当前位置: 仪器信息网 > 行业主题 > >

乙基己酸银

仪器信息网乙基己酸银专题为您提供2024年最新乙基己酸银价格报价、厂家品牌的相关信息, 包括乙基己酸银参数、型号等,不管是国产,还是进口品牌的乙基己酸银您都可以在这里找到。 除此之外,仪器信息网还免费为您整合乙基己酸银相关的耗材配件、试剂标物,还有乙基己酸银相关的最新资讯、资料,以及乙基己酸银相关的解决方案。

乙基己酸银相关的资讯

  • 用于植物油快速质控的自动计算法以及品质鉴定
    Peter J. Lee、Yoji Ichikawa、Roger R. Menard和Alice J. Di Gioia沃特世公司,美国马萨诸塞州米尔福德市引言植物油是食品、化妆品和个人护理品的重要成分,主要来自于世界各地的22种油料作物。生产加工、贮存、运输和销售各环节都对植物油的质量起着至关重要的作用。偶发事件和故意事件均会导致植物油的交叉污染。现已颁布了包括315/93/EEC、2568/91/EEC、EC 333/2007和EC 640/2008在内的多部法规,要求鉴定植物油的品质,并避免污染,从而保障公共健康和公平交易1。 为了确保产品质量,满足法规要求并维护公司最有价值的资产&mdash &mdash 品牌形象,植物油公司对植物油的生产过程,从原料到成品全过程进行监控。目前,植物油分析主要依靠气相色谱法(GC)和高效液相色谱法(HPLC)。气相色谱法要求在分析前进行衍生化,这既耗时又费力2。为了实现完全分离,普通的高效液相色谱法要求使用卤代溶剂或使用会使运行时间更长的非卤代溶剂3-6,。自卤代溶剂被认识到具有致癌作用后,卤代溶剂的使用在大多数实验室受到了限制。因此,人们对用于植物油质量控制和品质鉴定更有效的分析工具的需求日渐增加。 ACQUITY UPLC系统是新一代液相色谱平台。使用UPLC/PDA/ELSD/质谱检测器,可以更快进行筛选、在不使用卤代溶剂7-10条件下对植物油的表征建立高分离度的方法。只需一次进样,超高效液相色谱(UPLC)系统就能得到多种类型的数据,产生重现好的指纹图谱数据,鉴别甘油三酸酯的组分,并评估植物油氧化和分解程度。与普通的高效液相色谱相比,超高效液相色谱缩短了分析时间,减少了溶剂用量,并能从一次进样中提供更高分离度并带有更多信息的色谱图。因此,超高效液相色谱法的性价比更高。本技术文献描述了用于植物油质控和品质鉴定的更为高效的系统解决方案,即使用UPLC和EmpowerTM 2软件的用户自定义字段的计算功能,自动定量并报告植物油样品是否符合用户设定的质控标准。此方案不再需要人工计算,从而避免了可能的人为误差并能够快速而准确地报告关键信息。掌握了准确、及时的结果,决策者就能提高交货效率和产量,即减少不合格产品,避免产品召回,并最大限度地减少责任诉讼。本文的实验部分提供了关于自定义字段计算的例子,并附有其详细步骤。实验样品准备:食用油,购买自当地的食品杂货店。用2-丙醇将食用油样品稀释为6 mg/ml的溶液,以备分析之用。超高效液相色谱条件:超高效液相色谱系统: ACQUITY UPLC,PDA检测器软件: Empower 2PDA参数:检测波长: 195-300nm采样率: 20 pts/s过滤响应速度: 快超高效液相色谱参数:色谱柱: ACQUITY BEH C18 2.1 x 150 mm弱洗脱: 2-丙醇(每次洗脱用量:500 &mu L)强洗脱: 2-丙醇(每次洗脱用量:500 &mu L)充填洗脱: 10%的CH3CN水溶液(每5分钟)流动相A: CH3CN流动相B: 2-丙醇柱温: 30° C进样量: 2 &mu L(满环定量)梯度条件:时间 (min) 流速 (mL/min) %B 曲线0 0.15 10 &mdash 22 0.15 90 6平衡色谱柱和UPLC系统条件:时间 (min) 流速 (mL/min) %B 曲线 0 0.13 100 &mdash 18 0.13 10 1121.5 0.7 10 1124.5 0.15 10 1125 0.15 10 11说明:运行样品组之前,先进一针空白试样2-丙醇;该检测值被用作PDA 3D谱图的空白扣除。用于鉴定特纯天然橄榄油A质量的质控 标准:为了便于演示,我们从纯天然橄榄油A的典型色谱图中选取六个峰。选择其中的一个峰作为标记峰,其余的峰为指示峰。&ldquo 峰面积比(指示峰面积除以标记峰面积)± 3xSTDEV&rdquo 用作指示峰的质控标准。1. 指示峰3O(峰面积OOL/标记峰面积)0.84或0.86,则合格;否则不合格。2. 指示峰OOL(峰面积OOL/标记峰面积)1.18或1.21,则合格;否则不合格。3. 指示峰LLO(峰面积LLO/标记峰面积)0.39或0.41,则合格;否则不合格。4. 指示峰LLL(峰面积LLL/标记峰面积)0.039或0.045,则合格;否则不合格。5. 指示杂质峰(杂质峰面积/标记峰面积)0.42,则合格;否则不合格。创建计算峰面积比自定义字段的步骤11 :1. 点击&ldquo 配置系统&rdquo ,进入配置管理员;在树形结构中点击&ldquo 项目&rdquo 。2. 选择并右击所需的项目。3. 选择&ldquo 属性&rdquo ,打开&ldquo 项目属性&rdquo 窗口。4. 点击&ldquo 自定义字段&rdquo 标签;然后点击&ldquo 新建&rdquo ,打开&ldquo 数据和类型选择&rdquo 窗口(图1)。5. 在字段类型中选取&ldquo 峰&rdquo ,在数据类型中选取&ldquo 实数(0.0)&rdquo ;然后点击&ldquo 下一步&rdquo 打开&ldquo 选择来源&rdquo 窗口,如图2所示。6. 在&ldquo 数据来源&rdquo 中选择&ldquo 计算&rdquo ,在&ldquo 样品类型&rdquo 和&ldquo 峰类型&rdquo 中选择&ldquo 全部&rdquo ;在&ldquo 搜索顺序&rdquo 中选择&ldquo 只限于结果组&rdquo ,然后在弹出窗口中点击&ldquo 确定&rdquo ;不要勾选&ldquo 全部或没有&rdquo 以及&ldquo 丢失峰&rdquo 选项;点击&ldquo 下一步&rdquo ,打开&ldquo 输入公式&rdquo 窗口,如图3所示。7. 将面积/IS[面积]输入至字段中;点击&ldquo 下一步&rdquo ,打开&ldquo 数值型参数&rdquo 窗口(使用默认值)。8. 点击&ldquo 下一步&rdquo ,打开&ldquo 输入名称&rdquo 窗口。9. 输入新的字段名(例如,此处所用的字段名是&ldquo Ratio _IS&rdquo );在&ldquo 创建该字段&rdquo 中选择&ldquo 项目&rdquo 。10. 点击&ldquo 完成&rdquo ,这样就创建了一个名为&ldquo Ratio_IS&rdquo 的自定义字段,用于计算峰面积比,如图4所示。创建自定义字段并根据特定指示峰面积比的标准确定&ldquo 合格&rdquo 或&ldquo 不合格&rdquo 的步骤如下:1. 点击&ldquo 配置系统&rdquo ,打开配置管理员;在树形结构中点击&ldquo 项目&rdquo 。2. 选择并右击所选择的工作项目。3. 选择&ldquo 属性&rdquo ,打开&ldquo 项目属性&rdquo 窗口。4. 点击&ldquo 自定义字段&rdquo 标签;然后点击&ldquo 新建&rdquo ,打开&ldquo 数据和类型选择&rdquo 窗口,如图1所示。5. 在字段类型中选择&ldquo 峰&rdquo ,在数据类型中选取&ldquo 布尔(0.0)&rdquo ;然后点击&ldquo 下一步&rdquo ,打开&ldquo 选择来源&rdquo 窗口。6. 在&ldquo 数据来源&rdquo 中选择&ldquo 计算&rdquo ,在&ldquo 样品类型&rdquo 和&ldquo 峰类型&rdquo 中选择&ldquo 全部&rdquo ;在&ldquo 搜索顺序&rdquo 中选择&ldquo 只限于结果组&rdquo ,然后在弹出窗口中点击&ldquo 确定&rdquo ;选择&ldquo 全部或没有&rdquo 选项,在弹出窗口中点击&ldquo 是&rdquo ;然后点击&ldquo 下一步&rdquo ,打开&ldquo 输入公式&rdquo 窗口。7. 将以下公式输入至字段中:GTE(3O[Ratio_IS],0.841)E(3O[Ratio_IS],0.859])*EQ(Name,&ldquo 3O&rdquo )+NEQ(Name,&rdquo 3O&rdquo )*-1*500008. 