当前位置: 仪器信息网 > 行业主题 > >

季戊四醇三

仪器信息网季戊四醇三专题为您提供2024年最新季戊四醇三价格报价、厂家品牌的相关信息, 包括季戊四醇三参数、型号等,不管是国产,还是进口品牌的季戊四醇三您都可以在这里找到。 除此之外,仪器信息网还免费为您整合季戊四醇三相关的耗材配件、试剂标物,还有季戊四醇三相关的最新资讯、资料,以及季戊四醇三相关的解决方案。

季戊四醇三相关的论坛

  • 季戊四醇纯度和熔点项目探讨

    现有季戊四醇纯度检测,依据GB/T7815-2008(98级仲裁法)第一:依据此方法进行检测季戊四醇环状缩甲醛和三季戊四醇的峰,出不来,第二:现有国内比较大两家,99级的季戊四醇,在测试熔点中发现一家在261℃,一家在254℃,测试熔点采用DSC法,但用上述方法测试纯度时,差异很小,都在99.9%。羟基含量差异也不大,在0.2%差异。为什么季戊四醇的熔点会有怎么大差异。纯度项目,请只讨论国标下的气相色谱方法的看法。有没有那么高手,也对季戊四醇进行测试,对纯度项目和熔点,谈谈对此看法,谢谢

  • 【求助】如何测出季戊四醇和EG混合液中季戊四醇的量

    季戊四醇,应用在聚酯中(PTA+EG),应该怎么加,加多少含量,或者说跟EG一起配成多少浓度的??最关键的,打个比方,如果跟EG配成5%,那么如何才能测出具体的含量如测出为4.96%。。。国标方法中的[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]方法是可以,有没有更加简单方便的,急求???如何测出在聚酯切片中季戊四醇的含量.

  • 三溴化合物甲醇具体是什么物质

    在做增塑剂的碘值测定中,需要用到三溴化合物甲醇溶液,而这个三溴化合物甲醇溶液是将无水溴化钠溶于甲醇溶液后再加入溴制备得到的,那么在这个制备三溴化合物甲醇溶液的过程中是否有发生过化学反应呢?三溴化合物是只三个溴原子还是三种溴化物呢?[img]https://ng1.17img.cn/bbsfiles/images/2019/09/201909271635311976_386_3555507_3.png[/img]

  • 【讨论】三乙胺与三乙醇胺改性剂有什么差别?

    【讨论】三乙胺与三乙醇胺改性剂有什么差别?

    染发剂中对苯二胺等染料的HPLC测定方法采用《化妆品卫生规范》所规定的液相色谱标准检测方法,对氧化型染发剂中包括对苯二胺和邻苯二胺在内的八种染料进行检测。[size=4][b]分析方法[/b]色谱柱:Shimadzu Shim-pack VP-ODS 4.6×150mm 5μm检测波长:280nm 流动相:乙腈:(水:三乙醇胺=98:1)=5:95 流速:1mL/min 柱温:室温进样量:10μL洗脱方式:等度洗脱。[/size][size=4]流动相中使用了三乙醇胺,比较少见,它在分析苯胺类化合物有什么突出的优点吗?可否用三乙胺替代?[/size][img]http://ng1.17img.cn/bbsfiles/images/2010/05/201005082043_217200_1638724_3.jpg[/img][img]http://ng1.17img.cn/bbsfiles/images/2010/05/201005090755_217230_1638724_3.jpg[/img]

