当前位置: 仪器信息网 > 行业主题 > >

帕立骨化醇

仪器信息网帕立骨化醇专题为您提供2024年最新帕立骨化醇价格报价、厂家品牌的相关信息, 包括帕立骨化醇参数、型号等,不管是国产,还是进口品牌的帕立骨化醇您都可以在这里找到。 除此之外,仪器信息网还免费为您整合帕立骨化醇相关的耗材配件、试剂标物,还有帕立骨化醇相关的最新资讯、资料,以及帕立骨化醇相关的解决方案。

帕立骨化醇相关的资讯

  • 明星产品—— 贺利氏Amba® ,紫外固化理想的替代光源
    用于固化应用紫外汞灯贺利氏Amba® 产品系列可提供弧长从12毫米到3.9米的光源。无论是单支光源,或是批量生产,我们都能灵活应对。Amba® 额定功率范围从80W/cm到400W/cm。对于特殊长度、特殊输出特性和MH添加剂,我们定制Amba® 光源能完美匹配您的需求。对于特殊的OEM设计,我们的研发部门和应用中心提供深度技术咨询。 优点: 卓越的品质和可靠性 200%性能保证 超过10000种光源类型(还可提供特殊长度,特殊输出特性和MH添加剂) 在整个光源寿命期间提供稳定的高效的紫外固化辐射 高密封性、高纯度石英玻璃、高品质电极和连接器确保更佳性能 定制光源:满足您的个性化需求Amba® 紫外固化灯是为优质可靠的固化效果而打造的。我们致力于生产始终如一的高品质灯管,不止使用最佳的原材料,还有最新技术和引以为豪的工艺水平。所有Amba® 紫外灯都拥有“200%经测试”性能保证。每根灯管在出厂前都不止经过一次测试,而是两次测试。Amba® 光源始终保证其高品质和高稳定性。 需要灯吗?贺利氏的专业人员就能帮您选择合适的光源! 贺利氏的紫外固化业务部门,拥有从有极灯、无极灯到LED的不同紫外光源,满足您的多种固化需求。 紫外(UV)固化是一种光化学过程,是利用高强度的紫外线进行照射,将工业中广泛使用的油墨,油漆,黏合剂加以瞬间固化。与传统的干燥方法相比,紫外线固化具有诸多优点: 提高生产速度 降低废品率 提高抗划伤性和耐溶剂性 并且易于实现超强粘结 ★ 广泛的应用领域★贺利氏特种光源的紫外固化光源广泛用于多种工业紫外线固化应用,从胶粘固化、汽车零部件、汽车头灯、CD制造、柔版印刷、玻璃雕刻、地板、图画艺术、喷墨打印、大幅面打印、标签打印、金属雕刻、窄幅和宽幅、胶版印刷、光学镜头涂层、包装、PCB制造、电子元器件、医疗仪器、导线标记、紫外清漆、紫外精饰̷̷ 我们拥有专业的研发部门和应用中心,可以提供深度技术咨询,定制光源,满足您的个性化需求,同时,完善的售后服务技术部门,为您的工业生产提供质量保障。
  • 流变和拉曼光谱的再次碰撞——UV胶的固化
    流变和拉曼光谱的再次碰撞UV胶的固化流变学已成为UV固化动力学研究中较为常用的表征方法。流变学中的参数—动态弹性模量G'对形态结构极其敏感,能够很好的反映体系在辐射固化交联过程中双键密度和内部结构发生的变化,因此实时监测G'的变化可以从体系结构的角度反映固化程度。UV固化本质是一种化学反应,材料暴露在特定的UV辐射下会引发自由基反应,导致机械结构发生明显变化。因此UV固化还可以通过拉曼光谱进一步监测,这些化学变化将会通过特征峰的生成或降低(缓慢或快速变化)反映在拉曼光谱中。流变仪与拉曼光谱相结合,可以同时获得材料的化学结构和物理性质的信息,将这些信息关联起来以获得在材料加工、反应机理方面更加深入的洞悉。UV固化系统和拉曼光谱仪均可通过安东帕MCR系列流变仪软件进行触发,从而能够同步监测整个UV固化过程中的粘弹性力学行为和光谱数据。流变&拉曼联用Omnicure S1500紫外固化系统,配备5mm光纤。Cora5001拉曼光谱仪,配备特制的联用拉曼探头——HT fiber probe 785。MCR流变仪,使用帕尔贴罩(H-PTD)和25mm石英玻璃平板。UV固化系统和拉曼仪均连接至MCR流仪中,从而UV辐射源和拉曼光谱仪都可以通过流变仪进行自动触发,保障原位测量的同步性。独特接口设计UV源与特制的联用拉曼探头实验结果图1:UV胶固化反应过程中的损耗模量(红色)和储能模量(黑色)变化曲线流变测量的结果如图1所示。从测量结果可以看出,样品最初表现出粘弹性流体响应,其损耗模量(G')大于储能模量(G')。随后,在UV辐射下激发了固化反应,从而可以观察到模量的快速变化。两个模量的变化曲线的交叉点意味着样品从液体主导状态转变为固体主导状态。然而,在5s的UV辐射时间结束后,固化反应继续进行,这可以从模量的持续增加中观测到。图2:950cm-1和1150cm-1的峰强随固化时间的变化图2为两个拉曼特征峰(950 cm-1和1050 cm-1)的峰强变化曲线。所选的这两个特征峰具备一定代表性,因为大多数其他特征峰的行为与其中一个相似。在5s的UV辐射下,两个特征峰都出现了峰强的骤降。在UV辐射结束后,950 cm-1的峰强迅速达到稳定水平,标志着相应基团化学变化的结束;而1050 cm-1的峰强是逐渐下降的,这与之前图1所示的模量逐渐增大相呼应;其余特征峰强度的变化率都处于上述两个特征峰之间。拉曼光谱中的整体化学信号变化与流变性能变化趋势相吻合,两种技术可以相互印证。然而,拉曼光谱中展示的信息非常丰富,不同特征峰的强度变化曲线代表不同化学基团的反应特性,因此,可以获得每一个感兴趣的化学基团的变化信息。拉曼光谱的这一特性,不仅是样品整体流变特性的补充,还为深入了解不同反应基团的特性提供了可能性。实验结论安东帕的流变-拉曼联用设备已被证明对监测复杂的反应机理非常有益。MCR系列流变仪还可以与不同激发波长的Cora5001拉曼光谱仪,以及不同的UV固化系统(不同波长、汞灯、LED光源)相结合,且流变仪可使用多种型号(如珀耳帖或电加热),为各种应用提供最大的灵活性。想要了解完整的本次应用报告,请点击下载。
  • 投影式光固化打印压电材料的近期研究进展
    压电材料是受压力作用时会在相对表面两端界面之间产生电压的晶体材料,可适用于换能器,传感器、驱动器、声纳、手机和机器人等应用。相较于其他3D打印制备技术,投影式光固化3D打印技术,尤其是PµSL,在打印速度和分辨率方面都有明显的优势((26,000 mm2h-1, 10 μm),挤出式(0.2–113 mm2 h-1, 10–120 μm),气溶胶喷射(19–5,600mm2 h-1,100 μm),多工艺协作制备( multiprocesstechniques)(11 mm2 h-1,100 μm)。本文整理了近年间期刊上压电材料的相关研究进展,供大家参考,如对这个方向感兴趣,欢迎和我们联系,一起探讨光固化打印压电材料的技术和应用。Nature Electronics:PµSL制备价态可控的多材料压电器件一句话总结:采用PµSL的技术打印3D结构,然后选择性沉积一种或多种材料(金属、陶瓷、半导体材料等)在已打印的3D结构的任意指定位置,实现了价态可控的3D压电器件的制备。论文信息:Hensleigh R., Cui  H. C.  , Xu  Z. P.,   Massman J., Yao D. S.,,Berrigan J. and X. Y. Zheng . Charge-programmed three-dimensional printing formulti-material electronic devices. Nature Electronics (2020). https://doi.org/10.1038/s41928-020-0391-2。Nature Materials: 3D 打印制备智能压电材料一句话总结:采用3D打印技术,快速打印任意结构的压电三维材料,实现电压在任意方向可放大、缩小及反向的特性。论文信息:H.C. Cui, R. Hensleigh, D. S. Yao, D.Maurya, P.Kumar, M. G. Kang, S. Priya and X. Y. Zheng. Three-dimensional printing of piezoelectricmaterials with designed anisotropy and directional response.Nature Materials 18, (2019) 234–24. https://doi.org/10.1038/s41563-018-0268-1。Materials and Design: DLP 3D打印制备压电耳机一句话总结:采用DLP 3D打印技术制备压电声学传感器并封装在集成电路中。实验结果表明:该传感器薄膜厚度可减至35微米且具有可调节的共振频率。论文信息:Tiller B., Reid A., Zhu B. T., Guerreiro J.,Domingo-Roca R., Curt Jackson J. C. and Windmill J.F.C.. Piezoelectricmicrophone via a digital light processing3D printing process. Materials andDesign 165 (2019) 107593. https://doi.org/10.1016/j.matdes.2019.107593。Procedia CIRP: 聚合物基压电可光固化树脂制备压电材料一句话总结:采用PµSL制备高聚合物基压电材料,该材料是以PVDF(聚偏二氟乙烯)35%(体积分数)与光固化树脂混合制备而成,压电电压系数为105.12 × 10-3 V∙m/N。论文信息:Chen X. F., Ware H., Baker E., Chu W. S.,Hu J. M. and Sun C. The development of an all-polymer-based piezoelectricphotocurable resin for additive manufacturing. Procedia CIRP 65 (2017) 157 –162. https://doi.org/10.1016/j.procir.2017.04.025。 ACS Nano:3D打印制备复合纳米压电材料一句话总结:采用DLP-3D打印技术制备了复合纳米压电材料(BTO-PEGDA)。实验结果表明:优化的纳米BTO颗粒掺杂制备的压电材料介电系数是无优化掺杂的压电材料的十倍以上,且应变转换效率也远超于掺杂碳纳米管制备的压电复合材料。论文信息:Kim.K, Zhu W. Qu X., Aaronson C., McCall W. R.,Chen S.C. and Sirbuly D.J. 3D optical printing of piezoelectric nanoparticle-polymer compositematerials. ACS Nano, 2014. 8(10) 9799-806. https://doi.org/10.1021/nn503268f.官网:https://www.bmftec.cn/links/10
  • 利用DSC方法评价热固性树脂—热固化粘合剂
    热固化粘合剂主要成分为热固性树脂,使用在材料之间的粘合上。根据粘合剂成分,粘合时的温度,时间不同,粘合强度与粘合性也不同。通过加热可促进固化,缩短粘合时间。此外还开发了即使在低温下也可进行固化反应的粘合剂,提高了通用性及便捷性。 热固化粘合剂的固化度和性能,通常使用DSC进行玻璃化转变的测试来评价。下面,就让我们用日立DSC7000X研究热固化粘合剂的玻璃化转变和固化反应。■ 实验条件 样品:双组分液体混合型粘合剂样品量:约1mg升温速率:10℃/min样品容器:Al开口容器 ■ 实验结果放置3—10min的样品,可在0—50℃之间观察到热固化反应的放热峰。随着时间增长放热峰减小,推测室温下发生固化反应放置3—10min的样品其玻璃化转变在0℃以下,放置15min以上的样品则在0℃—室温之间。3-15min样品玻璃化转变有大幅的变化,15min以后变化变缓。可以推测双组分混合型粘合剂混合开始大概经过15min以上才能充分粘合。 常见问题?测试中可能遇到的问题:在评价热固性树脂的过程中,未固化部分的反应峰(放热)与玻璃化转变的区域发生重叠时,玻璃化转变的判定就会变得困难。解决办法!使用调制DSC方法,进行热固性树脂成型品(含填料)和热固化胶粘剂的玻璃化转变测试,可以排除可逆反应(如固化反应,以及其他热历史),从而更容易判断玻璃化转变。测试案例如下图所示: 日立差示扫描量热仪DSC7000X,拥有新型传感器和炉体,实现世界顶级的灵敏度和重现性,配备的最新热分析软件EMA,一次购买就可包含所有高级功能,如调制DSC,比热容分析,动力学分析等。并可配备Real View TA样品观察系统,可将一些难以分辨的现象可视化,从而获得可靠度更高的数据。关于日立差示扫描量热仪 DSC7000系列热分析仪详情,请见:https://www.instrument.com.cn/netshow/SH102446/C313721.htm关于日立高新技术公司:日立高新技术公司,于2013年1月,融合了X射线和热分析等核心技术,成立了日立高新技术科学。以“光”“电子线”“X射线”“热”分析为核心技术,精工电子将本公司的全部股份转让给了株式会社日立高新,因此公司变为日立高新的子公司,同时公司名称变更为株式会社日立高新技术科学,扩大了科学计测仪器领域的解决方案。日立高新技术集团产品涵盖半导体制造、生命科学、电子零配件、液晶制造及工业电子材料,产品线更丰富的日立高新技术集团,将继续引领科学领域的核心技术。
  • 赛默飞世尔科技扩展流变仪紫外固化测试单元的配件范围
