当前位置: 仪器信息网 > 行业主题 > >

赖百当二烯

仪器信息网赖百当二烯专题为您提供2024年最新赖百当二烯价格报价、厂家品牌的相关信息, 包括赖百当二烯参数、型号等,不管是国产,还是进口品牌的赖百当二烯您都可以在这里找到。 除此之外,仪器信息网还免费为您整合赖百当二烯相关的耗材配件、试剂标物,还有赖百当二烯相关的最新资讯、资料,以及赖百当二烯相关的解决方案。

赖百当二烯相关的论坛

  • 下面这个是大豆与羊毛动物纤维,蚕丝二组分混合物分析方法,溶解大豆蛋白,利用蛋白含量来确定大豆蛋白复合纤维含量,有点不可理解?

    下面这个是大豆与羊毛动物纤维,蚕丝二组分混合物分析方法,溶解大豆蛋白,利用蛋白含量来确定大豆蛋白复合纤维含量,有点不可理解?

    下面这个是大豆与羊毛动物纤维,蚕丝二组分混合物分析方法,溶解大豆蛋白,利用蛋白含量占大豆蛋白复合纤维的比例来确定大豆蛋白复合纤维含量,有点不可理解?大豆蛋白复合纤维,目前是大豆蛋白和聚乙烯醇复合,仅仅用蛋白溶解后,剩余的聚乙烯醇的含量来‘推算’出来大豆蛋白复合纤维的含量,是有点欠妥,虽然规定了大豆蛋白复合纤维的蛋白含量,但是实际的大豆蛋白复合纤维中,大豆蛋白和聚乙烯醇含量的比例不一定的,也就是说比例不是那么固定的,这样的检测方法对检测公司来说是没有任何问题的,也是标准的一个进步,但对生产企业来说,确实是致命的,没有规定大豆蛋白复合纤维的配比必须是多少,这个检测很可能每批次大豆与羊毛动物纤维,蚕丝产品的标示和实际检测结果是不合格的。而实际生产添加的各成分是标准的?比如填充,大豆与羊毛动物纤维,蚕丝混合,生产企业是烘干后,按照回潮率计算,按重量比添加混合的,这样企业就根据这样的比例进行标示,这个是最准确的,也是最合理的?大家认为呢?[img=,690,172]http://ng1.17img.cn/bbsfiles/images/2017/10/201710250916_01_2154459_3.png!w690x172.jpg[/img][img=,690,138]http://ng1.17img.cn/bbsfiles/images/2017/10/201710250913_01_2154459_3.png!w690x138.jpg[/img]

  • 诱饵的制作不一定会有百分百的效果

    草船借箭法让外链无限增长初次听闻链接诱饵这个词的时候,还是商摆说的。这篇姑且算作是读后感吧,一直在尝试,其中有成功也有失败,但得到的益处还是很多的。大家不妨试一下。  新闻类诱饵 所在的行业,一定会有新鲜的事情,而我们本身处在这个行业一定对这个行业的各种新闻比较敏感。比如seo行业中,5月2号,百度发布了《web2.0反垃圾详细攻略》。前两年谷歌退出中国市场,这些都是很好的新闻。如果你有敏锐的嗅觉,在新闻还没有成型之前。就猜出了一些端倪,写一篇新闻稿,放到自己的网站里,就回得到很多的外部链接。再差一点的就是在新闻刚刚发布的时候第一个发现,马上发表出来,这样也有不错的效果。最差的是新闻出来好久了,你才知道,这时候再发表会有些效果,但不会很大。  资源型诱饵 这种诱饵的制作需要很强的技术型东西。但是难者不会,会者不难。精通某项行业技能的人可以试一下。发表一篇很新颖很专业的文章到自己的网站上。如果你的知名度在行业里有点知名度,往往你都不需要去宣传就会有人帮你做链接。而且是无偿的,心甘情愿的。因为这些东西对他有用。比如,我喜欢逛饺子博客,也无偿的给他做了些链接,就是因为感觉他的东西写得比较有用。  争议型诱饵,写出一些有自己独到观点的内容,比如夫唯先生说的**公司要起诉百度这个就属于一个争议型诱饵。我听过一位市民告当地的局长。局长说“你告去吧,省级以下你就别告了,没有用”,这个市民一直告到中央。得到了江主席的亲笔文书。结果把局长直接拿下,换了这个市民当局长。还有年轻法官的事。都可以拿来说说。但是切记一点,不可以捕风捉影,最好和行业相关,至少也要与板块相关。  工具性诱饵 商摆把这个诱饵分成了线上工具和插件。我喜欢把这两个和在一起说。这类诱饵的要求更高,当然效果也好。制作一些线上工具供大家使用。而网络上的人基本上都需要使用各种各样的工具,这个就给大家提供了一些东西。最典型的是百度的工具栏。带给百度多少链接?(可惜,百度不注重外链)。还有个典型就是chinaz的站长工具,给他带来的链接SEO届的朋友都清楚吧。如果做金融的,还有些股票的插件。百度关键词排名应用里的一些工具,其制作工具的网站的外链也不少。利名利流量,何乐不为呢?  幽默型诱饵 做一些幽默搞笑的段子,视频等,放在自己的站上,这些东西一般很小,很容易让人传播。这样的外链也很不错。毕竟生活需要快乐嘛。谁都想天天快乐,也希望朋友天天快乐。  微博诱饵 现在都喜欢玩微博,从而引申出微博营销。往往一个很好的微博会带来成千上网的转载。在我们的网站里放一些分享代码和书签代码。浏览的用户感觉有用,可以一键分享。这就无形中给我们带来了不少的外部链接。对做博客站的朋友我比较推荐这个。  免费奉献诱饵做一些实用的东西,免费奉送,上面带上你的链接。  各位可以从上述的诱饵中挑几个,自己比较擅长的。诱饵的制作不一定会有百分百的效果。有的时候感觉自己的诱饵做的比较不错,别人却不买帐。无意中做的诱饵有时候也会带来不错的效果。对此不可强求。多积累经验才是最重要的。

  • 百年老汤来卤鸡,你怎么看?

    年关将至,北方的风俗,走娘家,必不可少的就是卤烧鸡!不是有那么一首歌唱么“风吹着杨柳嘛唰啦啦啦啦啦小河里水流嘛哗啦啦啦啦啦谁家的媳妇她走得忙又忙呀原来她要回娘家身穿大红袄头戴一枝花胭脂和香粉她的脸上擦左手一只鸡右手一只鸭身上还背着一个胖娃娃呀咿呀咿得儿喂”.............................而且,亲朋好友相聚,桌子上没有一只烧鸡坐镇,总不是有些寒酸气象!有鉴于此,许多饭店就会早早的做出很多的卤鸡来卖。而为了销路打算,很多饭店就会打出“百年老汤”卤制的噱头!姑且不说百年老汤怎么保持百年的问题(或许有几十年?),只说,百年的老汤卤制的烧鸡真的好吃吗?真的安全吗?