  • 【试剂耗材系列话题】采购试剂之----丙三醇

    一 标识中文名 丙三醇;甘油英文名glycerol ; glycerin分子式 C3H8O3相对分子质量  92.09CAS号   56-81-5危险性类别 第3.2类中闪点易燃液体 化学类别  醇二 主要组成与性状主要成分 纯品。外观与性状 无色粘稠液体, 无气味, 有暖甜味, 能吸潮。主要用途 用于气相色谱固定液及有机合成, 也可用作溶剂、气量计及水压机减震剂、软化剂、抗生素发酵用营养剂、干燥剂等。三 健康危害侵入途径 吸入、食入,经皮吸收。健康危害 对眼睛、皮肤有刺激作用。接触时间长能引起头痛、恶心和呕吐。急性毒性 LD50:12600 mg/kg(大鼠经口)。四 急救措施皮肤接触  脱去被污染的衣着,用大量流动清水冲洗。眼睛接触  提起眼睑,用流动清水或生理盐水冲洗。就医。吸入 迅速脱离现场至空气新鲜处。就医。食入  饮足量温水,催吐,就医。五 燃爆特性与消防燃烧性 可燃。闪点(℃) 160爆炸下限(%) 3.3    引燃温度(℃)370 爆炸上限(%) 无资料最大爆炸压力(MPa) 物资料危险特性 遇明火、高热可燃,灭火方法 消防人员须佩戴防毒面具、穿全身消防服,在上风向灭火。尽可能将容器从火场移至空旷处。喷水保持火场容器冷却,直至灭火结束。处在火场中的容器若已变色或从安全泄压装置中产生声音,必须马上撤离。用水喷射逸出液体,使其稀释成不燃性混合物,并用雾状水保护消防人员。灭火剂:抗溶性泡沫、干粉、二氧化碳、砂土。六 泄漏应急处理迅速撤离泄漏污染区人员至安全区,并进行隔离,严格限制出入。切断火源。建议应急处理人员戴自给正压式呼吸器,穿防毒服。尽可能切断泄漏源。防止流入下水道、排洪沟等限制性空间。小量泄漏:用砂土、蛭石或其它惰性材料吸收。也可以用大量水冲洗,洗水稀释后放入废水系统。大量泄漏:构筑围堤或挖坑收容。用泵转移至槽车或专用收集器内,回收或运至废物处理场所处置。七 操作处置与储存操作注意事项:密闭操作,注意通风。操作人员必须经过专门培训,严格遵守操作规程。建议操作人员佩戴自吸过滤式防毒面具(半面罩),戴化学安全防护眼镜,穿防毒物渗透工作服,戴橡胶手套。远离火种、热源,工作场所严禁吸烟。使用防爆型的通风系统和设备。防止蒸气泄漏到工作场所空气

  • 三氯甲烷,四氯化碳进气相色谱要用甲醇稀释

    测量饮用水三氯甲烷和四氯化碳时,标准的浓度过大,需要稀释,但是第一步制备储备液时用甲醇稀释,但是第二步放在顶空瓶里面为什么要用纯水稀释?2步稀释的区别在哪里?麻烦各位老师帮忙解答一下。。谢谢各位老师

  • 液相色谱_三重四级杆质谱法测定化妆品中 51种抗组胺类药物的含量

    张静等建立了液相色谱-三重四级杆质谱法(LC-MS-MS)快速测定化妆品中地氯雷他定等51种抗组胺类药物含量的方法。样品经10 mmol/L乙酸铵甲醇溶液超声提取后,经0.2 μm滤膜过滤后,以10 mmol/L乙酸铵水-甲醇作为流动相进行梯度洗脱,经Eclipse Plus C18色谱柱(100 mm×3.0 mm×1.8 μm)分离,采用电喷雾离子源在正、负离子 模式下进行多反应监测,外标法定量。结果表明,51种抗组胺类药物在2 ~ 50 ng/mL范围内线性关系良好(r0.999),检出限和定量限分别为0.15 μg/g和0.5 μg/g。对液态水基、乳液、膏霜、面膜、液态油基、凝胶、粉、蜡基8种不同化妆品基质在0.5、1.0、5.0 μg/g加标水平下的平均回收率为70.3% ~ 127.8%,相对标准偏差(RSD)小 于7.7%(n=6)。该方法前处理操作简便、快速、专属性强、灵敏度高、精密度、准确度均较好,可用于化妆品中51种抗组胺类药物含量的快速测定。 文章具体内容见附件