    &mdash &mdash 满足行业对紫外线固化日益增长的需求 中国,上海(2011年12月1日)- 作为全球科学服务领域领导者的赛默飞世尔科技公司今日宣布已扩大其流变仪配件范围,以满足紫外线固化单元的要求。这将满足日益增长的行业需求,即应用紫外线辅助热固化工艺取代热固化,以提高生产率,并进一步促进环境的持续发展。 采用常见的振荡剪切方法通常难以对涂覆过程中(如牙科中)短短几秒钟内可能发生的紫外线诱导反应进行监测。为应对这一挑战,赛默飞世尔科技为赛默科技哈克MARS高端流变仪研发出&ldquo 快速振荡模式&rdquo 。采用这种新的&ldquo 快速振荡方法&rdquo 可获得与振荡频率无关的 500Hz 更高数据采集率,从而满足极快固化材料的具体需要。 如今客户可在4 种紫外线测量配置中做出选择: ► 标准型式的紫外线测量单元安装到温度控制装置(液体循环器控温、电加热或帕尔帖板),在环境温度下适于墨水等紫外线固化材料。 ► 在更高温度下适于热辅助固化工艺的紫外线单元可用于哈克MARS流变仪。该元件整合到流变仪的辐射对流炉 (CTC) 内,涵盖温度范围为 -150℃~600℃。 ► 光导管、聚光器和玻璃板等光学部件的可定制紫外线单元(照射距离可自由调整)模拟了生产工艺中光学部件的配置,比如:用于制造隐形眼镜的光学部件。 ► 对于在紫外线固化材料上进行的测量,已研发哈克MARS流变仪平台用新模块。当模块安装到测量头上时,该模块可与流变仪的Rheonaut 模块一并使用,后者允许同时测量流变性能和FT-IR光谱,从而研究样品范围内发生的结构变化。 可通过赛默科技哈克RheoWin 测量与评估软件选择并启用市场可买到的光源。粉末涂料、粘合剂、密封剂、焊接材料和墨水或隐形眼镜等应用可以配备这些测量元件。 作为流变学领域的先锋之一,赛默飞世尔科技运用其全面的赛默科技材料特性方案成功地支持了大量行业。材料特性方案分析并测量了塑料、食物、化妆品、药品和涂料、化学品或石化产品以及各种液体或固体等的粘度、弹性、加工性和温度相关力学变化。详情请登录www.thermoscientific.com/mc。 Thermo Scientific HAAKE MARS 流变仪 关于赛默飞世尔科技 赛默飞世尔科技公司是全球科学服务领域的领导者。我公司的使命是帮助客户把世界变得更健康、更洁净、更安全。我公司收入接近 110 亿美元,拥有约 37000 名员工,服务对象包括医药和生物技术公司、医院、临床诊断实验室、大学、研究所和政府机构以及环境与工艺控制行业等范围内的客户。我公司通过赛默科技与飞世尔科技两个主打品牌为我公司的主要股东创造价值,赛默科技与飞世尔科技提供了一个持续技术开发的独特组合和最方便的购买任择权。我公司产品和服务有助于加快科学探索步伐,并解决从复杂研究到常规试验再到现场应用等各个环节中所遇到的分析方面的挑战。请登录www.thermofisher.com ,或中文网站www.thermofisher.cn
  • DEA测试聚酰亚胺的固化
    聚酰亚胺是一种高性能塑料,通常是热塑性的,有时也可以发生固化。聚酰亚胺具有非常高的力学性能、化学稳定性和热稳定性,常用在复杂的应用场合,比如替代金属和玻璃,作为耐高温材料、耐润滑油、汽油、耐化学腐蚀材料等。有些应用场合需要对聚酰亚胺树脂的固化温度和时间有着充分的了解。测试条件:温度范围:30...300°C传感器:IDEX,梳妆结构,电极间距115μm升降温速率:2、10、20K/min测试气氛:空气频率:10KHz结果讨论:图1 固化过程的离子粘度变化图2 固化动力学模型拟合在测试起始阶段,由于温度升高样品软化造成离子粘度略微降低,随后样品开始固化离子粘度开始升高。中途离子粘度有短暂的下降,之后又继续升高,这表明样品存在二步固化反应,最终固化后的离子粘度相比于初始阶段增加了4个数量级(图1)。使用Thermokinetics软件对三次不同升温速率下的测试数据计算得到动力学模型。此处树脂固化模型为三步连续反应:A→B→C→D,且每步反应都是自催化反应,模型拟合与测量数据之间的相关系数高达0.999(图2)。
  • 耐驰公司成功举行2007年固化监测仪(DEA)用户会
    介电法树脂固化监控(DEA)是一项通过实时监测热固性材料在固化过程中的介电性质的变化来研究其固化进程的技术。广泛应用于热固性树脂、油漆、涂料、粘合剂、复合材料与电子材料等领域,用来进行固化行为研究与固化工艺优化。不仅能用于实验室的研究开发,也能用于生产车间的在线监控。 德国耐驰公司是世界领先的热分析仪器生产厂家,它向国际市场提供最完备的热分析、热物性测量产品。作为一种固化检测的有效手段,DEA在中国已经拥有众多的用户。2007年1月15-19日,耐驰公司分别在南京、济南和西安进行了DEA的用户交流会。在会议上,由资深专家Mr. David Shepard和曾智强博士分别介绍了树脂固化检测仪(DEA)的基本原理和应用。同时,对DEA的操作、维护和疑难问题和用户进行了热烈的交流,并积极回答用户提出的各种问题。用户们表示通过此次交流会对DEA有了更深入的认识,并希望继续举办类似的活动。对于用户的建议,耐驰公司会积极采纳,在新的一年里,为广大用户提供更多、更有价值的交流活动。 详情请登录:www.netzsch.cn
  • Pμ SL与TPP微纳光固化3D打印技术
    导读:增材制造被认为是“一项将要改变世界的技术”。光固化3D打印是其中的一个重要方向,以数字化模型为基础通过光与材料(多为树脂、陶瓷浆料、纳米金属颗粒浆料等)的反应实现结构的成型,并借由局部光聚合反应,可实现相对较高的光学分辨率及打印精度。目前,从光固化3D打印技术的发展来看,主要是从两个维度进行聚焦: 一个是宏观的维度,也就是实现大幅面、大尺寸、高速度的3D打印;另一个是微观的维度,即实现微米、纳米尺寸的精细3D打印。在微纳机电系统、生物医疗、新材料(超材料、复合材料、光子晶体、功能梯度材料等)、新能源(太阳能电池、微型燃料电池等)、微纳传感器、微纳光学器件、微电子、生物医疗、印刷电子等领域,复杂三维微纳结构有着巨大的产业需求【1】。微纳尺度光固化3D打印在复杂三维微纳结构、高深宽比微纳结构和复合(多材料)材料微纳结构制造方面具有很高的潜能和突出优势,而且还具有设备简单、成本低、效率高、可使用材料种类广、无需掩模或模具、直接成形等优点,因此,微纳米光固化3D打印技术在近几年正在受到越来越多的科研机构、企业以及终端用户的青睐。在全球范围内已经成熟商业化的微纳米光固化3D打印技术主要有:双光子子聚合TPP(Two-photonpolymerization based direct laser writing)技术和PμSL面投影微立体光刻技术(Projection Micro Stereolithography) 。TPP是一种利用超快脉冲激光将光敏材料(树脂、凝胶等)在焦点区域固化成型的工艺。PμSL则是使用紫外光,通过动态掩模上的图形整面曝光固化树脂成型的工艺。这两种技术是目前常用的微纳米尺度3D打印的技术,其中TPP打印的精度可实现100 nm以下,目前德国和立陶宛等国家有商业化的设备产品。PμSL目前在实验室阶段可实现几百纳米精度,已经商业化的产品可达几个微米的打印精度,多见于深圳摩方材料公司的nanoArch系列微纳3D打印设备,为全球首款商业化的PμSL微尺度3D打印设备产品。本文将从几个方面对上述两种技术进行系统介绍。技术原理光固化(photocuring)是指单体、低聚体或聚合体基质在光诱导下的固化过程。光固化3D打印,是指通过控制光斑的图案或者振镜扫描路径,曝光区域的液态树脂聚合成固态物质,未曝光的区域树脂不参与聚合反应,通过精密控制Z轴移动,从而层层堆积快速成型样件。光固化3D打印,目前有单光子吸收聚合和双光子吸收聚合两种树脂聚合方法。单光子吸收 (SPA) 是指激发态电子吸收一个能级差的能量从低能级跃迁到高能级的过程,光吸收效率与入射光强是线性相关的。PμSL是利用单光子吸收聚合反应而成的打印技术,入射光进入液态树脂后,在吸收剂的作用下,光强逐渐减小,因此有效聚合反应只发生于树脂表面很薄的一层, 如图1所示。双光子吸收 (TPA) 则是受激电子同时吸收两个光子能量实现跃迁的过程,这是一种非线性效应,即随着光能量密度的增加,该效应会快速加强。因此入射光可穿过液态树脂,在其空间中的一个极小区域发生体像素固化成型。如图1所示,双光子吸收主要发生在某一点处,通常是光束焦点位置。这也是因为此处光强足够高,促使聚合物发生双光子吸收效应而发生聚合反应。 图1. 单光子吸收和双光子吸收【2】。其中,基于单光子吸收的3D打印设备可采用点光源或面光源(如PμSL),而TPP使用的是点光源。从图1中也可以看出,双光子吸收具有高局域性,这一点是单光无法实现的。借助这种高局域性质,目前小于一百纳米尺度的3D打印也成为了现实。将激光聚焦,使得激光焦点处光强超过双光子吸收阈值,控制反应区域在焦点附近极小的区域,改变激光焦点在样品中的相对位置,便可打印3D 微纳米结构,且具有极高的打印精度。而单光子吸收,具有曝光面积大,在达到较高打印精度的同时,且具有极高的打印速度。制备工艺和设备双光子聚合TPP微纳米3D打印过程以图2为例: 飞秒激光通过超高倍率的聚焦系统聚焦在光敏材料上,由光敏材料的双光子吸收发生聚合作用。其中,光敏材料一般是涂覆在载玻片或硅片上,载玻片是置于压电陶瓷平台上。通过移动精密压电陶瓷平台或振镜扫描,控制激光焦点位置的移动,即可实现微纳3D结构的成型,成型后使用有机溶剂冲洗(浸泡)样品,去除残余的未聚合材料,最终获得3D结构样品。其打印过程一般无需将打印件从树脂槽底部剥离,也无需安装刮刀进行光敏树脂液面的涂覆。图2 典型的TPP打印系统示意图【3】PμSL的操作过程(如图3)是将LED发射的紫外波段光反射在一个数字微镜装置(DMD)上,再让紫外线按照设定图形对液态树脂进行一个薄层的曝光。表层树脂固化后,下降打印平台,更多的液态树脂会流到已固化层之上,新的一层液态材料继续被紫外线照射曝光。完成的打印物品只用清理掉残留液态树脂就可被用作为装置、样品或者模具。通常的TPP打印采用的是红外飞秒脉冲激光作为光源,飞秒脉冲激光器的价格昂贵且随着使用时间积累存在衰减问题。PμSL则可选用工业级UV-LED 作为光源,光源寿命长(10000小时)、成本低(通常低于十万)、更换成本相对较低。设备使用环境要求方面,TPP打印的设备大多建议使用黄光无尘室,PμSL 3D打印系统只需要正常洁净的空间放置即可,无黄光无尘室的要求。图3 典型PμSL打印系统的设备示意图3D打印性能就打印分辨率来讲,PμSL技术通过DMD芯片的选择和投影物镜微缩,可实现的打印分辨率在几百纳米至几十微米的尺度范围。而TPP双光子聚合由于其聚合反应的高度局域,且突破了光学衍射极限,最高可以实现一百纳米左右的超高打印分辨率。就打印速度来讲,由于PμSL技术利用整面投影曝光,而TPP技术采用逐点扫描加工,因此打印速度上也存在较大差异。以整体大小2 mm (L) × 2 mm (W) × 70 μm (H),最小特征尺寸5μm的仿生槐叶萍模型举例,PμSL打印设备可在15分钟内打印完成,相对来说,TPP打印设备则需要16小时【4】。就打印幅面来讲,TPP技术因为激光焦点位置的精密移动通常由精密压电陶瓷平台或扫描振镜提供,移动范围有限,辅以扫描振镜技术或机械拼接,典型打印幅面约3mm×3 mm左右。PμSL技术由DMD芯片幅面和投影物镜倍率决定单投影曝光幅面,还可以通过机械拼接实现更大幅面,如图4为深圳摩方材料科技有限公司的设备制备的高精度大幅面跨尺度打印的样品,其样品整体尺寸为:88×44×11 mm3,杆径:160 μm。摩方材料公司的设备最大打印幅面可达100mm×100mm。图4 高精度跨尺度打印就打印材料来讲,双光子吸收的特殊性也使得TPP打印对材料的选择较为苛刻,如要求树脂必须对工作波长的激光是透明的以保证激光能量可以在树脂内聚焦,且具有较高的双光子吸收转化率,因此所用的材料种类相对受限(如SCR树脂、IP系列树脂、SU8树脂、PETA等)。而PμSL打印材料多为光敏树脂,可打印透明树脂材料和不透明的复合树脂材料,种类比较广泛且商业化(如硬性树脂、韧性树脂、耐高温树脂、生物兼容性树脂、柔性树脂、透明树脂、水凝胶、陶瓷树脂等)。应用层面TPP技术是目前纳米尺度三维加工较为普遍的加工技术,在诸多科研领域中有着广泛应用,包括纳米光学(如光子晶体、超材料等)、生命科学(细胞培养组织、血管支架等)、仿生学、微流控设备(阀门、泵、传感器等)、 生物芯片等,如图5所示。但另一方面,受其加工幅面及速度的限制,TPP打印的工业化应用较少,目前仍急需突破。图5 TPP微纳米3D打印的案例【5】PμSL在科研领域的应用包括仿生学(槐叶萍结构【4】)、生物医疗(支架结构、微针)、微流控管道、力学、3D微纳制造、微机械、声学等,如图6。图6 PμSL微纳米3D打印的案例【4】相较于TPP,PμSL 加工速度快、打印幅面大、加工成本低以及宽松的环境要求等特点,使其工业应用领域已实现了内窥镜、导流钉、连接器、封装测试材料等的批量加工和应用。例如眼科医院用于治疗青光眼的导流钉(如图7示),导流钉中微弹簧直径可达200微米、打印材料具有优异的生物相容性,该导流钉在治疗中可有效改善眼压和流速。此外,亦有通讯公司用于芯片测试的socket插座,如图8示,能实现半径可达100微米,间隔50微米的致密结构。在医疗领域比较知名的内窥镜制造企业也已经使用PμSL制造出高纵横比、薄孔径的内窥镜底座,最小薄壁厚度70微米,高至13.8毫米。另外,除了打印树脂材料,PμSL工艺也可以打印陶瓷(图9为陶瓷打印样件)。图7 眼科医院用于治疗青光眼的导流钉(引流管、 短突、 翼领)图8 内窥镜头端和socket插座图9 陶瓷打印样件总而言之,作为微尺度代表性的两种光固化3D打印技术,TPP和PμSL技术具有各自的打印特点及相关应用领域。TPP打印精度高达一百纳米左右,加工尺寸和材料相对受限,已经在光学、超材料、生物等科研领域,有着广泛的应用。在大幅面的微尺度3D打印技术方面,PμSL面投影立体光刻具有加工时长短、成本低、效率高的优点,也已广泛应用在科学研究、工程实验、工业化等多个领域。参考文献:【1】兰红波,李涤尘, 卢秉恒. 微纳尺度3D打印. 中国科学: 技术科学. 2015, 45(9): 919-940.【2】S. H. Wu , J. Serbin, M.Gu. Two-photon polymerisation for three-dimensional micro-fabrication Journal of Photochemistry and Photobiology A: Chemistry 181 (2006) 1–11【3】S. H. Park, D. Y. Yang and K. S. Lee. Two-photon stereolithography for realizing ultraprecise three-dimensional nano/microdevices. Laser & Photon. Rev.3, No. 1–2, 1–11 (2009)【4】Xiang Y. L., Huang S. L.,Huang T. Y., Dong A.,Cao D.,Li H. Y.,Xue Y. H., Lv P.Y.and Duan H. L. Superrepellency of underwater hierarchical structures on Salvinia leaf. PNAS. 2020, 117(5):2282-2287.【5】M. Malinauskas, M. Farsari, Algis Piskarskas, S. Juodkazis. Ultrafast laser nanostructuring of photopolymers: A decade of advances. Physics Reports 533 (2013) 1–31
