当前位置: 仪器信息网 > 行业主题 > >

普卢利沙星

仪器信息网普卢利沙星专题为您提供2024年最新普卢利沙星价格报价、厂家品牌的相关信息, 包括普卢利沙星参数、型号等,不管是国产,还是进口品牌的普卢利沙星您都可以在这里找到。 除此之外,仪器信息网还免费为您整合普卢利沙星相关的耗材配件、试剂标物,还有普卢利沙星相关的最新资讯、资料,以及普卢利沙星相关的解决方案。

普卢利沙星相关的资讯

  • 崭露独特魅力与优势 “质谱成像技术交流沙龙”顺利召开
    p style=" text-align: justify line-height: 1.5em "   质谱成像技术(MSI)最早以基质辅助激光解吸电离(MALDI,matrix assisted laser desorption ionization)质谱分子成像技术出现,是由范德堡大学(VanderbiltUniversity)的Richard Caprioli等在1997年提出。 span style=" text-indent: 2em " 该技术 /span span style=" text-indent: 2em " 是结合质谱分析与影像可视化的分子成像技术,无需任何标记,能够针对生物体内参与生理和病理过程的已知或未知分子进行可视化原位表征。质谱成像技术不仅能进行形态学表征,同时又能实现检测物质的定性、定量分析,正在生物医学、药学以及食品环境领域得到应用并崭露出其独特的魅力和优势,作为新型的分子影像技术之一的质谱成像技术愈发显示出其巨大的发展前景。 /span /p p style=" text-align: justify line-height: 1.5em "   2019年10月9日,仪器信息网与中国医学科学院药物研究所天然药物活性物质与功能国家重点实验室联合举办的“质谱成像技术交流”沙龙在中国医学科学院药物研究所顺利召开。本次沙龙云集质谱成像领域的专家学者约50人同行,以“质谱成像技术发展趋势及前沿应用”为主题,旨在交流成像领域的最新研究进展及其在生物医学、药学以及食品环境领域的研究进展以及前沿应用,促进业内专家及厂商的交流与合作,推进质谱成像技术的发展。 /p p style=" text-align: center" img style=" " src=" https://img1.17img.cn/17img/images/201910/uepic/c5a1ce35-138b-4dfe-ab8c-369fe65cc8ae.jpg" title=" 现场.jpg" / /p p style=" text-align: center " 活动现场 /p p style=" text-align: center" img style=" " src=" https://img1.17img.cn/17img/images/201910/uepic/1c5d2d23-0260-4456-9c6d-fa75e4906a53.jpg" title=" 致辞.jpg" / /p p style=" text-align: center " 中国医学科学院药物研究所天然药物活性物质与功能国家重点实验室主任庾石山教授 致欢迎辞 /p p style=" text-align: center" img style=" " src=" https://img1.17img.cn/17img/images/201910/uepic/85eb822d-32c0-433b-b119-f17154ad28a7.jpg" title=" 主持.jpg" / /p p style=" text-align: center line-height: 1.5em "   中国医学科学院/北京协和医学院药物研究所天然药物活性物质国家重点实验室副研究员 贺玖明主持会议 /p p style=" line-height: 1.5em text-indent: 2em text-align: justify " 会议上半场由中国医学科学院基础医学研究所/北京协和医学院基础学院李智立、沃特世大中华区战略市场经理汪飞、中国科学院高能物理研究所王萌以及岛津分析测试仪器市场部生命科学产品经理韩美英等四位专家分享精彩报告。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201910/uepic/ade8be50-776c-4e2e-99b6-01eab72da58b.jpg" title=" 李智立.jpg" alt=" 李智立.jpg" / /p p style=" text-align: center line-height: 1.5em "   中国医学科学院基础医学研究所/北京协和医学院基础学院 李智立 /p p style=" text-align: center line-height: 1.5em "   报告题目《原位探究肿瘤微环境中的代谢物变化规律》 /p p style=" text-align: justify line-height: 1.5em "   质谱成像技术(MSI)离子化方式的选择与其空间分辨率和信号强弱密切相关。目前主要的离子化技术是三种:MALDI、解吸电喷雾电离(desorption electrospray ionization,DESI)和二次离子电离(secondary ion mass spectrometry,SIMS)技术。目前MSI技术被广泛应用于研究组织中元素、代谢物、蛋白质和药物及其代谢物等的分布。正常细胞与肿瘤细胞具有不同的细胞表型,而不同肿瘤细胞也具有不同的膜脂表型,同时微环境也影响肿瘤细胞的膜脂表型。因此李智立团队基于质谱成像技术开展了原位检测肿瘤细胞膜脂的相关研究,利用其团队设计并制造电场辅助循环喷雾基质的喷涂装置,提高质谱检测低分子量代谢物的灵敏度和检测数量。实验表明在胃癌肿瘤组织肿瘤区域发现单不饱和脂肪酸、单磷酸核苷上调,核苷和唾液酸下调等成果。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201910/uepic/96ac6980-b680-4b26-9024-738721c87311.jpg" title=" 汪飞.jpg" alt=" 汪飞.jpg" / /p p style=" text-align: center line-height: 1.5em "   沃特世大中华区战略市场经理 汪飞 /p p style=" text-align: center line-height: 1.5em "   报告题目《“一叶知秋”——质谱成像技术发展的新赋能》 /p p style=" text-align: justify line-height: 1.5em "   报告介绍了沃特世在离子源以及质谱技术开发方面的进展,包括对DESI和REIMS(Rapid evaporative ionization mass spectrometry)技术的开发以及应用扩展。与传统的组织病理学成像技术相比,DESI质谱成像技术可提供互补且更具指导意义的数据。此外,该技术的一大优势是能够分析样品的分子指纹图谱,协助研究人员发掘出更深层次的生物学见解。汪飞表示,当前质谱成像技术经过更新迭代,硬件上已经得到很多的突破,市场上也有很多供应商致力于成像应用软件方面的研究,相信未来软硬件各方供应商的合作将会更好地促进质谱技术的发展。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201910/uepic/6446b2f8-bd92-4ac1-b3c4-78f9d5e7a7ec.jpg" title=" 王萌.jpg" alt=" 王萌.jpg" / /p p style=" text-align: center line-height: 1.5em "   中国科学院高能物理研究所 王萌 /p p style=" text-align: center line-height: 1.5em "   报告题目《生物样品的元素成像及应用》 /p p style=" text-align: justify line-height: 1.5em "    span style=" text-indent: 2em " 生物体内的微量元素具有十分重要的生物功能,现代生物医学的研究亟需能在组织、细胞等不同水平上原位分析生物样品中微量元素的分析方法。王萌介绍了利用激光剥蚀-电感耦合等离子体质谱(LA-ICP-MS)分析生物样品中微量元素的方法和所在团队开展的部分研究工作。报告中还介绍了最近出现的激光剥蚀-流式质谱(Mass Cytometry)技术,利用这种新技术可以获得一个切片上几十种蛋白质的表达和定位信息。王萌分享了他在组织切片多标记LA-ICP-MS成像分析的初步探索,并表示新建立的分析方法亟需得到更多的应用,解决实际的科学问题。 /span /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201910/uepic/7f80392a-4dba-4a46-bc04-2dca5ff1708a.jpg" title=" 韩美英.jpg" alt=" 韩美英.jpg" / /p p style=" text-align: center line-height: 1.5em "   岛津分析测试仪器市场部生命科学产品经理 韩美英 /p p style=" text-align: center line-height: 1.5em "   报告题目《成像质谱显微镜从发现到精准定位——开启质谱数据可视化时代》 /p p style=" text-align: justify line-height: 1.5em "   报告主要介绍了岛津公司的成像产品,包括前端带有光学显微镜的质谱产品iMScope TRIO和MALDI-TOF产品。iMScope TRIO配备了紫外光激光可实现5μm以下的质谱分析成像空间分辨率,产品软件可重叠观察光学图像与质谱分析成像,详细解析样品。此外,该装置具有离子阱与飞行时间质谱相结合的IT-TOF功能,可实现高分辨率的样品分析。 /p p style=" text-align: justify line-height: 1.5em text-indent: 2em " 会议下半场由中国医学科学院/北京协和医学院药物研究所贺玖明副研究员、赛默飞世尔科技色谱与质谱应用经理徐牛生、科迈恩(北京)科技有限公司田润涛以及维科托公司创始人史俊稳带来报告分享。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201910/uepic/ed1cc8f0-24f6-4e6f-baba-fae42911dc99.jpg" title=" 徐牛生.jpg" alt=" 徐牛生.jpg" / /p p style=" text-align: center line-height: 1.5em "   赛默飞世尔科技色谱与质谱应用经理 徐牛生 /p p style=" text-align: center line-height: 1.5em "   报告题目《质量和空间的双高分辨:赛默飞质谱成像平台的新进展》 /p p style=" text-align: justify line-height: 1.5em "   报告介绍了赛默飞基于Orbitrap的MSI解决方案,TransMIT AP-SMALDI 10超高分辨率质谱成像系统由德国吉森大学世界知名质谱学家Bernhard Spengler教授研制开发。该系统搭载赛默飞 Q Exactive 系列质谱仪,结合超高空间分辨率和超高质量分辨率。该系统问世后,应用到生命科学领域中不同组织中多种内源性物质的可视化检测,如脂类、多肽、蛋白质、核酸和糖类等,以及外源性物质检测,如药物及其代谢产物。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201910/uepic/8daa9b36-be4c-495b-ab08-4f1c0687f671.jpg" title=" 贺玖明.jpg" alt=" 贺玖明.jpg" / /p p style=" text-align: center line-height: 1.5em "   中国医学科学院/北京协和医学院药物研究所 贺玖明 /p p style=" text-align: center line-height: 1.5em "   报告题目《敞开式质谱成像新技术新方法及其应用进展》 /p p style=" text-align: justify line-height: 1.5em "   贺玖明所在的再帕尔团队提出并发展了基于AFAI-MSI技术的成像药物代谢组学新方法,该方法为药物或候选新药的作用机制或毒理机制,甚至多靶点或靶点不明确候选新药的研究提供了新颖、直观的分析手段。贺玖明还介绍到其团队提出的一种免内标添加的整体动物体内药物的定量质谱成像分析方法(AFAI-QMSI),降低了基体效应,提高药物的QMSI灵敏度和原位信息,无需内标添加,构建一条标准曲线,实现了整体动物体内药物定量成像分析。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201910/uepic/498d94ca-3e67-4074-9d1e-c096dfc8cd9f.jpg" title=" 田润涛.jpg" alt=" 田润涛.jpg" / /p p style=" text-align: center line-height: 1.5em "   科迈恩(北京)科技有限公司 田润涛 /p p style=" text-align: center line-height: 1.5em "   报告题目《人工智能与及其学习在质谱成像及分子影像建模中的应用》 /p p style=" text-align: justify line-height: 1.5em "   科迈恩公司创立于2012年,公司在仪器信息智能化分析系统、快检及在线分析技术、大数据与人工智能结合建模等领域具有丰富的研发经验。公司也致力于基于质谱、色谱、光谱及新一代成像技术的信息融合,实现系统化的信息化解决方案。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201910/uepic/b7c9df2f-0eee-4abe-9d71-2a67b620756c.jpg" title=" 史俊稳.jpg" alt=" 史俊稳.jpg" / /p p style=" text-align: center line-height: 1.5em "   维科托公司 史俊稳 /p p style=" text-align: center line-height: 1.5em "   报告题目《质谱成像样品前处理方法》 /p p style=" text-align: justify line-height: 1.5em "   维科托公司成立于2016年,是一家以技术作为支撑的高新技术企业。公司现在主要有两大类产品,分别为快速溶剂萃取仪以及AFAI-MSI系统。史俊稳介绍说,前处理可谓是检测的核心步骤之一,近年来市场对前处理设备的需求也比较旺盛,公司也希望能够解决用户的诉求。其AFAI-MSI产品是与中国科学医学院药物研究所产学研合作的成果,该系统是一款空气动力辅助离子化的质谱成像系统,灵敏度高,操作灵活,主要应用于肿瘤的分子病理诊断以及相关药物研发方面。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201910/uepic/68c837de-9a9a-419b-8132-825ea7c2abf5.jpg" title=" 参观实验室.jpg" alt=" 参观实验室.jpg" / /p p style=" text-align: center line-height: 1.5em "   实验室参观 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201910/uepic/6490a569-b952-4b92-bcaa-752bf422c21a.jpg" title=" 合影.jpg" alt=" 合影.jpg" / /p p style=" text-align: center line-height: 1.5em "   部分与会专家合影 /p p br/ /p
  • 屹路同行:华沙书房里的微波消解仪
    我知道Monika很喜欢屹尧科技的微波消解仪,就像她也同样喜欢屹尧科技公司。几个月前,当我知道她会用Google翻译软件看我们的每篇微信时,确实很惊讶。“很有趣。”她跟我说:“你们遇到那些事儿,波兰市场也有。”即便如此,当看到她最新分享的动态时,我还是被她给震惊了。照片里是她家书房,站着的是她5岁的小儿子Adam,摆在他面前书桌上的,是一台屹尧COOLPEX微波消解仪。“那也是他的实验台。”Monika笑着解释说,然后发过来一段视频,里面她正在给孩子讲解仪器原理和基本操作。我其实听不懂她说的什么,只能看到孩子稚嫩的手按在按键上,但我能感受到她们两个人的幸福。何其荣幸,我们的仪器竟然能够参与到一个孩子的幸福童年中去;又是多么神奇的缘分,让这台制造于中国上海的科学仪器,在万里之外的书房里,成为一个孩子世界的组成部分,也成为他认知这个世界的工具之一。我不确定,这是否他触摸到的第一台科学仪器,想来不是吧,他有那么一个毕业于名牌高校的硕士母亲,动手能力极强的那种。“挺重的啊,你怎么搬回去了?”我问Monika。“我喜欢跟家人分享我工作的快乐。”她很开心地分享着她的生活理念:“很棒的仪器,他也很喜欢,不是吗?”好吧,我看得出那孩子很喜欢,在经过了最初的小心探索阶段后,小家伙下手越发“没轻没重”了。“他不会是想把它拆了吧?”我不确定地问。Monika大笑着说:“你看出来了?”真得很羡慕老外这样的亲子关系和教育理念,当然,也只是羡慕了,如果我带一台TOPEX+微波消解仪回家,就算倪总愿意,我老婆肯定也不会答应给孩子玩。真那么做了,我需要担心坏掉的,肯定不是仪器。我家那个跟Adam同龄的孩子现在“大三”,目前课外在学钢琴和轮滑,还有专注力和体能培训班。昨天他妈妈也给我发了视频,在学跳绳呢。都是最好的安排,至少我在今年夏天的某个周末,曾经偷偷把小家伙带到我们公司的实验室去,亲眼见识了最新款的全自动微波消解平台。从动手能力上,可能他的确落后于华沙的小哥哥了,但是他合影的那款,更先进一些。好吧,我也只能这么自我安慰一番。“我们用了二十年,才让中国微波消解仪摆脱了低端印象,打入全球高端市场。”我跟Monika说:“即便如此,就在去年,某单位还说国产微波消解仪都是家用微波炉改装的,不安全。你倒好,还真给我们弄家里去了,这下更说不清了。”Monika哈哈笑着说:“你跟他们说,就连华沙的孩子都觉得很安全。”虽然屹尧科技在开拓海外市场方面事实上是来迟了,但好在“磨刀不误砍柴工”,TOPEX+和COOPLEX还有PREPS系列高颜值、高品质的微波消解仪,很是刷新了一番海外客户和经销商对中国制造科学仪器的印象。如今我们的海外代理商中,不少也是那些全球排名前五的仪器巨头的代理商,包括Monika所在公司,她们刚刚在波兰又安装了两台TOPEX+微波消解仪。当然,这不全是我们的功劳,还要感谢海尔、华为以及仪器行业各位先行的同行。能够在打造“中国制造”金字招牌的过程中,贡献我们微薄的力量,这事儿,对屹尧科技的每个人来说,都很有意义。祝福Monika和Adam一家,幸福快乐,欢迎Adam来中国玩。我家天天说了:“小哥哥很帅。”
  • 普利赛斯参加2010长沙中国国际衡器展
    普利赛斯国际贸易(上海)有限公司,全新产品全新规模亮相长沙衡器展,敬请广大新老用户光临! 时间:2010-4-22-24 地点:湖南国际会展中心一层展厅 长沙市金鹰影视文化城 展位号:B114-B115
  • 长沙市副市长刘明理一行来力合科技调研
    3月27日,长沙市人民政府副市长刘明理带队到力合科技(湖南)股份有限公司调研企业第四次全国经济普查开展情况及企业经营状况。长沙市政府副秘书长肖思源,长沙市统计局、长沙市生态环境局、长沙高新区管委会等领导陪同调研。力合科技总经理聂波、财务总监易小燕等公司领导热情接待了调研组一行。刘明理副市长询问了力合科技第四次经济普查工作开展情况并且实地参观了力合科技研发和生产基地,了解公司发展现状及规划。调研结束后,刘明理副市长对力合科技积极配合经济普查工作表示了肯定,对企业多年来坚持自主研发创新的企业精神给予了高度评价。他指出,第四次全国经济普查是一项重大国情国力调查,企业要高度重视,全力以赴配合做好经济普查各项工作。刘明理副市长勉励力合科技抢抓当前大好发展机遇,切实为长沙和全省的环境监测工作发挥好龙头引领作用,争取为长沙市和全省的生态文明建设作出更大贡献。
