当前位置: 仪器信息网 > 行业主题 > >

左氧氟单酯

仪器信息网左氧氟单酯专题为您提供2024年最新左氧氟单酯价格报价、厂家品牌的相关信息, 包括左氧氟单酯参数、型号等,不管是国产,还是进口品牌的左氧氟单酯您都可以在这里找到。 除此之外,仪器信息网还免费为您整合左氧氟单酯相关的耗材配件、试剂标物,还有左氧氟单酯相关的最新资讯、资料,以及左氧氟单酯相关的解决方案。

左氧氟单酯相关的资讯

  • 左氧氟沙星滴眼液中抑菌剂的含量测定
    左氧氟沙星滴眼液为微黄色至淡黄色或淡黄绿色的澄明液体。适用于葡萄球菌属、链球菌属、肺炎球菌、细球菌属、肠球菌属等所引起的眼睑炎、睑腺炎、泪囊炎、结膜炎、睑板腺炎、角膜炎等眼部疾病。为防止滴眼液在使用和保存过程中被微生物污染,往往会添加适量的抑菌剂,因此,抑菌剂的合理使用和质量控制已成为保障滴眼液安全性、有效性的关键问题之一。月旭科技为大家带来左氧氟沙星滴眼液中抑菌剂的含量测定方案。色谱条件色谱柱:月旭Xtimate® C18(4.6×250mm,5μm)。流动相:水相(每1000mL水中加入三乙胺4mL和磷酸7mL):乙腈=35:65;检测波长:214nm;柱温:30℃;流速:1.0mL/min;进样量:20μL。谱图和数据1. 空白溶剂2. 苯扎溴铵对照品溶液3. 供试品溶液满量程图局部放大图结论使用月旭Xtimate® C18(4.6×250mm,5μm)色谱柱,在此色谱条件下,可以满足检测要求。产品信息
  • 常见滴眼液-左氧氟沙星滴眼液抑菌剂测定
    左氧氟沙星滴眼液抑菌剂的含量测定#左氧氟沙星滴眼液简介左氧氟沙星滴眼液是抗生素药物,属于处方药。其主要成分为氧氟沙星的左旋体,抗菌活性约为氧氟沙星的两倍,通过抑制细菌DNA旋转酶(细菌拓扑异构酶耳)的活性,阻碍细菌DNA的复制而达到抗菌作用。左氧氟沙星具有抗菌谱广,抗菌作用强的特点,对大多数肠杆菌科细菌,如大肠埃希菌、克雷伯菌属、沙雷氏菌属、彩杆菌属、志贺菌属、沙门氏菌属、枸橼酸杆菌、不动杆菌属以及铜绿假单胞菌、流感嗜血杆菌、淋病菌等革兰阴性菌有较强的抗菌活性。左氧氟沙星的滴眼液,用于治疗敏感菌导致的眼脸炎、睑腺炎、泪囊炎、结膜炎、睑板腺炎、角膜炎以及用于眼科围手术期的无菌化疗法。# 色谱条件仪器:WiSys 5000;色谱柱:月旭Xtimate® C18 (4.6×250mm,5μm)。流动相:三乙胺磷酸溶液(每1000mL水中加入三乙胺4mL和磷酸7mL)/乙腈=35/65;检测波长:214nm;柱温:30 ℃;流速:1.0mL/min;进样量:20μL;参考方法:中国药典2020版第二部-左氧氟沙星滴眼液。#谱图和数据‍总结使用月旭Xtimate® C18 (4.6×250mm,5μm)色谱柱可以药典要求下满足左氧氟沙星滴眼液抑菌剂的含量测定要求。订货信息‍
  • 品类先锋|做科学仪器单品类领头羊!
    在科学仪器行业竞争日益激烈的现状下,大而全的巨头仪器公司为数不多,不是所有公司都能轻松驾驭这种大而全的经营模式。在此环境下,更多仪器公司另辟蹊径,采取品牌差异化竞争策略,深耕细分市场,集中精力在一条最擅长的赛道上与同行竞跑,最终也能成为细分市场中的佼佼者。想要在一个细分垂直领域占据主流品牌地位,除了需产品技术过硬、拥有核心特点外,还需要通过有效的市场营销手段引爆单品类品牌,在众多竞争对手中脱颖而出,从而把品牌刻印在该品类上,成为用户采购该类仪器时的首选品牌!为帮助仪器企业快速地在广大用户心中树立单品类的行业标杆形象,让用户真正实现采购仪器降本增效。2017年,仪器信息网已顺势推出【品类先锋】服务,凭借在行业内的强大影响力,以及对用户需求的深刻理解上,全面整合优质的线上、线下宣传资源,立体打造“流量优先、商机优先、品牌优先“三大核心优势。立志长期耕耘中国科学仪器行业,愿与仪器信息网携手共赢的企业中,只有在涉及仪器单品类中市场占有率进口前3或国产前3的仪器厂商,才有资格成为仪器信息网【品类先锋】,且单品类最多推荐3家品类先锋企业。【品类先锋】服务推出以来,已有几十家优秀企业成为了仪器信息网的【品类先锋】,涉及了近70个品类。据仪器信息网站内数据统计,同品类产品中,先锋产品的平均流量约占整体品类产品总流量的15-20%,占据流量优势。95%以上的仪器用户如上海大学尤静林教授、北矿检测技术有限公司检测部主任汤淑芳等表示,对品类先锋企业和产品非常满意,后续会与先锋企业深度合作,并会推荐给同行使用。仪器行业大买家华测检测也分别与先锋企业:上海仪电、青岛普仁、青岛盛瀚等8家仪器厂商签约仪器试用协议。整体而言,品类先锋企业及仪器得到了大部分仪器用户高度的认可和支持,获得了单品类的品牌美誉度与传播度,建立了良好的用户口碑。 仪器信息网【品类先锋】服务整合站内PC+WAP+APP三端、线上线下优质资源为品类先锋企业提供以下服务:一、流量优先--覆盖用户查找仪器最主要途径,以超高性价比获得流量入口!整合用户找仪器的主要途径,将品类先锋厂商的品牌LOGO、主打产品进行突出显示。帮助厂商以超高性价比获得流量入口,迅速抢占同品类仪器中的品牌曝光率,领先竞争对手获得用户关注!二、商机优先--商机优先推荐,有效提升询盘量,为用户快速匹配优质产品!作为仪器行业最有价值的仪器导购平台,仪器信息网工作日平均每23s产生一个销售线索,全年涉及采购金额400亿元,成交金额60亿元,在海量商机中,为品类先锋打造专属商机。2020年,仪器信息网全新推出一系列采购节活动,帮助用户线上甄选高性价比产品,品类先锋可优先参加,并向用户优先推荐品类先锋产品,从而有效提升品类先锋询盘量。3、 品牌优先--强大的媒体背书效应,提升品牌辨识度!仪器信息网专注服务科学仪器行业二十余载,系业内首家上市媒体,在业内享有良好口碑。仪器信息网将为品类先锋提供专业的策划,从媒体报道、典型用户采访、优先参加线上线下相关活动、优先入围相关评奖活动、特殊标识等多重维度,增加品牌曝光率,帮助企业树立单品类的领头羊形象! 在当今产品同质化、竞争手段同质化的背景下,以品类为导向发展品牌和营销,更容易在激烈的市场竞争中制胜。随着科学仪器行业的发展,行业用户对仪器要求越来越严格,采购需求呈现多样化,需要仪器厂商在细分领域持续深耕细作,不断推陈出新,满足更多用户最新的需求。仪器信息网【品类先锋】也将不断升级优化服务内容,帮助科学仪器企业打造单品类的仪器领头羊形象,帮助用户快速选购优质的靠谱仪器,为中国科学仪器行业的发展不遗余力地贡献自己的力量!仪器信息网2020年【品类先锋】厂商名录(排名不分先后)先锋企业先锋品类安捷伦科技(中国)有限公司ICP-AES/ICP-OESICP-MS电感耦合等离子体质谱赛默飞色谱与质谱液相色谱(LC)赛默飞世尔科技分子光谱红外光谱(IR、傅立叶)赛默飞世尔环境与过程空气检测仪(CO、SO2、HCL、NOX)PM2.5/PM10/PM1/TSP大气颗粒物监测仪烟气监测(CEMS)/烟气分析仪大龙兴创实验仪器(北京)股份公司移液器、移液枪贝士德仪器科技(北京)有限公司比表面及孔径分析仪理化联科(北京)仪器科技有限公司比表面及孔径分析仪上海三信仪表厂浊度计、浊度仪北京吉天仪器有限公司原子荧光光谱仪(AFS)美谷分子仪器(上海)有限公司酶标仪高内涵细胞成像分析系统奥普乐科技集团(成都)有限公司顶空进样器北京海光仪器有限公司原子荧光光谱仪(AFS)上海禾工科学仪器有限公司自动电位滴定仪大连依利特分析仪器有限公司液相色谱(LC)日本电子株式会社(JEOL)透射电子显微镜(透射电镜、TEM)扫描电镜(SEM)上海北裕分析仪器股份有限公司气相分子吸收光谱仪(GMA)上海仪电科学仪器股份有限公司(原上海精科雷磁)PH计、酸度计仪真分析仪器有限公司二噁英采样仪/二噁英采样器固相萃取仪、固相萃取装置X荧光光谱、XRF(波长色散型X荧光光谱仪)测汞仪硫氮分析仪上海舜宇恒平科学仪器有限公司气质联用(GC-MS)上海光谱仪器有限公司原子吸收光谱(AAS)SCIEX中国液质联用(LC-MS)培安有限公司微波消解仪北京东西分析仪器有限公司原子吸收光谱(AAS)丹东百特仪器有限公司激光粒度仪HORIBA 科学仪器事业部分子荧光光谱激光拉曼光谱(RAMAN)激光粒度仪、纳米粒度仪北京宝德仪器有限公司流动分析仪/流动注射分析仪(FIA SFA CFA)连华科技BOD测定仪/BOD快速测定仪COD测定仪/COD快速测定仪水质分析仪/多参数水质分析仪总磷测定仪/总氮测定仪/总磷总氮测定仪氨氮测定仪/氨氮分析仪毕克气体仪器贸易(上海)有限公司氮气发生器艾卡(广州)仪器设备有限公司 (IKA 中国)水浴、油浴、恒温槽布鲁克(北京)科技有限公司核磁共振(NMR)艾力蒙塔贸易(上海)有限公司TOC分析仪/总有机碳分析仪中国格哈特定氮仪、凯氏定氮仪、Dumas定氮仪上海乐枫生物科技有限公司纯水器、超纯水器、纯水机、超纯水机天津语瓶仪器技术有限公司洗瓶机/清洗机四川杜伯特科技有限公司废水废气处理北京格瑞德曼仪器设备有限公司研磨机、研磨仪、粉碎机、球磨机北京精微高博科学技术有限公司比表面及孔径分析仪北京飞驰科学仪器有限公司研磨机、研磨仪、粉碎机、球磨机北京中仪宇盛科技有限公司吹扫捕集装置热解析仪、热解吸仪、热脱附仪青岛盛瀚色谱技术有限公司离子色谱(IC)凯恩孚科技(上海)有限公司真空泵Park帕克原子力显微镜扫描探针显微镜SPM(原子力显微镜AFM、扫描隧道显微镜STM)上海元析仪器有限公司紫外、紫外分光光度计、紫外可见分光光度计、UV珠海欧美克仪器有限公司激光粒度仪青岛普仁仪器有限公司离子色谱(IC)青岛明华电子仪器有限公司烟气监测(CEMS)/烟气分析仪麦克默瑞提克(上海)仪器有限公司比表面及孔径分析仪扫码查看更多品类先锋!
  • 环保部副部长会见岛津制作所社长
    7月29日,环境保护部副部长张力军在京会见了来访的日本岛津制作所社长中本晃一行,双方就共同关心的中国环保工作和环境监测基本情况交换了意见。   张力军首先介绍了中国“十一五”期间环境保护工作取得的进展和“十二五”期间面临的新形势。张力军说,“十一五”期间,中国二氧化硫、化学需氧量排放量分别比2005年下降14.29%和12.45%,完成了10%的减排约束性指标,环境质量明显改善。但是,随着工业化、城市化的加速发展和新增排放量的持续增加,中国的环境问题将变得更为复杂。对于“十二五”期间将面临的环保新形势,张力军说,要在科学发展的基础上,坚持转变经济发展方式这条主线,继续加大环境保护工作力度,努力推进环境改善。   随后张力军介绍了中国环境监测事业面临的机遇。张力军说,在“十二五”期间,中国将着重开展氨氮和氮氧化物在线监测、重金属污染监测、流域断面监测、可持续有机污染物监测。我们欢迎岛津制作所能够与中国环境监测机构进一步加强合作,推出更多性能优越、性价比高的环境监测仪器,提供更多、更好的服务,促进双方的共同发展。   中本晃对中国环境保护部在“十一五”期间取得的突出成绩充满敬意,他表示,“十二五”期间,将继续积极配合中国环境保护部门开展工作,在重金属污染、可持续有机污染物、大气在线监测等方面,提供监测产品,为中国环境保护事业发展做出更多努力。
  • 看财富500强榜单制药企业各争“风云” IVD两大巨头稳坐其中
    p style=" text-align: justify text-indent: 2em " span style=" font-family: 楷体, 楷体_GB2312, SimKai " 北京时间2019年7月22日,《财富》发布了2019年世界500强排行榜。此次从数量上看,世界最大的500家企业中,有129家来自中国,历史上首次超过美国(121家)。这是一个历史性的变化。 /span /p p style=" text-align: justify text-indent: 2em " span style=" color: rgb(192, 0, 0) " strong 在制药企业方面 /strong /span ,中国有两家公司入围,分别是中国华润有限公司(排名第80位,较2018年提升了6个名次)以及中国医药集团(排名第194,较2018年提升了25个名次)。小编特别整理了制药、医疗、健康相关的入围企业榜单供广大网友查阅。完整名单详见仪器信息网相关资讯: a href=" https://www.instrument.com.cn/news/20190723/489556.shtml" target=" _blank" span style=" color: rgb(0, 112, 192) " i span style=" text-decoration: underline " 《财富》2019年世界500强排行榜完整榜单公布 /span /i /span /a /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201907/uepic/ec6395bf-f5cd-42b7-afca-a830b6f79012.jpg" title=" 世界500强制药企业.jpg" alt=" 世界500强制药企业.jpg" / /p p style=" text-align: justify text-indent: 2em " 通过榜单我们可以知道,上榜的美国和世界其它国家大公司中有一批与 span style=" color: rgb(0, 112, 192) " 生命健康、医疗、保健 /span 等有关的产业,但几乎看不到中国公司的身影。虽然上榜的两家中国公司的排名皆超越了不少跨国制药企业,但在利润方面,与其他公司还有一定差距。 /p p style=" text-align: justify text-indent: 2em " strong 华润医药集团有限公司 /strong strong (China Resources Pharmaceutical Group Limited) /strong 是以药品研发、制造、分销为一体的企业集团, 是华润(集团)有限公司旗下七大核心战略业务单元之一。2018年,华润实现营业收入919.86亿美元,同比增长11.9%;实现利润34.75亿美元,同比增长10.2%。但值得注意的是,华润的业务并不仅仅局限于医药行业,公司横跨大消费、大健康、城市建设与运营、能源服务、科技与金融。公司旗下的制药板块主要是华润医药,据华润官网显示,华润医药全年营收超1800亿港元。 /p p style=" text-align: justify text-indent: 2em " strong 中国医药集团(SINOPHARM) /strong 已构建了集研发、制造、物流分销、零售连锁、医疗健康、工程技术服务、专业会展、国际经营、金融服务等为一体的大健康全产业链,旗下1100余家子公司和国药控股、国药股份、国药一致、天坛生物、现代制药、中国中药6家上市公司。2018年,中国医药实现营业收入599.80亿美元,同比增长15.7%;实现利润8.84亿美元,同比增长28.2%。 /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 楷体, 楷体_GB2312, SimKai " 2019年以来,全球跨国药企正在掀起一轮又一轮的兼收并购。如百时美施贵宝BMS于1月份宣布,拟740亿美元并购新基生物制药公司;艾伯维(AbbVie)于6月25日宣布将以约630亿美元并购艾尔建(Allergan),合并后的公司覆盖超过175个国家的业务,在2019年总收入预计将达480亿美元,有望比肩诺华(NOVARTIS)& nbsp 和辉瑞(PFIZER)& nbsp 。 span style=" font-family: 楷体, 楷体_GB2312, SimKai color: rgb(192, 0, 0) " strong 由此可以预见 span style=" text-indent: 2em " 明年世界500强制药企业排名将会有一定变动 /span /strong /span span style=" text-indent: 2em " 。 /span /span /p p style=" text-align: justify text-indent: 2em " 此外, span style=" color: rgb(192, 0, 0) " strong IVD四大巨头中的 /strong /span strong span style=" color: rgb(192, 0, 0) " 罗氏和雅培 /span /strong 都位列榜中。 strong span style=" color: rgb(192, 0, 0) " 罗氏 /span /strong 排名第163,较2018年提升了3个名次。罗氏凭借“制药+诊断”两大业务的有机组合,在制药和IVD领域都占据行业领先的地位,诊断更是长期占据市场榜首。 span style=" color: rgb(192, 0, 0) " strong 雅培 /strong /span 排名408,较2018年提升了25名。据雅培公布财报,公司2019财年二季度实现营收79.79亿美元,同比上涨2.73%;实现净利润10.06亿美元,同比增长37.24%。雅培在财报中表示,公司主要产品的盈利超过华尔街预期,主要增长驱动力为辅理善瞬感扫描式葡萄糖监测系统(简称“雅培无创血糖仪”)以及公司的创新渠道和专注执行力等。 /p p style=" text-align: right text-indent: 0em " span style=" text-indent: 2em font-size: 14px color: rgb(127, 127, 127) " (部分信息来自 第一财经 /span /p p style=" text-align: right text-indent: 0em " span style=" text-indent: 2em font-size: 14px color: rgb(127, 127, 127) " 由仪器信息网整理) /span /p p style=" text-align: center text-indent: 0em " span style=" background-color: rgb(255, 192, 0) " strong 扫码关注【3i生仪社】,解锁生命科学行业新鲜资讯! /strong /span /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201907/uepic/6699d065-8024-4143-9d17-5dddf9044f85.jpg" title=" 小icon.jpg" alt=" 小icon.jpg" / /p