点击&ldquo 下一步&rdquo ,打开&ldquo 翻译定义&rdquo 窗口,如图5所示。9. 在&ldquo 0&rdquo 旁边,输入&ldquo 不合格&rdquo ;在&ldquo 1&rdquo 旁边,输入&ldquo 合格&rdquo ;然后点击&ldquo 下一步&rdquo ,打开&ldquo 输入名称&rdquo 窗口。10. 输入一个名称(例如,此处使用的是&ldquo Oly_OOO&rdquo );在&ldquo 创建该字段&rdquo 中选择&ldquo 项目&rdquo 。11. 点击&ldquo 完成&rdquo ,这就创建了一个名为&ldquo Oly_OOO&rdquo 的自定义字段用于检验峰面积比(OOO峰面积除以标记峰面积)是否符合指示峰OOO的质控标准,如图6所示。重复进行第1-8步,以确定其余的指示峰是否合格:对于指示峰OOL,在第4步中,在&ldquo 输入公式&rdquo 窗口中输入以下公式:GTE(OOL[Ratio_IS],1.18)E(OOL[Ratio_IS],1.21])*EQ(Name,&ldquo OOL&rdquo )+NEQ(Name,&ldquo OOL&rdquo )*-1*50000. 在第7步中,在字段名中输入&ldquo Oly_OOL&rdquo ,创建字段&ldquo Oly_OOL&rdquo ,以检验峰面积比(OOL峰面积除以标记峰面积)是否符合质控标准。对于指示峰LLO,在第4步中,在&ldquo 输入公式&rdquo 窗口中输入以下公式:GTE(LLO[Ratio_IS],0.39)E(LLO[Ratio_IS],0.41])*EQ(Name,&ldquo LLO&rdquo )+NEQ(Name,&ldquo LLO&rdquo )*-1*50000. 在第7步中,在字段名中输入&ldquo Oly_LLO&rdquo ,创建字段&ldquo Oly_LLO&rdquo , 以检验峰面积比(LLO峰面积除以标记峰面积)是否符合质控标准。对于指示峰LLL,在第4步中,在&ldquo 输入公式&rdquo 窗口中输入以下公式:GTE(LLL[Ratio_IS],0.039)E(LLL[Ratio_IS],0.045])*EQ(Name,&ldquo LLL&rdquo )+NEQ(Name,&ldquo LLL&rdquo )*-1*50000. 在第7步中,在字段名中输入&ldquo Oly_ LLL&rdquo ,创建字段&ldquo Oly_ LLL&rdquo , 以检验峰面积比(LLL峰面积除以标记峰面积)是否符合质控标准。对于杂质指示峰,在第4步中,在&ldquo 输入公式&rdquo 窗口中输入以下公式:GT(Impurity[Ratio_IS],0.42)*EQ(Name,&rdquo Impurity&rdquo )+NEQ(Name,&ldquo Impurity&rdquo )*-1*50000. 在第7步中,在字段名中输入&ldquo Oly_Impurity&rdquo ,创建字段&ldquo Oly_ Impurity&rdquo ,以检验峰面积比(杂质峰面积除以标记峰面积)是否符合质控标准。本方法用定时组功能计算杂质峰的总和:1. 在&ldquo 编辑处理方法&rdquo 窗口中,选择&ldquo 定时组&rdquo 标签,如图7所示。2. 在&ldquo 名称&rdquo 字段中输入杂质名称,在&ldquo 开始时间&rdquo 字段中输入&ldquo 3&rdquo ,在&ldquo 结束时间&rdquo 字段中输入&ldquo 13.6&rdquo 。3. 勾选&ldquo 不包括已知峰&rdquo 字段。在处理方法中标记选定的标记峰和指示峰:1. 在&ldquo 编辑处理方法&rdquo 窗口中选择&ldquo 组分&rdquo 标签。2. 将保留时间为9.81 min的峰名称改为IS,在&ldquo 峰标签&rdquo 字段中输入&ldquo 标记峰&rdquo ,如图8所示。3. 将保留时间为13.79 min的峰名称改为3L,在&ldquo 峰标签&rdquo 字段中输入&ldquo LLL&rdquo 。4. 将保留时间为14.85 min的峰名称改为2LO,在&ldquo 峰标签&rdquo 字段中输入&ldquo LLO&rdquo 。5. 将保留时间为15.87 min的峰名称改为2OL,在&ldquo 峰标签&rdquo 字段中输入&ldquo OOL &rdquo 。6. 将保留时间为16.85 min的峰名称改为OOO,在&ldquo 峰标签&rdquo 字段中输入&ldquo OOO&rdquo 。在处理方法中创建命名组的步骤:1. 在&ldquo 编辑处理方法&rdquo 窗口中选择&ldquo 命名组&rdquo 标签。2. 在&ldquo 名称&rdquo 栏中输入3O、LLL、LLO、OOL和Oly,如图9所示。3. 分别将OOO、3L、2LO、2OL和IS从&ldquo 单峰组分&rdquo 拖至各自相应的命名组中,如图9所示。创建合格或不合格报告模板的步骤:1. 点击&ldquo 方法&rdquo 标签,选择一份报告,右击该报告;选择&ldquo 打开&rdquo ,以显示&ldquo 编辑报告方法&rdquo 窗口。2. 在&ldquo 编辑报告方法&rdquo 窗口中选择&ldquo 新建&rdquo ,打开&ldquo 新方法/组&rdquo 窗口。3. 选择&ldquo 创建新报告方法&rdquo ,勾选&ldquo 使用报告方法/组向导&rdquo 选项;然后点击&ldquo 确定&rdquo ,打开&ldquo 报告方法模板向导&rdquo 。4. 选择&ldquo 单个报告&rdquo ,然后点击&ldquo 下一步&rdquo ,打开&ldquo 新方法向导&rdquo 窗口。5. 在报告类型中选择&ldquo 单个&rdquo ,然后点击&ldquo 完成&rdquo ,显示一个报告方法模板。6. 在色谱图上右击,选择&ldquo 属性&rdquo ,打开&ldquo 色谱图属性&rdquo 窗口(图10)。7. 选择&ldquo 峰标签&rdquo ,勾选&ldquo 仅使用峰标签&rdquo ,然后点击&ldquo 确定&rdquo 。8. 右键单击&ldquo 表&rdquo ,选择&ldquo 属性&rdquo ,打开&ldquo 表属性&rdquo 窗口。9. 选择&ldquo 峰&rdquo 标签,勾选&ldquo 峰组&rdquo 。10. 点击&ldquo 表&rdquo 标签,然后在树形结构中点击所需的峰。双击每个指示峰,以将相应的自定义字段添加到结果表格中,如图11所示。11. 点击&ldquo 确定&rdquo ,输入该报告模板的名称(例如,此处显示的名称是&ldquo 特级天然橄榄油质控报告&rdquo ),然后在工具栏中点击&ldquo 保存&rdquo 。结果和讨论不使用卤代溶剂做流动相的普通高效液相色谱法很难分离植物油的主要组分&mdash &mdash 甘油三酸酯。图12为普通高效液相色谱法(2根5&mu m粒径颗粒填充的150mm长的C18柱,蒸发光散射检测器ELSD)得到的大豆油的典型色谱图,使用乙腈和二氯甲烷作为流动相,实现该分离需要60多分钟。由于二氯甲烷在240nm以内具有紫外吸收,这会干扰甘油三酸酯的紫外吸收(最大波长吸收值约210nm),因此使用蒸发光散射检测器(ELSD)进行检测。ACQUITY UPLC系统的设计特点是使用小颗粒装填技术的高效色谱柱,以进行更快速、更灵敏和更高分离度的分离。UPLC的溶剂传送系统能承受高达15,000 psi的背压,因此能够使用2-丙醇等高黏度溶剂进行植物油分析。由于2-丙醇对植物油的溶解性好12、低毒,透射度限制低,便于对甘油三酸酯进行紫外检测,因此2-丙醇被选作强洗脱液。图13为关于同一大豆油样品的10张叠加的紫外色谱图说明UPLC法的重现性,此分离使用1.7&mu m粒径的2.1 x 150mm的 BEH C18色谱柱,乙腈/2-丙醇作为流动相,整个运行时间缩短为22分钟。图12和图13比较,具有相似的甘油三酸酯峰型,但UPLC法具有更高的分离度,更短的运行时间。数据表明不使用致癌溶剂作为流动相,使用 UPLC分离植物油中的组分具有明显优势。用于植物油分析的乙腈/2-丙醇流动相的UPLC系统可使用PDA、ELSD和MS检测器,不像其他用于普通高效液相色谱法的溶剂。