当前位置: 仪器信息网 > 行业主题 > >

对称引达省

仪器信息网对称引达省专题为您提供2024年最新对称引达省价格报价、厂家品牌的相关信息, 包括对称引达省参数、型号等,不管是国产,还是进口品牌的对称引达省您都可以在这里找到。 除此之外,仪器信息网还免费为您整合对称引达省相关的耗材配件、试剂标物,还有对称引达省相关的最新资讯、资料,以及对称引达省相关的解决方案。

对称引达省相关的论坛

  • 【讨论】图谱对称因子

    做对照品的图谱时,发现走出来的图谱对称引资只有0.4左右,请问对照品的对称因子有什么办法可以改进的嘛?一般对称因子有什么要求嘛?

  • 粗钢丝绳拉伸检测时夹持方法创新--灌铅编丝法改为轴对称锚夹法

    与钢丝绳研发及检测的网友共勉,致力于钢丝绳整绳拉伸破断检测时夹持方法创新。粗钢丝绳检测时通常采用灌铅编丝法两端夹持(国外有灌树脂),该法可行但非常繁琐,且不环保!拆丝改变了钢丝绳的轴对称!且有局部应力集中!锚具夹持法是不改变钢丝绳轴对称结构的情况下利用锥型夹片与锚具自锚来夹持钢丝绳的!可以做到不滑丝!夹持方便,效率高!唯一的是合理设计锚夹具内径,锥度和应力释放锥角度!下面附件是我对32mm直径6*19s-IWRc钢丝绳(zS)检测曲线图和试验图片,提供给钢丝绳有兴趣的网友探讨和研究!

  • 【求助】求教震动的对称方式

    红外的相关资料中,有一句话叫:发生相互作用的振动必须属于同样的对称方式。这里的对称指的是简单的对称振动与不对称振动么?好比说,对称伸缩只能与对称伸缩或弯曲发生作用的意思?对称伸缩则不能与不对称伸缩或不对称弯曲发生作用?

  • 海洛因和吗啡成瘾可通过免疫系统阻断

    中国科技网讯 据物理学家组织网8月15日(北京时间)报道,一个国际研究小组获得了重大突破,他们发现了人体免疫系统放大对阿片类药物依赖性的关键机制,并证实可通过药物来阻断吗啡和海洛因成瘾,同时帮助缓解疼痛。临床试验预计将在未来18个月内进行。 澳大利亚阿德莱德大学和美国科罗拉多大学博尔德分校的科学家通过实验室研究发现,一种名为纳洛酮的药物可以选择性地阻断免疫成瘾反应。这项发表于《神经科学杂志》的新成果有望带来“二合一”型药物,既可缓解病人的剧烈疼痛症状,又能帮助海洛因成瘾者戒除药物依赖。 “我们的研究确凿地表明,我们可以通过大脑的免疫系统来阻止成瘾,而不针对大脑的神经系统。”研究论文的主要作者、阿德莱德大学医学院的马克·哈钦森说,“在成瘾过程中,中枢神经系统和免疫系统都发挥着重要作用,但我们的研究显示,只需阻止大脑中的免疫反应,就能阻断对阿片类药物的渴望。” 该团队将研究重点放在名为TLR4的免疫受体上。“阿片类药物,比如吗啡和海洛因,绑定TLR4受体的方式与免疫系统对细菌的正常反应相同,但问题是,TLR4随即变成了药物依赖性的放大器。”哈钦森说。 哈钦森表示,纳洛酮能够自动关闭对药物的依赖,它减少了对阿片类药物的需要以及与成瘾相关的行为,同时,大脑中的神经化学也在发生变化——大脑不再生产多巴胺了,这种重要的化学物质能够向大脑传递服用药物后的兴奋感。 研究论文的另一作者、科罗拉多大学博尔德分校神经科学中心教授琳达·沃特金斯说:“这项工作从根本上改变了我们对阿片类药物、奖励和上瘾机制的了解,多年来我们一直在怀疑TLR4可能是阻断阿片类药物成瘾的关键,现在我们掌握了证据。” 沃特金斯表示,用来阻止成瘾的药物纳洛酮是上世纪70年代发明的一种非阿片类镜像药物,他们相信可以将它与吗啡合用,进而开发出帮助患者缓解剧烈疼痛的同时又不至于让人上瘾的新止疼药物。(记者 陈丹) 总编辑圈点 药物成瘾是一个引人入胜的科学课题,因为对它的研究可以揭示出大脑运作是多么复杂。如哈钦森团队揭示的,药物依赖的形成不光涉及中枢神经,其关键一环是免疫受体发挥作用。相关实验不光证明,纳洛酮与吗啡共用可避免成瘾,还为今后研制戒毒新药提供了思路。或许有一天,在药物成瘾与戒断机理完全揭示之后,人类将告别毒品引发的生理痛苦。 《科技日报》(2012-08-16 一版)

  • 【求助】峰形有刺,不怎么对称

    [size=4]大家好!我用离子交换色谱-氢化物发生-原子荧光进行硒的形态分析。在同样的条件下,硒胱氨酸的峰形很好,很平滑,很对称。但是硒蛋氨酸和四价硒,一个左半边有刺峰,一个右半边有刺峰,不怎么对称,有点丑。怎么会这样呢?有哪位大侠能指点一下。在下多谢了![/size]

