品加工过程中易滥用的食品添加剂品种名单(第一批)序号 食品类别 可能易滥用的添加剂品种或行为 检测方法 1 渍菜(泡菜等) 着色剂(胭脂红、柠檬黄等) 超量或超范围(诱惑红、日落黄等)使用。 GB/T 5009.35-2003 食品中合成着色剂的测定GB/T 5009.141-2003 食品中诱惑红的测定 2 水果冻、蛋白冻类 着色剂、防腐剂的超量或超范围使用,酸度调节剂(己二酸等)的超量使用。 3 腌菜 着色剂 、防腐剂、甜味剂(糖精钠、甜蜜素等)超量或超范围使用。 4 面点、月饼 馅中乳化剂的超量使用(蔗糖脂肪酸酯等),或超范围使用(乙酰化单甘脂肪酸酯等);防腐剂,违规使用着色剂超量或超范围使用甜味剂 5 面条、饺子皮 面粉处理剂超量 6 糕点 使用膨松剂过量(硫酸铝钾、硫酸铝铵等),造成铝的残留量超标准;超量使用水分保持剂磷酸盐类(磷酸钙、焦磷酸二氢二钠等);超量使用增稠剂(黄原胶、黄蜀葵胶等);超量使用甜味剂(糖精钠、甜蜜素等) GB/T 5009.182-2003 面制食品中铝的测定 7 馒头 违法使用漂白剂硫磺熏蒸 8 油条 使用膨松剂(硫酸铝钾、硫酸铝铵)过量,造成铝的残留量超标准 9 肉制品和卤制熟食 使用护色剂(硝酸盐、亚硝酸盐),易出现超过使用量和成品中的残留量超过标准问题 GB/T 5009.33-2003 食品中亚硝酸盐、硝酸盐的测定 10 小麦粉 违规使用二氧化钛、超量使用过氧化苯甲酰、硫酸铝钾
  • 化妆品安全技术规范修订和新增高效液相色谱法测化妆品中防腐剂含量等7项检验方法
    日前,国家药品监督管理局组织起草了《化妆品中防腐剂检验方法》《化妆品中硼酸和硼酸盐检验方法》《化妆品中对苯二胺等32种组分检验方法》《化妆品中维甲酸等8种组分检验方法》《体外哺乳动物细胞微核试验》《化妆品祛斑美白功效测试方法》《化妆品防脱发功效测试方法》7项检验方法,并纳入《化妆品安全技术规范(2015年版)》。上述7项检验方法中,前4项为《规范》修订的检验方法,自2021年5月1日起施行,原有检验方法同时废止。后3项检验方法为《规范》新增的检验方法,自发布之日起施行。《化妆品中防腐剂检验方法》规定了高效液相色谱法测定化妆品中甲基异噻唑啉酮等23种组分、吡硫鎓锌等19种组分、己脒定二(羟乙基磺酸)盐等7种组分、聚氨丙基双胍、海克替啶、硼酸苯汞的含量。《化妆品中硼酸和硼酸盐检验方法》规定了离子色谱法测定化妆品中硼酸和硼酸盐的含量。《化妆品中对苯二胺等32种组分检验方法》和《化妆品中维甲酸等8种组分检验方法》均规定使用高效液相色谱法检测相关含量。7项检测方法具体实验参数、仪器及图谱详见附件。7项检验方法.doc
  • 我国分子印迹领域研究取得重要突破
    p   分子印迹是制备具有类似抗体或酶专一性仿生识别材料的重要技术,在生物传感、亲和分离和疾病诊断等领域具有广阔的应用前景。但是,蛋白质等生物分子的普适、高效印迹制备是分子印迹领域中的重要挑战,传统方法难以同时满足不同大小的生物分子的印迹,更无法对印迹过程进行精确控制。 /p p   生命分析化学国家重点实验室(南京大学)刘震教授的研究团队通过长期硼亲和材料的研究,提出硼亲和可控定向表面印迹法。该方法能够便捷高效地制备出糖蛋白、聚糖和单糖的分子印迹聚合物,将模板分子固定到硼酸功能化的基质上,利用生物相容性良好的功能单体在基质表面聚合,形成合适厚度的印迹层以及与模板分子空间匹配的印迹腔。该方法的最大优势在于印迹可控性,可根据模板分子尺寸,调整印迹层厚度,制备出不同尺寸的分子印迹聚合物,通过调节印迹时间可精确控制印迹层厚度。简化了印迹步骤,在疾病诊断、癌细胞靶向识别和活体单细胞分析等重要应用领域中展现出优越的分子识别性能。 /p p   该研究的相关成果已于2017年4月6日发表在《Nature Protocols》学术期刊上。 /p