  • 三重四级杆串联质谱法测定酱油中3-氯-1,2-丙二醇

    固相萃取-[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]-三重四级杆串联质谱法测定酱油中3-氯-1,2-丙二醇3-氯-1,2-丙二醇(3-MCPD)是国际公认的食品污染物,其形成与酸水解植物蛋白的加工过程有关。产生酸水解植物蛋白的原料一般为豆粕或菜籽粕,在高温条件下,盐酸与甘油三酯水解的甘油发生化学反应生成3-MCPD。3-MCPD具有生殖、肾脏和神经毒性,还可能具有致癌作用和致突变作用[1-2]。目前,检测酱油中3-MCPD残留量的主要方法有GC法[3 -5]与[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]GC-MS[/color][/url]-SIM法[6-8],但是3-MCPD结构中含有两个羟基,极性大,未衍生化的3-MCPD色谱行为差,采用GC检测,检测限难以达到检测要求,并且GC法以保留时间为定性依据,这对于复杂目标残留物的鉴定并不可靠。当前,3-MCPD检测的前处理大多采取衍生化处理,由于衍生化反应受到多种因素的影响,使其测定结果变异较大,而且衍生效率不高。与[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]GC-MS[/color][/url]-SIM相比,[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]GC-MS[/color][/url]-MS的优势在于其采用多反应监测(MRM)模式,解决了[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]GC-MS[/color][/url]-SIM模式定性不准的问题,并且具有较强的抗基质干扰能力,可有效降低背景干擾,这使[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]GC-MS[/color][/url]-MS在复杂基质背景下仍能对目标化合物进行准确的定性定量分析。本方法采用固相萃取-[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]-三重四极杆串联质谱法测定酱油中3-MCPD,未经衍生化处理,具有简单、高效、准确的特点,极大的提升了实验室的检测效率。1 实验部分1.1 仪器与试剂Agilent 7890B/7000C[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]三重四级杆质谱联用仪(美国安捷伦公司),3-18K高速离心机(德国SIGMA公司), Turbovap LV氮吹仪(美国caliper公司),IKA MS3涡旋混合器(德国IKA公司)。3-MCPD(纯度为98%)标准品购于德国Dr公司;乙酸乙酯、正己烷均为色谱纯,购于德国merck公司;固相萃取小柱Cleanert NCPD 5mL购于天津博纳艾杰尔科技有限公司。1.2 试验方法1.2.1 标准溶液的配制准确称取10mg 3-MCPD(精确至0.01mg),用乙酸乙酯溶解,转移至10mL容量瓶中,用乙酸乙酯定容,混匀,配制成1000mg/L的标准储备液,置于4℃冰箱中保存。根据3-MCPD的灵敏度和仪器线性范围,吸取一定量的标准储备溶液,用正己烷稀释成系列浓度的标准工作溶液。1.2.2 样品前处理称取5g(精确至0.001g)酱油直接上样Cleanert NCPD固相萃取柱,平衡10min,以10mL正己烷淋洗,弃去流出液,以15mL乙酸乙酯洗脱,收集洗脱液。