一次进样便可得到多种数据类型,并可以产生可重现的指纹图谱数据7,通过质谱法鉴别甘油三酸酯组分10,并用PDA多波长扫描测定植物油的氧化程度8。目前已知植物油具有特征的甘油三酸酯比,这对植物油指纹图谱5-8的鉴别很有用。如图14-16所示,核桃油、葡萄籽油、芝麻油、特级天然橄榄油A、特级天然橄榄油B、榛子油、茶籽油、玉米油、加拿大低酸油、高油酸葵花籽油和普通葵花籽油的紫外色谱图证实,每种油样品都具有独特的色谱类型,即相对峰强度。为了高效使用峰强度比进行品牌质控和质量鉴定,Empower 2软件的自定义字段计算功能可根据用户设定的质控标准自动将原始色谱数据转换为合格或不合格报告。以特级天然橄榄油A为例说明该改进的方法。图17为特级天然橄榄油A的叠加紫外色谱图和峰面积。甘油三酸酯的峰面积从最强峰(OOL)到最弱峰(LLL)其RSD值(n=6)0.9%。共有20多个可见峰,任一峰都能被用作标记峰或指示峰,用以计算峰面积比。为了便于讨论,将之前确定的甘油三酸酯的峰OOO、OOL、LLO和LLL选作指示峰10,将仅出现在橄榄油产品中、通过紫外检测观察到的保留时间为9.8分钟的强峰选作标记峰13。由于大多数廉价的蔬菜油和降解油具有很多保留时间低于13.6分钟的其它强峰9,因此可用定时组功能(图7)创建杂质指示峰,以监测是否存在污染。该杂质指示峰是指标记峰之外的保留时间介于3-13.6分钟的所有峰的总和。通过创建自定建自定义字段&ldquo Ratio_IS&rdquo (图4),可用Empower 2软件自动计算峰面积比(指示峰面积除以标记峰面积)。表1总结了峰面积比的结果以及STDEV值。&ldquo 峰面积比± 3xST-DEV&rdquo 被用作每个指示峰的质控标准。由于地理和其它种植条件的差异,植物油的某一特定类型会存在差异。该数值在比较其它植物油样品是否符合基于特定油品的质控标准方面具有极大的价值。现在,Empower 2软件能够使用自定义字段计算、命名组、定时组和报告模板(如图6、7、9、10和11所示),根据特级天然橄榄油A的质控标准,自动计算并报告样品合格与否的结果。图18为特级天然橄榄油A的典型Empower质控报告。该报告表明所有指示峰均符合质控标准。Empower软件的这些高级功能避免了人工计算步骤,因此能避免可能出现的人为误差。昂贵的特级天然橄榄油通常会被掺入廉价橄榄油和其它植物油(例如大豆油和榛子油)。图19为一份特级天然橄榄油B的报告。所有指示峰均表明该特级天然橄榄油B未通过根据特级天然橄榄油A制定的质控标准。在该色谱图中存在保留时间13.6 min的额外峰,这些数据清楚地表明两种品牌的橄榄油样品存在差异,并证实并非所有市售的特级天然橄榄油的品质都相同。图20为一份掺入9%榛子油的特级天然橄榄油A的报告。所有指示峰均表明该掺假样品不符合质控标准。而且,根据特级天然橄榄油A制定的同一质控标准也应用于分析其它植物油(图14-16),同样掺入1%大豆油或1%玉米油的特级天然橄榄油A,均不合格。之前描述的是使用UPLC-TOF和集成软件工具检测橄榄油掺假的化学计量方法14。本技术文献为植物油质控和品质鉴定提供了可供选择的另一种解决方案。本方法可完全自动地获取并处理数据,从而生成明确的合格或不合格报告。结论具有Empower 2 软件的ACQUITY UPLC系统能不需要衍生化和卤化溶剂,且能快速分析植物油样品并进行品质鉴定。UPLC系统得出的数据具有良好的重现性、精确性和准确性,而且简单易懂。分离速度比普通高效液相色谱法快三倍,所消耗的溶剂量减少8倍,所产生的有害废物也减少8倍;从而能够节省成本,提高安全性。ACQUITY PDA检测器能产生高分离度和高重现性的数据,这有助于轻松建立用于制定每种品牌植物油的质控和品质鉴定标准的指纹图谱数据。借助Empower 2软件的自定义字段计算功能,关键的产品质控数据可从原始数据中准确得出并根据用户设定的标准快速传送,有效地出具简单易懂的合格或不合格报告。决策者能根据这些重要信息及时做出决定,从而提高生产率。使用本UPLC方法,植物油公司能够轻松自信地鉴定产品的品质和质量。与植物油产品纯度方面利益相关的其他行业,例如化妆品公司、个人护理品公司和食品公司,也将从本方法中受益。参考文献1. http://www.fediol.org/5/pdf/legislation.pdf2. VG Dourtoglou et al. JAOCS, Vol.80, No.3: 203-208, 2003.3. LCGC, The Application Notebook, Sept 1, p51, 2006.4. A J Aubin, C B Mazza, D A Trinite, P McConvile. Analysis of Vegetable Oils byHigh Performance Liquid Chromatography Using Evaporative Light ScatteringDetection and Normal Phase Eluents. Waters Corporation, No. 720002879EN,2008.5. P Sandra et al J Chromatogr. A 974: 231-241, 2002.6. International Olive Oil Council standard method COI/T.20/Doc. No. 20 2001.7. P J Lee, C H Phoebe, A J Di Gioia. ACQUITY UPLC Analysis of Seed Oil (Part 1):Olive Oil Quality & Adultration. Waters Corporation, No. 720002025EN, 2007.8. P J Lee, C H Phoebe, A J Di Gioia. ACQUITY UPLC Analysis of Seed Oil (Part 2)Olive Oil Quality & Adultration. Waters Corporation, No. 720002026EN, 2007.9. P J Lee, and A J Di Gioia. ACQUITY UPLC/ELS/UV: One Methodology for FFA,FAME and TAG Analysis of Biodiesel. Waters Corporation, No. 720002155EN,2007.10. P J Lee and A J Di Gioia. Characterization of Tea Seed Oil for Quality Controland Authentication. Waters Corporation, 720002980en, 2009.11. Empower\help\Custom Field Calculation.12. F O Oyedeji et al Characterization of Isopropanol Extracted Vegetable Oils. JApplied Sci. 6: 2510-2513, 2006.13. The marker (Oly) peak at 9.8 min was well detected by UV but had weak MSresponse with APCI positive ionization mode. According to the SQD MS spectra,the marker peak is not a triglyceride. High resolution mass spectrometers withexact mass capabilities are needed in order to properly elucidate its chemicalstructure. However, it is not necessary to have peak identification for this QCand authentication methodology.14. P Silcock and D Uria. Characterization and Detection of Olive Oil AdulterationsUsing Chemometrics. Waters Corporation No. 720002786en, 2008.