  • “院士专家长沙行”走进力合科技
    “院士专家长沙行”暨中国工程院“互联网+”行动计划项目中期研讨会4月24日起在长沙拉开帷幕。多名院士、专家齐聚长沙,为长沙转型创新发展把脉开方,重点就加快推进“互联网+”行动、助力高质量发展进行深入探讨和研究。4月25日下午,中科院地理科学与资源研究所孙九林院士带队的调研组来到力合科技考察交流,长沙市委组织部、长沙市科学技术局、长沙市农业农村局、长沙市生态环境局、长沙高新区管委会等领导陪同调研。力合科技副总经理侯亮及相关工作人员热情接待了调研组一行。调研组参观了力合科技的产品展示厅,侯亮向院士专家组详细介绍了公司的科研创新、主要产品及近年在环境监测领域取得的成绩。孙九林院士不时与侯亮沟通交流,详细了解公司在空气监测和水质监测方面的技术与具体应用,以及移动水质监测系统如何运用GPS定位以实现准确定位等情况。孙九林院士对力合科技的研发成果表示肯定。力合科技也将继续致力大数据+互联网技术在环境监测监管方面应用的研究,有效推进环境保护“互联网+”时代的步伐。
  • 长沙市知识产权局局长孙进一行莅临三德科技参观调研
    3月20日下午,长沙市知识产权局局长孙进率有关部门负责人,对三德科技承担的2018年长沙市专利预警分析研究项目——智能制样系统全球专利预警分析研究项目实施情况进行考察,并对三德科技知识产权工作进行深入调研,董事长朱先德、总工程师吴汉炯等陪同接待。首先,孙局长一行来到三德科技产品体验中心参观,总工程师吴汉炯详细介绍了公司的发展历程和自主创新情况,并重点讲解了优势® 燃料全过程管控系统。参观标准实验室。参观自动存查柜系统。参观过后,董事长朱先德、总工程师吴汉炯等公司领导与孙局长一行就企业知识产权工作开展深入交流。其中,公司知识产权工程师系统汇报了三德科技创新与知识产权具体情况,并强调三德科技长期以来,积极推动企业强化知识产权战略管理能力、高质量知识产权产出能力、知识产权运营能力、知识产权风险管控能力,秉承“市场未动、专利先行”的理念,在推动企业持续创新和专利保护的同时,带动公司业绩突破。随后,董事长朱先德结合知识产权工作,对公司企业发展进行深入介绍:三德科技自成立以来,习惯于创新,在公司看来,知识产权工作本质上并非追求专利数量,而是追求企业长期的发展与生存。对此,三德科技根据公司发展,不断进行技术乃至管理创新,在分析检测仪器领域持续突破,已达国内领先水平;同时积极转型升级,开拓智能化业务,虽距期望目标仍有差距,但一直潜心耕耘,不吝资源、财务投入,带来产品综合竞争力和项目管理能力持续进步。未来,三德科技仍会积极把握行业趋势,努力抓住细分市场机遇,实现健康、稳健发展。孙局长听取汇报后,对三德科技的追求表示赞许,并充分认可公司知识产权工作成果。他指出:创新是企业持续发展的核心动力,三德科技真心实意做实事,以专业创新为生命线,积极转型拓展产品领域的方向是正确的。随着整体经济的高质量发展、市场的变化以及新业态的不断出现,三德科技凭借细分市场优势、专业的研发创新水平,不断将产品做细、做好、做深入,长期发展,必能成为行业的领军者。长沙市知识产权局亦乐于培育像三德科技这种成长性好、质量高的优势企业。三德科技(股票代码:300515.SZ)系国家知识产权示范企业、湖南省知识产权运用标杆企业,从1995年开始申请首件专利,陆续布局分析检测、样品制备及智能化等产品领域专利技术,为公司产业升级保驾护航。截至目前,三德科技已累计申请专利859件,其中发明申请285件,PCT及国外专利申请49件,授权有效专利446件,目前仍维持有效的最“年长”的发明专利已有17岁;拥有注册商标71件,马德里国际注册商标2项,著作权59件,处于同行领先地位。
  • 蒙娜丽莎等艺术名作中的甲状腺迷思|甲状腺知识科普系列(一)
    “终有一日,我们的子孙会惊讶于他们的先人竟不了解那些无比浅薄的常识。”塞涅卡,《自然问题》卷七,1世纪得益于医疗手段的发展以及信息技术的进步,对于生活在现代的我们来说,甲状腺相关的疾病并不陌生,因为我们普遍接受过科学的熏陶和洗礼。但生活在古代的人们就没那么“幸运”了,很多疾病对于他们来说都是“未知”,而“未知”意味着满满的“恐惧”。甲状腺疾病古已有之,你知道在人们认识甲状腺之前,甲状腺疾病在古代是怎么被发现和记录下来的吗?古人又是怎么治疗甲状腺疾病的呢?在科学启蒙运动之前,甲状腺肿大经常以不同的风格出现在各种类型艺术作品中,例如达芬奇的名作——《蒙娜丽莎》。除此之外比较典型的是,在文艺复兴时期和巴洛克时代的绘画和雕塑中,甲状腺肿大也很普遍。针对艺术作品中出现的甲状腺肿大,有科学家专门进行了研究,他们发现数个世纪以来,不同种族、不同地区的人群都出现了甲状腺肿大的现象,并且频率较高,特别是在缺碘的地区。这也从侧面解释了为何不同时期以及类型的艺术作品中甲状腺的出镜率会如此之高。古往今来,绘画雕刻等艺术作品一直是人类认知世界的一种表现形式,从法国拉斯科洞窟史前壁画对野牛的描述,再到当今小学生教室里学生对花草的绘制,通过艺术作品,我们能窥见人类的健康情况以及精神面貌。在文艺复兴时期,人们对精神疾病的了解比较匮乏,认为是脑子里的鬼怪使人失去理智,于是画家将凿颅治病的画面记录了下来,如今我们或许会认为这些做法既可笑又恐怖,实际上艺术作品中这样看似荒诞的记录也成为了我们研究疾病的历史依据。对比今天医学的技术发展,人类对疾病的认知显然已经从愚昧走到了科学。值得一提的是,有很多现代人们熟知的疾病都能在经典的艺术作品中找到描述痕迹。甲状腺疾病是临床常见的内分泌系统疾病,它很常见,因此大多时候会被生活节奏快的现代人忽视。然而这类疾病却常见于前人流传下来的艺术作品中。那么,有哪些名作中隐藏着这类疾病?这些艺术作品又是怎么表现甲状腺疾病的?隐藏在艺术作品中的疾病,从蒙娜丽莎说起很多艺术作品中的人物都“暗含玄机”,除了各式各样的表现手法以外,人物的形态上也会有许多值得推敲的地方,比如世界绘画大师达芬奇的名画《蒙娜丽莎》。达芬奇为了能在绘画与雕塑中对人体描绘更加准确,曾进行过许多次尸体解剖,因此就有了动脉粥样硬化等一系列跨时代的发现。只可惜他生前大部分成果并未公之于众,直到后人仔细翻阅他的手稿时,这些发现才重见天日。 Mona Lisa,达芬奇绘制,1502《蒙娜丽莎》是列奥纳多达芬奇最伟大的作品之一,大众对这莞尔一笑的画中人并不陌生。然而,“微笑”的面纱之下,是各种疾病。对于蒙娜丽莎所患的疾病,历史上可谓是众说纷纭,比如有科学家通过她左上眼睑眼角内侧的凸起,以及右手背虎口处的肿块,判断蒙娜丽莎是一名家族性高胆固醇血症(Hypercholesterolemia)患者。据美国CDC官网介绍,家族性高胆固醇血症的体征为:膝盖、指关节或肘部周围有肿块或肿块;跟腱肿胀或疼痛;眼睛周围发黄的区域;角膜外侧呈半月形的白灰色。根据上述蒙娜丽莎眼睑的凸起、手虎口的肿胀等症状,部分科学家认为蒙娜丽莎是一名家族性高胆固醇血症患者。但是,2017年12月,美国布莱根妇女医院研究员曼迪普梅赫拉(Mandeep R. Mehra)与合作者在《梅奥诊所论文集》(Mayo Clinic Proceedings)上发表了论文,题为“The Mona Lisa Decrypted: Allure of an Imperfect Reality”(解码蒙娜丽莎:不完美现实的诱惑),称蒙娜丽莎可能患有甲状腺功能减退症(Hypothyroidism),而不是一名家族性高胆固醇患者。研究者指出,蒙娜丽莎的异常体征——前额高、头发稀疏且粗糙、没有眉毛、左侧内眦处有黄色瘤、右手背肿胀(这可能是脂肪瘤或黄色瘤)、皮肤整体呈黄色、尤其是甲状腺区域没有角膜弓,这些可能意味着她患有甲状腺肿大。梅赫拉还认为,蒙娜丽莎的原型——丽莎德尔乔孔多(Lisa del Giocondo)现实中活到了63岁,但如果她有心脏病和脂质代谢紊乱,根据当时的医疗条件来看她不太可能活到这个年纪。因此,梅赫拉表示,乔孔多更有可能是甲状腺功能减退症患者。艺术作品中的甲状腺肿胀 实际上,在一些不同风格时期、不同区域的艺术品中,经常出现人物的颈部相对突出,疑似肿胀的情况。为了研究艺术作品中这种颈部“异常”现象是否与甲状腺的病变有关,意大利布雷西亚大学医学博士雷莫阿科罗纳(Remo Accorona)等人研究了1964年至2017年5月发表的131篇艺术与甲状腺为关键词的相关论文,并于2018年将研究成果以“Thyroid Swelling: A Common Phenomenon in Art?”(甲状腺肿胀:艺术作品中的常见现象?)为题,发表在《欧洲甲状腺杂志》上。文章指出,在131篇论文中,有69篇分析了甲状腺肿大在艺术作品中是如何描绘的,作者还试图将不同的表现方式与特定的病理状况联系起来。阿科罗纳等人还总结了艺术作品的作者和人类学研究者的观点,提出了关于甲状腺肿胀主要原因的各种假设,这些假设均来源于艺术品中代表人物的形态。缺碘引起的地方性甲状腺肿 通常,缺碘会导致中年人出现大的甲状腺肿(多结节)。根据有关学者的说法,这可能是贫困和社会阶层低下的标志,当然,这种说法或许会有被指将人污名化的风险。慢性桥本甲状腺炎在大多数情况下,桥本甲状腺炎通常会影响年轻女性,其特征在于甲状腺腺体尺寸小,但在某些情况下甲状腺可能均匀地增大。据资料显示,当时的部分艺术家认为,这一特征是年轻女性美丽外表的象征之一。 自身免疫性产后甲状腺炎有些研究者推测,产后甲状腺炎可能是圣母玛丽亚甲状腺肿大的其中一种原因,这也是许多艺术家的热门话题,特别是在文艺复兴时期。甲状腺功能亢进和格雷夫斯病甲状腺功能亢进症(hyperthyroidism,简称甲亢),是指甲状腺本身的病变引发的甲状腺毒症,甲状腺功能亢进症通常是由于毒性多结节性甲状腺肿,这通常与甲状腺整体增大有关。更罕见的是,甲状腺功能亢进症是由格雷夫斯病引起的(这是一种自身免疫性疾病,但并不意味着甲状腺腺体一定会肿大)。甲亢患者通常会有一些明显的症状,如眼球突出或躁动不安,一些艺术家利用了这种病症的特征,将其与场景中的特殊意义(即疯狂)联系起来。除了上述几种假设之外,还有部分科学家认为艺术作品中会利用画中人物不寻常的甲状腺肿大来凸显人物的特征,有时甚至会夸张地将甲状腺部分特别放大。文艺复兴和巴洛克时期的甲状腺肿通过上面的描述,我们不难发现几个世纪前,甲状腺肿大似乎是一种“流行”疾病。今天我们知道,甲状腺肿是甲状腺疾病中的一类,就是人们称说的“大脖子病”。那么,甲状腺肿不肿这个问题到底源于何时?在甲状腺的生理作用被揭示之前,人们尤其是艺术家对甲状腺肿有怎样的认识,又会怎样去表现甲状腺异常的人?这要追溯到文艺复兴时期。文艺复兴是一个伟大文化繁荣发展的时期,它始于14世纪中叶,一直持续到16世纪末。值得注意的是,从解剖学的角度来看,尽管甲状腺的生理作用直到19世纪末才被发现,但甲状腺的解剖形态早在文艺复兴时期就已经被描述出来了。历史上,第一个绘制甲状腺腺体的人是达芬奇,他在1510年绘制了解剖学研究中的第一张甲状腺图解剖学研究中的第一张甲状腺图 by Leonardo da Vinci (1510)随后,在1543年,近现代解剖学之父安德烈亚斯维萨里(Andreas Vesalius)在他的巨著《人类组织结构》中对腺体进行了再现。这本人体解剖学地图集出版后,甲状腺开始被医生所了解,但直至19世纪下半叶,才开始出现了腺体的有效手术治疗的描述,瑞士伯尔尼大学外科教授西奥多科赫(Theodor Kocher)为此作出了卓越的贡献。1909年,Kocher因其在甲状腺外科领域的成就而荣获诺贝尔奖。安德烈亚斯维萨里(Andreas Vesalius)在《人类组织结构》中绘制的甲状腺(1543)研究人员声称,在这一时期的艺术作品中,他们至少发现了56种甲状腺肿的表现形式。因此,研究者得出结论,甲状腺肿大在历史上是很常见的情况,并且这些作品通常都与人们的日常生活息息相关。他们以此确定了三类当时的主要艺术作品表现趋势。“博尔盖塞版下十字架”及细节(B), 拉斐尔桑齐奥(Raffaello Sanzio)第一种趋势:甲状腺肿大在艺术品中被视为理想人类之美的一部分。以拉斐尔桑齐奥(Raffaello Sanzio)的作品为例,他的艺术体现了文艺复兴时期的和谐与理想之美。他认为颈部肿大或许是模特的正常外貌,而且他还夸大了这一特征,认为这是理想之美的一部分。比如,在《博尔盖塞版下十字架》一作中,画面右侧的一位女性被描绘成甲状腺肿大的形象。《基督显圣》,拉斐尔桑齐奥(Raffaello Sanzio)而在《基督显圣》中,画作右下部描绘了一个颈部增大的男孩,伴有甲状腺肿大(眼球突出、体重减轻和躁动)的迹象。在这幅艺术品的常见解释中,男孩“被撒旦附身”,正在等待着奇迹。因此甲状腺功能亢进的迹象与身体情况之间有一定相关性,而这种假设在当时就存在。 《怪诞的头》也被称为《吉普赛之王斯卡拉穆齐亚》(达芬奇,1500-1505年)第二种趋势:甲状腺肿大被描绘成一种人体解剖学特征。达芬奇被人体解剖学的巨大好奇心所驱使着,对奇怪的相貌有些着迷,典型的例子是他的作品《怪诞的头》。在达芬奇的绘画作品中,他常常会把人物比较“特殊”的生理结构写实地表达出来,而不会忽略它,他的画中人也出现了甲状腺肿大的情况。 《圣安德鲁受难》 米开朗基罗梅里西(Michelangelo Merisi)第三种趋势:文艺复兴时期的艺术创新(透视和研究人体解剖学)趋向于现实主义,甲状腺肿可作为人物特征的“直接证据”。比如米开朗基罗梅里西(Michelangelo Merisi),他希望为观众创作具有巨大情感效果的画作,并避免人物的形象被理想化——特别是下层阶级人士。他们的每个身体特征,包括甲状腺肿大,都会被精确地描绘出来。具有代表性的例子是《圣安德鲁受难》(1607年)。在画作的左下部分,他描绘了一位患有明显甲状腺肿大的老太太,结合服饰及其他特征,她可能来自一个低阶层群体。 其他艺术作品中的甲状腺肿大除了上面所介绍的绘画作品中呈现出的甲状腺肿形态,许多雕塑、摆件也会塑造人物甲状腺肿的形象。意大利都灵大学名誉教授路易吉马西米诺塞纳(Luigi Massimino Sena)研究了不同艺术作品中的甲状腺肿,并制作了合集《艺术中的甲状腺》(The Thyroid in Art)。塞纳在这份报告中指出,甲状腺肿大在古代就已被人们所知晓。在钱币、雕塑、绘画和简单的工艺品中,甚至是一些人物的民间传说里,都对甲状腺肿大的男子、妇女和儿童有着大量的描述,这说明甲状腺肿大是一种有普遍而具有代表性的疾病。下面我们一起来探索几个典型有趣的案例。1. 《前殖民雕塑》《前殖民雕塑》该雕塑作品中有着明显甲状腺肿大的人,属于“科罗拉多”人,曾经居住在厄瓜多尔安第斯地区的瓜拉班巴河流域。巧合的是,此地当时确实出现了地方性甲状腺肿和地方性克汀病的大量病例,这可能是艺术家把雕塑主角塑造成甲状腺肿大患者的原因。 2. 《人体雕像阿德纳文化》《人体雕像阿德纳文化》在该作品中,工匠师雕刻了一个甲状腺肿大的侏儒形象:头很大、上半身躯干比腿长,且腿也是弯曲浮肿的,这符合了部分甲状腺机能减退的症状。3. 神也会得甲状腺肿大古希腊神话中诸神在钱币上,艺术家也大做甲状腺肿大的文章,常出现患上甲状腺肿大的人物形象。以上钱币中有一位是大家熟悉的雅典娜,你找到在哪儿了吗?从上述例子来看,甲状腺肿大在艺术作品中实际上很常见,通过艺术来研究甲状腺肿,能更进一步去探索甲状腺肿的流行病学特征、地理参考价值、社会和行为价值。通过这些绘画艺术,研究者还发现,甲状腺肿大的特征主要属于底层社会阶层,如牧羊人、农民、工人、女佣、流浪歌手,仅有3%的作品是重要人物的个人肖像。简而言之,在甲状腺的生理学面纱被揭开之前,甲状腺肿大总是会引起人们的惊讶或恐惧,而这与它的起源和功能息息相关。几个世纪以来,甲状腺激发了人们的想象力,在丰富艺术作品的同时,也为我们理解甲状腺疾病与社会阶层之间的关系打开了一扇窗口。同时,这也是甲状腺疾病研究工作中一笔不可或缺的财富。本文作者:云梦伊(西湖欧米) 参考文献1. Stuckey HL, Nobel J. The connection between art, healing, and public health: a review of current literature. Am J Public Health. 2010 Feb 100(2):254-63. doi: 10.2105/AJPH.2008.156497. Epub 2009 Dec 17. PMID: 20019311 PMCID: PMC2804629.2. https://en.wikipedia.org/wiki/Mona_Lisa, edited on 11 October, 20223. Accorona, R., Huskens, I., Meulemans, J., Cappelli, C., Nicolai, P., & Lombardi, D. (2018). Thyroid swelling: a common phenomenon in art?. European thyroid journal, 7(5), 272-278.4. Did Mona Lisa Suffer from Hypothyroidism? https://www.sci.news/medicine/mona-lisa-hypothyroidism-06374.html, Sep 20185. Mandeep R. Mehra & Hilary R. Campbell. 2018. The Mona Lisa Decrypted: Allure of an Imperfect Reality. Mayo Clinic Proceedings 93 (9): 1325-1327 doi: 10.1016/j.mayocp.2017.12.0296. Luigi Massimino Sena, The Thyroid in Art. 2011 ASCP Annual Meeting/WASPaLM XXVI World Congress, October 2011
  • 全自动固相萃取-高效液相色谱法串联质谱测定 水中沙星类抗生素药物残留
    1.介绍沙星类(Quinones,QNs)抗生素(图-1)是一类人工合成的新型杀菌性抗菌药物,具有抗菌谱广、抗菌活性强、与其他抗菌药物无交叉耐药性以及毒副作用小、价格低廉等特点,被大量用于治疗和预防水生动物疾病及促生长。但研究表明,所使用的抗生素仅20%~30%被鱼类吸收,大部分进入环境中,而这部分抗生素再次进入食物链,可能导致养殖环境中病菌耐药性的产生,导致二次污染。这不仅影响到水产养殖业的健康发展,而且还威胁着生态环境的安全。水样中残留喹诺酮类抗生素,通过饮用进入人体,可能对人体肝脏功能造成严重损伤。因此,建立水环境中这类药物的检测方法尤为重要。目前,喹诺酮类药物残留检测方法,主要包括HPLC-UV、HPLC-FD、HPLC-DVD、LC-MS/MS、LC-ESI-MS/MS,另外还有荧光光谱法、毛细管电泳法和酶联免疫法等。图-1. 16种沙星类抗生素的结构式本实验选择MCX阳离子交换柱进行富集、净化,超高压液相色谱-串联质谱(HPLC-MS/MS)联用技术检测,建立了环境水样中高灵敏的分析方法,该方法有望应用于水产养殖中。关键字:全自动固相萃取;高效液相色谱-串联质谱;抗生素2.仪器、试剂以及耗材Reeko Fotector Plus全自动固相萃取仪(睿科)MCX 固相萃取柱(Oasis,200 mg/6 mL)高效液相色谱:(HPLC)Agilent 1260,质谱检测器(MS)Agilent 6410氮气吹干装置:Reeko AutoEVA-60全自动平行浓缩仪甲醇,乙腈(TEDIA 色谱纯);甲酸,氨水(优级纯)3.样品制备与净化3.1 固相萃取净化条件全自动固相萃取仪睿科Fotector Plus 60位固相萃取柱MCX(Waters,200 mg/6 mL)活化甲醇淋洗pH=4.0 的甲酸水溶液洗脱5%的氨水甲醇溶液3.2 富集净化依次用甲醇(10mL)和水(10mL)以5.0mL/min的速率活化/平衡和淋洗固相萃取柱,备用。取纯净水样200mL,如为加标样品,请加入标准品(100 μL,100 ppb),加入EDTA-MCIlvaine缓冲溶剂(50mL,0.1 mol/L)调节水环境的pH为4,以5mL/min的速率经固相萃取小柱富集后;用甲酸水溶液(pH=4.0)10 mL以10 mL/min速率淋洗;气推后用10 mL的5%氨水甲醇以1.0mL/min的速率洗脱。收集的样品在25 ℃,5 psi条件下浓缩至近干,流动相乙腈-水溶液(10:90,v/v,0.1 %甲酸)定容至1.0mL,供LC/MS-MS分析。全自动固相萃取方法见图-2。图-2. Fotector Plus水中沙星抗生素固相萃取方法4.液质检测条件4.1 色谱柱条件4.2 MRM参数表-1. 16种抗生素的串联质谱检测参数4.3 16种沙星类抗生素的保留时间谱图5.样品测试5.1基质效应验证取纯净水样,按照上述的样品处理步骤后,氮吹至近干,加入标准使用液(1ppm,20 μL),定容成1mL,供LC/MS-MS检测。如果基质加标浓度准确,则可以直接用标准曲线对样品进行定量;如果不准确,请使用含有基质的工作曲线进行定量。选择定量离子的峰面积作为纵坐标,浓度作为横坐标,做相关曲线,曲线为线性回归,各点权重相等,拟合出工作曲线,要求R20.99;此曲线两周需要重新配置一次。5.2 样品基质加标测试对桶装纯净水和生活废水进行加标实验,加标浓度为低浓度(25 ng/L)、中浓度(50 ng/L)和高浓度(100 ng/L),结果如表-2所示:除了恩诺沙星和司帕沙星在76.9%~79.4%外,大部分的加标回收率在82.5%~114.2 %之间,RSD 1.5%~16.6%。该方法能够实现对水样中16种喹诺酮抗生素进行检测。表-2 不同水样的加标回收率5.3 不同类型固相萃取柱对沙星类化合物的富集效果取纯净水为样品,加标的质量浓度分别为50 ng/L,按照上述方法,进行4平行样测定,考察该方法的不同固相萃取柱的回收率和重现性,分析结果如图-4所示:纯净水中抗生素的平均回收率分布在65.00%-91.38%(HLB),71.21%-152.28%(MAX)和77.41 % -123.21 %(MCX)。HLB回收率普遍偏低,MAX柱中沙星的回收率偏高,培氟沙星和氧氟沙星的回收率均超过了140 %,而且MAX柱需要在水样中加入氢氧化钠,容易造成水样中金属离子的水解沉淀,容易造成管路的堵塞。相比之下MCX柱的平行性比HLB柱和MAX好,回收率大部分在90 %-110%之间,除了恩诺沙星回收率偏低,只有77.41 %。图-4. 三种柱子的回收率对比6.结果与讨论6.1 对于16种沙星类化合物在水中的富集方法,应考虑实验过程中基质对化合物检测的干扰。此步的干扰不仅来自于水样中杂质干扰,同时商业化的固相萃取小柱,使用的色谱级溶液等等都存在干扰杂质,因此需要进行基质效应确认,以避免前处理富集过程中存在基质效应。6.2 氮吹浓缩过程中应控制吹干程度,不可过分干燥。6.3 对于沙星类的两性化合物,在pH=7.0左右时,主要以带负电荷的形式存在水溶液中,此时进行富集,固相小柱无法对目标物进行吸附。因此需要进行pH调节至4.0左右,使其成为带铵根的正离子,利于下一步进行阳离子交换柱富集。6.4 淋洗时采用甲酸酸化的水溶液,利于将固相萃取小柱中残留的EDTA除去,避免其在后续的洗脱液中干扰沙星类化合物的检测。