  • 用离子阱做不一样的超高分辨离子淌度——访清华大学精密仪器系周晓煜副教授
    近期,一篇关于“超高场离子云扫描技术实现高分辨生物分子异构体分析研究”的成果发表于《自然通讯》,该研究开发的离子淌度质谱分辨率超过1万,与现有商业化产品和国际先前报道过的技术相比, 分辨率提升了一个数量级以上。该成果公开发表后便引起业内质谱专家热议,相关评论包括“概念新颖”、“第一次见这么高的淌度分辨率”、“原理创新”等。据了解,离子淌度质谱领域成熟的商业化产品的分辨率皆在1千以下,清华的这项技术为何能“一骑绝尘”达到如此高分辨率?其创新在哪?能否成为离子淌度质谱发展的突破性技术?其距离商品化还有多远的路程?在此背景下,仪器信息网特别采访了清华大学精密仪器系周晓煜副教授,就该成果提出的高分辨离子淌度质谱技术以及未来的应用前景等进行了深入的交流。周晓煜副教授在实验室生物分子结构解析是现代生物科学中至关重要的环节,生物分子的结构包含着功能和性质的关键信息,科学家们可以通过对其结构的解析,揭示作用机制、探究与疾病的关系、寻找药物靶点等。因此,生物分子结构的准确解析对于药物研发和疾病治疗等领域具有重要意义。在生物分子结构解析领域,质谱技术的发展在过去几十年里经历了巨大的进展。其中,离子迁移质谱技术/离子淌度质谱(IM-MS)独特的分辨能力可以区分质谱技术无法区分的异构体或同重素,成为了生物分子结构解析重要的技术工具。而随着对生物分子结构与功能关系研究的深入,对高效、高灵敏的分析技术的需求越来越迫切。近年来,多种离子迁移质谱分析方法被纷纷提出,例如迁移时间DTIMS(Drift time ion mobility spectrometry)、囚禁式TIMS(Trapped ion mobility spectrometry)、行波TWIMS(Travelling wave ion mobility spectrometry)以及非对称场FAIMS(Field asymmetric ion mobility spectrometry)等通过引入高压气体簇冷却技术、多级离子迁移分离手段的方法并形成商业化产品,使得IM-MS分离分辨率得到了显著提高(分离分辨率在40-1000左右)。虽然IM-MS技术已经被广泛应用于生物分子结构解析的研究中,但由于分离分辨率的限制,目前无法完全解决生物分子异构体解析的问题。因此,如何提高IM-MS的分离分辨率,成为当前离子迁移质谱研究的热点和难点问题之一。搭建高分辨离子淌度——离子阱质谱新玩法仪器信息网:当前的技术手段在生物分子异构体研究中面临哪些瓶颈?您团队开发的超高场离子云扫描技术是否解决了这些瓶颈?周晓煜:生物分子结构解析常用的方法很多,比如核磁共振、X射线晶体学、电镜、质谱、离子淌度(IM)等等。过去十年,离子淌度质谱(IM-MS)正逐渐成为生物分子结构解析的主流手段以及质谱仪器发展的主要方向。这是因为质谱方法本身具有高灵敏度和高特异性的优点,串级质谱又可以看分子离子的结构,离子淌度功能的加入更是极大加强了质谱的结构解析能力,从另一个维度——分子形状对样品离子的结构进行区分。不过,目前的离子淌度质谱方法也存在“分辨率不够”的瓶颈,因此依然有很多具有生物学意义的异构体分子无法有效区分,包括很多蛋白质构象之间的差异无法检测到。那么,我们提出的离子云扫描技术,其分辨率可达10000,有潜力解决上述难题。仪器信息网:业内对新成果的评价,“概念新颖、原理创新”,其“新”主要体现在哪里? 您是如何想到、做到这个“新”呢?周晓煜:“新”主要体现在两点:一、离子阱是一种大家熟悉的质量分析器,这里却被我们拿来做离子淌度,实现的装置很简单,并且可以和其他质量分析器结合设计混合式质谱仪。二、主流的淌度分析都是用的低场,而我们用的是高场;同时在传统离子阱质谱分析的经典方法“共振抛出”方面作出了创新,利用胁迫振荡的原理获得了离子的结构信息,得到了很高的分辨率。过去,大多数提升离子淌度分辨率的方法主要是增加分析的路径或者时间。例如,西北太平洋国家实验室的SLIM采用多层堆叠结构,分析路径可达1094米。这是他们获得高分辨的原因,但也导致仪器的结构相对复杂。我们想走一条不一样的道路。我们团队长期从事离子阱原理和仪器研究,对离子阱有比较深刻的理解。考虑到离子阱具有无限长时间囚禁、分析离子的特性,从而可以无限增加离子淌度分析时间。同时,我们还利用强迫振荡的原理压缩离子云、抑制离子的扩散,让谱峰变的更窄。因此,在简单的离子阱结构里我们得到了很高的分辨率。 超高分辨淌度技术研发的实验装置。(左:实验室自搭分析器实验平台;右:从Mini β小仪器改装的实验平台)应用前景——为蛋白质异构体解析提供新深度仪器信息网:据了解,本研究是在一台经过改装的Mini β仪器上进行的,该仪器是一台双线性离子阱小型质谱。那么您团队开发的离子淌度+离子阱串联质谱的应用前景如何?周晓煜:我们认为这项技术有很好的应用前景。首先,我们已经在小仪器平台上证明这项技术可以达到很高的离子淌度分辨率,超出现有技术一个数量级以上,具备很强的技术优势。第二,离子阱是质谱仪器非常常用的分析器,无论学术还是产业界对它都很熟悉,奠定了广泛应用的基础。第三,离子阱,包括四极杆,很容易和其他高分辨质量分析器联用,例如和Orbitrap或TOF的联用。该技术的应用价值可以通过与经典的质谱联用型仪器范式得到证明。仪器信息网:该质谱仪器未来在哪些研究领域能够替代当前商业化的离子淌度质谱?或是否有非“我”不可的应用场景呢?周晓煜: 现在商业化仪器的离子淌度分辨率对异构体分析是不够的,甚至是远不够的。从蛋白质的构象解析可以清晰的看出来,大多数淌度技术只能把几个构象勉强分开;这样的困难对糖、脂质等异构体同样存在,而我们的方法可以实现基线分离。在这些传统技术很难做或无法做到的场景,我们的技术优势将得到充分体现。仪器信息网:您团队在该成果的基础上还有哪些规划?接下来您团队的研究重点还有哪些?本次开发的仪器技术是否有产业化发展的规划?您预计多久能成功产业化?周晓煜: 目前我们在小仪器平台证明了这项技术的可行性,未来,我们希望将离子阱和高分辨质量分析器联用,针对生物分子结构解析研究,开发相应的大仪器并解决相关的应用问题。除此之外,我们团队将持续聚焦便携式、小型化质谱仪器系统的开发,以及其在现场即时化学检验中的应用;一分钟出具报告,主要应用于临床、毒物/毒品、食品、安保等领域。另外,围绕脂质组学分析仪器方面,我们还将开展精细结构脂质组学的单细胞分析、疾病标记物筛查等相关研究。我们团队和清谱科技有很好的合作基础,双方合作开发了Mini β、Cell等多款小型化质谱仪,并还将继续合作。按技术就绪度而言,我们现在的就绪度在4以下,预期通过3-5年的时间可以达到6-8,即达到商业化仪器的水平。聚沙成塔——从1-10000的离子阱质谱开发之旅仪器信息网:请介绍下您本人质谱仪器创新研究的历程?周晓煜: 我最早接触质谱是在博士期间,当时中科院化学所的聂宗秀研究员刚回国组建研究团队,所以我在2009年3月启程来到北京,开始了质谱研究之旅。研究之初,聂老师拿了一些质谱理论的书还有他自己的研究心得给我看,特别是离子阱理论这部分,希望我能早点弄懂从而能尽早搭建颗粒质谱。因为具有物理学的背景,我看离子阱理论这部分特别有感觉,所以博士毕业后希望能够继续从事这方面的研究。当时,美国普渡大学的欧阳证老师经常回国交流,我也借机申请去他那里做博士后。欧阳老师当时的一个主要方向是离子阱小仪器,所以我就一边研究离子阱理论,一边考虑适用于小仪器的理论和应用方法开发。2015-2017年,我们普渡的质谱团队跟随欧阳老师一起回国并加入清华大学,那时我开始考虑如何利用自己的特点做一些有意思的研究。一开始,我也不知道答案。众所周知,离子阱作为质谱质量分析器已经几十年了,发展相当成熟,但我一直相信离子阱能做出一些不一样的东西。所以,自2009年以来,我做的所有工作都是围绕离子阱理论和仪器展开。直到2017年开始接触到了离子淌度技术,了解到该技术目前遇到的问题,我意识到离子阱的机会“真”的来了。一开始,我们只是把现有的低场离子淌度原理移植到我们的小仪器上,在2000年时可以实现40左右分辨率的离子淌度功能,已经接近商业大型仪器。之后又通过3年的技术研发,提出自己的高场淌度技术,我们把离子淌度的分辨率提到了10000。作为一名教师,我也希望充分利用自己的研究经历为国家、为质谱行业培养更多、更优秀的青年人才。合影(右:清华大学周晓煜副教授,左:仪器信息网万鑫)采访编辑:万鑫
  • 使用氧氮氢分析仪分析碳化硅中的氧氮氢元素
    1 绪言在材料科学的浩瀚星空中,碳化硅(SiC)无疑是一颗璀璨的明星。作为无机半导体材料的杰出代表,碳化硅不仅以其独特的物理和化学性质在磨料、耐火材料等领域大放异彩,更在光电、电子等高技术领域展现出无限潜力。然而,要想充分发挥碳化硅的这些优异性能,对其内部元素的精确分析与控制显得尤为重要,特别是氧、氮、氢这三大元素。研究表明,氧含量对碳化硅的等电点和分散性有显著影响:随着氧含量增加,碳化硅微粉的等电点接近石英,水中分散性提升,但过高氧含量则反之,且耐高温性下降,故生产中需严格控制氧含量。适量的氮元素可以调节介电性能、增强其耐高温和抗氧化能力,同时,精确控制氮含量还能优化碳化硅的光电性能,如提升发光效率,进而拓展其在光电子及光电导领域的应用。当前,行业内普遍采用惰性气体熔融法作为检测碳化硅中氧、氮、氢元素含量的主流技术。该方法利用惰性气体作为载气,在高温下促使试样中的目标元素转化为易于检测的气态化合物(CO2、N2、H2),随后通过高灵敏度的非色散型红外检测器与热导检测器,实现对样品中氧、氮、氢含量的直接、精确测量。这一技术的广泛应用,为碳化硅材料的质量控制与性能优化提供了强有力的技术支持。然而,目前大部分氧氮氢分析仪都是是用热导测氢/氮,意味着同一个样品单次只能测氢或者氮,我们使用的宝英光电科技的ONH-316锐风氧氮氢分析仪使用红外测氢技术,能实现氧氮氢联测,达到一次分析同时得到三种元素含量的目的。2 实验部分2.1仪器与试剂仪器:宝英光电科技ONH-316锐风氧氮氢分析仪,高纯氩气做载气,流量为400mL/min,红外吸收法测氧和氢,热导法测定氮。常规分析设置:碳化硅熔点相对较高,大约在2700℃左右,为了防止样品熔融后升华,引起气路堵塞,造成后续测试的影响,所以仪器脱气功率设置为6.0kW,后续分析功率设置为5.5kW。测试的最短分析时间设定为:氧20秒、氮15秒、氢20秒。ONH-316锐风氧氮氢分析仪指标名称性能指标氧氮氢分析范围低氧:0.1ppm~5000ppm高氧:0.5%~20%低氮:0.1ppm~5000ppm高氮:0.5%~50%0.1ppm~5000ppm灵敏度0.01ppm载气高纯氩气2.2样品处理碳化硅粉末经天平称重后直接投样分析测试,无需特殊处理,本实验选择的是样品编号2、3、4的原料样品(非标准物质)进行氧、氮、氢元素检测&zwnj 。2.3实验方法和步骤2.3.1 分析前准备仪器开机,依次打开动力气(工业氮气)和载气(氦气)气瓶,打开仪器电源预热,预热一小时待仪器稳定后,打开冷却水开关,打开计算机电源进入软件,设定合适的分析参数。2.3.2 空白试验仪器基线稳定后,进行空烧做样,用空的坩埚做实验,重复5 ~ 6 次,观察曲线稳定性。待系统稳定下来后,只在进样器中加入镍囊进行分析测定系统氧、氮、氢的空白值,并进行空白补偿。2.3.3 称样称重使用的是梅特勒AL104万分之一天平,将镍囊放置放置于天平上,去皮后称取0.01g左右粉末样,称重完成后,盖上镍囊盖并用洁净的平口钳小心挤压镍囊,排出镍囊内部空气。梅特勒AL104万分之一天平2.3.2 样品测试将石墨坩埚放至仪器下电极凹槽内,点击软件上开始分析按钮,待进料口打开后,投入样品,仪器按照分析自动流程进行氧、氮、氢的熔融分析,绘制分析曲线,通过已经建立的分析方法计算并输出氧、氮、氢的含量。按确定的实验方法,对2、3、4号样品的氧、氮、氢量分别连续进行了两次测试。2.3.5 测定结果数据样品标识氧含量%氮含量%氢含量%25.540621.1330.009785.482419.6960.0107935.129714.8990.010795.139515.9660.0110540.586839.2310.010650.612439.1350.011152.3.6样品释放曲线2.3.7 分析中使用到的耗材石墨坩埚带盖镍囊3 结论从分析曲线上可以看出,样品的释放完全且均匀平滑,从分析数据来看,分析结果的稳定性和重复性都非常好,说明此分析方法非常适合用于碳化硅粉末样品的氧氮氢元素分析。
  • 谱育便携 | 致敬艳阳下的工作者 -- 夏季臭氧督查帮扶 第二弹
    第二站 配合河南省某生态环境局进行夏季臭氧督查帮扶在河南某市,为了持续推进VOCs污染治理,打好夏季臭氧污染防治帮扶攻坚战,谱育便携帮扶团队工程师配合当地政府环保部门,对当地的一些储罐区、加油站以及化工企业进行帮扶检查。在检查某储罐区时,利用EXPEC 3100 便携式挥发性有机气体分析仪(便携式FID设备)对储罐密闭点位进行检测,判断各密封点是否存在泄漏,而对于不可达点,利用EXPEC 1880 红外热成像气体泄漏检测仪,远距离非接触式检测VOCs,以图像形式对泄漏源进行快速、准确定位,精确确定排放位置,便于执法人员在安全距离以外定位取证和排查泄漏隐患。在加油站检测时,主要对量油井、PV阀、放空管件连接组件、卸油口、加油枪、加油机泄漏和油气回收系统运行情况进行检查和检测。利用EXPEC 3050 手持式挥发性有机气体分析仪(手持式FID设备),检查出部分加油站的加油机内部管路和量油井存在明显泄漏,这也为辖区内加油站的整改指明了方向。另一方面,利用EXPEC 3050 手持式挥发性有机气体分析仪(手持式FID设备)和EXPEC 3100 便携式挥发性有机气体分析仪(便携式FID设备)对企业无组织排放进行检测,同时针对污染源排口进行快速筛查,帮企业找出了几处问题点。利用EXPEC 3200 便携式甲烷非甲烷总烃分析仪,对4家涉VOCs企业的废气治理设施进行了检测,结果发现大部分企业治理设施的治理效率不达标,主要原因是监控监测缺失,未安装污染源自动监测设施进行实时监控,其次是治理设施的安装验收不符合要求。反馈张队长非常欣慰地说道:感谢谱育便携帮扶团队对臭氧污染督查的帮助,天气这么热,他们还是把工作做到尽善尽美,没有他们,这个夏天可能很难过。此外,通过先进的仪器设备来为企业“找病因”,“开良方”,切实帮助企业解决VOCs治理中遇到的难题,寻求企业绿色健康高质量发展,这就是我们的初心。 第二站小结本次帮扶,谱育便携产品应用服务中心帮扶小队不惧酷暑,恪尽职守,用丰富的现场经验和一丝不苟的工作态度,在艳阳下使用谱育便携仪器,为河南当地臭氧污染防治提供了有力的技术和数据支持,助力河南在极端高温天气下臭氧浓度不升反降。*帮扶结束后,谱育便携收到了对队伍人员和仪器双重认可的感谢信。利器介绍EXPEC 1880 红外热成像气体泄漏检测仪► 准确泄漏定位,非接触,远距离操作,更安全► 图像增强模式,能检测到微小泄漏► 通过 WIFI 连接便携式挥发性有毒有害气体分析仪(FID+PID),红外热像仪屏幕可以同时显示FID和PID的检测数据► 通过 WIFI 连接防爆手抄器,红外热像仪图像可远程传输和控制► 具有视频录制和拍照功能,GPS定位,便于监督执法现场取证EXPEC 3050 手持式挥发性有机气体分析仪► 本安防爆+隔爆设计► PID+FID双检测器,满足不同监察场景需求► 主机重量不足2kg,体积小巧,便于携带► 内置防爆电池、储氢合金可现场更换,延长续航时间► 储氢合金使用氢气发生器电解纯水充氢,安全方便EXPEC 3100 便携式挥发性有机气体分析仪► 本安防爆+隔爆设计► 终端WIFI通讯,数据有保障► 搭配第二代LDAR软件平台► 可拓展执法APPEXPEC 3200 便携式甲烷非甲烷总烃分析仪► 数据可靠,气路全EPC设计,一键开机测量,自动计算结果,内置标气瓶设计,全自动校准,校准过程全自动监控;► 快速高效,一键开机运行,可提前开机预热,即到即测,支持热机更换气瓶;► 安全性高,集成度高,体积小,重量轻,内置电池,可单手拎持;► 成本低,采用反复可充高压气瓶,FID检测器为航天级贵金属点火丝;* 信息来源:河南新闻广播写在最后谱育便携致敬所有在酷暑里依然坚守岗位的战士们!这个夏天,“暑”你们最美!另:夏季进行室外工作或活动时,一定不要忘记做好防暑降温工作!