将洗脱液在40℃下用氮气吹至近干,加入1mL正己烷,混匀至进样小瓶中,供[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]三重四级杆质谱联用测定。1.2.3 仪器的工作条件色谱条件:色谱柱DB-WAX(30m×0.320mm ×0.50μm),初始温度50℃,10℃/min升温至180℃,保持5min,30℃/min升温至230℃,保持5min;载气:氦气;流速:1.2mL/min;进样口温度:250℃;进样量:2μL;进样方式:不分流进样。质谱条件:电离电压:EI70eV,离子源:230℃,传输线温度:250℃,数据采集模式:MRM,定量离子对79~28(碰撞能量25eV),定性离子对79~43(碰撞能量10eV)。3-MCPD的总离子流色谱图见图1。image.png2 结果与讨论2.1 色谱柱的选择3-MCPD分子中含有两个羟基,是强极性化合物,未经衍生处理直接分析适合选用极性毛细管柱。本实验选用了HP-5ms、DB-1701、DB-WAX这3种不同极性的色谱柱进行测试。结果表明,3-MCPD在DB-WAX极性上峰形较好,与干扰物达到了较好的分离效果。2.2 质谱条件优化本方法采用多反应监测(MRM)模式检测,最终选取两对离子对作为定量定性离子。为确保3-MCPD在仪器中的响应值最优,本实验对母离子、产物离子的选择以及碰撞电压进行了优化,确定母离子和产物离子后,选取碰撞电压为10~30eV,每隔5eV进行一次碰撞,最终确定定量离子对为79~28(碰撞能量25eV),定性离子对为79~43(碰撞能量10eV)。2.3 净化提取条件的选择由于3-MCPD为强极性化合物,因此本实验选用正己烷作为淋洗液以去除样品中的非极性杂质,分别选择2、4、6、8、10、12mL淋洗溶剂进行淋洗,发现少量溶剂无法起到淋洗作用,10mL以上淋洗效果较好,因此本实验确定以10mL正己烷作为淋洗液。选择极性较大的溶剂作为洗脱液,本研究分别选择了乙酸乙酯、丙酮、乙腈作为洗脱液。分别取上述3种洗脱液各10mL对样品进行洗脱处理。洗脱后测试结果为乙酸乙酯和乙腈的洗脱效果优于丙酮,但是乙腈的沸点较高,氮吹时间较长,易损失。综合考虑洗脱效果、试验时间和试验成本,本实验选择乙酸乙酯作为洗脱液,分别选择5、10、15、20mL洗脱溶剂对酱油样品进行洗脱,氮吹定容后进行[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]GC-MS[/color][/url]-MS分析。实验结果表明,洗脱液用量为15mL时,回收率明显大于5mL和10mL,且与20mL的用量相差不大,因此,本实验洗脱液用量选择15mL。2.4 精密度和准确度在最优的实验条件下,3-MCPD溶液在0.01~1.0μg/mL范围内有较好的线性,采用S/N=3计算方法的检出限,本方法的检出限为0.005mg/kg,在低、中、高3个加标浓度水平下,每个浓度水平重复测定5次。平均回收率为86.2%~102.6%,相对标准偏差(RSD)为2.6%~5.7%,结果见表1。image.png2.5 实际样品检测使用本实验方法,对10种出口及本地酱油中的3-MCPD进行检测,其中3种检出含量分别为0.0461mg/kg、0.124mg/kg和0.571mg/kg,检出样品使用GB 5009.191-2016[9]方法检测,两种方法检出结果一致。3 结论本方法采用固相萃取-[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]-三重四极杆串联质谱测定酱油中3-MCPD,未经衍生化处理。相比国标,节约了衍生的时间,避免了衍生实验对结果的影响,具有简单、省时、准确的特点,为酱油中3-MCPD的检测提供了一种简便、可行的方法