  • 十年磨砺,终露锋芒---访电化学离子色谱专家厦门大学化学系胡荣宗教授
    前言:笔者还在读研究生的时候就听闻过厦大胡荣宗老师和他的离子色谱抑制器。该电化学离子色谱抑制器曾荣获国教委科技进部二等奖,获国家发明奖三等奖,并且胡老师将这项专利产品化,其产品在离子色谱用户中广受好评。日前,胡荣宗老师接受了本网(以下简称instrument)的采访邀请,笔者欣然前往,在风景秀美的厦大校园内完成了访问,当时情景至今记忆犹新。 厦门大学化学系胡荣宗教授 instrument:首先,我代表仪器信息网非常感谢胡老师能在百忙之中,抽出时间接受我们的采访。请胡老师简单的为我们介绍一下您的电化学离子色谱抑制器。 胡老师:离子色谱仪,使用电导检测器(ECD),通常使用酸、碱做洗脱液。但是,用酸、碱做洗脱液会产生背景电导,对电导检测器的检测结果影响非常大。如阴离子样品用碱来做洗脱液(比如说碳酸钠,氢氧化钠)那么背景电导比真实结果要高,最终会造成灵敏度降低。例如,用碳酸钠做洗脱液,将产生六、七百微西门子的背景电导,而目标化合物的电导也许不超过十微西门子,背景值是测定值的几百倍。许多分析工作者尝试使用各种化学方法来降低背景电导率,比如有人使用碳酸钠作为洗脱液,将钠离子置换成氢离子生成碳酸,达到降低背景电导率的目的;有人使用最简单的离子交换方法-交换柱解决背景电导的问题,但交换柱的再生操作太繁琐,实验效率较低;后来又有人使用离子交换膜的方式,膜内腔室里流的是碳酸钠溶液,膜外腔室流的是酸液,靠扩散来交换,这种方法十分不稳定,而且耗费大量酸液。 我们采用电化学方法解决电导背景的困扰,原理类似于大家都知道的电解水,在正极室产生氢离子而在负极室产生氢氧根离子,用电解水产生的氢离子置换淋洗液中的钠离子,这就是最简单的电化学抑制器的原理。这个方法我们学校大概在85年就提出了,而实际上, 82年我就已经开始在导师的指导下做这个课题了,一直做到现在(笔者感叹:已经二十多年了,真是厚积勃发呀!)。 我们这个项目是在国家第一个专利申请日申请的专利。我们在不断的改进,以前我们的电解液还要不断地更换,而现在,我们的电解液已经是靠检测后的尾液来提供了。我们在抑制器方面已经有了六、七个专利,都是不断改进、不断提高的成果。这个项目在89年获过国家教委科技进步二等奖,90年获过国家发明奖的三等奖。我至今还记得当时参选国家发明奖答辩时的情景,当时,评委问了我许多问题,其中一个是:“你的这个方法,国外有没有实验室或研究所在进行类似的研究呢?如果没有,为什么他们没有做呢?”那个时候的我还年轻,我说:“国外也有很多人在做,但是他们没有做出来。” instrument:像您这种产品有没有想过进行大规模的正规化生产? 胡老师:我身为高校的教师是有教学任务的,另外还有课题和研究项目,这些工作都要按时完成,精力和经费的限制使我们的专利至今没能实现产业化批量生产。现在我们也和一些企业进行技术合作,也算是给我们的课题增加一些经费吧。 instrument:那么您的这些课题都是和谁合作的呢? 胡老师:我们目前的合作伙伴是天美科学仪器有限公司,天美现在出售的离子色谱仪,配的就是我们的离子色谱抑制器。现在国内的离子色谱仪器生产厂家很多,有几家已经做得比较好了(胡老师向我们展示某品牌离子色谱抑制器产品)。我想,这种离子抑制器跟我的产品的设计原理是一样的,都可以归在电化学离子抑制器这个类别里面。而具体的区别在哪里呢?经过测试,我们的产品在性能上会更好更稳定,便于使用。我们的抑制器只有四条管道,比一般的电化学离子色谱抑制器的管道要少,管道少那么死体积就小,而且我们的产品是可以和某进口品牌的离子色谱仪相匹配,价格要比进口抑制器便宜很多。 instrument:现在国内这么多销售离子色谱仪器厂家,像戴安,万通,天美,他们用的离子色谱抑制器也是这种类型的么? 胡老师:戴安公司的离子色谱抑制器也是电化学抑制器,万通公司的离子色谱仪是三柱循环再生原理的抑制器,而天美公司的产品主要配的是我们的抑制器。 色谱抑制器 instrument:那天美公司使用您的离子色谱抑制器,是直接从您这里购买还是他们拿回去以后要重新进行设计? 胡老师:目前为止,天美还是直接使用我们的离子色谱抑制器。以后如果进行技术转让的话,天美可能会进行一定的改进。我们在离子色谱抑制器的销售方面投入不多,没有做任何宣传,因为我们并没有把赚钱看得很重,有点姜太公钓鱼愿者上钩的意思。很多零散用户打电话或上门购买我们的离子色谱抑制器,都是得益于离子色谱仪用户之间口耳相传的效果。批量销售主要还是面向天美公司。之所以跟天美合作,是比较看重天美的技术力量,我去天美参观过很多次,对他们在技术研发上的投入,他们的技术实力以及产品检测和管理都很满意。 instrument:我想您的这个专利应该在应用上不止局限于离子色谱抑制器方面吧? 胡老师:当然,实际上很多领域都可以用我们的专利,像我们目前所做的一个课题,是化工脱硫胺液再生方面的,也是用这个原理。不过我们主要的研究方向还是以离子色谱为主。因为一个研究成果由发明到应用到商品化,不是那么容易实现的,要保证产品的稳定性,考虑产品的寿命,这些对于科研工作者来说是很难的。除了原理、工艺,还要考虑到工厂、客户之间的关系。 instrument:现在,国内的很多离子色谱厂家也发展起来了,您觉得这些离子色谱厂家的产品与国外同类型产品的差距主要在哪? 胡老师:可能质量上,进口的产品还是要卡的紧一些。国内的厂家目前是比较追求“能卖出去就行的标准”。比如说,如果价格和进口的差不多,客户就会觉得花差不多的钱当然买进口的产品了,而如果厂家把国产的仪器价格压低出售的话,可能仪器的成本就要相应的压低,这是一个主要的矛盾。 instrument:胡老师,目前您主要在做哪方面的研究呢? 胡老师:我们现在和其他几家单位合作,比如浙江大学,山东师大,兰州化物所等,争取作出国内的首台微型离子色谱仪。我们将使用一种全新的检测方式。当然,其他的现在还要保密。我们将推出新的型号的抑制器,更好的与国外名牌产品匹配。 instrument:这也是我们非常想要向您了解的,我们接触过很多的老师,这些老师也都有自己的研究成果,现在自己搭仪器的老师也很多。但是最终能够形成一个小规模的生产的非常的少。您看您现在将自己的成果产品化,又和厂家有一个批量的供求关系,请问您有什么心得吗?在大学里,研究所里的这些老师们,怎么样将研究成果产业化,这个过程中应该都注意些什么呢? 胡老师:还是要投入。一个是研究的投入,一个是经费的投入。比如说你可以花费很多的时间去写论文去发表文章,而我却要用这些时间,去做产品模型,去看做成的产品模型。你看我们现在的产品,外观上非常漂亮,实际上在我的抽屉里,有一大堆各种各样的模型,这中间是要投入很多的。另外一个就是经费的投入,当然我们在经费方面能申请国家的资金资助,这是一方面的投入,另外在横向也很重要。比如我们将产品供应给天美,也会获得一定的收入。我们把产品卖出去获得的收入,真正给我自己的是非常少的。也不是说不能将这部分据为己用,因为如果光靠纵向的国家基金,实际上十分紧张,比如说我们在选材,做膜的过程中,也会和很多的工厂打交道,遇到这样或那样的问题,我们翻来覆去的做模,这就需要我们在资金上不断的投入。还有一个,就是要有决心,要有一种我就是要让它好用的决心,比如说在做模的过程中,有两三次,工厂那边的人对我说:“你就让它定下来,别老想改动。”我就是老想着改成这样了以后,还想着改成更好,比如说我们的产品,工厂那边的人就会觉得很奇怪,你们有了大的为什么还要小的,我就对他们说,小有小的好处,大有大的用处。这个小的,如果淋洗液浓度不太高,那么它的灵敏度,死体积,都会有一个更好的表现。而我们另一个比较大的抑制器,就适合容量比较高的样品。因为很多的用户,单位,可能做不到梯度淋洗,像这些用户只需要单用,而单用就不需要配容量大的抑制器。考虑到两种不同的需求,我们做了两个型号的离子色谱抑制器。当然从产品多样化的角度讲,我也会希望自己的产品,种类多些。我们这个课题组,在实用方面上,实际下的功夫比较多。 厦大风景 instrument:从我们的角度来看,现在有太多的实验成果都烂在实验室里了,像现在,有很多项目,完成之后就扔在实验室,实际上国家投了那么多钱,可能更希望的是能够作出一个实实在在的东西。如果能将这些成果应用于科学研究,我觉得这才是更好的。我觉得国家在资金上支持科研成果产业化是对的。因为在产业化的过程中是需要不断的资金的投入。与公司合作去搞一个产品,与找课题申请一个项目,这两者之间的主要差别在于哪里?可能我们从事科研的老师一直以来都缺少市场刺激这方面的压力,那么您觉得您的压力主要来自于哪里? 胡老师:人总是要有一点压力。我的压力不是来自于经济方面,而是主要来自于我的产品别人用起来会不会觉得好用。实际上我们每出售一台抑制器,我个人所获得的收益是很少的,我们会将更多的收益投入到接下来的研究中,这也是一个横向的投入。比如产品上的螺丝,以前我们用的是手制的,现在我们要和国际接轨,也要开始使用特制的螺丝。这种螺丝拿来以后要去试好拧不好拧,我的要求是用手就可以拧紧。很多因素要考虑,尝试一次不行就两次,这些东西都非常地小,小到一个螺丝,但是都是我们要考虑到的。所以我们的产品也是在不断的改进,不断的投入,要让用户觉得好用,另外产品方面需要考虑的就是美观,最早天美认为我们的产品外观不好看,不像产品。经过我们不断的改进,现在的产品外观看起来美观多了,最终我们还是希望将技术转让给需要的规范化企业。 编后语:摆在我面前的这两个小小的离子色谱抑制器凝聚着胡老师二十多年的心血,这其中的付出与坚持除了胡老师自己,旁人无法深刻的体会到。也许面对今日的成功,往日的付出和往日的艰难困惑都可以谈笑而过。整个采访过程中,胡老师始终是面带笑容,知无不言,言无不尽,而我们却可以在言谈中体味到胡老师对科研工作的执着。借用一句话来形容便是:“风,又起;树,尽摇;阳光,不屈不挠”。我衷心的希望,胡老师的微型离子色谱能够获得更大的成功,也希望能有更多的科研工作者能够像胡老师一样,走到将研究成果产业化的道路上来。 胡荣宗老师简介: 胡荣宗,男,汉族,1945年10月生,福建省厦门市人,中共党员,大学本科毕业于北京大学技术物理系,研究生毕业于厦门大学化学系,获理学硕士学位。1973-1974被国家选派至日本岐阜大学进修。教授,博士生导师,长期倾心于电化学,电分析化学,微柱色谱,离子色谱电化学的研究。主持和参加多项国家和省自然科学基金项目,省科技项目的研究和开发。获授权专利14项(其中第1发明人9项)。作为课题组长,《高性能智能化离子色谱仪的研制与开发》等四项科研成果通过省级鉴定,作为课题组长(第2发明人)《离子色谱抑制柱》1989年获国教委科技进部二等奖,1990年获国家发明奖三等奖,1992年获福建省专利一等奖。1993年起享受国务院颁发的政府特殊津贴,1997年被授予福建省优秀专家。 胡荣宗教授的专利成果和联系方式: 专利: 1 02131711.9 电极电解液室一体化的电化学离子色谱抑制器 2 85102998 离子色谱抑制柱 3 89102557.X 流动体系电流检测器 4 89102556.1 流动体系低噪音库仑检测器 5 89101310.5 毛细管等速电泳仪的进样装置 6 91105113.9 电迁移微离子色谱仪 7 99120177.9 细菌还原法制备负载型金催化剂 8 01265637.2 分立电源式多功能离子色谱抑制柱 9 92202899.0 阴、阳离子双功能离子色谱抑制柱 10 96205793.2 五槽式除盐电渗器 11 98209944.4 高容量离子色谱抑制柱 12 00241733.2 分立电源式高容量离子色谱抑制柱 13 200410069590.X 快速消除双电层充电电流误差的脉冲极谱和电化学谱方法 14 200610059307.4 脱硫胺液中热稳态盐的电化学去除装置 15 200710008600.2 离子色谱电势差检测池 16 200520128004.4 柱状薄层电自生式离子色谱抑制器 (注;其中1、8、9、10、11、12、14、15、16为第一发明人。) 联系方式: 通信地址:厦门大学化学化工学院化学系(361005) 联系电话:0592-2184358 email: rzhu@ xmu.edu.cn
  • 这家微型质谱商有啥 竟获多位仪器大佬力捧
    近日,微型质谱公司908 Devices收获了额外的增长型股权投资,公司加速进入生命科学市场。该公司目前已完成2900万美元的C轮融资。   这笔投资资金来自单分子检测领导者Quanterix公司主席兼CEO Kevin Hrusovsky、 基因测序巨头Illumina公司CEO Jay Flatley以及这两家公司的科学创办人David Walt博士。同时,知名生命科学投资商Casdin Capital、美国Ortho Clinical Diagnostics公司主席兼CEO Martin Madaus博士、前赛默飞世尔董事会主席Paul Meister等人加入了现有投资集团。   上述投资者基本可以说是当今全球仪器圈的&ldquo 大佬&rdquo 级人物。如今在这些仪器届杰出人士的支持下,908 Devices的高压质谱技术将加速在生命科学领域应用和产品的研发。该公司总裁兼CEO Kevin J. Knopp博士表示:&ldquo 我们很高兴能够向生命科学用户提供常规分析结果,很多适用于高压质谱的应用方案即将面世。新投资者及原有投资者都属于业界远见者和先驱者,我们期待与他们的紧密合作,为新用户提供颠覆性的解决方案。&rdquo   接下来,908 Devices将会充分运用这笔额外资金,集中开发专利高压质谱(HPMS)新应用与产品线,加速进入生命科学市场。   据悉,北卡罗来纳大学教堂山分校J. Michael Ramsey教授团队与908 Devices在HPMS设备基础性能改进与相关液体分离技术方面获得了最新突破,并合作发表了7篇文章。该研发团队提出了生物样品中代谢物的快速分析方法。   Casdin Capital管理层成员Eli Casdin说到:&ldquo 这是一个令人难以置信的激动时刻,这项新技术帮助分子生物学的分析与控制从研究向临床的加速转化。908 Devices HPMS技术还是另外一种技术的进步,它使得常规质谱分析可以面向更为广泛的使用者与应用领域。Casdin Capital很高兴成为下一个增长阶段的一员,并期待908 Devices在生物学发现与临床观察方面的影响力。&rdquo 编译:刘玉兰
  • 面对全国土壤“三普”,东西分析助您披沙沥金,赶快扫码领取吧
    自2022年2月国务院发布《关于开展第三次全国土壤普查的通知》以来,“土壤三普”的热度持续不减,一场时隔43年的“摸家底”行动已全面铺展开来! 全国土壤普查项目具有普查范围大、内容多而细、样品分布密且数据要求高等特点,真正到具体实施检测层面上,也就是检测实验室,如何从冗长的资料中披沙沥金,获取到我们需要的内容、如何快速高效提高工作效率等等,东西分析从实验室角度出发,依据《第三次全国土壤普查工作方案》(农建发〔2022〕1号)确定的《全国第三次土壤普查土壤样品制备、保存、流转和检测技术规范(征求意见稿)》文件,精心整理出比较详细全面的《土壤普查方案》。快快扫码领取吧! 此次东西分析推出的《土壤普查方案》,旨在向开展普查工作的单位及用户提供详细的技术及方法,为土壤“三普”保驾护航。 土壤三普检测项目方案用于分析土壤中总镉、总铬、总镍、总铅、全钾、有效铁、有效锌、有效锰、有效铜、缓效钾、速效钾、交换性钙、交换性镁及水溶性钙和镁离子项目 AA-7090原子吸收分光光度计AA-7050原子吸收分光光度计SavantAA原子吸收分光光度计(原装进口) 用于分析土壤中总砷、总汞、全硒及有效硒项目AF-7550双道氢化物-原子荧光光度计用于分析土壤中全磷、全钾、全硼、全铁、全铝、全硅、全钙、全镁、全钛、全锰、全铜、全锌、有效磷、速效钾、缓效钾、有效硫、有效铁、有效锰、有效铜、有效锌、有效硼、有效钼、总铅、总铬及总镍项目ICP-7760HP型全谱直读电感耦合等离子体发射光谱仪ICP-7700电感耦合等离子体发射光谱仪Quantima型电感耦合等离子体发射光谱仪(原装进口)Integra电感耦合等离子体发射光谱仪(原装进口)用于分析土壤中全锰、全铜、全锌、全钼、有效钼、总铅、总镉、总铬及总镍项目OptiMass 9600电感耦合等离子体飞行时间质谱仪 用于分析土壤中全磷、全硼、有效磷、有效硫、有效硅、有效铁、有效锰、有效铜、有效锌、有效钼、有效硼项目Cintra1010/2020/3030/4040紫外-可见分光光度计
  • 瑞利参加厦门原子荧光光谱分析培训班
    由中国仪器仪表学会分析仪器分会和中仪标化技术咨询中心举办的原子荧光光谱分析技术及应用培训班,于8月6日在厦门曦阁酒店圆满结束了;北京瑞利分析仪器公司与厦门西盟(国际)科技有限公司联合协助本次培训班,并取得了学员们的一致感谢。 8月3日北京瑞利分析仪器公司高级工程师张锦茂先生(瑞利公司“原子荧光研究室”技术负责、顾问;国土资源部物化探研究所,高级工程师(教授)。中国第一台双道原子荧光光谱仪创始人之一(1981年与郭小伟教授合作),长期从事原子荧光光谱仪的研制及分析方法的研究;主持起草和制定了《原子荧光光谱仪》国家标准(GB/T 21191-2007)),与瑞利公司原子吸收事业部副部长梁敬(兼原子荧光研究室主任。2001年至今一直从事色谱-原子荧光联用技术的研发,先后担任“十一五” 国家科技支撑计划项目2006BAK03A14的子课题2“色谱-原子荧光联用仪”项目负责人及“十一五” 食品安全重大专项2006BAK02A10中,“液相色谱-原子荧光联用技术研究”子课题项目负责人。拥有两项国家专利。 )飞抵厦门,拉来了本次培训班的序幕,学员来自各行各业以及各地域,在理论学习之后,在厦门西盟(国际)科技有限公司的实验室上机实际操作,进一步巩固了原子荧光的理论与实际相结合。使本次培训大家受益非浅,获得了学员们的一致认可! 图1:张锦茂教授在现场授课 图2:梁敬副部长在授课现场 图3:培训会上 图4:在厦门西盟(国际)科技有限公司实验室,图中仪器为瑞利AF-610D2型色谱-原子荧光联用仪
  • 新疆首条沙漠高速路设有13个实验室