  • “502多久可以粘住?”——湿固化胶粘剂的热分析解决方案
    引言 大家应该对502胶这款生活中常见的胶粘剂并不陌生,如果不小心粘在手上,不到一分钟就会牢牢地跟人体皮肤形成一层胶层,十分难以清理,因为此时已经发生了交联固化,酒精不能溶解,需要加热到软化温度再慢慢清理下来。 图1:生活中的502胶水 那么502是怎么发生交联的呢?其实它主要组分为α-氰基丙烯酸乙酯,化学结构式如图2所示,它会与空气中的水发生反应,迅速由单体形成链式的体型结构以达到固化交联和粘接的作用,它属于胶粘剂中的湿固化胶粘剂。 图2:α-氰基丙烯酸乙酯及其固化机理 测试方案 我们在使用各种胶水时,最常问的一句话就是:我按多久可以粘住啊?,这个其实本质上就是胶粘剂在某个温度下的凝胶时间测定过程。凝胶时间(或贮存期)是指树脂中分子形成凝胶所需的时间。凝胶之后, 树脂就不再适合作其他用途。是可以通过TMA/SDTA2+进行测试的,下面展示的案例即是由图3中的梅特勒托利多TMA—Sorption 完成的湿固化胶粘剂测试方案。 图3:梅特勒托利多TMA—Sorption设备 该样品为某聚氨酯湿固化胶粘剂,因此在测试时就需要将样品放置在设定的相对湿度(RH)下,然后 使用DLTMA技术测量样品,DLTMA技术是TMA/SDTA2+所标配的调制技术,可以实现负力向上抬样品探头以测试凝胶时间(参考GB 12007.7-89),施力过程如图4所示。再通过湿度发生器设置相应的湿度程序以进行胶粘剂的湿固化凝胶时间测试。图4:调制力施加控制过程 在一定的温度下,空气中水蒸气的含量是有限的,就像某一物质溶解在水中时,一定温度的水中能溶解多少这种物质一样。气温越高,空气中能够容纳的水汽越多。气温越低,能容纳的水汽越少。测试方法及制样 探针:3毫米球点探针。力值:DLTMA测量期间的作用力在–0.010和0.010N之 间以正弦方式变化,周期为12 秒。样品制备过程:在30&ring C下将一小滴液体PUR胶粘剂直接滴到TMA的石英玻璃样品支架上。测量之后,通O2高温将固化物烧掉,冷却后擦去残留物。图5显示了在30&ring C和90%相对湿 度下执行DLTMA测量的结果, DLTMA曲线可以在最大值和最小值之间以正弦方式变化,此时探头压入样品或抬离样品。在液态下,测量探针在向上过程中完全抬离样品。大约20分钟之后,样品向上抬离样品变得困难。在70到100分钟之间,该位移振幅保持在较为稳定水平下;测量探针不再能完全抬离。这是液滴表面形成了粘膜或表皮,防止探针抬离样品。此粘膜在样品内部和实验气氛之间形成了一个“扩散屏障”,因此进一步固化速度非常慢。从100分钟开始,该位移幅度明显变小。大约170分钟之后,它逐渐变为零,材料变成粘性凝胶,探头无法再上下运动。因此对于前文提到的502类胶水,不慎粘在手上,在“粘膜”形成的时间前我们一定要迅速清洗掉!如图6上曲线所示,开始时间T1描述了表面粘膜的形成,开始温度T2的第二步则表示整个液滴开始固化,之后在最终时间T3几乎完全固化。因此T3与样品的凝胶时间相对应。 图5.样品在设定温/湿度下的固化曲线 此外,在30℃条件下也进行了 70%和80%的RH对样品固化过程影响的测试。图6显示了特征时间T1、T2和T3与相对湿度的关系。随着相对湿度的增加,反应速度也加快。样品表面粘膜的形成时间 (T1)和“内部湿化”的开始时间 (T2)对于相对湿度的依赖性比凝胶时间T3要小很多。 图6. T1、T2、T3与相对湿度的关系 结论 热固性树脂的湿固化可以通过进行DLTMA技术与湿度发生器联用的方式进行测量。可以通过调整相对湿度和温度来研究胶粘剂的凝胶时间影响因素。
  • 中山大学王山峰教授团队《Addit. Manuf.》:一种可超快打印组织工程支架的光固化树脂
    近日,中山大学材料科学与工程学院王山峰教授团队创新地使用超支化反应型稀释剂去优化聚富马酸丙二醇酯(PPF)树脂,充分利用了面投影微立体光刻技术(nanoArch P140,摩方精密)的快速制备优势,实现了可降解、无细胞毒性组织工程用多孔支架的超快、高精度打印,同时显著提高支架结构的模量、韧性、和形变回复率。相关成果以“Projection printing of scaffolds with shape recovery capacity and simultaneously improved stiffness and toughness using an ultra-fast-curing poly(propylene fumarate)/hyperbranched additive resin”为题发表在国际著名期刊《Additive Manufacturing》上(Doi:10.1016/j.addma.2021.102446)。该期刊的影响因子为10.998,在工程-制造领域中排名第一。PPF是一种可注射、可光固化、可降解不饱和聚酯,在骨组织工程上具有优异应用前景。在以往使用PPF树脂和立体光刻技术打印组织工程支架的报道中,富马酸二乙酯(DEF)是作为反应型稀释剂来调节树脂粘度以获得流动性和可打印性,然而在固化速度和所制备支架结构的力学性能上需要提高。在此论文中,经筛选后超支化聚酯丙烯酸酯(HPA)作为反应型稀释剂与PPF形成新型光固化树脂,并与PPF/DEF树脂在流变性质、热性能、固化速度、固化深度、临界固化能量、打印速度、打印精度,以及打印出的多孔支架结构的力学性质上进行全面的对比研究。实验结果表明HPA可有效降低PPF的玻璃化转变温度和粘度,以获得打印时的流动性,同时,HPA极大加速了PPF的光交联过程。PPF/HPA树脂固化需要的临界能量极低,仅为2.1 mJ/cm2,低于PPF/DEF树脂的六分之一。在保证高精度的前提下,使用面投影微立体光刻3D打印技术快速成型的特性最为亮眼。对于PPF/HPA树脂,每打印一层曝光时间仅为0.1-2 s,比目前已公开报道的使用紫外光交联方法的3D打印技术至少缩短了一半。在50微米的分辨率下,PPF/HPA树脂的打印速度可达18 cm/h,而PPF/DEF树脂的打印速度仅为其五分之一。得益于更完善的交联网络,使用PPF/HPA树脂打印的支架结构比PPF/DEF树脂支架具有更低的收缩率、更高的刚度和韧性,以及更好的形变回复能力,具有4D打印的特性。初步体外细胞实验也证明这些支架的细胞相容性好,为在支持骨组织修复上使用奠定了基础。图1 面投影微立体光刻技术(nanoArch P140,摩方精密)快速制备PPF/HPA支架图2 PPF/HPA、PPF/DEF两种树脂的打印速度对打印分辨率和光强的依赖关系图3 PPF/HPA支架结构的优异力学性能论文为中山大学材料科学与工程学院独立完成,第一作者为硕士研究生利文杰,第二作者为博士研究生成肖鹏,其导师王山峰教授、王苑讲师为共同通讯作者。该研究得到中国国家自然科学基金(51973242)、中山大学“百人计划”启动经费、广州市科技计划重点项目(201704020145)、和广东省基础与应用基础区域性联合研究计划(2020A1515110674)的支持。原文链接:https://doi.org/10.1016/j.addma.2021.102446
  • 赛默飞世尔科技再度拓展流变仪UV固化元件的功能
    德国卡尔斯鲁厄(2008年8月19日)-服务科学世界领先的赛默飞世尔科技公司再度拓展了流变仪用UV固化元件的产品种类,以借此重点开发此类附件的功能。此举与行业中用支持UV的热固化工艺取代热固化的趋势不谋而合,可有效地改善产品特性,提高生产力。 现在,客户在选购UV测量装置时有以下三种选择: - 标准版UV测量元件:可安装在温控单元(液体温控、电子温控或Peltier板)上,适用于在室温情况下对油墨等材料进行UV固化。 - 高温热固化工艺用UV元件:适用于Thermo Scientific HAAKE MARS。它可集成到流变仪的控制试验炉(CTC)中,温度范围在-150° C到600° C。 - 可定制的UV元件:可自由配置光导、聚光镜、玻璃片等光学部件的距离,以模拟生产工艺(如隐形眼镜)中光学部件的布局。 市面上有售的光源均可通过Thermo Scientific HAAKE RheoWin测量和评估软件来连接并触发。上述测量元件支持粉末涂料、胶粘剂、密封剂、焊接材料、油墨或隐形眼镜等多种应用。 赛默飞世尔科技通过全面的材料表征解决方案,可成功地向多个行业提供支持。上述解决方案可对塑料、食品、化妆品、药品及包覆以及各种流体、固体的粘度、弹性、加工性能及温度相关的机械变化等进行分析和测量。欲了解更多详情,请登录www.thermo.com/mc. Thermo Scientific作为赛默飞世尔科技旗下子公司,是服务科学领域的世界领导者。 ----------------------------------------------------------------------------------- 关于赛默飞世尔科技 赛默飞世尔科技(Thermo Fisher Scientific)(纽约证交所代码:TMO)是全球科学服务领域的领导者,致力于帮助客户使世界更健康、更清洁、更安全。公司年度营收达到100亿美元,拥有员工33,000多人,服务客户超过350,000家。这些客户包括:医药和生物技术公司、医院和临床诊断实验室、大学、科研院所和政府机构以及环境与工业过程控制装备制造商等。公司借助 Thermo Scientific 和 Fisher Scientific 这两大品牌,帮助客户解决从常规测试到复杂的研发项目中所面临的各种分析方面的挑战。Thermo Scientific像客户提供了一整套完整的高端分析仪器、实验室设备、软件、服务、耗材和试剂,以实现实验室工作流程综合解决方案。Fisher Scientific 为卫生保健、科学研究,安全和教育领域的客户提供完整的实验室装备、化学药品、供应品和服务的组合。赛默飞世尔科技将努力为客户提供最为便捷的采购方案,为科研的飞速发展不断地改进工艺技术,并提升客户价值,帮助股东提高收益,还为员工创造良好的发展空间。 欲获取更多信息,请访问公司网站: www.thermo.com (英文) 或 www.thermo.com.cn (中文)
  • 贺利氏特种光源集团全球副总致辞第十七届中国辐射固化年会开幕式
    9月8日,在素有“文化之邦”的禅宗圣地安庆,迎来了第十七届中国辐射固化年会,暨首届安庆市化工新材料产业高峰论坛。作为开幕式唯一的国外嘉宾-Mr.David Harbourne先生,是德国贺利氏特种光源集团全球副总裁,北美辐射固化协会前主席。他针对目前和未来的UV/EB固化技术的市场进行了综合阐述。全球市场:根据BCC research的研究,全球UV树脂的市场增长会达到8.7%的复合年均增长率,到2020年达到46亿美金的市场规模,其中工业涂料作为最大的占比应用,会以8.8%的复合年均增长率,至2020年达到20亿美金。其中主要的驱动因素是各国法律对排放的严格要求,快速的生产速度及新的应用领域的推进。电子、工业涂料及粘合剂占整个市场需求的65%,亚太地区作为最大和发展最快的市场,中国和日本成为主要市场,而紧随其后的是韩国和台湾。根据Allied Market research报告,UV墨市场在2015-2020年,年均复合增长率预计达到15.7%,其快速增长来源于食品饮料行业,并且UV-LED墨逐渐在新的应用领域,呈现取代传统UV墨的趋势。而亚太市场的UV应用主要集中于医药和消费品的标签。预计到2020年,中国、印度和东南亚国家将会占全球市场的五分之二。北美市场:北美印刷行业目前是全球最大的印刷市场,但中国有望在今年或明年赶超,成为全球第一,包装占北美52%的市场份额,并且增长动力依然强劲,用户的个性化及环保要求,推动者市场的变化。UV-LED技术:UV-LED市场增长迅速,其驱动主要依赖于特殊的UV-LED的固化配方,以及LED系统的性能提升,节能和运行低成本将是其渗透率扩大的主要因素。美国的法规政策ROHSLL,也将推动更加节能环保的固化方式。潜在机会:UV固化市场的机会,源于用户的行为变化和习惯变化,这都会造就新的市场机会,包括数码印刷、电子、显示屏及触摸屏等等。这些创新行业的应用带动了更多更好的UV固化的应用,也成为未来增长的重要引擎。关于贺利氏:贺利氏特种光源总部设在德国哈瑙,同时在美国、英国、法国、中国和澳大利亚等地设有分部,是全球特种光源领域技术与市场的领导者之一,研发、生产、推广的红外和紫外辐射器、系统和解决方案广泛地应用于工业制造、工艺流程、环境保护、医药化工、分析测试技术等领域。无论您希望优化现有应用还是赢得新的市场,贺利氏特种光源有限公司都能提供高效、周密和长寿命的解决方案,赋予您持续的竞争力。我们提供精心打造的、可靠的和为客户优化的光源系统,使工业、科学和医疗应用受益于极高的生产效率、产品强化和能耗优化,满足您的工艺挑战要求是我们的首要任务!请信赖得到公认的贺利氏质量。
  • 塑料固化剂双酚危害巨大 食品饮料容器中禁用
    近日消息,鉴于具有争议性的塑料固化剂双酚A的不断出现和对健康造成的负面影响,食品行业以及其他大型商业团体,包括美国商会,表示呼吁支持改善食品安全的法案。双酚A是一种主要用于生产聚碳酸酯(PC)的高分子材料,常在食品级饮料罐衬、纸收据、塑料制品等中发现。   这些组织对拟议修订的禁止对食品和饮料容器使用BPA的禁令表示关注。值得注意的是,行业仍然坚持其两项研究表明现有的BPA含量是安全的。然而,最新的统计过程中,超过900个的同行评议,发现BPA与负面的健康影响有关联。   存有疑问的法案是2009年通过的参议院版本的法案,该法案旨在帮助FDA扩大食品生产方面的权威,同时保障制造商和农民在生产过程中不受污染。   数以百计的研究证明了无处不在的化学物质导致的疾病和相关病症越来越多,同时也证明了双酚A对干扰人体内分泌系统造成的重大危害。双酚A被认为与心血管疾病、肠道疾病、免疫系统等疾病有密切关系。在尿液测试中,93%的美国人都被发现体内有一定含量的双酚A,在新生婴幼儿中占90%。   美国部分参议员及健康、教育、劳工、退休委员会、商业团体表示反对由参议员范士丹Dianne Feinstein(加州民主党)提出对食品和饮料容器中双酚A的禁令。   目前,已有部分国家、州或团体发出双酚A禁令,作为对荷尔蒙雌激素和抗雄激素的抗议行为。这意味这即使再小数额的双酚A也会影响生长发育进程,尤其是对发育中的胎儿、婴儿及儿童。