  • 【原创大赛】头孢呋辛赖氨酸理化性状——紫外吸收光谱和百分吸收系数

    [font=宋体]化合物对紫外-可见光的选择性吸收及其在最大吸收波长处的吸收系数,是化合物的物理常数之一,也是药物重要的质量控制指标。[/font][b][font=宋体]紫外吸收光谱[/font][/b][font=宋体]取头孢呋辛赖氨酸约[/font]25 mg[font=宋体],精密称定,置[/font]50 mL[font=宋体]量瓶,加水溶解并稀释至刻度,摇匀,作为储备液。再准确量取储备液[/font]1.0 mL[font=宋体],置于[/font]25 mL[font=宋体]量瓶中,加水稀释至刻度,摇匀,得供试品溶液。照《中国药典》[/font]2020 [font=宋体]年版(四部)[/font][font=宋体]紫外[/font]-[font=宋体]可见分光光度法测定,在[/font]200 nm[font=宋体]~[/font]400 nm[font=宋体]的波长范围内绘制吸收谱图。结果见[/font]Fig.1[font=宋体]。[/font][align=center][/align][align=center][img=,395,337]https://ng1.17img.cn/bbsfiles/images/2021/10/202110092150319513_5582_3528941_3.gif!w395x337.jpg[/img][/align][align=center][b]Fig1 The UV absorption spectrum of cefuroximelysine[/b][/align][b] [font=宋体]百分吸收系数([/font][/b][img=,29,25]https://ng1.17img.cn/bbsfiles/images/2021/10/202110092151368269_6611_3528941_3.gif!w29x25.jpg[/img][b][font=宋体])[/font][/b][font=宋体]使用五台不同型号的紫外[/font]-[font=宋体]分光光度计,参照《中国药典》[/font]2020 [font=宋体]年版(四部)附录[/font]IV[font=宋体]紫外[/font]-[font=宋体]可见分光光度法进行测定。[/font][font=宋体]仪器校正和检定[/font][font=宋体]取在[/font]120[font=宋体]℃[/font][font=宋体]干燥至恒重的基准重铬酸钾约[/font]60 mg[font=宋体],精密称定,用[/font]0.005 molL[sup]-1[/sup][font=宋体]硫酸溶液溶解并稀释至[/font]1000 mL[font=宋体],在规定的波长处测定并计算其百分吸收系数,并与规定的百分吸收系数比较,结果均符合要求。[/font][font=宋体]溶剂的选择[/font][font=宋体]由溶解度试验可知,头孢呋辛赖氨酸在水中的溶解性能较好,因此,预选用水作为溶剂,测定其百分吸收系数。[/font][font=宋体]将水置石英吸收池中,以空气为空白(即空白光路中不置任何物质)测定吸光度。药典规定,溶剂和吸收池的吸光度,在[/font]220 nm[font=宋体]~[/font]240 nm[font=宋体]范围内应不超过[/font]0.40[font=宋体],在[/font]240 nm[font=宋体]~[/font]250 nm[font=宋体]范围内应不超过[/font]0.20[font=宋体],在[/font]251 nm[font=宋体]~[/font]300 nm[font=宋体]范围内应不超过[/font]0.10[font=宋体],在[/font]300 nm[font=宋体]以上时应不超过[/font]0.05[font=宋体]。测定结果均符合要求,确定以水为测定头孢呋辛赖氨酸百分吸收系数的溶剂。[/font][font=宋体]最大吸收波长的确定[/font][font=宋体]如头孢呋辛赖氨酸紫外吸收光谱([/font]Fig.2-1[font=宋体])所示,本品在[/font]273 nm[font=宋体]附近处有最大吸收。因此,确定[/font]273 nm[font=宋体]作为头孢呋辛赖氨酸的最大吸收波长。[/font][font=宋体]百分吸收系数[/font][font=宋体]的测定[/font][font=宋体]溶液的配制[/font] [font=宋体]取头孢呋辛赖氨酸对照品约[/font]25 mg[font=宋体],精密称定,置[/font]50 mL[font=宋体]量瓶中,加水溶解并稀释至刻度,摇匀,得贮备液。精密量取贮备液[/font]1.0 mL[font=宋体],置[/font]25 mL[font=宋体]量瓶中,用水稀释至刻度,摇匀,作为溶液[/font]1([font=宋体]浓度约为[/font]20 μgmL[sup]-1[/sup])[font=宋体]。精密量取贮备液[/font]1.0 mL[font=宋体],置[/font]50 mL[font=宋体]量瓶中,用水稀释至刻度,摇匀,作为溶液[/font]2([font=宋体]浓度约为[/font]10 μgmL[sup]-1[/sup])[font=宋体]。[/font][font=宋体]溶液稳定性[/font] [font=宋体]取溶液[/font]1[font=宋体],避光放置,分别于[/font]0[font=宋体],[/font]0.5[font=宋体],[/font]1.0[font=宋体],[/font]2.0[font=宋体],[/font]3.0[font=宋体],[/font]4.0 h [font=宋体]时测定,结果与[/font]0 h[font=宋体]比较,吸光度的[/font]RE[font=宋体]值均在±[/font]1%[font=宋体]以内,表明溶液在[/font]4 h[font=宋体]内稳定。[/font][font=宋体]测定结果[/font] [font=宋体]按《中国药典》[/font][font='Times New Roman']2020 [/font][font=宋体]年版(四部)[/font][font=宋体]方法校正与检定仪器并在[/font]273 nm[font=宋体]波长处测定。各溶液测得百分吸收系数[/font][font=宋体]结果见[/font]Tab.2[font=宋体],头孢呋辛赖氨酸对照品溶液在[/font]273 nm [font=宋体]波长处的百分吸收系数[/font][font=宋体]为[/font]298.3[font=宋体],按±[/font]1.5%[font=宋体]计算,样品百分吸收系数应在[/font]293.8[font=宋体]~[/font]302.8[font=宋体]之间。测得[/font]3[font=宋体]批头孢呋辛赖氨酸原料药在[/font]273 nm[font=宋体]波长处的百分吸收系[/font][font=宋体]分别为[/font]301.0[font=宋体],[/font]295.8[font=宋体],[/font]296.5[font=宋体]。[/font][b] [/b][align=center][b] [/b][/align][align=center][b]Tab.The specific absorbance([/b][img=,29,25]https://ng1.17img.cn/bbsfiles/images/2021/10/202110092153204355_8883_3528941_3.gif!w29x25.jpg[/img][b])of reference substance of cefuroxime lysine ([i]n[/i]=5)[/b][/align] [table=100%][tr][td] [align=center]Concentration[/align] [align=center](μgmL[sup]-1[/sup])[/align] [/td][td] [align=center]4802H[/align] [/td][td] [align=center]UV-1801[/align] [/td][td] [align=center]TU-1800[/align] [/td][td] [align=center]UV-2000[/align] [/td][td] [align=center]Spectrum 725[/align] [/td][td] [align=center]Average of [img=,29,25]https://ng1.17img.cn/bbsfiles/images/2021/10/202110092154296408_4276_3528941_3.gif!w29x25.jpg[/img][/align] [/td][td] [align=center]RSD/%[/align] [/td][td] [align=center]Average[/align] [align=center]of [b][img=,29,25]https://ng1.17img.cn/bbsfiles/images/2021/10/202110092155129453_2127_3528941_3.gif!w29x25.jpg[/img][/b][/align] [/td][/tr][tr][td] [align=center]20[/align] [/td][td] [align=center]294.2[/align] [/td][td] [align=center]302.1[/align] [/td][td] [align=center]297.1[/align] [/td][td] [align=center]295.8[/align] [/td][td] [align=center]301.4[/align] [/td][td] [align=center]298.1[/align] [/td][td] [align=center]1.2[/align] [/td][td=1,2] [align=center]298.3[/align] [/td][/tr][tr][td] [align=center]10[/align] [/td][td] [align=center]292.2[/align] [/td][td] [align=center]298.8[/align] [/td][td] [align=center]300.6[/align] [/td][td] [align=center]298.0[/align] [/td][td] [align=center]302.5[/align] [/td][td] [align=center]298.4[/align] [/td][td] [align=center]1.3[/align] [/td][/tr][/table][font=宋体]结论:头孢呋辛赖氨酸在[/font]273 nm[font=宋体]附近处有最大吸收,其百分吸收系数([/font][img=,29,25]https://ng1.17img.cn/bbsfiles/images/2021/10/202110092155306771_680_3528941_3.gif!w29x25.jpg[/img][font=宋体])在[/font]293.8[font=宋体]~[/font]302.8[font=宋体]之间。[/font]

