当前位置: 仪器信息网 > 行业主题 > >

吡喃鼠李糖

仪器信息网吡喃鼠李糖专题为您提供2024年最新吡喃鼠李糖价格报价、厂家品牌的相关信息, 包括吡喃鼠李糖参数、型号等,不管是国产,还是进口品牌的吡喃鼠李糖您都可以在这里找到。 除此之外,仪器信息网还免费为您整合吡喃鼠李糖相关的耗材配件、试剂标物,还有吡喃鼠李糖相关的最新资讯、资料,以及吡喃鼠李糖相关的解决方案。

吡喃鼠李糖相关的论坛

  • 【讨论】关于鼠李糖!

    请问各位老师: 有做过鼠李糖检测的吗? 我用了好多种检测方法(HPLC),总是出不来峰。无论是用文献上的方法还是自己设的方法都不行。 请提供几种检测方法,看是样品本身的问题还是我方法有问题。 奇怪就奇怪在,我用紫外分光光度计检测有吸收,可用PDA就是没峰出来。[em06]

  • 关于利用核磁进行呋喃糖和砒喃糖定量的问题

    大家好,我正在做多糖的研究.现在有两个样品,结构相似,有一定的区别.想通过核磁找出它们的区别.请问能否通过核磁把他们中的呋喃糖和砒喃糖的氢分别定量,知道它们的比例?具体方法如何呢?谢谢各位!![em20]

  • 【求助】求助:测定中药酸水解液中鼠李糖的含量?

    我用的是waters High-Performance Carbohydrate糖柱测定中药酸水解液中鼠李糖的含量,流动相为乙腈:水(70:30),第一次做的时候对照品,鼠李糖都呈单峰(虽然峰形较宽, 不好),但到第二次的时候再测对照品时,已呈明显双峰(未完全分开),对照品是用纯水配制的.另外样品的也是呈双峰.我起初怀疑是鼠李糖对照品不纯(用的是鉴别用的),但为何第一次又不成双峰呢?怀疑是鼠李糖不稳定分解了?但好像鼠李糖在水中应该是很稳定的吧?不知道是什么原因?急求各位老师指点一下!!急!

  • 我想查些呋喃糖的HPLC 文献,资料

    我想查些呋喃糖的HPLC 文献,资料。主要分析二甲基羟基呋喃糖。因为呋喃糖缺少发色基团,UV方法可能比较难,外面文献报道得不多。正在发愁呢!

  • 【资料】生物表面活性剂鼠李糖脂发酵液应用研究

    [em0815] 微生物技术采油新进展:生物表面活性剂鼠李糖脂发酵液驱油应用研究韩立滨公司名称:大庆沃太斯化工有限公司地 址:大庆高新技术产业开发区宏伟园区 邮编:163411电 话:0459-5619800 传真:0459-5619868 E-Mail:victex2008@126.com http://www.cnvictex.com一、概述表面活性剂是具有亲水基和疏水基的离子或非离子型化合物,具有降低表面张力、稳定乳化液、增溶和改变分子极性等作用,表面活性剂分为化学表面活性剂和生物表面活性剂,其中生物表面活性剂是微生物在代谢过程中的产物,包括糖脂、脂肽、脂蛋白、磷脂以及中性类脂衍生物等,具有明显的表面活性,能大幅度降低油水界面张力,形成胶束溶液。此外,还可以改变油层润湿性、洗油能力强、吸附滞留量小、稳定性高、耐盐以及无毒等优点。因此,近年来,环境友好的生物表面活性剂的生产和使用日益受到人们的广泛关注。预计到2010年,生物表面活性剂将会占领市场10%的份额,销售额达两亿美元。目前,国内外研究较多的是由铜绿假单胞菌(Peudomonas aeruginosa)产生的鼠李糖脂,它是一类非常重要的生物表面活性剂,不仅具有乳化、增溶、降低表/界面张力等功能,而且毒性小、易于生物降解,因而在石油开采、医药、食品、日化及环境保护等许多领域具有极大的应用潜力。大庆沃太斯化工有限公司依托中科院上海有机所的先进技术,经自主研发的鼠李糖脂产品质量已经达到国内先进水平,具有年产2000吨以上的生产能力,是国内唯一能够大规模生产的厂家。二、生物表面活性剂国内外的研究进展国外,生物表面活性剂是七十年代后期发展起来的生物工程技术。近年来,生物表面活性剂应用于EOR方面,日益受到人们重视,如德国winter-shullAG公司将生物表面活性剂用于三次采油矿场试验,取得了明显效果,并已申请了多项专利。美国,先后有六大公司应用生物工程技术进行三次采油试验研究工作都见到了理想的效果。我国,生物表面活性剂研究工作始于八十年代初。“七五”期作为国家重点科技攻关项目实验研究做了大量的工作。“八五”期间又进行了生物表面活性剂的中试放大,随着科技手段的不断发展,研究水平不断的提高,生物表面活性剂的应用领域不断扩大,同时生物表面活性剂在石油采油的应用中取得了长足的进步。大庆油田于1997年-2000年在萨北开发区小井距试验区葡I4-7油层开展了生物表面活性剂三元复合驱先导性矿场试验,采用与进口表活剂ORS41复配的强碱体系,取得了全区提高采收率16.64%,中心井提高采收率23.24%的好效果。由于加入了浓度为0.2%生物表面活性剂,使体系中磺酸盐类表面活性剂的浓度由0.3%下降到0.15%,降低了化学表活剂50%的用量,复合驱化学剂总成本降低了35.5%。三、鼠李糖脂简介1、鼠李糖脂是一种阴离子表面活性剂,鼠李糖脂最突出的特性是它的表面活性,具有显著降低水的表面张力,改变固体表面的润湿性,具有乳化、破乳、消泡、洗涤、分散与絮凝、抗静电和润滑等多种功能。鼠李糖脂表面活性剂能使水的表面张力从72 mN/m降至30 mN/m左右,使油水界面张力从43 mN/m降低至1 mN/m左右。本产品与化学表面活性剂复配后的体系达到10-3-10-4 mN/m超低界面张力值。鼠李糖脂的另外一个重要特性是它的抗菌性。已经报道有好几种鼠李糖脂混合物具有抗菌和抗真菌的效果。2. 性状该产品外观为乳白色、带有脂香味粘稠的水溶性液体,其组成包括鼠李糖脂、菌体干细胞、多糖、中性脂等,其中鼠李糖脂的有效含量在30 g/L以上。3. 作用机理 总述:该产品的主要成份是生物大分子,它们具有粘弹性和乳化性,能起到增大驱油波及效率的作用,在油层中具有封堵、变形、运移、再封堵的特性,可实现从水井到油井的全过程调剖驱油;具有较高的表面活性能力,有效改变储集层岩石表面的润湿状态,降低原油与岩石表面的润湿角,降低油水界面张力,从而减少了原油在储层孔隙中的流动阻力,原油得以从岩石颗粒表面释放,从而起到提高原油采收率的作用。鼠李糖脂发酵液成分及其对油层的作用鼠李糖脂发酵液组分物质名称对油层的作用鼠李糖脂为代表的各种糖脂类表面活性剂物质1、降低岩石-油-水系统界面张力及表面张力2、形成油-水乳浊液 3、增强油相相容性有机酸类1、提高孔隙度和渗透率 2、降低油黏度菌体的蛋白及核酸大分子类封堵高渗透层,增大水驱扫油率并降低油水比醇、酮、醛溶剂类溶解岩石孔隙中原油,降低原油黏度(1)鼠李糖脂发酵液中的表面活性剂物质形成临界毛管胶束、增溶、乳化、互溶阶段的洗油机理 生物表面活性剂鼠李糖脂等小分子溶液达到临界胶束浓度后,其活性分子会自发迁移到油相界面,由热力学公式△G0m=△H0M-T△S0M可知油相界面自由能降低。表现为聚集于油相,使亲油基团插入油相,亲水基团留在水相,形成圆柱胶束,胶束内核提供了一个增溶的空间,使油相处于岩心孔道中央,发生油相聚集溶合,同时也使多个鼠李糖脂类分子亲油基与油结合形成乳状液,使黏度得到降低。动力来源除了驱替的压力、油水自由能的降低还有微毛管束的拉伸作用,蜂窝状的底层孔隙使得溶液胶束受毛管力作用被沿着岩石孔道推进,胶束经过岩心孔道时受到油滴间表面张力的作用使残余油进入胶束形成油带,它的形成使采出油的含水率得到降低。当油与鼠李糖脂类活性分子结合经过岩心多路液流汇集处或孔道张力集中的弯道处多发生乳化,使油黏度进一步降低。增溶乳化的胶束受驱动力推进,遇到不动的残余油则表现为互溶。此时的油相与水相界面张力及自由能达到最低值。当油相聚集岩心孔道中央达到一定量后挤压水相与岩石孔隙面接触,水相与岩心孔隙形成表面张力膜,增强了水对岩石的润湿性,有利于残油油滴驱出。后续水驱期间,受驱动推力及毛细管共同作用使驱出的油含水率降低,压力平稳,采收率曲线提高平缓。随着水驱的推进鼠李糖脂类表活剂分子随着被驱出的量而减少,其乳化作用、降低界面张力作用及降黏作用的能力快速降低,当压力达到驱动溶液流动的恒定值则表现为平稳,此时的含水率也接近稳定。(2)鼠李糖脂发酵液中的菌体蛋白、核酸等有机大分子调驱机理 一定浓度的发酵液进入油层后,微生物代谢的生物有机物及菌体残余物质聚合形成微生物封堵,在驱替压力作用下向受力作用低的大孔导流动即高渗透区域,并调整吸水剖面,增大水驱扫油效率,降低油水比,起到宏观和微观的调剖作用,是一种有选择的封堵,改变水流向,达到提高采收率的作用。从室内驱油试验压力曲线研究证明,该微生物大分子及菌体类似于胶体,即生物大分子及菌体蛋白是有伸缩性与粘弹性,能够在复杂的非均质油层中表现出与压力相反的缓冲效应,该效应形成提高采收率的封堵调驱机理。(3)鼠李糖脂发酵液作为本源微生物营养激活剂提高采收率鼠李糖脂发酵液成分中含有大量的氮元素、碳元素及磷元素,菌体分解的核酸及蛋白等小分子是地层本源微生物迅速生长的高级营养物质,是微生物产生大量代谢物,有表面活性剂、气体、有机酸等进一步发挥微生物采油原理。(4)结论一、鼠李糖脂驱油机理包括四个阶段:形成毛管胶束阶段,增容阶段,乳化阶段,互溶阶段,四个阶段相互依存,协同的洗油机理,提高了原油的采收率。二、与单一鼠李糖脂相比未处理的鼠李糖脂发酵液驱油效果更好,鼠李糖脂与菌体蛋白、菌体代谢物有机酸、醛酮类化合物共同作用原油,既有表面活性剂作用又有大分子封堵调驱作用,提高原油采收率。三、大分子物质封堵岩层大孔道的调驱机理,降低流速比、使驱替液向油层小孔道驱替未动用剩余油、以及降低油水界面张力、乳化并降低原油粘度增容的协同洗油机理是提高采收率的综合效应指标。四、鼠李糖脂发酵液本身是油层中本源微生物的营养激活剂,能促进本源微生物生长发挥微生物采油。