  • 发布R2P紫外固化纳米压印机新品
    HoloPrinter UNI A6 DT是一款易于使用的桌面设备,适用于实验室的NIL工作。典型应用包括:压印功能结构,如芯片实验室,衍射光学元件和其他类型的纳米压印结构。. HoloPrinter还允许用户对光固化树脂和压印材料进行测试和表征。它配备了光学固化模块和简易安装的压印模板。您可使用热压印聚合物,PDMS,HPDMS制作模板,或从我司的易用消耗品和树脂库中进行选择材料。 产品规格:支持压印尺寸: 105 x 148 mm(宽x长),基材厚度可达8mm典型复制速度: 每小时60次重复,包括手动模式(平板移动速度可达8米/分钟)两个 输出: Roll to Plate(R2P)和 Roll to Foil(R2F)树脂耗材/材料: 工业上认可的Workhorse 3D压印树脂“X29”适用于A6型号光固化发动机: 耐用 395nm LED(被动冷却),速度高达200mJ / cm2,速度为6m / min电 源 : 220V / 110V尺寸 和 重量: 670 x 380 x 320 mm(长x宽x高),26千克/ 57磅创新点:实验室级别纳米压印机,采用R2P工艺,降低结构缺陷。 R2P紫外固化纳米压印机
  • 福建物构所吴立新研究员课题组光固化3D打印研究获新进展
    p style=" text-align: justify text-indent: 2em " 面向人工智能和健康监控的柔性可穿戴传感器正在从基础研究向产业化方向发展,3D打印具有不受零件几何结构限制和快速制造的优势,在可穿戴传感器方面具有应用前景,但如何满足智能穿戴应用中的各种力学性能和传感性能要求仍具挑战。 /p p style=" text-align: justify text-indent: 2em " 中国科学院功能纳米结构设计与组装/福建省纳米材料重点实验室研究员吴立新课题组基于可逆共价键,合成了可水解的交联剂,在3D打印光敏树脂中添加这种交联剂能够提高打印分辨率,打印的模具可在热水中溶解。将聚氨酯/碳纳米管复合材料浇注于模具中,在热水中除去模具,得到各种多孔结构的传感器,该传感器具有高拉伸、高回弹的特点。研究人员结合3D打印形状的可设计性,制备出多孔的手指套、鞋垫以用于检测人体运动。相关研究成果 span style=" color: rgb(0, 112, 192) " & quot Tailored and Highly Stretchable Sensor Prepared by Crosslinking an Enhanced 3D Printed UV‐Curable Sacrificial Mold& quot /span 发表在Advanced Functional Materials上,博士研究生彭枢强为论文第一作者,高级工程师翁子骧和吴立新为论文的通讯作者。 /p p style=" text-align: justify text-indent: 2em " 2020年,该课题组在光固化3D打印材料方面获得多项成果,包括基于核壳粒子的高强高韧3D打印树脂、生物可降解3D打印树脂、以及与福建物构所许莹课题组联合研发的高强高硬耐高温氰酸酯3D打印树脂。 /p p style=" text-align: justify text-indent: 2em " a href=" https://onlinelibrary.wiley.com/doi/10.1002/adfm.202008729" target=" _self" style=" color: rgb(0, 112, 192) text-decoration: underline " strong span style=" color: rgb(0, 112, 192) " 论文链接 /span /strong /a /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202012/uepic/3d522d17-c7d5-4af6-b8b5-72539ce3b014.jpg" title=" 3D打印.jpg" alt=" 3D打印.jpg" / /p
  • 先临三维重磅推出高精度光固化3D打印机,助力原型设计和柔性生产
    5月26日,TCT亚洲展现场,先临三维正式发布AccuFab-L4K 高精度光固化3D打印机。AccuFab-L4K 高精度光固化3D打印机是先临三维自主研发的高品质3D打印机,拥有4K高分辨率、192*120*180mm的成型尺寸,具备稳定、准确的打印精度,并支持连续稳定打印,能够实现设计原型的快速迭代以及小批量快速生产,可应用于工业设计、零配件/手办/医疗辅具打印等众多专业领域。AccuFab-L4K 的发布,进一步推进了先临三维“3D扫描-设计-3D打印”系统解决方案的普及化应用。 AccuFab-L4K 高精度光固化3D打印机主要优势: l 高精度打印,准确呈现设计原型l 4K分辨率,还原细节,实现终端打印l 大幅面,快速成型,高效率打印l 连续打印,稳定性强,实现小批量快速生产l 适配多种工程树脂,满足不同品质要求l 软硬件人性化设计,使用高效便捷 合作巴斯夫,进一步提升高精度打印品质 高质量的3D打印设备+高质量的3D打印材料,可以为应用者提供稳定、高质量的打印服务,得到优质的打印产品。为进一步提升AccuFab-L4K的打印性能,先临三维在进行良好硬件设计的同时,也在材料上投入大量研发精力,部分自主研发的树脂材料,已通过医疗器械认证备案,可应用于医疗专业场景。 同时,先临三维也与巴斯夫3D打印解决方案品牌Forward AM取得合作,将巴斯夫Ultracur3D® 光固化树脂纳入AccuFab-L4K打印材料库。基于巴斯夫在聚氨酯研究和生产方面数十年的经验,Ultracur3D® 光固化树脂拥有以下优势: l 使3D打印零件具有长期的紫外稳定性l 使3D打印零件具有良好的力学性能l 打印精度高l 表面质量优良l 抗变形能力强l 环保,对环境影响小“我们非常荣幸此次和化工巨头巴斯夫进行合作。L4K打印机研发之初,我们便十分注重设备稳定性,作为高稳定性的3D打印机,对于设备的各项性能要求均比较高。巴斯夫的材料种类众多且性能稳定,使用巴斯夫的材料,为我们L4K打印机的性能又增加一项加持。” ——先临三维3D打印研发部经理 庞博 “我们很高兴与先临三维达成此次合作,实现‘AccuFab-L4K 高精度光固化3D打印机+ Ultracur3D® 系列光固化树脂’的解决方案,该方案能帮助客户更高效,更稳定的实现高性能功能性原型和小批量零件的制造。” ——巴斯夫3D打印解决方案(Forward AM)亚太区业务及运营总监 陈立博士 在3D打印领域,先临三维拥有多年的行业经验,所研发的打印机在齿科领域已得到良好应用。此次,先临三维发布AccuFab-L4K 高精度光固化3D打印机,是将3D打印技术在工业领域扩展的又一项实践——使用3D打印技术助力工业设计以及小批量柔性生产,推进智能制造的发展。先临三维也将持续努力,不断致力于高精度3D数字化技术的普及化应用。 关于先临三维 先临三维成立于2004年,公司专注高精度3D数字化及3D打印技术十余年,主营3D数字化与3D打印设备及相关智能软件的研发、生产、销售。公司是全球为数不多的拥有自主研发的“从3D数字化到智能设计到3D打印直接制造”的软硬件一体化产品解决方案的科技创新企业,致力于成为具有全球影响力的3D数字技术企业,持续推动高精度3D数字技术的普及化应用。 关于巴斯夫3D打印解决方案有限公司 巴斯夫3D打印解决方案有限公司总部位于德国海德堡,是巴斯夫新业责任有限公司的全资子公司。通过Forward AM品牌,专注于3D打印领域先进材料、系统解决方案、组件和服务的开发和业务拓展。公司凭借灵活、充满初创活力的内部结构,满足多变的3D打印市场中的客户需求。该公司与巴斯夫全球研究平台和应用技术部门紧密合作,以及科研机构、高校、创业公司以及行业合作伙伴开展密切合作。其潜在客户主要是致力于将3D打印用于工业制造的企业,所服务的典型行业包括汽车、航空航天和消费品。
  • SLA / DLP / LCD三种光固化树脂3D打印机该如何选择?来听听业内专家的建议!
    随着3D打印技术的成熟发展,各种类型的3D打印机已深入人们的生产生活之中。其中,光固化树脂3D打印机已成为大多数想要制作高精度模型的热门选择,用途也多种多样,如公司用,工厂用,创客用,家用等等。现如今市面上光固化3D打印机种类多而杂,如何挑选成为一个难题。本期,小编请到一位光固化3D打印技术行业专家来给大家讲讲该如何选择一台适合自己的树脂3D打印机。Q可以简单介绍一下自己吗?A: 大家好,我是庞博,目前是先临三维的3D打印产品经理。我是从2015年进入3D打印行业的,主要的工作内容集中在光固化3D打印机的技术研发和产品管理。QSLA, DLP, LCD之间的主要区别是什么?庞博: SLA / DLP / LCD都属于光固化的范畴,使用光敏树脂进行打印,但技术之间各有优劣。SLA 采用激光来固化树脂,是最传统、应用也最广泛的3D打印技术,对打印尺寸的限制很少,但打印速度、精度和细节,一般不如DLP / LCD 3D打印机好。SLA 3D打印机通常尺寸比较大,比较适合打印大尺寸的样件,或大规模生产的场景。SLA 3D打印技术原理示意图DLP 3D打印技术最早出现在2000年,DLP 3D打印技术主要是利用UV投影器将产品截面图形投影到液体光敏树脂表面,使被照射的树脂逐层感光固化。区别于SLA 3D打印技术的单点曝光,DLP 3D打印技术采用面曝光,可以极大地提高打印速度,同时DLP 3D打印技术在精度、表面质量上,一般也会优于SLA 3D打印机。DLP 3D打印技术原理示意图大多数DLP 3D打印机都采用下照式技术方案,光源在树脂槽的下方。这种方案的优势是只需要很少的树脂就可以开始打印,但由于离型的限制,打印尺寸也受到了制约。DLP 3D打印机通常机型尺寸较小,可以轻松部署在办公室环境内,在齿科、产品开发验证、科研和教育领域都得到了比较广泛的应用。LCD (mSLA)类似于DLP 3D打印技术,但其不使用投影仪来产生图像,而是通过LCD液晶的偏转产生特定的图像。LCD 3D打印技术原理示意图得益于LCD 3D打印技术成熟的上游产业链,LCD 3D打印机通常可以达到比DLP 3D打印机更高的分辨率和更小的像素点尺寸。但由于技术局限性,LCD 3D打印机的光功率一般低于DLP 3D打印机,从而导致打印速度较慢。然而,LCD 3D打印机的价格更低于DLP 3D打印机,因此在市场上非常受欢迎。Q当我们在选择树脂3D打印机时,需要考虑哪些问题?庞博: 打印尺寸(拥有大幅面打印尺寸的设备,能够实现设计原型的快速迭代以及小批量快速生产。)打印精度(分辨率越高、像素点尺寸越小,打印物体表面细节和纹理更清晰;光学设计越先进,打印物体精度就越高,能够准确呈现设计原型。)打印速度(在评估打印速度时,一般我们需要限定材料和层厚。即使在同一台机器上,不同的层厚、不同的材料也会导致打印速度的巨大差异。)材料开放(有些3D打印机只允许用户使用专用树脂材料,这是一个非常大的限制,而拥有开放系统的3D打印机可以兼容使用更多第三方材料。)排版/切片软件(排版和切片是3D打印的第一步,一个好的软件可以使预处理快速而简单。大多数3D打印机公司都提供免费的软件试用,用户可以在购买前先进行简单试用。)后处理 (树脂3D打印样件需要清洗和后固化。经过后固化的样件强度更高、变形更小。因此配备完整的清洗机、固化箱可以有效地提高效率、降低人力成本。)QDLP和LCD技术特别适用于哪种类型应用?庞博: 第一种是齿科应用,几乎所有的齿科应用都可以从树脂3D打印中受益,如正畸、修复和种植,一些顶级正畸牙套制造商每天打印制作模型超过700,000个。第二种是应用在产品原型开发验证中,受益于3D打印材料的进步,越来越多的工程师开始在办公室使用高精度3D打印机进行产品原型开发。树脂3D打印机是快速验证产品原型的理想选择,目前有许多高性能的树脂材料,其性能可与ABS、PC或硅橡胶相媲美。传统外包制作原型有可能要等待数周时间,而使用树脂3D打印机则可以在数小时内完成原型制作。第三种是教育方向的应用,LCD和DLP 3D打印机通常结构紧凑,使用方便,越来越多的学校开始使用树脂3D打印机进行教育或研究。珠宝首饰也是树脂3D打印的一个重要应用,DLP和LCD 3D打印技术可以打印出非常丰富的细节特征,甚至比头发还小。目前已有很多珠宝设计工作室在使用3D打印机和蜡质树脂进行产品开发。Q除了打印设备之外,在选择树脂材料时需要关注那些方面?庞博: 首先关注的总是安全问题,尽管光敏树脂本身是十分安全的,但在购买树脂前应向制造商索取MSDS(材料安全数据表),以应对在使用过程中可能出现的意外情况。此外树脂材料的种类非常多,我们应该根据用途来选择材料。例如,牙科模型的应用应选择具有低变形的刚性材料,而手术指南的应用应选择具有良好的生物相容性和韧性的材料。权威认证 安全放心Q最后,您能给想投资树脂3D打印机的人提供一些其他建议么?庞博: 目前3D打印行业正处于快速发展期,产品也逐渐成熟,但因为不同的厂家在产品的研发、测试和品控等方面投入的差异,导致用户在使用的过程中可能会遇到各种各样的问题。因此我们应该尽量选择质量有保障,且能够提供良好培训、售后服务的公司,来选购3D打印机。基于以上选机技巧,小编在这里要特别推荐一款兼具高精度和稳定性的易用型3D打印机——AccuFab-L4K 高精度光固化3D打印机。这款由先临三维自主研发的高品质3D打印机,拥有4K高分辨率、192×120×180mm的成型尺寸,具备稳定、准确的打印精度,并支持连续稳定打印,能够实现设计原型的快速迭代以及小批量快速生产,可应用于工业设计、零配件/手办/医疗辅具打印等众多专业领域。