  • 分析水质中氮含量主要成分是在于几方面
    水中的总氮含量是衡量水质的重要指标之一。其测定有助于评价水体被污染和自净状况。地表水中氮、磷物质超标时,微生物大量繁殖,浮游生物生长旺盛,出现富营养化状态。  目前,国标针对水质中氮的分析主要分总氮、氨氮、硝态氮、凯氏氮4个方面。  1、总氮  总氮是指可溶性及悬浮颗粒中的含氮量(通常测定硝酸盐氮、亚硝酸盐氮、无机铵盐、溶解态氨几大部分有机含氮化合物中氮的总和)。可溶性总氮是指水中可溶性及含可过滤性固体(小于0.45μm颗粒物)的含氮量。总氮是衡量水质的重要指标之一。  总氮的测定方法,一是采用分别测定有机氮和无机氮化合物(氨氮、亚硝酸盐氮、硝酸盐氮)后加和的办法。二是以过硫酸钾氧化,使有机氮和无机氮转变为硝酸盐后,通过离子选择电极法对溶液中的硝酸根离子进行测量,也可以用紫外法或还原为亚硝酸盐后,用偶氮比色法,以及离子色谱法进行测定。  2、氨氮  氨氮是指游离氨(或称非离子氨,NH3)或离子氨(NH4+)形态存在的氨。pH较高,游离氨的比例较高;反之,铵盐的比例高。  氨氮是水体中的营养素,可导致水富营养化现象产生,是水体中的主要耗氧污染物,对鱼类及某些水生生物有毒害。  氨氮对水生物起危害作用的主要是游离氨,其毒性比铵盐大几十倍,并随碱性的增强而增大。氨氮毒性与池水的pH值及水温有密切关系,一般情况,pH值及水温愈高,毒性愈强。  常用来测定氨的两个近似灵敏度的比色方法是经典的纳氏试剂法和苯酚-次氯酸盐法;滴定法和电极法也常用来测定氨;当氨氮含量高时,也可采用蒸馏-滴定法。(国标有纳氏试剂法、水杨酸分光光度法、蒸馏-滴定法)  3、凯氏氮  凯氏氮是以凯氏法测得的的含氮量。它包括氨氮和在此条件下能被转化为铵盐而测定的有机氮化合物。此类有机氮主要指蛋白质、胨、氨基酸、核酸、尿素以及大量合成的,氮为负三价的有机氮化合物。不包括叠氮化合物、联氮、偶氮、腙、硝酸盐、腈、硝基、亚硝基、肟和半卡巴腙类含氮化合物。由于水中一般存在的有机化合物多为前者,因此,在测定凯氏氮和氨氮后,其差值即称之为有机氮。  测定原理是加入硫酸加热消解,使有机物中的胺基以及游离氨和铵盐均转变为硫酸氢铵,消解后的液体,使呈碱性蒸馏出氨,吸收于硼酸溶液,然后以滴定法或光度法测定氨含量。测定凯氏氮或有机氮,主要是为了了解水体受污染状况,尤其在评价湖泊和水库的富营养化时,是个有意义的指标。  4、硝态氮  1).硝酸盐  水中硝酸盐是在有氧条件下,各种形态含氮化合物中稳定的氮化合物,通常用以表示含氮有机物无机化作用最终阶段的分解产物。当水样中仅含有硝酸盐而不存在其他有机或无机的氮化合物时,认为有机氮化合物分解完全。如果水中含有较多量的硝酸盐同时含有其他含氮化合物时,则表示有污染物已经进入水系,水的“自净”作用尚在进行。  硝酸盐氮的测定方法有离子选择电极法、酚二磺酸分光光度法、镉柱还原法、紫外分光光度法、戴氏合金换元法、离子色谱法、紫外法。  其中电极法测量方便,范围宽,而且价格便宜,对水样要求较低;酚二磺酸分光光度法测量范围宽,显色稳定;镉柱还原法适用于水中低含量硝酸盐测定;戴氏合金换元法适用于污染严重并带深色水样;离子色谱法需要专用仪器,但可于其他阴离子联合测定。  2).亚硝酸盐  亚硝酸盐是氮循环的中间产物。亚硝态氮不稳定,可以氧化成硝酸盐氮,也可以还原成氨氮。因此,在测定其含量的同时,并了解水中硝酸盐和氨的含量,则可以判断水系被含氮化合物污染的程度及自净情况。  水中亚硝酸盐的测定方法通常采用重氮-偶联反应,使生成红紫色染料。该方法灵敏度高、检出限低、选择性强。重氮试剂选用对氨基苯磺酰胺和对氨基苯磺酸,偶联试剂为N-(1-萘基)-乙二胺和α-萘胺(有毒),N-(1-萘基)-乙二胺用得较多。  亚硝酸盐氮的测定方法有N-(1-萘基)-乙二胺分光光度法、萃取分光光度法、离子色谱法、气相色谱法等。(国标采用N-(1-萘基)-乙二胺分光光度法、气相色谱法等)