  • 谱育便携 | 致敬骄阳下的工作者 -- 夏季臭氧督查帮扶 第三弹
    ↓↓↓↓第三站配合安徽省某生态环境局进行夏季空气质量监督帮扶工作在安徽某市,为助力打赢“蓝天保卫战”,促进空气质量改善,谱育便携帮扶团队工程师应邀参加了当地环保部门组织的夏季空气质量监督帮扶工作,督察帮扶采取“明暗执法相结合、‘白+黑’差时执法、机动式点穴式执法、先进装备赋能执法”等多种方式,对辖区内的涉VOCs重点企业进行检查。检查内容主要涉及五类典型的VOCs无组织排放源,其中包括VOCs储存、转移与运输、设备与管线VOCs泄漏、敞开液面VOCs逸散以及工艺过程中的VOCs无组织排放,利用EXPEC 1880 红外热成像气体泄漏检测仪和EXPEC 3050 手持式挥发性有机气体分析仪进行联机,在拍摄VOCs泄漏影像的同时显示泄漏浓度的具体数值,便于找准问题症结,帮助企业进一步规范环境管理,实施精准治理和修复。 反馈 督察组表示:“非常感谢谱育便携帮扶团队,在这么炎热的夏天夜以继日的工作,帮助我们进行空气质量督查。同时也要感谢谱育科技的便携产品在督查中起到的关键作用,通过红外热成像气体泄漏检测仪成像,能够使肉眼看不到的VOCs气体无所遁形,通过便携式FID仪器进行实测,检测出实际泄漏浓度大小。通过各种先进的技术手段,更加直观地反映排污情况,不仅提高了执法效率,也使现场执法更具有说服力。”谱育便携臭氧帮扶一直在行动在其它一些区域,谱育便携帮扶团队工程师配合当地环保部门,围绕石油化工、工业涂装、包装印刷、油品储运销等领域,进行了多次帮扶检测。检查发现,目前VOCs管理基础依然薄弱,尤其是在落实层面,普遍存在重视认识不足、源头控制不力、无组织排放问题突出、治污设施简易低效、运行管理粗放、监测监控不到位等问题,这些都需要我们与环保监管部门以及企业共同努力。路漫漫其修远兮,吾将上下而求索。仪器介绍EXPEC 1880 红外热成像气体泄漏检测仪► 准确泄漏定位,非接触,远距离操作,更安全► 图像增强模式,能检测到微小泄漏► 通过 WIFI 连接便携式挥发性有毒有害气体分析仪(FID+PID),红外热像仪屏幕可以同时显示FID和PID的检测数据► 通过 WIFI 连接防爆手抄器,红外热像仪图像可远程传输和控制► 具有视频录制和拍照功能,GPS定位,便于监督执法现场取证EXPEC 3050 手持式挥发性有机气体分析仪► 本安防爆+隔爆设计► PID+FID双检测器,满足不同监察场景需求► 主机重量不足2kg,体积小巧,便于携带► 内置防爆电池、储氢合金可现场更换,延长续航时间► 储氢合金使用氢气发生器电解纯水充氢,安全方便
  • Nat Methods | 汤富酬课题组开发出基于单分子测序平台的scNanoHi-C技术,可精准检测单细胞高阶染色质互作
    真核生物基因的表达受到基因组中顺式作用元件的复杂调控。哺乳动物基因组中存在大量的顺式作用元件,例如:启动子、增强子、沉默子、绝缘子等等,其数量远远超过蛋白编码基因。目前人类基因组中已知的顺式调控元件就有一百多万个,而蛋白编码基因只有大约两万个。遗传学研究也表明基因调控不仅仅是单个基因之间一对一的简单调控事件,而是以调控网络的形式发挥作用,不同的调控元件以及靶基因之间存在着复杂的相互作用。例如,一个基因的启动子可以整合来自多个增强子或者沉默子的调控作用,一个增强子元件也能够同时影响多个基因的表达1-3。随着三维基因组技术的发展,人们对基因表达调控相关的染色质构象已经有了一定的理解,但由于技术的限制,大部分研究都是集中在成对的相互作用(pair-wise interaction)上,而对于多个顺式调控元件同时与一个基因启动子之间的高阶相互作用(high-order interaction)的研究仍然比较有限。此外,多个基因组元件是如何通过三维基因组构象的变化同时参与基因表达调控的机制目前也尚不清楚。近年来,为了探究更精准和全面的染色质互作情况,检测高阶染色质互作的技术也相继出现。然而这些技术往往局限于基因组的特定位点,或是需要特殊的仪器设备。得益于三代测序平台(单分子测序平台)的日渐成熟,最近开发的基于牛津纳米孔技术 (Oxford Nanopore Technology, ONT) 的Pore-C方法4在检测染色质高阶相互作用方面表现出优异的性能,可以通过应用新的统计方法有效地分析全基因组中多个染色质位点之间高阶相互作用的协同性。尽管上述这些基于大量细胞的研究方法能够有效地检测染色质的高阶相互作用,但它们无法解决细胞间的异质性问题,阻碍了它们在复杂组织器官样品中的应用。而现有的单细胞Hi-C(single-cell Hi-C,scHiC)技术受限于二代测序较短的读长(通常是双端总共300bp)也难以对染色质高阶相互作用进行检测。目前除了单细胞超分辨率成像以外,2022年开发的scSPRITE5是唯一一种可以在单细胞水平检测染色质高阶相互作用的测序方法。但是该方法更适用于远距离的间接染色质高阶相互作用,而对于与基因调控更相关的直接染色质高阶相互作用的检测能力很有限。此外,scHi-C 的另一个挑战是很难平衡捕获细胞群体异质性所需的高通量(每次实验能够检测大量单细胞)与探索高分辨率 3D 基因组结构所需的高深度(每个单细胞中捕获大量染色质相互作用)之间的矛盾。因此,需要一种可扩展的 scHi-C方法来剖析高阶染色质三维结构,并在单细胞水平上研究这些染色质高阶相互作用在不同生物过程中的协同调控机制。为了应对这些挑战,2023年8月28日,北京大学生物医学前沿创新中心汤富酬课题组在Nature Methods上发表题为scNanoHi-C: a single-cell long-read concatemer sequencing method to reveal high-order chromatin structures within individual cells的文章。该研究在国际上率先使用单分子测序平台开发了一种基于邻近连接的单细胞染色质构象捕获方法,称为 scNanoHi-C。该方法实现了在单细胞水平的高阶染色质相互作用检测,并且在通量上具有很好的灵活性,能够满足不同的实验需求。在实验上,scNanoHi-C依次使用 1% 甲醛 (FA) 和 1.5 mM 戊二酸二琥珀酰亚胺酯 (DSG) 孵育进行交联,以降低连接反应的随机噪音并兼顾对短程和长程染色质相互作用的高灵敏度检测。为了尽可能完整地保留单细胞中固定连接后的染色质三维结构信息,该研究设计了一种灵活的单细胞基因组长片段扩增方法。该方法使用两端具有相同接头的低浓度Tn5转座酶以提高DNA片段扩增长度和基因组覆盖度,并通过设计24种带有不同条码标签的 Tn5 酶结合后续PCR扩增中引入的条码标签共同控制测序的通量。通过这种方式,scNanoHi-C 能够在一次 PromethION 测序中对少至几个单细胞进行低通量、高覆盖度测序或者对数千个单细胞(最高可达 24×96=2304个细胞)进行高通量、低覆盖度测序,可以根据实验需求灵活进行选择(图1)。为了评估scNanoHi-C技术的可靠性,该研究首先将scNanoHi-C应用于正常二倍体的GM12878细胞系,并分别使用低深度(~0.2Gb/cell)、中等深度(~1Gb/cell)、高深度(~4Gb/cell)三种策略进行测序,并与基于二代测序平台的大量细胞原位Hi-C标准数据集进行比较,结果显示出很高的一致性。同时每个策略检测到的串联体(含有有效染色质相互作用的测序读段)中大约一半为高阶串联体(包含三个以上不同调控元件间的相互作用)。在这些高阶串联体中,大约58%是三联体,26%是四联体,其余为五联体以上的多联体(基数从5到11不等)。图1:实验流程示意图以及高阶串联体的检测接着该研究在多个方面对scNanoHi-C的应用进行了探索:1.scNanoHi-C可以在单细胞水平上精准捕获染色质三维结构的异质性。scNanoHi-C能够在单细胞水平检测各层级染色质结构特征,包括染色体领域(整条染色体,50Mb-200Mb尺度的结构特征)、A/B区室(常染色质区域与异染色质区域,5Mb-20Mb尺度的结构特征)、以及拓扑关联结构域样结构(TAD-like,0.5Mb-5Mb尺度的结构特征)。同时,scNanoHi-C的单个染色质片段长度(单体长度,平均610 bp)相较于传统基于二代测序平台的scHi-C(测序不超过150bp)显著提高,这大大增加了其在染色质相互作用对中捕获到单核苷酸多态性(SNP)位点的机会,能够在二倍体细胞中直接判定单倍型的单体比例由原来二代测序平台的大约9%提高到了25%。因此,scNanoHi-C也可用于有效地重建单个二倍体细胞的基因组三维构象。同时,利用单细胞A/B 区室化值(single-cell A/B compartment value, scA/B value), scNanoHi-C对GM12878、HG002 和 K562 三种人类细胞系进行了聚类分析,能够在单细胞精度准确将三种细胞分开,并识别了细胞类型间的染色质差异区室化区域。此外, scNanoHi-C也能够准确地检测每个单细胞的基因组拷贝数变异(CNV)特征。分析结果表明,scNanoHi-C准确地捕获了GM12878细胞培养过程中产生的非整倍体亚克隆以及K562细胞的拷贝数变异。同时,scNanoHi-C也可应用于结构变异的检测,如准确检测出了K562 细胞中 BCR-ABL1 和 NUP214-XKR3 的基因融合事件(染色体易位事件)。图2:scNanoHi-C串联体和单体的长度分布、单倍体分型的比例、细胞分群结果和单细胞拷贝数变异(CNV)图谱2.scNanoHi-C能够在单个细胞中准确鉴定高阶染色质相互作用。该研究在GM12878 细胞数据集中,使用scNanoHi-C得到的单细胞高阶串联体信息结合ABC模型(Activity-by-contacts model)6预测的增强子-启动子 (E-P) 相互作用关系共同鉴定了增强子-启动子高阶相互作用。通过这种方式,该研究首次在单个细胞中以20 kb的分辨率直接观察到1,097 个基因的单个启动子能够与多个增强子同时发生相互作用,表明这些基因可能同时受到多个增强子的调控。这些受到高阶调控的基因主要富集在与GM12878这种B淋巴细胞的功能相关的免疫信号通路上,并且通常表现出更高的表达水平。特别地,这些基因中还包括一些B细胞谱系特异性转录因子如EBF1以及EBV 超级增强子相关基因如MIR155HG、IKZF3和ETS1等。这些结果表明,多个增强子的协同调控可能是确保关键基因高水平稳健表达的一种潜在机制。通过类似的方法,该研究还在单个细胞中鉴定出了1,422 个能够与多个启动子同时发生相互作用的增强子。此外,该研究发现部分高阶基因调控作用能够在多个单细胞中被检测到,这可能与细胞中频繁使用的关键转录程序有关,后续可以通过发展基于富集策略的具有更高分辨率的Hi-C技术进行进一步的深入研究。图3: scNanoHi-C技术对多向基因调控网络的检测3.scNanoHi-C能够揭示不同基因组区域之间的协同调控关系以及染色体外环形DNA与线性基因组间的复杂相互作用。倾向于形成高阶相互作用的一组基因组位点称为“基因组协同调控区域”。该研究针对scNanoHi-C的数据特点对鉴定基因组协同调控区域的算法进行了优化,并将该算法运用到GM12878细胞活跃启动子和增强子的集合中,在全基因组范围内共鉴定出了917组增强子-启动子协同调控区域。其中,大约20%(187/917)的协同调控区域包含来自不同染色体的基因组位点(提示不同染色体之间的反式相互作用)。这些协同调控区域在活跃转录的基因组区域、淋巴细胞特异性转录因子和染色质环相关因子(CTCF等)的结合位点区域中高度富集。此外,在917个协同调控区域中,有167个被发现与GM12878细胞特异性的超级增强子有关。接着,该研究将scNanoHi-C运用到携带大量染色体外环形DNA(ecDNA) 的COLO320DM 人类结直肠癌细胞系中,检测到了染色体外环形DNA与线性基因组(染色体内的基因组)之间存在广泛的染色质高阶相互作用,并且首次在单个细胞中观察到四个主要的染色体外环形DNA的基因位点之间存在复杂的高阶相互作用。这些结果表明,染色体外环形DNA可能通过建立复杂的高阶染色质三维结构来驱动癌基因的过量表达。图4: scNanoHi-C技术对染色体外环形DNA(ecDNA)相关的协同作用的检测4.scNanoHi-C能够高效辅助单细胞基因组从头组装。在可用细胞数量有限的情况下,该研究表明使用scNanoHi-C辅助单细胞基因组(single-cell whole genome sequencing,scWGS)从头组装7可以大幅度提高组装质量。例如,使用20个单细胞的基因组长读长测序数据和12个单细胞的scNanoHi-C数据组装的人类基因组支架(scaffold)的NG50要优于使用30个单细胞的基因组长读长测序数据直接组装的效果(2.49 Mb vs. 1.34 Mb)总之,scNanoHi-C具有很好的可扩展性和灵活性,在一次测序中可对少至几个单细胞或多达数千个单细胞进行染色质三维结构测序,并且实验流程相对简单、易于操作,仅需要基本的PCR仪等分子生物学设备,适合于各种生物学实验室使用。scNanoHi-C还是一种强大且多功能的工具,可用于在单细胞分辨率准确区分细胞类型、对单个二倍体细胞进行高效单倍型分型、检测单个正常细胞和肿瘤细胞中的基因组拷贝数变异和各种复杂结构变异以及高效辅助单细胞基因组从头组装。更重要的是,scNanoHi-C 首次实现了在单个细胞中在全基因组水平对增强子-启动子的高阶直接相互作用的检测,在单个细胞中准确鉴定了高阶基因调控事件,同时能够对复杂的染色体外环形DNA与线性基因组间的高阶相互作用进行精准检测。scNanoHi-C显示了单细胞长读长Hi-C测序技术在分析由高阶染色质三维结构介导的不同细胞间基因调控异质性方面的潜力,为将来进一步研究发育和疾病进展过程中高阶染色质结构变化机制,揭开基因组中各种复杂调控关系中的“暗物质”奠定了坚实的基础。北京大学生物医学前沿创新中心、前沿交叉学科研究院生命科学联合中心博士生李文、生命科学学院博士生卢健森为该论文的共同第一作者,北京大学生物医学前沿创新中心汤富酬教授为该论文通讯作者。该研究得到了国家自然科学基金基础科学中心项目、北京未来基因诊断高精尖创新中心、昌平实验室的资助,北京大学高通量测序平台以及北京大学“北极星”高性能计算平台的协助与支持,北京大学邢栋课题组为本研究提供了重要的帮助。论文链接:https://www.nature.com/articles/s41592-023-01978-w参考文献:1 Hafner, A. & Boettiger, A. The spatial organization of transcriptional control. Nat Rev Genet, doi:10.1038/s41576-022-00526-0 (2022).2 Oudelaar, A. M. & Higgs, D. R. The relationship between genome structure and function. Nat Rev Genet 22, 154-168, doi:10.1038/s41576-020-00303-x (2021).3 Furlong, E. E. M. & Levine, M. Developmental enhancers and chromosome topology. Science 361, 1341-1345, doi:10.1126/science.aau0320 (2018).4 Deshpande, A. S. et al. Identifying synergistic high-order 3D chromatin conformations from genome-scale nanopore concatemer sequencing. Nat Biotechnol 40, 1488-1499, doi:10.1038/s41587-022-01289-z (2022).5 Arrastia, M. V. et al. Single-cell measurement of higher-order 3D genome organization with scSPRITE. Nature Biotechnology 40, 64-73, doi:10.1038/s41587-021-00998-1 (2021).6 Fulco, C. P. et al. Activity-by-contact model of enhancer-promoter regulation from thousands of CRISPR perturbations. Nat Genet 51, 1664-1669, doi:10.1038/s41588-019-0538-0 (2019).7 Xie, H. et al. De novo assembly of human genome at single-cell levels. Nucleic Acids Res 50, 7479-7492, doi:10.1093/nar/gkac586 (2022).汤富酬,博士,北京大学BIOPIC/ICG研究员,国家“优青”(2013)、“杰青”(2016)。1998年本科毕业于北京大学,2003年在北大获得细胞生物学博士学位,2004-2010年间在英国剑桥大学Gurdon研究所从事博士后研究, 2010年回到北京大学组建实验室,主要从事人类早期胚胎发育的单细胞功能基因组学研究。在国际上率先系统发展了单细胞功能基因组学研究体系,并利用一系列技术体系对人类早期胚胎发育进行了深入、系统的研究,揭示了人类早期胚胎DNA去甲基化过程的异质性以及其他表观遗传学关键特征,发现了人类早期胚胎中基因表达网络的重要表观遗传学调控机理,为人们提供了一个全面分析人类早期胚胎表观遗传调控网络的研究框架,加深了对人类原始生殖细胞的发育以及表观遗传重编程过程的认识。
  • 谱育便携 | 致敬高温下的工作者 -- 夏季臭氧监督帮扶 第一弹
    夏季是臭氧污染频发的季节,为科学有效应对臭氧污染,持续改善区域环境空气质量,深入打好蓝天保卫战,谱育科技便携产品应用服务中心在这个酷暑,派出了帮扶小队,头顶烈日,脚踏热土,迎酷暑,战高温,配合多地环保监察部门,对企业进行现场帮扶检查,帮助其实现“在源头上削减产出、在过程中控制释放,在末端环节加强治理”。治理臭氧污染从VOCs入手臭氧生成的重要前提之一是挥发性有机化合物(volatile organic compounds,VOCs)。空气中的VOCs和NOx等气体在紫外光照射和高温条件下,会发生光化学反应,形成臭氧,而夏季紫外线强烈,更为臭氧的大量生成提供了条件。追根溯源,加强VOCs治理是控制臭氧污染的有效途径。第一站配合湖南省某生态环境保护综合行政执法支队进行大气督查帮扶集中培训在湖南某市,为加快解决其在2022年重点区域空气质量改善夏季监督帮扶工作中发现的问题,队伍工程师应邀参加当地政府环保部门组织的集中培训,讲解红外热成像气体泄漏检测仪和手持式FID(氢火焰离子化检测器)的原理、应用场景以及在检查中的作用,并配合环保部门到加油站和企业进行大气督察帮扶。加油站检查在加油站检查时,主要以加油站油气回收系统建设、密闭、操作方式和系统运行状况为重点,利用红外热成像气体泄漏检测仪和手持式FID相结合的方式,重点检查检测卸油口、油气回收口、回收管线、油罐车油气回收系统、耦合阀门等点位油气浓度是否满足《加油站大气污染物排放标准》(GB 20952-2020)要求。检查发现,多个加油站量油井存在油气泄漏,利用红外热成像泄漏检测仪拍摄到了明显的泄漏影像,能够直观地定位泄漏点位,在定位取证的同时,又方便了加油站工作人员进行检修和排查安全隐患的工作。企业检查在检查有组织排放的基础上,加强了对开放式作业场所逸散,以及通过缝隙、通风口、敞开门窗等无组织排放的检查。检查发现,在某工厂的涂装车间,依旧使用VOCs含量高的原料,并且在油漆使用、储存过程中,存在大量的VOCs逸散,手持FID检测到最大浓度超过了10000 ppm,车间内无组织排放严重。反馈当地环保部门某位工作人员说道:“多亏了谱育便携服务中心派来的专业人员,在这么热的天来到现场帮助我们,感谢他们的辛苦付出;也多亏有了这两款设备,可以摒弃以往依靠‘肉眼看、鼻子闻’的传统监测监管手段,把红外热成像气体泄漏检测仪当做我们的‘眼睛’,把手持式FID当做我们的‘鼻子’,在提高监测效率的同时,更大地提升了监测的灵敏度和准确度,真是事半功倍。”帮扶小队无惧酷暑,一往无前,冲在现场第一线,利用专业的技术知识和先进的仪器设备,帮助湖南省某环保部门和企业解决了许多“疑难杂症”,获得一致认可。此站帮扶结束后,队伍收到了对人员和仪器表示双重认可的感谢信。产品介绍EXPEC 1880 红外热成像气体泄漏检测仪► 准确泄漏定位,非接触,远距离操作,更安全► 图像增强模式,能检测到微小泄漏► 通过 WIFI 连接便携式挥发性有毒有害气体分析仪(FID+PID),红外热像仪屏幕可以同时显示FID和PID的检测数据► 通过 WIFI 连接防爆手抄器,红外热像仪图像可远程传输和控制► 具有视频录制和拍照功能,GPS定位,便于监督执法现场取证EXPEC 3050 手持式挥发性有机气体分析仪► 本安防爆+隔爆设计► PID+FID双检测器,满足不同监察场景需求► 主机重量不足2kg,体积小巧,便于携带► 内置防爆电池、储氢合金可现场更换,延长续航时间► 储氢合金使用氢气发生器电解纯水充氢,安全方便写在最后谱育便携致敬所有在酷暑里依然坚守岗位的战士们!这个夏天,“暑”你们最美!Ps:夏季进行室外工作或活动时,一定不要忘记做好防暑降温工作!