  • 拖尾因子&对称因子&不对称因子三者的区别

    高斯曲线是正态分布中的一条标准曲线。色谱实验中的色谱峰在理论上应该符合其分布。因此理论塔板数也是色谱系统适用性一项重要表征。不过,实际上由于仪器死体积的存在,以及仪器部件和固定液对样品的吸附效果等因素,色谱实验中的大多数色谱峰都对高斯曲线分布存在一定的偏离,产生峰的不对称现象。色谱实验中的色谱峰存在前延、对称、拖尾三种形态,因此这种不对称现象更能说明色谱峰形状态。[img]https://file.jgvogel.cn/134/upload/resources/image/359180.jpeg?x-oss-process=image/resize,w_700,h_700[/img]各国药典对色谱实验中色谱峰的状态一般用不对称因子、拖尾因子、对称因子来衡量。对于药物分析色谱实验,如果排除溶剂因素和物质吸附或键合相尾部效应等因素,单纯从色谱柱填充效果来看,如果色谱柱前面填的紧密,后面填的疏松,即便有效塔板数合格,那么峰显示处后拖尾,如果色谱柱前面填得疏松,后面紧密,则峰显示前拖。通常有明确的规定,拖尾因子应处于某一范围内。[img]https://file.jgvogel.cn/134/upload/resources/image/359181.jpeg?x-oss-process=image/resize,w_700,h_700[/img][i]高斯曲线[/i]拖尾因子拖尾因子是用于评价峰形对称性的一个参数。美国药典、欧洲药典和中国药典均对拖尾因子作出了规定。美国药典是从色谱峰的顶点作一条曲线与基线垂直,再于峰高5%处做一条与基线平行的直线,与峰两边的交点和垂线的交点将这条直线分成两条线段,A表示左线段的长度,B表示右线段的长度,如图 [ 南药课件 ]所示。USP拖尾因子用T表示,则计算公式为T=(A+B)/2A。[img]https://file.jgvogel.cn/134/upload/resources/image/359182.jpeg?x-oss-process=image/resize,w_700,h_700[/img][i]色谱峰USP拖尾因子计算图[/i]当A=B时,T=1,此时认为色谱峰是对称的;当A<B时,T<1,此时认为色谱峰是有前延趋势的;当A>B时,T>1,此时认为色谱峰是有拖尾趋势的。中国药典指从色谱峰的顶点作一条曲线与基线垂直,再于峰高5%处做一条与基线平行的直线,与峰两边的交点和垂线的交点将这条直线分成两条线段,分别叫作前半峰和后半峰,d 1表示前半峰的长度,W 0.05h是5%峰高处的峰宽,如图所示。CP拖尾因子用T表示,则计算公式为T=W 0.05h/2d 1。[img]https://file.jgvogel.cn/134/upload/resources/image/359183.jpeg?x-oss-process=image/resize,w_700,h_700[/img]图4 色谱峰CP拖尾因子计算图当前半峰长度=后半峰长度时,T=1,此时认为色谱峰是对称的;当前半峰长度<后半峰长度时,T<1,此时认为色谱峰是有前延趋势的;当前半峰长度>后半峰长度时,T>1,此时认为色谱峰是有拖尾趋势的。可以看出USP和CP对拖尾因子的表征不同,从公式上看,计算方式的一样的,两者没有区别。不对称因子不对称因子是用于评价峰形不对称性的一个参数,其与拖尾因子的概念接近。美国药典中从色谱峰的顶点作一条曲线与基线垂直,再于峰高10%处做一条与基线平行的直线,与峰两边的交点和垂线的交点将这条直线分成两条线段,A表示左线段的长度,B表示右线段的长度,不对称因子用As表示,则计算公式为As=B/A。[img]https://file.jgvogel.cn/134/upload/resources/image/359184.jpeg?x-oss-process=image/resize,w_700,h_700[/img][i]色谱峰不对称因子计算图[/i]当A=B时,As=1,此时认为色谱峰是对称的;当A>B时,As<1,此时认为色谱峰是有前延趋势的;当A<B时,As>1,此时认为色谱峰是有拖尾趋势的。中国药典中并没有提到不对称因子这个概念,其实上也可以类似于USP规定10%峰高处取值计算,或者认为拖尾因子就是不对称因子。对称因子对称因子这个参数比较特殊,各种色谱仪器、各国药典的说法也是不一致的。美国药典中的一种说法是对称因子是不对称因子的倒数(一般很少用)。而日本药典和欧洲药典都是对对称因子进行规定,其计算公式和USP拖尾因子是一致的。下图是欧洲药典对对称因子的规定。[img]https://file.jgvogel.cn/134/upload/resources/image/359185.png?x-oss-process=image/resize,w_700,h_700[/img][i]欧洲药典对对称因子的规定[/i]Agilent的ChemStation工作站中的对称因子是按图下进行计算的,Waters的Empower工作站中的对称因子和拖尾因子是一致的。Thermo的Chameleon工作站中并没有对称因子参数,其是以不对称因子来评估色谱峰的前延和拖尾,并且需要说明的是此处的不对称因子的计算公式与拖尾因子是一致的。[img]https://file.jgvogel.cn/134/upload/resources/image/359186.jpeg?x-oss-process=image/resize,w_700,h_700[/img][i]安捷伦色谱工作站对称因子计算方法[/i]对称因子是因标准、因规定而变动的,其不像拖尾因子和不对称因子计算方法是相对固定的。拖尾因子、对称因子和不对称因子规定范围探讨我们常说中国药典要求拖尾因子的范围是在0.95~1.05 ,其实药物分析色谱工作者往往忽略了一点——CP对拖尾因子的规定要求是存在一个定语限制的,即中国药典规定峰高法定量时拖尾因子应该在0.95-1.05之间,低于0.95为前延峰,高于1.05为拖尾峰。药物分析色谱实验中一般认为拖尾因子小于2.0的色谱峰是可以按峰面积进行准确定量的。不过,具体还是需要结合化合物自身特性、理论塔板数、分离度等因素规定具有限度意义的拖尾因子值。欧洲药典和英国药典规定进行有关物质或含量测定时,除另有规定外。色谱图中定量用对照品溶液色谱峰对称因子应为0.8~1.5。美国药典中出现了对某些化合物拖尾因子要求不大于2.0。日本药典中并没有具体规定拖尾因子的范围。从各国药典对拖尾因子范围的约束来看,拖尾因子并没有一个数值范围的金标准,在实际的色谱实验中还是需要具体问题具体分析。结语不管是拖尾因子、对称因子还是不对称因子,我们的目标都是以其判断色谱峰的对称或不对称性。无论采用哪种参数,只有采用同一种参数比较不同色谱峰峰形才有实际意义。理论上,药物分析色谱实验中一般都使用拖尾因子来判断色谱峰峰形。而拖尾因子或者与拖尾因子计算方法一致的不对称因子或对称因子都是由各个色谱工作站自动计算而得。因此只要掌握了各个色谱工作站中关于色谱峰峰形判断的标准,就能根本上区分拖尾因子、不对称因子和对称因子,以便合规和准确地以这些参数判断色谱峰峰形