    6月7日,在新疆第一条沙漠高速路国道216线五彩湾至大黄山高速公路施工现场,这里的13个实验室引起了记者极大的兴趣,包括留样室、力学室、检测室等,每间实验室都有各种仪器和检测设备及各种土质,工作人员对不同土质进行精测检验、筛选,化验石头、土质。   这里位于古尔班通古特沙漠东部,沙漠比例高达41.8%,沿线部分地表盐渍化程度较重,大部分路基必须换填非盐渍土才能施工,水土保持综合防治要求高。因此,这条路由曾在陕西修建过中国第一条沙漠高速公路的陕西省交通建设集团公司代建。   “这也是一条" 科研路"该公司副总经理兼新疆项目代建指挥部指挥长宋志锋说,技术难题主要是如何用风积沙填筑路基,其次涉及防风固沙,风积沙填筑路基的施工工艺、检测方法、压实标准及质量控制等诸多技术问题。为此,他们专门建立了中心试验区。   实验中心主任谭宏岩说,这些实验室主要是对从路基到路面各层的原材料、混合料的物理、力学性质进行实验,以取得设计路面所需要的重要参数,这也是修这条路的第一道关口,通过对土、集料、水泥、路基路面等十几项试验检测,才能确定这段路该如何用料,从而确保工程的质量。   “为保证工程顺利进行,每修500米,都要取土反复检测实验。”他说。   目前,该项目已完成路基便道修筑和路基清表工作,正地组织水泥稳定砂砾基层、沥青混凝土面层、房建工程等施工项目人员和机械设备进场,完成水泥稳定砂砾拌合站等后续施工项目临时设施详细规划和建设工作。   新疆首条沙漠公路是从轮台县到民丰县,1995年9月建成通车,全长522公里,是世界上在流动沙漠中修建的最长等级公路。新疆第二条沙漠公路是从拉尔至和田,沥青路面于2007年10月1日通车,全长424公里。但和修建沙漠公路相比,建沙漠高速路……   “可以说,这条高速公路的建设过程就是科研试验的过程,在施工中试验,在试验中研究,既为指导全线施工探索出一整套行之有效的施工规范、标准,又填补了新疆沙漠高速公路修筑、养护的技术空白。 ”宋志锋说。   因线路地处卡拉麦里自然保护区,保护区内经常有野马、羚羊、狼、鹅喉羚和黄羊等国家级保护动物,降水量及地下水源少,生态环境脆弱。为保护环境,这条公路共设计建造110个动物通道和沿线保护网,比青藏铁路多77处。施工人员采取了施工车辆走固定路线减少占地、车辆禁止鸣笛、施工用土到200公里以外的地方取土等措施。
  • 三星与默沙东合作开发生物仿制药
    本报讯 据悉,三星旗下生物制药公司三星Bioepis将与默沙东共同开发和商业化多个生物仿制药。根据协议,三星Bioepis将负责临床前和临床研究、过程开发和制造、临床试验和注册,而默沙东将负责商业化。   未来几年,数十个品牌生物药将失去专利保护,从而让出市场独占权,不少企业瞄准了市场机遇,纷纷涉足生物仿制药领域,甚至不少非制药企业也参与进来。   三星Bioepis将收到默沙东公司的预付款、产品供应收入。但是,进一步的财务条款尚未披露。   近年来,诺华、默沙东、礼来、辉瑞、葛兰素史克、拜耳等跨国制药巨头都在积极备战生物仿制药。
  • X荧光光谱技术揭示《蒙娜丽莎》着色之谜
    北京时间7月19日消息,据英国媒体报道,科学家又一次将目光投向令人着迷和困惑不解的著名画作《蒙娜丽莎》。这一次,他们采用X射线技术揭示蒙娜丽莎面部阴影的秘密。   法国研究员菲利普沃尔特及其同事共对达芬奇的7幅杰作进行了研究,《蒙娜丽莎》便是其中之一。根据他们的研究,《蒙娜丽莎》上有多个釉料和色料薄层,用于达到从亮到暗的“无缝转变”效果。研究发现刊登在《Angewandte Chemie》杂志上。   这种绘画手法被称之为“渲染层次”(把一个色调调和到另一个色调而使油画中生硬的轮廓变得柔和),达芬奇以及文艺复兴时期的其他画家利用这种手法让整个画布上的色调呈现出微妙的渐变。副研究员劳伦斯德维格里在接受英国广播公司(BBC)采访时说:“站在这些画作前,你所能发现的最令人吃惊的事情就是根本看不到任何笔触和任何指纹。一切都是那么美妙,一切都混合在一起。这也就是为什么有人会说这些作品无法进行分析,因为它们并不能给你任何线索。”   此前进行的研究已经发现达芬奇采用渲染层次这种绘画手法,但沃尔特等人的研究进一步揭示出达芬奇如何实现这种效果。他们利用X射线荧光光谱测定法确定每一层的成分和厚度。至关重要的是,X射线荧光光谱测定是一项不具有破坏性的技术,无需从画布上提取样本。   沃尔特等人对达芬奇在40年内创作的7幅油画中9个人物的面部进行了分析,蒙娜丽莎只是其中之一。科学家发现这位绘画大师采用不同手法为人物面部制造阴影。用这些手法达到所希望的效果要借助一项技术——利用釉料层或者极薄的颜料——以及色料或者添加剂的特性。   分析结果表明,达芬奇有能力将釉料应用于只有几微米厚的层中,所有层加在一起的厚度不超过30至40微米。此项研究在巴黎罗浮宫进行,《蒙娜丽莎》就保存于这家博物馆。沃尔特等人研究的其他画作包括《岩间圣母》、《施洗者圣约翰》、《天使报喜》、《美丽的费隆妮叶夫人》、《酒神巴克斯》以及《圣母子与圣安妮》。《酒神巴克斯》据信是达芬奇工作室的作品,可能并非由达芬奇独立完成。
  • 盐酸环丙沙星栓国家标准公示
    我委拟修订盐酸环丙沙星栓国家标准(具体修订内容见附件),现公示征求意见,公示期自上网之日起三个月。该标准适用于生产该品种的所有企业。请各有关单位认真复核。若有异议,请来函与我委联系,来函需加盖公章并附相关说明及充分的实验数据 公示期满未回复意见即视为同意。   附件:2013052810270971000.pdf     电子信箱: liuling@ chp.org.cn。   传真:010-67156318   地址:北京市崇文区体育馆路法华南里11号楼国家药典委员会   邮编:100061   国家药典委员会   2013年5月28日
  • 光谱仪器研发难点及解决方案沙龙将召开
    &ldquo 科学仪器发展高层沙龙第五次活动暨光谱仪器研发难点及解决方案研讨会&rdquo 将于2013年8月16-17日在吉林长春召开。本次沙龙暨研讨会是中国仪器仪表学会分析仪器分会倾力打造的活动之一,旨在分析总结光谱仪器研发难点并提供相应的解决方案,有效促进中国光谱仪器质量的提升和光谱仪器产业的发展。   多家光谱仪器制造企业研发负责人、光谱仪器关键配件品牌企业资深工程师、光学检测器研制人员、业界资深专家学者及相关学会领导等将出席本次沙龙。   一、基本概况:   主办单位:中国仪器仪表学会分析仪器分会   时间:2013年8月16-17日   地点:吉林长春吉祥饭店(更多信息请见附录2)   二、参加本次活动,您将在短时间内收获:   收获一:资深光谱维修工程师分享二十年经验 案例剖析光谱仪器质量问题   收获二:光、机、电、软等关键部件企业参会 定向探讨研发解决方案   收获三:分享关键部件最新研发进展 扩大视野、促进技术创新   收获四:认识更多业界专家 开展面对面交流   收获五:参观国家光栅工程中心 一探中国光栅发源地风采   三、活动安排   8月16日 参观长春光机所(含国家光栅工程中心)、长春应化所   8月17日 沙龙活动   四、参会费用   分会会员500元/人 非分会会员2000元/人。往返交通、食宿等费用需自理。可提前汇款或现场交款(现场开收据,发票会后将统一寄出)。   汇款信息如下:   收款单位:北京雪迪龙科技股份有限公司   开 户 行:中国工商银行北京中关村东升路支行   账 号:0200006209005542613   五、联系方式   这是一次精心组织的沙龙活动,是一个难得的交流机会,敬请提前报名参会。为便于安排,请于8月9日前填写并提交如附录1所示参会回执。   联系人:卢俊锋 刘天姝   联系电话:185-0018-3885,134-6650-5685   传真:010-58851687   Email:info@fxxh.org.cn   六、温馨提示   1、本次沙龙旨在探讨解决光谱仪器研发方面的问题,非研发方向的负责人或管理者无需参加本次沙龙。   2、本次活动未安排接、送站,需自行前往。   3、长春吉祥饭店标间收费为368元/天,有需入住者请在参会回执中注明,主办方将统一预定房间。   最后,特别感谢吉林大学赵冰老师对此次活动给予的大力支持!   中国仪器仪表学会分析仪器分会   2013年7月30日   附录1:参会回执表 参会回执表 会议名称: 科学仪器发展高层沙龙的第五次活动暨第一届国产光谱仪器研发研讨会单位信息: 单位名称 单位地址 参会人员资料: 姓 名 性 别 职 位 电 话 Email 有关住宿: 是否需安排住宿:是() 否(); 住宿人数 性别 需标间数 是否拼房 其他需求: 参观活动: 是否参加8月16日的参观活动:是() 否()   提示:请于2013年8月9日前提交回执,Email提交地址为info@fxxh.org.cn或传真至010-58851687。谢谢!   附录2:长春吉祥饭店   电话:0431-85589888   地点:长春 朝阳区 解放大路2228号(近人民大街)   费用:标间为368元/天。房间数量有限,最好提前预定。   地处长春闹市区,北邻人民广场,西靠文化广场,南行可抵桂林路商业街,地理位置优越。距离长春火车站4公里,乘坐出租车约10分钟 距离长春龙嘉国际机场35公里,乘坐出租车约45分钟。   附录3:预计参会厂商(排名不分先后) 序号 厂商名称 1 北京普析通用仪器有限责任公司 2 上海舜宇恒平科学仪器有限公司 3 上海棱光技术有限公司 4 天津港东科技发展股份有限公司 5 安徽皖仪科技股份有限公司 6 北京北分瑞利分析仪器(集团)公司 7 北京浩天晖科贸有限公司(北京瀚时制作所) 8 江苏天瑞仪器股份有限公司 9 上海仪电科学仪器股份有限公司(原上海精密科学仪.. 10 北京海光仪器公司 11 北京东西分析仪器有限公司 12 浙江福立分析仪器有限公司 13 上海光谱仪器有限公司 14 上海天美科学仪器有限公司 15 海能仪器 16 聚光科技(杭州)股份有限公司 17 北京华夏科创仪器技术有限公司 18 钢研纳克检测技术有限公司 19 北京吉天仪器有限公司 20 青岛普仁仪器有限公司 21 无锡市金义博仪器科技有限公司 22 杭州晶飞科技有限公司 23 北京北分兴宇仪器有限公司 24 北京金索坤技术开发有限公司 25 宁波源禄光电有限公司 26 有色金属研究院 27 北京中认网信息技术有限公司 28 天津微纳制造技术工程中心 29 长春光机所 31 滨松光子学商贸(中国)有限公司 32 德国楷孚贸易(上海)有限公司 33德国贺利氏特种光源上海代表处 34 北京精工成机电设备销售有限公司 35 北京鼎信优威光子科技有限公司 36 北京七星华创电子股份有限公司质量流量计分公司
  • 布鲁克之拉曼光谱仪:从傅立叶变换型到色散型
    这两年,拉曼光谱仪一直吸引着业内人士的眼球,各大仪器厂商不断在新产品、新技术、新应用等方面推陈出新,精心布局,不仅如此,新迈入此领域的仪器厂商也层出不穷,可谓热闹非凡。  拉曼光谱如此的蓬勃发展给广大用户提供了更多可选择的空间,那么,当前有哪些主流企业/主流产品?有哪些最新的技术/应用?哪款仪器更适合用户自己的研究工作?  仪器信息网:贵公司拉曼光谱仪的定位?  布鲁克:布鲁克拉曼光谱仪拥有近30年的悠久历史,它是布鲁克集团最重要的产品线之一。无论是前沿科学研究还是工业领域的常规检测,很多光谱分析的课题都离不开红外和拉曼光谱这两个互补的技术。布鲁克始终致力于为各个领域的用户提供最完善的光谱分析方案,因此,我们在拉曼光谱仪的产品线发展历程中投入了与红外谱仪产品线相同的研发力量和关注度。  仪器信息网:请回顾贵公司拉曼光谱仪的研发及技术进展图片的形式表示历史,贵公司在拉曼光谱仪器方面有哪些优势/专利技术?  布鲁克:布鲁克的第一个拉曼产品诞生于1989年,是继布鲁克高端科研傅立叶变换光谱仪和高端科研红外显微镜两条顶尖产品线之后的又一重要产品支线。我们在傅立叶变换红外光谱学领域的丰富经验和技术,为傅立叶变换拉曼光谱仪的开发打下了扎实的基础。直至今日,布鲁克的MultiRAM(独立傅立叶拉曼谱仪)和RamII(与Vertex红外谱仪联用的拉曼模块)仍保持着业内“最高分辨率、最宽光谱范围、最长检测时长、最有效抑制荧光效应、最具硬件扩展性”的优势。  2003年,布鲁克推出了第一代色散型拉曼显微镜Senterra。多项专利使Senterra在多个分析应用领域显现优势。最具代表性的是Sure_Cal波数精度校准技术,它能时刻确保拉曼位移谱的波数精准无误,这对制药行业药品品质的确认和控制、刑侦学不明物体鉴定等应用中起到了至关重要的作用,最大程度地避免了由波数漂移引起的谱图误判。  2014年,布鲁克推出了手持便携拉曼 — BRAVO。它以手持设备的尺寸,集成了布鲁克台式拉曼谱仪的性能和优点,成为业内第一台“双激光、宽谱区、有效抑制荧光、安全等级最高”的手持拉曼设备。  仪器信息网:贵公司当前拉曼光谱仪的主流产品和主流技术?贵公司有什么样的产品发展计划?  布鲁克:主流产品为以下两款:  产品一. BRAVO手持式便携拉曼光谱仪  BRAVO — 您手中的移动实验室,我们为您提供最高的采样灵活性,无需您拆解原材料包装、无需把原材料运输到昂贵的实验室中、无需费时费力的分析。BRAVO可跟随您把实验地点设在任何您想要的地方,并提供最有效的分析。BRAVO的设置和功能可适用于不同级别的用户,并确保最大的安全性和结果的有效性。  BRAVO 允许用户根据自己的需求来建立和管理谱库,性能优化且操作简单,无需您成为一名专家,我们的拉曼光谱分析如同使用智能手机一样简单,您可以在清晰直观的用户界面引导下完成各项原材料检测操作,确保高标准、高效能地完成复杂工作。  BRAVO 集所有领先技术于一身,包括:SSETM - 专利荧光消除技术;含Duo LASERTM双激发波长专利技术;IntelliTipTM - 自动采样探头识别;符合 21 CFR Part 11 认证要求。  产品二. SENTERRA II新一代智能显微拉曼光谱仪  SENTERRA II 显微拉曼光谱仪既适用于日处理量很高的多用户环境,也适用于处于科学研究前沿的实验室分析。  SENTERRA II的应用非常广泛,适合用于有机和无机材料的检测、辨别和识别,包括药物、石化、艺术品与珠宝、材料科学、图层等诸多领域。  SENTERRA II的产品优势包括:研究级光谱性能;具有向导功能的软件和自动化的硬件确保工作流程直观、方便;SureCALTM确保无与伦比的波数精度和准确性;简单直接的拉曼成像;紧凑型设计,显微镜内置光谱仪。  仪器信息网:目前贵公司拉曼光谱仪重点关注的应用领域有哪些?最看好哪个领域?主推的解决方案?  布鲁克:布鲁克重点关注制药行业的发展,我们能够为从仓库、生产线质检到研发实验室提供完整的解决方案。  布鲁克BRAVO手持式便携拉曼光谱仪为制药行业把好第一关:原材料质量。  BRAVO为您检测原料:无需拆解原材料包装,无需昂贵且费时费力的分析,简单高效地进行准确的原材料鉴定,这为您产品的可靠性提供基础。对于制药行业的用户来说,对来自全球各个供应商不同产品源进行有效的质量控制、避免风险,保障消费者的安全是非常有必要的。  BRAVO 为您批量扫描:自动批量扫描模式可以实现在人员缺少、样品量大的情况下逐批分析,特别是它能够在不同原料的批量扫描之间轻松地转换。  使用BRAVO建立属于自己的谱库:允许用户根据自己的需求来建立和管理谱库。比如不同包装下的同一个原材料可以在一个完整方法中单独保存下来。该谱库可满足和符合认证系统要求的一致性检查,具备冠名能力。值得一提的是,建立谱库毫不费时,采集一张将被录入谱库的谱图所需的时间和标准测量模式下的测量时间是相同的。  布鲁克FT拉曼 HTS+Raman为制药行业把好第二关:生产线上的成品质量控制。  定性和定量分析药品活性成分及多形态(比如乙酰脞胺、间苯二酚等样品),确保药品的长期稳定性和生物活性。  使用高通量筛测量样品,实现高效率。无需样品预处理,节省宝贵时间。结合OPUS软件批量完成定性和定量分析。  使用中近红外1064nm激光,可以有效避免荧光效应,扩大了可测样品的范围(比如咔唑、牙科粘固粉等样品)。避免荧光干扰后的拉曼谱图信噪比高,谱图质量好,有利于后续对谱图做细致深入的分析。  激光能量可微调,最小步长为1mW(竞争对手使用的步长为50-100mw)。最大程度的避免了激光照射能量过高导致样品被烧坏的严重后果。  布鲁克SENTERRA II智能显微拉曼光谱仪为制药行业把好第三关:药品研发和深度药品质量控制  针对正在研发阶段的药物,可利用SenterraII对其进行高空间分辨率的微观化学成像分析。这类分析包括:某个API的各个晶型在药片中的分布和占比、药品中API和赋形剂的分布、药品外层赋形剂的厚度、某个API的各种晶型随温度效应产生的变化(配合加热样品台)。  与RamanScopeIII模块结合,将SenterraII的激光波长延展至1064nm。在短波长激发下有荧光效应的样品可转至这个波长进行分析。  仪器信息网:从整个行业来分析,目前拉曼光谱仪都有哪些先进的技术值得大家期待?同时有哪些问题亟待解决?未来拉曼光谱仪的技术发展趋势?  布鲁克:目前为止,波数精度和去除荧光效应是拉曼光谱学中最大的挑战。而布鲁克在这两方面的技术一直保持业内领先。(内容来源:布鲁克)
  • 澳大利亚竞争和消费者委员会对豆袋沙发强制性标准进行审核
    澳大利亚竞争和消费者委员会(ACCC)正在对豆袋沙发(bean bags)强制性标准展开审核。   利益相关方要求在2013年10月21日(周一)前提交咨询文件的书面意见。   据悉,豆袋沙发强制性标准于1987年10月28日生效,上一次修订是在2004年12月1日。它适用于豆袋沙发的外套以及装有填充物的沙发内胆。   根据强制性标准,豆袋沙发是一种填充了大量聚苯乙烯泡沫粒子的大布包。通常豆袋沙发是一个典型的金字塔形状的可以坐的袋子。强制性标准还涵盖了其他含有聚苯乙烯泡沫粒子的家居产品。   对于豆袋沙发存在的风险,如儿童可能会爬入其中,呼吸受到外套及其填充物的限制而窒息 另外,特别是小于三岁的儿童,可能吸入豆袋沙发中的聚苯乙烯粒子。豆袋沙发的填充物已经引起了一些窒息事件。   如需获得更多有关豆袋沙发强制性要求的信息,ACCC强烈建议阅读《1979年贸易操作(消费品安全标准)法规》。
  • 常见滴眼液-左氧氟沙星滴眼液抑菌剂测定
    左氧氟沙星滴眼液抑菌剂的含量测定#左氧氟沙星滴眼液简介左氧氟沙星滴眼液是抗生素药物,属于处方药。其主要成分为氧氟沙星的左旋体,抗菌活性约为氧氟沙星的两倍,通过抑制细菌DNA旋转酶(细菌拓扑异构酶耳)的活性,阻碍细菌DNA的复制而达到抗菌作用。左氧氟沙星具有抗菌谱广,抗菌作用强的特点,对大多数肠杆菌科细菌,如大肠埃希菌、克雷伯菌属、沙雷氏菌属、彩杆菌属、志贺菌属、沙门氏菌属、枸橼酸杆菌、不动杆菌属以及铜绿假单胞菌、流感嗜血杆菌、淋病菌等革兰阴性菌有较强的抗菌活性。左氧氟沙星的滴眼液,用于治疗敏感菌导致的眼脸炎、睑腺炎、泪囊炎、结膜炎、睑板腺炎、角膜炎以及用于眼科围手术期的无菌化疗法。# 色谱条件仪器:WiSys 5000;色谱柱:月旭Xtimate® C18 (4.6×250mm,5μm)。流动相:三乙胺磷酸溶液(每1000mL水中加入三乙胺4mL和磷酸7mL)/乙腈=35/65;检测波长:214nm;柱温:30 ℃;流速:1.0mL/min;进样量:20μL;参考方法:中国药典2020版第二部-左氧氟沙星滴眼液。#谱图和数据‍总结使用月旭Xtimate® C18 (4.6×250mm,5μm)色谱柱可以药典要求下满足左氧氟沙星滴眼液抑菌剂的含量测定要求。订货信息‍
  • 首届原子光谱沙龙举行