  • 河南名吃胡辣汤的几种做法

    http://simg.instrument.com.cn/bbs/images/default/em09511.gif 河南特色食品-胡辣汤,是身为河南人的我也乐意去品尝的。也愿意去为之宣传。  河南胡辣汤做法: 先将红薯粉条和切碎的肥猪肉放入铁锅里炖,同时加入花生仁、芋头、山药、金针、木耳、干姜、桂仔、面筋泡等。待八成熟后勾入适量精粉,注意搅拌。然后兑入配好的调料及花椒、胡椒、茴香、精盐和酱油,略加食糖少许,一锅色香味俱佳的胡辣汤就做成了(据说正宗的还要加药材,具体配料不得而知。)  河南肉丁糊辣汤的制作方法如下: 〔原料〕:(制30碗)熟羊肉1.6公斤,羊肉鲜汤10公斤,面粉1.5公斤,粉皮(或粉条)500克,海带100克,油炸豆腐150克,菠菜250克,胡椒粉15克,五香粉8克,鲜姜20克,盐10克,香醋500克,芝麻油150克。〔工艺〕分为原料加工、洗面筋、制汤三道工序。  (1)原料加工。熟羊肉切成小骰子丁(也可切片);粉皮泡软后切成丝;海带胀发后洗净切成丝,用开水煮熟淘去粘液,再用清水浸泡;油炸豆腐切成丝;菠菜拣去黄叶,削根,洗净切成约2厘米长的段;鲜姜洗净切成或剁成米粒状。  (2)洗面筋。将面粉放入盆内,用清水约1公斤调成软面团,用手蘸上水把面团揉上劲;饧几分钟,再揉上劲,然后兑入清水轻轻压揉,至面水呈稠状时换上清水再洗。如此反复几次,直到将面团中的粉汁全部洗出,再将面筋用手拢在一起取出,浸泡在清水盆内。  (3)制汤。锅内加水约5公斤,加入鲜羊肉汤,再依次放入粉皮丝、海带丝、油炸豆腐丝和盐,用大火烧沸,然后添些凉水使汤锅呈微沸状。将面筋拿起,双手抖成大薄片,慢慢地在盆内涮成面筋穗(大片的面筋用擀杖搅散)。锅内烧沸后,将洗面筋沉淀的面芡(将上面的清水沥去)搅成稀糊,徐徐勾入锅内,边勾边用擀杖搅动,待其稀稠均匀,放入五香粉、胡椒粉,搅匀,再撒入菠菜,汤烧开后即成。食用时淋入香醋、芝麻香油。  陕西回民肉丸胡辣汤制作方法: 陕西胡辣汤做法原料:材料与河南胡辣汤有几分相似,也许是此基础上改进的吧。白菜、土豆块、胡萝卜块等必要材料外,牛肉丸子取代了河南胡辣汤的肉丁,吃前要浇香油,覆油泼辣子,再拿一个陀陀馍,这陀陀是回民常见的面食,一个面饼怕有20cm的直径,1cm多的厚度,真个扎实。掰开了泡进汤里,比羊肉泡馍要粗疏的多,掰上个拇指第一节大小也就差不多了,按个人喜好而定。。。。。。。。  肉丸糊辣汤做法一: 制作糊辣汤首先要有一口0.8—1米的大铁锅才成。水烧九成加入事先用手搓好的光滑如一分币大小的牛肉丸(羊肉的很少,可能是成本的原因),接着放入时令蔬菜:土豆、胡萝卜(均切成滚刀块)、洋白菜、长豇豆(寸段)、西葫芦等。接着放入定量的调料:盐、五香粉、胡椒粉、花椒粉及不让外人所知的各家的绝招秘方(好像有牛油之类的),加入适量的淀粉或面粉(还是成本原因)用木铲不停地搅动至糊状,加入味精,烧熟即成。吃时可依个人喜好加入辣子(用滚油泼入辣椒面做成的,也叫油泼辣子,各家的味道也不同)。糊辣汤不是常见的饭后喝的汤,而是类似北京的炒肝、油茶一样的糊状小吃 我在西安吃的大多是一做法,我找到第2种做法,供大家参考。  肉丸糊辣汤做法二: 用牛肉、羊肉(汉民可用其他肉)做肉馅,加入料酒,花椒末,姜末,香油,味精,盐,一只鸡蛋,一点面粉(千万不可多加)拌好,淹半个小时或是10分钟。泡好木耳黄花菜,洗干净,撕成小片和小条。煮锅加辣椒丝,花生米和水煮至水滚花生米8成熟,用手把肉馅挤成肉丸下入锅中(用勺子作肉丸也行,但没有手挤的味道好),下黄花菜,过8-10分钟左右肉丸就熟了,下圆粉条,下木耳。调一碗淀粉汁,加入大量花椒末,白胡椒,少量五香粉,粉条煮熟的时候就可以下这碗调味汁。锅中的汤汁粘稠的时候,可以打蛋花进去,也可以加弄碎的嫩豆腐。冬天喝这个汤很舒服,也可以有不同汤底,猪骨,牛骨,羊骨,也可以加枸杞一类的中药。 肉丸糊辣汤的肉丸很小,不比四喜丸子,也不如丸子汤的丸子那么大,只有小拇指那么大,但一定要是牛肉做的,大肉做的就不好,所以汉民做的肉丸糊辣汤就不行。 无论您按那类做出来肉丸胡辣汤,最后再洒上些胡椒及香油,如果把馍掰碎了泡在汤里,更是地道!是又香又辣绝对过瘾!  另外,提示的是优质肉丸糊辣汤的特点如下:一: 闻: 北舞渡胡辣汤就是汤端起先闻一下,有没有浓厚扑鼻的牛肉汤香味. 二: 看: 观察一下碗里的蔬菜和肉丸比例搭配是否合适,汤的稀稠是否适中,辣子油是否调得红红的! 三: 吃: 莲花白煮的不软不硬,大小适中.土豆是否煮面咧,关键是丸子吃到嘴里有没有弹性,有没有一股类似饺子馅肉香味直窜鼻子,辣子油和香油搭配的比例,有特殊爱好的看有没有撒点生蒜苗.(刘蜂和大皮院的几家一般都有) 四: 品: 吃完后嘴里的余香和花椒的麻味能保持多久(超过十分钟以上为佳品)