  • 2010F 物镜是对称的还是非对称的?还有3010呢?

    多谢,刚看到一本书上提到对称非对称透镜问题,说是非对称的又被称为高衬度透镜,在jeol电镜中物镜光栏常被称为高衬度光栏,是否与透镜排布有关?还有fei的系列电镜中,s-twin, u-twin透镜什么区别?

  • 非对称流动场在环境科学领域的应用简介

    各位新老朋友,大家好!我们开辟这个论坛的目的,就是在产品推广过程中,深刻感到许多用户对场流分离仪的认识非常浅显,对于什么是场流分离技术,其原理、主要应用等了解非常少,更为严重的是,随着这几年我们在中国市场逐步打开局面,特别是中科院、国家计量院等具有影响力的科研单位采购了我们的仪器,引来了竞争对手的恶意竞争,他们的不实之词使得原本就心存疑虑的客户更加拿不定主意了、迷茫了、糊涂了。我们觉得特别有必要向广大用户宣传介绍什么是真正的场流分离技术及其应用,避免因为混乱的市场竞争、不正当的商业行为,把场流分离仪技术这么一个具有相当高科技水平的分析仪器的好名声给毁了,就像竞争对手已经毁了多检测器GPC的好名声一样。从近期开始,我们将根据场流分离技术的不同典型应用,向大家介绍场流分离技术。我们首先选择了较为容易接受的、比较通俗易懂的环境科学领域的应用,也就是类似液质联用的场流与元素质谱仪联用FFF-ICP-MS,简称场-质联用,作为我们这个论坛的第一个系统的产品与应用的宣传介绍。稍后,我们还将推出:离心场在纳米材料领域的应用介绍、热场在聚合物分子量分布分析中的应用、高温非对称流动场HAT AF4在聚烯烃分子量分布测试中的应用、非对称流动场在生物大分子材料领域的应用等几个介绍板块。并陆续上传相关的PPT文件供大家参考。场-质联用,在国内用户来说好像是挺陌生的,其实在国外早已不是什么新鲜事儿了,德国巴登符腾堡州的卡尔斯鲁厄大学的环境科学研究中心,有三套场-质联用仪。奥地利维也纳大学,也是欧洲著名的环境科学研究机构,其场质联用技术的实践也是傲视群雄的。可以说,场流分离仪在环境保护领域的污染物的形态分析方面做出了相当大的贡献。基本组成:非对称流动场(室温型或中温型)+紫外-二极管阵列检测器+DLS激光粒度仪+ICP-MS分析目标样品:江河湖海中的水、沉积物中的大分子/大尺寸样品,如:腐殖酸、凝胶微球、粘土颗粒,及其附着的重金属元素腐殖酸、粘土颗粒和凝胶微球,都是尺寸较大、分子密度较小、特性粘度较大、在色谱柱中的压力下很容易被破坏的样品,因此不适合用色谱柱的方法 分析其尺寸和尺寸分布以及其附着物重金属,而没有固定相填料的场流分离通道就是最佳选择!其空心的分离通道,保持了样品的原貌。由于这类样品具有很大的表面积和化学不活泼性,使其很容易附着重金属离子等弱电性离子,这恰恰是重金属元素实际的存在方式。过去,人们常用离子色谱-元素质谱连用分析水中金属元素,这种方法往往不易检测到重金属,因为重金属元素大多数是弱电性的,往往不是以离子形式单独存在。而对于土壤、沉积物等固体样品,则往往采用多种样品前处理方法浓缩、富集等,然后再用色谱-质谱联用仪分析,这样做,一来实际测试中的重复性、重现性不佳,二来破坏了样品原貌,无法通过形态分析追根溯源。而场质联用,则完全没有了上述这些问题。参看附件的文献。

  • 【讨论】对称性的问题

    是否电子衍射斑的对称性就代表了其对应物相的对称性,例如衍射斑是二次对称,说明该物相点阵中至少有一个二次轴?

  • 晶体结构的周期性和对称性

    晶体结构的周期性和对称性[img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=15314]晶体结构的周期性和对称性[/url]

  • 拖尾因子、对称因子、不对称因子有啥区别和联系?

    拖尾因子、对称因子、不对称因子有啥区别和联系?