    2010年1月9日,由清华大学分析中心发起并组织的“首届原子光谱沙龙”在清华大学分析中心会议室举行。10余位来自高校、科研院所的一线研究人员、分析测试工作者等参加了此次沙龙。仪器信息网应邀参加。沙龙由清华大学分析中心的邢志老师主持,交流内容包括原子光谱最新研究进展、仪器使用经验、仪器改造以及在食品、环境、饲料等领域的应用。 首届原子光谱沙龙现场   清华大学分析中心张新荣教授作为特邀嘉宾首先致辞,致辞中说到,“现在从事原子光谱的人们确实有些忧虑,过去我国原子光谱的学术、应用水平都很高,从事原子光谱的人也很多、力量大,但这几年原子光谱发展确实存在些问题,其在学术界的地位有所‘下滑’,但实际上,社会对原子光谱的需求量仍很大。对于我们从事原子光谱的人来说,今后我们肩负着两个主要任务:(1)将应用与学术相结合起来,进一步推进原子光谱的学术‘地位’;(2)我们有必要、有责任强调:原子光谱在生命科学、食品安全、环境健康、材料分析等领域都有着重要的作用,是国家迫切需要的技术。很高兴这些同行们坐到一起,而且举办这样的沙龙很有必要。希望这个‘原子光谱沙龙’能够继续举办下去,大家通过交流共同提高,扩大原子光谱的声势。” 张新荣教授   邢志老师作题为“基于低温等离子体在元素分析中的应用”的报告。 邢志老师   报告中主要介绍了邢志老师及其同事将基于介质阻挡放电产生的低温等离子体(DBD)作为原子化器,取代AFS中传统的石英炉原子化器,目前可以测定8种元素,从现象和结果可以看出DBD可以取代传统的原子化器,实现仪器小型化。并且刑志老师从DBD与ICPMS联用实验中发现进而提出了一个新型的固体样品表面分析方法:DBD作为固体样品剥蚀手段,利用原子光谱以及等离子体质谱作为检测单元,进行固体样品表面分析。利用不到1000元的装置可以得到与能谱相似的测试结果,其应用前途广泛,可以作为固体表面分析的一个补充手段。   中国计量科学研究院的韦超老师作题为“原子光谱仪器测量受元素价态与形态影响的研究”的报告。 韦超老师   韦超老师报告中介绍了国内外以及自己所做的关于元素价态在ICPMS上灵敏度的差异研究工作。因为中国计量科学研究院作为中国的代表经常参加国际范围内的化学分析的国际比对,所以,进行元素价态在ICPMS上灵敏度的差异研究可以尽量减少ICPMS受元素价态的影响,提高数据的可靠性;并且在标准物质研制过程中可以减少标准物质研制受ICPMS的系统效应带来的不确定度分量。   中科院物理所的施洪钧老师作了题为“IRIS/ICP光谱仪使用经验交流”的报告。 施洪钧老师   施洪钧老师的报告则是和大家分享了他多年来在IRIS/ICP光谱仪使用过程中积累的宝贵经验,如:在操作软件中建立快速定性分析方法,选择元素周期表中可以测定元素的二至三条灵敏线、次灵敏线;对每条谱线进行谱线定位和校正;将所选元素进行分组配制成混合标准溶液;标准化后存于电脑中;可以对未知样品进行分析。尤其重点介绍了多元素混合标准溶液的配制的方法等。   国家有色金属及电子材料分析测试中心的李继东老师作题为“无机光/质谱技术在有色金属材料测试中的应用”的报告。 李继东老师   李继东老师报告内容的特色体现在介绍了他与同事在仪器研制与改造方面所做的工作,如:其自制的LH-2A型氢化物发生器能与所有型号原子吸收配套,测定As、Sb、Bi、Se、Te、Ge、Sn、Pb等元素,目前市场销售情况看好。而所做的ICPMS辉光放电离子源改造工作,采用固体进样方式,降低元素的测定下线,减少试剂、环境等对测试结果的影响,并且探索了辉光质谱关键部位的制备技术。   商务部流通产业促进中心郭伟老师作题为“甲醇改进剂消除ICP-MS中硝酸抑制效应”的报告。 郭伟老师   商务部流通产业促进中心实验室的主要业务之一是食品检验,而食品样品消解后的待测液中硝酸残留较多导致元素信号抑制,如何降低硝酸对测定结果的影响则成为非常关键的、迫切需要解决的问题。郭老师介绍了已有的一些方法并分析了其优缺点,而郭老师的研究工作则是加入3%甲醇改进剂,并适当的降低NEB可基本消除酸抑制效应。 刘正老师   国家钢铁材料测试中心的刘正老师向大家介绍了国家钢铁材料测试中心的情况,包括提供的化学分析、物理测试、力学试验、无损检测、校准服务、失效分析等检测项目以及仪器设备情况,中心进行的标准物质研制、国际和国家标准制修订工作情况。中心还研发和商品化多种仪器设备,其中包括获得2008年国家技术发明二等奖的金属原位分析仪。刘老师还讲到国产仪器核心部件还是要自主研发,以免“受制于人”。   此次原子光谱沙龙是由清华大学分析中心的邢志老师提出,并组织策划的首届沙龙,在交流之后大家讨论了沙龙的组织方式以及未来发展计划等。经讨论最后确定:原子光谱沙龙定位为实验室一线人员,着重于原子光谱的应用交流,大家将自己工作中的新东西、遇到的难题、积累的经验等提出来,讨论交流、相互帮助,开拓思路、解决问题。希望以这个原子光谱沙龙的“星星之火”可以扩展原子光谱的应用领域,为原子光谱的发展点起“燎原之火”。   计划之后的沙龙每期邀请一位原子光谱领域的知名专家做专题报告;也可邀请仪器厂商的技术专家做仪器维护、应用等报告;之后沙龙将每2-3个月举办一期,而本次沙龙的参与者已积极申请了未来二、三、四、五期沙龙的举办地点。
  • 今年沙尘为啥这么多?卫星找到了答案
    3月中旬,一场近10年来最强的沙尘天气过程影响北方大地,4月25日,大范围沙尘天气再次影响我国多地,5月6日,多地有扬沙或浮尘天气。今年沙尘天气为什么一轮接一轮?未来是否会成为常态?思客运用卫星影像及数据可视化为你深入解读。 为何感觉今年沙尘暴更频繁?  我国沙尘天气主要出现在春季和冬季,其次为秋季,夏季最少。春季(3-5月)发生的沙尘天气次数,占到全年的77.5%。其中,沙尘天气最频繁发生的月份是4月,其次为3月和5月。 总体来说,今春蒙古国以及我国内蒙古一带2月中下旬以来气温持续偏高,降水偏少;另外,3月以来,气旋活动明显增多,且气旋及其后部冷空气活动路径正面影响华北地区,从沙源地到华北距离短,因此大家感觉今年沙尘多、强度大,且几乎每次沙尘均给京津冀带来明显影响。 从6日0至8时北方地区云微物理遥感图中可以看到,我国北方地区受到大范围沙尘影响,6日8时,沙尘前锋已传输至京津冀西北部上空。6日9时许,大风、沙尘已抵达河北省张家口地区,并在当日11时左右,自西北向东南影响北京。 为何沙尘天气多影响华北地区?  2021年以来,我国华北地区已遭遇多次大范围沙尘天气,究其原因是什么?主要原因在于,中亚地区分布有大量沙漠、戈壁等干旱半干旱地表,春季北方地区温度升高、地表解冻、土壤疏松,地理环境符合沙尘发生的条件。 而我国华北地区紧邻中亚干旱、半干旱地区,沙尘源主要源自这些地区,当北方有强烈气旋或强冷空气带来大风天气系统,途径沙源地时,便会在强风作用下,带来遮天蔽日的沙尘天气。未来沙尘天气会成为常态吗?  沙尘天气其实是春季的一种正常天气现象,它的多寡和具体的天气系统以及下垫面等情况相关。全球气候变暖后温度升高、降水减少,会加速荒漠化发展,沙尘也会增多。  2000年以来,我国北方地区易起沙尘的土地面积比例也整体呈下降趋势,高度和极易起沙尘的土地面积比例从2000年的48.1% 降至2019年的41.9%,平均每年下降0.4个百分点,整体呈缓慢下降趋势;轻度和不易起沙尘的面积比例从2000年的30.3%上升至2019年的39.6%,我国北方地区高度和极易起沙尘的土地正逐渐向中度、轻度和不易起沙尘过渡,植被防风固沙生态功能显著提升。 研究表明,1961年以来,我国沙尘天气呈明显下降趋势。从2000年以来沙尘过程的逐年分布可以看到,近年沙尘呈减弱趋势。 国家林业和草原局去年6月发布的数据显示,“十三五”以来,我国荒漠化防治成效显著。然而,荒漠化是全球性问题,需要世界各国共同治理,整体的生态环境得到明显改善,才能有效降低其发生。来源:新华网
  • 托普助力厦门同安试点生态茶园以绿色发展引领乡村振兴
    构建绿色高效的乡村产业体系是乡村产业振兴的重要途径。党的十九大报告提出,我们要建设的现代化是人与自然和谐共生的现代化,我们需要提供更多优质生态产品以满足人民日益增长的优美生态环境需要。因此,厦门同安试点生态茶园建设,坚持以绿色发展引领乡村振兴。  所谓生态茶园,就是利用先进科学技术,发展绿色物理、生物防控举措,减少茶园化肥农药的使用。去年,同安区就开始试点生态茶园建设,通过在全市率先创新试点太阳能杀虫灯项目、鼓励生产主体使用有机肥、统防统治等方式,不断推动传统农业产业转型升级。  这其中,不可忽视的便是浙江托普云农科技股份有限公司研发设计的风吸式茶园杀虫灯了。目前,厦门同安区莲花镇军营村、白交祠村的生态茶园已经铺设了480盏风吸式茶园杀虫灯,它们分布在7400亩茶园中。每当夜幕降临时,一道道蓝紫色光从山顶蔓延至山脚,保护着茶树不受茶毛虫、茶尺蠖等害虫侵扰。  “大多数害虫具有特定的趋光性和趋波性。风吸式茶园杀虫灯就是利用特定的光源和波长原理,发出经过调控、专门吸引害虫的光源、波段等进行害虫诱杀,且在诱杀害虫的前提下不误杀害虫天敌,诱杀精准度更高。”同安区农村经济发展中心主任林强润介绍说。  传统的茶园杀虫一般采用普通杀虫灯或者黏虫板,这样杀虫需要大量的人工操作,同时杀虫效果也不太理想。而新型的风吸式茶园杀虫灯是光控的,可根据设定时间自动杀虫,无需人工现场干预。另外,害虫会通过风吸装置自动落入网袋,茶农清理杀虫设备只需倾倒死虫和定期更换网袋,比以往便捷、安全。“安装太阳能杀虫灯后,茶园的杀虫效率更高了,设备维护也很方便。我们相信,在新设备的加持下,今年茶叶的质量和产量都会有所提升!”军营村茶农高建设说。  据了解,这批风吸式茶园杀虫灯是托普云农根据军营村、白交祠村梯形茶园的地形特制的,并根据地理坐标逐个安装,诱杀覆盖面更广,确保杀虫灯的光芒能照射到每一株茶树,让虫害无所遁形。  “茶是同安乡村振兴的优势产业。下一步,我们将紧密结合学党史、办实事,根据生态茶园试点建设的情况,总结经验、推广做法,让农业技术助力乡村振兴。”林强润表示。托普风吸式茶园杀虫灯的铺设不仅种下了茶农对于茶园增产增收的期待,更以绿色发展引领了厦门同安的乡村产业振兴。
  • 左氧氟沙星滴眼液中抑菌剂的含量测定
    左氧氟沙星滴眼液为微黄色至淡黄色或淡黄绿色的澄明液体。适用于葡萄球菌属、链球菌属、肺炎球菌、细球菌属、肠球菌属等所引起的眼睑炎、睑腺炎、泪囊炎、结膜炎、睑板腺炎、角膜炎等眼部疾病。为防止滴眼液在使用和保存过程中被微生物污染,往往会添加适量的抑菌剂,因此,抑菌剂的合理使用和质量控制已成为保障滴眼液安全性、有效性的关键问题之一。月旭科技为大家带来左氧氟沙星滴眼液中抑菌剂的含量测定方案。色谱条件色谱柱:月旭Xtimate® C18(4.6×250mm,5μm)。流动相:水相(每1000mL水中加入三乙胺4mL和磷酸7mL):乙腈=35:65;检测波长:214nm;柱温:30℃;流速:1.0mL/min;进样量:20μL。谱图和数据1. 空白溶剂2. 苯扎溴铵对照品溶液3. 供试品溶液满量程图局部放大图结论使用月旭Xtimate® C18(4.6×250mm,5μm)色谱柱,在此色谱条件下,可以满足检测要求。产品信息
  • 布鲁克道尔顿推出新型傅立叶变换质谱仪
    布鲁克道尔顿开发出新型石油勘探用傅立叶变换质谱仪   挪威北海油田集团(North Sea oil)在2010年年初表示,已经开发出新的基于傅立叶变换质谱仪为基础的油田化学方法,以帮助石油勘探。 该方法是与布鲁克• 道尔顿公司共同研制的。   汉米森教授(Hemmingsen)说,他的团队从北海原油中抽提出酸性组分,利用布鲁克道尔顿公司的傅立叶变换质谱仪分析表明,90%是羧酸类化合物,分离出石油酸后,原油表面张力增大,油包水型乳化液的稳定性增强。加拿大油砂沥青形成的油包水乳液中,油浓度高的乳液表面富含S1、酸性O2和O2S1、碱性N1和N1S1杂原子类,含油浓度低的稳定乳液界面富集酸性O2、O4和O3S1杂原子类。   斯坦达弗教授(Standford)说,他的课题组利用布鲁克道尔顿公司的傅立叶变换质谱仪研究了9种不同地质来源的轻、中、重质原油,尽管各种原油杂原子组分布互不相同,但是具有相同API度的原油具有相近的O2和O4S1原子组相对丰度,重质油中O2高而O4S1较低,轻质油则相反。负离子检测到的含氮化合物丰度与乳液界面吸附性没有明显的相关性,而所有正离子检测到的含氮化合物富集在油水界面。由于杂原子化合物是影响油水界面性质的最主要因素,而ESI FT-ICR MS又是分析复杂基质中杂原子烃类化合物的重要手段,虽然目前尚无3次采油等领域的应用报道,但有理由相信该方法将为油田开发过程理论研究提供十分重要的技术支持。     石油开采和储运过程中容易出现因沥青沉积而使油管堵塞的现象,FT-ICR MS分析结果表明,压力降低时一些缩合度较低而分子极性较强的OxS1(x= 2~5)、O2、N1S1、N1S2及O4S2等化合物絮凝形成沥青,这些沥青与溶剂沉淀沥青质的组成存在较大差异 Schaub等[58]利用FT-ICR MS分析油砂沥青开采中换热器不同部位沉积物的组成,为结焦机理分析提供了重要的理论依据。     布鲁克道尔顿公司长期研发石油开采用高分辨质谱仪,最近推出了新一代soloriXTM FT-MS,该产品是采用了全新的设计,包括在离子传输系统的全新设计,相对以前的产品操作更简单 在灵敏度、分辨率及质量范围等方面都有革命性的提高。 还有该系统配备了布鲁克自主研发的超屏蔽冷冻磁体,用户再不用为添加液氮液氦所烦恼!   石油开采业中,人们要面对非常复杂的官能团和各种元素组成及化学结构的分析任务。石油业中,分析工作的重要任务是鉴定原油中是否含对生产设备有潜在危害的化合物。原油中碳氢化合物和其它成分的定性定量信息是精炼过程中分子水平的监测。   传统的液相色谱,毛细管电泳及其它分析技术难以分开这些化合物。分辨率超过300000的超高分辨率离子回旋共振质谱仪(FTICR)具有这样的能力。   布鲁克• 道尔顿公司为采油工业提供了全套的仪器   • 具ESI-, APCI- 和APPI-源的soloriXTM FT-MS质谱   • 数据分析软件(DataAnalysis)   FTICR是石油开采业的首选技术。FTICR类仪器面临的主要挑战是如何提高与分辨率相关的磁场强度。   性能-分辨率和质量准确度   分析原油的前题是在质谱中解析复杂混合物的能力。300000或更高的分辨率是解析石油样品所必须的。APEXultra无与伦比的质量精确度让其可以精确的确定分子式。   电离方式灵活多样   采用不同的电离技术如ESI、APCI、APPI,分别在正电和负电模式下测定,可以达到原油样品完整分类的目的。在APEXultra上,这些离子化技术能简洁快速的切换。   结果-数据处理   Smartformulatm软件可以自动给出每一个质谱峰的分子式,使数据分析简单化。用自定义的参数,可对特定一类化合物进行搜索。   例如Kendrick Mass Defects (KMD),同系物,Z-值, O/C-, N/C- 和O/N等分子参数可以同时调用。
  • 诺氟沙星含量测定和有关物质的分析 参考《中国药典》(2020版)
    喹诺酮类(4-quinolones)抗生素,又称吡酮酸类或吡啶酮酸类,是人工合成的含4-喹诺酮基本结构的抗菌药,主要作用于革兰阴性菌的抗菌药物,对革兰阳性菌的作用较弱(某些品种对金黄色葡萄球菌有较好的抗菌作用)。抗生素分析一直是CAPCELL PAK系列色谱柱擅长的领域,随着DAISOPAK系列色谱柱的上市,用户希望能更加全面的了解DP色谱柱的分离特点。借诺氟沙星的对比实验结果,切实对比一下CP MGII和DP ODS-P色谱柱在诺氟沙星分析上的分离效果。按照20版药典诺氟沙星含量测定和有关物质项下方法,分别使用CP C18 MGII和DP ODS-P色谱柱对系统适用性溶液进行了分析。CAPCELL PAK C18 MGII 色谱柱分析结果使用CAPCELL PAK C18 MGII S5 4.6mm i.d.×250mm色谱柱含量测定分析结果如图1所示。系统适用性溶液分析结果中,调整流速为1.3 mL/min后,诺氟沙星保留时间9.4 min,理论塔板数13238,与依诺沙星分离度4.91,与环丙沙星分离度3.85,均能够满足药典主峰保留时间约为9 min,且分离度大于2的要求。图1 含量测定分析结果(MGII)图上所示数字从下到上为分离度、保留时间、理论塔板数【色谱条件】色谱柱:CAPCELL PAK C18 MGII S5 4.6×250流动相:0.025 mol/L磷酸溶液(用三乙胺调节pH值至3.0±0.1)/ 乙腈 = 87 / 13流动速:1.3 mL/min温动度:35 °C检动测:PDA 278 nm浓动度: 系统适用性溶液:每1 mL中含诺氟沙星25 µ g、环丙沙星和依诺沙星各5 µ g (流动相)进样量:20 µ L有关物质分析结果如图2-图4所示,系统适用性溶液色谱图(278 nm)中,诺氟沙星峰的保留时间为9.3 min,与依诺沙星和环丙沙星分离度分别为3.81和3.49,能够满足药典主峰保留时间约为9 min,且分离度大于2的要求。图2 有关物质分析结果(278 nm)图3 局部放大图(278 nm)图上所示数字从下到上为分离度、保留时间、理论塔板数图4 有关物质分析结果(262 nm)【色谱条件】色谱柱:CAPCELL PAK C18 MGII S5 4.6×250流动相:A: 0.025 mol/L磷酸溶液(用三乙胺调节pH值至3.0±0.1)/ 乙腈 = 87 / 13 ;B: 乙腈流动相:B% 0%(0 min)-0%(10 min)-50%(20 min)-50%(30 min)-0%(32 min)-0%(42 min)流动速:1.3 mL/min温动度:35 °C检动测:PDA 278、262 nm浓动度: 系统适用性溶液:每1 mL中含诺氟沙星0.15 mg、环丙沙星和依诺沙星各3 µ g进样量:20 µ LDAISOPAK SP-100-5-ODS-P 色谱柱分析结果由于ODS-P系列色谱柱保留更强,为满足药典中主峰保留时间约为9 min的要求,选用了柱长150 mm的色谱柱,且与CP C18 MGII相比选用了更低的流速。使用DAISOPAK SP-100-5-ODS-P S5 4.6mm i.d.×150mm色谱柱含量测定分析结果如图5所示。系统适用性溶液分析结果中,诺氟沙星保留时间9.4 min,理论塔板数9963,与依诺沙星分离度4.24,与环丙沙星分离度3.81,均能够满足药典主峰保留时间约为9 min,且分离度大于2的要求。图5 含量测定分析结果图上所示数字从下到上为分离度、保留时间、理论塔板数【色谱条件】色谱柱:DAISOPAK SP-100-5-ODS-P S5 4.6×150流动相:0.025 mol/L磷酸溶液(用三乙胺调节pH值至3.0±0.1)/ 乙腈 = 87 /13流动速:1.0 mL/min温动度:35 °C检动测:PDA 278 nm浓动度: 系统适用性溶液:每1 mL中含诺氟沙星25 µ g、环丙沙星和依诺沙星各5 µ g进样量:20 µ L有关物质分析结果如图6-图8所示,系统适用性溶液色谱图(278 nm)中,诺氟沙星峰的保留时间为9.2 min,与依诺沙星和环丙沙星分离度分别为2.64和3.17,能够满足药典主峰保留时间约为9 min,且分离度大于2的要求。图6 有关物质分析结果(278 nm)图7 局部放大图(278 nm)图上所示数字从下到上为分离度、保留时间、理论塔板数图8 有关物质分析结果(262 nm)【色谱条件】色谱柱:DAISOPAK SP-100-5-ODS-P S5 4.6×150流动相:A: 0.025 mol/L磷酸溶液(用三乙胺调节pH值至3.0±0.1)/ 乙腈 = 87 / 13 ;B: 乙腈流动相:B% 0%(0 min)-0%(10 min)-50%(20 min)-50%(30 min)-0%(32 min)-0%(42 min)流动速:1.0 mL/min温动度:35 °C检动测:PDA 278、262 nm浓动度: 系统适用性溶液:每1 mL中含诺氟沙星0.15 mg、环丙沙星和依诺沙星各3 µ g进样量:20 µ L结论使用CAPCELL PAK C18 MGII以及DAISOPAK SP-100-5-ODS-P色谱柱均可在药典条件下,实现诺氟沙星有关物质以及含量测定分析,理论塔板数高,峰型良好,分离度符合药典要求。相较CAPCELL PAK C18 MGII色谱柱,SP-100-5-ODS-P色谱柱的保留能力更强,在相同流动相下可使用更短的色谱柱和更低的流速达到相同的保留强度,但随着柱长的降低,理论塔板数和分离度同步略有降低。2020年版《中华人民共和国药典》诺氟沙星含量测定和有关物质项下方法推荐用柱F92533 CP C18 MGII S5 4.6×250DP957047 SP-100-5-ODS-P 4.6×150
  • 光谱沙龙召开 探讨发展瓶颈及对策