  • 【转帖】湖南鼠患中国以毒灭鼠尸毒更毒

    湖南鼠患中国以毒灭鼠尸毒更毒中国湖南省洞庭湖区最近鼠辈横行,约二十亿只老鼠离开淹水的湖区,向全省二十个县市流窜,不仅咬断农作物及根茎,也严重威胁居民健康。当局进行灭鼠持久战,传出某单一地区就扑灭两百多万只老鼠。但由于含有毒饵的鼠尸并未按规定掩埋,有些遗落田间,有些被抛进洞庭湖,残留的毒药可能引发新危机。 20亿老鼠流窜 生态浩劫中国日报报导,当地农民发起全面灭鼠,包括用铁铲打死老鼠,以及大量施放毒饵,光是某个地区就回报共消灭两百三十万只老鼠,鼠尸则加以焚化或掩埋。一名六十五岁居民在提到被严重摧毁的农地时说:“就像打仗时敌军过境一样,什么都不剩。”这次鼠患起于6月23日汛期洪水提高洞庭湖水位,让当地湖洲(湖里的沼泽地带 )上的老鼠洞泡在水中,老鼠大量迁移至干地,所到之处,一百六十万公顷的农地顿成荒芜之地。官员说,今年上半年气候干燥,给老鼠大量繁殖的空间与时间,“这是湖区在过去十年来经历过最大的鼠灾”。广东“南方都市报”13日报导,在灾区斜坡上躺满了溃烂的鼠尸,晚风吹过长堤时,带来令人作呕的腥臭味。湖南省政府日前说,大通湖区在6月21日至24日共捕杀九十多吨老鼠。残毒随雨 流入沟渠田地由于洞庭湖进入雨季,携带大量病菌的鼠尸与残存的毒饵随雨水流入沟渠与田间,若干被掩埋的鼠尸也被冲出来,空气中飘着阵阵腐臭。鼠患最严重的岳阳县鹿角镇滨湖村村支书记徐红兵说:“只有四分之一的老鼠被掩埋,无论汛期或是大热天,残留的鼠尸都是大问题。”当地的老鼠被称为东方田鼠、沼泽田鼠、远东田鼠或大田鼠。东方田鼠不仅危害农作物,也是钩端螺旋体病、出血热等病媒。专家警告,如果再淹一次水,洞庭湖区饥饿的田鼠大军可能攻破挡鼠墙,卷土重来。洞庭湖鼠患之后 湖南田鼠变广东野味洞庭湖爆发鼠患后,有人将捕猎到的田鼠运至广东,当野味出售,在餐厅每只售价为40元人民币。 资讯时报报道,广州已禁食田鼠等野味,但禁之不绝。在广州白云区增槎路原槎头禽畜动物批发市场,一名常德鼠贩说,他去年五一后来到这个市场,专门从事山鼠、田鼠买卖,一年来已经有了不少熟客。一般情况下,他只跟湖南的田鼠收购商和广东这边的熟客保持单线联系。 他说,只有新货(活鼠)从湖南那边发车出境了,湖南收购商才会向广州鼠贩致电,告知抵达时间,嘱咐其接货。没有新货的日子里,双方都不会主动互相联系。接到货后,广州鼠贩会逐个致电几个相熟的野味餐馆于次日凌晨前来提货。为了降低注意力,一个地区只派一辆货车来提货,如番禺市桥一带做野味的餐馆,不会各个前来,而是一起统计当天各种野生动物的要货量后,派一辆车全部拉回番禺后,再各自分货。 常德鼠贩表示,虽然不知道是否因鼠患所致,但7月份以来,已经连续两周天天都有货(活鼠)收,湖南收购商还称,加货也没问题。而在去年夏天,隔三差五才有一批货发到广州,湖南收购商也从不主动提示鼠贩货源充足,可以加大要货量。 “不管在冬天的旺季,还是在夏天的淡季,(田鼠)批发价都是20多元/斤;餐馆一般论只卖,40至50元/只。”鼠贩说:“而且最近田鼠多,我还可以跟那边(湖南)压价,批发价可以稍微降一点,广州人钱多,又好吃野味,你照原价卖,照样大把人吃,你赚得更多!” 据透露,田鼠交易有很明显的季节差异。冬季为旺季,这处地下交易市场内的6个档口,平均每档日均能卖出数百斤田鼠、山鼠,春节期间更能卖出上千斤;夏季为淡季,一般每档每日只能进不到100斤的货。不过,无论旺季还是淡季,都能保证卖得一只不剩。--------------------------看了以后,令人毛骨悚然!![em42]

  • 多糖的HPLC分析

    多糖的分析是一个大问题啊!和大家讨论一下吧,经综合各种文献我认为多糖结构分析内容:要搞清1. 多糖的单糖组成(种类、比例)2. 每个单糖残基的D-、L-构型,吡喃环式或呋喃环式3. 羟基被取代情况(糖苷键的位置)4. 糖苷键及构型(α、β异头异构体)5. 重复单元方法:1、单糖组成:(对照品:葡萄糖、岩藻糖、半乳糖、甘露糖、木糖、阿拉伯糖、鼠李糖)a:水解: 纸层析薄层层析气相色谱(糖氰乙酸酯衍生物、糖醇乙酸酯)液相色谱(ZORBAX-NH2、HRC-NH2、RID)首选气相,灵敏度高,液相RSD、ELSD灵敏度低b:TFA酸解:气相色谱(乙酰化物)c:甲醇解:气相色谱(三甲基硅醚)2:高碘酸钠氧化和Smith降解a:每摩尔己糖基的高碘酸消耗量、甲酸释放量。(目的:判断可氧化糖基与不可氧化糖基之比例)b:Smith降解完全水解,气相分析,如有葡萄糖(表示有1-3键糖基)、甘油(有1-6或1-2糖基)、甲酸(有1-6糖基)Smith降解部分水解,说明主干糖苷键类型。3:甲基化分析(Hakrmor法)-支链分布多糖—甲基化—水解—还原得甲基化单糖醇—乙酰化得糖醇衍生物—GC-MS检测。 对照品 2,3,4,6-四甲基葡萄糖 糖苷键类型 1—2,4,6- 三甲基葡萄糖 1—32,3,4-三甲基葡萄糖 1—62,4-二甲基葡萄糖 1—3,6 4:IR图谱解析a:吡喃环式或呋喃环式α、β异头异构体5:1HNMR及13CNMR解析(构型)6:纯度检查:a: 紫外吸收光谱(280、260)b:电泳(琼脂糖电泳、聚丙烯酰胺凝胶、醋酸纤维素薄膜)c:薄层色谱(多糖不水解)7:X射线衍射,立体构型。好多啊!想和大家讨论讨论多糖的HPLC分析,我们试验室用的液相是C18柱,紫外检测器,做多糖含量及纯度检测,这样的装备够不够用呀?是不是做前必须衍生化或有其它方法,如用示差折射仪作检测器,是不是不需衍生化?多糖的HPLC分析,用得较多用HPGPC测分子量及分子量分布。一般纯多糖紫外吸收较弱,多用RID或ELSD。至于含量测定多用硫酸蒽酮比色或苯酚硫酸法。http://img.dxycdn.com/images_new/smiles/smile_angry.gif

  • 甲撑苯并吡喃的问题?

    我气相打出来的“甲撑苯并吡喃”的峰有三个?因为没接触过这个原料,不知道是不是原料坏掉了,请问知道这个原料的大神科普下,谢谢!