  • 食品添加剂被妖魔化?专家:都是“非法添加”惹的祸
    人民网北京12月21日电 (记者 申亚欣)“乳酸、瓜尔胶、阿斯巴甜……一盒乳制品里就有8种添加剂,饼干、火腿肠、巧克力……一天吃的各种食物加起来竟有54种添加剂”。近日,面粉增白剂的存废之争、“化学火锅”的惊心内幕,让许多网友对自己所吃的日常食物产生担忧,食品添加剂也被扣上了威胁食品安全的帽子。   江苏大学食品与生物工程学院研究员孙文敬今日在接受本网记者采访时表示,合理合法地使用食品添加剂不会对身体造成伤害,黑心商家非法滥用的化学添加物才是罪魁祸首,监管部门对此加强执法力度、加大惩罚措施刻不容缓。   合理添加无害健康 不是“食品添加剂”的错   到底什么是食品添加剂?孙文敬表示,2009年6月1日起施行的《食品安全法》第十章第九十九条对此作出了明确定义,食品添加剂即指为改善食品品质和色、香、味以及为防腐、保鲜和加工工艺的需要而加入食品中的人工合成或者天然物质。   食品添加剂是否会对身体造成危害呢?孙文敬说,只要企业合理合法地使用食品添加剂,就不会对身体造成伤害,一种物质能否添加到食品中是经过长时间“毒理学实验”得出的,如果严格按照GB2760《食品添加剂使用卫生标准》使用食品添加剂,不必担心其可能造成的危害。   “食品添加剂”替“化学添加物”背黑锅?   孙文敬表示,引起消费者恐慌的添加剂事件,大都是由于人为不当、违规使用化学添加物所引起的。目前被媒体报道“化学火锅”里添加的各种非食品添加剂都是违法的,没有安全保障的,应该由监管部门坚决查禁。   “‘食品添加剂’与‘化学添加物’是两个不同的概念,食品添加剂是经过长期试验证明在规定范围内可以安全食用的,是在GB2760规定有明确规定的 除此之外,企业添加的其他化学物质都属于不合法的添加物,例如三聚氰胺等,准确的讲应称为‘化学添加物’而非食品添加剂。”   在食品行业有这样一句话:“没有食品添加剂,就没有现代化的食品工业”。孙文敬指出,市场上不用食品添加剂的加工食品几乎没有,如果食品添加剂被全部禁止,那么超市货架上大部分的商品都得下架。事实上,食品添加剂在食品制造和加工中必不可少,不能将食品添加剂等同于有毒有害物质。   仅为美观何须添加 面粉增白剂被禁有理   在面粉增白剂是否应该禁止的争论中,原商业部粮油工业局局长王瑞元的态度是“在有生之年如果看不到禁用,死不瞑目”,而中国食品添加剂标准化技术委员会主任、中国工程院院士陈君石坚称“增白剂是无害的”,并有中外科学家的实验支撑。   一石激起千层浪,诸多网友对此展开讨论,将焦点聚集到了食品添加剂的安全问题上。卫生部监督局网站近日发布征求意见公告稿,拟从明年12月起禁用面粉增白剂。   孙文敬解读说,面粉增白剂实际上就是过氧化苯甲酰,这种物质在西兰花等蔬菜中都有一定量的天然存在。在欧洲面粉增白剂是被禁止使用的,而在美国是允许添加的。我国很少有被批准使用的食品添加剂是国外所完全不允许使用的。   虽然没有明确依据证明有害身体健康,但是由于存在争议,并鉴于这种添加剂对面粉本身的营养价值没有贡献,其作用仅是在于增加面粉的美观度,一些企业在生产过程中的使用量难以监管,因此,禁止使用这一添加剂是合理的。   食品安全岂能监管缺位 专家呼吁加大惩罚力度   孙文敬在接受本网采访时,呼吁相关企业应加强自我约束,合理合法地使用食品添加剂,而监管部门需应加大监管力度,对涉嫌非法使用的添加物的企业予以严厉处罚。   