  • 来伊份、百味林 被曝添加剂超标

    环己基氨基磺酸钠是食品生产中常用的添加剂。甜蜜素是一种常用甜味剂,其甜度是蔗糖的30~40倍。消费者如果经常食用甜蜜素含量超标的饮料或其他食品,就会因摄入过量对人体的肝脏和神经系统造成危害,特别是对代谢排毒的能力较弱的老人、孕妇、小孩危害更明显。   昨日,多家知名企业被曝存在产品质量问题:联合利华公司旗下的“立顿”茶类产品被国际环保组织“绿色和平”曝光,称其几种茶叶产品存在农药残留,有的甚至多达13种;沪上两家知名零食品牌来伊份、百味林的原料供应商被中央二台《消费主张》曝光,称其加工过程的不洁净程度让人胆战心惊,包装时使用的更是动物饲料袋。对此,本市相关部门表示将对情况进行核实,调查结果出来将立即向公众公布。  脚踩在猪饲料包装袋上,袋中装的烂桃肉居然加工出了五颜六色的蜜饯,蜜饯原材料周围垃圾成堆,加工公司就挨在臭水沟旁……央视二套的《消费主张》栏目昨天曝光了一组蜜饯的违规生产过程,其中,上海知名品牌来伊份、百味林的供应商也上了黑榜,不但制作过程看起来不堪入目,且被检出添加剂超标。一同被曝光的还有乐购、沃尔玛等超市贴牌的蜜饯。  现场:生蛆的桃肉“不能扔”  一个大水泥池里泡着50万斤左右的桃肉,旁边肮脏不堪。揭开盖着水泥池的塑料膜,里面浸泡着的桃肉,有很多已经腐烂变质,一些垃圾也夹杂在其中。桃肉上已经生了蛆,但加工厂工作人员仍表示“不能扔”。腌好的桃肉经过人工去核后,一堆堆地摆放在露天晾晒。此外,用来盛装桃肉的编织袋,有的竟是动物的饲料袋,很多袋子上还明确写着:含有药物饲料添加剂。  上述由山东省临沂市平邑县武台镇果品购销站袋装后的蜜饯桃肉半成品,被卖到了浙江省杭州市余杭区的塘栖镇,这里有着四百多年的蜜饯生产历史,蜜饯生产厂家近百家。走进一家当地蜜饯生产的龙头企业铁门,肮脏的地面上,一位工人正脚站在破旧的编织袋上,运装原料。这些盐渍桃肉很多已经发出难闻的气味,而且用来装桃肉的编织袋,正是在山东包装时使用的动物饲料袋。  这里生产的很多蜜饯,不但在市场上十分畅销,且傍上了一些知名大品牌,上海的来伊份、百味林也赫然在列。央视记者调查发现,来伊份在此便拥有永海、灵鑫、梅园等四家代加工厂,上海百味林也委托这里的超亨农副产品加工厂加工。  检测:甜蜜素超标4倍多  央视记者抽取了杭州余杭区的一些公司生产的蜜饯,拿到了北京市理化分析中心进行检测,结果发现多个品种蜜饯添加剂超标。我国《食品添加剂使用卫生标准》规定:蜜饯中胭脂红的最大使用量为0.05G/KG。但杭州超达食品有限公司生产的美国车厘子,胭脂红含量为0.17 G/KG。  《食品添加剂使用卫生标准》规定:蜜饯中苋菜红的最大使用量为0.05G/KG,亮蓝的最大使用量为0.025 G/KG。而杭州超达食品有限司生产的黑加仑,苋菜红含量为0.14 G/KG,亮蓝含量为0.08 5G/KG。  上海来伊份委托生产蜜饯的杭州灵鑫食品有限公司生产的风味陈皮,甜蜜素含量为4.6 G/KG,而我国蜜饯中糖精钠和甜蜜素的最大使用量均为1.0 G/KG。  北京大学公共卫生学院李可基教授表示,甜蜜素实际上就是糖的替代品,俗称“糖精”,过量食用可引起一些健康隐患,在美国是不允许使用的,因为糖精可能导致睾丸癌,曾在动物身上大量使用过,结果发现导致了睾丸癌。甜蜜素虽然少量食用未发现危害,但超量超范围长期食用,会增加肝脏肾脏负担,对敏感体质存在危害。  应对:给钱就能有检测报告  如此的生产环境,如此加工出来的产品,竟然持有杭州质监局的合格检测报告,且几乎每家蜜饯食品生产企业的产品外包装上,都赫然印着QS的食品安全标志。  在接受央视记者的采访中,杭州超达食品有限公司大区经理王小龙表示,其实工厂应付检查自有一套,厂家会专门做一小包样品送到质监局,这些样品都是合格的,因此拿到了质监局的检测报告。  杭州超升蜜饯有限公司相关人员表示,其实检测报告给钱就能做出来,只做细菌超标,至于防腐剂之类的报告,虽然是必须要做的,但由于成本高昂,要两千元做一个单品,因此很多都不做的,“包括在上海卖的很多蜜饯都不做,反正有个检验报告就行了嘛。”其表示,蜜饯如果真的严格检测的话,90%都不合格。  》市场反应  来伊份:消费者如有疑问可退货  “这厂家是有多贪多黑啊,原以为来伊份、百味林这些蜜饯价格不便宜,质量能稍微得到点保证,没想到还是不能吃的。”“大超市也是一票货色啊,这些蜜饯当地人自己都是不吃的,大家来抵制不良商家吧。”昨天,蜜饯生产的过程一经曝光,便在网友中激起轩然大波,不少网友表示再也不吃蜜饯了。  昨晚分别向来伊份、百味林方面进行求证,截至晚上12点记者截稿,来伊份相关企业的负责人告诉记者,公司与杭州灵鑫的合作已有几年,此次央视曝光的产品在上海市场也有销售,但具体批次和销量还需核实,其表示今天将给正面回复。  昨晚,来伊份官方微博也发布信息称,公司正对该供应商的情况进行积极调查了解,消费者如对公司产品有任何疑问,可到各地门店退货。截至记者发稿,百味林尚未给出任何回复。