  • 摩方精密复合精度光固化3D打印技术正式发布,全球首创Dual Series强势来袭
    重庆摩方精密科技股份有限公司(以下简称:摩方精密)在TCT Asia 2024正式发布复合精度光固化3D打印技术,面向全球市场推出首创Dual Series(以下简称D系列)设备:microArch D0210和microArch D1025,在速度、质量和便捷性上进行大幅提升,将有效解决增材制造中高精度和大幅面的固有矛盾,再次实现工业级3D打印技术新突破。D系列设备依旧保持了摩方精密超高精密、超高公差控制能力,全新搭载复合精度光固化3D打印技术,新增自动化操作平台,使工业级3D打印更智能、更稳定、更高效。在打印尺寸上,首次实现2μm到100mm*100mm*50mm的跨尺度加工突破。在快速原型制作上,为精密电子、生物医疗、高端通讯、半导体等高精密行业的创新应用带来高速灵活、降本增效的全新解决方案。大而非凡的打印尺寸、纤微毕现的打印精度、智能便捷地打印操作,共同造就了摩方精密新技术和新设备的超高品质。01|硬核创新,驾驭复合式跨尺度技术难题在光固化领域,存在几组固有矛盾。一是打印精度越高,支持打印的幅面尺寸越小;二是模型结构越复杂,切片及后续成型的难度就越大。不管哪种矛盾,都会直接影响打印的整体质量和效率。此次发布的复合精度光固化3D打印技术,核心是组合并自由切换多精度的3D打印光学系统,其中,低精度镜头适用于快速打印大幅面样件,高精度镜头专注于打印极其微小的特征,有效解决精度固定对打印效率的限制。其超高精度复合式跨尺度的加工能力,使同层(XY轴方向)和不同层(Z轴方向)均能实现不同精度的切换打印,平衡了打印精度与幅面大小的矛盾问题,为各行业用户提供更加灵活且高效的打印方式。02|全球首创,灵稳兼顾的研发搭档作为全球首款搭载了复合精度光固化3D打印技术D系列设备,共推出两款新型号设备:microArch D0210和microArch D1025,可智能识别捕捉复杂模型的精细结构特征,实现同层与跨层平面的双精度自动切换打印,完成更高效、更自由的精准打印作业,重新定义工业级微纳3D打印设备。两款设备,均配置新一代双精度面投影光固化3D打印系统,D0210能够在2μm/10μm两种精度中自由切换,而D1025能够在10μm/25μm两种精度中自由切换。两种精度的自由切换能力,不仅支持应对各种复杂的生产任务,还能在多种材质和复杂结构的产品制造上发挥出色,赋予用户更多的研发和设计空间。D系列采用先进的图像识别算法,能够智能定位并切换图像的精确区域,无论是层内还是层间,都能实现不同精度的自由调节。其中,D0210配置的双精度倍率横跨5倍,在2μm超高精度模式下,可打印100mm*100mm*50mm超大尺寸,实现5万倍的跨尺度加工技术飞跃。这意味着D0210在处理大尺寸、复杂结构的极小特征细节时,既能确保超高精度打印,又能轻松跨越尺度局限,从技术源头打消工程师对幅面和精度的平衡顾虑,满足更多复杂应用场景,为工业制造革新赋能。03|自动化加持,效率质量全面提升工业级的3D打印设备,特别是高精密仪器,在操作前需要经过严格的培训。D系列设备为简化用户操作,全新升级为自动化操作系统,集成平台自动调平,绷膜自动调平和滚刀自动调节三大功能,使工艺参数设置、液面调平、流平时间等步骤实现全自动作业模式。三大自动调节功能相辅相成协同工作,针对新手,能在5-8分钟完成全系统的精准调平,告别工业级3D打印设备传统手动操作下的复杂流程,极大简化打印前期准备工作并进一步保障了打印成功率,从而节省人力、物力成本。经数千次打样验证,较单精度打印,综合平台调平、切片、打印、后处理等全过程,或将效率综合提升50倍,同时满足高精度和高效率的双重需求。让用户能够更加专注于打印创意,释放研发新活力。平台自动调平快速实现高精度自动调平,追求零误差绷膜自动调平颠覆传统模式,加快打印前处理滚刀自动调节瞬间清除,气泡无处躲藏04|耗材多元化创新制造不受限为进一步赋能研发进程,提高用户体验,D系列设备搭配了液槽加热系统,兼容硬性树脂、韧性树脂、Tough树脂等工程应用类材料,耐高温树脂、耐候性工程树脂等功能类材料,适用于POM注塑、PDMS翻模的BIO生物兼容性树脂,氧化铝、氧化锆等陶瓷材料等多种自研和新型材料打印,更多元的耗材适配性,满足不同应用场景的需求。05|深耕增材制造革新,迈向技术赋能性在当前的工业制造领域,复杂结构件的精细加工是一项核心挑战。D系列独特的设计理念,成功打破了大尺寸与高精度之间的传统束缚,通过灵活组合不同的打印精度技术,实现了大幅面与极小特征尺寸的完美结合,为传统制造技术中难以克服的难题提供了创新的解决方案。在精密电子产业,D系列支持高效打印出芯片接插件、连接器、传感器等精密结构件,适用于小批量、规模化的精密仪器生产,相较于单精度打印,可以更加高效地生产出符合高精度的复杂连接器等关键零部件,极大地提升了生产效率。以AI芯片为例,在其封装的背板或连接器上,虽仅有固定的背板面积,却密布着上千个小孔,对精度的要求极高,须以2μm的精度进行打印。而对于其他部分,精度要求相对较低,10μm或25μm的精度便能满足。此外,在精密医疗领域的应用中,D系列展现了其制造复杂结构、个性化定制、材料多样化、快速原型与迭代等显著优势。这些优势为高端医疗器械与生物制造技术领域的发展提供了坚实的技术支撑和广阔的新可能性,推动了整个行业的进步。最后,在科研领域如力学、仿生学、微机械、微流控、超材料、新材料、生物医疗以及太赫兹等,能够制造复杂微观结构,对材料科学研究和新型器件开发具有重要意义,助力高校及科研机构加紧科技成果转化,进一步赋能行业、产学联动,为社会经济发展提供更强大的科技支撑,促进我国制造业迈向全球价值链中高端。截至2024年4月,摩方精密已与全球35个国家,2000多家科研机构及工业企业建立了合作。目前,包括强生、GE医疗等在内的全球排名前10的医疗器械企业,全部与摩方精密合作;全球排名前10的精密连接器企业,有9家与摩方精密建立了合作。当下,工业4.0时代,全球制造业的发展趋势呈现自动化、智能化、个性化的特点,需要更精准、更稳定、更高效的解决方案。摩方精密也将坚持自主研发,协同“产、学、研”力量,进一步强化创新科技突破和多元应用研究,以技术赋能产业转型升级,促进我国产业迈向中高端制造业。06|携手并进,智造未来摩方精密是我最敬佩的具有独特魅力和世界前沿技术的公司,是精密三维打印的引领者,相信摩方精密前景非常辉煌!—— 杨守峰教授哈尔滨工程大学烟台研究(生)院摩方最新的D系列打印设备是一个里程碑式的技术突破,它解决了复合精度打印这一概念中的核心工程问题,让这个概念真正走向了一个商业化的产品,为解决增材制造中加工精度和加工速率之间的矛盾提供了一个新的方案。—— 何寅峰教授宁波诺丁汉大学作为摩方忠实用户和3D打印行业科研工作者,非常看好摩方推出的全球首发的复合精度光固化3D打印技术和设备,这项技术突破了高精密微纳尺度和大幅面加工以及加工速度三者难以兼顾的固有矛盾,同时引入智能化技术进行赋能,大大降低了设备操作使用的门槛和提升加工稳定性,将助力科研和工业领域广泛使用微纳3D打印带来可能。—— 葛锜教授南方科技大学摩方精密自成立之初,每一台新设备的推出,都是在诠释什么是微纳制造的先行者:对标全球制造业隐形冠军,在微纳3D打印领域,做工业进步的赋能者。microArch Dual Series的一键式智能化设计理念,将3D打印引领进了高效率设备的赛道。—— 王大伟深圳微纳制造产业促进会会长复合精度光固化技术和D系列设备,填补了光固化技术的空白,满足了市场对超高精度和高效率生产的需求。摩方精密后续也将继续推进装备销售,加紧创新技术研发,进一步拓展终端应用,致力于建立一个更加完善的全球市场网络,在终端、产品端去和上下游客户相互合作,把摩方的材料和设备更好地推向终端产品,成为一个技术赋能性的平台公司。—— 周建林摩方精密副总裁
  • 耐驰才会告诉您:是“它“让树脂固化工艺更优化!
    耐驰才会告诉您:是“它“让树脂固化工艺更优化!在交通工具行业,无论是汽车、火车,还是航空航天领域,我们常常听到一个词“轻量化”。也就是说人们希望以碳纤维增强复合材料部件替代传统的金属部件,以减轻载具的重量,提高能源利用效率,并可以减少排放。由于此应用涉及的大多数是大型复杂形状的部件,固化成型就成为一个重要的课题,目的是要兼顾成型质量(固化度)和生产效率。传统的固化研究方法DSC、DMA都属于实验室方法,其结果数据并不能直接应用于生产。因此在生产现场,往往还是要靠多次尝试。耐驰则提供了完全不同的方案:实时固化监测 DEA。碳纤复合材料部件的实时固化监测实时固化监测方法,通过介电传感器测量相应部位的电阻抗随时间或温度的变化过程,由此即得到固化度曲线。由于DEA可以同时安装最多16个传感器,也就是说可以同时监测16个部位的固化情况,这对大型复杂部件的固化过程监测极为有利。图示为飞机垂直尾翼的固化曲线。同时展示了三个部位的固化过程。可见此部件不同部位的固化是有轻微差异的。由此,可以通过改变制件位置等方法,使之得到一致的固化过程。德国耐驰的这个活动太腻害,我们不敢轻易取标题! 2019Chinaplas期间,德国耐驰将现场使出大招:最幸福的事情莫过于边拿奖品边涨姿势。- 有奖竞答,惊喜不断,您就是下一个锦鲤本尊- 耐驰专家团队现场面对面演示教学,带您玩出新高度,只为让您零距离感受真正的德国品质展位号:5.1馆C14号展位
  • 滨松开发出5款激光加热系列新品 非常适用于焊接、树脂焊接和粘合剂的热固化
    我司基于多年来在半导体激光器(LD)照射光源的开发、生产和销售方面积累的经验,就各种用途优化激光输出和光斑直径等,开发出共5种的激光加热系列产品,以满足不同激光加工用途。用户可根据激光在树脂焊接和粘合剂热固化等应用场景,选择最佳的产品组合。此外,由于激光热加工相比传统工艺的加工效率更高,对环境影响更小,该产品系列将有助于减少碳排放和社会的可持续发展。关于产品本产品将于12月1日(星期三)面向国内外电子设备制造商和汽车零部件制造商销售。 该产品将于12月8日(星期三)至10日(星期五)在千叶市美滨区 Makuhari Messe 举行的日本最大的光与激光技术综合展览“第21届光与激光技术展览”上展出,包括加工样品。本产品由LD照射光源、激光传输光纤和照射单元组成,可根据激光热加工的不同用途进行优化配置,全系列共5种激光加热系统。 我司开发、生产和销售的LD照明光源广发应用在热加工,如激光焊接、树脂焊接、粘合剂热固化、干燥和淬火等领域。其中LD照明光源采用滨松独有的光学设计技术,激光输出均匀分布并照射在目标物表面,使加热均匀,加工质量提高。产品通过用1根光纤进行加工和测量,获取激光照射各处的温度信息,以实现对加工品质的精密控制。LD照射光源和可选配置示例激光热加工根据不同用途,其最佳加工条件也是不一样的。 我们从以往300多个模式组合中选择了光源、可选的光纤和照射单元,此次还凭借在开发、生产和销售LD辐照光源十多年来积累的经验,针对激光焊接、树脂焊接和粘合剂热固化等不同应用场景,以优化配置后的5种激光加热系统系列予以销售。因此,针对精细智能手机部件的焊接、汽车部件的树脂焊接、以及用于不同材料的粘合剂热固化等,客户可以根据激光热加工的不同用途,轻松选择适用于自己的产品组合。同时,组合产品系列比单一的设备购买成本要低,能达到降低成本的目的。此外,与传统的烙铁、超声波焊接机和加热炉相比,激光热加工的加工效率更高,对环境的影响更小,使用本产品将有助于实现减少碳排放和社会的可持续发展。本产品也可满足激光光斑直径等各种条件的定制要求。未来,针对金属纳米油墨的烧结等应用,我们将继续致力于推进更高功率的激光加热系统的产品化,敬请期待。本产品应用场景开发背景近年来,由于LD的高功率和低成本,人们对激光热加工的期望越来越高,但由于激光加工是一种相对比较新的技术,大家对加工的可靠性和质量控制有所担忧,因此该项技术并没有得到很好的推广。在这种情况下,我们一直在开发、生产和销售照射均匀,并可以精密控制加工质量的LD照射光源,但我们面临的难题是,如何选择匹配应用的最佳光源和其选项。主要规格
  • 光固化、热变色形状记忆聚合物助力可变色4D打印
    3D打印结构在特定的环境和激励下,其特性及功能随着时间的改变而发生变化,被称之为4D打印技术。形状记忆聚合物作为实现4D打印的关键性材料之一,可在一定条件下变形固定后,通过热、光、电、磁等外部条件的刺激,主动恢复其初始形状。近年来,形状记忆聚合物的4D打印在软体机器人、生物医疗、航空航天、柔性电子等领域的广泛应用,受到了国内外学者的广泛研究和关注。近日,湖南大学王兆龙、段辉高教授与南方科技大学葛锜教授合作,基于摩方精密(BMF)超高精度光固化3D打印机nanoArchS140,开发了一种能够同时实现变形变色的形状记忆聚合物体系,设计制造了精度高达20μm的特征结构,该材料体系用于二维码和多级防伪图案的高精度制造,实现了多重加密和特定温度区间的信息显示,并有望用于数据加密、智能防伪等领域。这项工作为构建功能化的4D打印提供了新的材料体系,还激发了数据加密和防伪的新方法,有利于拓宽4D打印技术的应用范围。相关成果以“Color-Changeable Four-Dimensional Printing Enabled with Ultraviolet-Curable and Thermochromic Shape Memory Polymers”为题发表在ACS Applied Materials & Interfaces期刊上。原文链接:https://pubs.acs.org/doi/10.1021/acsami.1c02656该工作得到了国家自然科学基金、湖南省优秀青年基金、广东省重点研发计划,长沙市科技局等资金支持。图1 面投影微立体光刻技术(摩方精密,nanoArchS140)原理和材料设计图2 基于面投影微立体光刻技术制造高精度(20μm)和复杂3D结构,3D打印结构具有快速颜色响应和变色循环稳定性图3 基于面投影微立体光刻技术制造的3D结构的形状记忆行为,具有优异的变形变色能力图4 基于面投影微立体光刻技术加工QR码和多级防伪图案,在室温下隐藏可见信息,并通过加、解密、再加密等步骤和形状颜色恢复过程实现信息的可视化,实现多重加密和特定温度区间的信息显示。
  • 画一画就能拿iPad?珀金埃尔默邀请您参加ChemDraw化学绘图大赛!