同时,中国农业大学食品学院教授何计国在接受媒体采访时表示,当前食品真正出问题往往是出在非法添加物,即不在GB2760规定目录的非食品添加剂,比如苏丹红、吊白块、三聚氰胺等,滥用主要有两种情况,一种是超过规定使用量,一种是超过了使用范围。   中国农业大学的另外一位食品安全学教授也坦言,食品添加剂在使用过程中是否过量难以监管,如果偏爱某一种恰巧超标的食物,毒素长期蓄积则有可能致癌。由于消费者很难直观地判断是否存在滥用食品添加剂,因此,监管部门加强执法力度、加大惩罚措施刻不容缓。   相关知识:几种常用见的非法化学添加物   在恶性竞争下,黑心企业使用低价非法添加物的事件时有发生,在卫生部首批曝光非法添加物黑名单中,以下几种常见化学添加物专家指出应格外引起注意:  吊白块:可能添加的主要食品类别有腐竹、粉丝、面粉、竹笋,主要作用是增白、保鲜、增加口感、防腐,主要危害表现在,吊白块进入人体后,对细胞有原浆毒作用,可能对机体的某些酶系统有损害,从而造成中毒者肺、肝、肾系统的损害 中毒以呼吸系统及消化道损伤为主要特征 人经口摄入纯吊白块10g就会中毒致死,吊白块也是致癌物质之一。   苏丹红: 可能添加的主要食品类别有辣椒粉,主要作用是着色,主要危害表现在,国际癌症研究机构将苏丹红Ⅳ号列为三类致癌物,其初级代谢产物邻氨基偶氮甲苯和邻甲基苯胺均列为二类致癌物,对人可能致癌。   三聚氰胺:可能添加的主要食品类别有乳及乳制品,主要作用是在奶粉、蛋白粉等食品或饲料中添加三聚氰胺可以在检测中造成蛋白质含量达标假象,主要危害表现在,大量摄入会损害人体和动物的生殖、泌尿系统,产生肾、膀胱结石,并可能导致肾功能衰竭。   硼酸与硼砂: 可能添加的主要食品类别有腐竹、肉丸、凉粉、凉皮、面条、饺子皮,主要作用是增筋,主要危害表现在,过多食入硼酸或硼砂可引起中毒,少量长期食入对肾脏有损害。   工业用甲醛:可能添加的主要食品类别有海参、鱿鱼等干水产品,主要作用是改善外观和质地,主要危害表现在,人体摄入后,会破坏人体的新陈代谢功能,损坏中枢神经系统,可导致口腔、咽喉、食道和胃肠灼痛,伴有呕吐、腹泻等症状,还会损害肝、肾功能。
  • 欧盟更新用于食品塑料接触材料的添加剂清单
    欧盟委员会近期发布了一份用于食品塑料接触材料及物品的添加剂临时清单更新版本(请见:http://ec.europa.eu/food/food/chemicalsafety/foodcontact/docs/080410_provisional_list_7_211009.pdf)。本次用于食品塑料接触材料及物品的添加剂临时清单包含2006年12月31日有效申请中涉及的添加剂。这些添加剂尚未得到欧共体授权。   自2010年1月1日起,2002/72/EC指令规定用于食品塑料接触材料及物品的添加剂清单将明确排除其他一切非清单列出的添加剂。这份临时清单上的物质可根据各国立法在2010年1月1日以后继续使用,直到临时清单做出其他扩充或缩减的更改决定。   该清单包括动物及蔬菜油脂和脂肪中的酸性物质、油脂(C8-C22),直链类,单羟基、初级的饱和脂肪族醇(C3-C22),(丙烯酸丁酯、甲基丙烯酸甲酯、甲基丙烯酸丁酯)共聚物,银含量低于0.5%的含银玻璃(银-镁-铝-钠-磷酸盐-硅酸盐-硼酸盐)等物质。指令对过渡期做出指示:2010年11月1日前含2,4,4’-三氯-2’ 联羟基联苯乙醚的塑料材料及物品生产制造和市场投放,可按各国立法持续到2011年11月1日。   清单上的物质并非必须经由EFSA评估。有关安全评估状态的详细信息,请查询EFSA官方网站www.efsa.europa.eu。这些添加剂皆由各成员国规定。有关添加剂的合法验证信息,请咨询各成员国主管机构。相关评议意见请见:http://www.efsa.europa.eu/EFSA/efsa_locale-1178620753812_ScientificDocuments.htm