  • 重磅:生态环境部《土壤和沉积物 甲基汞和乙基汞的测定》 (HJ 1269—2022) 标准发布
    生态环境部办公厅2023年1月29日正式发布《土壤和沉积物 甲基汞和乙基汞的测定 吹扫捕集/气相色谱-冷原子荧光光谱法》(HJ 1269—2022),该标准为我国国内第一个土壤和沉积物中甲基汞和乙基汞的测定方法标准,标准将于2023年6月16日正式实施。 该标准的主要起草单位是由中国环境监测总站和江苏省环境监测中心,验证单位包括:山东省生态环境监测中心、广西壮族自治区生态环境监测中心、四川省生态环境监测总站、湖南省长沙生态环境监测中心、贵阳市环境监测中心站和合肥市环境监测为什么需要对土壤和沉积物中的甲基汞和乙基汞进行测定呢?土壤中的汞主要包括金属汞、无机化合态汞和有机化合态汞。有机化合态汞以有机汞(烷基汞)和有机络合汞普遍存在。其中烷基汞主要包括甲基汞和乙基汞;甲基汞是有机汞中毒性最大的一种形态,甲基汞很容易穿过血脑屏障,对人神经系统进行侵害,尤其对妇女和儿童有很大的影响;土壤中的甲基汞易被植物吸收,通过食物链在生物体内富集,从而暴露给人体;而土壤中的腐殖质与汞结合形成的络合物不易被植物吸收。另外,乙基汞也属于亲脂性化合物,中毒后可引起急性肠胃炎以及造成严重的肾脏损伤等。土壤和沉积物中的甲基汞和乙基汞国内是否有相关限值控制标准? 2018年6月,生态环境部与国家市场监督管理总局联合发布了《土壤环境质量 建设用地土壤污染风险管控标准(试行)》(GB36600—2018)国家环境质量标准,该标准于2018年8月1日正式实施,标准中明确了不同类型建设用地中甲基汞的筛选值和管制值,其中甲基汞在第一类用地的筛选值为5mg/kg。目前国内暂无涉及土壤和沉积物中乙基汞的限值控制标准。《土壤和沉积物 甲基汞和乙基汞的测定 吹扫捕集/气相色谱-冷原子荧光光谱法》(HJ 1269—2022)内容简介原理:土壤或沉积物样品经碱液提取后,提取液中的甲基汞和乙基汞与四丙基硼化钠发生衍生化反应,生成挥发性的甲基丙基汞和乙基丙基汞,经吹扫捕集、热脱附和气相色谱分离后,再高温裂解为汞蒸气,用冷原子荧光光谱法测定。根据保留时间定性,外标法定量。 方法检出限和定量下限:当取样量为0.5 g 时,提取液体积为 30 ml 时,甲基汞和乙基汞的方法检出限均为0.2 μg/kg,测定下限均为0.8 μg/kg 前处理过程:分析过程:标准曲线:8 个40 ml 棕色进样瓶,分别加入实验用水约35 ml,再分别加入0 pg,2.00 pg,5.00 pg,10 pg,50 pg,100 pg,500 pg,1000 pg的甲基汞和乙基汞混合标准溶液,,然后加入300 μl 乙酸-乙酸钠缓冲溶液及50 μl 四丙基硼化钠溶液,迅速加入实验用水至瓶满,不留空隙,盖紧盖子静置20 min实际样品:40 ml 进样瓶中加入实验用水约35 ml 至瓶颈处,取试样150 μl 至进样瓶中,依次加入300 μl 乙酸-乙酸钠缓冲溶液及50 μl 四丙基硼化钠溶液,最后迅速加入实验用水至瓶满,盖紧盖子静置20 min 上机分析:标准内部验证和外部验证均采用美国知名仪器厂家Brooks Rand公司生产的MERX全自动烷基汞分析系统:异位吹扫捕集,样品满瓶式进样,衍生化效率和烷基汞分析结果不受环境空气的影响三通道Tenax 捕集阱交替捕集,效率高液体传感器,水汽进入捕集阱会报警精密流量控制,气流波动小,避免因吹扫气流量过大造成大量水汽进入吸附阱或因流量过小造成的吸附不完全甲基汞检出限可达0.002ng/L;乙基汞检出限可达0.002ng/L宽线性范围:甲基汞0.0125-50ng/L,乙基汞0.025-50ng/L残留低:高浓度样品运行后仪器残留低于2‰重复性好,数据结果可靠国内销售数量超过350家,用户的普遍选择来源:《土壤和沉积物 甲基汞和乙基汞的测定 吹扫捕集/气相色谱-冷原子荧光光谱法(征求意见稿)》编制说明第65页MERX全自动烷基汞分析系统同时还是《水质烷基汞的测定吹扫捕集/气相色谱-冷原子荧光光谱法》(HJ 977-2018)的验证仪器。该仪器数据质量稳定可靠,在国内饱受好评。 谱图:质量控制:空白试验:每20 个样品或每批次样品(<20 个/批)应至少做一个空白试样,空白试样的测定值应低于方法检出限(甲基汞和乙基汞的方法检出限均为0.2 μg/kg)校准:每次分析样品前均应建立不少于 6 个点的校准曲线,采用线性回归法计算结果,曲线的相关系数≥0.995;采用校准系数法计算结果,校准系数 CFi的相对标准偏差≤15%。每20 个样品测定一个校准曲线中间浓度点的标准溶液,其相对误差值应该控制在±20%以内,否则应重新建立校准曲线平行样:每 20 个或每批次样品(少于 20 个样品)应至少测定 1 个平行双样,平行双样测定结果的相对偏差应在±30%以内基体加标:每 20 个样品或每批次样品(少于 20 个样品)应至少测定 1 个基体加标样品或1 个有证标准物质。甲基汞加标回收率控制在 75%~130%之间;乙基汞加标回收率控制在 65%~120%之间 展望:本标准的检出限、精密度等性能指标能满足《土壤环境质量 建设用地土壤污染风险管控标准(试行)》(GB 36600-2018)的相应要求,该标准会使涉及土壤和沉积物中甲基汞和乙基汞分析检测的单位有据可依,并为相关分析检测人员提供新的手段。 参考文献:1. 土壤和沉积物 甲基汞和乙基汞的测定 吹扫捕集/气相色谱-冷原子荧光光谱法 (HJ 1269—2022)(链接:https://www.mee.gov.cn/ywgz/fgbz/bz/bzwb/jcffbz/202301/t20230128_1014026.shtml);2. 土壤和沉积物 甲基汞和乙基汞的测定 吹扫捕集/气相色谱-冷原子荧光光谱法(征求意见稿)及编制说明(链接:http://www.mee.gov.cn/xxgk2018/xxgk/xxgk06/202012/t20201231_815730.html);3. 土壤环境质量 建设用地土壤污染风险管控标准(试行)(GB36600—2018)。
  • Ubicept以SPAD技术获800万美元融资,引領计算机视觉突破
    这家新创公司计划利用资金吸引更多人才,并扩展到3D扫描和工业自动化等多个新产业。Ubicept起源于MIT和威斯康星大学麦迪逊分校的实验室,正在重新定义计算机视觉领域的界限。传统的计算机视觉依赖过时的“静态帧"方法,而Ubicept跳过此旧逻辑,直接利用SPAD单光子传感器将摄像传感器上接收到的单个光子转换为可靠的计算机视觉输出。由此产生的感知系统可以在严苛光照条件下运行,捕捉高速运动的清晰图像,甚至可以“看"到转角后面的景象。Ubicept的目标售价与传统摄像头系统相似。公司联合创始人兼CEO Sebastian Bauer表示:“我们对这一重大里程碑感到兴奋。这笔资金将支持我们加速努力,改变计算机‘看’和理解世界的方式,特别是在有挑战的环境中。" Ubiquity Ventures的Sunil Nagaraj补充道:“Ubicept是一家采用‘计数单个光子’方法进行计算机视觉的公司。我看到当前对此新一代感知技术及其解锁的使用案例有巨大需求。" Nagaraj先生也加入了Ubicept的董事会。E14 Fund的执行合伙人Habib Haddad增加道:“单光子传感器在过去几年中的发展显著加快,智能手机制造商也将其添加到设备中用于深度感测。Ubicept为此类传感器添加的处理将使其广泛用于通用成像和各种计算机视觉应用。其输出质量远胜于传统传感器。"这笔新资金将用于扩充Ubicept团队,获取更多知识产权,并将产品带给更多跨行业客户。这笔投资将增强Ubicept在单光子计算机视觉领域的地位。Ubicept是一家计算机视觉创业公司,源于MIT和UW-麦迪逊的实验室。该公司正在开发先进的计算机视觉和图像处理算法,使用对单光子敏感的图像传感器,可以在严苛光照条件下工作,迅速捕捉运动,甚至可以看到转角后的景象。Ubiquity Ventures是一家早期阶段的机构风险资本公司,投资于“屏幕外软件"创业公司,管理的资产超过1.5亿美元。Ubiquity的投资组合包括利用智能硬件或机器学习解决商业难题的B2B技术公司,这些问题超出了电脑和智能手机的范畴。通过将现实世界的物理问题转化为软件领域,Ubiquity的创业公司可进入巨大的绿地市场,并提供更有效的解决方案。
  • 阿美特克公布第一季度财务业绩