  • CNS_19.006_山梨糖醇和山梨糖醇液

    刘琦[align=center][/align][align=center]第[size=21px]1[font='times new roman'][size=21px]章基本信息[/size][/font][/size][/align]山梨糖醇别名山梨醇,英文名是Sorbitol、D-Glucitol、Sorbol、D-Sorbitol。分子式是C6H14O6,分子量为182.17,密度为1.489 g/cm3,沸点为295℃。是蔷薇科植物的主要光合作用产物。山梨糖醇液是含67%~73% D-山梨糖醇的水溶液。毒性试验显示,内服过量会引起腹泻和消化紊乱。[img]https://ng1.17img.cn/bbsfiles/images/2021/06/202106161539566336_8129_1608728_3.jpeg[/img]1.1 理化性质1.1.1物理性质山梨糖醇为无色针状结晶,或白色晶体粉末,无臭,有清凉甜味,难溶于有机溶剂,它耐酸,耐热性能好,与氨基酸,蛋白质等不易起美拉德反应。山梨糖醇液为无色,透明稠状液体。依结晶条件不同,熔点在88~102℃范围内变化,相对密度约1.49。易溶于水(1g 溶于约0.45mL水中),微溶于乙醇和乙酸。山梨糖醇液为清亮无色糖浆状液体,有甜味,对石蕊呈中性,可与水、甘油和丙二醇混溶[1],pH值为6~7。山梨糖醇有清凉的甜味,其甜度约为蔗糖的50%~70%。1g 山梨糖醇在人体内产生16.7kJ热量。食用后在血液内不转化为葡萄糖,也不受胰岛素影响。作为甜味剂使用不会引起龋齿。山梨糖醇具有良好的保湿性能,可使食品保持一定的水分,防止干燥,还可防止糖,盐等析出结晶,能保持甜,酸,苦味强度的平衡,增强食品的风味,由于它是不挥发的多元醇,所以还有保持食品香气的功能。[size=14px]1.1.2[size=14px]化学性质山梨糖醇的化学性质相对稳定,不燃烧,不腐蚀,不挥发;浓度高时具有抗微生物的特性。有旋光性,略有甜味,具有吸湿性,能溶解多种金属,高温下不稳定。能参与酐化、酯化、醚化、氧化、还原和异构化等反应[color=#333333],并能与多种金属形成络合物[4]。山梨糖醇不含醛基,不易被氧化,加热时不与氨基酸产生美拉德反应。[/color][/size][/size][align=center]第[size=21px]2[font='times new roman'][size=21px]章功能及应用[/size][/font][/size][/align]山梨糖醇有吸湿,保水作用,在口香糖[color=#333333],糖果[color=#333333]生产中加入少许可起保持食品柔软,改进组织和减少硬化起砂的作用。用量为百分之八左右,在面包,糕点中用于保水目的,使用量为百分之二左右,用于甜食和食品中能防止在物流过程中变味,还能螯合金属离子,用于罐头饮料和葡萄酒[color=#333333]中,可防止因金属离子而引食品混浊。根据《食品安全国家标准 食品添加剂使用标准》(GB2760-2014)中规定:山梨糖醇和山梨糖醇液的功能有甜味剂、膨松剂、乳化剂、水分保持剂、稳定剂、增稠剂(如表1[2])。[/color][/color][/color][align=center]表1山梨糖醇和山梨糖醇液 sorbitol and sorbitol syrup[/align]CNS号 19.006,19.023 INS号 420(i),420(ii)功能 甜味剂、膨松剂、乳化剂、水分保持剂、稳定剂、增稠剂[align=center]允许使用范围及限量[/align]食品分类号食品名称最大使用量/(g/kg)备注01.04炼乳及其调制产品按生产需要适量使用淡炼乳(原味),调制炼乳02.0302.02类以外的脂肪乳化制品,包括混合的和(或)调味的脂肪乳化制品(仅限植脂奶油)按生产需要适量使用仅限植物奶油03.0冷冻饮品(03.04食用冰除外)按生产需要适量使用03.04食用冰块除外04.01.02.05果酱按生产需要适量使用 04.02.02.03腌渍的蔬菜按生产需要适量使用 04.05.02.01熟制坚果与籽类(仅限油炸坚果与籽类)按生产需要适量使用仅限油炸坚果与籽类05.01.02巧克力和巧克力制品,除外05.01.01以外的可可制品按生产需要适量使用 05.02糖果按生产需要适量使用 06.03.02.01生湿面制品(如面条、饺子皮、馄饨皮、烧麦皮)30.0 07.01面包按生产需要适量使用 07.02糕点按生产需要适量使用月饼除外07.03饼干按生产需要适量使用 07.04焙烤食品馅料及表面用挂浆(仅限焙烤食品馅料)按生产需要适量使用仅限焙烤食品馅料09.02.03冷冻鱼糜制品(包括鱼丸等)0.5仅当水分保持剂使用时,其最大使用量调整为20g/kg12.0调味品按生产需要适量使用 14.0饮料类(14.01包装饮用水除外)按生产需要适量使用14.01包装饮用水除外。固体饮料按稀释倍数增加使用量16.06膨化食品按生产需要适量使用 16.07其他(豆制品工艺)按生产需要适量使用仅限豆制品工艺16.07其他(制糖工艺)按生产需要适量使用仅限制糖工艺16.07其他(酿造工艺)按生产需要适量使用仅限酿造工艺09.04.01熟干水产品按生产需要适量使用仅限使用山梨糖醇09.04.02经烹调或油炸的水产品按生产需要适量使用仅限使用山梨糖醇09.04.03熏、烤水产品按生产需要适量使用仅限使用山梨糖醇[table][/table]它是在日本最早允许作为食品添加剂使用的糖醇之一,用于提高食品保湿性,或作为稠化剂之用。可作甜味剂,如常用于制造无糖口香糖。也用作化妆品及牙膏的保湿剂、赋形剂,并可用作甘油代用品。2.1功能2.2.1甜味剂山梨醇是一种只含羟基官能团的碳水化合物,具有低热甜味剂的性质。2000年6月国际粮农和卫生组织食品法典委员会确认山梨醇、木糖醇、麦芽糖醇、乳糖醇、甘露醇等可作为食品添加剂加到食品中,制作无糖甜食品。在欧美发达国家中,以山梨醇等替代食糖生产糖果、点心等各类食品已十分普遍,发展趋势非常明显,其中最突出的是口香糖。在日本,各种食品和糖果都广泛使用山梨醇为甜味剂[3]。2.1.2膨松剂具有多羟基结构的山梨糖醇还具有降低水分活度,控制结晶、改善或保持柔软度的性质[],故在食品工业中经常将山梨糖醇作为一种膨松剂使用。在糖果制造中使用山梨糖醇可抑制蔗糖结晶,加上山梨糖醇本身具有的保湿性,可赋予糖果柔软的质感。在冰制品和冰激凌中可降低冰点,使产品柔软,易于勺食,且同样可抑制产品中糖类重新结晶[5]。2.1.3乳化剂山梨糖醇含有6个羟基,可与许多有机酸发生酯化作用。山梨糖醇脱水与脂肪酸合成的山梨醇脂肪酸酯统称为司盘类表面活性剂,是优良的食品乳化剂[6],可改善缩短乳化进程。在面包生产过程中可防止面包中淀粉凝沉,改善面团的加工性能;生产的糕点外观美,食用性好。还可以广泛应用于冰淇淋以及豆奶生产中。山梨糖醇制取脱水山梨醇酐,再与棕榈酸单酯化制得的司盘40,可用作印刷油墨及多种油品的乳化剂。其中,作为食品添加剂,山梨醇酐硬脂酸酯(司盘60)、山梨醇酐单棕榈酸酯(司盘65)、山梨醇酐单油酸酯(司盘80)均已经列入食品添加剂使用卫生标准中,可应用于椰子汁、果汁、牛乳、奶糖、冰淇淋、面包、糕点、麦乳精、人造奶油和巧克力等食品中[5]。2.1.4水分保持剂山梨醇的多羟基结构使其具有与水结合的性质,并具有控制食品黏度和质构、保持湿度、改善脱水食品的复水性质等作用。山梨醇的良好吸湿性,使其在潮湿的环境下会吸收一些水分,当湿度降低时,山梨醇则释放一些水分,进而建立一种湿度平衡[7],能够防止食品干裂,使食品柔软,保持新鲜度,延长有效期,防止变质。因此,山梨糖醇经常作为保湿剂应用于焙烤食品中。在饼干蛋糕和酥皮糕点中加入适量的山梨糖醇,可防止产品干裂,且有助于产品的外观。但山梨糖醇不适宜用于脆酥食品中。此外,山梨糖醇与其他糖类共存时会出现吸湿性增加的现象,使用时需特别注意[5]。2.1.5稳定剂山梨糖醇不含有醛基,不易被氧化,加热时不与氨基酸产生美拉德反应。有一定的生理活性,能防止类胡萝卜素和食用脂肪及蛋白质的变性。在浓缩牛乳中加入山梨糖醇可延长保存期,对鱼肉酱、果酱蜜饯也有明显地稳定和长期保存的作用,山梨糖醇属于不挥发性多元醇在保持食品香气方面有较好的作用。粉末和液体形式的山梨糖醇均可保持香气和滋味,因而可作咖啡、茶、巧克力饮料和加香饮料等产品的稳定性的无糖载体[8]。山梨糖醇还能螯合金属离子,用于饮料和葡萄糖酒,可以防止金属离子引起的浑浊[font='calibri'][[font='calibri']9]。近年开发成功的中成药产品,如双黄连口服液、双黄连粉针和安宫牛黄丸、清开灵输液等,既保持了中药的综合药效,又具有西药使用方便的特点,添加少量山梨糖醇,可起到稳定药效和防止沉淀的作用。2.1.6[size=14px]增稠剂可用于酒类、清凉饮料的增稠。2.1.7其他作用①山梨糖醇与甘露醇都是具有扩张细胞外液容积作用的高渗脱水利尿药。中国药典规定[10],临床用甘露醇输液为20%的过饱和溶液。温度较低时,甘露醇易结晶析出 (见表2[11] )。[/size][/font][/font][align=center][size=12px]表2甘露醇在水中溶解度与温度的关系[/size][/align]温度[font='calibri'] /[font='calibri']℃ 010203040D-[size=14px]甘露醇10.413.718.625.234.6/g ( 100 g H2O) - 1[/size][/font][/font][table][/table]可见甘露醇输液20℃以下易结晶析出,而我国大部分地区冬季室温低于20℃,用药前需预热使之溶解,不仅给临床用药尤其是急救用药造成困难,也易引起患者的猜疑,造成医患之间的矛盾。在甘露醇输液生产中加适量山梨醇,配成复方甘露醇输液,即可防止甘露醇结晶析出,且疗效相同[12]。②冷冻保护剂:美国批准的 Neupogen(人粒细胞集落刺激因子)的新剂型,即是在其制剂中用山梨糖醇代替甘露醇作为保护剂,可使 Neupogen在冷冻环境时,仍能保持其生物活性[13]。目前甘露醇的价格是山梨糖醇的3~5倍(最高时达 10倍),用山梨糖醇代替甘露醇能达到同样效果,既可降低成本,而且原料来源更广。随着基因工程的高速发展,大量的基因因子需要保护,山梨糖醇在这方面的应用将更为广阔。2.2山梨糖醇的价值[font='calibri']2[font='calibri'].2.1山梨糖醇的直接药用价值山梨糖醇具有利尿、脱水的特性,能降低颅内压,防止水肿,可作为药物直接使用,用于脑水肿、青光眼;也用于心肾功能正常的水肿少尿;口服可作缓泻剂或糖尿病患者的蔗糖代用品。临床制剂有山梨醇注射液、山梨醇铁注射液、复方氨基酸注射液等。山梨醇在复方氨基酸中所起的作用主要有: ①可提高氨基酸的利用率;②平衡注射液中碳氮之比;③可避免葡萄糖灭菌时引起糖中醛基与氨基酸中的氨基发生美拉德反应而产生焦色素,并且也不易产生热原;④使伤口、创面部位尽量保持干燥,加快愈合,避免感染等。2[size=14px].2.2山梨糖醇可作为药用辅料山梨糖醇能与多种辅助形剂配伍 (与氧化剂禁配 ),广泛用于药物的固体分散剂、填充剂、湿润剂、稀释剂、胶囊的增塑剂、甜味剂、矫味剂、软膏的基质等作辅料。其不同用途的用量见表3[14]。[/size][/font][/font][align=center]表3山梨醇在药用辅料中不同用途和用量[/align]用途代替甘油和丙二醇润滑剂口服和外用溶液的赋形剂防止糖浆和酏剂结顶无糖甜昧剂增稠剂片剂粘结度和水份控制剂明胶和纤维膜增塑剂供注射用稀释剂DSS、四环素、抗坏血酸、复合维生素 B、维生素和铁盐的赋形浓度/%25~903~1525~90 15~3025~9025~903~105~2010~25以下25~90[table][/table][size=14px]2.2.3[size=14px]山梨糖醇的其他用途①制备维生素C[color=#333333]山梨糖醇可用于生产维生素C的原料,其经发酵和化学合成可制得维生素C。制药行业,VC合成消耗山梨醇的量最大,占全世界山梨糖醇总消耗量的16% (我国高达50% )。[img]https://ng1.17img.cn/bbsfiles/images/2021/06/202106161539569529_9169_1608728_3.jpeg[/img]以传统山梨糖醇制备维生素C的工艺过程(二步发酵法)如下:[/color][/size][/size][align=center][/align]②其他合成树脂和塑料,分离分析低沸点类含氧化合物等。也用作[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]固定液、稠化剂、硬化剂、杀虫剂等。用作[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]固定液,用于低沸点含氧化合物、胺类化合物、氮或氧杂环化合物的分离分析。还用于有机合成。利用山梨醇所具有的保湿性能,用作牙膏、化妆品、烟草的调湿剂。是甘油的代用品,保湿性较甘油缓和,口味也较好。可以和其他保湿剂并用,以求得协同的效果。也用于医药工业作为制造维生素C的原料。也可用于工业表面活性剂的原料,用它生产斯盘和吐温类的表面活性剂。以山梨糖醇和环氧丙烷为原料,可以生产具有一定阻燃性能的聚氨酯硬质泡沫塑料。[color=#333333]在医药工业中,山梨[color=#333333]糖[color=#333333]醇经过硝化生成的失水山梨醇酯是治疗冠心病的药物。[/color][/color][/color][align=center][font='times new roman'][size=21px]第三章[font='times new roman']来源和合成[/font][/size][/font][/align]3.1 自然来源山梨糖醇广泛分布于自然界植物果实中,在梨、桃、苹果中广泛分布,含量约为1%~2%,1872年法国化学家Joseph Boussingault首先从山梨树果汁中分离而得[15]。常温下有液体和固体2种状态:液体山梨醇为50%~70%的水溶液,无色、无臭、味甜,pH值为6~7,10%水溶液的旋光度[a] 20d为-1.98°;固体山梨醇为白色针状、片状、粒状结晶粉末,极易溶于水,味道清凉爽口,甜度约为蔗糖的60%[15]。3.2人工合成山梨糖醇的产品规格主要有50%山梨醇液、70%山梨醇液和结晶山梨醇等[3]。