  • 基于微液滴可裂解标签的解吸电喷雾电离质谱成像表征功能生物大分子
    近日,斯坦福大学化学系Richard N.Zare教授课题组在Angewandte Chemie上发表了题为“Immuno-Desorption Electrospray Ionization Mass Spectrometry Imaging Identifies Functional Macromolecules by Using Microdroplet-Cleavable Mass Tags”的研究论文。  解吸电喷雾电离质谱成像 (DESI-MSI) 是在常压敞开式环境下,利用电喷雾液滴对生物组织成分软电离,并将其引入质谱进行检测与可视化的一种分析技术。自DESI-MSI技术发展至今,已广泛应用于体内药物分析、临床分子诊断、空间代谢组学等生物医药研究领域,其可检测分子主要涵盖有机合成药物、内源性代谢物和脂质等分子量低于1000的小分子化合物。  靶点研究是药物研发的重中之重,包括在疾病发生发展进程中起关键调控作用的酶、受体、转运体、离子通道等生物大分子。这些药物靶点是参与信号通路及代谢通路调控等功能的重要执行者,且与药物治疗或毒副作用有直接关联。阐明药物干预下靶点及其信号通路分子在体内分布与变化,对预测候选药物的分子靶向性、评价药效与毒性、深入理解药物作用分子机制等至关重要。然而由于上述功能生物大分子的超高分子量、低丰度和低电离效率,直接对组织样本进行蛋白质成像目前仍然是对DESI-MSI的一大挑战。  基于免疫识别与分子标签的成像策略为DESI-MSI实现生物大分子的检测提供了一种切实可行的思路。标签分子及其裂解方式的设计是其中的核心技术问题。根据已知的微液滴化学研究报道,DESI在正模式高压电下产生的微米级水相液滴,在其气-液界面富含高浓度的质子,因此可以加速酸催化有机反应的进程。本研究设计合成了一系列苯硼酸类标签分子,在碱性条件下,将其与抗体非识别区人工修饰侧链上的半乳糖胺通过苯硼酸酯键共价结合。利用酸性电喷雾溶剂可在微秒时间内快速将苯硼酸酯键断裂的特性,实现了标签分子的在线原位释放,使得DESI-MSI 在单张组织切片上定位多个不同的功能生物大分子成为可能,实现了基于DESI质谱成像的多重免疫组化检测,本研究将这种方法被命名为“immuno-DESI-MSI”。  苯硼酸类标签分子硼元素的引入,不仅实现了pH调控的可逆结合/释放,还使标签分子离子在质谱中具有可辨识的独特同位素分布模式(M+1基峰)。标签分子含有叔胺及季胺基团,因此具有极高的解吸电离效率,此外,标签分子中具有高度共轭的刚性平面结构,因此具有荧光发射特性,使得合成的标签分子-抗体探针,具有组织微区域可分辨的质谱成像和细胞分辨的荧光显微成像双重功能。通过常规DESI-MSI与immuno-DESI-MSI图像配准,即可关联药物、靶点、信号通路、酶以及下游代谢通路多个层次的空间关联信息。作为概念验证,本研究最后选取拉帕替尼为受试药物,探究了其对于药物靶点EGFR及其信号通路相关分子的抑制作用以及下游代谢层面的影响。  图1. 设计的标签分子及探针结构和immuno-DESI-MSI的一般工作流程  图 2. 免疫荧光显微镜成像 和 immuno-DESI-MSI 的交叉验证  图3. EGFR通路中6个大分子的immuno-DESI-MSI图像及其与抗EGFR药物拉帕替尼的空间相关性分析  图 4. 由immuno-DESI-MSI 获得的药物、靶点、信号通路和代谢组信息用于药物作用分子机制分析  作者简介  本研究的通讯作者为斯坦福大学化学系理查德杰尔(Richard N.Zare)教授,国际知名物理化学和分析化学家,中国科学院外籍院士,美国国家科学院院士,美国艺术与科学院院士,英国皇家学会外籍院士,欧洲科学院院士,瑞典皇家工程科学院外籍院士,发展中国家科学院院士。