  • 【分享】我国成功自主研发百米级第二代高温超导带材

    上海交通大学23日宣布,物理系李贻杰教授领导的科研团队历时3年,采用独特的技术路线,成功研发一整套具有我国自主知识产权的百米级第二代高温超导带材,实现了国内超导带材领域的新突破。  国产百米级第二代高温超导带材像一层薄膜,金属基带的宽度为1厘米、厚度为80微米,而用于传输超导电流的稀土氧化物超导层的厚度还不到1微米。与传统的铜导线相比,相同横截面积超导带材的载流能力是铜导线的几百倍。

  • 开发新方法来解析蛋白结构

    利用同步加速器X射线光束(synchrotron x-ray beam)来解析蛋白和其他生物大分子的结构在医学上取得很大进步。科学家们获得的技术进步能够导致他们取得更加激动人心的进步。最近,来自美国国家同步幅射光源(National Synchrotron Light Source, NSLS)和、纽约结构生物学中心和哥伦比亚大学的研究人员发现一种新方法来确定通过其他方法很难或者不可能解析的分子结构。他们的研究发表在《科学》期刊上。利用大分子X射线晶体学确定蛋白结构的过程必须要首先培养纯的分子晶体。当靶分子拥有相似的结构类似物时,这种过程更加容易。但是当靶分子没有结构类似物时,科学家们面临着“相位问题”,即缺乏描述入射X射线光波“相位”的关键性信息。当一个检测器记录X射线衍射图时,它能够检测强度,但是不能检测相位,但是没有相位时,分子结构就不能被完全解析出。当存在不相关的结构时,有两种其他的方法来评估相位。这些方法当中有两种方法都是属关于X射线晶体技术的:多波长异常衍射(multiwavelength anomalous diffraction, MAD),它利用多种波长的X射线;单波长异常衍射(single-wavelength anomalous diffraction, SAD),它只利用一个波长的X射线。这两种技术通常都涉及加入硒到晶格(通过氨基酸衍生物硒代蛋氨酸,它容易整合进蛋白)之中,和扫描硒原子整个边上的X射线光束。

  • 漂白后的纱线泛黄原因分析

    漂白后的纱线泛黄原因分析 漂白、增白后的纱线放置一定时间后,一是产生黄斑,二是随时间延长白度下降。 分析原因,其产生黄斑是由于漂白用水质不良,含二价铁离子较高所致,二价铁离子日久被氧化或三价铁离子,这样就在纱线上形成黄斑。这种黄斑不但影响外观质量,同时还会使纤维脆损。 克服的办法是:遇水质不良时,纱线漂白前用草酸1.5-2.0g/L、在80-85℃下进行酸洗。因草酸能与铁离子生成络合离子而溶于水,水中的铁质即可去除,达到不泛黄的目的。 漂白、增白纱线随时间延长而白度下降的主要原因是由于煮练不充分。若纱线煮练不充分,棉纤维中杂质未完全去除,用这种纱线立即进行漂白、增白,时间一长,纤维内部的杂质及天然色素就会显露出来造成白度下降。 克服的办法是:要保证漂白纱的毛效达到13-15cm/30min,而且毛效要均匀一致,才能保证漂白、增白纱线不泛黄。 另外,用次氯酸钠漂白后脱氯时,大苏打用量过多或没有洗净,亦能使纱线泛黄。纱线烘燥时,烘房温度过高,烘燥时间过长也会造成纱线泛黄。

  • 二氯甲烷溶液中白油含量的测定

    [color=#444444]实验做出来的东西含有白油,想知道油的含量有多少,要用二氯甲烷将白油萃取出来(已知其他东西不溶于二氯甲烷),[/color][color=#444444]然后测萃取液中白油的浓度,从而推算出产物中白油的含量,二氯甲烷用的比较多,估计萃取液中白油含量在10 wt.%以内[/color][color=#444444]请问用什么方法能准确测出白油浓度呢?有没有大神来指导一下,尽量说具体一些呀,万分感谢[/color][color=#444444]实验室中有紫外也有[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url],但是不知道用什么色谱柱合适?紫外的话,在什么波长下测,參比样用什么呢?能直接测萃取液吗,需不需要别的溶剂处理一下样品先?[/color][color=#444444]二氯甲烷沸点低,39.8度,白油的沸点高,350度以上的,难道要用液相色谱或者[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]气质联用[/color][/url]?这些真没有[/color]

  • 【讨论】漂白后的纱线泛黄原因分析

    漂白、增白后的纱线放置一定时间后,一是产生黄斑,二是随时间延长白度下降。 分析原因,其产生黄斑是由于漂白用水质不良,含二价铁离子较高所致,二价铁离子日久被氧化或三价铁离子,这样就在纱线上形成黄斑。这种黄斑不但影响外观质量,同时还会使纤维脆损。克服的办法是:遇水质不良时,纱线漂白前用草酸1.5-2.0g/L、在80-85℃下进行酸洗。因草酸能与铁离子生成络合离子而溶于水,水中的铁质即可去除,达到不泛黄的目的。 漂白、增白纱线随时间延长而白度下降的主要原因是由于煮练不充分。若纱线煮练不充分,棉纤维中杂质未完全去除,用这种纱线立即进行漂白、增白,时间一长,纤维内部的杂质及天然色素就会显露出来造成白度下降。克服的办法是:要保证漂白纱的毛效达到13-15cm/30min,而且毛效要均匀一致,才能保证漂白、增白纱线不泛黄。另外,用次氯酸钠漂白后脱氯时,大苏打用量过多或没有洗净,亦能使纱线泛黄。纱线烘燥时,烘房温度过高,烘燥时间过长也会造成纱线泛黄。

  • 急,GC测试苯系物测系实验中为什么二硫化碳的峰变得比原先大上百倍,是什么原因

    在作苯系物测试(二硫化碳的解吸法)中,在进行二硫化碳试剂空白测试时发现二硫化碳溶剂峰的峰高竞比平时高出上百倍,以前均在峰高在400至600毫伏间,现在达到了三万多毫伏,问一下这是什么原因造成的,请大家多请教,急。实验条件均没有任何的改变。峰却明显增高了。条件如下:韩国英麟GC6100,软件没被动过。填充柱、进样口温度150度、柱温箱65度、FID检测器250度,空气300毫升/分钟,氢气30毫升/分钟,二硫化碳出峰时间正常,峰高峰面积明显变化,大了将近一百倍。