    相信学化学的亲们对ChemDraw软件都不陌生,ChemDraw是全球领先的且被广泛使用的化学结构绘制工具, 它不仅使用简便、输出质量高,并且结合了强大的化学智能技术,集成许多第三方产品,多年来一直受到全球用户的好评。但您知道ChemDraw是珀金埃尔默公司的产品吗?不知道没关系,科普一下:ChemDraw和电子实验记录本,以及用于科学数据分析的TIBCO Spotfire平台同属于珀金埃尔默Informatics部门。珀金埃尔默Informatics部门提供全套的科学信息学和软件解决方案,从仪器生成的数据,到企业解决方案,再到移动应用程序,为科学家提供了必要的工具来聚合、搜索、挖掘、分析和可视化关键数据,帮助以自动化、预测性和可扩展性的方式将数据转化为可操作的见解。好啦,敲黑板,说重点!珀金埃尔默为激励广大ChemDraw用户更好的使用该软件,特举办“ChemDraw技巧大比拼”的绘图大赛,让您一睹ChemDraw用户的使用风采。还有大奖iPad等您来拿哦! 比赛主题:ChemDraw 技巧大比拼比赛时间: 6月10日-7月10日(接受比赛作品的时间)比赛内容: 使用ChemDraw软件绘画出规定化学结构式,即阿法骨化醇、阿格列汀(任选一种)。比赛规则: 采用发送绘画视频的方式,(参赛作者和绘画屏幕需要同时入镜,屏幕上同时开一个计时器哦~)及参赛者的姓名、单位、电话至官方指定接收邮箱:ChinaMarketing@PERKINELMER.COM绘画要求: 快速、准确、优美;大小在10M以内,MP4格式。奖项设置: 由珀金埃尔默公司ChemDraw技术专家组成“评审委员会”,从所有参赛作品中评选出前50名,活动结束后一周内将评出的TOP50发布在微信中邀请大众投票。最终按票数多少排名评奖:一等奖:2名,iPad mini 5二等奖:5名,Kindle阅读器三等奖:10名,LAMY钢笔优秀奖:33名,小米充电宝优胜证书:所有获奖人员将获得由珀金埃尔默颁发的优胜证书比赛评分标准:评分分为三部分:绘画时间,化学结构式准确性和美观度,每部分按10分制打分(详细打分细则如下表),总分30分;领取正版软件流程:作为ChemDraw达人的您是不是等不及要参加比赛啦?比赛需要使用正版ChemDraw软件绘制,如果您还没有正版软件,没关系,动动小手,扫描下方海报中的二维码参与领取ChemDraw 30天试用账号吧!关于珀金埃尔默:珀金埃尔默致力于为创建更健康的世界而持续创新。我们为诊断、生命科学、食品及应用市场推出独特的解决方案,助力科学家、研究人员和临床医生解决最棘手的科学和医疗难题。凭借深厚的市场了解和技术专长,我们助力客户更早地获得更准确的洞见。在全球,我们拥有12500名专业技术人员,服务于150多个国家,时刻专注于帮助客户打造更健康的家庭,改善人类生活质量。2018年,珀金埃尔默年营收达到约28亿美元,为标准普尔500指数中的一员,纽交所上市代号1-877-PKI-NYSE。了解更多有关珀金埃尔默的信息,请访问www.perkinelmer.com.cn
  • PALL蛋白纯化填料试用申请活动即将开始
    PALL蛋白纯化填料试用申请活动即将开始 蛋白纯化新选择: 多一次尝试,多一种选择,不同的结果。 PALL蛋白纯化填料试用申请活动即将开始 申请有效期2011年5月4号-2011年6月4号 您是否为蛋白纯化结果不理想而烦恼? 试试PALL的层析填料吧,提供与传统填料不同的层析选择性! 你是否为蛋白纯化过程耗时而烦恼? 试试PALL的高流速层析填料吧,满足您在高流速下高结合性的要求。 您是否为填料的载量不高而烦恼? 试试PALL的Q/S HyperCel 层析填料吧,结合载量大于134-190mg/ml(BSA) 您是否为抗体纯化费时、费经费而烦恼? 试试PALL的MEP HyperCel层析填料吧,单抗纯化步骤,经济而简单 众多填料如何选择?请参考选择推荐。 MEP HyperCel、HEA HyperCel、PPA HyperCel: 混合模式层析填料:能替代传统的疏水层析模式,支持在低盐或者无盐状态下上样,洗脱PH更温和,最大限度保留蛋白生物活性的同时简化下游纯化流程。 MEP HyperCel 同时含亲和层析模式,替代传统的Protein A 亲和层析,优势: 无需调整料液,直接上样:直接从各种培养系统中捕获蛋白。省去微滤、超滤浓缩的步骤。 支持低浓度捕获,即使单抗浓度为50μg IgG/mL也能高效捕获。省掉浓缩的步骤。 温和的条件下洗脱:IgG一般在pH 5.5 to 4.0 的范围洗脱。 有效降低多聚体,同时去除DNA和HCP。 价格更经济。 Ceramic HyperD 系列: 如果您追求超高流速下高结合能力,Ceramic HyperD绝对是首选,在满足高流速下,同样拥有高分辨率。 CM Ceramic HyperD:在具备高流速下的高结合能力外,同时能接受180mM的盐浓度下上样,简化了上样流程,上样前无需脱盐操作。 推荐Ceramic HyperD 混合包装,货号:IEXVP-C001。内含四种1ml预装柱,DEAE、CM、S、Q 任您选择不同的离子交换。(不参加试用活动)。 此次参与试用申请的填料还有Protein A 亲和层析填料,IMAC HyperCel 亲和纯化His标签填料等,如需更多的具体性能的资料,请登录PALL的网站http://www.pall.com/查询。 样品申请货号及数量可见下表,详情请下载产品试用清单(附件一) 层析类型 货号 产品描述 配基 应用 可申请 总数 混合模式(离子交换;疏水层析;亲和层析) 12035-C001 ACROSEP MEP HYPERCEL,1ml 预装柱 甲基嘧啶 ●直接捕获多种不同类型、压型和种属的多抗和单抗; ●酶和重组蛋白; ●重组抗体片段; ●从多聚体中分离单抗单体; ●低盐浓缩物中蛋白的直接捕获 5支 20250-C001 ACROSEP HEA HYPERCEL, 1ml 预装柱 乙胺基 5支 20260-C001 ACROSEP PPA HYPERCEL,1ml 预装柱 苯基 5支 12035-069 MEP HyperCel 5mL, 瓶装 甲基嘧啶 3瓶 20250-012 HEA HyperCel 5mL,瓶装 乙胺基 3瓶 20260-015 PPA HyperCel 5mL,瓶装 苯基 3瓶 24775-075 HA Ultrogel 5mL 羟基磷灰石 交联的琼脂糖和羟基磷灰石 ●免疫球蛋白; ●糖蛋白; ●疫苗 2瓶 亲和层析 20078-C001 ACROSEP PROTEIN A HYPE 1ml 预装柱 重组蛋白A ●免疫球蛋白; ●MAbs 5支 20078-036 Protein A Ceramic HyperD F 5mL瓶装 2瓶 20093-C001 ACROSEP IMAC HYPERCEL 1ml 预装柱 亚胺-乙酰乙酸(IDA) ●His-tag重组蛋白 5支 20093-069 IMAC HyperCel 5mL,瓶装 3瓶 离子交换 20050-C001 ACROSEP CM Ceramic HyperD F,1ml 预装柱 羧甲基(CM) ●重组蛋白; ●质粒纯化; ●蛋白,疫苗; ●Mabs; ●捕获阶段; ●免疫球蛋白纯化 2支 20050-084 CM Ceramic HyperD F,5mL 瓶装 2瓶 20062-C001 ACROSEP S Ceramic HyperD F;1ml 预装柱 磺酸基(S) 2支 PRC05X050SHCEL01 PRC05X050 S HCEL01,1ml 预装柱(工业放大推荐) 2支 20195-013 S Hypercel 5ml瓶装 3瓶 20066-C001 ACROSEP Q Ceramic HyperD F 1ml 预装柱 季氨基(Q) 2支 20196-012 Q Hypercel 5ml 瓶装 3瓶 PRC05X050QHC001 PRC05X050 QHCEL01,1ml 预装柱 2支 20067-C001 ACROSEP DEAE Ceramic HyperD F 1ml 预装柱 二乙基氨基乙基(DEAE) 2支 20067-070 DEAE Ceramic HyperD F 5mL 瓶装 2瓶 申请方式:网上申请 下载并完整的填写产品试验申请单(附件二),Email到Jessie_Jing_Chen@ap.pall.com 经过审核后(完整的填写能方便您拿到样品),送出样品. 6月10号公布配送单号。 配送方式:送货上门或.邮寄 配送时间:2011年6月13号-6月17号 申请要求:1.限高校、科研单位实验室客户;数量有限,每个实验室限申请一种填料。 2.申请的客户承诺开始试用后两个月内,给PALL公司提供使用反馈情况 颇尔公司保留对该活动的解释权。
  • 吉林省检验检测技术协会对《碳纤维复丝固化试验方法》《碳纤维复丝浸润性的测定》等三项团体标准征求意见
    各有关单位及专家:根据吉林省检验检测技术协会2024年度第二批团体标准项目制定计划,标准起草组已完成《碳纤维复丝固化试验方法》、《碳纤维复丝浸润性的测定》两项团体标准征求意见稿的编制工作;根据吉林省检验检测技术协会2024年度第四批团体标准项目制定计划,标准起草组已完成《白酒质量要求 吉林烧酒》团体标准征求意见稿的编制工作。根据《吉林省检验检测技术协会团体标准制修订程序》有关规定,为保证标准的科学性、严谨性和适用性,现公开征求意见。请有关单位及专家提出宝贵意见或建议,并请于2024年10月8日前将《吉林省检验检测技术协会团体标准征求意见反馈表》(见附件1)以电子邮件的形式反馈至我协会秘书处,逾期未回复将按无异议处理。感谢您对我们工作的大力支持!联系人:徐宝骥 电话:0431-85203352电子邮箱:3624830889@qq.com地址:长春市高新南区宜居路2699号 附件1:《碳纤维复丝固化试验方法(征求意见稿)》附件2:《碳纤维复丝浸润性的测定(征求意见稿)》附件3:《白酒质量要求 吉林烧酒(征求意见稿)》附件4:《团体标准征求意见反馈表》 吉林省检验检测技术协会2024年9月5日附件1:《碳纤维复丝固化试验方法(征求意见稿)》.pdf附件2:《碳纤维复丝浸润性的测定(征求意见稿)》.pdf附件3:《白酒质量要求 吉林烧酒(征求意见稿)》.pdf附件4:团体标准征求意见反馈表.docx
  • 安东帕MCR高端智能型模块化流变仪——带您探究知识的海洋
    流变学是研究物质流动与形变的学科,自上世纪三十年代至今,经过流变学家的不懈努力,已经在全球很多领域发展出成熟的流变测试和分析理论。随着工业技术的不断进步,安东帕的流变学家经过三十多年的辛苦耕耘,并不断革新,向广大用户推出了低中高端系列、技术先进的MCR智能型模块化旋转流变仪。 MCR流变仪行业分布广,高校、科学院、石油石化、食品、化工、航空航天、医学、制药等,从日常生活用品制造业到军工科研机构,到处都有MCR流变仪在使用。 MCR流变仪市场占有率高,在国内用户超过1000个 MCR流变仪拥有众多行业先进技术 MCR流变仪功能最全,指标更宽,能满足流变学测试的所有要求 MCR流变仪系列型号:MCR702、MCR302、MCR102、MCR92、MCR72MCR 流变仪的基本功能 稳态流变测试(旋转模式):黏度、黏度曲线、流动曲线、粘温曲线、屈服应力、滞后环面积、3ITT 触变性等; 动态流变测试(振荡模式):粘弹性数据,如储能模量 G‘、 损耗模量 G“、损耗角正切 Tanδ、复数模量 G*、复数黏度 η*等,可以得到频率扫描、振幅扫描、温度扫描等曲线; 瞬态流变测试:起始流、蠕变、应力松弛等;MCR 流变仪的扩展功能模块扩展的材料性能表征方式熔体拉伸流变夹具扭摆DMTA测试夹具拉伸DMTA测试夹具 淀粉糊化测量模块沥青专业模块大颗粒食品及建筑材料测试界面流变学模块摩擦学测试模块粉体流变学模块 附加参数影响测量模块高压密闭测量系统UV固化测量模块磁流变测量模块 电流变测量模块不动点测量模块 流变与结构分析同步测量流变‐显微可视/偏光/荧光同步测量流变‐SALS同步测量流变-NIR/IR同步测量 流变-拉曼同步测量 流变‐SAXS同步测量流变‐SANS同步测量动态光学流变测量PIV粒子成像测速流变‐介电谱同步测量
  • Oligo赛道想超车,纯化干燥工艺如何选择?