    2022年5月3日,宾夕法尼亚州伯温市 — 阿美特克今日公布截至2022年3月31日的第一季度财务业绩。阿美特克2022年第一季度销售额为14.6亿美元,较2021年第一季度增长20%。营业收入增长20%,达到3.532亿美元,营业利润率为24.2%,核心营业利润率增长强劲。按美国通用会计准则计算,第一季度稀释每股收益为1.17美元。调整后的稀释每股收益为1.33美元,较去年同期调整后的业绩增长24%。调整后的收益加回了非现金、税后、与收购相关的无形摊销,即稀释后每股0.16美元。阿美特克董事长兼首席执行官David A. Zapico说道:“阿美特克今年开局良好。尽管经营环境充满挑战,我们的业务依然取得了超预期的业绩。专注为客户提供差异化的技术解决方案为我们带来了两位数的有机销售额增长,同时阿美特克运营模式的灵活性促进利润率扩大及收益增长。此外,终端需求依然强劲,本季度订单增长22%,导致一定程度的积压订单。”电子仪器集团(EIG)EIG第一季度的销售额达到了9.878亿美元,与去年第一季度相比增长了25%。EIG本季度的营业收入增长了18%,达2.448亿美元,营业利润率为24.8%。 Zapico先生指出:“EIG本季度表现极为出色。强劲的有机销售增长和近期收购的贡献带动了销售额增长25%,同时阿美特克的卓越运营战略扩大了核心利润率。” 机电设备集团(EMG)EMG第一季度的销售额为4.708亿美元,比去年同期增长11%。营业收入同比增长22%,达到创纪录的1.282亿美元,营业利润率达到创纪录的27.2%。 Zapico先生评论道:“EMG本季度的表现非常出色,销售额增长广泛,经营业绩出色,营业利润率增长强劲。”2022年展望 “第一季度的强劲表现反映出阿美特克增长模式的优势。在供应链危机、通货膨胀上升、以及中国因疫情带来的封城等不确定环境下,我们依然有信心成功经营业务。尽管面临这些挑战,我们将继续为股东贡献强劲可持续的收益。” Zapico先生继续说道。 “对于2022年,我们预计整体销售额将以较高的个位数增长。预计调整后的稀释每股收益介于5.34美元至5.44美元之间,按可比稀释每股收益计算比2021年增长10% 到12%。这与我们之前的指导区间(5.30美元至5.42美元)相比有所提高。” 他补充道。 “我们预计第二季度销售额同比以较低到中的个位数增长。预计调整后的稀释每股收益介于1.27美元至1.30美元之间,比2021年同期增长10% 至13%。” Zapico先生总结道。 关于阿美特克阿美特克是电子仪器和机电设备的全球制造商,年销售额约为55亿美金。我们为材料分析、超精密测量、过程分析、测试测量与通讯、电力系统与仪器、仪表与专用控制、精密运动控制、电子元器件与封装、特种金属产品等领域提供技术解决方案。全球共有18,000多名员工,150多家工厂,在美国及其它30多个国家设立了100多个销售及服务中心
  • 快1.8亿倍!九章光量子计算原型机成功求解图论问题
    8日,记者从中国科学技术大学获悉,该校由潘建伟、陆朝阳、刘乃乐等组成的研究团队,基于“九章”光量子计算原型机完成了对“稠密子图”和“Max-Haf”两类图论问题的求解,通过实验和理论研究了“九章”处理这两类图论问题为搜索算法带来的加速,以及该加速对于问题规模和实验噪声的依赖关系。该研究成果系首次在具有量子计算优越性的光量子计算原型机上开展的面向具有应用价值问题的实验研究。相关论文日前以“编辑推荐”的形式发表在国际学术期刊《物理评论快报》上,并被物理网站专题报道。国际学术界对量子计算的实验发展制定了三步走的路线图,其中第一步是实现“量子计算优越性”,即通过高精度地操纵近百个物理比特,高效求解超级计算机无法在合理时间内解决的特定的高复杂度数学问题。这一步的意义在于首次从实验上确凿地证明量子计算加速,并挑战“扩展的丘奇—图灵论题”。因此,国际学术界下一阶段的一个重要科研目标是探索利用量子计算原型机演示具有实用价值的问题的求解。近期,潘建伟团队在继续发展更高质量和更强拓展性的光量子计算原型机的同时,开展了将“九章”所执行的高斯玻色采样任务应用于图论问题的研究探索。图论起源于著名的“哥尼斯堡七桥问题”,被广泛用于描述事物之间的关系,例如社交网络、分子结构和计算机科学中的许多问题均可对应到图论问题。高斯玻色采样与图论问题具有紧密的数学联系,通过将高斯玻色采样设备的每个输出端口映射到图的顶点,将每个探测到的光子映射到子图的顶点,研究人员可以利用实验得到的样本加速搜索算法寻找具有更大密度或Hafnian的子图的过程,从而帮助这两类图论问题的求解。这两类图论问题在数据挖掘、生物信息、网络分析和某些化学模型研究等领域具有重要应用。此次研究中,研究人员首次利用“九章”执行的高斯玻色采样来加速随机搜索算法和模拟退火算法对图论问题的求解。研究人员在实验中使用了超过20万个80光子符合计数样本,相比全球最快超级计算机使用当前最优经典算法精确模拟该实验的速度快约1.8亿倍。
  • 湖北省计量院计算机噪声检测实验室获德国TÜV莱茵实验室授权
    近日,湖北省计量测试技术研究院顺利通过德国TÜV莱茵实验室审核,其计算机噪声检测实验室获得TÜV授权认可证书。  近年来,以“光芯屏端网”等战略新兴产业为代表的湖北现代制造业发展水平不断提升,而其面临的国际化检测和认证门槛也在不断提高,没有本地化检测认证支撑,就无法有效参与国际市场竞争。计算机噪声检测认证,就是这样一道“新门槛”。   目前,国外发达国家已开始广泛使用成熟的计算机噪声自动监测系统,并拥有相对完善的计算机噪声检测标准,部分主要国际企业标准要求计算机噪声值A计权低于22dB(分贝),即通过模拟人耳听觉响应特性的网络处理后,计算机噪声值应低于22分贝。   与国外相比,我国尚未制定一套完整的计算机噪声检测技术规范体系,相应的检测用软硬件也还处于研究阶段。由于我国的噪声标准与国外存在差异,且各国计算机产品研发各具特点,因此需要先进的计算机噪声检测技术作为强有力的辅助手段,尽快构建符合我国特点的计算噪声检测系统。此外,对计算机噪声检测技术进行研究,有助于促进量子计算机研制工作,推动提高我国尖端科技竞争力。   此次湖北省计量测试技术研究院计算机噪声检测实验室获得德国TÜV莱茵实验室授权认可,填补了中南大区计算机噪声检测领域的空白。该院将积极搭建国际市场准入一站式检测认证服务平台,支持湖北乃至中南大区“光芯屏端网”和计算机产业更为便捷、更低成本地拿到国际市场“通行证”,打破国际技术壁垒、参与国际产业竞争。   以此为契机,湖北省计量测试技术研究院将逐步加强“光芯屏端网”产业噪声检测领域重点项目建设,积极参与推进我国相关领域检测认证技术、设备研究和标准体系建设,进一步提升科研创新中试服务水平,助推“光芯屏端网”和量子计算机等产业更多“中国造”产品创新升级、质量提升,助力湖北“51020”现代产业集群在国际竞争中抢占发展先机、赢得未来主动权,努力为湖北建设全国构建新发展格局先行区贡献更多计量力量!
  • 安捷伦公布09财年第一季度财务报告
    (北京,2009年2月20日)—— 安捷伦科技(NYSE: A)日前公布了截至2009财年1月31日的第一季度财务报告。报告显示,2009财年第一季度公司收入为11.7亿美元,比去年同期减少了16%。按美国通用会计准则计算,公司第一季度净收益为6400万美元,折合每股摊薄收益为0.18美元,而去年同期按美国通用会计准则计算的公司净收益为1.20亿美元,折合每股0.31美元。   在第一季度,安捷伦改组和资产减值支出为5600万美元,非现金摊销为1200万美元。公司还确认5600万美元节税收益,以及其他净收益400万美元。除了上述几项收入,安捷伦第一季度报告的调整后净收益为7200万美元,折合每股0.20美元。按同比口径,去年同期公司净收益为1.36亿美元,折合每股0.36美元。   安捷伦科技总裁兼首席执行官邵律文(Bill Sullivan)表示:“过去3个月,安捷伦深切感受到了严重的全球性经济低迷所带来的冲击。第一季度的收入远低于我们之前的预期,并比去年同期下降了16%。我们做出了迅速的反应,将这场意外危机的影响降到最低,达到与安捷伦运营模式相一致的运营结果。但是,每股0.20美元的运营收益也因较低水准的活动而比我们的预期低得多。”   安捷伦的第一季度收入比去年同期下降了2.27亿美元,而营业利润仅下降了6900万美元,这是由于公司在所有运营和职能部门采取了积极的措施缩减运营成本。   全球各地收入均有所下降,与去年同期相比,美洲地区下降了10%,欧洲地区下降了21%,亚洲地区下降了18%。按业务部门分析,半导体和电路板测试业务所受的冲击最大,比去年下降了49%, 电子测量业务下降了23%,生物分析测量业务下降了1%。   因收益减少,第一季度的投资回报率从去年同期的19%下降至11%。净运营资本较去年下降了6800万美元 在周期性疲软的第一季度,公司运营所获得的现金数为1700万美元,在收益大幅下降的情况下仍略高于去年第一季度的业绩。在本季度,公司回购了1.25亿美元的公司普通股票,至本季度末,公司净现金数为8.52亿美元。   展望未来,邵律文表示目前的全球性经济衰退很可能是过去70年间最严峻一次。他表示:“我们不知道到何时何处这场经济衰退才能触底。但是,我们会在应对所面临的经济挑战时保持积极的态度 同时,我们仍致力于达到与安捷伦运营模式相一致的业绩表现。”   “在12月,我们宣布了将年节省650万美元成本的运营重组计划。此外,安捷伦将立即停止两项小型电路板检测业务,并开始全球基础架构运营重组。我们预计这个项目在全面实施之后,将减少1.5亿美元的持续运营成本。”公司表示,该项目成本预计在1亿美元之内,并将削减600个职位。   邵律文在谈到第二季度业绩预期时表示:“在当前环境下进行预测几乎是徒劳的,因为其可预见性基本为零。目前,我们的最佳预测是第二季度的收入和运营收益基本上能够与第一财季结果持平,而这些收益通常在第二季度都是周期性增长的。”   “无论经济环境如何,我们将保持承诺,维持正向的现金流,确保员工专注于客户、产品和技术,作为全球测量领域的领导者为我们的客户创造价值。”   关于安捷伦科技   安捷伦科技(NYSE: A)是全球领先的测量公司,是通信、电子、生命科学和化学分析领域的技术领导者,公司的19,000名员工在110多个国家为客户服务。在2008财政年度,安捷伦的业务净收入为58亿美元。   要了解安捷伦科技的信息,请访问:www.agilent.com.cn
  • 一级召回!探测器坠落风险|飞利浦在中国召回36台影像设备