  • 三氯杀螨醇的SIM图

    三氯杀螨醇的SIM图

    最近做样品中的三氯杀螨醇,发现其浓度为1500ng/mL的SIM如下:[img=,690,474]http://ng1.17img.cn/bbsfiles/images/2018/03/201803071956363284_3709_2166779_3.png!w690x474.jpg[/img]我这是标准品混标,这个139的碎片明显感觉到还有另一个物质也能产生139的碎片

  • 三氯丙醇就是酱油版的“三聚氰胺”吗?

    山西醋勾兑风波未完,酱油又被卷进来.近日,港媒曝出用水解植物蛋白等7种化合物可配制出可能致癌的"化学酱油",与酿造酱油从口味和质感都相差无几。  调味品协会负责人称,酿造酱油和配制酱油之分,不属于食品安全问题;而我们更想知道的,不是配制酱油是否属于食品安全问题,而是它安全不安全?7种化合物配制可产生致癌物,那它肯定不安全,既不安全,它不是食品安全问题,又是什么问题呢?  配制酱油的致癌风险,是因为人工配制过程中,大豆中所含的丙醇因酸水解而生成二类致癌物质三氯丙醇.北京一轻研究院研究员鲁绯表示,国家行业标准对三氯丙醇物质是规定有限量的,只要控制在限量范围内,就是安全的.专家的说法肯定是有科学依据的,我们应该相信科学,然而我们却无法相信生产者都能科学操作,也无法相信对国标执行的监管是百分之百负责任的.  限量范围内安全,它是一个放之四海而皆准的真理;三聚氰胺、瘦肉精,乃至砒霜,只要限量使用都应该安全,然而我们有没有能力控制这个"限量"却是个问题.美国等24个国家是允许饲料添加瘦肉精的,那是因为他们确信瘦肉精能够确保控制在标准内使用.而据说,我们国家严格禁止添加瘦肉精的主要原因,就是担心失控.滥用食品添加剂的问题空前严重,越来越没有底线的语境下,我们如何相信二类致癌物质三氯丙醇在配制酱油中会"限量使用"呢?而最令人不能接受的是:目前的酱油国标中并没有对三氯丙醇的限量规定,据说国家"正在考虑把对其限量写进去".难怪酱油协会人士瞪眼说"不属于食品安全问题".  终于明白:三氯丙醇,其实就是酱油里面的"三聚氰胺".二者都严重危害人体健康乃至夺命;三聚氰胺原来不也说无法检测吗,因为和现在酱油中的三氯丙醇一样,国家标准既没有限量一说,更没规定检测.  国家质检总局今年4月公布了对酱油的国家质量监督抽查结果,合格率在95.9%.然而所谓的"合格率95.9%"并不包括致癌物质三氯丙醇检测,就是说,不管酱油里含有多少致癌物,都可能被检测为"合格".而且,我们无法知道,各种食品中还有多少"三聚氰胺"和"三氯丙醇"逍遥于国家标准之外,非等到不幸被媒体曝料或业内人士良心发现,才会出现写进标准的"考虑"?然而,从揭地沟油教授、奶业协会人士被封口,以及醋业协会副会长被责令辞职的下场来看,今后再有人"良心曝料",可能要先作风险评估了.

  • 急找可以测定三氯丙醇的地方!!!!!!!!!!!!!

    要检测酱油中的三氯丙醇,各位朋友有可以检测三氯丙醇的吗?能出法定报告的最好,不能出法定报告就给个测定结果也可以.如果有可以检测或者知道检测地方的朋友请邮件联系:syrsk@sina.com 非常谢谢.

  • 【第三届原创参赛】电池级四氧化三钴的表征

    [color=#d40a00][size=2]维权声明:本文为dct1980[/size][size=2]原创作品,本作者与仪器信息网是该作品合法使用者,该作品暂不对外授权转载。其他任何网站、组织、单位或个人等将该作品在本站以外的任何媒体任何形式出现均属侵权违法行为,我们将追究法律责任。[/size][/color]电池级四氧化三钴的表征[font='Times New Roman','serif']Co[sub]3[/sub]O[sub]4[/sub] [/font][font=宋体]是生产锂电池正极材料[/font][font='Times New Roman','serif']——[/font][font=宋体]钴酸锂的主要原料,电池级四氧化三钴的制备是整个锂电池制备的关键,其一些物理和化学参数对正极材料钴酸锂的电化学性能有很大的影响,最终影响电池的性能和寿命。电池行业要求[/font][font='Times New Roman','serif']Co[sub]3[/sub]O[sub]4[/sub][/font][font=宋体]纯度高、粒度细、粒径分布范围小、形貌均一、几乎无团聚等.[/font]

  • 单四极杆和三重四级杆选哪个?

    想了解一下在做未知物定性方面(高分子材料),选单四级杆还是三重四级杆?三重四级杆可以做所谓的MS-MS是买两台MS?请老师给科普一下

  • 急救三氯杀螨醇标样的判断

    [b][color=#444444] [/color][color=#444444]我根据国标GB/T5009.176-2003配制了三氯杀螨醇的几个浓度,分别为0.05PPM ,0.1PPM,0.25PPM,0.5PPM,1PPM,也是经过浓硫酸磺化,经ECD检测器进行检测,出现四个峰,但是各个浓度的这四个峰基本都是成比例,我就不知道到底那个峰是三氯杀螨醇。恳请各位大侠指点啊。[/color][/b]

  • 急找可以测定三氯丙醇的地方!!!!!!!!!!!!!