  • 【分享】大家来摆摆古词新意

    大家知道哪些已经有了新含义的词,在这里摆一摆吧。例如:听君一席话,胜读十年书。(现在的潜台词:你讲这么多有完没完啊,我耳朵都长茧子了)

  • 【讨论】蓝月亮洗衣液中的荧光增白剂怎么测出来的

    不知道蓝月亮洗衣液中的荧光增白剂是怎么测出来的?用荧光分光光度计能直接测吗?需要做什么前处理?相关新闻见http://www.instrument.com.cn/news/20110624/063695.shtml蓝月亮洗衣液被检测出含有致癌物质荧光增白剂  “中国打假第一人”王海近日在微博上指出,由杨澜代言的蓝月亮洗衣液被检测出含有致癌物质荧光增白剂,并且出具了相关的检测报告,引起了网友的极大关注。  昨日(6月23日),广州蓝月亮实业有限公司副总经理邓岗对《每日经济新闻》表示,国家的《QB/T2953-2008洗涤剂用荧光增白剂》的行业标准允许在洗涤剂中添加两类荧光增白剂,而且美国、日本和欧盟等地都允许在衣物洗涤剂中使用。  中国洗涤用品工业协会针对此事发表的特别说明称,行业标准所规定使用的荧光增白剂安全可靠,不会对人体和环境造成负面影响,同时可以改善和提高洗涤效果。被检出含有荧光增白剂  北京的王峰是蓝月亮洗衣液的消费者,有一次他的小孩穿了使用蓝月亮洗衣液手洗的衣物啼哭不止,因此他怀疑有可能是衣物上残留的洗衣液刺激导致的。  今年3月3日,王峰将购买的蓝月亮洗衣液(深层洁净亮白增艳包装和深层洁净包装)送到了天津市产品质量监督检测技术研究院检测,检测发现该洗衣液中含有荧光增白剂。王海向《每日经济新闻》记者提供了该检测报告,在报告检测结果一栏中,显示检测出荧光增白剂。  王海表示,荧光增白剂是国家安全生产监督管理总局《职业病危害因素分类表》定性的化学毒物,是一种致癌物质。“然而,蓝月亮洗衣液的外包装并没有标注警示信息,相反除‘安全环保’外,还明确说明‘婴幼儿衣物、内衣同样适用’,是一种虚假宣传行为。”  为此,王海成为王峰的代理人,将蓝月亮、杨澜等起诉到了北京市第一中级人民法院。  无独有偶,广州的消费者叶先生在使用蓝月亮深层洁净护理洗衣液后,手臂出现轻微红肿发痒等不适症状。停用该产品后,上述症状消失。王海作为其代理人,日前已向广州市天河区人民法院起诉,在起诉书中,广州蓝月亮实业有限公司生产的一款洗衣液被指含有荧光增白剂。昨日,广州市天河区人民法院已经受理该案。蓝月亮:国家允许使用  “关于荧光增白剂在洗涤剂中的使用,国家有相关的行业标准,是允许使用的,而且在国际上,日本、美国和欧盟等地都允许在衣物洗涤剂中使用,目前国内的洗衣粉、洗衣液均广泛使用标准规定的两类荧光增白剂。”广州蓝月亮实业有限公司副总经理邓岗对《每日经济新闻》记者说。  2008年9月1日起正式实施的《QB/T2953-2008洗涤剂用荧光增白剂》的行业标准规定,衣物洗涤剂中可以使用荧光增白剂二苯乙烯基联苯类和双三嗪氨基二苯乙烯类。该标准由发改委于2008年3月12日发布。邓岗告诉记者,蓝月亮所使用的是二苯乙烯基联苯类增白剂。  不过,王海指出,荧光增白剂的主要用途是染料,并非洗涤衣物去污必需的有效成分,相反因其附着力强而难以去除,累积在衣物上还会导致白色衣物发黄彩色衣物发暗。对此,邓岗表示,之所以要在洗涤剂中添加荧光增白剂,主要是可以起到增白的效果。  邓岗指出,公司还将蓝月亮洗衣液(亮白增艳)的产品送到了广东省疾病预防控制中心进行检测。记者在检测报告中看到,检测结果显示该产品对新西兰家兔的一次完整皮肤刺激属无刺激性。  对此,中国洗涤用品工业协会于6月20日发表了关于衣物洗涤剂用荧光增白剂的特别说明。该协会指出,国际国内大量的研究权威报告证明,《洗涤剂用荧光增白剂》行业标准所规定使用的荧光增白剂安全可靠,不会对人体和环境造成负面影响,同时可以改善和提高洗涤效果。  事实上,虽然国家允许在洗涤剂中使用荧光增白剂,但我国食品卫生法第六条规定,食品、食品包装纸、餐巾纸禁止使用荧光增白剂。

  • 质谱技术在蛋白组研究中的应用(二)