  • XLement:大幅降低置入门槛!NanoSPR实现分子互作技术路线全新突破
    近年来,分子互作分析仪市场涌现出很多新品牌、新产品参与市场竞争,技术多元化,“百花齐放”。目前国内外分子互作分析仪厂商已涌现近20余家,为帮助广大科研工作者了解前沿分子互作分析技术、增强业界相关人员之间的信息交流,同时也为用户提供更丰富的分子互作分析产品与技术解决方案,仪器信息网特别策划了《“百舸争流”,谁将成为下一代金标准?——分子互作技术与应用进展》专题。本期,我们特别邀请到量准集团创始人、华中科技大学刘钢教授谈一谈量准(XLement)的创新分子互作分析技术及他对该技术应用及市场的看法。量准集团创始人/CEO 刘钢教授刘钢教授,本科毕业于华中科技大学,并在美国加州大学伯克利分校获得生物医学工程专业硕士和博士学位。曾担任美国伊利诺伊大学香槟分校终身副教授,美国医学生物工程院院士(AIMBE Fellow),现任华中科技大学特聘教授。近年来致力于超灵敏度微纳米新型生物传感器以及移动传感技术在医学、生物学等领域的广泛应用。仪器信息网:贵司在分子互作分析领域主推的仪器产品是什么?请您谈谈该产品的核心竞争力。刘钢:量准(XLement)是一家以“芯片生物测微技术”为主打的企业。专注于利用传感器芯片设计和微纳制造专利技术,借此开发出创新型的生物检测芯片及相关检测设备产品,并将其作为生命科学工具应用于生物医药研发以及作为检测试剂和设备应用于临床医学体外诊断。目前主推的产品有分子互作检测仪器设备,包括WeSPR100多功能分子检测仪,WeSPR One分子互作仪,WeSPR HT96全自动分子检测仪;以及超过20种商品化的基于NanoSPR芯片的生物传感器耗材和检测试剂盒,例如Protein A/G/L传感器,GST、SA、SSA、AHC/AMC、anti-His、anti-Flag、NTA传感器和羧基化或氨基化传感器等。我们公司基于NanoSPR技术研发的分子互作检测平台是一种无标记的、高灵敏、成本低和实时监测的解决方案,主要用于生物分子间相互作用的定量分析,抗体筛选、表征、一致性评价以及生物分子间相互作用,可全方位助力于生物医药研发。NanoSPR技术实现了芯片的迭代升级,与传统SPR的平面膜芯片相比,NanoSPR芯片的纳米孔阵列的电磁衰减长度( ld )要短得多,可大幅度降低样本的Bulk效应,适合复杂样本以及未经纯化的粗样本的相互作用和结合动力学分析,从而为真实生物环境中样品分子之间相互作用提供更快速、更准确的实时分析。NanoSPR技术检测原理示意图相较于以Biacore为代表的传统SPR分子互作分析仪,量准通过在芯片结构、光路及检测方式上的设计,实现了成本的大幅降低,使其设备及耗材价格不及国外主流产品的1/10,打破分子互作分析仪国外垄断的格局,也实现了传统药物筛选芯片及分子互作分析仪器的技术路线突破和超越。仪器信息网:请回顾一下贵公司分子互作分析仪技术的发展历程。刘钢:SPR技术自20世纪90年代实现产业化以来,被广泛应用于生命科学、生物制药等领域。但在实际应用场景中,由于SPR技术过于复杂并且仪器和耗材价格均非常昂贵,让很多中小企业或研发机构望而却步。量准自2018年成立以来,致力于开发基于纳米杯阵列结构芯片的表面等离子体共振传感器(NanoSPR)新技术,从芯片底层创新开始,为实验室工作人员提供了一种性价比超高的分子互作分析仪器,同时也填补了国内这一空白领域,加速国产替代。2021年,量准推出了第一代WeSPR100多功能分子检测仪,兼具SPR仪与酶标仪两种检测功能,能够实时分析多种生物分子之间的相互作用,无需标记,即可提供快速、低成本、高质量的动力学抗体筛选、表位鉴定以及浓度测定等生物学信息,该仪器性价比极高,操作简便灵活,极大地降低了小型制药公司、研发机构或其他小型实验室购置门槛和使用成本。图1 WeSPR1002022年,量准推出了第二代桌面式的WeSPR One分子互作分析仪,具备高灵敏度,高性价比,无需标记,适合多种类型的分子之间相互作用分析,包括病毒载体、细胞、外泌体、蛋白、抗体,核酸,多肽,小分子化合物等。该系统将先进的光学传感检测器、精致的管路系统、多样化的芯片传感器和强大的数据分析软件结合在一起,通过双流道检测方式最快10min即可准确测定分子亲和力。图2 WeSPR One随着工业客户对全自动高通量的需求越来越多,量准将在今年年底推出第三代WeSPR HT96全自动多功能分子检测仪,该款仪器是基于NanoSPR芯片技术专业研制而成,采用加样即读,无管路结构设计,无需清洗管路,全自动进行。将先进的光学传感装置、高性能机械模块组件、多样化的芯片传感器和强大的数据分析软件结合在一起,为SPR传感芯片自动化实验提供专业的分析检测平台,并提供高效、可靠和精确的结果,同时该仪器还具备全自动酶免工作站的所有功能,可满足一机多用,全自动,高通量,多场景使用。图3 WeSPR HT96仪器信息网:贵公司分子互作分析仪的主要应用领域有哪些?刘钢:量准致力于开发基于NanoSPR技术在生物检测,药物筛选等领域的生物芯片检测传感器以及科学仪器工具的深入研究,构建超过20种商品化生物传感器,匹配不同药筛,基因递送和合成生物学等检测应用场景。已成功用于抗体定量、抗体亚型鉴定、亲和力检测、抗体人源化改造、抗原表位分析,靶点筛选、抗体对筛选等,可助力基因治疗、基因疫苗研究、抗原表位研究、药物筛选与设计、细胞信号传导研究等领域的研发生产。仪器信息网:您如何看待当前分子互作分析仪市场?刘钢:在生命科学领域,分子互作分析仪是生命科学研究、新药研发的核心工具,是生物制药、CRO、CDMO、科研机构的标配设备。目前,高端分子互作分析仪市场几乎被国外进口仪器垄断,价格十分昂贵,需专业人士操作,若将实验外包,检测费用昂贵且无法保证检测结果。在一定程度上限制了用户特别是科研用户或初创企业团队的使用。针对该问题,量准从芯片底层创新出发,研发了WeSPR系列高性价比仪器设备,以及平价芯片耗材产品,尽可能地降低成本,满足大多数科研用户,小型公司和其他资源有限的实验室广泛应用,降低分子互作实验门槛,让每一位生物科研人员都能拥有一台属于自己的分子互作仪。仪器信息网:您认为未来分子互作分析仪的热点市场需求有哪些?刘刚:抗体药物筛选和评价等相关研究将成为分子互作分析仪的热点市场需求。随着生命科学及药物研发的需求深度推进,推出快速、高通量、低成本的实时检测分子间相互作用的新技术对日益增加和多样化的市场应用需求来说势在必行,由此看来,量准的生物分子互作及动力学常数测定产品在药物靶点筛选、抗体筛选优化、药物活性测定及机理分析、肿瘤、病原微生物的基础医学及食品安全评价等领域有着广泛的应用前景,可全方位助力于生物医药的发展。其中,抗体药物因其靶向性好,治疗效果显著,在生物药中占据着举足轻重的地位,目前已经进入了抗体药物发展的黄金时代。随着抗体药的需求越来越大,抗体药物筛选和评价等相关研究会愈发重要和关键,因此,它们将成为未来分子互作分析仪的热点市场需求。
  • 培养“双碳”人才,他们这样做
    每年暑假,200余支南京林业大学(以下简称“南林大”)研究生社会实践团队来到田间地头和厂房车间,进行生态政策宣讲、生态科技服务等,为当地百姓传播生态知识,带来生态理念。这个名为“美丽中国行”的常规活动,8年来共有近5000名研究生的足迹踏上了全国20多个省市。  自2020年9月我国提出“双碳”目标后,南林大积极推动对接国家“双碳”战略的“南林实践”。作为一所以林为特色和优势的“双一流”建设高校,南林大为我国“双碳”目标实现提供智力和人才支撑。  绿色基因植入学子心田  “将绿色基因植入学子的心田,给他们打上厚重的绿色生态底色,为国家‘双碳’目标实现提供人才,是我们人才培养一直以来的特色和优势。”据南林大教务处处长王立彬介绍,近年来,南林大完善课程设置,不断增加生态类选修课数量,目前绿色文明类通识选修课程由2016年的12门增加至59门,学生选修学分由原来2个学分,增加到4-6个学分。  南林大还鼓励并要求各学院开设本院专业与生态环境学科交叉的必修课和选修课。目前,所有学院都开设了生态环境类必修或选修课程。浸染绿色的交叉课程吸收林科优势专业的营养,促进“非林”专业与林科专业间的深度融合,为所有学生带来生态绿色的丰厚滋养。  扎实有效的绿色主战场培养了一批批绿色学子。在每年的毕业设计展上,“零污染”“零甲醛”、巧用废弃物等作品琳琅满目,生态环保是每一届毕业生创作关注的重要主题。据了解,艺术院研究生毕业作品中,环保类设计占80%以上。  “科技护林、生物质负碳能源利用技术、无醛高性能胶粘剂研发… … ”在第七届中国国际“互联网+”大学生创新创业大赛上,南京林业大学学子捧回5个金奖。而这5个桂冠无不打上“双碳”元素。  绿色成果进入千万家  2019年5月,南林大成立中国特色生态文明建设与林业发展研究院; 2021年11月,南林大携手上海瓶行宇宙环保科技有限公司成立“双碳”研究项目组并设立“双碳”研究项目基金,将进一步打造南林低碳品牌,创建全国低碳校园示范。  这是南林大对接国家“双碳”战略的生动实践,也是为该校“双碳”成果培育和绿色人才培养提供了平台和载体。  立足学校特色和优势,在生态文明建设需求上寻找课题,研发绿色科技成果,创造生态科技产业,为国家和社会生态文明建设提供咨询服务和智力支持,为国家”双碳“目标实现贡献南林智慧… … 这是南林大教师自觉的价值追求。  2021年,围绕“双碳”热点,该校组织申报“沿海滩涂农林复合系统能源作物和林木培育及与碳汇能力提升关键技术研究”等3个项目立项江苏省碳达峰碳中和科技创新专项资金。  该校专家在林木遗传育种、森林保护、农林废弃物利用、林产化工、生态与环境、园林规划与设计等方面创造了大量绿色科技成果和产业,直接推动了我国生态科技事业发展,为地方经济建设作出了突出贡献。  据统计,近年来,南林大教师申报的生态环保类科研项目占学校科研总项目数的70%以上。  科研反哺教学,教师聚焦绿色生态项目,必然给学生带来绿色的思维和知识,满怀生态情怀的老师也必然会培养出绿色学子。  不仅如此,南林大专家、学者还带领学生走出校门,把生态科技成果和理论向社会推广、传播。  该校师生深入企业,钻进树林,来到田间地头,指导企业和农民创造生态科技产业,解决实际生产和生态环境问题,不仅改善了地方生态环境,还促进了农民增收致富,学校连续8年获“挂县强农富民工程突出单位”。  挂靠在南林大的“江苏环境与发展研究中心”,以生态伦理与环境保护为研究方向,作为江苏省“科技思想库基地”,为江苏省政府的生态文明建设等相关决策提供咨询服务和智力支撑。该校专家、学者每年深入地方开展生态科技服务活动达400人次以上。  绿色文化传播校内外  “让黄河流碧水,赤地变青山”“替山河装成锦绣,把国土绘成丹青”… … 在南林大校园各主干道,这种绿色标语一字排开;“树人树木”的景观石刻点缀于绿草红花之间。校训“诚朴雄伟,树木树人”,校歌“为了碧水青山”。  打造低碳校园,离不开低碳文化。作为一所林业高校,南林大努力打造生态化低碳文化,力争让每一栋建筑都说话,让每一个空间都传情,让一草一木都育人。  每年南林大校园樱花盛开,灿若云霞,以“生态文明责任与使命”为主题的“生态文化节”便会如期举行,目前已连续举办5届,共组织开展生态文化高层论坛、南林幸运树评选、大学生绿色科技创新作品展、生态书画摄影作品展等130余项活动,让生态文化“随风潜入夜,润物细无声”般地涵养学子心田。  在南林大,形式多样的生态主题活动不胜枚举,学子在丰富多彩的活动中,生态意识和生态责任自觉悄然形成。  该校林学院教师把课堂搬到田野、公园和农家小院,引导学子通过改造废旧物品来实现循环利用,将图纸上的设计方案转化为一个个精致的庭院意境。这项花园设计与营建竞赛活动如今已连续举办14届,已成为该校一项传统品牌生态文化活动。  此外,学校利用春季樱花开放时节、植树节、世界环境日等重要节日节点,组织师生广泛开展植树、节能和节水教育、绿色出行等环保宣传和生态文明实践行动。
  • 农业部今日将对鸡蛋三聚氰胺事件作说明
    近日有媒体报道称,继乳品之后,农业部即将出台三聚氰胺在饲料中的临时管理限量值。农业部畜牧业司司长王智才昨日对本报表示,农业部今日将对鸡蛋检出三聚氰胺的事件公布情况说明,是否出台限量值标准也将在今天揭晓。 近日有不少媒体报道,农业部将会同其他部门进一步修订饲料中三聚氰胺含量的标准。“这种说法不正确。”昨日,王智才接受本报记者采访时表示,三聚氰胺是违禁品,不允许往饲料里添加,农业部去年还对此进行了检查。   据悉,2007年3月份中国出口美国的宠物饲料被检测出三聚氰胺超标后,农业部在当年6月份就发布了饲料三聚氰胺检测方法。正规饲料企业从去年起就开始增加了对饲料中三聚氰胺的检测。   今年7月22日,农业部办公厅发布“关于2008年上半年全国饲料质量安全监测结果的通报”,其中一项是饲料中违禁药物专项监测。其中,在全国288批次的蛋白饲料中检出三聚氰胺17批次,检出率5.90%。   王智才表示,农业部今天将对鸡蛋检出三聚氰胺的事件公布情况说明,是否出台三聚氰胺在饲料中的临时管理限量值,也将在今天揭晓。   ■ 相关反应   输港鲜蛋或须   公示“无三胺”   本报讯 (记者徐春柳)香港食物及卫生局局长周一岳昨天对媒体表示,目前正与国家质检总局讨论,考虑输港鸡蛋应写明“无三聚氰胺”的卫生证明书。   周一岳说,希望内地跟进香港发现的问题蛋。他们正与质检总局讨论,“不过这要等内地考虑和安排才可以。”   ■ 调查蛋白精身世   “三胺蛋白精并非出自中科院”   中科院被质疑“发明”三胺添加剂   本报讯 (记者鲍颖 甘浩)自鸡蛋也查出三聚氰胺后,人们开始怀疑鸡饲料环节出了问题。饲料中添加蛋白精的技术,被网友认为可能与三聚氰胺有关。中科院1999年一则“DH合成高蛋白饲料添加剂”技术转让的信息被网友翻出来晒在网上,因而遭受了“发明三聚氰胺”的质疑。   昨日,中科院新闻发言人蒋协助昨日出面否认,称已经成立调查小组,分析后足可证明中科院与“三聚氰胺饲料添加剂”无任何关系。项目中提到的“DH合成高蛋白饲料添加剂”的技术根本就生产不出三聚氰胺。   被指“推广发明三聚氰胺冒充蛋白质”的中科院专家高银相介绍说,那只是十年前的一个项目方案,并没有找到企业合作、投产,该技术也没申请专利。   这件事情已经给高银相的生活造成了一定困扰。他称,事发后他被停职接受调查,专家的鉴定结果出来后才刚恢复。   蛋白精 以三聚氰胺废料、羟甲基羧基氮等为原料,未经农业部审定批准,是非法饲料添加剂。对此,中国工程院院士、中国疾病预防控制中心营养与食品安全所研究员陈君石称,“蛋白精是我国‘发明’的商业名词,其主要成分就是三聚氰胺,主要用于蛋白质虚高造假。”   本报记者 林文龙   ■ 调查政府公告   大连“问题鸡蛋”推迟公布月余?   韩伟集团称9月22日自检就发现问题,相关饲料厂本月1日已关停   本报讯 (记者孙旭阳)前日,大连市政府发布了有关“问题鸡蛋”的公告,但昨日未向媒体透露最新进展。大连韩伟集团董事长韩伟向记者介绍的事发经过却与政府公告存在矛盾之处。   这纸公告称,早在9月底就已获知韩伟集团出现问题蛋,输港问题蛋可能与饲养场使用的个别批次原料受到三聚氰胺污染有关。尽管已经过去一个月,但“有关部门正在对污染原因进行深入调查”。   究竟是韩伟集团自检发现问题,还是官方例检发现问题,双方各执一词。韩伟告诉本报,9月22日该集团蛋场在自检中就发现部分玉米酒糟中含有三聚氰胺,并对产品进行了召回。而大连市政府称,9月27日在接到辽宁省出入境检验检疫局的例行检查报告后,责令韩伟集团召回,暂停其出口。   昨日,媒体对沈阳新民明兴饲料厂现场的采访证实,该厂于10月初被关停,法人代表也在当时被刑拘。这一时间,与辽宁省出入境检验检疫局发现问题鸡蛋的时间相吻合,但当地政府有关部门和媒体并未公开此事。   直到10月26日,香港食物安全中心曝光“佳之选”鸡蛋三聚氰胺含量超标,韩伟集团和大连市政府才公开承认此事。对信息延迟一个月的原因,韩伟表示公司做好回收工作,已尽本分。大连市政府和辽宁省出入境检验检疫局则都拒绝回应疑问。
  • 创新进展|单进军、谢彤团队构建模拟谱库快速表征一类特殊复杂脂质——心磷脂及其氧化产物