    理论上讲,色谱峰应符合高斯曲线分布,然而实际上任何色谱峰都对高斯曲线分布存在一定的偏离,亦即不对称。峰拖尾可以用不对称因子(As)或USP拖尾因子(Tf)来衡量,显然不对称因子的说法更准确,因为色谱峰存在前延、完美对称、拖尾三种形态。一般来说,制药行业以USP拖尾因子作为评测标准,而其他行业则多采用As来测定峰形。http://ng1.17img.cn/bbsfiles/images/2015/12/201512031432_576198_1610895_3.jpg对于药物分析,通常有明确的规定,Tf应处于某一范围之间,比如我国药典规定某些药物的拖尾因子应处于0.95~1.05之间。其他行业尚无较为明确的规定。美国药典拖尾因子是美国药典规定用于评价峰形对称性的一个参数,其计算公式为Tf=(A+B)/2A。拖尾因子的计算公式中A和B的数值如图所示,从色谱峰的顶点作一条直线与基线垂直,再于峰高5%处做一条与基线平行的直线,与垂线相交于O,与峰的两边分别相交于点a和b,以A表示oa的长度,以B表示ob的长度。不队称因子的概念与拖尾因子接近,两者的区别主要是有两个:1)计算公式不同As=B/A;2)用于计算的A和B的取值方位不同,不对称因子是以峰高10%处来计算的。下图可清楚说明他们之间的关系。http://ng1.17img.cn/bbsfiles/images/2015/12/201512031432_576199_1610895_3.jpg图为拖尾因子与不对称因子的区别与联系。拖尾因子:Tailing factor常用Tf表示,以峰高5%处计算;不对称因子:Asymmetry factor常用As表示,以峰高10%处计算;对称因子:Symmetry factor常用S表示,与不对称因子As互为倒数关系拖尾因子与不对称因子的对应关系如下表http://ng1.17img.cn/bbsfiles/images/2015/12/201512031433_576200_1610895_3.jpg中国药典http://ng1.17img.cn/bbsfiles/images/2015/12/201512031433_576201_1610895_3.jpg从图中,我们可以看到,W0.05h指5%峰高处的峰宽,以峰顶点做垂线到5%峰宽,分为两份,其中前一份为d1,假如前半峰d1=后半峰,则拖尾因子为1.00.也就是前后半峰5%处宽度相等,说明峰对称 。如果前半峰d1小于后半峰,则Tailing factor 大于1,则峰后拖尾,反之是前拖。显然,药典中并没有提到不对称因子的概念。那么,我们常说的“不对称因子“又是指的什么呢?不对称因子(asymmetry):我们可以定义一个不对称因子As来定量地表示色谱峰的不对称程度,将10%峰高处前半峰的宽度设为a, 同高度处后半峰的宽度设为b,将b与a的比值定义为不对称

  • 峰不对称与拖尾

    峰不对称与拖尾

    定义峰形的两种方式:1、拖尾因子(PTF):在全峰高的5%处计算,指峰高5%处的峰宽于峰极大到前伸沿之间二倍距离之比。2、峰不对称因子(As):峰不对称性在整个峰高的10%处进行测定。理想柱的峰Ass值为0.95~1.1(绝对的对称峰为As=1.0)。实际工作中通常采用此法测定峰不对称因子与峰拖尾因子http://ng1.17img.cn/bbsfiles/images/2012/04/201204132105_361188_1855403_3.jpg峰不对称因子与峰拖尾因子的关系http://ng1.17img.cn/bbsfiles/images/2012/04/201204132106_361189_1855403_3.jpg

  • 柱效与峰对称性的关系

    柱效与峰对称性有什么关系?一般只要峰的对称性差,柱效对会很低,由柱效的公式可以看出,柱效与保留时间和半峰宽有关,所以半峰宽与峰的对称性有关系吗?是不是对称性越差,半峰宽约宽啊(比如峰很瘦,但拖尾严重),半峰宽好像是与正态分布中的标准偏差有什么关系,目前理论上搞不明白,求高手指点!

  • 峰形不对称还能进行定量分析吗

    进样量增大到账峰形不是很对称 还能通过峰面积进行定量分析吗[img]https://ng1.17img.cn/bbsfiles/images/2019/10/201910261438305038_7049_3981536_3.png[/img]

  • postnova的非对称流动场场流分离仪与竞争对手的技术对比

    介绍场流分离技术,我们在外商提供的与竞争对手的技术对比文件的基础上,将其翻译成中文,并在此上传以供大家了解、学习。让大家认识到什么是真正的非对称流动场场流分离仪AF4。在附件的文件中,几个关键地方请大家注意:1 样品聚集:这是场流分离仪与HPLC/GPC的明显不同之处,而样品聚集技术的好坏,几乎就关系着非对称流动场场流分离仪的使用效果的好坏!竞争对手采用手动调节样品聚集,是非常落后的,也是非常困难的,因为绝大多数用户都不熟悉场流分离技术,更谈不上有什么使用经验了,也没有时间和精力去通过长时间的使用来总结出经验,而往往是通过使用这台仪器来尽快地做出科研成果来。这就要求实现自动化!postnova公司的非对称流动场场流分离仪采用了最先进的自动样品聚集技术,无需操作人员手动调节!2 化学兼容性:postnova产品采用了完全适应多种溶剂体系的仪器,包括:交叉流泵、溶剂输送泵、样品聚集泵、自动进样器、馏分收集器、智能分流泵等等全部硬件设备,都是分成几种溶剂体系的,以适应不同的应用,保证化学兼容性不会影响分析效果和仪器寿命。而竞争对手则完全没有这方面的设计和技术,其交叉流调节器,也不是完全采用了PEEK管路以适应水相应用,因此其中的金属部件在盐水溶液浸泡下会发生腐蚀!而有机相的应用,就更无法真正实现了——采用塑料材质的部分管路,会与有机溶剂发生溶胀,段时间使用也会产生表面张力的不良影响。