    6 质谱仪的最新进展用质谱检测蛋白,首先考虑到用PMF与 MALDI-TOF联用,如果无法检测,下一步就用ESI-MS/MS创建序列标签。在PMF分析中,MALDI的平板中只需一小部分样本就足以检测,剩下的样本就可以用来创建序列标签。并且,在MALDI-TOF仪器上,用一种叫做“源后延迟”的方法可以对只有部分序列的肽段进行检测。然而,用这个方法产生的质谱图比较难说明,精确性也很差。最近,用MALDI联合四级杆-时间质谱分析器[30,31]以及原始的MALDI-TOF/TOF[32]方法产生了。因此同一份标本可以首先考虑用PMF检测蛋白[33],如果有必要的话,再用MS/MS创建序列标签。MALDI联合四级杆-TOF检测高通量蛋白是有希望的[31]。7 蛋白质组研究中的转录后修饰分析蛋白组分析很重要的一点就是能对蛋白表达水平以及转录后修饰,如磷酸化和糖基化进行研究。蛋白质的磷酸化是很有趣的,因为在信号转导途径中它扮演了重要的角色。最早检测蛋白质表达水平的方法是进行2-DE之前用35S-Met对样本进行代谢性标记,再在2-DE上进行放射自显影[34-36]。在凝胶中,不同蛋白的磷酸化和糖基化位点通常在凝胶中显示一连串蛋白质点,但是还需要做更详细的分析来确定修饰类型。蛋白质磷酸化的改变既可以用32P标记细胞,也可以用特异性磷酸化抗体做western blotting进行研究。如果用32P标记的方法,仍然需要做2-DE。经过凝胶比较后,把感兴趣的点从胶上切下来,然后用质谱鉴定[36]。Soskic使用的是印迹法,两个2-DE同时进行,一个用于做特异的磷酸化抗体实验,另一个做常规染色。蛋白质磷酸化和糖基化更为详细的特性可以用质谱来检测,但是需要更多的起始材料而不仅仅是二维凝胶上的一个点。另外这些分析不能产生直接的序列信息,技术上也比用质谱检测蛋白要难的多。在蛋白上查找磷酸化位点有很多种方法。为了检测消化后的混和肽中哪一个是磷酸化的,可以用MALDI-MS在磷酸化前后对混合肽做PMF分析:经过磷酸酯酶处理后,磷酸化的肽将会失去一个磷酸基团,分子量将比处理前小80Da.糖基化研究中,多聚糖从蛋白中释放出来,对多聚糖结构的检测就是从这些游离的多聚糖中得到的。一般把MALDI仪和外源性糖苷酶[37-40]联合使用进行检测。如果需要更为详细的信息,可以用ESI-MS联合使用前体离子扫描仪[41-44]。到目前为止,能够用电泳分离后的蛋白进行糖蛋白结构检测的报道很少。其中有一项研究是N端糖蛋白酶切以后用一维SDS-PAGE分离,然后用MALDI-MS以及外源性的糖苷酶进行结构分析[45]。8 用质谱研究蛋白-蛋白之间的作用经典的蛋白组学着重于研究蛋白质在何时何处表达。因为大部分的细胞功能都是由蛋白质复合体而不是由单个蛋白来执行的,所以鉴定蛋白质的成分和相互作用是非常重要的。这个过程可以用生物化学方法纯化蛋白质后用质谱来鉴定不同的成分,如人类剪接体的成分,酵母的核孔复合体[46]以及核蛋白体等都可以用此策略检测出来。一般的蛋白复合体是用亲和层析的方法纯化和分离,如免疫沉淀反应[47,48]。 DNA结合蛋白可以用同它们有特异性亲和力的核酸来分离,然后用质谱来鉴定[49]。Rigaut等人在串联层析的基础上,建立了一种通用的蛋白质复合体纯化方法[50]。在这个方法中,一种TAP标签和靶蛋白融合在一起,然后把蛋白转移到宿主细胞或者组织中,融合蛋白在宿主细胞和组织中能持续表达。TAP标签包括一种A蛋白和一种钙调蛋白,在标签之间有一个TEV蛋白酶切位点。用串联亲和层析法能将融合蛋白及与它相互作用的蛋白成分从细胞提取物中有效的分离,纯化出来。Rappsiber等人分别用亲和层析,交叉耦合以及质谱等方法[51]对酵母的核孔复合物Nup85p的亲和性进行研究。经过层析以后,用一维SDS-PAGE方法就可以分离蛋白复合体中的各个成分,因此二维电泳的不足之处就可以避免。同样也有可能直接用[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]LC-MS[/color][/url]方法分析大分子量蛋白质复合体[52]。蛋白组分析的优越之处主要是用于蛋白和蛋白之间的相互作用以及蛋白的转录后修饰的研究,同时也可以用于基因表达水平的研究。质谱对于蛋白组分析来说是一项非常重要的技术,近年来仪器以及数据库软件的发展使得质谱成为能力更强大的工具。参考文献[1] O’Farrell PH. J Biol Chem,1975,250:4007–4021.[2] Karas M, Bachmann D, Bahr U, et al. Int J MassSpecrom Ion Process,1987,78:53–68.[3] Meng CK, Mann M, Fenn JB. et al. Atoms, Mol Clusters,1988,10:361–368.[4] Fenn JB, Mann M, Meng CK, et al.Science,1989,6(246):64–71.[5] Corthals GL, Wasinger VC, Hochstrasser DF, et al.Electrophoresis,2000,21:1104–1115.[6] Celis JE, Kruhoffer M, Gromova I, et al. FEBS Lett,2000,480:2–16.[7] Anderson L, Seilhamer J. Electrophoresis,1997,18:533–537.[8] Gygi SP, Rochon Y, Franza BR, et al. Mol Cell Biol,1999,19:1720–1730.[9] Henzel WJ, Stults JT, Wong SC, et al. ProcNatl Acad Sci USA,1993,90:5011–5015.[10] Mann M, Hojrup P, Roeppstorff P. Biol Mass Spectrom,1993,22:338–345.[11] Pappin DJ, Hojrup P, Bleasby AJ. Curr Biol,1993,3:327–332.[12] James P, Quadroni M, Carafoli E, et al. Biochem BiophysRes Commun,1993,195:58–64.[13] Yates JRD, Speicher S, Griffin PR, et al. AnalBiochem,1993,214:397–408.[14] Mann M, Wilm M. Anal Chem,1994,66:4390–4399.[15] Eng JK, McCormack AL, Yates JR. J Am Soc Mass Spectrom,1994,5:976–989.[16] Wilm M, Mann M. Int J Mass Spectrom Ion Process,1994,136:167–180.[17] Wilm M, Shevchenko A, Houthaeve T, et al. Nature 1996 379:466–469.[18] Wilm M, Mann M. Anal Chem,1996,68:1–8.[19] Morris HR, Paxton T, Panico M, et al. JProtein Chem,1997,16:469–479.[20] Rosenfeld J, Capedeville J, Guillemot JC, et al. AnalBiochem,1992,203:173–179.[21] Shevchenko A, Wilm M, Mann M. Anal Chem,1996,68:850–858.[22] Pandey A, Andersen JS, Mann M. Science’s STKE: www.stke.org/cgi/content/full/OC–sigtrans 2000/37/pl1.[23] Kussmann M, Nordhoff E, Rahbek-Nielsen H, et al. J Mass Spectrom,1997,32:593–601.[24] Gobom J, Nordhoff E, Mirgorodskaya E, et al. J Mass Spectrom,1999,34:105–116.[25] Clauser KR, Baker P, Burlingame AL. Anal Chem,1999,71:2871–2882.[26] Binz PA, Muller M, Walther D, et al. Anal Chem,1999,71:4981–4988.[27] Bienvenut WV, Sanchez JC, Karmime A, et al. Anal Chem,1999,71:4800–4807.[28] Neubauer G, King A, Rappsilber J, et al. Nat Genet,1998,20:46–50.[29] Yates III JR, Carmack E, Hays L, et al. MethodsMol Biol,1999,112:553–569.[30] Loboda AV, Krutchinsky AN, Bromirski M, et al. Rapid Commun Mass Spectrom,2000,14:1047–1057.[31] Shevchenko A, Loboda A, Schevchenko A, et al. Anal Chem,2000,72:2132–2141.[32] Medzihradszky KF, Campbell JM, Baldwin MA, et al. Anal Chem 2000,72:552–558.[33] Krutchinsky AN, Zhang W, Chait BT. J Am Soc Mass Spectrom,2000,11:493–504.[34] Nyman TA, Matikainen S, Sareneva T, et al. Eur J Biochem 2000 267:4011–4019.[35] Celis JE, editor. Cell Biology: A Laboratory Handbook, vol. 4,2nd. Academic Press, 1998,375–385.[36] Gerner C, Frohwein U, Gotzmann J, et al. J Biol Chem,2000,Sep 7 [epubahead of print].[37] Colangelo J, Orlando R. Anal Chem,1999,71:1479–1482.[38] Geyer H, Schmitt S, Wuhrer M, et al. Anal Chem1999 71:476–482.[39] Harvey DJ. Mass Spectrom Rev,1999,18:349–450.[40] Nyman TA, Kalkkinen N, et al. Eur J Biochem,1998,253:485–493.[41] Sheeley DM, Reinhold VN. Anal Chem,1998,70:3053–3059.[42] Reinhold VN, Reinhold BB, Costello CE. Anal Chem,1995,67:1772–1784.[43] Kuster B, Hunter AP, Wheeler SF, et al. Electrophoresis,1998,19:1950–1959.[44] Rout MP, Aitchison JD, Suprapto A, et al. J Cell Biol,2000,148:635–651.[45] Yamaguchi K, Subramanian AR. J Biol Chem ,2000,275:28 466–28 482.[46] Yamaguchi K, von Knoblauch K, Subramanian AR. J BiolChem,2000,275:28 455–28 465.[47] Rotheneder H, Geymayer S, Haidweger E. J Mol Biol,1999,293:1005–1015.[48] Boehning D, Joseph SK. EMBO J,2000,19:5450–5459.[49] Nordhoff E, Krogsdam AM, Jorgensen HF, et al. Nat Biotechnol,1999,17:884–888.[50] Rigaut G, Shevchenko A, Rutz B, et al. Nat Biotechnol,1999,17:1030–1032.[51] Rappsilber J, Siniossoglou S, Hurt EC, et al. Anal Chem2000 72:267–275.[52] Link AJ, Eng J, Schieltz DM, et al. Nat Biotechnol,1999,17:676–682.T.A. Nyman /Biomolecular Engineering, 2001:18 .221–227.