主要研究方向包括激光化学、微液滴化学、质谱分析等,目前重点聚焦于微液滴化学的理化性质与基础理论研究,以及微液滴在材料、合成、催化、生物医学诊断等领域的应用。本研究的第一作者宋肖炜,2017年毕业于中国医学科学院/北京协和医学院药物研究所,师从再帕尔教授,获药物分析学博士学位,研究方向为定量质谱成像分析方法及其在药物研发中的应用。2017年9月-2022年6月在复旦大学化学流动站开展博士后工作,期间于2020年1月起在斯坦福大学交流访问和继续博士后工作,主要方向为微液滴化学与常压原位电离质谱分析新方法研究。在PNAS、J. Am. Chem. Soc.、Angewandte、Anal. Chem.、EBiomedicine等综合性期刊、化学、分析化学、质谱分析或生物医学类期刊以第一作者及通讯作者发表论文18篇,申请国家专利6项,主持国家自然科学基金青年基金项目1项、中国博士后基金面上项目1项。  原文链接:https://onlinelibrary.wiley.com/doi/abs/10.1002/anie.202216969
  • 国务院关税税则委员会公布对美加征关税商品第四次排除延期清单
    5月17日,财政部官方网站公布对美加征关税商品第四次排除延期清单,将对《国务院关税税则委员会关于第二批对美加征关税商品第二次排除清单的公告》(税委会公告〔2020〕4号)中的79项商品延长排除期限,商品包括1,3-丙二醇、乙二腈、山梨醇等多种有机试剂。对美加征关税商品第四次排除延期清单序号 EX①税则号列② 商品名称125070010高岭土225120010硅藻土325199091化学纯氧化镁425262020已破碎或已研粉的天然滑石525309020稀土金属矿626161000银矿砂及其精矿7ex26169000黄金矿砂8ex28046190其他含硅量>99.9999999%的多晶硅(太阳能级多晶硅、多晶硅废碎料除外)928100020硼酸1028181090其他人造刚玉1128401100无水四硼酸钠1228401900其他四硼酸钠13ex28439000贵金属汞齐14ex28439000其他贵金属化合物(不论是否已有化学定义),氯化钯、铂化合物除外15ex28444090其他放射性元素、同位素及其化合物(子目2844.10、2844.20、2844.30以外的放射性元素,同位素),含这些元素、同位素及其化合物的合金、分散体(包括金属陶瓷)、陶瓷产品及混合物。以下除外:铀-233及其化合物(包括呈金属、合金、化合物或浓缩物形态的各种材料);氚、氚化物和氚的混合物,以及含有上述任何一种物质的产品[氚-氢原子比1‰的,不包括含氚(任何形态)量3GBq的产品];氦-3(3He)、含有氦-3的混合物(不包括氦-3的含量税目2844以外的其他同位素及其化合物1728500012氮化硼1829032990其他无环烃的不饱和氯化衍生物序号 EX①税则号列② 商品名称1929033990其他无环烃的氟化、溴化或碘化衍生物2029051990其他饱和一元醇21ex290539901,3-丙二醇2229054400山梨醇23ex29159000其他饱和无环一元羧酸及其酸酐[(酰卤、过氧)化物,过氧酸及其卤化、硝化、磺化、亚硝化衍生物],茅草枯、抑草蓬、四氟丙酸和氟乙酸钠除外2429182900其他含酚基但不含其他含氧基羧酸及其酸酐等衍生物25ex29269090己二腈26ex29319000硫酸三乙基锡,二丁基氧化锡等(包括氧化二丁基锡,乙酸三乙基锡,三乙基乙酸锡)2729333100吡啶及其