    创新进展近日,南京中医药大学单进军、谢彤团队在Analytica Chimica Acta(分析化学一区,IF: 6.558)正式发表了题为In-silico-library-based method enables rapid and comprehensive annotation of cardiolipins and cardiolipin oxidation products using high resolution tandem mass spectrometer的研究性论文。该文章基于Orbitrap高分辨质谱平台,创新性的通过计算机模拟方式,建立了心磷脂及其氧化产物的质谱谱库。凭借高分辨质谱平台的超高分辨率、亚ppm级质量精度,及Stepped NCE 高能碎裂模式(HCD)获得的丰富二级碎片信息,使得该方法获得模拟谱图与真实检测样本的谱图匹配一致性高。该创新分析方法的建立,对于解决以心磷脂及其氧化物为代表的、具有结构多样性及低丰度分析挑战的代谢物/脂质,进而研究其在疾病发生发展过程中的生物学效应,都有着广泛而深远的参考与借鉴价值,为探索全新的疾病生物标志物带来可能!(点击查看大图)文章赏析心磷脂(CL)是含有3-4个脂肪酰基侧链的独特磷脂。在真核生物中,它主要分布在线粒体内膜,占线粒体内膜磷脂总量的10-25%。心磷脂独特的锥状结构能稳定线粒体膜结构,参与维持线粒体正常的嵴形态。大量文献报道心磷脂参与细胞色素c、电子呼吸链蛋白的正常功能。异常的心磷脂含量、结构和心磷脂氧化会促使细胞凋亡并触发免疫炎症反应。在非靶向脂质组学研究中,发现并快速注释心磷脂及其氧化产物有助于探索心磷脂代谢在疾病发生发展过程中的生物学效应。然而,由于心磷脂及其氧化物的结构多样性及低丰度特征,给其分析鉴定带来极大的挑战。为了解决这一问题,团队在色谱和质谱条件优化的基础上,基于计算机模拟方法建立了心磷脂及其氧化产物的质谱谱库。谱库中涵盖了31578个单溶血心磷脂、52160个心磷脂以及42180个氧化型心磷脂的质谱谱图(谱图数据基于Q-Exactive-MS/MS质谱方法裂解模拟)。该模拟谱库具有较好的兼容性,且谱库中的模拟谱图与真实检测样本的谱图匹配度好,匹配度得分值高,并成功地运用于线粒体非靶向心磷脂表征以及人工氧化心磷脂的研究中。(点击查看大图)该研究列出了样品与模拟谱库的匹配结果,并附上了谱图相似性评分(所有模拟谱库的二级碎片和丰度均来源于标准品模拟)。在优化的色谱条件下,模拟谱库涵盖了三个常规前体离子[M-2H]2-、[M-H]-和[M+NH4]+的二级谱图,扩充了质谱谱库中心磷脂特异性谱图的数量。三种前体离子的模拟谱库谱图相似性评分较高,均表现出较好的匹配度,体现了该方法的优势。(点击查看大图)运用此方法,该研究对心、肝、脾、肺、肾、大脑、小脑、回肠、结肠、十二指肠以及Hep2、A549两种细胞系中的心磷脂进行了定性定量分析。为了评估匹配结果、验证该数据库的可靠性,对不同谱图相似性得分段的谱图数进行统计,结果显示谱图得分值均较高。在10种动物组织线粒体和细胞系样品中,一共鉴定出392种心磷脂。通过新建的计算机模拟心磷脂谱库,能够很好的区分样本中单溶血心磷脂和心磷脂,实现对复杂生物样本中心磷脂的准确测量。(点击查看大图)该研究还建立了心磷脂氧化产物的模拟谱库,并成功对小鼠心脏和肝脏线粒体中的氧化型心磷脂进行了归属。比较了两种人工氧化方式氧化产物的偏好,发现Fenton反应易于生成+O或者+2O的氧化产物,而过氧化叔丁醇的氧化反应倾向于产生+3O或者+4O的氧化产物。通过对氧化碎片个数的统计,发现占比最多的氧化碎片是C18-OH和C18-OOH,提示含有十八个碳的脂肪酰基更易被氧化。有趣的是,在过氧化叔丁醇的反应中,肝脏线粒体中的心磷脂似乎表现出更高的氧化产率,虽然没有进一步的验证,但是推测这种氧化效率的差异可能源于肝脏和心脏不同的代谢能力。团队介绍单进军,博士,教授南京中医药大学中医儿科学研究所副所长,江苏省儿童呼吸疾病(中医药)重点实验室副主任,南京中医药大学——UC Davis医学代谢组学联合实验室中方负责人。江苏省“333高层次人才培养工程”中青年学术技术带头人,江苏省“六大人才高峰”高层次人才选拔培养对象,NIH West Coast Metabolomics Center访问学者。研究方向:代谢组学与中医药;复杂疾病代谢调控机理及中药防治作用。先后主持国家自然科学基金、江苏省自然科学基金、江苏省“333”工程科研项目和江苏省高校自然科学研究重大项目等课题;以第yi或(共同)通讯作者在Gut Microbes,Pharmacol Res,Anal Chim Acta,Phytomedicine和药学学报等国内外期刊发表学术论文60余篇;获国家发明专利3项;获教育部科学技术进步二等奖、世界中联中医药国际贡献奖-科技进步二等奖和江苏中医药科学技术奖一、二等奖。现为世界中联儿童医药健康产品产业分会常务理事兼副秘书长、世界中联儿科专业委员会常务理事、中华中医药学会中药实验药理分会青年委员, 中国中医药信息研究会儿科分会理事、中国研究型医院学会儿科学专业委员会青年委员,《世界科学技术-中医药现代化》杂志中青年编委。谢彤,博士,副教授研究方向:运用代谢组学/脂质组学技术研究(1)呼吸疾病发病机制及中药干预作用;(2)中药复杂组分的体内外物质基础研究;(3)药物安全性。如需合作转载本文,请文末留言。
  • 化学蛋白质组学揭示高铁血红素-蛋白互作谱
    大家好,本周为大家分享一篇最近发表在Journal of The American Chemical Society上的文章,A Chemical Proteomic Map of Heme−Protein Interactions1。该文章的通讯作者是美国斯克利普斯研究所的Christopher G. Parker研究员。高铁血红素(heme)是人体中许多蛋白质的辅助因子,也是血液中氧气的主要转运体。最近的研究也证实了高铁血红素可以作为一种信号分子,通过与伴侣蛋白质结合而不是通过其金属中心反应来发挥其作用。然而,目前关于血红素结合蛋白的注释还不够完整。因此,本文采用化学蛋白质组学的方法去揭示人体中与高铁血红素发生互作的蛋白质谱。化学蛋白质组学是揭示蛋白质功能和发现药物靶标的重要工具。其中,最常用的是基于活性的蛋白质分析(Activity-based protein profiling,ABPP),通过结合活性分子探针标记及串联质谱分析,实现对靶标蛋白的鉴定。如图1b,本文设计了一个“全功能”活性分子探针(HPAP),共包含3个部分:1. Hemin母核,用于与靶蛋白非共价结合;2.光活化基团-双吖丙啶,可在UV光照下生成卡宾,促使分子探针与蛋白发生共价交联;3. 炔基,可在铜催化下与含有叠氮的试剂(荧光标签,生物素)发生点击化学反应,后两者组成FF-control。具体实验流程如下图1a所示,用HPAP处理不同细胞(In Situ)或不同细胞来源的蛋白质组(In vitro),HPAP中的hemin母核可与靶蛋白发生非共价结合,经UV光照,HPAP-蛋白间形成共价交联,再利用点击化学可将HPAP-蛋白与荧光素(TAMRA)或者生物素标签相连,用于后续的荧光成像(In-gel fluorescence)或者链霉亲和素纯化、LC-MS鉴别定量(MS-based I.D. and quantitation)。 图1. (a)使用基于高铁血红素的光亲和探针(HPAP)识别血红素结合蛋白的流程示意图。(b) HPAP、hemin和FF-control的结构;(c) HEK293T裂解物中与HPAP结合的蛋白的荧光成像;(d) hemin加入对HPAP与蛋白结合的影响。作者首先使用了SDS-PAGE去评估了HPAP标记蛋白的能力。如图1c所示,随着HPAP浓度的提高,胶图上条带颜色也逐渐加深,说明HEK293T细胞裂解液中与HPAP结合的蛋白在逐渐增加。如图1d所示,在10 μM HPAP的条件下,逐渐加入hemin,可以看到胶图上条带颜色逐渐变浅,说明hemin与HPAP之间发生了竞争,HPAP模拟了hemin与蛋白的结合过程。随后,作者又使用已知的hemin结合蛋白来确认HPAP捕获目标蛋白的能力。如图2所示,这些已知蛋白被HPAP成功的标记上,但由于hemin的加入,条带的颜色在逐渐变浅(TAMRA)。Western blot的结果显示,蛋白的总量并无太大变化,但hemin的竞争结合,导致与HPAP结合的蛋白量在下降。以上实验均说明,HPAP具有较好的选择性标记能力,能够模拟hemin与靶蛋白的结合,并以共价交联的方式标记在蛋白上。 图2. 用已知的高铁血红素结合蛋白确认HPAP捕获目标蛋白的能力。验证了方法的可行性后,作者将HPAP与定量蛋白质组学结合用于绘制高铁血红素-蛋白质互作谱。考察了多种细胞系,包括:人胚胎肾细胞(HEK293T)、人慢性髓系白血病细胞(K562)以及人原代外周血单个核细胞(PBMCs)。每种细胞系设置了两种实验形式:1)特异性结合实验(Enrichment):通过将HPAP识别出蛋白与FF-Control识别出的蛋白进行对比,排除非特异结合的干扰(图1b),如果同一蛋白通过HPAP富集到的量是FF-control富集到的量4倍以上,则认为该蛋白是HPAP特异性结合蛋白。2)竞争性结合实验(Competition):观察HPAP富集的蛋白在hemin和HPAP同时存在时富集到的量的变化,变化大于3倍且具有显著性差异(p<0.05)的蛋白被认为是HPAP与hemin竞争性结合的蛋白。最终确定的高铁血红素结合蛋白应满足以上两种实验的筛选标准(图3a)。如图3b-d所示,总共鉴定出378个的高铁血红素结合蛋白,其中214个来自HEK293T, 182个来自K562, 107个来自PBMC。尽管三种细胞类型之间的结合蛋白有一些重叠,但大多数靶点蛋白只存在于一种或两种细胞类型中(图3b),这暗示血红素在不同细胞中可能发挥不同的功能。其中,19个靶点蛋白是在UniProt上已经注释为高铁血红素的结合蛋白,剩余都是未揭示的结合蛋白。这些结合蛋白按照功能可划分为:转运蛋白,转录因子,支架蛋白和酶(图3c),根据代谢通路又可进一步划分(图3d)。作者最后对几个新发现的结合蛋白进行了验证,并选择IRKA1进行进一步的作用机制研究。IRKA1在调节炎症信号通路中起着关键作用,IRAK1被IRAK4磷酸化,然后自磷酸化,产生NFkB介导的炎症反应。经实验确认(图4),hemin是IRKA1的一种变构活化配体,可增强其酶活性,促进IRAK1的自磷酸化。 图3. 基于蛋白质组学的HPAP-蛋白互作分析。 图4. Hemin对IRKA1的调节作用。总之,本文设计开发了一种基于高铁血红素的光亲和探针,它可以与化学蛋白质组工作流程结合,以识别不同蛋白质组中的高铁血红素结合蛋白。利用该方法也可拓展至其他分子配体靶标蛋白的识别。 撰稿:刘蕊洁编辑:李惠琳原文:A Chemical Proteomic Map of Heme-Protein Interactions参考文献1. Homan, R. A., Jadhav, A. M., Conway, L. P., & Parker, C. G. (2022). A Chemical Proteomic Map of Heme-Protein Interactions. Journal of the American Chemical Society, 144(33), 15013–15019.
  • 单智伟团队7月《科学》刊文一作刘博宇:原位电镜研究镁合金的应用与启发
    p    strong 仪器信息网讯 /strong 北京时间7月5日凌晨,国际顶级期刊《Science》刊发西安交通大学单智伟教授团队最新研究成果:通过采用原位电镜纳米力学测试技术,表明塑性差并不是镁的固有属性,通过提高流变应力(如通过细化晶粒或提高应变速率)来促进位错形核和滑移,可能是行之有效的增塑方法。 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 600px height: 186px " src=" https://img1.17img.cn/17img/images/201908/uepic/d367c37d-074a-416d-bf09-fd0a12a74a7b.jpg" title=" 2.jpg" alt=" 2.jpg" width=" 600" height=" 186" border=" 0" vspace=" 0" / /p p   成果刊发消息一出,便引起业界广泛的关注。西安交通大学官网关于此项成果报道的关注点击也已迅速破万。关于此次刊发成果,西安交通大学青年教师刘博宇博士为本论文的第一作者,博士研究生刘飞为共同第一作者,西安交通大学单智伟教授、澳大利亚莫纳什大学聂建峰教授和美国内华达大学李斌教授为共同通讯作者。参与该工作的科研工作者还包括西安交通大学张磊教授、博士研究生杨楠、西安科技大学翟啸波博士、美国麻省理工学院李巨教授、约翰霍普金斯大学马恩教授、内华达大学博士研究生杨洋。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201908/uepic/735ec5c6-2054-4877-9e5c-f6aa64e575f3.jpg" title=" DSC_0066_副本.jpg" alt=" DSC_0066_副本.jpg" / /p p style=" text-align: center " span style=" color: rgb(0, 176, 240) " 西安交通大学青年教师刘博宇博士进行报告 /span /p p   7月13日,该刊发成果的第一作者刘博宇博士在成都“中国材料大会”的“透射电镜材料表征与评价”专场进行了题为《原位电镜技术在镁合金腐蚀防护和强韧化设计方面的应用与启发》的演讲报告,并讲解到了7月5日刊发《Science》文章中的系列研究过程。作为大会合作媒体,仪器信息编辑全程听取了报告,受益良多。以下,笔者将刘博宇博士现场演讲内容进行整理,以期为相关领域科研工作者带来启发。 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 450px height: 338px " src=" https://img1.17img.cn/17img/images/201908/uepic/8ff04357-11e9-47c1-bbbd-2d1a2289d189.jpg" title=" 1.jpg" alt=" 1.jpg" width=" 450" height=" 338" border=" 0" vspace=" 0" / /p p style=" text-align: center " span style=" color: rgb(0, 176, 240) " 单智伟教授与团队成员一起讨论实验结果(图自西安交大官网) /span /p p    span style=" background-color: rgb(255, 0, 0) color: rgb(255, 255, 255) " strong “原位透射电镜技术”之于“金属结构材料研发” /strong /span /p p   直观来看,金属结构材料的研发与应用,往往是宏观的,看得见的,以米为单位的等 而原位透射电镜的观察与测试则是微观的,纳米的,原子的。两者似乎两不相干,从微观到宏观相隔着“世界上最遥远的距离”。但是,实际并非如此,如果我们合理找到研究的领域,去找到关键研究的问题,原位电镜技术在金属结构材料研究中可以发挥到非常巨大的作用。 /p p    strong span style=" background-color: rgb(255, 0, 0) color: rgb(255, 255, 255) " 为什么研究镁? /span /strong /p p   作为最轻质的金属结构材料,镁在航空航天、汽车、高铁、电子产品和医疗等领域具有广阔的应用前景。然而,相比于传统的金属材料,镁的塑性较差,型材和零件的变形加工困难,工艺成本高。这严重制约了镁作为结构材料的广泛应用。 /p p   镁,是最轻质的金属结构材料,密度与塑料相近。优点包括可降解易回收、电磁屏蔽、生物相容性、高阻尼等。在航空航天、汽车、高铁、电子产品和医疗等领域具有广阔的应用前景。各个国家也是十分重视,我国《“十三五”国家科技创新规划》也更是将镁基材料列为国家重点发展对象。 /p p   镁如此重要,为什么没有得到大家更多的关注呢?刘博宇将制约镁应用的瓶颈比喻为 strong “镁人病” /strong ,包括“皮肤病”之易腐蚀、“软骨病”之强度低、“脆骨病”之塑性差等,这些缺陷严重制约了镁作为结构材料的广泛应用。 /p p    strong span style=" background-color: rgb(255, 0, 0) color: rgb(255, 255, 255) " 原位电镜技术能做什么?能有什么启发? /span /strong /p p    strong 一、原位电镜技术应用之镁/镁合金防腐蚀新技术:对材料表面改性的启发 /strong /p p   镁易腐蚀的原因包括:自身属性(最活泼的结构金属材料)、原生氧化膜不致密等。所以人们在寻找一种致密、稳定、牢固的防腐蚀膜层。 /p p   在原位电镜研究过程中,有趣的发现了电子束活化CO2与MgO可以生成MgCO3。这就给与一个 strong 启发: /strong strong 如果活化CO2与Mg的表面MgO发生反应是否可以生成MgCO3的致密膜? /strong 按照这种设计理念,进行原位电镜实验,假设Mg十分活泼,放进电镜样品室马上可以在表面生成MgO,然后加以电子束,结果确实在Mg表面生成了致密的MgCO3。(此部分工作由王悦存博士开展) /p p   那么生成的MgCO3致密膜是否防护有效?接下来进行了去离子水浸泡验证实验,发现电子束活化CO2处理过的表面更加耐腐蚀。同时,对已经腐蚀的表面进一步进行活化CO2反应处理,发现同样可以生成致密MgCO3。并表明该反应过程透射电镜电子束辐照不是关键, strong CO2的活化 /strong 才是关键。 /p p    strong 二、原位电镜技术应用之镁合金的强化/高塑性设计:对晶体结构设计的启发 /strong /p p   在镁中, strong 形变孪晶 /strong 会在极低的应力下大量产生,导致低强度。解决的方案是“ strong 时效强化 /strong ”,即引入析出相,像钉扎位错一样钉扎孪晶界,提高强度。但研究发现,镁合金的时效强化效果较弱。 /p p   借助原位电镜研究发现,镁中存在特殊的孪晶界,类似水波,逐波移动,这也导致了宏观的低强度。根据这一观察结果,设计了一系列不同形貌的析出相,选取含有不同形貌析出相的镁合金,进行原位透射电镜纳米力学测试。观察析出相对孪晶的阻碍作用,对比强化效果。最终表明,颗粒和棒状析出相对孪晶的抑制作用有限,片层和网状析出相对孪晶的抑制效果良好。(此部分工作主要由孙楠博士开展) /p p    strong 三、原位电镜技术应用之镁合金增强塑性 /strong /p p   一般来讲,均匀的变形需要 strong 5个独立滑移系 /strong 。而镁中易开动的& lt a& gt 滑移仅提供4个独立滑移系,且均不能协调& lt c& gt 沿方向的应变。理论讲, strong & lt c+a& gt 位错滑移可提供5个独立滑移系,且可协调& lt c& gt 轴应变 /strong 。(如下图) /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 600px height: 208px " src=" https://img1.17img.cn/17img/images/201908/uepic/23e7b5ad-d3d2-4861-9a69-089389fd9203.jpg" title=" 3.jpg" alt=" 3.jpg" width=" 600" height=" 208" border=" 0" vspace=" 0" / /p p   但关于& lt c+a& gt 位错是否为有效的塑性载体,业界有不同的观点。 strong 主流观点 /strong 认为,& lt c+a& gt 位错不稳定,分解为不可动结构, strong 不承载塑性 /strong 。只能通过合金化提高塑性,加入某些特定元素,促进& lt c+a& gt 位错交滑和增殖,抑制分解。同时也有 strong 一些声音 /strong ,认为可以通过促进& lt c+a& gt 位错形核和滑移来提高镁合金的塑性。 /p p   在此背景下,高塑性镁合金的设计思路变得明了:如果主流观点是正确的,便 strong 制造更多的& lt c+a& gt /strong ;否则, strong 便放弃& lt c+a& gt ,或稳固& lt c+a& gt /strong 。但更为本质的问题,是需要解释这些性质背后的机理,这便要选择合适的研究方法。 