  • 【转帖】perforin免疫蛋白的功能及微孔的形成

    perforin免疫蛋白的功能及微孔的形成 能够形成微孔的免疫蛋白“perforin”是消除被病毒感染的细胞及癌变细胞所必需的,由自然杀手及细胞毒性T-细胞释放。现在,一种“perforin”单聚物(小鼠perforin R213E)的结构已被确定。对该结构所做分析同时结合对低聚孔的一个冷电子显微镜重建结果表明,这个孔内的“perforin”单聚物与依赖于胆固醇的溶细胞素在结构上同源的单聚物相比采用一种“内面向外”的取向。这种新颖的适应性也许可解释“perforin”是怎样将支持细胞凋亡的蛋白酶(granzymes)送入目标细胞中的以及相关的互补免疫蛋白是怎样组装成微孔的。

  • 【求助】二氯甲烷中与白油怎么分离?

    各位老师,请帮我分析一下我的样品怎么测?样品含二氯甲烷(40%-50%)及白油(C16-C22的混合烃类)(40%-50%)结果需要分离这两种物质,另外白油的含量会逐渐减少(从40-50%到几%)这个是否可以用[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]来做?机器大概怎么配?最好能帮我说说具体的实验方法。小弟以前没有怎么接触过[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url],还请各位老师多多指教。

  • 二次热解吸出来的峰有杂峰

    各位老师,二次热解吸里面有应该是有杂物导致我的气象色谱仪跑出来的谱图有杂峰,空跑过色谱仪出来的谱图没问题,通过二次解析进来的空白就有杂峰怎么处理?是不是热解吸的环节出问题?

  • 大家来八一八见到过的千奇百怪的采样容器吧

    我在这里说的呢都是官方机构送来的一些盛放样品的容器,比如说监察大队和区级站。不包括民间个人主动送检的样品容器,因为老百姓可能不了解采样之后如何盛放样品才是符合规范的。 基本上有塑料瓶和玻璃瓶两大类。 最普通的就是喝完的矿泉水瓶子,差点的就是饮料瓶子,包括冰红茶啊,可乐啊,雪碧啊,有的打开还有一股饮料特有的香味。 比较让人惊异的是白酒瓶子,不是天之蓝那种只出不进的,是那种类似封缸酒的瓶子,瓶口是薄铁皮盖。最夸张的有一次是拿了一个一点几升的大白酒桶过来送样,红星二锅头的标签赫赫在目。 最奢侈的是用茶杯来送样的,那种双层保温的直筒型玻璃杯,超市买一个至少也得十几大元吧。 作为官方的正式的采样人员,用什么样的容器盛放样品应该是有明文规定的,而且我相信财政拨款不会少,怎么会沦落到用这些东西来送样的地步呢,真是搞不懂啊。

  • 【百家争鸣第二期】基质效应真的可以忽略吗?

    【百家争鸣第二期】如何理解及处理基质效应?上期谈到样品中标准曲线的问题。可能不少人觉得,标准曲线很简单。的确,理论是很简单。但真正要做好、做稳却不是那么容易的事情。一个样品从前处理到仪器分析,有多种因素都肯可能影响到实验结果。样品的基质效应就是其中之一。基质效应应该是分析中尤其是液质联用领域比较令人头疼的问题。本期的话题是如何理解及处理基质效应?大家都从业于仪器分析领域,相信应该都知道基质效应这个词。基质指的是样品中被分析物以外的组分。而基质常常对分析物的分析过程有显著的干扰,影响分析结果的准确性。这种由基质干扰产生的结果的不准确性被称之为基质效应。常见的基质效应可见于气相色谱、气质联用、液质联用。在气相、气质色谱中,常见的是基质增强效应,而液质联用中,常见的是基质抑制效应。为什么相同的样品,有时会产生气相(质)与液质不同的基质效应?它产生于仪器分析的哪个环节?是进样口(气相)还是离子源(质谱)?基质效应产生的原理是什么?一般而言,气相(质)中的基质效应没有引起足够重视,可能是因为方法本身的回收率不高,但是由于基质增强的原因,使得分析人员误以为该方法回收率满足分析需求。而在液质分析中,由于多表现为抑制效应,因此往往基质效应的问题会受到重视。那么,在日常样品中您是如何发现并处理基质效应问题的?加标、加内标还是加基质保护剂……???链接:【百家争鸣第一期】日常样品分析中如何做标准曲线?http://bbs.instrument.com.cn/shtml/20110416/3253183/【百家争鸣第三期】如何进行样品分析中的质量控制?http://bbs.instrument.com.cn/shtml/20110511/3300126/【百家争鸣第四期】内标法是万能的吗?http://bbs.instrument.com.cn/shtml/20110602/3344063/【百家争鸣第五期】如何计算检出限?http://bbs.instrument.com.cn/shtml/20110623/3378013/【百家争鸣第六期】您如何去除血液样品中脂肪和蛋白?http://bbs.instrument.com.cn/shtml/20111103/3625099/【百家争鸣第七期】如何合理使用质谱定性http://bbs.instrument.com.cn/shtml/20120401/3957279/