    仪器信息网讯 鉴于当前国产光谱仪器同质化严重、用户对国产仪器认可度不高、仪器可靠性与进口优秀产品之间存在一定差距、低价竞争导致的利润下降、进口品牌推出中低端产品加大国产仪器的竞争压力等问题,2013年8月16日-17日,中国仪器仪表学会分析仪器分会发起的第五期&ldquo 科学仪器发展高层沙龙暨光谱仪器问题点与对策研讨会&rdquo 在长春召开。 沙龙现场   此次沙龙得到了广大业内人士的积极响应,国内外上游零部件厂家相关人员、整机制造厂家研发人员、业内资深专家及仪器用户代表等60多人参加此次沙龙。沙龙特别邀请了光谱仪器及关键部件资深研发专家国家地质实验测试中心研究员杨啸涛、中国广州分析测试中心主任陈江韩、天津大学教授赵友全、岛津公司高级工程师段彦仓等作报告。   中国仪器仪表学会分析仪器分会秘书长刘长宽致辞,介绍了&ldquo 科学仪器发展高层沙龙&rdquo 的开展情况。中国仪器仪表学会分析仪器分会常务副秘书长刘文玉主持会议。   杨啸涛指出,&ldquo 光谱仪器的进步与周边技术的发展二者密不可分,创新需要从跟踪外围技术开始,将更多的新技术应用到光谱仪器中。&rdquo 并举例介绍了原子吸收光谱发展过程中的一些事例,如1983年通过计算机技术首次将石墨炉信号在显示屏上显示 2004年德国耶拿公司推出高能量氙灯、高分辨光学系统、固态检测器的连续光源原子吸收 2011年珀金埃尔默将光纤引入原子吸收光谱仪器,&hellip &hellip   光谱仪器核心部件之一:光源   近年来,新型脉冲氙灯的研制与使用引起了广泛的关注。杨啸涛与赵友全分别介绍了各自研制的脉冲氙灯情况。杨啸涛参与了&ldquo 十一五&rdquo 国家科技支撑计划重大项目《科学仪器设备研制与开发》中的&ldquo 高稳定度光源的研制与开发&rdquo 课题,该项目已经结题,相关产品也已经产业化。赵友全参与了2011年重大科学仪器设备专项&ldquo 高性能光谱仪器关键元器件与部件的应用及工程化开发&rdquo ,目前已经研制出了样机,其产业化也已可以预期。相信这些技术及产品为国产光谱仪器企业提供了更多选择。   借此机会,整机制造企业纷纷向上游部件生产企业提出建议:紫外分光光度计与原子吸收所用的氘灯有一定的区别,建议氘灯制造企业生产时考虑到 国产光源厂商应该提供产品的细节数据 有些品牌的氘灯点灯难、元素灯漂移&hellip &hellip ,相关部件厂商现场给予了解答。   光谱仪器核心部件之二:光栅   与以往不同,此次沙龙将举办地设在了长春,并组织参会人员参观了中国光栅的发源地&mdash &mdash 中科院长春光学精密机械与物理研究所(长春光机所)。2007年,以长春光机所为依托单位成立了国家光栅制造与应用工程技术研究中心,中心已有5台光栅刻划机,拥有光栅母版457块,每年提供3万多块光栅,光栅用户200多家。   大部分国产光谱仪器的光栅都是来自长春光机所,这次有机会直接体验光栅的制造过程,并与光栅中心的负责人面对面交流,国产光谱仪器企业的代表积极提问、寻求帮助,并提出改进意见,如光栅毛边造成的杂散光变大、光栅应编号便于溯源等。长春光机所的巴音贺希格、齐向东两位主任表示将积极解决此类问题,并针对企业用户提出的光栅测试服务问题介绍到,光机所依靠原综合分析中心的部分资源成立了一家测试服务公司,提供的服务范围更宽泛,可以为光谱仪器企业解决此类问题。   光谱仪器核心部件之三:检测器   据日本滨松范四国介绍,2005年滨松在廊坊投资建成分公司,研发、生产光电倍增管等产品,目前,滨松光电倍增管产品占有中国光谱仪器市场90%左右的份额。   关于检测器的讨论,首先抛出的问题便是,如何打破日本滨松的光电倍增管在中国一家独大的局面?据副秘书长刘文玉介绍,国外光电倍增管供应商还有英国ET等公司。目前国内也有企业开始研制、生产相关产品,如2012年海南展创公司引进的法国弗通尼斯公司的光电倍增管生产线已经投产,预计3年内达到年产23万只不同型号光电倍增管产品的规模。南京华电也与安徽光机所合作生产光电倍增管产品,但是目前,还主要应用于医疗行业。   另外,中国电子科技集团公司第四十四研究所承担了2012年重大科学仪器研制专项&ldquo 科学仪器专用CCD的研制及仪器开发&rdquo ,目前该项目已经在研发中了。   光谱仪器其他部件:流量计、泵&hellip &hellip   在一些光谱中会应用到流量计等,但整机仪器企业在选择这些配件时经常发生&ldquo 大材小用&rdquo 的问题,&ldquo 大材&rdquo 性能高、功能多,但往往超出了仪器制造企业的需求,反而由于这些&ldquo 大材&rdquo 的价格高,大幅增加整机仪器的成本,使得仪器企业不得不忍痛放弃,也有些仪器厂商干脆自己生产。   对此,流量计供应商七星华创王昭说到,&ldquo 此次参加沙龙就是要多了解分析仪器行业发展情况,以及我们用户&mdash &mdash 仪器公司的需求,针对性的研制适用于分析仪器的流量计。&rdquo   建议建言   &ldquo 在开发产品之前先做好产品的定位,如果是通用、常规的产品可以尝试使用国产的器件,利用好每个器件的长处,国产产品完全能够满足需求。&rdquo 上海光谱总经理陈建钢指出,&ldquo 上海光谱用的就是国产的灯和检测器,性能不差,我们可以分享相关信息与技术。&rdquo   关键器件检测设备投入成本大,国产部件生产商出厂检验与整机制造商进厂测试都有一定困难,对此,中国科学技术发展战略研究院研究员韦东远指出,&ldquo 我国光谱仪器研发及产业化等没有平台支撑,建议由分会牵头申请建立光谱仪器产业联盟,达到资源共享、为生产企业服务的目的。科技部863计划每年有一个支持建立联盟的项目,相关资助资金达4000万,目前国内已有90多家产业联盟。&rdquo   作为仪器用户代表以及多年来光谱仪器研发专家,中国广州分析测试中心主任陈江韩对仪器制造商们提出了建议,&ldquo 大家都说可靠性是设计出来的,但是国产仪器企业在产品设计过程中几乎没有质量控制。仪器企业应该实现标准化生产、全过程质量控制,要把诸如ISO9001等质量管理体系落实到实处。&rdquo   在此次沙龙上,分析仪器分会常务副秘书长刘文玉向与会的仪器企业代表介绍了分会计划开展的工作,并征求代表的意见。主要工作包括:连通上游和下游企业,提供采购服务,将仪器企业零部件采购成本降低10% 利用分会资源,与业内专家和实验室合作开展仪器测评、用户使用调研,出具测评报告和使用报告,让用户了解仪器的真实性能、企业找出技术差距 联合相关组织机构及仪器企业,推动仪器标准的制修订,规范行业技术与市场。   为深入探讨我国科学仪器发展机遇与挑战、产业发展瓶颈等问题,加强国内科学仪器厂商之间的交流,提高国内科学仪器厂商的管理水平,提高国产科学仪器产品的质量,中国仪器仪表学会分析仪器分会于2012年3月开始定期举办 &ldquo 科学仪器发展高层沙龙&rdquo 活动,沙龙先后探讨了科学仪器市场发展情况、如何提升产品质量、产品开发与质量管理等问题。此次沙龙已是本系列活动的第五期,聚焦于光谱仪器及关键部件研发中存在的问题及对策。 撰稿:刘丰秋
  • 【综述】qPlus型非接触原子力显微技术及应用
    p style=" text-indent: 2em " 本文主要介绍了qPlus型非接触原子力显微镜(NC-AFM)的基本工作原理,qPlus NC-AFM的两种工作模式的应用:高分辨成像获得分子内和分子间原子结构和力谱测量获得表面元素及成键力信息,以及NC-AFM在表面在位化学反应、低维材料、三维成像探测、开尔文探针力显微镜(KPFM)等方面的应用。 /p section style=" box-sizing: border-box text-align: justify " section style=" position: static box-sizing: border-box " powered-by=" xiumi.us" section style=" display: flex flex-flow: row nowrap margin: 10px 0% position: static box-sizing: border-box " section style=" display: inline-block vertical-align: top width: auto min-width: 10% max-width: 100% flex: 0 0 auto height: auto align-self: flex-start border-width: 0px margin: 0px 2px 0px 0px box-sizing: border-box " section style=" text-align: right margin: 0px 0% justify-content: flex-end position: static box-sizing: border-box " powered-by=" xiumi.us" section style=" display: inline-block min-width: 10% max-width: 100% vertical-align: top transform: matrix(1, 0, -0.2, 1, 0, 0) -webkit-transform: matrix(1, 0, -0.2, 1, 0, 0) -moz-transform: matrix(1, 0, -0.2, 1, 0, 0) -o-transform: matrix(1, 0, -0.2, 1, 0, 0) border-style: none solid border-width: 1px 1px 1px 0px border-radius: 0px border-color: rgba(255, 255, 255, 0) rgb(92, 107, 192) rgb(92, 107, 192) rgb(223, 46, 0) padding: 5px 10px background-color: rgba(255, 255, 255, 0) box-shadow: rgba(255, 255, 255, 0) 0px 0px 0px line-height: 1 letter-spacing: 0px width: auto height: auto box-sizing: border-box " section style=" text-align: justify font-size: 19px color: rgb(92, 107, 192) font-family: Optima-Regular, PingFangTC-light box-sizing: border-box " powered-by=" xiumi.us" p style=" white-space: normal margin-top: 0px margin-bottom: 0px padding: 0px box-sizing: border-box " strong style=" box-sizing: border-box " 1 /strong /p /section /section /section /section section style=" display: inline-block vertical-align: top width: auto border-width: 1px 0px 0px flex: 100 100 0% align-self: flex-start height: auto border-top-style: solid border-top-left-radius: 0px border-top-color: rgb(92, 107, 192) padding: 0px 10px box-sizing: border-box " section style=" margin: 3px 0% 0px position: static box-sizing: border-box " powered-by=" xiumi.us" section style=" font-size: 17px color: rgb(92, 107, 192) box-sizing: border-box " p style=" white-space: normal margin-top: 0px margin-bottom: 0px padding: 0px box-sizing: border-box " strong span style=" box-sizing: border-box " NC-AFM工作原理 /span /strong /p /section /section /section /section /section /section p style=" text-align: justify text-indent: 2em " NC-AFM分为振幅调制和频率调制两种工作模式,超高真空体系中基于qPlus传感器的NC-AFM一般使用频率调制模式。频率调制AFM的基本工作原理是针尖悬臂在外力的驱动下以自由共振频率f sub 0 /sub 简谐振动,振幅(A)保持恒定,当针尖逼近样品时,针尖-样品之间的相互作用力梯度发生变化,引起悬臂共振频率的偏移(Δf),利用Δf和针尖高度的关联进行成像。 /p p style=" text-align: justify text-indent: 2em " NC-AFM的信号检测电路(图1A)主要由振幅控制模块和频率测量模块两部分组成。针尖悬臂振动信号经过带通滤波器后分成三路:一路信号进入交流直流转换器,将悬臂振幅转化为直流信号,并与振幅设定值比较(两者的差为能量耗散),通过比例-积分-微分控制器(PID)控制,调整激励信号,使得AFM悬臂保持恒定振幅振动;一路信号输入到相位调节器,经过π/2的相位移后返回激励陶瓷,与交流直流转换器共同组成振幅控制模块(灰色虚线框标记部分);另一路信号经过基于锁相环(PLL)的频率调制解调器后得到频率偏移信号,与控制针尖高度的模块相结合进行不同模式的成像。 /p p style=" text-align: center text-indent: 0em " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202012/uepic/a2bacf3f-6fd9-4827-86ff-9a0eda9e5d52.jpg" title=" 1.jpg" alt=" 1.jpg" / /p p style=" text-align: center " strong 图1 非接触原子力显微镜的工作原理 /strong /p p style=" text-align: justify text-indent: 2em " 类比于STM工作模式有恒电流和恒高度两种模式,NC-AFM也具有恒频率偏移和恒高度两种主要成像模式。在恒频率偏移成像模式下,通过振幅反馈回路使音叉悬臂保持恒定振幅,通过频率反馈回路调整针尖和样品间的距离保持频率偏移恒定(Δf),所获得图像为恒定力梯度下的样品表面形貌高度图。在恒高度成像模式下,断开频率偏移控制的反馈回路保持针尖高度恒定,探测扫描过程中的频率偏移变化,所获图像为恒定高度下的样品表面力梯度图。 /p p style=" text-align: justify text-indent: 2em " NC-AFM之所以能够达到亚分子级分辨,甚至亚原子级分辨率,主要原因是qPlus传感器(如图1所示)的引入。qPlus传感器使用高弹性常数(~1800& nbsp N· m sup -1 /sup )的石英音叉作为悬臂代替传统AFM使用的硅悬臂,石英音叉在针尖-样品的作用力可以以非常小的振幅(& lt 100 pm)稳定成像。此外,qPlus传感器还具有以下优势:qPlus传感器使用导电的金属针尖,可以同时获得STM和AFM信号,可以给出更丰富的样品信息;qPlus音叉使用的石英晶体是压电晶体,振动时会产生和振幅成比例的压电信号,属于自检测传感器,不需要激光检测,适用于极低温工作环境;相比于传统硅悬臂,qPlus传感器体积较大,属于宏观物体,易于集成功能化的针尖。 /p p style=" text-align: justify text-indent: 2em " 针尖-样品之间的总作用力是吸引力和排斥力加和,如图1C所示。从作用范围的不同可以分为长程力和短程力:其中长程力包括范德华力、静电力、磁力;短程力包括化学成键力和泡利排斥力。范德华力产生的原因是原子与原子之间的局域瞬时偶极作用;针尖和样品间的电势差,或功函数差可以产生长程的静电力;在微观上长程的静电力的加和可以产生短程的静电力,其大小随距离指数衰减。短程化学力可分为短程化学成键力和短程泡利排斥力:短程化学成键力衰减长度在化学键长度的量级,由于化学键力很大又相对局域,所以在理想的体系中可以获得很高的分辨;短程泡利排斥力来源于量子力学中电子的量子数不能全同导致的短程排斥力,具有最高的空间局域性。相比于长程力,短程力有更大的力梯度,对Δf的贡献也更大,所以降低针尖的振幅可以一方面大大提高短程力的敏感性,另一方面降低振幅还可以大大降低长程力的贡献,消除长程力的背景。目前认为,在单分子内的原子分辨上 起主要贡献的是泡利排斥力。 /p section style=" box-sizing: border-box text-align: justify " section style=" position: static box-sizing: border-box " powered-by=" xiumi.us" section style=" display: flex flex-flow: row nowrap margin: 10px 0% position: static box-sizing: border-box " section style=" display: inline-block vertical-align: top width: auto min-width: 10% max-width: 100% flex: 0 0 auto height: auto align-self: flex-start border-width: 0px margin: 0px 2px 0px 0px box-sizing: border-box " section style=" text-align: right margin: 0px 0% justify-content: flex-end position: static box-sizing: border-box " powered-by=" xiumi.us" section style=" display: inline-block min-width: 10% max-width: 100% vertical-align: top transform: matrix(1, 0, -0.2, 1, 0, 0) -webkit-transform: matrix(1, 0, -0.2, 1, 0, 0) -moz-transform: matrix(1, 0, -0.2, 1, 0, 0) -o-transform: matrix(1, 0, -0.2, 1, 0, 0) border-style: none solid border-width: 1px 1px 1px 0px border-radius: 0px border-color: rgba(255, 255, 255, 0) rgb(92, 107, 192) rgb(92, 107, 192) rgb(223, 46, 0) padding: 5px 10px background-color: rgba(255, 255, 255, 0) box-shadow: rgba(255, 255, 255, 0) 0px 0px 0px line-height: 1 letter-spacing: 0px width: auto height: auto box-sizing: border-box " section style=" text-align: justify font-size: 19px color: rgb(92, 107, 192) font-family: Optima-Regular, PingFangTC-light box-sizing: border-box " powered-by=" xiumi.us" p style=" white-space: normal margin-top: 0px margin-bottom: 0px padding: 0px box-sizing: border-box " strong style=" box-sizing: border-box " 2 /strong /p /section /section /section /section section style=" display: inline-block vertical-align: top width: auto border-width: 1px 0px 0px flex: 100 100 0% align-self: flex-start height: auto border-top-style: solid border-top-left-radius: 0px border-top-color: rgb(92, 107, 192) padding: 0px 10px box-sizing: border-box " section style=" margin: 3px 0% 0px position: static box-sizing: border-box " powered-by=" xiumi.us" section style=" font-size: 17px color: rgb(92, 107, 192) box-sizing: border-box " p style=" white-space: normal margin-top: 0px margin-bottom: 0px padding: 0px box-sizing: border-box " strong span style=" box-sizing: border-box " qPlus NC-AFM的工作模式 /span /strong /p /section /section /section /section /section /section p style=" text-align: justify text-indent: 2em " strong 2.1 高分辨成像 /strong /p p style=" text-align: justify text-indent: 2em " 实现分子内部单原子的识别是表面显微技术的重要目标。