山梨糖醇的生产包括氢化法、电化学法和发酵法。3.2.1催化加氢法氢化法是目前最常用的生产方法。催化加氢法所用原料主要是葡萄糖,少数工艺以淀粉、蔗糖、纤维素等为原料。以淀粉、蔗糖等生产山梨糖醇。步骤:①通过酶法或酸法将其转化成葡萄糖,②再催化加氢制备山梨糖醇[16]。1942年,日本首次采用葡萄糖催化加氢法生产山梨醇;其后,德国罗莱班公司采用固定床反应器催化加氢生产山梨醇[17-18]。目前,国内外普遍采用葡萄糖催化加氢法工业化生产山梨醇。生产装置:①间歇式,②连续式。工业上目前较多采用高压柱形反应器的连续式氢化新技术。将葡萄糖溶液通过高压泵连续注入装有固体块状催化剂的柱式反应器中,反应一段时间后排出即为山梨糖醇。催化器在反应器中处于静状态,没有搅拌和冲击的影响,而葡萄糖溶液和氢气连续不断的通过催化剂的表面,使氢化反应均匀完全。连续氢化所得的山梨糖醇溶液经过离子交换树脂精制通过升膜式或降膜式蒸发器脱水浓缩即可得液体山梨糖醇成品,进一步结晶即为结晶状山梨糖醇。催化剂是该技术的关键因素[19],传统工艺多使用Ni基催化剂。3.2.2山梨糖醇的电化学法生产技术[20]电化学法制备山梨糖醇,是通过电解法在阴极上将葡萄糖或果糖还原为山梨糖醇。与催化加氢法相比,电化学法具有工艺流程短、安全性高、产物易分离提纯、生产过程中废物排放少等优点。但由于转化率低(约70%),且每次电解只能在一个电极上合成一种产品,导致成本较高,因此电化学法生产山梨糖醇至今仍未实现工业化。直到20世纪80年代中叶,Park和Pintauro等提出了成对电氧化和还原工艺,即在同一个电解槽内同时合成葡萄糖酸盐和山梨糖醇,使得电化学法制备山梨糖醇的技术有了巨大的进步。成对电氧化和还原工艺以葡萄糖为原料,以NaBr为催化剂,加入辅助电解质Na2SO4,在50℃~60℃进行成对电化学反应。溴离子首先在阳极表面上失去电子生成溴分子,继而与葡萄糖作用,生成葡萄糖酸内酯中间体,在水溶液中与葡萄糖酸存在平衡,由于溶液中还有Na盐或Ca盐,则进一步生成葡萄糖酸盐,以避免葡萄糖酸内酯在阴极被还原。葡萄糖在阴极表面上获得2个电子被还原成山梨糖醇。因为山梨醇和甘露醇是同分异构体,所以有小部分的葡萄糖还原会成为甘露醇。3.2.3山梨糖醇的发酵法生产技术[20-21]长期以来山梨糖醇的生产都只有氢化法,直到1984年有报道利用一种生成乙醇的微生物Zymomonasmobilis可将果糖和葡萄糖的混合物转化为乙醇,且山梨糖醇的生成是与葡萄糖脱氢形成葡萄糖内酯的反应同时进行。Zymomonasmobilis最初是从发酵龙舌兰、棕榈和蔗糖等植物汁中分离得到的,经过生物转化来生产山梨糖醇和葡萄糖酸。用渗透性试剂(如甲醇或洗涤剂等)浓缩Zymomonasmobilis细胞处理后,葡萄糖酸和山梨醇产率分别为94%~95%和98%~99%。但这种生产方法操作麻烦,成本也高,目前仅限于实验室研究。[size=14px]3.2.4[size=14px]其他合成方法(1):将配制好的53%葡萄糖水溶液加入高压釜,加入葡萄糖重量0.1%的镍催化剂。经置换空气后,在约3.5MPa、150℃、pH8.2-8.4条件下加氢,终点控制残糖在0.5%以下。沉淀5min后,将所得山梨糖醇溶液通过离子交换树脂精制即得。原料消耗定额:盐酸19kg/t、液碱36kg/t、固碱6kg/t、铝镍合金粉3kg/t、口服糖518kg/t、活性炭4kg/t。(2):采用淀粉糖化所得精制葡萄糖,中压连续或间歇加氢制得。(3):将53%的葡萄糖水溶液(事先用碱液调pH=8.2~8.4)和葡萄糖质量0.1%的镍铝催化剂加入高压釜,排尽空气后进行反应,控制温度150℃,压力3.5MPa:当葡萄糖含量达0.5%以下,反应即达终点。静置沉淀、过滤。滤液用强酸性苯乙烯系阳离子交换树脂001×7及强碱性系铵Ⅰ型[color=#333333]阴离子交换树脂201×7进行精制,去除镍、铁等杂质,即得成品D-山犁醇。[/color][/size][/size][align=center][font='times new roman'][size=21px]第四章[font='times new roman']对人体的影响[/font][/size][/font][/align]4.1 [font='calibri']利尿作用山梨糖醇在人体内小部分被转变成糖原,大部分不被代谢,以原形经肾小管排出。山梨糖醇静滴后,可使血浆渗透压增高、组织脱水,经肾小球滤过,几乎不被肾小管重吸收,从而起到利尿作用。[font='calibri']4.2防止龋齿由于蔗糖能被口腔中的微生物利用,易引起龋齿,多吃不利牙齿健康。而山梨糖醇在口腔中不被龋齿的链球菌所利用,并能使口腔中的pH值略微上升,是一种防龋齿的甜味剂。4.3[size=14px]代替蔗糖,适用于一些特殊人群由于蔗糖能直接引起血糖浓度的变化,高血压、高血脂、糖尿病患者和肥胖症患者等对蔗糖敏感的人群不适用。而在哺乳动物及人体系统中,山梨糖醇通过山梨醇脱氢酶氧化成果糖,然后进入果糖-1-磷酸酯途径代谢,代谢与机体内的胰岛素无关,不受胰岛素的控制,最终代谢物为二氧化碳和水,在血液中不转化为葡萄糖,对血糖值和尿糖没有影响。因而使用山梨糖醇代替蔗糖,对糖尿病患者山梨醇比蔗糖更易忍受。所以可避免糖尿病、肥胖症、肝病、胆囊炎等患者的不适。Wheeler等研究了2种氢化淀粉水解物14:8:78和7:60:33(山梨糖醇:麦芽糖醇:其他更高聚合度的低聚糖醇)与葡萄糖相比,对无糖尿病者、非胰岛素依赖型糖尿病患者及胰岛素依赖型糖尿病患者血糖的影响,结果表明,对于所有的试验组,因摄入氢化淀粉水解物而增加的胰岛素量显著低于葡萄糖,氢化淀粉水解物引起的总血糖反应也都显著低于葡萄糖。这除了氢化淀粉水解物中葡萄糖含量较低的原因外,还可能由于山梨糖醇对葡萄糖吸收有抑制作用[22-23]。4.4其他此外,山梨糖醇还可刺激胰腺分泌胰脂肪酶等,促进胰岛素释放,使肝胆汁分泌增加,山梨糖醇不被胃酶分解,在肠中滞留时间比葡萄糖长,有润肠作用[24]。但是人体肠道可能吸收的山梨醇量不多于10g~20g,如摄入量过多,会引起渗透性腹泻[20]。[/size][/font][/font][align=center][font='times new roman'][size=21px]第五章[font='times new roman']违规事件[/font][/size][/font][/align]5.1 EBay停售在线拍卖公司EBay Inc(EBAY)2012年3月22日宣布,在意大利周末发生患者服用网购有毒山梨糖醇致死事件后,已在全球范围阻止在其网站上出售这种产品。而此前,国内也曾爆出味千就包装面过量使用添加剂的报道,当时味千回应称,2010年1月内地机构宣布在面制品允许添加山梨糖醇[25]。[size=14px]5.2[size=14px]雀巢添加剂2013年1月份的《进境不合格食品、化妆品信息》显示,雀巢一批巧克力棒因违规使用化学物质山梨糖醇而被销毁。2013年3月上海出入境检验检疫局销毁了2.7吨雀巢巧克力棒。被销毁的雀巢巧克力棒含有过高的山梨糖醇,这是一种甜味剂,过量使用可能导致肠道问题。上海出入境检验检疫局宣传部工作人员表示,上海出入境检验检疫局确销毁过一批雀巢巧克力棒,但外媒报道的时间不对。该工作人员称,在国家质量监督检验检疫总局的官方网站公布了这一信息。“外媒的报道也是从总局网站上摘抄的,但不知为什么他们把时间说成了本周。”经调查得知,被检出问题的雀巢产品具体是“雀巢奇巧榛子味牛奶巧克力脆谷棒”这款产品,产地意大利,不合格原因是违规使用化学物质山梨糖醇。信息显示,上海出入境检验检疫局总共查获2.7吨雀巢巧克力棒,已采取销毁方式处理。在日本山梨糖醇作为食品甜味剂,使用范围和限量如下:清凉饮料为百分之一到三,蛋白在百分之三左右,巧克力为百分之四左右。山梨糖醇的最大使用量是40g/kg,但一般都不会达到那么高的值,所以一般情况就是分为可用和不可用,“违规使用[color=#333333]”应该就是不可用。那么既然按照《食品添加剂使用标准》的规定,山梨糖醇可以用于巧克力和巧克力制品,而巧克力棒属于糕点,因而推测可能是进口申报的时候报的不是糕点,而导致与我国质量标准不符[26]。[/color][/size][/size][align=center][font='times new roman'][size=21px]第六章发展前景[/size][/font][/align]我国山梨糖醇产业发展迅猛,20世纪90年代,产能约为30 kt/a,2005年约为550 kt;2013年达到1200 kt[27];2015年年末,全国总产能突破3000 kt。我国山梨糖醇产能大幅跃升,成为山梨醇出口大国[28]。 近年来,国内产能超过100 kt/a的山梨糖醇生产厂家主要有:长春大成实业集团有限公司(350 kt/a)、山东天力药业有限公司(400 kt/a)、茌平县同创生物技术有限公司(200 kt/a)、利达(柳州)化工有限公司(160 kt/a)、山东青援食品有限公司(140 kt/a)、罗盖特(中国)精细化工有限公司(120 kt/a)、秦皇岛骊华淀粉股份有限公司(100 kt/a)、诸城兴贸玉米开发有限公司(100 kt/a)、山东鲁维制药有限公司(100 kt/a)、山东鲁洲集团(100 kt/a)等[27]。随着山梨醇产能的激增,其下游产业的需求量趋于饱和,因此,对山梨醇的下游应用及提高产品附加值提出了更高的要求[29]。6.1[font='calibri']前景期望[font='calibri']山梨糖醇具有优良的性能,低廉的价格,是全球消费量最大的糖醇,约占糖醇总消费量的1/3。山梨[size=14px]糖醇近年已成为世界食品工业界的新宠,随着经济技术在我国快速发展,山梨醇行业将呈快速上升趋势,其市场前景也将是一片光明。[/size][/font][/font][align=center][font='times new roman'][size=21px]参考文献[/size][/font][/align][1] 李凤林、黄聪亮、余蕾.食品添加剂:化学工业出版社,2008.[2] 《食品安全国家标准食品添加剂使用标准》(GB2760-2014).[3] 周日尤,伍玉碧. 我国山梨醇工业的现状与发展 [J]. 现代化工, 2000(9):49-51.[4] 山梨醇化学性质.化学网[引用日期2014-6-20].[5] Smith.Jim,Hong-Shum.L. ,姜竹茂.食品添加剂实用手册 [M]. 北京:中国农业出版社,2005:396-406.[6] 张晓英,赵统领. 山梨醇的制备与应用 [J]. 中国食品添加剂, 2001(5):49-50.[7] O. R. Fennema,王璋,等. 食品化学(第三版)[M]. 北京:中国轻工业出版社,2003:664-666.[8] 金树人. 中国糖醇行业的形势与发展动态[J]. 牙膏工业, 2006(2):47-48.[9] 潘道东. 功能性食品添加剂 [M]. 北京:中国轻工业出版社, 103-105.[10] 中华人民共和国药典 ( 95年版二部 ) [ M ].北京: 化学工业出版社 , 1995.[11] 丁绪淮 ,等 .工业结晶 [ M ]. 北京: 化学工业出版社 , 1995.[12] 郑云鹏 .复方甘露醇注射液防止结晶试验 [J]. 中国药学杂志 , 1989, ( 7): 417-418.[13] 罗青波. 国内外“三醇”产销现状分析 [ N ].医药经济报 , 1999-12-27(3).[14] 上海医药管理局科技情报所 . 药用辅料手册 [ M ]. 1988.[15] 汪薇,罗威,罗立新,等. 山梨醇的研究开发进展 [J]. 中国食品添加剂,2004(1):77-80.[16] 孙然,刘超超,李海亮. 山梨醇的主要应用及生产工艺分析 [J]. 中国高新技术企业,2008(9):99-100.[17] Klein J C,Hercules D M. Surface analysis by X-ray photoelectron spectroscopy and auger electron spectroscopy of molybdenum-doped Raney nickel catalysts[J]. Anal Chem, 1984,56(4):685-689.[18] 徐三魁,王向宇,梁丽珍. 葡萄糖加氢制山梨醇催化剂研究 及发展趋势[J]. 现代化工,2006,26(11):29-31.[19] 袁长富,李仲良,卢春山,等. 山梨醇制备及转化催化剂研 究进展[J]. 化工生产与技术,2007,14(1):34-37.[20] 郑建仙. 功能性糖醇 [M]. 北京:化学工业出版社,2005: 114-145.[21] 朱建良,吴振兴. 生物法制备山梨醇的研究进展 [J]. 化工时刊, 2006(5):47-51.[22] 杨程芳,郑建仙. 功能性糖醇—氢化淀粉水解物 [J]. 中国食品 添加剂,2005(3):113-117.[23] WHEELER M L, FINEBERG S E, FINEBERG N S, et al. Animal versus plant protein meals in individuals with type 2 diabetes and microalbuminuria: effects on renal, glycemic, and lipid parameters [J]. Diabetes Care, 2002,25:1277-1282.[24] 尤新. 淀粉糖品生产与应用手册(第一版)[M]. 北京:中国轻工业出版社,1997:326-342.[25] EBay全球停售山梨糖醇,因意大利发生致死事件.[26] 2.7吨雀巢产品山梨糖醇超标被销毁. 新华网[引用日期2013-03-08].[font='calibri'][27] [font='calibri']江镇海. 山梨醇的市场应用现状与发展趋势[J]. 上海化 工,2014,39(12):33-35.[28] [size=14px]王成福,庞颂,杜瑞锋. 异山梨醇制备技术研究[J]. 轻工 科技,2017(6):52-54.[29] Ruppert A M,Weinberg K. Hydrogenolysis goes bio:from carbohydrates and sugar alcohols to platform chemicals[J]. Angew Chem Int Edit,2012,51(11):2564-2601.[/size][/font][/font]