  • 【原创大赛】色牢度测试中常见的质量问题及其成因分析

    色牢度:纺织产品质量控制中最基本也是最重要的测试内容之一目前,困扰纺织产品生产和出口企业的产品质量问题,主要还是集中在产品的色牢度测试不合格。因此,本文就色牢度测试常见的质量问题及其成因进行分析。纺织色牢度测试常见的项目有:耐水、耐磨、耐洗、耐光、耐氯、耐臭氧。色牢度测试中常见的质量问题及其成因分析:耐摩擦色牢度;耐水、耐洗和耐汗渍色牢度;含氨纶弹性织物色牢度、牛仔织物耐臭氧色牢度、涂料印花织物色牢度。1.耐摩擦色牢度问题,纺织产品最基本的色牢度考核指标中小企业产品在耐摩擦色牢度反面的主要问题有:1.中深色的棉、麻及其混纺类产品的耐湿摩擦色牢度绝大部分都在2-3级以下,低于通用标准的要求。2.部分深色的轻薄型和含有羊毛的起毛类产品的耐干摩擦色牢度远低于耐湿摩擦色牢度。3.部分表面粗糙或起毛类织物,包括涂料染色和印花类产品的耐干摩擦色牢度达不到标准的最低要求。耐湿摩擦色牢度:直接染料用于纤维素纤维的染色,耐湿摩擦色牢度和耐水洗色牢度不理想成因分析:直接染料对纤维素纤维的亲和力主要基于偶极引力和色散力,这种吸附作用的结合不牢固,尤其在湿态状态下,氢键的作用也许更强。不溶性偶氮染料对纤维素纤维产品染色,其耐摩擦色牢度不理想。成因分析:1.浮色2.染料的聚集所涉及的因素:色酚对纤维素纤维的直接性,染色工艺,皂煮工艺前的预处理影响活性染料耐湿摩擦色牢度的因素:1.活性染料自身的结构与特性2.纤维素织物的性质3.前处理效果、布面破损及表面光洁4.染色工艺及染色后皂洗的效果5.织物染色后的固色处理效果6.染色织物后整理的影响以及纤维素纤维讲解的影响活性染料染色的纤维织物在耐湿摩擦色牢度试验会引起颜色转移主要因素:水溶性的染料在摩擦时使原样褪色并使摩擦布沾色。部分染色的纤维在摩擦时发生断裂,形成微小的有色纤维颗粒,造成沾色。活性染料染色织物的耐湿摩擦色牢度与染色的深度紧密关联,这其中染色时染料的过饱和是最重要的因素。如何有效改善织物的耐湿摩色牢度在染色前对纤维素纤维进行适当的前处理,如丝光、烧毛、纤维素酶光洁处理、退浆煮炼、漂白、洗涤、烘干,可以提高织物表面的光洁度和毛效、降低摩擦阻力、减少浮色。耐干摩擦色牢度:某些特定的织物(轻薄型织物、表面粗糙或磨绒,起毛织物)达不到标准要求。成因分析:由于织物结构比较疏松,在进行干摩擦时,样品在压力和摩擦力的作用下会跟摩擦头的运动而发生部分滑移,使摩擦阻力增大,且摩擦效率提高。磨绒或起毛织物,耐干摩擦色牢度下降。成因分析:织物表面的绒毛与摩擦布表面呈一定的夹角,并不是平行的,从而使摩擦头在作往复运动时摩擦阻力增大。影响耐摩擦色牢度的因素:织物组织结构,表面形态。耐水、耐洗和耐汗渍色牢度部分纺织产品及其混纺织物以及弹性织物在耐水、耐汗渍和耐皂洗色牢度测试中,尼龙和醋酯纤维贴衬的沾色都不合标准要求。成因分析:布面上的浮色和部分有色纤维微粒转移有关,和所选用的染料品种、染色工艺和后处理工艺有关,采用分散染料染色时的热迁移现象。造成分散染料热迁移的主要原因:纺织产品加工过程中所使用的助剂在高温对染料的溶解于染料分子结构,与纺织产品加工中所使用的助剂有关(其中非离子表面活性剂也是重要因素)。

  • 色谱峰不对称原因

    大家帮我分析一下,色谱峰不对称的原因,峰不对称,峰的前半部大于后后半部!

  • 欧核中心发现新的物质—反物质不对称现象

    观测到的不对称行为信号水平超过5西格玛2013年04月26日 来源: 科技日报 作者: 华凌 科技日报讯据物理学家组织网4月24日报道,欧洲核子研究中心今天在《物理评论快报》上提交了一份报告称,大型强子对撞机底夸克实验(LHCb)首次在B0s粒子的衰变中观察到物质—反物质的不对称性。这是已知的第四个亚原子粒子表现出了这种行为。 LHCb是LHC上的六个探测器之一,主要目标是测量在b强子中的CP破坏和新物理。“CP”是电荷共轭(Charge conjugation) 与宇称 (Parity) 的首字母缩写组合。电荷共轭对称性通常也叫做正反粒子对称性。 多数物理学家认为,宇宙大爆炸之初是处于正反物质对称的状态。但天文观测表明,如今的宇宙却是以物质为主的。这就产生了一个问题:宇宙中的反物质到哪里去了?目前虽还没有完整的答案,但物理学家们普遍认为,CP对称性的破缺正是解决问题的关键环节之一。因为CP对称性的破缺表明物质与反物质在参与相互作用时存在着细微差别,正是这种差别,外加一些其他条件,最终导致了两者的数量差异。从这个意义上讲,我们这个五彩缤纷的物质世界,包括人类自身,都是CP对称性的细微破缺留下的遗迹。 大型强子对撞机一直在寻求粒子和反粒子行为的细微差别。其LHCb实验现已观察到B0s衰变粒子中的CP破坏,这是在2011年实验收集的数据基础上做出的分析。LHCb发言人皮耶路易吉·坎帕纳说:“在B0s粒子中发现不对称反应超过5西格玛的水平,该结果要归功于大型强子对撞机提供的大量数据和LHCb探测器对粒子的甄别能力。而在其他地方的实验还不能够积累到足够多的B0s衰变。” 在20世纪60年代,美国布鲁克海文国家实验室首次在被称为中性K介子观察到违反CP的对称性。大约40年后,日本和美国实验中在另一个粒子B0介子中发现了类似的行为。最近,在所谓的B介子工厂和欧洲核子研究中心LHCb的实验发现,B+介子也演示了CP破坏。所有这些CP破坏现象可在标准模型中占有一席之地,不过这些引人入胜的差异,还需要更详细的研究。(华凌) 《 科技日报》 2013-04-26 (二版)