STM可获得原子级的图像,但由于隧穿电流主要探测的是费米面附近的局域电子态密度,因此对于分辨吸附分子内部的原子结构有一定的难度。NC-AFM探测的是针尖与样品原子间的相互作用力,在成像区域起主要贡献的是短程泡利排斥力,其探测的实质为分子内部总电子密度的分布,这使得AFM在理论上具有比STM更高的空间分辨能力。 /p p style=" text-align: justify text-indent: 2em " 为了达到NC-AFM的超高分辨率,针尖需要满足两个条件:一是化学惰性,保证针尖与样品分子之间的弱相互作用力,避免分子被针尖操纵;二是针尖尖端必须尖锐,针尖半径足够小(亚纳米尺度)从而确保可以获得原子级别的分辨,这两个条件保证了针尖可以逼近表面吸附的分子从而达到成像所需的泡利排斥力区域。 /p p style=" text-align: justify text-indent: 2em " 除了能够分辨分子内部的原子结构,NC-AFM技术还被用于化学键键级研究。利用NC-AFM技术识别键级的机制有两种:一是电子密度随键级的增大而增大,在相同高度下高键级区域与针尖之间具有更大的泡利排斥力,因此在AFM图像中呈现更亮的衬度;二是由于化学键长随着键级的增大而减小,结合针尖上修饰的CO分子的偏转作用可以判断其键级大小。由于CO针尖的偏转作用,AFM图像中所有化学键长都被放大,无法利用测量值与理论键长直接进行比较,但可以利用不同位置化学键的测量值进行对比获得其键级信息。 /p p style=" text-align: justify text-indent: 2em " 为了保证针尖及样品的稳定性,大多NC-AFM图像的采集需要在液氦温度,极少数结果在液氮温度下获得。随着技术的进一步发展,德国雷根斯堡大学Giessibl团队于2015年首次在室温下利用qPlus传感器及W针尖获得了苝四甲酸二酐分子的AFM图像。这一成果对于将qPlus NC-AFM技术应用于常温化学反应及分子结构识别等领域具有突破性的意义。 /p p style=" text-align: justify text-indent: 2em " 除了分子内部原子结构和化学键的识别,qPlus NC-AFM也可以识别分子间相互作用。2013年,裘晓辉团队以Cu(111)单晶表面吸附的8-羟基喹啉分子为研究体系,首次利用qPlus NC-AFM技术实现了实空间对分子间氢键的成像。卤键是一种类似氢键的分子间的相互作用,是由卤素原子的亲电位点(称为σ-hole)和另一原子的亲核位点之间形成的非共价相互作用。Cl、Br、I等卤素原子形成卤键的键能逐渐增大,F原子由于难以形成σ- hole,因此F原子之间认为没有卤键存在。 /p p style=" text-align: justify text-indent: 2em " 分子间氢键和卤键被实空间观测对于研究分子间弱相互作用力具有重要意义。氢键之所以能够被NC-AFM观测到,最初的解释是由于氢键的形成增大了该处的电子密度,因此针尖可以探测到增强的泡利排斥力,故而可以获得氢键成像。之后,捷克科学院Hapala团队利用CO针尖建立模型模拟发现,单纯利用针尖尖端CO分子所受范德华力引起的偏转,也可以实现上述结果显示的分子间氢键衬度特征。由于在图像模拟中未考虑分子间电子密度的作用,因此他们认为NC-AFM图像中针尖偏转对分子间作用力成像起了主要作用。随后,芬兰阿尔托大学Liljeroth和荷兰乌特勒支大学Swart等利用二对吡啶基乙炔(BPPA)分子自组装体系对该问题进行了进一步的研究。BPPA分子利用分子间氢键形成四聚体结构(如图3 (G, H)所示),示意图显示上下两个BPPA分子之间未直接形成化学键,但相对的两个N原子之间在NC-AFM图像中出现亮线。利用CO软性针尖进行Lennard-Jones势模拟图像与实验结果相似。因此他们认为针尖偏转在AFM成像上具有重要的影响:一方面使化学键的AFM衬度锐化,易于得到分子内部原子结构,另一方面在相邻非常近但未成键的两原子之间,偏转效应会使图像中出现成键的假象。 /p p style=" text-align: center text-indent: 0em " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202012/uepic/1885fe3a-f255-4b08-972e-86fe121a072d.jpg" title=" 3.jpg" alt=" 3.jpg" / /p p style=" text-align: center " strong 图3 分子间化学键高分辨成像 /strong /p p style=" text-align: justify text-indent: 2em " 虽然NC-AFM已经实现了亚原子级别的高分辨成像,但其成像机制在国际上仍具有一定的争议,针尖偏转和电子密度在分子间成像上的贡献孰多孰少,亦或是某一因素起单独作用,目前并没有定论。解决这一问题也是现在NC-AFM技术最重要的目标之一,也是该技术应用于研究分子间成键和弱键相互作用体系的基本前提。 /p p style=" text-align: justify text-indent: 2em " strong 2.2 针尖-样品作用力谱测量 /strong /p p style=" text-align: justify text-indent: 2em " NC-AFM的力谱功能可以定量测量针尖-表面之间的相互作用力和能量,是研究高分辨成像和原子/分子操纵机理的关键。力谱是在特定的位置上记录针尖-样品相互作用力梯度(即Δf)与针尖-表面间距(d)的关系,即Δf(d)曲线,利用Sader和Jarvis提出的转换关系可以将Δf(d)曲线转化为F(d)曲线。当针尖与样品之间距离较远时,其作用力包括宏观尺度的范德华力、针尖尖端与样品的局域范德华力、偶极或带电样品引起的静电力,短程的泡利排斥力在此时可以忽略。针尖与样品之间距离较近进行成像扫描时,泡力排斥力对成像起主导作用,但长程的范德华力和静电力仍有作用(图4A)。因此,定量研究针尖与样品间的短程泡利排斥力时需要在总力谱的基础上扣除长程力背景(图4B)。 /p p style=" text-align: center text-indent: 0em " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202012/uepic/e4d6a009-363d-4afe-92ca-e5ff9242a84a.jpg" title=" 4.jpg" alt=" 4.jpg" / /p p style=" text-align: center " strong 图4 针尖-样品间作用力测量 /strong /p p style=" text-align: justify text-indent: 2em " 2001年,瑞士巴塞尔大学Lantz团队首次在低温下利用力谱技术测量了Si针尖与 Si(111)-(7× 7)表面Si原子悬挂键间形成的共价键力的大小为2.1 nN,如图4(C,D)所示。这一结果是化学成键力测量上的突破性进展。2007年,日本大阪大学Morita团队在室温下利用不同结构的针尖测量了Si基底上沉积Sn分子后针尖与Si原子和Sn原子间的力谱,将每种针尖测得的短程力谱根据Si原子力谱的最大吸引力进行归一化后得到Sn原子和Si原子力谱的最大吸引力比值为0.77 : 1 (图4(E, F))。同样的方法可得到Pb原子和Si原子力谱的最大吸 引力比值为0.59 : 1。基于以上结果,在Si(111)基底上Si、Sn、Pb合金材料上通过区别不同原子与针尖之间吸引力最大值的差别,可以实现Si、Sn、Pb化学元素的识别(图4(G,H))。NC-AFM的成像技术和力谱测量相结合,有利地推进了扫描探针技术对尺度空间和能量空间分辨率的提高,为研究原子或分子间相互作用及化学键的形成具有重要意义。值得注意的是,以上提到的研究结果都早于qPlus传感器的发明,是利用悬臂梁针尖测量所得。 /p section style=" box-sizing: border-box text-align: justify " section style=" position: static box-sizing: border-box " powered-by=" xiumi.us" section style=" display: flex flex-flow: row nowrap margin: 10px 0% position: static box-sizing: border-box " section style=" display: inline-block vertical-align: top width: auto min-width: 10% max-width: 100% flex: 0 0 auto height: auto align-self: flex-start border-width: 0px margin: 0px 2px 0px 0px box-sizing: border-box " section style=" text-align: right margin: 0px 0% justify-content: flex-end position: static box-sizing: border-box " powered-by=" xiumi.us" section style=" display: inline-block min-width: 10% max-width: 100% vertical-align: top transform: matrix(1, 0, -0.2, 1, 0, 0) -webkit-transform: matrix(1, 0, -0.2, 1, 0, 0) -moz-transform: matrix(1, 0, -0.2, 1, 0, 0) -o-transform: matrix(1, 0, -0.2, 1, 0, 0) border-style: none solid border-width: 1px 1px 1px 0px border-radius: 0px border-color: rgba(255, 255, 255, 0) rgb(92, 107, 192) rgb(92, 107, 192) rgb(223, 46, 0) padding: 5px 10px background-color: rgba(255, 255, 255, 0) box-shadow: rgba(255, 255, 255, 0) 0px 0px 0px line-height: 1 letter-spacing: 0px width: auto height: auto box-sizing: border-box " section style=" text-align: justify font-size: 19px color: rgb(92, 107, 192) font-family: Optima-Regular, PingFangTC-light box-sizing: border-box " powered-by=" xiumi.us" p style=" white-space: normal margin-top: 0px margin-bottom: 0px padding: 0px box-sizing: border-box " strong style=" box-sizing: border-box " 3 /strong /p /section /section /section /section section style=" display: inline-block vertical-align: top width: auto border-width: 1px 0px 0px flex: 100 100 0% align-self: flex-start height: auto border-top-style: solid border-top-left-radius: 0px border-top-color: rgb(92, 107, 192) padding: 0px 10px box-sizing: border-box " section style=" margin: 3px 0% 0px position: static box-sizing: border-box " powered-by=" xiumi.us" section style=" font-size: 17px color: rgb(92, 107, 192) box-sizing: border-box " p style=" white-space: normal margin-top: 0px margin-bottom: 0px padding: 0px box-sizing: border-box " strong span style=" box-sizing: border-box " qPlus NC-AFM的应用 /span /strong /p /section /section /section /section /section /section p style=" text-align: justify text-indent: 2em " strong 3.1 针尖修饰对成像的影响 /strong /p p style=" text-align: justify text-indent: 2em " 在AFM成像研究中,针尖的原子组成和几何结构对成像结果具有重要影响。通常实验中可以通过针尖脉冲,降低扫描高度或撞针的方法进行针尖处理,但这些处理方法获得的针尖重复性不高且难以确定针尖的具体原子结构。而纵向原子/分子操控技术可以高效地将特定的分子或原子从样品表面提取,修饰到针尖尖端,提高AFM成像的分辨率。已经实现可以进行针尖修饰的原子/分子包括H原子、卤素原子(Cl,Br)、惰性气体分子(Ar,Kr,Xe)及小分子如CO、NO、CH4等。 /p p style=" text-align: justify text-indent: 2em " 目前,对于表面吸附分子的结构识别和化学反应研究一般选择CO分子修饰的针尖。修饰步骤如下:首先将CO分子沉积在基底表面,将NC-AFM针尖置于CO分子上方,在针尖方向施加-2.8 V的恒定电压激发CO分子跳到针尖端,若重复扫描图像发现CO分子消失且分辨率得到极大地提高则认为CO分子已修饰到针尖尖端。尖端修饰的CO分子的偏转极大地提高了分子内部原子结构的AFM分辨率,但同时也带来了图像扭曲的问题(图5A)。惰性气体如Xe原子可以在金属基底、NaCl基底或分子自组装网格上吸附并修饰针尖,将针尖置于Xe原子上方,下压0.3 nm,继续扫描发现该处Xe原子消失,且图像分辨率显著提高, /p p style=" text-align: justify text-indent: 2em " 证明Xe原子被修饰在针尖尖端。对同一个分子的成像结果显示Xe针尖的分辨率低于CO针尖,但分子成像的扭曲程度比CO针尖小(图5B)。与CO修饰针尖相比,Xe针尖的一个优点是在STM成像实验中避免CO中O原子p波函数态对分子轨道成像的贡献。Kr针尖的制备方法类似Xe针尖,但稳定性比Xe针尖弱。卤素原子的提取方法与Xe原子类似,Cl原子通常来源于NaCl晶体,Br原子通常来源于从有机分子上断键后的游离Br原子。卤素原子修饰的针尖分辨率比CO针尖低,但是图像扭曲程度也较低,这主要是由于卤素原子的偏转效应比CO分子弱(图5(C, D))。Br原子虽然比Cl原子半径大,但成像分辨率相近。Br针尖的优势在于易于制备,并且可以对NaCl上的DBA单分子进行“pulling”模式的横向操纵,这对于其他修饰针尖来说是比较困难的。 /p p style=" text-align: justify text-indent: 2em " 除了以上提到的可与针尖尖端形成较弱成键的分子和原子外,利用O原子与Cu针尖形成CuO针尖,O原子的存在可减弱Cu针尖与样品之间的作用力,同时具有稳定的原子结构,减少针尖偏转对图像成像的影响。如图5(E, F)所示,利用O针尖获得的二蒄(DCLN)分子的AFM图显示分子外围的C原子呈现比分子内部C原子更亮的AFM衬度,这是由于分子外围C原子上具有更高的电荷密度以及与针尖具有更小的范德华吸引力导致,两种原因所占的比例约为30% : 70%。此外,CO针尖进入排斥力成像区域后具有严重的偏转效应,导致对化学键的成像有30%的放大,而O针尖所引起的成像放大效应几乎可以忽略。 /p p style=" text-align: center text-indent: 0em " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202012/uepic/3234dc8f-eb23-4348-a559-cd7e82fa60e7.jpg" title=" 5.jpg" alt=" 5.jpg" / /p p style=" text-align: center " strong 图5 不同针尖修饰对成像的影响 /strong /p p style=" text-align: justify text-indent: 2em " strong 3.2 对低维纳米材料的研究 /strong /p p style=" text-align: justify text-indent: 2em " 低维材料是材料学科和物理化学研究中的重要研究方向,其中以石墨烯为代表的一维/二维材料的表面原位合成研究至关重要。对于表面低维材料的结构研究多以STM为主,但是对于石墨烯以及石墨烯纳米带(GNRs)这类具有较强电子离域性质的材料来说,STM图像呈现的是材料整体的电子态信息,难以直观地确定材料的原子结构、缺陷和边界结构等。NC-AFM 技术有效地解决了这些问题。由于石墨烯具有化学惰性,且尺寸较大不易被针尖操纵,所以可以直接用金属针尖对石墨烯进行NC-AFM成像。 /p p style=" text-align: justify text-indent: 2em " 图6(A,B)是分别用W针尖和CO针尖对Ir(111)基底上的石墨烯进行成像,可以识别长程的摩尔条纹(周期~2.5 nm)。活性金属针尖扫描时,石墨烯晶格呈现六方对称的点状,在该状态下降低针尖高度,图像会发生反转呈现蜂窝状晶格。而电学非活性的CO针尖扫描时,石墨烯在所有高度下只呈现蜂窝状晶格。对于GNRs、NC-AFM的成像能够提供更为精细的结构信息,图6C左下角是GNRs的STM图像,条带区域呈现均一的电子态。而相对应的利用CO针尖扫描获得的 AFM 图像中可以清晰的观测 GNRs的原子结构。该GNRs是由六排碳原子组成的具有锯齿型边界的纳米带,简称6-ZGNRs (6-zigzag graphene nanoribbons),边界C由H原子终止。对6- ZGNRs进行边界修饰可以得到图6D所示的原子结构,在 6-ZGNRs 的两个锯齿型边界上分别修饰了周期性的荧蒽基团,边界的C原子仍由H原子终止,而不以自由基形式存在。NC-AFM图像还可以分辨GNRs中的掺杂原子,如图6E所示,GNRs span style=" text-indent: 2em " 中衬度较暗的区域是对位的两个B原子掺杂(标记为红点),呈现与C原子差别较大的AFM衬度不仅是由于B原子的缺电子特性导致该位点的电子密度较低,更主要的原因是由于在该结构中B原子在高度上比C原子低30 pm53。此外,NC-AFM还可以研究其他类型的缺陷态,例如图6F所示的两GNRs交界处形成的非完美融合中的五七元环结构等。