  • Biotechnol. Biofuels:葡萄糖和木糖同步利用可生产油脂

    近日,中科院大连化学物理研究所赵宗保研究员领导的生物质高效转化研究组(1816组)在生物质能源研究中,首次实现葡萄糖和木糖同步利用生产油脂。这一重要研究成果于近日正式发表在《生物燃料生物技术》(Biotechnology for Biofuels,Hu et al., Biotechnology for Biofuels, 2011, 4: 25)上。生物质主要由纤维素、半纤维素和木质素组成,其水解产物具有葡萄糖和木糖并存的基本特点。将生物质水解产物转化为液体燃料面临的共性难点问题之一是葡萄糖和木糖并存的原料难以被微生物高效利用。生物柴油是重要的液体生物燃料,其规模化应用的瓶颈问题是油脂原料供应不足。微生物油脂具有与动植物油脂相近的脂肪酸组成,可用于制备生物柴油。大连化物所生物质高效转化研究组多年来致力于将生物质转化为生物柴油的研究。通过筛选发现,部分产油酵母可同步利用葡萄糖和木糖,在胞内积累油脂,菌体油脂含量达到59%。直接利用玉米秸秆水解液培养该产油酵母,菌体油脂含量达到39%。该研究成果对发展混合糖同步生物转化技术、降低微生物油脂生产原料成本、拓展生物柴油产业原料,均具有重要意义。http://www.bioon.com/biology/UploadFiles/201109/2011092710581567.jpgdoi:10.1186/1754-6834-4-25PMC:PMID:Simultaneous utilization of glucose and xylose for lipid production by Trichosporon cutaneumCuimin Hu, Siguo Wu, Qian Wang, Guojie Jin, Hongwei Shen and Zongbao K Zhao Background Biochemical conversion of lignocellulose hydrolysates remains challenging, largely because most microbial processes have markedly reduced efficiency in the presence of both hexoses and pentoses. Thus, identification of microorganisms capable of efficient and simultaneous utilization of both glucose and xylose is pivotal to improving this process. Results In this study, we found that the oleaginous yeast strain Trichosporon cutaneum AS 2.571 assimilated glucose and xylose simultaneously, and accumulated intracellular lipid up to 59 wt% with a lipid coefficient up to 0.17 g/g sugar, upon cultivation on a 2:1 glucose/xylose mixture in a 3-liter stirred-tank bioreactor. In addition, no classic pattern of diauxic growth behavior was seen; the microbial cell mass increased during the whole culture process without any lag periods. In shake-flask cultures with different initial glucose:xylose ratios, glucose and xylose were consumed simultaneously at rates roughly proportional to their individual concentrations in the medium, leading to complete utilization of both sugars at the same time. Simultaneous utilization of glucose and xylose was also seen during fermentation of corn-stover hydrolysate with a lipid content and coefficient of 39.2% and 0.15 g/g sugar, respectively. The lipid produced had a fatty-acid compositional profile similar to those of conventional vegetable oil, indicating that it could have potential as a raw material for biodiesel production. Conclusion Efficient lipid production with simultaneous consumption of glucose and xylose was achieved in this study. This process provides an exciting opportunity to transform lignocellulosic materials into biofuel molecules, and should also encourage further study to elucidate this unique sugar-assimilation mechanism.