  • 实验室内首次创造出对称性破缺

    有助于研究量子相变和复杂系统的非平衡性动力系统2013年08月14日 来源: 中国科技网 作者: 刘霞 科技日报讯 据美国每日科学网站8月12日报道,多国研究人员首次通过实验证明,可在实验室内以一种可控的方式制造出对称性破缺并观察到拓扑瑕疵。在一个控制得很好的系统内识别出这些“拓扑瑕疵”,将有助于科学家们研究量子相变、洞悉复杂系统的非平衡性动力系统。研究结果发表在最新出版的《自然·通讯》杂志上。 大约140亿年前,是什么力量创造了我们现在身处的宇宙?在宇宙大爆炸之后的短暂瞬间,对称性破缺如何导致物质、恒星以及星系从一个起初对称且各处环境一样的宇宙中制造出来?这是科学家们一直想知道的问题。尽管宇宙大爆炸仍然无法被重复,但科学家们现在的确能在可控的实验下对这种对称性破缺及其变化进行研究了。 拓扑瑕疵是空间结构内出现的错误,当一个系统内的粒子无法相互“沟通”时,对称性破缺会导致这种拓扑瑕疵。而由德国联邦物理技术研究院(PTB)、乌尔姆大学、美国洛斯阿拉莫斯国家实验室以及以色列耶路撒冷希伯来大学联合进行的实验,就试图对一个复杂的多粒子系统进行控制并诱导外部环境发生变化以获得这种对称性破缺。 为了制造出这一系统,他们将镱离子捕获在所谓的“射频离子陷阱”中,并在激光的帮助下将其冷却到几毫开尔文以下。在陷阱内,阳离子会相互排斥,镱离子也在这样的超低温下呈现出晶体结构,这样就构造出了一个所谓的“离子库伦晶体”,其对称性可与早期宇宙的对称性相媲美,科学家们也可对超冷粒子以及周围的环境参数进行很好地控制。当离子在晶体内寻求新的平衡状态时,拓扑瑕疵就会出现。 最新研究同由汤姆·基布尔和沃奇克·祖瑞克建立的所谓的基布尔—祖瑞克机制密切相关。基布尔提出,早期宇宙中存在一些特殊的拓扑瑕疵:在宇宙大爆炸之后的瞬间,一种对称性破缺发生,年轻的宇宙必须“决定”采取哪个新状态。此时,宇宙中各个独立的区域并不会互相交流其决定,宇宙弦和畴壁这样的拓扑瑕疵或许就被制造出来。但是,基布尔—祖瑞克机制认为,相变中也会出现瑕疵。这一理论可以适用于很多物理学领域,诸如从金属到超导体的相变或从铁磁体到顺磁性系统的相变等。 研究团队现在已经证明,使用超冷的离子库伦晶体,这种基布尔—祖瑞克机制能被转移到相对简单的实验室系统,拓扑瑕疵的出现取决于改变出现的速度。而美因茨约翰尼斯古腾堡大学同时进行的研究也得出了同样的结论。 最新系统有助于科学家们在经典系统、量子宇宙以及在非线性的物理学领域内进行与相变有关的研究,从而使他们能更快地解释自然界中的神秘关系。(刘霞) 《科技日报》(2013-08-14 二版)

  • 【原创】极性、对称性及其他

    有网友问关于键极性的问题,我来大概说说极性,极性分子,极性键键极性有机化合物原子间由共价键链接,键极性特指共价键的一种性质。离子晶体不要讨论这个问题了。共价键按照键的极性分为极性键和非极性键不同两个原子间,必然是极性键——这个无特例同原子间,一般为是非极性键——这个不排除特例键的对称性,这个就比较复杂了,根据电子云形状,大家自己琢磨吧,我不写了,这个要写,得一本书。分子极性非对称分子,一定为极性分子有对称性分子,不一定是非极性分子这个要考虑分子构型对称性问题。极性分子——电子云几何中心和质子几何中心不重合非极性分子——电子云几何中心和质子几何中心重合举几个例子吧H2——非极性分子——重合于两个H中间CO2——非极性分子——重合于C上H2O——极性分子——电子云偏向O,(这个偏向相对于正电荷中心,因为正电荷是分子几何中心,这个当然经过了加权的)分子对称性,也太复杂了,我也不说了分子对称性和分子极性有相关性但是不是对称分子,就为非极性分子这个也比较复杂,内容太多了

  • 高对称分子 质谱

    [color=#444444]一个分子结构式是R2C=CR2,R中的杂原子有两个个N和一个O.高度对称的分子,理论分子量在916,可是质谱(ESI 和 Maldi-TOF)都没有做出分子离子峰,请问各位大虾有什么高见?是不是高度对称的分子不容易出峰?有相关文献吗?[/color]

  • 旋转边带有不对称的么?