以上这些结构信息对研究GNRs的物理性质和边界态结构具有重要意义。除了石墨烯、石墨烯纳米带等导电材料,NC-AFM对于氧化物、氮化物等绝缘材料的结构研究也具有一定的优势。 /span /p p style=" text-align: center text-indent: 0em " span style=" text-indent: 2em " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202012/uepic/08f77a2e-f030-4be2-8c18-5fefb84c84d2.jpg" title=" 6.jpg" alt=" 6.jpg" / /span /p p style=" text-align: center " strong 图6 q Plus NC-AFM在低维纳米材料中的应用 /strong /p p style=" text-align: justify text-indent: 2em " 利用qPlus NC-AFM研究绝缘材料表面原子结构的工作,大多是基于金属单晶表面的超薄层样品,只有少数研究是基于严格意义上的体相绝缘体材料。从基本原理上分析,qPlus NC-AFM用于研究体相绝缘材料是可行的,但在实际应用中存在一定的困难。首先,体相绝缘材料与针尖之间具有电势差,由于qPlus针尖弹性常数大,工作振幅极小(& lt 100 pm),需要在较小的针尖-样品距离下才能得到成像,而在此状态下,针尖-样品间电势差引起的静电力无法估量;第二,针尖形状和尖端修饰的分子对AFM成像分辨率具有极大的影响,纯绝缘体表面很难对针尖进行原位处理或修饰。因此目前研究的体相绝缘体材料大多是平整度较高的晶体,例如NaCl等。如何克服以上难点将qPlus NC-AFM更广泛地应用于体相绝缘体材料对于一些催化体系的活性位点、燃料电池材料的工作机制的研究具有重要意义。 /p p style=" text-align: justify text-indent: 2em " strong 3.3 表面化学反应研究 /strong /p p style=" text-align: justify text-indent: 2em " 观测化学反应过程中分子和原子的重组对催化机理研究具有重要意义,也是表面物理化学研究中的巨大挑战。2013年,加州大学伯克利分校的Crommie和Fischer等利用NC-AFM首次观测了Ag(100)基底上oligo-(phenylene-1,2-ethynylenes)单分子的内部原子结构以及在该表面的单分子环化反应过程。反应物和产物分子的STM图无法直观解析分子结构(图7A-C),但相对应的NC-AFM图像(图7D-F)可以提供分子内部的原子排列的结构信息。除了分子中原子位置和共价化学键之外,反应物分子中两苯环之间的C≡C键也可以清晰地分辨,这是由于三键区域具有较高的电子密度导致。而分子外围AFM衬度的增强则是由与该处具有较小的范德华吸引力背景,离域π电子体系边缘处的电子密度增强和分子平面的扭曲等因素造成的。产物分子中可以清晰地分辨分子环化反应后形成的四元、五元、六元环以及分子边缘C原子连接的氢原子。通过AFM高分辨图像确定的原子结构证实反应物和多种产物具有同样的分子式,因此该表面环化反应是反应物分子的异构化过程。随后,他们用同样的方法研究了oligo-(E)-1,1′-bi(indenylidene)分子在Au(111)表面的环化和双自由基聚合反应和 1,2- bis(2- ethynyl phenyl) ethyne分子的二聚体偶联和环化过程(图7G-I),并通过反应中间产物确定了该反应的复杂路径,并提出该反应路径不仅决定于表面能量耗散,也取决于反应熵增加。 /p p style=" text-align: center text-indent: 0em " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202012/uepic/1e218ed1-ae02-4059-addd-aad91a26105a.jpg" title=" 7.jpg" alt=" 7.jpg" / /p p style=" text-align: center " strong 图7 q Plus NC-AFM在表面化学反应中的应用 /strong /p p style=" text-align: justify text-indent: 2em " 目前,NC-AFM技术被越来越多的应用到表面化学反应领域,在原子、分子的层次研究化学反应的机制。 /p p style=" text-align: justify text-indent: 2em " strong 3.4 三维成像技术 /strong /p p style=" text-align: justify text-indent: 2em " 由于qPlus NC-AFM成像的主要贡献来源于针尖与样品之间的短程泡利排斥力,因此针尖与样品间工作距离非常近,通常在1 nm以内,这导致qPlus NC-AFM的应用主要局限在平面分子或二维结构表面等起伏较小的材料样品体系。近年来,人们致力于发展qPlus NC-AFM在三维成像上的应用,并拓展了多种不同的方法。 /p p style=" text-align: justify text-indent: 2em " 2015年,德国雷根斯堡大学Albrecht团队利用CO针尖研究了非平面分子二菲并[9,10-b:9′,10′- d]噻吩(DPAT)的表面吸附和环化反应。DPAT分子的两个分支由于空间位阻的作用无法存在于同一平面内,当分子吸附在Cu(111)表面时,一个分支与表面平行,另一分支的两个苯环与表面分别形成10° 和23° 的夹角,如图8B左图。为了能够准确地表征与平面具有一定夹角的分子结构,将扫描平面进行一定的旋转,直至获得非平面区域清晰的原子结构图像。利用这一方法一方面可以有效地得到立体分子原子结构,另一方面可以根据旋转角度确认分子立体部分与平面部分之间的夹角。但对于夹角太大的立体分子不能单纯利用该方法确认分子内部夹角,因为针尖CO的偏转会对成像分析具有一定的影响。 /p p style=" text-align: center text-indent: 0em " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202012/uepic/4f8a208b-efb0-4fd2-aa9c-f3c858367d6e.jpg" title=" 8.jpg" alt=" 8.jpg" / /p p style=" text-align: center " strong 图8 q Plus NC-AFM的三维成像 /strong /p p style=" text-align: justify text-indent: 2em " 对于表面催化或表面在位化学反应,分子在基底上的吸附位点和角度等对催化或反应活性具有重要的影响。由于高度的差异,通常AFM只能够分别分辨吸附分子或基底的原子结构,2015年,日本国家材料科学研究所Moreno团队提出了一种利用多通道AFM同时分辨分子结构和基底结构的方法。首先接通恒Δf反馈回路,对样品表面形貌进行一次AFM扫描(图8D,F),然后断开反馈回路,将针尖沿一次扫描的形貌路径进行二次扫描,但二次扫描需要在针尖上施加高度补偿将针尖置于更靠近样品的位置以保证获得清晰的原子分辨图像(图8E,G),他们利用这一方法同时获得基底锐钛矿(101)和其表面吸附的并五苯分子和C60分子的原子结构。这种方法有望被应用于非平面纳米结构的研究,例如纳米管、纳米颗粒、聚合物和生物分子等。 /p p style=" text-align: justify text-indent: 2em " strong 3.5 表面电荷分布的测量 /strong /p p style=" text-align: justify text-indent: 2em " 通过测量不同电荷状态下针尖与样品的接触势差,即KPFM中的局域功函数差,可以实现对表面分子或原子/离子电荷分布或带电性质的测量。2012年,Mohn团队采用qPlus-AFM的KP-FM成像模式,通过测量萘酞菁分子内部的局域功函数差,获得了分子内的电荷分布的亚分子分辨图像(图9A-C)。具体测量模式为将萘酞菁分子所在的区域分为64 × 64个像素点,在恒高模式下,在每个像素点处做Δf(V)谱(在保持针尖-样品间距离恒定下,频率偏移随针尖和样品间偏压变化曲线),得到分子内不同位点的局域接触势差。这对应于分子内不同位点的带电状态或电荷分布,这种方法可以实现对由于氢原子位置改变引起的分子内电荷分布的识别。通过利用CO分子修饰针尖,可以进一步提高分辨率。 /p p style=" text-align: justify text-indent: 2em " 2009年,Gross团队通过针尖施加电压脉冲,让吸附在NaCl薄层上的金属Au和Ag原子分别得到和失去一个电子,得到Au-和Ag+离子。通过比较在中性原子和带电离子上获得的Δf(V)谱,发现中性原子与带电离子的局域功函数差有约30 mV,且正离子和负离子具有相反的局域功函数差,实现了原子不同带电状态的识别和测量。通过针尖操控,可以实现Au sup - /sup 离子、Au原子和Au sup + /sup 离子的三态电荷调控(图9(D, E))。对于TTF-PYZ2这类自身带有电子给体和受体的双极性分子,利用局域功函数差的测量可以判定分子内电荷转移方向(图9(F-H))。 /p p style=" text-align: center text-indent: 0em " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202012/uepic/685f29b1-7ffe-4236-adcf-e38f614dbfeb.jpg" title=" 9.jpg" alt=" 9.jpg" / /p p style=" text-align: center " strong 图9 表面电荷分布测量 /strong /p section style=" box-sizing: border-box text-align: justify " section style=" position: static box-sizing: border-box " powered-by=" xiumi.us" section style=" display: flex flex-flow: row nowrap margin: 10px 0% position: static box-sizing: border-box " section style=" display: inline-block vertical-align: top width: auto min-width: 10% max-width: 100% flex: 0 0 auto height: auto align-self: flex-start border-width: 0px margin: 0px 2px 0px 0px box-sizing: border-box " section style=" text-align: right margin: 0px 0% justify-content: flex-end position: static box-sizing: border-box " powered-by=" xiumi.us" section style=" display: inline-block min-width: 10% max-width: 100% vertical-align: top transform: matrix(1, 0, -0.2, 1, 0, 0) -webkit-transform: matrix(1, 0, -0.2, 1, 0, 0) -moz-transform: matrix(1, 0, -0.2, 1, 0, 0) -o-transform: matrix(1, 0, -0.2, 1, 0, 0) border-style: none solid border-width: 1px 1px 1px 0px border-radius: 0px border-color: rgba(255, 255, 255, 0) rgb(92, 107, 192) rgb(92, 107, 192) rgb(223, 46, 0) padding: 5px 10px background-color: rgba(255, 255, 255, 0) box-shadow: rgba(255, 255, 255, 0) 0px 0px 0px line-height: 1 letter-spacing: 0px width: auto height: auto box-sizing: border-box " section style=" text-align: justify font-size: 19px color: rgb(92, 107, 192) font-family: Optima-Regular, PingFangTC-light box-sizing: border-box " powered-by=" xiumi.us" p style=" white-space: normal margin-top: 0px margin-bottom: 0px padding: 0px box-sizing: border-box " strong style=" box-sizing: border-box " 4 /strong /p /section /section /section /section section style=" display: inline-block vertical-align: top width: auto border-width: 1px 0px 0px flex: 100 100 0% align-self: flex-start height: auto border-top-style: solid border-top-left-radius: 0px border-top-color: rgb(92, 107, 192) padding: 0px 10px box-sizing: border-box " section style=" margin: 3px 0% 0px position: static box-sizing: border-box " powered-by=" xiumi.us" section style=" font-size: 17px color: rgb(92, 107, 192) box-sizing: border-box " p style=" white-space: normal margin-top: 0px margin-bottom: 0px padding: 0px box-sizing: border-box " strong span style=" box-sizing: border-box " 总结 /span /strong /p /section /section /section /section /section /section p style=" text-align: justify text-indent: 2em " 应用qPlus传感器的NC-AFM使得扫描探针技术在空间分辨率上得到了提升,自从2009年Gross团队首次利用NC-AFM技术得到单分子内部原子结构成像后,该技术进一步应用在化学键键级、分子间氢键、卤键、表面纳米结构的研究中,通过3D NC-AFM技术还可以获得非平面分子的内部结构以及同时获得吸附分子和吸附基底的原子结构。NC-AFM技术对于研究表面原位化学反应、表面催化、低维材料等具有极大的优势。根据NC-AFM技术发展的谱学测量可以根据针尖与不同原子之间作用力的差异,实现对样品表面的原子操纵、元素识别、电荷分布测量等,对表面异质结和界面研究具有重要意义。 /p p style=" text-align: justify text-indent: 2em " 尽管基于qPlus传感器的NC-AFM技术已经获得了相当的发展,但在技术以及应用体系上仍面临以下问题和局限:为了保证图片的信噪比和分辨率,扫描速度相对较慢,由此连带产生热漂移问题,热漂移等问题的存在使仪器需要在液氦温度下工作,成本较高,虽然目前在液氮和室温也得到了分子内部结构的图像,但分辨率与液氦温度下的图像相差甚远;由于STM和NC-AFM电极都集成在qPlus传感器上,工作时电流信号会对力信号产生串扰,与此同时电流的存在会在针尖和样品之间引入静电势,影响力信号的测量;对于力谱测量,针尖形状对针尖-样品间作用力影响极大,如何合理地扣除背景力,保留化学成键力成分,建立一套有效的力谱测量和分析标准也是亟待解决的重要问题。此外,对于qPlus NC-AFM的成像机制,尤其是考虑CO针尖偏转效应的前提下,仍具有一定的争议,需要更多的实验探索和发展相应的理论进行分析。 /p p style=" text-align: justify text-indent: 2em " 为解决这些问题,科学家们致力于开发更高频的力传感器,优化传感器电路,发展详尽的NC-AFM力谱测量的理论和成像模拟理论,联合NC-AFM与其它技术(如STM、光谱等),在提高空间分辨率的同时进一步提高时间分辨率。NC-AFM的快速发展为物理、化学、材料等研究领域带来了众多突破性的进展。目前,NC-AFM已能够达到亚原子级分辨率,这对在分子/原子尺度研究催化反应机理、化学成键机制等具有绝对优势,可以应用在分子筛、金属纳米颗粒、金属氧化物表面等催化体系的基础研究。 /p p style=" text-align: justify text-indent: 2em " 在未来发展中,NC-AFM与其它表面分析技术的联用将进一步拓宽其研究领域,例如,NC-AFM与STM模式的联用可以研究样品不同的结构和物理化学特性,是全面而深入地研究原子尺度接触问题不可或缺的工具;NC-AFM与光谱技术联用可以研究分子或材料内部原子结构与能带结构关系、光催化或反应过程的基元步骤;基于NC-AFM技术的KPFM也已经成为一种具有高空间分辨和能量分辨的表征手段,可以在表面构造功能纳米结构,并研究分子内电荷分布、电荷传输路径和化学反应活性等问题,为材料、物理、化学和生命科学研究提供了新的思路。 /p p br/ /p p strong 本文来自: /strong 刘梦溪,李世超,查泽奇,裘晓辉.qPlus型非接触原子力显微技术进展及前沿应用[J].物理化学学报,2017,33(01):183-197. /p
  • 校企交流促发展,合作共赢谱新章—长沙理工大学领导及学子莅临微谱科技参观交流
    2024年2月23日,长沙理工大学领导及学子莅临微谱科技参观交流。微谱科技总经理在产品展厅介绍了公司的发展历程、科研技术能力及产品的应用前景,并详细演示了主营仪器X荧光光谱仪、高频熔样机、超级微波消解仪的操作使用。 我司研发人员还分享了他们在分析仪器及检测技术方面的研究成果和经验,为长沙理工大学学子们提供宝贵的学术资料和实践经验。 此次参观交流活动双方围绕人才培养、项目合作、科研成果转化等相关问题进行了深入交流。希望以此为契机,进一步发挥双方的科研生产支撑作用,一起推动产学研深度融合;在分析检测领域攻坚克难,共同迈向新阶段。
  • ​湖北省鄂州市委常委、副市长卢辉一行莅临托普云农考察调研
    8月6日,湖北省鄂州市委常委、副市长卢辉,湖北省鄂州市委副秘书长周文兴,湖北省鄂州市委农办主任、市农业农村局党组书记、局长方勇利携各区县主要领导班子一行40余人莅临浙江托普云农科技股份有限公司(以下简称“托普云农”)考察调研,托普云农副总经理吴家满和营销副总周蓝舰参与接待。在托普云农数字三农展厅,考察组一行参观了托普云农智能装备、软件平台以及数字化应用场景,听取了企业的发展历程、科技创新成果、智能农业装备的研发与应用、农业大数据服务运营以及产业数字化应用等方面的专题介绍,了解了托普云农数字技术在“三农”领域的应用和拓展。座谈交流环节,托普云农副总经理吴家满向考察组一行详细汇报了浙江乡村大脑和被评为数字社会系统“最佳应用”的浙农帮扶。考察组一行现场就浙农帮扶中的数据采集、低收入农户群体风险识别预警、干部帮扶、风险解除等应用场景进行了深入交流。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制