    要检测酱油中的三氯丙醇,各位朋友有可以检测三氯丙醇的吗?能出法定报告的最好,不能出法定报告就给个测定结果也可以.如果有可以检测或者知道检测地方的朋友请邮件联系:syrsk@sina.com 非常谢谢.

  • 急找可以测定三氯丙醇的地方!!!!!!!!!!!!!

    要检测酱油中的三氯丙醇,各位朋友有可以检测三氯丙醇的吗?能出法定报告的最好,不能出法定报告就给个测定结果也可以.如果有可以检测或者知道检测地方的朋友请邮件联系:syrsk@sina.com 非常谢谢.

  • 50.10液相色谱测定三乙醇胺酯及酯季铵盐的组成分布

    50.10液相色谱测定三乙醇胺酯及酯季铵盐的组成分布

    宫志鹏:建立了反相高效液相色谱法测定三乙醇胺酯中单、双、三酯含量的方法。采用Diamonsil C18色谱柱(250X4.6mm,5I,tm),柱温30。C,溶剂为氯仿,流动相为甲醇和氯仿,检测器为电雾式检测器。通过讨论k’值和兄与流动相极性、流速和柱温的关系,确定了梯度洗脱程序,30rain内三乙醇胺单、双、三酯得到了较好的分离。三乙醇胺单、双、三酯在20.500mg·L.1范围内线性关系良好,线性相关系数分别是0.9980、o.9991和0.9913,最低检出质量浓度分别(3s/N)是1.0mg·L~、1.5mg·L-1和1.5mg·L-1,相对标准偏差(n=6)分别是2.45%、1.81% 和1.98%。优化了反相高效液相色谱测定三乙醇胺酯季铵盐中单、双酯混合季铵盐与三酯季铵盐含量的方法。样品经过乙醚萃取处理,采用Inertsil CN.3色谱柱(250× 4.6ram,5Irtm),柱温50。C,溶剂为正丙醇,流动相为正丙醇和水,梯度洗脱, 检测器为电雾式检测器,并采用液相色谱.质谱法确证,15min内三乙醇胺单、双酯混合季铵盐与三酯季铵盐得到了较好的分离。单、双酯混合季铵盐与三酯季铵盐在25.750mg·L。1范围内线性关系良好,线性相关系数分别是O.9966和O.9913,检出F艮(3s/y)是0.8mg·LJ和10.0mg·L一,相对标准偏差(n=6)分别是0.5 l%和12.38%。:三乙醇胺酯,三乙醇胺酯季铵盐,梯度洗脱,高效液相色谱,电雾式检测器Abstract :An analytical method of reversed phase hi曲performance liquid chromatography(RP-HPLC)was developed for determination of triethanolamine mono-,di—and triesters.Established a gradient elution programme by analyzing the relationship of k’,R and elution rate,elution polarity,temperature. Triethanolamine mono-,di-and triesters were detected and separated successfully by Diamonsil Cls column(250x4.6mm,59m)and column temperature of 30"C,with chloroform as solvent and methanol-chloroform as the mobile phase in gradient elution and with a Charged aerosol deteror.The linear ranges of triethanolamine mono一,di-and triesters were 20-500 mg‘L。(r=O.9980),20-500 mg·L。1(r=0.9991)and 20—500mg‘L_(r=0.9913)respectively.The measurable lowest limits were 1.0rag‘L一, 1.5mg’L—and 1.5mg‘L—and the RSDs were 2.45%.1.8 1%and 1.98%respectively. An analytical method of reversed phase hi曲performance liquid chromatography(RP—HPLC)was optimized for determination of triesterquats in 1 5min.Mono-,diesterquats mixture and triesterquats were detected and separated ccessfully by Inertsil CN一3 column(250x4.6mm,5pm)and column temperature of 30。C.with n—propanol as solvent and n—propanol—water as the mobile phase in gradient elution and with a charged aerosol deteror.The linear ranges of mono一, diesterquats mixture and triesterquats were 25-750mg·L-1(FO.9966) and 25-750mg’L叫(r=0.9913)respectively.The measurable lowest limits were 0.8mg‘L。1 and 10.0mg。L-1 and theRSDs were 0.51%and 12.38%respectively. Key words:triethanolamine esters,esterquats,gradient elution,high performance liquid chromatograph,charged alesol detectionhttp://ng1.17img.cn/bbsfiles/images/2012/08/201208131731_383588_2352694_3.jpghttp://ng1.17img.cn/bbsfiles/images/2012/08/201208131732_383589_2352694_3.jpghttp://ng1.17img.cn/bbsfiles/images/2012/08/201208131732_383590_2352694_3.jpghttp://ng1.17img.cn/bbsfiles/images/2012/08/201208131732_383591_2352694_3.jpghttp://ng1.17img.cn/bbsfiles/images/2012/08/201208131732_383592_2352694_3.jpg