    有一次在测试中心,老师给别人测19F谱,有俩峰说是旋转边带,但是如果是边带的话,他们的峰强度并不相同,感觉很纳闷。请问我们说旋转边带沿主峰对称分布,只是化学位移对称,是否要求边带的强度也相同?顺便再问一下,为什么有些样品能出现旋转边带,而有些样品却没有旋转边带?

  • 【转帖】广东千人吃镇痛药曲马多成瘾君子

    广东千人吃镇痛药曲马多成瘾君子来源:37度医学网 作者: 发表日期:2006-08-23 广东4000余人滥吃镇痛药曲马多成瘾君子(图) 在广州多家药店,无需医生的处方就可以买到这种曲马多的处方药   记者近日从有关部门获悉,根据广东省药物滥用监测中心的统计数据,2004年广东省只发现11例滥用止痛药曲马多成瘾的患者,而到今年上半年,这一数据已经飙升到4492例,增长了400多倍。如今,曲马多已经和止咳药水一样,成为夺命“亚毒品”。   记者调查:不用处方也能买曲马多   曲马多学名叫盐酸曲马多,是一种临床上常用的麻醉性镇痛处方药。长期大剂量服用可致中枢神经兴奋、呼吸抑制,并可产生耐受性和成癌性及其他不良反应。由于它不像吗啡、杜冷丁、美沙酮一样被列入麻醉类药物,因此它可以在药店出售。不法商家却钻了监管不严的空子,随意非法向没有处方的消费者出售。   记者暗访发现,在广州的一些药店,不用医生处方都可以轻易买到曲马多。在新港中路一家x康药店,记者以9.8元的单价买到了一盒“奇xx”盐酸曲马多,一盒10粒,售货员根本就没要处方。在广州大道南的几家药店,也均是给钱就能买到。记者在药品说明书上看到,曲马多的正常用途是用于治疗癌症患者、骨科类受伤等疼痛,规定剂量一天不得超过200毫克,且必须在医生指导下服用。医生称,如果不按规定滥用剂量,一般半年后就会上瘾。   据了解,广东省药监局早在2004年就发出通知:药店销售联邦止咳露、盐酸曲马多等药品必须凭医生处方,且处方必须留存2年以上备查,否则将吊销药品经营许可证。而广东《药品流通监督管理办法》也规定,违规者可处警告或者并处两千元至三万元的罚款。   记者昨日就此采访了广东省药监局有关负责人,他说,一些药店擅自销售止咳露、盐酸曲马多等处方药的行为已引起高度重视。他们目前正在制订相应的方案,将尽快联合多个部门,依法查处非法出售处方药的行为。   业内人士呼吁:“药品管理部门有必要将阿片类药物的出售权进行限制,只得在医院的药房才能购买。   “发瘾时,比海洛因更厉害”  36岁的阿丽借曲马多戒毒不想染上药瘾,最终通过手术戒掉    “每过5个小时,我必须吃一颗,不然浑身出虚汗,头疼欲裂,骨头里像有蚂蚁在啃,比海洛因还厉害。”  “虽然曲马多是处方药,但我在药店一次能买六七盒,根本不需要处方。”  36岁的阿丽(化名)6年前一时好奇,吸了一口海洛因后就不可收拾,2年多的时间陷入毒品泥沼难以自拔,身体每况愈下,阿丽找了几家诊所,尝试了好几种戒毒方法未能奏效。   “有一次,我看到戒毒医院的医生偷偷地从包里拿出一种药,倒进没有标签的玻璃瓶,再发给吸毒的人吃。我留意到原来那是盐酸曲马多片,上网查资料,也有人说这种药戒毒有效,我就想试试。没想到,这种不到一块钱一粒的镇痛药丸还特别有效。连续吃了半年多的曲马多片,多的时候一天吃10多粒,竟然真的摆脱了海洛因。”  上瘾时像蚂蚁在啃骨头   但不久之后,阿丽发现了新问题:“虽然不吸海洛因了,但我还是离不开曲马多片。每过5个小时,我必须吃一颗,不然浑身出虚汗,头疼欲裂,骨头里像有蚂蚁在啃。发瘾时,比海洛因还厉害,心慌得特别难受。”虽然阿丽好几次都下决心要戒掉曲马多,但是难以忍受的痛苦击败了她,4年多来,阿丽每天都靠曲马多维持着,“至少不用像吸毒花那么多钱,家里人暂时还能接受。”   但长期过量服用曲马多后,副作用开始毫不留情地接踵而来:记忆力衰退,反应迟钝,内分泌紊乱,不敢怀孕。整天想的都是吃药的事,根本无法正常工作。   通过手术戒掉药瘾   阿丽开始在网上四处寻找可以戒断曲马多的方法。今年8月,她到医院就诊。医生向她推荐了“全麻下超快速脱瘾结合抗心瘾药维持和心理治疗”手术,这种方法治疗过海洛因成瘾、杜冷丁、美沙酮、止咳药水等阿片类药物成瘾患者500多例,躯体脱瘾达到了100%,而用此治疗曲马多片成瘾国内还没有先例。幸运的是,手术很成功,通过配合相关的心理治疗,阿丽到现在再也没有吃过一粒曲马多。    在离开医院之前,阿丽考虑再三答应接受采访,她说:“因为很多人不知道曲马多能产生这么大的药瘾,我希望借此给像我一样用它来戒毒的人提个醒。而且现在一些药店随便都可以买到这种处方药,有关部门应该管制起来。”阿丽说,虽然曲马多是处方药,但是她在药店一次买六七盒,根本不需要处方。   过量服用如染毒瘾   “曲马多”学名叫盐酸曲马多,是一种临床上常用的麻醉性镇痛药。长期大剂量服用可致中枢神经兴奋、呼吸抑制,并可产生耐受性和成癌性及其他不良反应。其成瘾性比传统毒品慢一些,大量服用可以产生类似海洛因成瘾症状,可使人产生药物依赖并发生人格改变,打人、毁物、撒谎、行为放荡等。  滥用曲马多成瘾者比两年前狂增400倍,可怕的事实已经表明这种弱阿片类药物,其危害性直追毒品。然而面对着这种夺命“亚毒品”的威胁,一个缺乏管制的放任状态更加令人堪忧。   用曲马多来戒毒,听起来大有一种“以毒攻毒”的感觉。当对毒品的依赖转化为对曲马多的依赖后,“恶之花”只不过是换了一个名字,继续附着在病体上。   从药理上来说,曲马多也只是起到一个止痛的作用,更不是治疗毒瘾的药方。但患者缺乏对曲马多药性的了解,有关部门不可能不知道曲马多的厉害。虽然有规定曲马多作为处方药要凭医生处方才能购买,但处方药管理的混乱使得曲马多的管制名存实亡。而放任曲马多的随意购买,实际上等于无视这种“亚毒品”的危害。因而,对曲马多、止咳药水这类易上瘾的药物,要么将其列入毒麻类,像对杜冷丁等药品一样严管起来,要么就严惩药店私售之罪,坚决按处方购买。不能任其作为毒品“替代品”的错误观念和毒品“衍生品”的错误服用继续害人了。