br/ /p p    strong 为什么选择原位电镜技术的研究方法? /strong ——首先要了解传统研究方法的局限性:测试样本大都为块体、多晶材料(位错及孪晶会干扰对& lt c+a& gt 位错的分析);传统表征方法无法的到位错在三维空间的形态,导致争议性结果;无法原位观测位错行为,导致争议性结果;目前主要依赖计算机模拟,但模拟的结果与势函数、初始条件和模拟方法密切相关,可能与实施有偏差等。而结合这些局限性与实际需求,最终选择了原位电镜纳米力学测试技术。 /p p    strong 实验设计要回答哪些问题? /strong ——沿& lt c& gt 轴压缩,到底没有塑性?& lt c+a& gt 位错能滑移吗?能贡献塑性吗?& lt c+a& gt 位错究竟在哪(个滑移面上)?(此部分工作主要由刘飞博士开展) /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 450px height: 384px " src=" https://img1.17img.cn/17img/images/201908/uepic/c548aa6e-8b1b-49f4-93ac-f8d4a5e32304.jpg" title=" 4.jpg" alt=" 4.jpg" width=" 450" height=" 384" border=" 0" vspace=" 0" / /p p   原位电镜纳米力学测试发现, strong 镁不是天生就脆 /strong !镁有很大的沿& lt c& gt 轴的塑性应变,位错应该功不可没。接着揭示了& lt c+a& gt 位错的典型滑移行为,包括:半位错环长大、刃位错滑移(主流观点认为不可滑)、位错偶极子、位错反复滑移等。(如上图)同时三维重构研究发现,& lt c+a& gt 位错既可以在锥面1上滑移,也可以在锥面2上滑移,还可以发生交滑移。(如下图) /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 450px height: 325px " src=" https://img1.17img.cn/17img/images/201908/uepic/df3c1cf4-90e4-448f-ae26-d1ff4fb212fe.jpg" title=" 5.jpg" alt=" 5.jpg" width=" 450" height=" 325" border=" 0" vspace=" 0" / /p p    span style=" background-color: rgb(255, 0, 0) color: rgb(255, 255, 255) " strong 小结 /strong /span /p p   原位电镜技术在材料结构研究中,并不是遥不可及,可以为微观测试与宏观性能搭建桥梁,对许多科研工作带来启发。具体应用包括实时观测材料在受外界刺激下的响应(力、电、热、气氛及多场耦合)、揭示材料微观组织和缺陷演化与力学行为和腐蚀行为的内在联系、“破译”决定材料性能的关键“基因密码”等。 /p p    strong span style=" background-color: rgb(255, 0, 0) color: rgb(255, 255, 255) " 附:关于7月5日《Science》刊发文章 /span /strong /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 600px height: 170px " src=" https://img1.17img.cn/17img/images/201908/uepic/8dbe3bab-c34b-45d2-a233-4841e840e3c4.jpg" title=" 6.jpg" alt=" 6.jpg" width=" 600" height=" 170" border=" 0" vspace=" 0" / /p p   当前主流观点认为,塑性差是镁的本征属性,原因是镁中的锥面位错(一种晶体缺陷)会自发地分解为不可滑移的结构,无法协调塑性变形。因此,提高塑性需要通过添加某些特定的元素来调节锥面位错的行为。但也有一些学者持不同观点,认为锥面位错是有效的塑性变形载体,只要能促进锥面位错的形核和滑移,镁的塑性就可以提高。上述争议直接影响到下一代高塑性镁合金的设计思路和技术路线,因而成为一个急需解决的科学难题。然而,由于锥面位错的几何形态和结构非常复杂,很难通过实验来全面地解析。此前的研究通常以计算机模拟为主,相关观点和推论均缺乏有力的实验证据。 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 450px height: 382px " src=" https://img1.17img.cn/17img/images/201908/uepic/efd7c9cd-9c6b-4af6-b057-a855d3aece05.jpg" title=" 7.jpg" alt=" 7.jpg" width=" 450" height=" 382" border=" 0" vspace=" 0" / /p p style=" text-align: center " span style=" color: rgb(0, 176, 240) " 图1 亚微米尺寸镁的大塑性变形 图2 实验观测到的塑性变形是由锥面位错滑移主导的 /span /p p style=" text-align: center " span style=" color: rgb(0, 176, 240) " 图3 原位电镜捕捉到单根锥面位错的滑移 图4 三维图像重构帮助解析锥面位错的形态及其滑移面 /span /p p   针对上述难题,西安交通大学单智伟教授团队采用原位电镜纳米力学测试技术来解决样品几何形变、微观结构演化以及力学曲线三者之间一一对应的难题 选取合适的加载方向来消除其它位错的干扰 采用梯度样品设计来解决捕捉和表征单根位错难的问题 运用三维图像重构技术来解决位错滑移面不易确定的难题 并通过对比力学曲线的方式澄清了电子束影响的问题。得益于这些有针对性的实验设计,研究团队以令人信服的结果,证明了最起码对亚微米尺度的纯镁而言,各种类型的锥面位错(刃、螺、混合型)不仅可以滑移,而且可以导致非常大的塑性变形。与块体材料相比,微纳米样品呈现出更高的屈服强度和流变应力。因此,研究团队推测高应力促进了锥面位错的形核和滑移,进而提高了测试样品的塑性。通过进一步深入分析,不仅确定了位错的滑移面,而且还清晰地观察到锥面位错的交滑移、位错偶极子的形成以及位错往复运动等此前尚未报道过的重要现象。 /p p   该研究为完善镁的塑性变形理论提供了重要的实验数据,并为高塑性镁合金的开发带来新的启发。 /p p   该研究得到了国家重点研发计划、国家自然科学基金委、111计划2.0、中国博士后科学基金、陕西省重点产业创新链、西安交大青年拔尖人才计划和基本科研业务费等项目的资助。( strong 论文链接 /strong : a href=" https://science.sciencemag.org/content/365/6448/73" target=" _blank" style=" color: rgb(0, 176, 240) text-decoration: underline " span style=" color: rgb(0, 176, 240) " https://science.sciencemag.org/content/365/6448/73 /span /a )。 /p p   近年来,单智伟研究团队依托西安交通大学材料学院、金属材料强度国家重点实验室、西安交通大学微纳中心和陕西省镁基新材料工程研究中心,开展了一系列富有成效的基础研究、技术攻关和成果转化。2014年,发现了镁中不同于位错和孪晶的室温变形新机制,成果发表于《自然· 通讯》,并荣获美国TMS学会镁分会年度最佳基础研究论文奖 系统研究了镁合金中析出相形貌对孪晶行为的影响,并进而发展了一种判断镁合金强塑性的简单判据,成果发表于《材料科学技术》(封面推荐,2018) 发现通过活化二氧化碳,可以在室温下将镁表面的氧化层或腐蚀产物转变成一种致密的保护膜层,不仅可显著提升镁及其合金的抗腐蚀性和强韧性,而且大幅提高镁的抗氧化能力,从而发明了一种绿色、低成本镁合金涂层新技术,成果发表于《自然· 通讯》(2018),并获得国家发明专利授权 针对原镁冶炼工艺落后、自动化程度低和环境污染严重的现状,提出并验证了原本需要在真空条件下进行的原镁冶炼可以在常压进行,并与华西能源公司联合攻关,开展了原镁常压生产的工业化装置的开发。针对原镁杂质元素种类多、含量高、波动大的痼疾,从原子机理出发,开发出全新的工艺流程,可在不显著增加成本的情况下,从料球直接生产出99.99%以上纯度的高纯镁,革新了此前领域内普遍认为皮江法(硅热还原法)不能直接生产高纯原镁的认知。上述成果的推广和应用,有望从整体上提升镁基产品质量和性能。 /p p br/ /p
  • 辽宁沈阳:做强检验检测 赋能高质量发展
    保障安全、护航民生、创新赋能……记者近日获悉,辽宁省沈阳市市场监管部门争做高质量发展的“助推器”,构建食品和药品检验“双一流”体系,支撑食品评价性抽检和对药品抽样检验;特检机构在检测技术研究与创新方面不断取得新突破,为气瓶制造企业提供研发试验和技术支撑。据介绍,沈阳市市场监管部门不断强化抽检监测对保障食品安全的支撑作用,锚定打造全国食品和药品检验技术“双一流”高地的目标,建设食品、药品检验综合实验楼和实验动物中心,增强检验仪器设备储备,不断强化沈阳市食品药品检验所的安全技术支撑体系建设。完成对食品和药品检验领域信息管理系统整合,检验业务信息采集自动化、行政管理模块化、服务客户信息化,沈阳市食品药品检验所实现理化、微生物和毒理学三大注册备案检验领域的全覆盖。近年来,沈阳市食品和药品检验机构高标准完成多起应急专项抽检监测任务,高效解决民生诉求,全市未发生系统性、行业性、区域性食品药品质量安全问题。作为基础部件,氢能源气瓶正在快速应用于储氢、运输以及燃料汽车上,而其安全性能和使用性能是应用的重要保证。按照《沈阳市氢燃料电池汽车产业发展三年行动方案(2023—2025)》要求,沈阳市市场监管事务服务中心所属沈阳特种设备检测研究院(以下简称沈阳特检院)致力于检测技术的研究与创新,目前对车用金属内胆氢能源纤维缠绕气瓶(Ⅲ型)型式试验(不含氢气循环试验项目)已形成了一套特有的实验检测方法,自主研发试验设备占比达80%以上,现有检测技术已达到国内领先水平,向国内多家大型气瓶制造企业提供气瓶型式试验服务。沈阳特检院充分发挥技术优势服务新能源产业发展,在现有实验室建设基础上,再投入资金对仪器设备升级并引进更新的试验设备,扩建试验场地,外派技术人员学习,进一步提高实验室整体检测水准,更好地服务气瓶制造企业的研发试验,为气瓶制造企业提供技术支撑。
  • 污染排放控制增氨氮和氮氧化物两项指标
    环保部污染物排放总量控制司司长赵华林表示,“十二五”期间,除了“十一五”期间已经实施的二氧化硫(SO2)和化学需氧量(COD)外,氨氮(NH3-N)和氮氧化物(NOX)也将纳入总量控制。   赵华林日前在“2010(第八届)城市水业战略论坛”上表示,“十二五”期间会对氨氮和氮氧化物进行总量控制,同时也会将重金属、可吸入物等减少污染的责任放在地方政府。   他说,现在空气中含有的氨氮已经超过了二氧化硫,成为空气中的主要污染物,“现在的酸雨已由硫酸型酸雨转向硝酸型酸雨,”而水中的氮氧化物也使得水体酸化和富营养化,出现了大量的蓝藻问题。   “最近重金属污染也出了很多事”,赵华林表示,会根据不同地区在重金属、磷等问题上要求地方政府有总量控制。   链接   氮氧化物   包括多种化合物,如一氧化二氮、一氧化氮、二氧化氮等。氮氧化物都具有不同程度的毒性,可刺激肺部,使人较难抵抗感冒之类的呼吸系统疾病。以一氧化氮和二氧化氮为主的氮氧化物是形成光化学烟雾和酸雨的一个重要原因,氮氧化物与空气中的水反应生成的硝酸和亚硝酸是酸雨的成分。   氨氮   是水体中的重要耗氧污染物,氨氮对自然环境和人体有很大的危害,如水源中氨氮浓度过高,将导致自来水中加氯量增加,从而使自来水中有机氯量随之相应增加,对人体健康产生不利影响。氨氮也可导致水富营养化现象产生,是水体中的主要耗氧污染物,对鱼类及某些水生生物有毒害。
  • 沃特世7月26日“胆汁酸-肠道菌群互作在肝病中的发现与应用”网络讲座即将启动
    日期: 2018年7月26日时间: 14:00 – 16:00地点: 网络讲座语言: 简体中文 胆汁酸代谢的调控是肝细胞的主要功能之一。在各种理化因素所导致的肝损伤模型中,胆汁酸代谢异常是肝脏病变的基本特征。胆汁酸由胆固醇为原料在肝细胞中合成产生,合成后的胆汁酸与甘氨酸或牛磺酸结合,形成结合型胆汁酸并分泌在胆囊中储存。 现代研究表明,胆汁酸还是重要的信号调节分子,游离型和结合型胆汁酸可以激动转录因子Farnesoid X receptor(FXR),而FXR不仅对胆汁酸的合成、分泌与转运具有重要的调节作用,而且在糖、脂和能量代谢调节中扮演重要角色。 本讲座将详细阐述胆汁酸的肝肠循环,以肝炎、肝纤维化、肝硬化和肝癌为例论述血清胆汁酸的显著提高与人的肝脏疾病直接相关,最后以胆汁酸-肠道菌群之间对话出错导致肝癌的发生作综述。 讲座概要: 1.详细阐述胆汁酸的肝肠循环2.论述血清胆汁酸的显著提高与人类肝脏疾病的直接关系3.综述胆汁酸-肠道菌群之间对话出错可导致肝癌的发生 主讲者:王洋 博士(麦特绘谱生物科技(上海)有限公司技术支持) 毕业后就职于麦特绘谱(上海)科技有限公司,致力于开发和推广代谢组学技术方法(LC-MS/MS、 GC-TOF/MS),精通代谢组学技术在生物医药领域尤其是肝病研究及中医药研究中的应用,在代谢组学科研课题和项目设计上实战经验丰富,多次协助客户成功申请国家及地方的基金。 登录沃特世官网并搜索“胆汁酸-肠道菌群互作在肝病中的发现与应用”即可进行注册报名。 此网络讲座免费报名参加。您只需要使用一台链接网络的电脑即可参加。收到您的注册信息后我们会筛选并在讲座前通过电子邮件给您发送讲座登录链接。为了确保您成功接收邮件,请尽量避免使用网易邮箱(163.com&126.com)注册,谢谢!
  • 环保部:省级政府及央企将签大气污染防治责任书
    从环保部获悉,下半年我国大气污染防治将制定考核办法,环保部将配合有关方面把配套政策措施分解到有关部门,与各省(区、市)政府和中央企业签订大气污染防治目标责任书,同时建立京津冀及其周边地区大气污染防治协作机制。   据介绍,我国扎实推进主要污染物减排工作。上半年全国化学需氧量排放总量1199.3万吨,同比下降2.37% 氨氮排放总量125.9万吨,同比下降2.15% 二氧化硫排放总量1056.9万吨,同比下降2.48% 氮氧化物排放总量1167.5万吨,同比下降3.02%。   监测结果显示,上半年全国地表水国控断面好于类水质断面比例同比提高3.4个百分点,劣类水质断面比例同比降低1.9个百分点。   环保部上半年严格建设项目环评审批,对不符合要求的14个项目不予批复或暂缓审批,涉及总投资近640亿元。   环保部部长周生贤表示,下一步我国将加快建立重污染天气监测预警应急体系,制定和完善应急预案,完成空气质量新标准第二阶段监测任务。在全社会树立&ldquo 同呼吸共奋斗&rdquo 的行为准则。加快编制清洁水行动计划和农村生态环境保护行动计划,抓紧研究修订地下水环境质量标准,抓紧公布土壤污染调查状况。
  • 弗莱贝格仪器(上海)有限公司总经理卢燕:发挥女性特质,将工作做细做精
    巾帼不让须眉,女性力量历来为社会所关注。在科学仪器及分析检测行业,不仅有令人敬仰的女院士、女专家,还有“硬核”女高管,资深女工程师、女销售、女市场,以及从事科学仪器及分析测试行业的广大女性从业者… … 越来越多的女性工作者正在通过自己的思考与行动影响着科学仪器及分析测试行业的发展。  弗莱贝格仪器(上海)有限公司总经理 卢燕  Instrument:请分享一下您作为仪器行业女企业家/女科学家的成功经验?  答:自从进入科学仪器领域15年以来,接触了各行业的多种设备,也承担过相关产品不同岗位的工作,之前的基础工作其实对我后来组建队伍有很大的帮助,让我了解了作为一个仪器企业的管理人员需要掌握的基础和要点。同时,通过对仪器行业的不断了解也让帮助我更好地判断一个产品的定位和发展。  Instrument:2021年“三八妇女节”来临之际,您想给女性后浪提什么建议?  答:在自己的岗位上做细做精,发挥女性细致敏感的特性,抓住机会吸收不同领域的相关资讯,找到合适自己的定位。  其实我的专业是生物化学,不是专门学习分析仪器这一块的,但是由于当时在研究生阶段的课题接触到不少仪器设备,所以在择业的时候就选择了液相色谱产品,进入了仪器行业。一开始是从一名基础的应用工程师开始的。因为当时这条产品线刚刚进入中国,所以涉及到了很多产品的其它事务,这对刚出大学的一名职场新人来说也是很大的挑战。不仅要在技术上掌握产品,还要熟悉售前售后流程,同时还要和国外工厂进行沟通。这个过程是对自己是有压力的,同时也快速培养起一名仪器人所需要的各种素质。这对我后面的发展是具有非常重要意义的一段过程。  作为一名女性,面对工作的压力,我觉得最大的挑战还是生为人母后无法像以前拎起包就走,对家庭和孩子的牵挂会更多。所幸的事,年轻的时候积累的经验让我能逐渐转变工作重点和方向。我从一个跑在一线的人员,逐渐往管理方向转型。当然,这个转型也不是顺其自然。在外企工作多年后,我希望凭借自己的经验能创出另一片天地。于是,我来到一家业界有名的私营企业,担任仪器部的经理及其分公司的经理,分管仪器项目。后来,又自己创业。这一路的经历都很宝贵。  对于事业和家庭,因为我先生也是同行业人,所以互相非常理解和支持。大家尽可能平衡好,让这个忙碌的家也充满爱和包容。还有一点建议,就是再忙的工作也要给孩子留出完全属于他的时间,只有这样,才是真正的平衡。好好工作,好好生活。缺一不可!  2021年国际妇女节来临之际,仪器信息网特别策划科学仪器与分析测试界的“她”力量活动,向业界广大女性工作者征集素材。详情戳:https://www.instrument.com.cn/news/20210304/574066.shtml
  • FIDA分子互作仪:带你复现Nature青睐蛋白质与核酸互作50分顶级发文思路,还不快学起来!