    据悉,Philips已收到与此问题相关的投诉;然而,目前尚无关于受伤或造成严重伤害的报告。飞利浦(中国)投资有限公司报告,由于涉事产品探测器可能因部件故障而意外坠落的原因。生产商飞利浦医疗系统(克利夫兰)股份有限公司Philips Medical Systems(Cleveland), Inc.对其生产的单光子发射及X射线计算机断层成像系统(国食药监械(进)字2014第3331168号)、单光子发射计算机断层扫描系统(国食药监械(进)字2011第3333467号)主动召回。召回级别为一级召回。涉及产品的型号、规格及批次等详细信息见《医疗器械召回事件报告表》。
  • 川仪股份一季度加大技术创新投入,营收同比 增长30.30%
    近日,川仪股份(603100.SH)发布一季度报告,公司年内营业收入为13.41亿元,同比增长30.30%,归属于上市公司股东的净利润为1.08亿元,同比下降27.96%。基本每股收益0.27元。来源:川仪股份2022第一季度报告公告显示,营业收入增长主要是由于川仪股份大力开拓市场,在石油化工、冶金、轻工建材等行业合同订单同比增加。这得益于川仪股份一季度加大技术创新投入、加强精益制造能力建设。今年1月,川仪股份牵头实施重庆仪器仪表“一链一网一平台”建设项目,汇聚60家以上的产业链企业,建设服务于产业链的工业互联网平台。包括产业链上游传感器、元器件、芯片、仪表材料等企业,下游以石化、冶金等为代表的流程工业和以加工装配、服务为主的离散工业企业。 据了解,“一链一网一平台”是指“行业生态一条链、数据协同一张网、应用服务一平台”,通过聚焦制造业产业链中的发动机、变速器等重点行业,支持“链主”企业、重点企业建设工业互联网平台,并带动产业链上下游企业“上云上平台”,以此打通企业之间的数据链、信息链、要素链,解决产业链企业间的信息数据孤岛、协作效率低等痛点,实现供应链协同、产品全生命周期管理和绿色节能生产等。 近期,川仪股份大口径三通波纹管调节阀成功应用,突破了长行程波纹管制造工艺,成功解决了大口径高压差低泄漏密封技术,产品达到国际标准ISO15848微渗漏A级要求。 而对于一季度净利润减少的原因,川仪股份表示,是由于2021年2月5日重庆银行在上海证券交易所上市,公司持有的限售流通股股价增值,增加2021年1季度净利润7,785.30万元;本报告期,公司所持该股票已解除限售,按照市价进行计算,增加当期净利润629.07万元。 报告期内,公司经营活动产生的现金流量净额为-2.17亿元,同比减少11,846.83万元,主要是收入规模增长采购支付增加,支付绩效奖金等增加所致。 截至本报告期末,川仪股份总资产64.62亿元,归属于上市公司股东的所有者权益32.82亿元。归属于上市公司股东的扣除非经常性损益的净利润为9260.46万元,同比增长30.03%,主要是得益于营业收入增长,主营业务利润同比增加。 重庆川仪数十年来专注于工艺装置自动化、智能化测量及控制系统研发、设计和制造。产品技术先进、具有自主知识产权,涵盖智能温度仪表、智能压力变送器、智能流量仪表、智能物位仪表、智能控制阀、智能执行机构、智能分析仪器及系统、新一代分布式DCS控制系统、记录仪。
  • 上海大学依托国仪量子教学机开启量子计算实验课程
    2020年8月26日,上海大学理学院量子人工智能科学技术研究中心(Quantum Artificial Intelligence for Science and Technology, QuArtist)依托国仪量子金刚石量子计算教学机开启第一堂量子计算实验课。1. 量子技术发展背景&现状2014年,英国《自然》杂志吹响“第二次量子革命”的号角。以量子信息技术为代表的量子调控,是量子力学的最新发展,其带来了“第二次量子革命”。人类对量子世界的探索已从单纯“探测时代”走向主动“调控时代”,成为解决人类对能源、环境、信息等需求的重要新手段、新技术。2018年9月,美国发布了量子信息发展国家战略书,特别强调了量子技术和量子科技在国家战略中的重要性。欧盟从2018年开始,投入10亿欧元实施“量子旗舰”计划。英国早在2014年就发布了量子科技发展蓝图并在牛津大学等高校建立量子研究中心,投入约2.5亿美元培养人才。2016年,我国发布了《“十三五”国家科技创新规划》,其中强调了量子技术发展的重要性,量子通信与量子计算被列为“十三五”科技规划100项重大技术与工程项目的前三位。谷歌量子技术团队2019年10月谷歌公司发布论文宣称已成功演示“量子霸权”,引来中外媒体纷纷报道,其研发的量子系统只用了约200秒就完成了经典计算机大约需要1万年才能完成的计算任务,这一划时代的技术进展是量子计算研究也是量子技术应用的一个重要里程碑。IBM亦成功研制50多比特的量子计算机原型,虽然技术离真正付诸实用尚需时日,但美国已经在考虑对量子计算等技术领域设置出口禁令,我们不禁要问中国如何在未来的量子技术应用领域不被外国“卡脖子”并实现领先?2. 量子教育量子技术应用广泛现阶段,与量子技术快速发展不相适应的是,我国量子技术从业人员严重缺乏,工程技术人员对量子技术的理解不够深入、实操能力不足,这些已严重限制该技术发展和应用。人才的匮乏源于教育的缺失,更源于教育方式的桎梏,虽然目前很多高校开设了量子力学相关课程,但是现有的课程和教材从思维模式和体系结构上,大多侧重讲述物理原理和基础方案的验证性实验,缺乏类似工科专业教学的案例、教材和实验资源。“物理定律不能单靠“思维”来获得,还应致力于观察和实验。—— 普朗克”量子力学的教育,离不开量子理论和实验的紧密结合。推进量子力学学科建设,完善和创新学科教学内容、教学方法、教学手段,不仅符合我国建设量子技术科技强国的国家需求,还能解决高校量子技术相关应用型人才培养的实际问题。3. 上海大学理学院QuArtist中心教学机开课上海大学理学院量子人工智能科学技术研究中心(Quantum Artificial Intelligence for Science and Technology, QuArtist)于2019年5月31日正式挂牌成立。QuArtist中心由国际著名物理学家Enrique Solano担任中心主任。上海大学QuArtist中心QuArtist中心致力于量子计算和人工智能的基础和应用的前沿研究,将以21世纪“量子二次革命”为契机,融合量子计算与人工智能,建设量子软件和量子硬件的世界级中心作为发展的核心目标。QuArtist中心的愿景是为颠覆性量子技术创造一个极具影响力和占主导地位的生态系统,将艺术,科学,技术和企业家精神相融合,最大限度地提高创造力和生产力。QuArtist中心将结合高端人才、辛勤工作和原始创新三大要素,为科创中心的建设贡献力量。自从了解到国仪量子的金刚石量子计算教学机设备以来,QuArtist中心积极与我们联系并就量子计算相关课程开设和量子教育发展进行沟通交流。8月26日,国仪量子应用工程师应邀至QuArtis中心的老师及研究生同学开启了第一堂“量子计算实验课”,现场演示了金刚石量子计算教学机进行量子计算基础实验的相关原理和功能。我们详细专业的理论讲解及生动有趣的现场展示受到了QuArtis中心师生一致好评。课后,上海大学理学院陈院长评价道:金刚石量子计算教学机在QuArtist中心现场进行了调试,培训,让平日里退相干,Rabi振荡,Dynamical Decoupling这些理论概念通过量子计算教学机让同学们都有了感性的认识。整合资源,将企业生动教育教学资源引入第一、第二课堂,不断提升学生的学习能力,不仅是为未来服务国家和社会蓄能,更是为攻克国家科技创新和企业发展“卡脖子”技术贡献上大智慧。QuArtis中心开课现场此外,上海大学计划将基于国仪量子金刚石量子计算教学机给研究生及理学院的本科生开设量子计算课程,新学期开学后就会启动开课筹备相关工作,其中包括课程内容选择,课程方案设计等。国仪量子也将依据专业技能和经验积极配合上海大学做好课程开设相关工作,基于其课程定位提供定制服务,一起为我国量子教育发展及量子技术人才培养贡献力量。4. 金刚石量子计算教学机简述金刚石量子计算教学机是国仪量子为了更好地促进量子力学和量子计算相关的教学,推出的全球首款、面向大众的基于金刚石中NV色心,以自旋磁共振为原理的设备,通过控制光、电、磁等基本物理量,实现对NV色心发光缺陷的自旋进行量子操控和读出,从而实现量子计算等功能的教学仪器。该仪器可以在室温大气下运行,无需低温真空环境,使得设备有着几乎为零的运行成本,桌面型的设计让它能适应各种不同的教学环境,无论是课堂还是实验室,都能轻松进行量子力学和量子计算实验教学。不仅如此,金刚石量子计算教学机丰富的硬件模块支持学生动手搭建和调试,多功能的软件支持支持自定义脉冲序列编写。国仪量子金刚石量子计算教学机金刚石量子计算教学机可以帮助和促进高校、科研机构在开设、优化大学物理实验课、近代物理实验课、量子信息科学专业课程的相关工作,方便教师展示教学,激发学生的兴趣和想象力,提高学科水平和教学质量。基于金刚石量子计算教学机,国仪量子可以提供包括实验室建设、教学讲义、教学视频、教学课件、示范课培训等量子计算教学相关的整体配套解决方案定制服务,让学校和老师们更轻松的开设相关实验课程。QuArtist中心量子计算实验课堂的顺利开启对上海大学在量子教育的发展创新有着重要的意义,未来国仪量子也将与包括上海大学在内的国内各大高校院所共同努力、砥砺前行,为量子教育事业的发展、为量子技术人才的培养、为中国高科技的发展与创新、为量子技术科学强国做出更多贡献!