  • 一型跨膜蛋白和二型跨膜蛋白图解:结构与功能的剖析

    [font=宋体][font=宋体]跨膜蛋白按功能可以分为多种类型,其中包括[/font][font=Calibri]G[/font][font=宋体]蛋白偶联受体([/font][font=Calibri]G[url=https://insevent.instrument.com.cn/t/jp][color=#3333ff]PCR[/color][/url][/font][font=宋体])、离子通道、转运蛋白以及其他类型受体等。这些蛋白在细胞内发挥着不同的作用,例如在信号传递、物质转运和细胞通讯等方面。[/font][font=Calibri]G[url=https://insevent.instrument.com.cn/t/jp][color=#3333ff]PCR[/color][/url][/font][font=宋体]是一类广泛存在于生物体中的跨膜蛋白,它们可以识别并与外界分子相互作用,从而引发各种细胞内信号,因此它们被用作药物筛选的靶标。离子通道则可以调节细胞内外的离子浓度,如钠离子、钾离子、钙离子等,这对于细胞的正常运作至关重要。转运蛋白则可以协助物质的跨膜运输,对生物体代谢进行调控。这些跨膜蛋白虽然功能不同,但是在生物体中发挥着各自独特和不可或缺的作用。[/font][/font][font=宋体] [/font][font=宋体]一型跨膜蛋白和二型跨膜蛋白是两种常见的膜蛋白类型,它们在结构和功能上存在差异。下面是它们的简要对比图解:[/font][font=宋体]一型跨膜蛋白:[/font][font=宋体] [/font][font=宋体] [font=宋体]———————[/font][/font][font=宋体] [font=Calibri]| [/font][font=宋体]膜外 [/font][font=Calibri]|[/font][/font][font=宋体] [font=Calibri]| [/font][font=宋体]区域 [/font][font=Calibri]|[/font][/font][font=宋体] [font=宋体]———————[/font][/font][font=宋体] [font=Calibri]| [/font][font=宋体]跨膜 [/font][font=Calibri]|[/font][/font][font=宋体] [font=Calibri]| [/font][font=宋体]螺旋 [/font][font=Calibri]|[/font][/font][font=宋体] [font=宋体]———————[/font][/font][font=宋体] [font=Calibri]| [/font][font=宋体]膜内 [/font][font=Calibri]|[/font][/font][font=宋体] [font=Calibri]| [/font][font=宋体]区域 [/font][font=Calibri]|[/font][/font][font=宋体] [font=宋体]———————[/font][/font][font=宋体][font=宋体]一型跨膜蛋白具有一个跨越细胞膜的[/font] [font=宋体]α 螺旋结构。它包括一个在细胞外区域的 [/font][font=Calibri]N [/font][font=宋体]端、一个跨膜螺旋结构和一个在细胞内区域的 [/font][font=Calibri]C [/font][font=宋体]端。这种结构使得一型跨膜蛋白在跨越细胞膜时保持稳定,并具有信号传递和细胞识别等重要功能。[/font][/font][font=宋体] [/font][font=宋体] [/font][font=宋体]二型跨膜蛋白:[/font][font=宋体] [/font][font=宋体] [font=宋体]———————[/font][/font][font=宋体] [font=Calibri]| [/font][font=宋体]膜外 [/font][font=Calibri]|[/font][/font][font=宋体] [font=Calibri]| [/font][font=宋体]区域 [/font][font=Calibri]|[/font][/font][font=宋体] [font=宋体]———————[/font][/font][font=宋体] [font=Calibri]| [/font][font=宋体]跨膜 [/font][font=Calibri]|[/font][/font][font=宋体] [font=Calibri]| [/font][font=宋体]区域 [/font][font=Calibri]|[/font][/font][font=宋体] [font=宋体]———————[/font][/font][font=宋体] [font=Calibri]| [/font][font=宋体]膜内 [/font][font=Calibri]|[/font][/font][font=宋体] [font=Calibri]| [/font][font=宋体]区域 [/font][font=Calibri]|[/font][/font][font=宋体] [font=宋体]———————[/font][/font][font=宋体] [font=Calibri]| [/font][font=宋体]胞质 [/font][font=Calibri]|[/font][/font][font=宋体] [font=Calibri]| [/font][font=宋体]尾部 [/font][font=Calibri]|[/font][/font][font=宋体] [font=宋体]———————[/font][/font][font=宋体] [/font][font=宋体][font=宋体]二型跨膜蛋白同样具有跨越细胞膜的结构,但它包括一个在细胞内区域的[/font] [font=Calibri]C [/font][font=宋体]端和一个在胞质尾部的结构。二型跨膜蛋白通常通过细胞内区域与一些信号转导途径进行相互作用,并发挥重要的调节和调控功能。[/font][/font][font=宋体] [/font][font=宋体]一型跨膜蛋白通过单一的跨膜螺旋结构连接细胞内外区域,而二型跨膜蛋白则包含额外的胞质尾部。这些结构差异导致两种跨膜蛋白在细胞中的功能和相互作用方式上存在差异。[/font][font=宋体] [/font][font=宋体]目前义翘神州提供[url=https://cn.sinobiological.com/resource/protein-review/transmembrane-proteins][b]跨膜蛋白表达和制备平台[/b][/url],包含[/font][font=宋体][font=宋体]①[/font][font=Calibri]VLP[/font][font=宋体]技术平台:它可以将完整天然构象的膜蛋白展示在类病毒颗粒表面,这种方法不仅可以保留膜蛋白的完整结构,同时也能够真实地模拟其在细胞膜上的位置和构象;[/font][/font][font=宋体][font=宋体]②去垢剂技术平台:由于存在疏水结构域,跨膜蛋白与膜的结合非常紧密,需要用去垢剂([/font][font=Calibri]detergent[/font][font=宋体])才能从膜上洗涤下来,[/font][font=Calibri]Detergent[/font][font=宋体]作为一种两亲性分子,疏水尾部包裹目的蛋白的疏水区域,亲水头部位于与溶液接触的界面。微团的形成是膜蛋白增溶的基础,当去垢剂浓度高于[/font][font=Calibri]CMC[/font][font=宋体]([/font][font=Calibri]Critical micelle concentration[/font][font=宋体],临界胶束浓度)时会形成微团,增溶后,去垢剂将蛋白周围的磷脂置换,从而实现收集目标膜蛋白的目的,后续再进行蛋白纯化,最终蛋白呈现在含有[/font][font=Calibri]Detergent[/font][font=宋体]的溶液中。义翘神州成功搭建了去垢剂技术平台,利用该平台可有效提高跨膜蛋白的产量和纯度。[/font][/font][font=宋体][font=宋体]③[/font][font=Calibri]Nanodisc[/font][font=宋体]技术平台:义翘神州已成功搭建了[/font][font=Calibri]Nanodisc[/font][font=宋体]技术平台,利用跨膜蛋白与磷脂结合能够维持其良好活性的特性,制备出稳定的产品,满足动物免疫、抗体筛选、[/font][font=Calibri]cell-based assays[/font][font=宋体]等场景。[/font][/font][font=宋体] [/font][font=宋体][font=宋体]详情可以关注:[/font][font=Calibri]https://cn.sinobiological.com/resource/protein-review/transmembrane-proteins[/font][/font]

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制