  • 吃糖有损记忆力,且不可逆转?爱吃甜食的我们怎么办呢?

    澳大利亚新南威尔士大学的药理学家莫里斯给老鼠吃高脂、高糖的食物,不到一个礼拜,老鼠在空间记忆测试中的表现就退步了。而且,恢复健康饮食之后,已经损伤的记忆,也不会再回来。研究人员说,"凶手"是糖,脂肪比较不相干。你们爱吃甜食吗?我是超级爱吃,喝粥的时候没有糖,那叫一个没滋没味。可是出来这么个研究结果?该怎么面对我的“最爱”呢?

  • 急求近红外血糖/葡萄糖浓度及其光谱数据

    如题,本人非生物医学方面的,但毕设涉及到血糖的校正模型的建立,在获得葡萄糖浓度及光谱数据(吸光度)时遇到很大的困难,还希望在贵论坛能得到诸位坛友的帮助,再次先感谢了!这里先补充下,我是采用1300nm和1550nm波长的近红外光分别作为参考光和测量光来检测血糖,而要确切分析出某次测得的光强数据对应的血糖浓度,定义某一变量x(该变量由上述2束光的光强决定)和对应浓度变量Y,再借助一个使用PLS线性回归的校正模型,通过该模型即可预测血糖浓度。在建立模型的过程中,缺少已知血糖浓度和其对应的光谱数据(据了解可以通过特定波长的光谱仪对葡萄糖进行分析得到),目前教研室没有相应光谱仪和葡萄糖样本,也没相应的导师从事这方面,只是自己按照需求设计了一个血糖前端信号提取的系统,试想问下大家,该怎样来实现后端的建模?当然葡萄糖浓度最好是呈一定的比例变化。

  • 唐僧給女儿國國王的情書

    B][size=4]唐僧給女儿國國王的情書 陛下﹕   您好,你還記得我嗎?我就是前些年路過你那里的那個印度阿三啊,我的大名叫唐三藏,不過你總喜歡管我叫御弟來著,想起來了嗎?時光如水,歲月如歌。一晃好几年過去了,你還好嗎?這些年我在西天一直想著聯系你,可是打你手机停机,听說你換小靈通了,又不告訴我號,上QQ你也不在線;好不容易在百度搜索到你們女儿國的官方网站還打不開,實在是沒辦法了,只好動筆給你寫封信,也不知道能不能郵到。其實這么著急找你呢,的确是有點要緊的事,一件私事,兩件公事,你想先听哪個呢?如果想先听私事的話呢,就先看段落a好了,如果想先看公事,那就先看段落a,b,c吧﹕ a.說起來這真是件私事,怎么說呢?呃....其實這几年在西天我也接触了不少美女,象嫦娥拉,紫霞拉,柏芝拉,SELINA拉之流的也很多,不過我對她們從來沒有來過電。我只要一閉上眼睛,就滿腦子都是你的影子,我知道我是真的愛上你了,從見到你的第一眼就愛上你了。也許你會問,為什么那時侯我又對你那么冷漠,那是因為我有不得已的苦衷啊! 第一,我這個人你知道事業心比較強,我一向認為男子漢大丈夫是必須先立業后成家的。最主要的是成佛要求童子身,我連小白鼠和蜘蛛精都放棄了,總不能讓我前功盡棄啊! 第二,當時你才19歲,還沒到法定年齡嘛!要是讓別神仙知道了,他們說我喜歡幼齒,影響很不好的,!你也知道,我當時還只是個積极分子,万一因為這件事有人告我入不了佛那我就慘了。不過現在不同了,你也長大了,我今年也轉正了,所以...呵呵,有些話不方便說的,總之悠悠我心,你是明白的。我給你留個地址,你E-mail我,咱們私聊好不,我的地址是tangseng1457@****.com.不過最好還是用QQ聯系,這樣可以視頻嘛,我的QQ13*****31。好號吧,管迦葉要的,他現在是西天.com的网管,有很多好號的,你要是想要我給你要一個。 b.第一件正事是如來听說你那里正在暴動,車遲國還聯合了寶象國、烏雞國和獅駝國說要出兵維護治安,擺明了是要干涉你們內政,而且出兵這件事車遲國跟本有通過西天大會討論,,所以如來特地讓我代他向你國之事表示關注,和同情,另外強烈譴責車遲國的這一行徑,并警告車遲國如果再一意孤行的話必將造成國際形勢的動蕩。作為大唐常駐西天?代表,前兩天我也發表了講話,譴責了這一計划,并且呼吁四大部洲的國家聯合起來一起為保衛和平而努力。不過如來私底下讓我告訴你,說這些個都沒用,這兩年車遲國富了,**說打誰打誰,西天也管不了,所以最好還是你自己赶快把暴亂平了,這樣沒了借口他們就不好出兵了,而听說這兩天朱紫國也在考慮派550名自衛隊員到你那維和呢,你赶快想辦法吧。我的意見是不行你就向國會辭職吧,到我這來政治避難,我和如來都罩你。 c.西天的學者(就是普賢文殊他們几個)研究認為你那里暴亂的根本原因是經濟危机,如果GDP上去了暴動自然就平息了,所以西天想和你國合作一起開發你們那的子母河,利用西天的技術和投資加上子母河的名牌效應和神奇療效,開發一种專治不孕不育的純天然新藥,市場前景十分廣闊呀。唉!其實西天也很無奈啊,你也這知道這兩年西天的經濟不太景气,前一陣子和央視合拍西游記結果賠了不少錢,倒是周X馳的那個版本票房非常好,掙了一筆,弄得西天很沒面子。所以才想到了開發你那的資源,何況這事是雙贏啊,你好好考慮一下,給我答复。 好了,他們又說我羅嗦了,說再寫又要多貼八毛錢,那我就先寫到這了,收到信后聯系我。我手机號換了,大唐聯通的信號太差,而且我住在西天漫游費也很貴,我現在用138西天移動的單向收費卡了,雖然說比聯通的資費貴,但是信號好啊,而且我們正佛級以上的電話費都公免了,好了好了不說了,他們又說我,我號碼是138********,有空call me![em0806][em0806][em0808][em0803]

  • 如何解析带有糖基化合物的NMR?

    带有糖基的化合物,一般在溶液中有异构体,比如果糖基,在重水中有开环式、闭环式,其中闭环式又有a-呋喃式、a-吡喃式、b-呋喃式、b-吡喃式,这样造成H谱和C谱比较复杂,如何解析这样的化合物?