    研究背景Nature:清北团队合作发现CRISPR免疫增效子,建立Cas9核酸酶生长进化模型CRISPR-Cas系统是一种强大的基因编辑工具,但Cas9核酸酶活性仍需提高。现有的方法存在着种种局限性,例如优化序列可能破坏结构、改变表达方式可能导致副作用、使用辅助蛋白会增加复杂性等。因此,开发新的方法来增强Cas9核酸酶的活性仍是CRISPR-Cas系统研究中的一个重要课题。2024年5月29日,来自清华大学和北京大学的研究团队在Nature上合作发表了题为:Pro-CRISPR PcrIIC1-associated Cas9 system for enhanced bacterial immunity的研究论文研究团队通过生物信息学分析、结构生长轨迹分析、生化实验、冷冻电镜解析和大肠杆菌抗噬菌体实验等手段,发现了一类新型CRISPR免疫增效子PcrIIC1,可以显著增强Cas9核酸酶的活性。研究团队还建立了Cas9核酸酶生长进化模型,揭示了Cas9蛋白结构和功能的演变规律,并阐明了PcrIIC1增强Cas9活性的分子机制。这项研究为我们进一步理解CRISPR系统的进化历程,以及开发基于CRISPR免疫增效子的高效基因编辑工具奠定了基础。研究思路通过生物信息学分析,研究团队观察到一类新型关联基因(Novel-associated genes, NAGs),显著富集存在于较大蛋白体积的II-C型Cas9的基因簇中,并推测这些NAGs可能参与到Cas9介导的细菌免疫过程。图1. 结构生长轨迹分析方法(左)和II-C型Cas9的生长轨迹图(右)通过生化实验和冷冻电镜解析复合体结构表明,来自金黄色细菌属(Chryseobacterium sp.)的CbCas9生长出了一个全新的增强Cas9活性的β-REC2结构域,以及一个全新的能够与其关联基因PcrIIC1互作的CTH结构域。通过蛋白间相互作用,2个CbCas9蛋白和2个PcrIIC1蛋白能够形成异源四聚体复合物。图2. 冷冻电镜分析CbCas9和PcrIIC1结合的三个阶段蛋白质与核酸的分子互作实验表明,与单独的CbCas9相比,CbCas9-PcrIC1复合物表现出增强的DNA结合进而体现出切割活性,对原间隔区相邻基序序列的兼容性更广,对错配的耐受性更强,抗噬菌体免疫性增强。研究利用溶液中标记的分子互作方式获得亲和力,得出与单独的CbCas9相比,CbCas9-PcrIC1复合物表现出增强的DNA结合(图3a)进而体现出切割活性,对原间隔区相邻基序序列的兼容性更广,对错配的耐受性更强,抗噬菌体免疫性增强。图3. PcrIIC1增强CbCas9的DNA结合(a)、切割(b)、PAM兼容性(c)、DNA解旋 (d) 和错配容忍 (e) 能力最后,为了检验CRISPR免疫增效子PcrIIC1对CbCas9抗噬菌体免疫能力的影响,研究人员在大肠杆菌中进行了抗噬菌体实验。以上结果说明CbCas9-PcrIIC1复合体的形成对整个CRISPR-Cas系统的免疫增强至关重要。图4. PcrIIC1显著增强了CbCas9系统的细菌免疫活性FIDA如何更好复现Nature蛋白与核酸互作发文思路流体动力分散技术(FIDA)通过第一性物理原理直接获取分子的绝对流体动力学半径(Rh),通过追踪分子微妙的变化来表征生物分子的行为、特征以及功能。Fida Neo分子互作仪涵盖亲和力表征、亲和动力学表征、分子质量表征三大功能,一次实验即可获得互作与分子质控的数据,让互作的数据有“法”可依。FIDA技术无需固定、无需加热,甚至无需标记,可兼容所有缓冲液,是对现有分子互作技术是一次不一样的升级。FIDA技术可用于CbCas9-PcrIIC1复合物冷冻电镜前样品质控,CbCas9-PcrIC1复合物与DNA的亲和力实验以及动力学实验,以及CRISPR- cas以及核酸复合物的大小和定量表征等方面,具体如下:FIDA多维蛋白复合体表征,快速无稀释优化冷冻电镜样品,丰富您的蛋白质表征数据。FIDA所获得的Rh为绝对的粒径大小,可以直接与后期的电镜数据做比较。此外FIDA内置的 PDB 关联程序,可以将实际获得的 Rh 与数据库中的结构信息进行比较,有助于结构的精细解析。FIDA技术单次运行只需要40 nL 蛋白质在 4 分钟内获得的完整蛋白质 QC 图,包括冷冻电镜样品QC的关键参数表征,例如多分散性指数(PDI),聚集(Agg),粘度(Viscosity),粘附性(Stickiness),完整性(Rh)等指标,FIDA是一种非常有效的支持所有生物物理学和结构生物学的基本工具。图5. FIDA单次测试的得到8个蛋白表征数据冷冻电镜应用:FIDA:4分钟给您无稀释的冷冻电镜样品优化解决方案FIDA和本篇研究中应用的分子互作技术都是一种在溶液状态下通过荧光分子标记表征分子互作的技术。对于蛋白可能需要形成多聚体,在溶液环境下,更能有效的体现蛋白与蛋白或蛋白与核酸互作的真实情况。FIDA 可以使用含盐和洗涤剂的缓冲液条件,具有不同环境中(类体内环境)进行测试的灵活性。这使得研究者能够分析不受缓冲液成分限制的核苷酸,以确保其数据的准确性和可靠性。FIDA 这种在溶液内检测分子互作技术,是理想的结合能力检测,因为它不依赖于潜在的阻碍性表面固定,不受结合域空间方向影响的表征。图6. FIDA实验原理示意图FIDA不仅可以表征互作亲和力,也同时无标记检测CRISPR核酸酶与gDNA相互作用的热力学、亲和力、和结合动力学,全面表征蛋白与核酸互作。FIDA不仅可以完成本研究中得到的CbCas9-PcrIC1复合物表现出增强的DNA结合亲和力,还可在无标记下表征蛋白与核酸的热力学参数与结合动力学,甚至表征结合时蛋白构象变化与获得有关基因编辑过程的分子细节的定量表征。FIDA技术可以处理带负电荷分析物和带正电荷配体,使利用FIDA能够深入了解CRISPR- cas组分之间的结合相互作用,并以更高的准确性和效率表征和优化CRISPR系统。FIDA是一种序列无关的技术-不需要事先了解序列。FIDA的序列独立性质可对未知或未表征的基因组区域进行研究,同时简化工作流程。图7.(A) FIDA实验示意图。ReporterRNA用于识别RNP的大小和饱和点(上),用其报告RNP结构作为竞争分析的起点(下) (B)正向结合(上)和反向滴定(下)期间获得的原始FIDA数据 本研究在分子层面直观的揭示了免疫增效子PcrIIC1的作用。首次发现了一类新型的CRISPR免疫增效子可以通过二聚化Cas9效应器提升Cas9活性,这些结果不仅有助于我们进一步理解CRISPR系统的进化历程,还为未来基于CRISPR免疫增效子的高效基因编辑工具的开发奠定了基础。FIDA对于蛋白质复合体的多维表征和对蛋白与核酸互作亲和力与动力学的的检测,不依赖于分子量变化,样本用量少(仅需40nL),是一种在溶液状态下且不受缓冲液成分影响的多维表征技术。对于在本研究中相似的蛋白可能需要形成多聚体,在溶液环境下,更能有效的体现互作的真实情况。
  • 2分钟教你做实验!— 纳氏试剂分光光度法测氨氮空白值偏高的原因探讨
    让您一目了然做实验-纳氏试剂分光光度法测氨氮的操作过程 一、检测原理以游离态的氨或铵根离子等形式存在的氨氮与纳氏试剂反应生成淡红棕色络合物,该络合物的吸光度与氨氮含量成正比,于420nm波长处测量。 二、实验步骤1移取标准溶液、待测溶液定容至50毫升2分别加入1.0mL酒石酸钾钠或矿物质稳定剂2滴3加入以二氯化汞为原料的纳氏试剂1.5mL或以碘化汞为原料的纳氏试剂1.0mL4混匀后静置10min510mm比色皿,在420nm波长下,以水作参比测试吸光度三、线性空白值偏高的常见问题原因分析及解决方案1、用1cm比色皿时的空白吸光度空白值偏高,大于0.030,导致线性不好或截距偏大。原因分析:(1)试剂纯度(所用试剂含铵盐,如酒石酸钾钠);(2)试验用水被污染,引入氨或者铵盐。解决方案:(1)用矿物质稳定剂代替酒石酸钾钠;(2)在无氨条件下制水并密封储存,或者使用高质量新鲜的蒸馏水代替无氨水,并且在实验前测试空白吸光度低于0.030方可使用。2.显色温度的控制冬季室温往往较低,如室温介于5-10℃时显色会不完全;而温度在20-25℃时显色最完全且较稳定;温度超过30℃,显色不稳定且极易褪色,导致吸光度偏低。所以显色温度应控制在20-25℃之间。3.显色时间的控制3.1 纳氏反应时间小于10min,反应不充分;10-30min反应相对稳定;30-45min显色会相应加深;大于45min,显色会处于减退状态。因此应控制反应时间在10-30min。3.2 显色完全后应尽快测定,防止颜色加深或褪色影响吸光度。4.比色皿的尺寸选择和吸附4.1 根据样品的浓度可以选择10mm或者20mm的比色皿,选择10mm比色皿时,空白吸光度应该小于0.03,相应地,选择20mm比色皿时,空白吸光度应该小于0.06。4.2 高浓度在比色皿中的吸附尤其明显,可能导致测定结果偏高。尽量按浓度从低到高的顺序测定,尤其是测标曲时;4.3 为了准确测定,测样前用蒸馏水冲洗比色皿3遍以上再测定,以减少吸附产生的误差;4.4 测定完成后,比色皿上壁上如仍有吸附物,应将比色皿放在铬酸洗液或稀硝酸中浸泡片刻,再进行冲洗后备用。5.显色剂用量对测定结果的影响表1 纳氏试剂加入量(氯化汞)对空白值和2mg/L标液吸光度的影响纳氏试剂加入量(mL)0.511.522mg/L标液吸光度(Abs)0.6220.6220.6790.707空白吸光度(Abs)0.0090.0260.0300.0462mg/L标液扣空白后吸光度(Abs)0.6130.6420.6490.661从表1可知,随着纳氏试剂加入量增大,空白值会变高。应按照国标方法要求加入合适体积的纳氏试剂。6.纳氏试剂的使用与储存6.1纳氏试剂使用前需恒温至室温,且使用前不可摇匀,应吸取上清液使用。纳氏试剂在生产配制后也需静置进行沉淀。6.2纳氏试剂的使用选择,根据HJ 535-2009,市面上氯化汞和碘化汞两种原料的纳氏试剂均可使用,如图1所示。 图1 HJ 535-2009方法中对纳氏试剂选择的规定6.3纳氏试剂应冷藏避光保存。
  • 把握本土化大趋势,下好创新、投资先手棋——访丹纳赫全球副总裁、中国区集团总裁彭阳
    2023年,丹纳赫大动作不断:以57亿美金收购了蛋白质耗材供应商Abcam;将环境业务进行拆分使其成为独立上市公司Veralto; Cytiva与Pall生命科学业务合并,升级产品组合与解决方案,形成丹纳赫生物技术平台。这一系列的重大举措使丹纳赫业务完全聚焦在了生命健康领域。近期,丹纳赫宣布品牌焕新,更换了全新的品牌徽标。在近日正在召开的第六届中国国际进口博览会上,丹纳赫正式对外宣布了“创升中国”本土战略2.0最新版本。那么,本次丹纳赫品牌焕新与前期一系列的战略调整有何关系?“创升中国”本土战略2.0版较之前又有哪些改变?带着这些问题仪器信息网特别采访了丹纳赫全球副总裁、中国区集团总裁彭阳。丹纳赫全球副总裁、中国区集团总裁彭阳仪器信息网:10月份,丹纳赫宣布品牌焕新。请问焕新的原因和目的是什么?新Logo有着什么样的内涵? 彭阳:这是丹纳赫第六次来到进博会的现场,以全新的品牌形象参展。过去几年丹纳赫做了很多并购和拆分,至今为止,我们已经完全成为了一家聚焦于生命健康领域的公司,我们集聚了全球最先进的技术,聚焦于生物技术、生命科学、医学诊断这三大赛道。新品牌的核心是“创新”。我们有一个承诺:“Innovation at the speed of life”,它表示我们希望能够根据生命的需求来不断变化地进行创新,希望为中国用户的健康需求创造出新技术、新产品和新疗法,同时,丹纳赫的产品也聚焦在这三个维度。新品牌形象像加速度曲线,希望能有更多的动力加速赋能、加速链接。新徽标旗帜飘扬的动态形状设计,包含了很多紫色渐变的元素,表达出了丹纳赫希望在高科技的背景下可以带来更多人性化的温暖,给人一种未来品牌的感觉。我们希望一如既往地服务于中国市场,也希望丹纳赫新品牌形象可以促进对中国市场创新的推动。仪器信息网:2022年丹纳赫全面启动“创升中国”本土战略,2023年,丹纳赫为这一战略采取了哪些行动?取得了哪些成就?彭阳:我们在2022年推出了“创升中国”本土化战略,这个战略简单来说就是希望能够在包含本土组织和文化的前提下在中国实现本土制造、本土研发、本土商业化,最终形成“飞轮”,并通过丹纳赫商业系统(DBS)推动“飞轮”加速度转动,把“飞轮”核心环节融合到中国本土的决策层,以便快速做出对中国本土市场的反应。2023年最主要的成就是,一方面实现了众多产线转移。我们投入上亿美金建立的丹纳赫诊断平台中国研发制造基地,已于今年10月份在苏州投入运营。在此过程中,我们在马不停蹄的向苏州工厂转移德国、日本、美国等全球各地的产线。旗下贝克曼、徕卡、思拓凡等众多子公司都在2023年上市了从海外转移到中国生产的新产品,接下来我们也会在研发和创新方面做更多布局,希望能提高本土化反应速度;另一方面,我们也在过去两年投入了大量资源进行内部研发。本次进博会,我们推出了很多在中国首展、全球首展的新产品,例如徕卡的病理切片机、打印机、新试剂产品等,这些新产品都是内部研发后在今年面市;同时,我们也有很多外部合作,进行了开放式创新探索,截止到今年我们已经投资了超过10个新项目,这些外部项目和外部的初创企业,也是丹纳赫未来创新发展布局中的一环。仪器信息网:丹纳赫连续6年参加进博会,展商身份之外又多了一重投资商的身份。未来,丹纳赫在中国将有哪些重点投资布局? 彭阳:我们肯定积极地向中国投入更多资源,比如前面提到的在苏州建立新工厂。同时,我们也在思考未来在上海包括其他的城市做更多投资布局,例如,今年在上海浦东投资了过亿人民币建立思拓凡科创中心。除此之外,还有在浦东金桥的工厂已经运营了30年,接下来也会对其进行搬迁和扩增、扩建。当然,我们也在寻找与国内初创企业合作的机会,投资并购的想法也都在积极地探讨当中。同时,也希望与中国各地的生物制药产业园合作,帮助政府培养更多生物制药的人才,也帮助我们参与更多创新、投资。仪器信息网:持续改善是丹纳赫非常擅长的领域,“创升中国”战略的升级和下一步重点是什么?彭阳:简单来讲,我们希望在“创升中国”2.0版本提出更多关于创新的想法。现在中国各地都在积极推广“创新”,本次2.0战略其实是一个双引擎的创新战略,在外部,我们一直关注医疗机构的创新转化、在产业端与产业园合作建立创新平台;在内部,加大研发投入,以及内部初创项目的投入。我们也将推出内部企业家计划,希望通过内部金点子的开发,呼吁、培养出大批创业型人才,让创新文化在内部生根发芽。
  • 国资委公布“2021年度央企十大国之重器”和“2021年度央企十大超级工程”两大重磅榜单!