  • 峰型不对称

    峰型不对称时,相位也调不过来,是不是匀场没有到位,请问是不是减小Z4呢?

  • 物理学家探测到罕见粒子衰变 或颠覆超对称理论

    2012年11月14日 来源: 新浪科技 作者: 晨风 http://www.stdaily.com/stdaily/pic/attachement/gif/site2/20121114/2c27d720c896120d3fe024.gif粒子物理学中的标准模型http://www.stdaily.com/stdaily/pic/attachement/png/site2/20121114/2c27d720c896120d3fe025.png一个Bs介子衰变成为两个μ介子,这种现象极其罕见 新浪科技讯 北京时间11月14日消息,据英国广播公司(BBC)报道,物理学家们近期探测到了自然界中最罕见的粒子衰变现象之一。这项发现对于现行的物理学理论,即超对称理论将是一项重大打击。 超对称理论之所以获得流行,是因为它很好地构成了对现有描述亚原子粒子性质的标准模型的修正。它可以解释标准模型中存在的一些缺陷。而近日在日本京都举行的强子对撞机物理学会议上研究人员们报告的一项发现和超对称理论的诸多最可能的模型不符,研究人员们将于近期发表有关这一结果的论文。 克里斯·帕克斯(Chris Parkes)教授是英国参与大型强子对撞机项目部分的发言人,他告诉BBC新闻称:“超对称理论或许还不至于立即死掉,然而近期的这项观测结果确实足以让它进医院了。” 超对称理论预言现在已经被探测到的这些粒子都还存在着质量更大的版本。如果这些粒子能够被找到,那么它将可以帮助解释诸如暗物质等一些现象。观察显示星系边缘部分的旋转速度太快了,是无法用星系中我们见到的这些物质的量去解释的,因此科学家们认为是暗物质提供了额外的引力作用。然而他们找不到暗物质存在的踪迹,他们认为超对称粒子可能就是构成暗物质的一种可能候选者。 然而大型强子对撞机项目的研究人员们这次则是扎扎实实地给了对于希望发现这类超对称粒子的人们一个沉重打击。 研究人员测量了一种被称为“Bs介子”的粒子衰变成为两个μ介子的过程。这是人们首次观察到这种现象。事实上研究人员们计算指出这种粒子每10亿年才会发生3次这种衰变。 假如超对称粒子存在,那么这种衰变的发生应该要频繁得多。这项实验是检验超对称理论的试金石之一,然而这项观察结果似乎暗示,这一物理学界的主流理论事实上可能是错误的。 这项实验结果的置信区间是3.5Σ,这意味着其中存在着1/4300的可能性这一结果是错误的,实验小组观察到的是假信号,也就是说衰变并没有发生,但是他们恰好在数据中看到了一个同样的信号。这一置信度让这项研究结果值得进行进一步的探讨,而一旦置信度达到或超过5Σ,那么此时就可以将这一结果作为一项发现予以发布。 凡·吉布森(Val Gibson)教授来自英国剑桥大学的LHCb小组,他说这项实验结果让他身边研究超对称理论的同事们“坐立不安”。 事实上如果遵循标准模型,是可以自然地推知这项结果的。之前便已经有物理学家指出,如果存在超对称粒子,那么项目进行到这个时候,大型强子对撞机上的探测器应该已经探测到了,但事实是并没有探测到这样的粒子。 而如果超对称理论并非暗物质的最终答案,那么理论物理学家们将不得不重新寻找替代方案来解释现有标准模型中的不足之处。而到目前为止,那些致力于寻找“新物理”的研究人员们都前前后后的钻进了死胡同。 英国剑桥大学的物理学家马克-奥利弗·巴特勒(Marc-Olivier Bettler)博士是此次实验项目的数据分析组成员,他表示:“如果新的物理学存在,那么它一定就隐藏在标准模型的身后。” 此次研究结果并不能彻底排除超对称粒子存在的可能性。不过按照帕克斯教授的看法,“这一新的物理学的躲藏之处正变得越来越少”。 然而超对称理论的支持者们,如伦敦国王学院的约翰·艾里斯(John Ellis)教授,他们认为这项观察结果“事实上是符合超对称理论的”。他说:“事实上,在一些超对称模型中这是预料之中的。对于这样的探测结果,我晚上可没有因此睡不着觉。”(晨风)

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制