  • 每年一篇《自然》或《科学》的团队,再向新型量子计算迈出重要一步
    作者:倪思洁 来源:中国科学报原标题:中国科学家向新型量子计算迈出重要一步2021年8月底的一个深夜,北四环上没有了白天的喧嚣。中国科学院物理研究所的灯还亮着,实验室里静得只剩下呼吸声。在一个裹着银色锡纸的仪器边,副研究员李更等待着实验结果。几乎就在一瞬间,困意彻底远离了他。电脑屏幕上,原本应该平整的四方图案上,出现了竖向的波纹,条纹中还穿插着斜向的条纹。研究组最初看到的奇特波纹(双轴电荷密度波)形貌(中科院物理所供图)6月8日,《自然》杂志发表了由这个意外发现引发的新成果:中国科学家在铁基超导材料锂铁砷(LiFeAs)中,观测到大面积、高度有序、可调控的马约拉纳准粒子格点阵列。该发现被认为“对实现马约拉纳准粒子的编织以及拓扑量子计算具有里程碑的意义”。科学家们的新理想“你们想做的拓扑量子计算,到底是什么?”这是李更常被亲朋好友们问到的问题。人类对于大规模信息处理需求的剧增,使得量子计算被赋予了极高的期待,“量子计算”四个字也几乎家喻户晓。但是,很多人不知道,量子计算一直有个让人头疼的问题,即噪音等外界环境的扰动会对量子系统产生影响,使计算过程不可避免地产生和积累错误。正因如此,科学家们有了一个新的理想——研制“拓扑量子计算机”。“拓扑量子计算是一种容错率更高的量子计算。”李更说。然而,要实现拓扑量子计算,不仅要求微观世界的粒子符合一种名叫“非阿贝尔统计”的规律,还需要科学家有能力在把微观世界里的粒子像编麻花辫一样编织起来。也就是说,在这个领域,谁有能耐看清并且操控微观世界,谁才有可能最先实现拓扑量子计算。在实验室工作的李更(中科院物理所供图)一次意外,他们控制住了一种神奇粒子李更是物理所高鸿钧院士团队中的一员。这支团队不大,却是全球最被关注的几支向拓扑量子计算发起挑战的团队之一。2018年,高鸿钧研究组最早在铁基超导材料中观测到一种神奇粒子——马约拉纳准粒子。这种粒子符合实现拓扑量子计算的要求,如果科学家能够编织它,就有可能实现拓扑量子计算。这篇成果发表于《科学》杂志,并很快引起国际同行关注。2020年,他们又在铁基超导材料中观测到马约拉纳准粒子的电导平台,进一步证明了马约拉纳准粒子的存在。成果又一次发表在《科学》杂志上。这些年,他们一直在各种铁基超导材料中,寻找这种神奇粒子的身影。“铁基超导材料体系存在着材料组分不均一、马约拉纳准粒子占比低、阵列无序且不可控等问题。”高鸿钧判断,他们需要找到大面积、高度有序、可调控的马约拉纳准粒子阵列,才能向拓扑量子计算更进一步。直到2021年8月底的那个夜晚,异常波纹出现。李更把情况汇报给高鸿钧,他们讨论后决定给样品加一个垂直的磁场试试。更奇特的现象出现了。代表马约拉纳准粒子的亮斑,整整齐齐地排列在纵向的波纹上。李更试着把磁场调得再强一点,马约拉纳准粒子亮斑也随着密了起来。当亮斑越来越近时,它们彼此间还出现了相互作用和关联的迹象。从那天起,研究团队开始小心翼翼地保持着仪器针尖和样品的位置。“在找到原因和规律之前,我们一直担心一旦位置挪动就再也看不到这种奇特现象。”李更告诉《中国科学报》。经过半年摸索,他们把神奇粒子阵列出现的原因锁定在“应力”上。“自然应力可以诱导晶体产生的大面积、高度有序、可调控的马约拉纳准粒子阵列,而这种有序的马约拉纳准粒子阵列可以被外磁场调控。”高鸿钧说。用磁场调控大面积有序的马约拉纳准粒子阵列(中科院物理所供图)“为什么别人没有看到?”去年11月,他们把新发现写成论文投给《自然》杂志。然而,评审人对成果倍感意外:“为什么别人没有看到?”“该怎么说服审稿人呢?”作为论文共同第一作者的李更一边想,一边看着身边的“老伙计”——裹着银色锡纸的“扫描隧道显微镜”。显微镜的外观并不起眼。“这是我们自行设计、搭建、组装的仪器。”论文通讯作者高鸿钧说。从2006年开始,实验室里先后设计、建成了三代扫描隧道显微镜。他们使用的那台是第二代仪器,温度可以达到0.4K(-272.75摄氏度),可以给样品加3个方向的磁场,能量分辨可以达到0.3毫电子伏特。这些数字带来的直观结果是,科研人员可以把原子从分子上切下来,想切几个切几个,想切哪里切哪里。也正因为仪器的超强“视力”,使得他们清清楚楚地看见并操控了马约拉纳准粒子阵列。就像这个其貌不扬却实力不俗的仪器一样,在高鸿钧团队的实验室里,有很多看似随意实则深思熟虑的地方。“就连用来屏蔽干扰的锡纸该裹在哪里,都是有经验、有诀窍的。”高鸿钧指着包裹着仪器的不怎么有美感的锡纸说。但是,“仪器好”“经验足”并不是能够说服审稿人的科学依据。于是,研究组又用了两个月,在实验室的另一台扫描隧道显微镜上,用另一个锂铁砷材料样品,重复出了同样的实验结果。看到重复实验的结果后,审稿人感慨:“我所有的疑问都得到了令人满意的解答。”“这些结果新颖且令人兴奋。”另一位评审人说。高鸿钧与扫描隧道显微镜(倪思洁摄)每年一篇《自然》《科学》的团队对于这次发现,高鸿钧用“必然的偶然发现”来形容。在他看来,“必然”不仅来自于仪器的高精度,更得益于研究组的高效率。他的团队有一个很特别的习惯,热衷于在半夜两三点钟工作。“夜深人静的时候,可以避免电噪音、机械噪音对仪器的干扰。”高鸿钧说。从2018年发现马约拉纳准粒子之后,这些年来,实验团队保持着高速运转。“团队里都是年轻的科研人员和学生,我们工作起来非常高效。从2018年开始,每年在这个方向上都有一篇《自然》或《科学》成果。”高鸿钧说。此外,对于研究组来说,合作也十分重要。“这些年来,我们不是打一枪换一个阵地的游击式科研,而是和研究所内外的团队联合起来,以建制化的方式不断推进这项研究。”高鸿钧说,此次研究就是与物理所靳常青研究组、美国波士顿学院的汪自强合作的结果。尽管话语中充满自豪与兴奋,但面对未来,高鸿钧很冷静:“这只是一个阶段性的基础科学进展,基于马约拉纳准粒子的拓扑量子计算还有很长的路要走。”李更告诉《中国科学报》,下一步,他们要进一步研究应力对双轴电荷密度波的影响,用可控的方法,把超导材料压出双轴电荷密度波条纹。他们还有一个更远的目标。“让相互靠近的马约拉纳准粒子交换位置,实现对马约拉纳准粒子的编织,向拓扑量子计算再进一步。”高鸿钧说。科研团队合影(中科院物理所供图)相关论文链接:https://doi.org/10.1126/science.aao1797https://doi.org/10.1126/science.aax0274https://doi.org/10.1038/s41586-022-04744-8
  • 我国研制出新一代云计算操作系统