盐28ex29336990西玛津、莠去津、扑灭津、草达津等(包括特丁津、氰草津、环丙津、甘扑津、甘草津)2929371210重组人胰岛素及其盐3038030000妥尔油31ex38089400医用消毒剂3238112100含有石油或从沥青矿物提取的油类的润滑油添加剂3338180019经掺杂用于电子工业的,已切成圆片等形状,直径>15.24cm的单晶硅片3438180090其他经掺杂用于电子工业的化学元素,已切成圆片等形状;经掺杂用于电子工业的化合物355603129025g<每平米≤70g其他化纤长丝无纺织物365603131070g<每平米≤150g浸渍化纤长丝无纺织物375603139070g<每平米≤150g其他化纤长丝无纺织物38ex59119000半导体晶圆制造用自粘式圆形抛光垫3968042110粘聚合成或天然金刚石制的砂轮4068042190粘聚合成或天然金刚石制的其他石磨、石碾及类似品序号 EX①税则号列② 商品名称4168151000非电气用的石墨或其他碳精制品4269091100实验室、化学或其他技术用陶瓷器4369091200莫氏硬度为9或以上的实验室、化学或其他技术用品4470071110航空航天器及船舶用钢化安全玻璃4573181510抗拉强度在800兆帕及以上的螺钉及螺栓,不论是否带有螺母或垫圈4674101100无衬背的精炼铜箔4774101210无衬背的白铜或德银铜箔4874102110印刷电路用覆铜板4975052200镍合金丝5075062000镍合金板、片、带、箔5175071200镍合金管5276082010外径不超过10厘米的铝合金管5381089040钛管5485013100输出功率不超过750瓦的直流电动机、发电机5585015200输出功率超过750瓦,但不超过75千瓦的多相交流电动机5685044014功率小于1千瓦,精度低于万分之一的直流稳压电源5785044091具有变流功能的半导体模块(静止式变流器)5885052000电磁联轴节、离合器及制动器5985073000镍镉蓄电池6085112010机车、航空器及船舶用点火磁电机、永磁直流发电机、磁飞轮6185113010机车、航空器及船舶用分电器及点火线圈62ex85143000电弧重熔炉、电弧熔炉和电弧融化铸造炉(容量1000-20000立方厘米,使用自耗电极,工作温度1700℃以上)序号 EX①税则号列② 商品名称6385168000加热电阻器6485177060光通信设备的激光收发模块6585258011特种用途的电视摄像机6685258021特种用途的数字照相机6785261010导航用雷达设备68ex85261090飞机机载雷达(包括气象雷达,地形雷达和空中交通管制应答系统)6985291010雷达及无线电导航设备用天线或天线反射器及其零件7085299050雷达设备及无线电导航设备用的其他零件7185371011用于电压不超过1000伏线路的可编程序控制器72ex85371090数字控制器(专用于编号84798999.59电动式振动试验系统)7385392120火车、航空器及船舶用卤钨灯7485392190其他卤钨灯7585394900紫外线灯管或红外线灯泡7685407910调速管77ex85437099飞行数据记录器、报告器7885439021输出信号频率小于1500兆赫兹的通用信号发生器用零件79ex85489000非电磁干扰滤波器注:①ex表示排除商品在该税则号列范围内,以具体商品描述为准。 ②为《中华人民共和国进出口税则(2021)》的税则号列。附件:P020210517559333286903.pdf
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制