  • 【转帖】丙三醇的应用!

    甘油又名丙三醇,是一种无色、无臭、味甘的粘稠液体。甘油是瑞典药剂师Scheele于1779年在橄榄油与一氧化铝反应时偶尔发现的一种具有甜味成分的物质。1823年法国的谢弗勒尔发现甘油的成分是甘油和脂肪酸的酯,并发现用苛性碱或硫酸能分离出脂肪酸和甘油。1836年法国的珀卢兹报导了甘油的实验式C3H8O3。1883年贝特洛证明了甘油的化学结构是三元醇,分子式为CH2OHCHOHCH2OH甘油的化学结构与碳水化合物完全不同,因而不属于同一类物质。每克甘油完全氧化可产生4千卡热量,经人体吸收后不会改变血糖和胰岛素水平。甘油是食品加工业中通常使用的甜味剂和保湿剂,大多出现在运动食品和代乳品中。冬季人们常用甘油搽于手和面部等暴露在空气中的皮肤表面,能够使皮肤保持柔软,富有弹性,不受尘埃、气候等损害而干燥,起到防止皮肤冻伤的的作用。由于甘油可以增加人体组织中的水分含量,所以可以增加高热环境下人体的运动能力。  中文名称:[b] 丙三醇[/b]  英文名称: glycerol[size=4][b]丙三醇分子球棍模型[/b][/size]  中文名称2: 甘油  英文别名:Glycerine,1,2,3-Propanetriol, Trihydroxypropane.  CAS No.: 56-81-5  分子式: C3H8O3  分子量: 92.09

  • 单四级杆与三重四级杆有何不同?

    单四级杆与三重四级杆有何不同?三重的可以做MS-MS,如果只从聚焦来讲三重其实是个双四级杆,而单的不能做MSMS.没有只有双四级杆的仪器,至少现在还没有.单四级杆也可以实验MSMS,可以通过源内CID实现。单四极杆碎片较少,定性信息不如三重四极杆。三重四极杆,实际上起碎片作用的是两重,中间那个是起碰撞诱导作用。它能产生较多的碎片,定性比单杆要好。而且相对于离子阱而言,虽然定性要差一点,但定量能力超过离子阱。两种仪器满足了不同类别的需求,各自有服务领域。比如化合物合成,定性,用SQ足以,另有紫外、核磁辅助。做个简单组分定量,面积归一法,DAD配SQ,就满足需求。单四级杆并不是毫无用武之地。总的来说,单级四级杆能够满足日常检测需求,三重四级杆成本更高,反而使用效率很低,据了解,多数企业实验室购买了三重四级杆,却只用到了MRM扫描模式的功能,其他就连基本的母离子扫描,子离子扫描,中性丢失等功能,也很少用到。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制