    2021年度央企十大国之重器1、我国首次火星探测任务“天问一号”探测器成功着陆5月15日7时18分,天问一号着陆巡视器成功着陆于火星乌托邦平原南部预选着陆区。航天科技等企业承担的我国首次火星探测任务着陆火星取得圆满成功。本次着陆历时6个多小时,凌晨1时许,天问一号探测器在停泊轨道实施降轨,机动至火星进入轨道。4时许,着陆巡视器与环绕器分离,历经约3小时飞行后,进入火星大气,经过约9分钟的减速、悬停避障和缓冲,成功软着陆于预选着陆区。两器分离约30分钟后,环绕器进行升轨,返回停泊轨道,为着陆巡视器提供中继通信。2、我国新型主战舰艇集中入列4月23日,海军三型主战舰艇——长征18号艇、大连舰、海南舰在海南三亚某军港集中交接入列。经中央军委批准,这次交接入列的三型主战舰艇分别命名为:中国人民解放军海军长征18号艇、舷号421,中国人民解放军海军大连舰、舷号105,中国人民解放军海军海南舰、舷号31。三型主战舰艇由中国船舶建造。3、全球第一台“华龙一号”核电机组投入商运1月30日,全球第一台“华龙一号”核电机组中核集团福建福清核电5号机组完成满功率连续运行考核,投入商业运行。这标志着我国在三代核电技术领域跻身世界前列。中国成为继美国、法国、俄罗斯等国家之后真正掌握自主三代核电技术的国家。“华龙一号”全球首堆的商运,对优化中国能源结构、推动绿色低碳发展,助力碳达峰、实现碳中和目标具有重要意义。4、世界首座十万吨级深水半潜式生产储油平台“深海一号”能源站投入使用6月25日,我国首个自营超深水大气田“深海一号”正式投产,标志着我国海洋石油勘探开发能力全面进入超深水时代。在大气田上矗立着的“深海一号”能源站是世界首座十万吨级深水半潜式生产储油平台,由中国海油设计建造。船体总装快速搭载等技术达到世界先进水平,海底管线铺设等多项深水施工技术突破1500米难关。“深海一号”大气田的投产体现了我国深水油气开发能力和深水海洋工程装备建造水平取得重大突破,我国海洋油气开发由此进入世界先进行列。5、“全球首堆”石岛湾高温气冷堆并网发电12月20日,国家科技重大专项——华能石岛湾高温气冷堆核电站示范工程1号反应堆完成发电机初始负荷运行试验评价,首次并网成功,发出第一度电。这标志着全球首座具有第四代先进核能系统特征的球床模块式高温气冷堆实现了从“实验室”到“工程应用”质的飞跃,我国实现了高温气冷堆核电技术的“中国引领”,这对于促进我国核能创新发展、助力高水平科技自立自强具有重要意义。6、时速600公里高速磁浮交通系统下线7月20日,由中国中车承担研制、具有完全自主知识产权的我国时速600公里高速磁浮交通系统在山东青岛成功下线,这是世界首套设计时速达600公里的高速磁浮交通系统,标志着我国掌握了高速磁浮成套技术和工程化能力。该项目于2016年10月启动,2019年研制出试验样车,并于2020年6月在上海同济大学试验线上成功试跑,经过系统优化确定最终技术方案,于2021年1月研制出成套系统并开始了6个月的联调联试。7、全球首款新冠特效药获批临床试验8月30日,国药集团中国生物研制的静注COVID-19人免疫球蛋白(pH4)获得国家药品监督管理局颁发的《药物临床试验批件》,批准开展临床试验。根据SARS的经验,中国生物把康复者恢复期血浆作为治疗危重症和重症的药物,进入了国家诊疗方案。中国生物在康复者恢复期血浆制备的基础上,做成了特异免疫球蛋白,已完成临床前研究、工艺验证和动物试验。动物试验结果显示可以显著缓解新冠病毒感染导致的症状和损伤,获得了国家药监局的临床批件,开展临床研究。8、神舟十二号载人发射任务顺利完成6月17日,神舟十二号的三名航天员先后进入天和核心舱,标志着中国人首次进入自己的空间站。神舟十二号载人飞船由航天科技抓总研制,是我国空间站任务阶段第一艘载人飞船。天和核心舱,是我国载人航天工程中第一个空间站核心舱,由航天科技等企业设计建造,相当于空间站组合体的“中枢系统”。神舟十二号采用自主快速交会对接模式成功对接于天和核心舱前向端口,与此前已对接的天舟二号货运飞船一起构成三舱(船)组合体。9、首款全面国产化电力主控芯片“伏羲”量产2月19日,经南方电网公司5年研制、多场景验证,国内首个基于国产指令架构、国产内核的电力专用主控芯片“伏羲”实现量产,标志着我国电力工控领域核心芯片从“进口通用”向“自主专用”转变,电力二次设备核心元器件做到了自主可控。“伏羲”的成功研发及量产,对于国家电力能源和信息安全、工控领域科技自主可控具有重大意义。10、世界首台千吨级架桥机“昆仑号”投用6月22日,我国自主研发设计制造的世界首台千吨架桥一体机——“昆仑号”,在新建福州至厦门高铁湄洲湾跨海特大桥投用。该设备由中国铁建研制,相较于传统900吨架桥机,不仅将运载箱梁最大长度由32米延伸到40米,吨位从900吨提升至1000吨,同时系统解决了特殊工况的桥梁架设和供电协调性等问题,具有智能化程度更高,应用场景更广等特点,对未来我国高铁建设具有划时代意义,标志着我国高速铁路建设在技术与装备上实现了重大提升,为高铁建设再添大国重器。2021年度央企十大超级工程1、我国正式开启空间站工程在轨建造4月29日11时23分,长征五号B运载火箭将中国空间站工程首个航天器天和核心舱顺利送入太空,任务取得圆满成功。此次发射的天和核心舱重约22.5吨,由中国航天科技集团研制,是我国目前在研最重的航天器。它相当于空间站组合体的“中枢系统”,能够接收货运飞船和载人飞船来访。这一壮举标志着我国空间站工程在轨建造大幕正式开启。未来两年,“天和”将在距离地面约400公里的轨道上,静候“天舟”“神舟”“问天”“梦天”等航天器的陆续来访,共同完成空间站组装建造和关键技术在轨验证等建“宫”大业。2、中老铁路全线开通运营12月3日,连接昆明和万象、采用中国标准的中老铁路全线开通运营。中老铁路全长1035公里,线路北起昆明,经过中国磨憨铁路口岸和老挝磨丁铁路口岸,进入老挝北部地区,最后到达老挝首都万象。中老铁路深刻改变了老挝交通运输格局,对密切中老两国经济社会和人文合作交流,加快建设中老经济走廊、构建中老命运共同体,具有十分重要的意义。中国中铁作为中老铁路建设的主力军负责全线勘察设计、全线电气化施工、全线铺轨以及关键性工程建设任务。3、金沙江白鹤滩水电站首批机组投产发电6月28日,金沙江白鹤滩水电站首批机组安全准点投产发电。白鹤滩水电站是中央企业全产业链协同创新、自主创新的典型范例,由中国三峡集团牵头,国家电网、哈电集团、东方电气集团、中国电建、中国能建等积极参与。白鹤滩水电站是实施“西电东送”的国家重大工程,是当今世界在建规模最大、技术难度最高的水电工程。全球单机容量最大功率百万千瓦水轮发电机组,实现了我国高端装备制造的重大突破。电站全部建成投产后,将成为仅次于三峡工程的世界第二大水电站。4、川藏铁路拉林段正式运营6月25日,我国首条高原电气化铁路——拉萨至林芝铁路开通运营。拉林铁路由中国中铁、中国铁建等建设,全长435.48公里;由中国中车自主创新研制的设计时速160公里复兴号高原内电双源动车组同步投入运营,历史性地实现复兴号对31个省区市的全覆盖,拉萨至山南、林芝最快1小时10分、3小时29分可达。拉林铁路90%以上的线路在海拔3000米以上,16次跨越雅鲁藏布江,沿线山高谷深,相对高差达2500米,它的建成通车,结束了藏东南地区不通铁路的历史。拉林铁路不仅连接既有的拉(萨)日(喀则)和青藏铁路,还是在建的川藏铁路的重要组成部分、规划的滇藏铁路的共线地段,对加强内地同西藏联系交流,维护民族团结、巩固边疆稳定、助力乡村振兴具有十分重要的意义。5、塔里木盆地新发现10亿吨级超深油气区6月18日,中国石油塔里木油田找到了一个10亿吨级新的石油规模储量区,这是近10年来塔里木油田盆地石油勘探的最大发现。塔里木盆地是我国最大的含油气盆地,埋深超过6000米的石油和天然气资源分别占全国的83.2%和63.9%。目前,塔里木油田已建成我国最大超深层油气生产基地。6、京新高速公路全线通车6月30日,京新高速公路全线建成通车。该项目由中交集团、中国中铁、中国铁建等建设。京新高速公路是继连霍高速公路之后第二条全天候进出新疆的公路动脉,其全线通车使得北京与乌鲁木齐之间公路里程缩短1300多公里。京新高速公路也是一条霍尔果斯口岸至天津港北部沿线的最快捷出海通道,对推动“一带一路”建设具有重要意义。7、我国最大炼化一体化基地全面建成6月28日,中国石化镇海基地一期项目在浙江宁波镇海全面建成,创造了目前国内建设周期最短、国产化程度最高、数字化应用最广的石化产业基地建设纪录。项目建成后,镇海炼化将形成年产2700万吨炼油产能和220万吨乙烯产能,是目前我国全面建成的最大的炼化一体化基地。8、福厦高铁湄洲湾跨海大桥成功合龙11月13日5时,由中国铁建参与设计施工的新建福州至厦门铁路(简称“福厦高铁”)湄洲湾跨海大桥成功合龙,标志着福厦高铁关键控制性节点顺利打通,“乘坐高铁看海”的愿望即将实现。湄洲湾跨海大桥长14.7公里,海域施工长10.8公里,是国内首座跨海高铁矮塔斜拉桥。设计过程中,出于对妈祖文化的保护以及减少对湄洲湾自然环境的扰动,桥梁设计师们采用主跨180米预应力混凝土连续刚构,部分斜拉桥跨越3000吨级主航道,有效解决了曲线上大跨度跨越航道的轨温调节器设置问题。9、“暖核一号”450万平方米供热项目投运11月9日,国家电投“暖核一号”——国家能源核能供热商用示范工程二期450万平方米项目在山东海阳正式投运。今年冬天,该市新老城区全面采用核能供热,海阳也成为全国首座“零碳”供暖城市。同时,海阳居民住宅取暖费每建筑平米较往年下调一块钱。“暖核一号”给老百姓带来了温暖,带来了蓝天,又带来了实惠。10、我国首个万吨碳纤维生产基地投产9月8日,由中国建材投资建设的我国首个万吨碳纤维生产基地在青海省西宁市投产。项目总投资50亿元,首次实现了单线年产3000吨高性能碳纤维生产线设计和高端成套技术自主可控。中国建材经过十余年攻关,打破国外技术垄断,率先在国内实现干喷湿纺T700级、T800级碳纤维千吨工程化和T1000级碳纤维百吨工程化,科技攻关取得重大成果。该项目的投产,加快了我国高端应用市场的碳纤维国产化替代进程,实现了国产化碳纤维供应链的安全可控,进一步提升了国产碳纤维的国际竞争力。
  • 各种蛋白互作检测方法优缺点分析
    聚焦蛋白质互作研究进展与实验方法研究蛋白-蛋白相互作用是理解生命活动的基础。蛋白质—蛋白质互作网络是生物信息调控的主要实现方式,是决定细胞命运的关键因素。检测蛋白质间相互作用的实验方法有哪些?这些检测方法各有什么优缺点?总结如下。1. 生化方法●共纯化、共沉淀,在不同基质上进行色谱层析(需要补充)●蛋白质亲和色谱 基本原理是将一种蛋白质固定于某种基质上(如Sepharose),当细胞抽提液经过改基质时,可与改固定蛋白相互作用的配体蛋白被吸附,而没有吸附的非目标蛋白则随洗脱液流出。被吸附的蛋白可以通过改变洗脱液或者洗脱条件而回收下来。GST pull down技术:为了更有效的利用蛋白质亲和色谱,可以将待纯话的蛋白以融合蛋白的形式表达,即将”诱饵“蛋白与一种易于纯化的配体蛋白融合。例如与GST融合的蛋白再经过GSH的色谱柱时,就可以通过GST和GSH的相互作用而被吸附。当载有细胞抽提物经过柱时,就可以得到能够与“诱饵”蛋白相互作用的目标蛋白了。Epitope-tag技术:表位附加标记技术 就是将附加的抗原 融合到目的蛋白以检测目的蛋白的表达,同时还可以通过亲和层析法来纯化目的蛋白。 缺点:表位附加标记可能会使融合蛋白不稳定,改变或使融合蛋白功能丧失。以上两种方法都要共同的缺点:假阳性。实验所检测到的相互作用可能时由蛋白质所带电荷引起的,并不是生理性的相互作用 蛋白的相互作用可能并不是直接的,可是由第三者作为中介的 有时会检测到两种在细胞中不可能相遇却有极强亲和力的蛋白。因此实验结果还应经其他方法验证。●免疫 共沉淀 免疫共沉淀是以抗体和抗原之间的专一性作用为基础的用于研究蛋白质相互作用的经典方法。改法的优点是蛋白处于天然状态,蛋白的相互作用可以在天然状态下进行,可以避免认为影响 可以分离得到天然状态下相互作用的蛋白复合体。 缺点:免疫共沉淀同样不能保证沉淀的蛋白复合物时候为直接相互作用的两种蛋白。另外灵敏度不如亲和色谱高。●Far-Western 又叫做亲和印记。将PAGE胶上分离好的凡百样品转移到硝酸纤维膜上,然后检测哪种蛋白能与标记了同位素的诱饵蛋白发生作用,最后显影。 缺点是转膜前需要将蛋白复性。2. 等离子表面共振技术(Surface plasmon resonance)该技术是将诱饵蛋白结合于葡聚糖表面,葡聚糖层固定于几十纳米厚的技术膜表面。当有蛋白质混合物经过时,如果有蛋白质同“诱饵”蛋白发生相互作用,那么两者的结合将使金属膜表面的折射绿上升,从而导致共振角度的改变。而共振角度的改变与该处的蛋白质浓度成线性关系,由此可以检测蛋白质之间的相互作用。该技术不需要标记物和染料,安全灵敏快速,还可定量分析。缺点:需要专门的等离子表面共振检测仪器。3. 遗传学方法使某处发生缺损,检测对其他地方的影响。●基因外抑制子。基因外抑制子是通过一个基因的突变 来弥补原有基因的突变。比如相互作用的蛋白A和B,如果A发生了突变使两者不再相互作用,此时B如果再发生弥补性突变就可以使两者的相互作用恢复,那么B就是A的基因外抑制子。 缺点:需要知道基因,要有表型,筛选抑制子比较费时。●合成致死筛选 指两个基因同时发生突变会产生致死效应,而当每个基因单独发生突变时则无致死效应。用于分析两个具有相同重要蛋白之间的相互作用。4. 双杂交技术原理基于真核细胞转录因子的结构特殊性,这些转录因子通常需要两个或以上相互独立的结构域组成。分别使结合域和激活域同诱饵蛋白和猎物蛋白形成融合蛋白,在真核细胞中表达,如果两种蛋白可以发生相互作用,则可使结合域和激活域在空间上充分接近,从而激活报告基因。 缺点:自身有转录功能的蛋白会造成假阳性。融合蛋白会影响蛋白的真实结构和功能。不利于核外蛋白研究,会导致假隐性。5. 荧光共振能量转移技术指两个荧光法色基团在足够近(100埃)时,它们之间可发生能量转移的现象。荧光共振能量转移技术可以研究分子内部对某些刺激发生的构象变化,也能研究分子间的相互作用。它可以在活体中检测,非常灵敏,分辩率高,能够检测大分子的构象变化,能够定性定量的检测相互作用的强度。 缺点 此项技术要求发色基团的距离小于100埃。另外设备昂贵,还需要融合GFP给蛋白标记。此外还有交联技术(cross-linKing),蛋白质探针技术,噬菌体展示技术(Phage display)以及生物信息学的方法来检测蛋白质之间相互作用。
  • 沈阳上半年将建成5座水质自动监测站
    p   今年6月20日前,沈阳将新建完成5座水质自动监测站,投入运行后,沈阳将实现地表水环境质量主要指标连续自动监测,实时数据与国家、省联网,未来将建成以自动监测为主、手工监测为辅的地表水环境质量监测体系。 /p p   沈阳市环保局相关负责人称,5座水质自动监测站将分别为辽河马虎山断面水质自动监测站、巨流河大桥断面水质自动监测站、浑河砂山断面水质自动监测站、蒲河兴国桥断面水质自动监测站、细河于台断面水质自动监测站。 /p p   目前,这5个水质自动监测站已经完成地勘、设计招标前期准备工作,外观效果图也全部设计完毕,待招投标工作完成后,即将进入水质自动监测站建设阶段。 /p p   5座水质自动监测站均属于固定式,能够保证长久稳定运行,站房外形的设计因地制宜,外观美观大方,结构经济实用,和周边景物协调一致。 /p p   该负责人称,在点位选取过程中,市环境监测中心站会同市环保局各分局及相关部门工作人员对全市需新建水质自动监测站的断面上下游5000米范围内进行实地徒步勘察,走访当地情况,了解自然、经济、社会情况,并查阅水文地质材料,统计历年数据,并综合了土地、电力、通信、道路、水文、环保等情况,最终把建站位置确定在沈阳市辽河马虎山、巨流河大桥、浑河砂山、蒲河兴国桥、细河于台5个断面。 /p p   这些新建的监测站投入运行后,沈阳将实现地表水环境质量主要指标连续自动监测,实时数据与国家、省联网。未来还将建成以自动监测为主、手工监测为辅的地表水环境质量监测体系。与手工监测相比,自动监测具有连续、实时、全天候等优势,能及时预警和防范水环境风险,进一步提升水环境管理水平。 /p p   水质自动监测站基本建成并正式投入运行后,环保部将统一委托第三方机构负责运维,实现“国家专权、国家监测、数据共享”,加强对第三方机构的质量控制和监督考核,确保地表水监测数据真实、准确。水质自动监测数据将作为国家地表水环境质量监测网水质自动预警及国家对地方水环境质量评价、《水污染防治行动计划》目标考核的重要依据。 /p
  • 广州工商局抽样检验乳制品 光明食品再曝防腐剂超标
    央广网广州10月17日消息据中国之声《央广新闻》报道,广州市工商局昨天公布了2013年第三季度流通环节第一次乳制品及含乳食品抽样检验结果,其中,上海城光明小食品有限公司生产的注心蛋黄派(草莓味)等多个产品被检出不合格。   通报称,今年7月,广州市工商局委托法定检验机构对全市商场、超市等流通环节销售的灭菌乳、巴氏杀菌乳、发酵乳等乳制品,以及含乳饮料、麦片、糖果、饼干、面包糕点等含乳食品进行了抽样检验,涉及市面上同类产品的主要品牌,检验项目包括标签、微生物、膳食纤维、硝酸盐、亚硝酸盐、非脂乳固体、黄曲霉毒素、防腐剂、甜味剂、三聚氰胺、反式脂肪酸等。共计抽取样品421批次。   经检验,实物质量合格417批次,实物质量合格率为99.0%。其中,上海城光明小食品有限公司生产的注心蛋黄派(草莓味)被检出防腐剂加和系数不合格 广东奥斯达食品有限公司生产的蛋白早餐奶(蛋白型固体饮料)被检出大肠菌群不合格 威海韩进贸易有限公司从马来西亚进口的ZEK芒果味果冻以及广西大发食品饮料有限公司生产的华精中老年核桃粉分别被检出菌落总数不合格。   针对光明蛋黄派被检出的防腐剂问题,广州市工商局表示,根据GB 2760-2011《食品安全国家标准食品添加剂使用标准》规定,同一功能的食品添加剂(相同着色剂、防腐剂、抗氧化剂)在混合使用时,各自用量占其使用量的比例之和不应超过1。防腐剂加和系数超标主要是企业没有严格按照标准要求生产,超限量使用食品添加剂而造成的。   目前,广州市工商局已对检测不合格的食品采取了下架、封存,立案查处等措施,防止不合格食品流入市场。同时,提醒消费者购买时注意:一是查看标识标注 二是检查包装密封完整 三是购买后尽快食用 四是注意食品的贮存条件。
  • 广州空气质量昨超标两级 主要污染物是二氧化氮
    明明是蓝天白云,但眼前总灰蒙蒙的,胸还有点闷,这是为什么呢?原来是空气质量超标了。昨日、前日,广东省、广州市每日在线监测数据都显示空气质量超标,昨日部分站点更是超过达标标准两级,为轻度污染,主要污染物是二氧化氮。   广雅麓湖等监测点都超标   监测数据显示,这两天的空气质量都超标了,二氧化硫、二氧化氮、可吸入颗粒物这三项空气质量评价指标中,后两项都超标了。仅昨日,广雅中学、天河职幼、市86中、麓湖、市监测站等5个监测站点的空气质量超过标准两级,为轻度污染,其他五个监测站点录得的空气质量超标一级,为轻微污染。显示的主要污染物是二氧化氮。   “我也感觉有点胸闷。”昨日,广东省环保厅有关负责人表示,除了视觉上的感觉外,呼吸也感觉没有那么顺畅了,而造成近日空气质量超标的主要原因是机动车尾气。“二氧化硫主要是工业排放,二氧化氮的污染源主要是机动车尾气、电厂、锅炉等,但是超标比较严重的监测站点都是在市中心,说明主要是由机动车尾气造成的,局部的污染比较重,再加上气象条件不利于污染物扩散。”   二氧化氮是气体,如果超标了市民可以怎么防范?对此,该负责人表示,根据检测数据显示,二氧化氮和可吸入颗粒物都明显超标,在空气中,颗粒物会吸附许多污染物、通过鼻腔进入人的身体,通过戴口罩,是可以将一部分污染物过滤掉的。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制