    众所周知,随着寡核苷酸的应用越来越广泛,不少企业相继加入寡核苷酸合成的赛道。想得到*高纯度的核酸不是一件简单的事,寡核苷酸的合成通常会导致不可避免的杂质积累,它们可能会与全长产品竞争,或者抑制反应,因此选择高效率高质量的纯化和干燥工艺是很有必要的。那么对于工业级别的寡核苷酸纯化,一般又有哪些方法呢?且听小编跟您慢慢分享。寡核苷酸的应用Oligo即寡核苷酸链,分子实验室常用的PCR引物、NGS捕获探针、qPCR探针和FISH探针等都是寡核苷酸。除了引物探针以外,还可作为核酸药物用于遗传疾病、肿瘤、病毒感染和感觉器官等疾病的治疗或预防。 探针及引物主要用于IVD试剂盒,面对需求量巨大的检测试剂盒,上游原材料的质量和供应速度应该同幅度进步和增长,在引物和探针的制备过程中,提高生产效率以及产物纯度更是重中之重。纯化方式对于不同的寡核苷酸链,应该如何选择合适的纯化方法?下面列举了几种常见的纯化方法。DSL(脱盐)纯化利用反相 C-18 层析柱进行脱盐,它对 DNA 有特异性的吸附,一些杂质,如氨、盐,不能被吸附,所以能有效地去除盐分等杂质。该方法不能有效去除比目的DNA短的小片段,所以适用于要求较低的PCR普通引物。 图1:DSL纯化制备流程图OPC纯化根据 DNA 保护基( DMTr 基)和 Cartridge 柱中树脂间的亲合力作用的原理进行纯化目的 DNA 片段。该方法得到目的DNA的纯度能达到 95%以上,但受柱容量影响,适用于 40mer 以下的普通引物。 图2:OPC纯化制备流程图PAGE纯化聚彬稀酰胺凝胶电泳使用变性聚丙烯酰胺凝胶电泳,对引物DNA进行分离,然后从凝胶中回收目的DNA。PAGE纯化法也是一种非常有效的DNA纯化方法,纯化后的DNA纯度大于90%,对长链 (大于50mer)普通引物的纯化特别有效。 图3:PAGE纯化制备流程图HPLC高效液相色谱法根据寡核苷酸的疏水性对DNA片段进行纯化分离,该方法能达到极高的纯度和灵敏度,可以有效去除N-1短片段,目标DHA的纯度大于95%。适用于对纯度要求高的短链(小于40 mer)普通引物、修饰引物,尤其适合及荧光标记探针的纯化。若想得到纯度极高的寡核苷酸片段,HPLC法也常被用于与其他方式双重联合(如HPLC_PAGE、HPLC_CE、2xHPLC等)。 图4:HPLC纯化制备流程图引物干燥过程中的质量控制考虑引物合成纯化后都会产生一定的有机溶剂(如乙腈、甲醇、水等),需要采用真空离心浓缩设备将寡核苷酸干燥成干粉状,一般包装至EP管或者96孔板中。 图5:引物生产流程作为分子诊断qPCR试剂盒中的核心原料,qPCR引物及Taqman探针的质量直接影响了靶标检测的准确性,所以选择干燥工艺也十分关键,在干燥过程的质量控制需尽考虑以下几个方面:样品保护和温度控制在寡核苷酸的干燥过程中,尽量避免加热源直接照射在样品上而导致样品局部过热。红外加热模式,不直接加热样品,这样确保了样品的温度不会高于样品支架的温度,保证了样品的安全。SampleShield温度控制系统,采用非接触式温度探测用以在整个离心过程中,检测样品和离心腔的温度变化,确保整个蒸发过程受到质控。 避免交叉污染由于溶剂蒸发的过程中,低沸点溶剂和混合溶剂容易产生暴沸而导致样品损失和交叉污染,这会直接影响样品纯度。Dri-Pure防爆沸技术,控制真空度下降梯度和施加500g的离心力,让用户处理96孔板或384孔板等密集型容器时,无需担心样品交叉污染。 高通量选用通量高、干燥效率快的干燥手段对寡核苷酸的制备过程事半功倍,GeneVac浓缩仪可批量处理样品:一次可以处理几百个甚至上千个样品,全系列产品都有专门适配EP管和96孔板的铝制实心转子。如HT-12一次可以浓缩384个1.5ml EP管或24块96孔板,大大提高了研发和生产效率。 自动停机在制备大量的寡核苷酸样品时,无需值守的自动停机功能派上用场,使寡核苷酸样品干燥后立即自动停止蒸发,为核酸样品提供双重保护机制。应用案例WTCHG(牛津大学人类遗传学威康信托中心) 使用Sequenom MassARRAY® SNP 基因分型系统用于SNP分析,样品前制备过程分别使用风干(左)和Genevac&ensp EZ-2真空离心浓缩仪(右)干燥含有寡核苷酸样品的384孔板。下图结果表明,使用EZ-2真空离心浓缩仪干燥寡核苷酸样品,可以大大降低样品降解率,保证样品不会被污染,消除了样品损坏的潜在来源。 图6:在空气干燥(左)和EZ-2蒸发器干燥(右)后的序列样品质量分析 *深绿色-高样本数据质量 *浅绿色-中等样本数据质量 *红色-样品质量差或无数据 图7:空气干燥(左)和EZ-2蒸发器干燥(右)后的SNP分析Genevac真空离心浓缩仪离心浓缩作为IVD原料合成制备的关键技术之一,具有通量高、干燥效率高、保护样品等特点,真空离心使浓缩过程都保持在较温和的环境中,提高寡核苷酸的产品纯度与收率,在工艺选择开发和放大中建立良好的工艺空间。一台高通量真空离心浓缩仪就可以做到浓缩干燥一步到位,可以直接作为生产设备投入到生产中,缩短整个Oligo制备过程,例如上述实验中所提到的Genevac&ensp EZ-2真空离心浓缩仪。这边我们为大家推荐下面几款Genevac旗下的真空离心浓缩仪。
  • 半导体封装材料的性能评估和热失效分析
    前言芯片封装的主要目的是为了保护芯片,使芯片免受苛刻环境和机械的影响,并让芯片电极和外界电路实现连通,如此才能实现其预先设计的功能。常用的一种封装技术是包封或密封,通常采用低温的聚合物来实现。例如,导电环氧银胶用于芯片和基板的粘接,环氧塑封料用于芯片的模塑封,以及底部填充胶用于倒装焊芯片与基板间的填充等。主要的封装材料、工艺方法及特性如图1所示。包封必须满足一定的机械、热以及化学特性要求,不然直接影响封装效果以及整个器件的可靠性。流动和粘附性是任何包封材料都必须优化实现的两个主要物理特性。在特定温度范围内的热膨胀系数(CTE)、超出可靠性测试范围(-65℃至150℃)的玻璃化转变温度(Tg)对封装的牢固性至关重要。对于包封,以下要求都是必须的:包封材料的CTE和焊料的CTE比较接近以确保两者之间的低应力;在可靠性测试中,玻璃转化温度(Tg)能保证尺寸的稳定性;在热循环中,弹性模量不会导致大的应力;断裂伸长率大于1%;封装材料必须有低的吸湿性。但是,这些特性在某种类型的环氧树脂里并不同时具备。因此,包封用的环氧树脂是多种环氧的混合物。表1列出了倒装焊底部填充胶的一些重要的特性。随着对半导体器件的性能要求越来越高,对封装材料的要求同步提高,尤其是在湿气的环境下,性能评估和热失效分析更是至关重要,而这些都可以通过热分析技术给予准确测量,并可进一步用于工艺的CAE模拟仿真,帮助准确评估封装质量的优劣与否。表1 倒装焊中底部填充胶的性能要求[1]图1. 主要封装材料、工艺方法及特性[2]热性能检测梅特勒托利多全套热分析技术为半导体封装材料的性能评估和热失效分析提供全面、创新的解决方案。差示扫描量热仪DSC可以精准评估封装材料的Tg、固化度、熔点和Cp,并且结合行业内具有优势的动力学模块(非模型动力学MFK)可以高精准评估环氧胶的固化反应速率,从而为Moldex 3D模拟环氧塑封料、底部填充胶的流动特性提供可靠的数据。如图2所示,在非模型动力学的应用下,环氧胶在180℃下所预测的固化速率与实际测试曲线所表现出的固化行为具有非常高的一致性。热重TGA或同步热分析仪TGA/DSC可以准确测量封装材料的热分解温度,如失重1%时的温度,以及应用热分解动力学可以评估焊料在一定温度下的焊接时间。热机械分析仪TMA可以精准测量封装材料的热膨胀、固化时的热收缩、以及CTE和Tg,动态机械分析仪DMA提供封装材料准确的弹性模量、剪切模量、泊松比、断裂伸长率等力学数据,进一步可为Moldex 3D模拟芯片封装材料的翘曲和收缩提供可靠数据来源。图2. DSC结合非模型动力学评估环氧胶的固化反应速率检测难点1、 凝胶时间凝胶时间是Moldex 3D模拟环氧塑封料、底部填充胶流动特性的非常重要的数据来源之一。目前,行业内有多种测试凝胶时间的方法和设备。比如利用拉丝原理的凝胶时间测试仪,另有国家标准GB 12007.7-89环氧树脂凝胶时间测定方法[3],即利用标准柱塞在环氧树脂固化体系中往复运动受阻达到一个值而指示凝胶时间。但是,其对柱塞的形状和浮力要求较高,测试样品量也很大,仅适用于在试验温度下凝胶时间不小于5 min的环氧树脂固化体系,并且不适用于低于室温的树脂、高粘度树脂和有填料的体系。由此可见,现有测试方法都存在测试误差、硬件缺陷和测试范围有限等问题。梅特勒托利多创新性TMA/SDTA2+的DLTMA(动态载荷TMA)模式结合独家的负力技术可以准确测定凝胶时间。在常规TMA测试中,探针上施加的是恒定力,而在DLTMA模式中,探针上施加的是周期性力。如图3右上角插图所示,探针上施加的力随时间的变化关系,力在0.05N与-0.05N之间周期性变化,这里尤为关键的一点是,测试凝胶时间必须要使用负力,即不仅需要探针往下压,还需要探针能够自动向上抬起。图3所示案例为测试导电环氧银胶的凝胶时间,样品置于40μl铝坩埚内并事先固定在TMA石英支架平台上,采用直径为1.1 mm的平探针在恒定160℃条件下施加正负力交替变换测试。在未发生凝胶固化之前,探针不会被样品粘住,负力技术可使探针自由下压和抬起,测试的位移曲线表现出较大的位移变化。当发生交联固化,所施加的负力不足以将探针从样品中抬起,位移振幅突然减小为0,曲线成为一条直线。通过分析位移突变过程中的外推起始点即可得到凝胶时间。此外,固化后的环氧银胶片,可通过常规的TMA测试获得Tg以及玻璃化转变前后的CTE,如图3下方曲线所示。图3. 上图:TMA/SDTA2+的DLTMA模式结合负力技术准确测定凝胶时间. 下图:固化导电环氧银胶片的CTE和Tg测试.2、 弯曲弹性模量在热循环过程中,弹性模量不会导致过大的应力。封装材料在不同温度下的弹性模量可通过DMA直接测得。日本工业标准JIS C6481 5.17.2里要求使用弯曲模式对厚度小于0.5mm、跨距小于4mm、宽度为10mm的封装基板进行弯曲弹性模量测试。从DMA测试技巧角度来讲,如此小尺寸的样品应首选拉伸模式测试。弯曲模式在DMA中一共有三种,即三点弯曲、单悬臂和双悬臂,从样品的刚度及夹具的刚度和尺寸考虑,三点弯曲和双悬臂并不适合此类样品的测试。因此,单悬臂成为唯一的可能性,但考虑到单悬臂夹具尺寸和跨距小于4mm的要求,市面上大部分DMA难以满足此类测试。梅特勒托利多创新性DMA1另标配了单悬臂扩展夹具,可方便夹持小尺寸样品并能实现最小跨距为1mm的测试。图4为对厚度为40μm的基板分别进行x轴和y轴方向上的单悬臂测试,在跨距3.5mm、20Hz的频率下以10K/min的升温速率从25℃加热至350℃。从tan delta的出峰情况可以判断基板的Tg在241℃左右,以及在室温下的弯曲弹性模量高达12-13GPa。图4. DMA1单悬臂扩展夹具测试封装基板的弯曲弹性模量.3、 湿气对封装材料的影响湿气腐蚀是IC封装失效的主要原因,其降低了器件的性能和可靠性。保存在干燥环境下的封装环氧胶,完全固化后在高温和高湿气环境下也会吸湿发生水解,降低封装体的机械性能,无法有效保护内部的芯片。此外,焊球和底部填充环氧胶之间的粘附强度在湿气环境中放置一段时间后也会遭受破坏。水汽的吸收导致环氧胶的膨胀,并引起湿应力,这是引线连接失效的主要因素。通过湿热试验可以对封装材料的抗湿热老化性能进行系统的评估,进而对其进行改善,提升整体性能。通常是采用湿热老化箱进行处理,然后实施各项性能的评估。因此,亟需提供一种能够提高封装材料湿热老化测试效率的方法。梅特勒托利多TMA/SDTA2+和湿度发生器的联用方案,以及DMA1和湿度发生器的联用方案可以实现双85(85℃、85%RH)和60℃、90%RH的技术参数,这也是行业内此类湿度联用很难达到的技术指标。因此,可以原位在线环测封装材料在湿热条件下的尺寸稳定性和力学性能。图5. TMA/SDTA2+-湿度联用方案测试高填充环氧的尺寸变化.图5显示了TMA-湿度联用方案在不同湿热程序下高填充环氧的尺寸变化。湿热程序分别为20℃、60%RH、约350min,23℃、50%RH、约350min,30℃、30%RH、约350min,40℃、20%RH、约350min,60℃、10%RH、约350min,80℃、5%RH、约350min。可以看出,在60%的高湿环境下高填充环氧在350min内膨胀约0.016%,后续再降低湿度并升高温度,样品主要在温度的作用下发生较大的热膨胀。图6为DMA-湿度联用方案在双85的条件下评估PCB的机械性能的稳定性,测试时间为7天。可以看出,PCB在高湿热的环境下弹性模量有近似6%的变化,这与PCB的树脂材料发生吸湿后膨胀并引起湿应力是密不可分的,并且存在导致器件失效的风险。图6. DMA1-湿度联用方案测试PCB的弹性模量.4、 化学品质量对于封装结果的影响封装过程中会使用到各类的湿电子化学品,尤其是晶圆级封装等先进封装的工艺流程,对于清洗液、蚀刻液等材料的质量管控可以类比晶圆制造过程中的要求,同时针对不同工艺段的化学品浓度等配比都有所不同,因此如何控制使用的电子化学品质量对于封装工艺的效能有着重要的意义。下表展示了部分涉及到的化学品浓度检测的滴定检测方案,常规的酸碱滴定、氧化还原滴定可以基本满足对于单一品类化学品浓度的检测需求。指标电极滴定剂样品量85%H3PO4酸碱玻璃电极1mol/L NaOH0.5~1g96%H2SO4酸碱玻璃电极1mol/L NaOH0.5~1g70%HNO3酸碱玻璃电极1mol/L NaOH0.5~1g36%HCl酸碱玻璃电极1mol/L NaOH0.5~1g49%HF特殊耐HF酸碱电极1mol/L NaOH0.3~0.4gDHF(100:1)特殊耐HF酸碱电极1mol/L NaOH20-30g29%氨水酸碱玻璃电极1mol/L NaOH0.9~1.2gECP(acidity)酸碱玻璃电极1mol/L NaOH≈8g29%NH4OH酸碱玻璃电极1mol/L HCl0.5~1gCTS-100清洗液酸碱玻璃电极1mol/L NaOH≈1g表1. 部分化学品检测方法列表另一方面,对于刻蚀液等品类,常常会用到混酸等多种物质混配而成的化学品,以起到综合的反应效果,如何对于此类复杂的体系浓度进行检测,成为实际生产过程中比较大的挑战。梅特勒托利多自动电位滴定仪,针对不同的混合液制订不同的检测方案,如铝刻蚀液的硝酸/磷酸/醋酸混合液,在乙醇和丙二醇混合溶剂的作用下,采用非水酸碱电极针对不同酸液pKa的不同进行检测,得到以下图谱,一次滴定即可测定三种组分的含量。图7. 一种铝刻蚀液滴定曲线结论梅特勒托利多一直致力于帮助用户提高研发效率和质量控制,我们为半导体封装整个产业链提供完整专业的产品、应用解决方案和可靠服务。梅特勒托利多在半导体封装行业积累了大量经验和数据,希望我们的解决方案给半导体封装材料性能评估的工作者带来帮助。参考文献[1] Rao R. Tummala. 微系统封装基础. 15. 密封与包封基础 page 544-545.[2] Rao R. Tummala. 微系统封装基础. 18. 封装材料与工艺基础 page 641.[3] GB12007.7-89:环氧树脂凝胶时间测定方法.(梅特勒-托利多 供稿)
  • 【热点应用】质子交换膜燃料电池生产中催化剂浆料的颗粒特性表征