  • 【原创大赛】高效液相色谱法分析苯并芘大鼠肝脏线粒体的代谢产物

    【原创大赛】高效液相色谱法分析苯并芘大鼠肝脏线粒体的代谢产物

    高效液相色谱法分析苯并芘大鼠肝脏线粒体的代谢产物 本实验建立了一种用高效液相色谱法分析苯并芘及其在大鼠肝脏线粒体中的六种代谢产物的分析方法。使用乙腈、水梯度洗脱作为流动相,紫外探测器分析得到苯并芘的羟基化代谢产物以及苯并芘酮,包括3-羟基苯并芘、9-羟基苯并芘、苯并芘4,5-二氢二醇、苯并芘-7,8-二氢二醇、9,10-二羟基-9,10-二氢苯并芘、苯并芘二酮。其中苯并芘二酮含量最低。该实验结果对于推断细胞CYP1A1酶在体内体外模型中对于苯并芘增毒和解毒作用奠定了重要的基础。 前言:苯并芘是苯与芘稠合而成的一类多环芳烃,苯并芘和其他多环芳烃主要是有机物的不完全燃烧或热解生成,并且在环境中普遍存在。除了污染空气的吸入,摄入的主要途径有吸烟和饮食以及一些职业的摄入如煤、焦炭、沥青的燃烧以及煤焦油的使用。苯并芘能够导致细胞毒性、致畸致突变的毒性以及致癌的毒性。动物实验长期暴露于苯并芘中可导致动物的皮肤、胃、肺组织的癌变。苯并芘在作用于DNA之前需要代谢活化,这也是苯并芘发挥毒性很重要的代谢步骤。细胞色素P450(CYP)酶和环氧化物酶是主要的苯并芘的活化酶,首先CYP酶将苯并芘氧化为环氧化物然后在环氧化物水解酶的作用下生成二氢二醇,CYP同工酶将其进一步的活化为活性成分苯并芘-7,8 - 二氢二醇-9,10 - 环氧化物(BPDE),其可作用于DNA,其优先在鸟嘌呤残基上形成加合物,该加合物是BPDE在体内体外试验中于DNA主要的加合物。在CYP酶中,CYP1A1和B1认为是BaP代谢活化中重要的酶,但是CYP1A1在体内排毒的作用较大于其活化BaP的作用。为了解释这些发现,BaP的体内体外代谢与解毒作用应该进一步进行评价,定性和定量分析BaP在CYP同工酶和环氧化物酶下的所有代谢产物,以及这些致癌物与DNA加成物的评价也很有必要。本实验优选色谱条件使得BaP在大鼠肝脏线粒体内的代谢产物能够很好的分离以及通过紫外检测器灵敏的检测。苯并芘在生物体内的代谢步骤:http://ng1.17img.cn/bbsfiles/images/2014/09/201409291248_516273_2360169_3.jpg材料和方法试剂甲醇(色谱级)乙腈(色谱级),苯并芘 ,NADP+,葡萄糖-6-磷酸,二喹啉甲酸,葡萄糖-6-磷酸脱氢酶微粒体的制备微粒体来自于10只SD大鼠的肝脏,预先用苏丹I处理。微粒体蛋白质浓度通过二辛可宁酸蛋白质测定法测定,牛血清蛋白作对照。CYP同工酶的含量通过示差光谱测定。孵化体系:用于研究BaP代谢的孵化体系包含有100mM磷酸钠缓冲液(pH7.4),NADPH生成体系(1毫NADP+,10mL D-葡萄糖-6 - 磷酸,1U/mL的D-葡萄糖-6-磷酸脱氢酶),0.5mg的微粒体蛋白质,50μM的BaP(溶于5μl甲醇),总体积为500微升。通过加入50μl的NADPH生成体系来启动反应的发生。孵育体系通过未加入酶体系或无NADPH生成体系或无的BaP来控制。孵化在敞开的试管中进行(37℃),20分钟后,取5μl 1mM的非那西丁乙醇溶液加入作为内标物。BaP的代谢物用乙酸乙酯(2×1毫升)萃取两次,并蒸发至干。将样品溶解在25μl的甲醇,通过HPLC分离。BaP代谢物的HPLC分析:安捷伦液相1200高效液相色谱仪配紫外可见检测器,色谱柱为diamonsil 4.6﹡150﹡5u色谱条件:所用的色谱条件如下表: 时间流动相A(乙腈)流动相B(水)流速00%100%0.6ml/min3530%70%4060%40%4580%20%50100%0%我们还对代谢产物进行了质谱

  • 推荐美丽和糖糖为上海分坛版主(已解决)

    额,先废话一下,昨天不知道是论坛抽风还是我的网速抽筋,总之发贴特困难,本人承受不了,今天一大早起来就为了写这个推荐贴:自王子离开分坛之后,分坛曾干旱了很久,幸好有糖糖美丽吴老师雾等等这些大将,分坛的人气才逐渐恢复并得以维持,昨晚经与美丽dyan和糖糖tangtang闲聊,特推荐美丽和糖糖为上海分坛的版主,希望在我们的共同努力下,将分坛打造成兼技术休闲灌水于一体的名坛,我们知道,技术与休闲在我们的生活中是必不可少的,在当今技术版面水贴弥漫之际,希望来论坛的所有童鞋们,在工作之余、在原创之际、在发技术贴之后,想要清闲一下、想要放松一下、想要娱乐一下的,统统到分坛来吧,这样既纯净了技术版又火爆了休闲版,何乐而不为?言归正传,推荐美丽和糖糖一起为上海分坛的版主,望官人们批准为盼!!

  • 【讨论】大雪突然袭来,子弟兵来了,超女快男哪里去了?!

    [size=4][color=#DC143C]大雪突然袭来,子弟兵来了,超女快男哪里去了?![/color][/size]今年的春节让每个中国人过的很是沉重,中国大部分地区在遭遇罕见的雪灾。   大雪突然袭来,解放军来了,武警官兵来了,超女快男哪里去了?明星们哪去了?春春呢?笔笔呢?何洁呢?……湘湘呢?何炅呢?……陈楚生呢?苏醒呢?……还有那个扬二、柯以敏呢?……那个踢完警卫战士破口大骂是看门狗,后来又哭哭啼啼说自己是军人世家的超女唐笑呢?……我们的笔迷、玉米呢?那些糖葫芦呢、凉粉呢?……你们都到哪里去了?!也许妹妹们的短裙太短怕冻坏了绣腿,那可是赚钱的工具。   我们的子弟兵一不怕苦,二不怕死。更不怕冻,右手冻坏,左手照样端枪卫国。也许有太多的玉米、笔迷、糖葫芦呢、凉粉……被封冻在回家的路上,她们可能在吃兵哥哥煮的热乎乎的饺子吧。吃饱了,才有力气高呼笔笔我爱你,才有精力给春春打毛衣。太多的捐款捐物汇集到灾区,却没有听到有以超女快男的名义,没有看到明星捐的棉衣。人民平日里把你们捧的高高在上,赚足了人气与人民币。现在人民遭了灾你们却龟缩在家,把钱拿出来吧,哪怕是你的百分之一千分之一。你可以不顾农民工兄弟和那些司机,不要忘了那里还有你的歌迷、影迷、痴迷、粉丝们。   和平年代,人们拜金的多,大都成了孔方先生。看不起当兵的,当兵的兜里没有几个钱。找对象,条件一:男性。条件二:兵除外。因为兵傻,不顾家,不管小妈,死亡的机率大。   灾难来临,人们想活了。这才想到了当兵的,当兵的人多干劲大。人们歌颂兵,赞美兵,兵成了可爱的人。可过后,牺牲的是兵,痛苦的是兵妈妈、兵妻子、兵孩子。舞台上,唱主角的还是明星、超女快男。当兵的仍然无怨无悔,加强训练,保卫祖国。   我们的温总理是好样的,我们的总书记是好样的,人民不会忘记,历史不会忘记。   当我们看着春晚,阖家团圆时,分一丝祝福给那些想念儿子的兵妈妈吧,还有那些不能团圆的人们。他们都是为了祖国的和平、富强、统一,为了国防坚如磐石。   祖国万岁,共产党万岁,人民万岁,人民军队万岁,被困司机万岁,被困农民工万岁,救援人员万岁!在这里我不知道说些什么才好!……   那些春春、笔笔、湘湘、扬二们可耻!那些超女快男们可耻!那些玉米、笔迷、糖葫芦、凉粉们可耻!在这里我不知道诅咒她们什么才好!……   当我写这篇文章时,那个垃圾般的湖南卫视 又在播放什么《快乐大本营》,那些什么何炅、谢娜们一个个淫声浪语,外面的雪那么大,到处是冰天雪地,人人都在抗雪救灾,都在自救、互救,可他们在干什么……!真是商女不知亡国恨! [em0806] [em0806] [em0806]

  • 铸铁用自硬呋喃树脂中游离甲醛测定

    各位大佬求助:JB/T7526-2008中呋喃树脂中游离甲醛的测定。标准中甲醛标准液用环境甲醛标样。环境上甲醛标样用水稀释后直接进AE.15%PEG-1500色谱柱吗?如果直接进长时间进水对柱子有影响吗?色谱上出峰的图谱是什么样的?

  • 51.1 四物汤传统饮片汤剂、现代颗粒汤剂的特征色谱比较

    51.1 四物汤传统饮片汤剂、现代颗粒汤剂的特征色谱比较

    【作者】 雷鹏; 刘韶; 李新中; 徐平声; 谈融;【Author】 LEI Peng, LIU Shao,LI Xin-Zhong,et al(Department of Pharmacy of Xiangya Hospital, Center South University,Hunan Changsha 410008,China)【机构】 中南大学湘雅医院; 中南大学药学院 湖南长沙410008; 湖南长沙410008; 99级实习生;【摘要】 目的 :比较四物汤传统饮片汤剂、现代颗粒汤剂特征色谱的异同。方法 :采用HPLC方法 ,梯度洗脱。色谱条件为 :Diamonsil(TM )钻石C18柱 (5 μm ,2 5 0mm×4 .6mm) ,柱温为 35 .0℃ ,流速为 1.0mL·min-1,流动相A为水 ,流动相B为甲醇 ,流动相C为 0 .0 5 %磷酸。结果 :得到饮片汤剂和颗粒汤剂的特征色谱 ,共标记 2 2个特征峰。该法所得特征色谱峰形较好 ,且较稳定。结论 :四物汤传统饮片汤剂和现代颗粒汤剂的特征色谱十分相似 ,化学成分并无显著差异。 更多还原【Abstract】 OBJECTIVE To compare the similarities and the differences between granules decoction and traditional herbs decoction of Siwutang decoction.METHODS The study was conducted by HPLC with Diamonsil (TM) C 18 (5 μm,250 mm× 4.6 mm) stationary phase, the mixture of H2O (A),CH3OH (B) and 0.05% H3PO4 solution (C) as mobile phase in gradient mode and detection wavelength at 280 nm. The column temperature was set at 35℃ and the flow-rate was 1 mL·min -... 更多还原【关键词】 四物汤; 特征色谱; 高效液相色谱; 【Key words】 Siwutang decoction; characteristic chromatograml; HPLC; http://ng1.17img.cn/bbsfiles/images/2012/08/201208201033_384520_2352694_3.jpg

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制