    燃料电池(Fuel Cell)市场前景 为缓解世界性能源危机的加剧,减少传统能源对环境造成的污染;有序推进碳中和的各项任务目标,不断深化能源结构优化,提高能源开发整体效益成为摆在我国科研工作人员及新能源产业开发从业者面前的重要课题。 燃料电池(Fuel Cell)是一种把燃料所具有的化学能直接转换成电能的化学装置,又称电化学发电器。它是继水力发电、热能发电和原子能发电之后的第四种发电技术。 燃料电池用燃料和氧气作为原料;同时没有机械传动部件,故没有噪声污染,排放出的有害气体极少。由此可见,从节约能源和保护生态环境的角度来看,燃料电池是最有发展前途的发电技术[1]。 作为一种新的高能量密度、高能量转化率、环保型的电源装置受到全世界的广泛关注,并具有广阔的应用前景。 一、质子交换膜燃料电池目前,燃料电池主要被分为六类[2]。碱性燃料电池(AFC,Alkaline Fuel Cell)、磷酸盐燃料电池(PAFC,Phosphorous Acid Fuel)、熔融碳酸盐燃料电池(MCFC,Molten Carbonate Fuel Cell)、固体氧化物燃料电池(SOFC,Solid Oxide Fuel Cell)、质子交换膜燃料电池(PEMFC,Proton Exchange Membrane Fuel Cell)和直接甲醇燃料电池(DMFC,Direct Methanol Fuel Cell)。采用聚合物质子交换膜作电解质的PEMFC,与其它几种类型燃料电池相比,具有工作温度低、启动速度快、模块式安装和操作方便等优点,被认为是电动车、潜艇、各种可移动电源、供电电网和固定电源等的最佳替代电源[3]。如图1所示,膜电极(membrance-electrode assembly, MEA)是由质子交换膜、催化层与扩散层 3 个部分组成,是质子交换膜燃料电池 (PEMFC)电化学反应的主要场所,也是决定质子交换膜燃料电池 (PEMFC) 的成本、性能和耐久性的核心关键部件。 二、质子交换膜燃料电池的催化剂浆料分析 催化剂浆料涂布是膜电极生产的关键步骤之一,要求催化层涂敷均匀,同时尽量减少铂含量以降低成本,因此必须对浆料进行严格的质量控制。 催化剂浆料的颗粒粒度和分散性能会影响浆料粘度、聚合物电解质的分布和形态、催化剂的利用率、催化剂和聚合物电解质的相互作用以及催化层的均匀性和连续性等重要参数,最终影响膜电极的电化学性能[4]。 如图 2 所示,常见的活性催化剂为铂基纳米颗粒,最佳粒度范围为 2~5nm,但这些纳米颗粒不是独立存在的,而是分散在碳载体颗粒上。单个碳载体颗粒的粒度范围为 20~40nm,在浆料中碳载体通常以团聚体的形式存在,粒度在亚微米至微米范围。聚合物电解质分散成不同形态(棒状或线团)、粒度在 70 nm~2.5 µm 之间的团聚体,与碳载催化剂混合形成催化剂浆料。催化剂和聚合物电解质分散在特定的溶剂中,需要控制团聚物的粒度,优化催化剂和电解质导体团聚物的相互作用。 对于聚合物电解质团聚体,粒度在200~400 nm范围有利于提高氢气/空气的反应性能。碳载体催化剂会出现未充分分散或过度分散的情况[5]。 在未充分分散时,碳载体是高度团聚的;离子交联聚合物只覆盖在团聚物外部,内部的铂催化剂无法与电解质充分接触,因此利用率不高。 过度分散时,团聚物破裂,铂催化剂颗粒与碳载体分离,影响其在氧化还原反应中的活性。 理想的分散状态是形成由碳载体催化剂组成的小团聚体,电解质聚合物在这些团聚体上均匀分布,能够提高催化剂的利用率[6]。 粒度是催化剂浆料的关键性指标,但浆料由不同尺度的颗粒混合物组成,要准确测量浆料的粒度有一定的难度,目前还没有一种技术可以全面表征所有颗粒的粒度。 X 射线衍射 (XRD)、激光衍射 (LD) 和动态光散射 (DLS) 是三种常用的材料表征技术,用于表征不同尺度的颗粒,结合三种技术能够全面表征催化剂浆料中的颗粒特性。 三、马尔文帕纳科解决方案 —— X 射线衍射技术X 射线衍射 (XRD) 通常用于确定小于 100 nm 的纳米晶粒尺寸。快速测量单个衍射峰(1~3 分钟),足以利用峰宽的 Scherrer 分析来计算晶粒尺寸。另外,如果测量多个衍射峰(20 分钟以上),则可采用全谱拟合技术,更精确地计算晶粒尺寸和点阵参数。图 3 显示了使用 Aeris 台式 X 射线衍射仪收集的 X 射线衍射数据,样品是分散在三种不同碳载体颗粒上的催化 Pt 粉末。 如表 1 所示,分散在 Ketjenblack EC-300J 碳黑上的 Pt 的平均晶粒尺寸比分散在 Vulcan XC72 碳或 Vulcan XC72R 碳上的 Pt 略小。晶粒尺寸的变化会改变催化活性和耐用性。全谱拟合分析还表明,EC-300J 上分散的 Pt 比 Vulcan XC72 或 Vulcan XC72R 上的 Pt 的点阵参数更大。该点阵参数也大于已公布的 Pt 的参考值3.9231 Å。[6]较大的点阵参7数可能表明表面引起了点阵应变或合金杂质可能改变催化活性。 XRD 可以分析分散体、固体碎片以及粉末。例如,碳载体 Pt 催化剂纳米颗粒可以在粉末分散到浆料中后和浆料印刷并固化在膜片或气体扩散层上后进行测量。图 4 显示了 40% Pt 在 Vulcan XC72 碳上的 XRD 数据,这些碳可作为粉末、浆料和催化剂涂覆膜 (CCM) 上的固化电极层。在所有情况下,Pt 衍射峰均可通过其他成分中解析出纳米粒尺寸计算,如表 2 所总结。 如图4所示,浆料和催化剂涂覆膜(CCM)样品与粉末样品相比,铂衍射峰变窄,说明这两中样品的铂晶粒尺寸变大。铂催化剂的这种粗化现象可能表明,在溶剂中的碳载体催化剂粉分散过程中,浆料变得过热。因此,在超声处理过程中,通常使用 5℃ 的水浴对浆料进行冷却。[8]在加工过程中,晶粒尺寸的变化(如颗粒粗化),会影响催化剂活性。 四、马尔文帕纳科解决方案—— 激光衍射技术激光衍射技术 (LD)是测量颗粒粒度分布的常用分析方法,粒度范围从十几纳米到几个毫米。动态范围宽,非常适合分析催化剂浆料的粒度分布。激光衍射法操作简便,测试速度快,通常不到1分钟,也非常适合生产过程控制。此外,激光衍射技术还可以研究工艺条件变化对浆料粒度分布的影响。 图 5 是使用 Mastersizer 3000 激光粒度仪对稀释后的催化剂浆料重复5次的粒度测试结果。该浆料中颗粒的粒度呈双峰分布,峰值在1 µm左右的颗粒占最大体积分数,20nm左右的颗粒体积分数占比较小。如表 3 所示,该浆料的粒度分布结果相对标准偏差(RSD)10 µm) 存在,这说明还需要增加剪切或者使用更高能量的分散方法进一步分散,才能达到合格的催化剂浆料要求。 五、马尔文帕纳科解决方案 —— 动态光散射技术 与激光衍射法相比,动态光散射 (DLS) 更适合于测量纳米级颗粒的平均粒度,范围从1 nm 至 1 µm。 将催化剂浆料以 1:10 比例分散在异丙醇(IPA)中,用Zetasizer Ultra纳米粒度仪测量催化浆料的平均粒度。稀释后的浆料仍然是高度不透明的,采用非侵入背散射 (NIBS)技术进行测量,重复测量5次。如图 7 所示,尽管浆料不透明,5次测量的相关曲线的一致性很好。图 8 是催化剂浆料的粒度分布图。如表 4所示,体积平均粒度为 1.04 µm,多分散指数也比较大(0.1)说明浆料的粒度分布宽,与激光衍射法的结果吻合。动态光散射技术(DLS)主要是检测颗粒的布朗运动产生的散射光光强波动,颗粒的散射光强与粒径的 6 次方成正比,大颗粒的信号很容易掩盖小颗粒的信号,因此动态光散射法(DLS)没有观察到激光衍射法测得的小颗粒。 动态光散射技术还可用于测量催化剂浆料的 Zeta 电位,研究电解质聚合物与碳载催化剂之间的相互作用,确定电解质聚合物在催化剂上的均匀分布。Zeta电位与浆料的离子浓度有关,可以通过对碳载体颗粒功能化改性或者改变电解质聚合物浓度来调节。通常来讲,特别是在介电常数较高的分散介质(如甲醇)中,Zeta 电位越高,浆料的稳定性越好。Zeta 电位分析还可以用于优化配方,改进浆料的稳定性。事实上,已经有研究报道可以通过模型根据初级颗粒的粒度和体系的Zeta 电位来预测催化剂浆料稳定[9]。 六、结论 通过X射线衍射技术发现,浆料和阴极催化剂涂覆膜中的晶粒尺寸比催化剂粉末大。这种颗粒粗化现象通常是由于浆料在分散过程中过热引起的。激光衍射法检测到在20 nm附近有大量初级颗粒,说明催化剂浆料出现了过度分散的现象。 联合使用激光衍射、X射线衍射和动态光散射技术,可以从不同尺度表征催化剂浆料,优化和监测催化浆料配方和稳定性。使用 Mastersizer 3000 激光粒度仪测量催化剂浆料的粒度分布,可评估临界颗粒分散的有效性。使用 Zetasizer 纳米粒度及Zeta电位仪进行 Zeta 电位测量,可研究聚合物电解质和碳载催化剂的相互作用,预测浆料稳定性。使用 Aeris 台式 X 射线衍射仪,可以测量纳米催化剂的晶粒尺寸,验证防止纳米颗粒粗化的方法的有效性。 参考文献[1] 陈光. 新材料概论:科学出版社,2003年[2] Kamaruzzaman.Sopian ,Wan Ramli Wan Daud.Challenges and Future Developments in Proton Exchange Membrane Fuel Cells [J].Renewable.Energy.2006,31(5):719~727[3] 胡嫦娥,刘琼,周敏. 质子交换膜燃料电池的研究现状. 新能源网. 2016.[4] D. Papageorgopoulos, US Dept. of Energy Hydrogen and Fuel Cells Program Report, FY 2018 Annual Progress Report[5] Orfanidi et al,J. Electrochem. Soc.165 (2018) F1254[6] Wang et al, ACS Appl. Energy Mater. (2019) DOI: 10.1021/acsaem.9b01037[7] Swanson Natl. Bur. Stand. (U.S.) Circ. (1953) 539 1 31[8] Sharma et al, Materials chemistry and Physics 226 (2019) 66-72[9] Shukla et al, J. Electrochem. Soc.164 (2017) F600-F609 关于马尔文帕纳科马尔文帕纳科的使命是通过对材料进行化学、物性和结构分析,打造出更胜一筹的客户导向型创新解决方案和服务,从而提高效率和产生可观的经济效益。通过利用包括人工智能和预测分析在内的最近技术发展,我们能够逐步实现这一目标。这将让各个行业和组织的科学家和工程师可解决一系列难题,如最大程度地提高生产率、开发更高质量的产品,并缩短产品上市时间。
  • 安东帕流变仪技术创新奖
    近日,荣格工业举办了“2021中国涂料峰会暨展览会&绿色油墨与印刷技术应用研讨会”,安东帕 MCR 流变仪在此盛会上获得“2021涂料行业-荣格技术创新奖”。荣格技术创新奖一直致力于表彰行业内通过技术创新,提升产品功效或是为市场提供新商机的公司。MCR 流变仪安东帕MCR系列流变仪是流变测量领域的市场领导者。我们的产品广泛应用于涂料行业,满足从质量控制到产品研发的应用需求,用于评估涂料的黏度、流动性、流平性、流挂性、触变性等。MCR72/92是质量控制的最佳型号,MCR102e、MCR302e是研发应用的高端型号。MCR Evolution 系列MCR 302eMCR302eMCR302e智能型高级旋转流变仪,是众多涂料企业和使用单位进行涂料研发、质量控制的得力设备。在汽车涂料、水性涂料的生产和研究中是必不可少的测量仪器,可以用于测量涂料的粘度、剪切变稀特性、触变性、屈服应力、温度适用性、稳定性、粘弹性(与表面质量和缺陷相关)、固化成膜特性等,并对喷涂工艺的选择具有关键指导作用。MCR302e智能型高级旋转流变仪采用空气自冷却的智能型帕尔贴控温系统,可实现0-200℃的精确温度控制;带有智能芯片识别的测量转子,可自动设置转子参数;丰富的测试模板、直观的软件界面、流程化的程序设计使流变仪的使用不再繁琐,数据库化的数据管理、多层级用户权限、条形码化样品识别工具,保障了测量数据的安全性和可追溯性。MCR302e智能型高级旋转流变仪提供丰富的配置,涵盖锥平板、平行板、圆筒、挥发成膜专用转子、湿度控制模块、UV固化模块、粉体流变模块等等,适用于各种溶剂型涂料、水性涂料、粉末涂料、UV固化涂料的研究和测试。
  • 安东帕颗粒表征团队邀您共赏上海国际粉末冶金大展
    粉末冶金制造工艺是生产制造的基本工艺之一,就似锻造或铸造工艺等等,被广泛用于各行各业。粉末冶金零件通常会大批量生产,因此需要拥有高度自动化和联接性的制造工厂,以保证批量产品的高品质和一致性。 粉末冶金产品的优势在于,烧结零件的尺寸几乎(或实际)相同于最终尺寸(仿形或近仿形制造过程)。这就节省了额外机加工,此外,由于固化发生在合金元素熔点以下温度,粉末冶金是可利用的最好的能源和构建资源节约及环境友好型生产的过程。在3月25日-27日,上海国际粉末冶金、硬质合金与先进陶瓷展览会,安东帕的颗粒表征团队将携数款最新型号的高精密仪器亮相,为广大科研机构、高校和企业各界同仁带来最新、最高端、最全面的测量解决方案。安东帕的粉体流变仪、激光粒度分析仪、和康塔仪器的比表面积及孔径分析仪为材料研究和生产研发提供更短的测量时间、更准确可靠的测量结果、满足不同应用情景下的检测需求。在国内为数千家用户提供精准的表征解决方案,为材料研发与分析提供有力的保障。安东帕粉体流变仪:安东帕公司推出的粉体流变测量单元可用于粉体样品的流化态和流动性测试,即使是未经过培训的操作人员,也可以使用粉体单元对金属粉体和其他的粉体进行专业的的测试。粉体流变测量单元可以得到高重复性的粉体流动性质数据,如内聚强度、壁摩擦力、可压缩性、体积密度、透气压降、流化态黏度等。例如,用粉体流变单元对选择性激光烧结(SLS)金属粉体进行研究,可研究此样品的流化态条件、低载荷内聚强度、表面剪切模拟等,从而表征SLS金属粉体的流动性,以及对成型工艺的影响。安东帕激光粒度仪:安东帕公司推出的PSA激光粒度仪系列。干湿一体式的设计,无需人工切换,只需轻点鼠标即可完成干法和湿法之间的切换。 光路无需校准,符合工业客户的要求。简洁的一页式工作流操作页面,即便对粒度仪操作完全不熟悉的操作人员,也可以在十分钟之内玩转整台设备。 独家的DJD干法分散专利,让干法的精确度,重复性更上一层楼。安东帕康塔仪器:安东帕康塔是著名的当代颗粒技术开创者,始终致力于开发最先进的粉体及多孔材料特性仪器。我们提供的不仅仅是产品,而是包含最专业应用技术支持、培训和服务在内的完整解决方案。过去的50年里,康塔仪器的产品覆盖了粉体及多孔材料特性表征的诸多领域,提供包括:比表面测量,吸附/脱附等温线,孔隙度、孔径分布,通孔测量,化学吸附研究,粒度分析,真实粉体密度,压汞法孔隙度测量在内的全面解决方案。若您有样品需要测量,有若干技术问题想要咨询,欢迎您来到现场与我们的技术工程师面对面接洽。我们的技术工程师将会带给您丰富的经验和建设性的技术指导。若您有紧急事项或在异地脱不开身,您可下载《安东帕粉体单元对SLS粉体样品的分析》应用报告,了解安东帕粉体单元在金属冶金行业的特殊应用,让专家帮您建立行业模板,帮您节省大量研发所需时间。安东帕展位号B583,恭候您的莅临!
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制