    就在作为舶来品的“云计算”热浪余热未消时,10月出版的最新一期《国际云计算杂志》(International Journal of Cloud Computing)以长达百余页的专辑形式介绍了我国科学家研制的新型云计算操作系统TransOS,给了IT业界一个“意外”,引起国际科技新闻界的广泛关注。   在题为《TransOS:基于透明计算的云操作系统》的论文中,中国工程院院士、中南大学校长张尧学首次向国际业界全面介绍了新一代网络化操作系统TransOS:它将包含传统操作系统、应用程序和数据的“代码”全部存储在一台服务器(云)上,允许多台只装有少量代码的“裸机”连接访问,用户只需动态调用必要代码即可运行。在该组专辑其他文章中,来自清华大学、英特尔公司以及日本和加拿大的研究人员分别从数据管理、实现案例、移动和嵌入式设备上的应用及隐私保护模式等方面对该操作系统进行了详尽讨论。   TransOS基于“透明计算”的理念研制。该理念最早由张尧学于2004年提出,其核心是将存储与运算分离、将软件与硬件(终端)分离,通过有缓存的“流”式运算,将计算还原为“不知不觉、用户可控”的个性化服务。在这种模式下,操作系统被视为一种网络资源从终端“剥离”。   这一变化导致了诸多改变的发生,使TransOS成为了名符其实的“管理操作系统的操作系统”,它不仅占用资源更少、可靠性更高,更具有谷歌Chrome等类似云操作系统所不具备的跨平台、跨设备操作的优点,不仅可在个人电脑、服务器、智能手机、平板电脑乃至智能家电上运行,而且适用于苹果、谷歌、微软等公司开发的不同平台,从而打破了不同“云”之间的垄断和分割。   张尧学告诉记者,尽管TransOS对经典的冯诺依曼计算机体系结构进行了“革命性改进”,但在网络足够快的条件下,用户几乎感觉不到后台这种变化的存在。   该组文章发表后,国际知名新闻媒体《每日科学》(ScienceDaily)、《技术视野》(TechEYE), 《每日技术新闻》(TechNewsDaily)等媒体分别以《在云中的操作系统:TransOS或将取代传统桌面操作系统》,《中国人希望把计算机大脑放在云中》,《研究人员将操作系统推送到云中》等为题进行了报道。   对TransOS的应用前景,张尧学保持了谨慎的乐观。他向记者表示,TransOS目前还不会对现有的桌面式操作系统造成威胁,但会派生出许多新的终端、产生大量新的应用机会。他同时坦承,由于TransOS对网络带宽提出了更高要求,这将使对高速互联网的需求变得更为迫切。
  • 国仪量子发布金刚石量子计算教学机新品
    NV色心凭借其优良的量子相干时间和稳定的化学性质,成为量子计算机、量子传感器的理想载体,也是近年来国际上的研究热点,众多实验研究组利用NV色心发表了重要的研究成果。金刚石量子计算教学机就是一台基于 NV 色心的以自旋磁共振为原理的量子计算教学设备。该设备是一款能够在室温大气条件下运行的真实量子计算机,无需低温真空环境使得设备有着几乎为零的运行成本,桌面型的设计让它能适应各种不同的教学环境,无论是课堂还是实验室,搭配课程讲义、教学视频与教学PPT等全套教学服务,都能轻松进行量子力学与量子计算等实验教学。教学机由微波模块、光学模块、数采模块、脉冲控制模块、磁铁模块等组成,丰富的硬件让教学机能具备支持如量子精密测量、光探测磁共振等更多教学内容的拓展开发。教学机源自于众多优秀的科研成果,这让它同时也是一款培养学生科学素养和科研基础的教学设备。面向大众面向教学的金刚石量子计算教学机Diamond I, 是一台针对教学设计的高性价比教学仪器,可配合物理、电子工程、精密仪器等相关专业开设教学实验课程,搭建先进教学示范平台。产品功能:量子计算教学l 量子比特l 量子逻辑门操作l 量子算法量子力学基本概念教学l 量子态l 量子态演化l 电子自旋更多功能l 磁共振教学等欢迎下载样本了解更多产品详情。创新点:金刚石量子计算教学机,是国仪量子响应国家建设量子科技强国战略,满足高等院校对量子计算前沿实验教学的需求,自主研发的全球首台面向大众用于量子计算的实验教学仪器。教学机基于金刚石中NV色心和自旋磁共振为原理,通过控制激光、微波、磁场等物理量,对NV色心的自旋进行量子操控和读出,从而实现量子计算功能。仪器实验内容涵盖了量子比特、量子逻辑门、量子退相干、量子算法等一系列量子计算基本知识,可配合高等院校大学物理、近代物理、量子信息科学等专业开设教学实验课程,搭建先进教学示范平台。 金刚石量子计算教学机
  • 金刚石量子计算教学机,助力未来技术学院建设!
    近日,教育部发布《未来技术学院建设指南(试行)》,聚焦未来革命性、颠覆性技术人才需求,推动整体实力强、专业学科综合优势明显的高校,建设一批未来技术学院。《指南》中在建设任务部分特别指出了,要重视学生的全面成长,强化阅读量和阅读能力考查,丰富学生知识领域;强化现代信息技术与教育教学深度融合,探索混合现实、量子计算等新技术、新工具、新标准在教学中的深度应用。谷歌量子计算技术团队(图1)2020年多个发达国家纷纷发布量子技术发展战略,将量子科学人才培养作为重点发展方向。例如,2020年3月美国白宫开始启动中小学量子教育计划;日本今年也推出了量子技术研发战略,其用于量子技术研发的政府预算较去年翻了一番,还召集了国内多领域专家就确保和培养相关人才制定时间表,同时还编制了相关教材和教学计划。 金刚石量子计算教学机(图2)国仪量子于2019年发布的金刚石量子计算教学机可以为我国量子技术人才培育以及未来技术学院建设提供助力。该款教学产品是基于金刚石中NV色心,以自旋磁共振为原理的仪器,通过控制光、电、磁等基本物理量,实现对NV色心发光缺陷的自旋进行量子操控和读出,从而实现量子计算等功能的全球首款面向大众的量子计算教学仪器。实验操作现场(图3)金刚石量子计算教学机是一款能够在室温大气条件下运行的真实可感知的量子计算教学机,无需低温真空环境使得设备有着几乎为零的运行成本,桌面型的设计让它能适应各种不同的教学环境,无论是课堂还是实验室,都能轻松进行量子力学与量子计算的实验教学。实验软件界面(图4)该产品具备可用于通用量子计算的两比特,可以进行量子比特演示、量子逻辑门操作、量子叠加态演化和经典量子算法演示。学生可以操作体验量子操控、量子算法,可以通过改变参数,观察量子系统的反应,从而直观形象的了解量子系统。基于该产品,国仪量子还设计并推出了“量子计算实验课堂整体解决方案”,整体解决方案中包括实验室建设方案、讲义、视频、课件和师资培训等。协助学校探索人才培养模式,帮助教师们构建完整全面的教学体系,提供全方位、全过程的辅助教学。深圳大学实验课程现场(图5) 目前该款产品已成功交付至多个国内高校,其中2019年10月和11月在深圳大学和南京大学已经分别成功开设基于金刚石量子计算教学机的量子计算实验课程。学生们普遍反馈通过这款教学机生动形象的实验课程学习,让他们更加深入理解了量子力学和量子计算的相关基础知识,课程的开设得到了学校师生的一致好评。依照新政策要求,这些基于金刚石量子计算教学机开设量子计算实验课程的高校已然在未来技术学院建设上领先一步。未来,国仪量子也将与包括南京大学、深圳大学等在内的国内各大高校院所共同努力、砥砺前行,为量子技术人才的培养与教育、为中国高科技的发展与创新、为量子技术科学强国做出更多贡献!注:部分信息及图片来源于网络,图2、3为2020年换代更新后的金刚石量子计算教学机
  • 食药总局提醒关注含羟乙基淀粉类药品安全风险
    新国家食品药品监督管理总局26日发布通报,提醒关注含羟乙基淀粉类药品对严重脓毒血症患者的肾损伤及死亡率增加风险。   含羟乙基淀粉类药品为血容量补充药,主要用于预防和治疗各种原因造成的低血容量,包括失血性、烧伤性及手术中休克等、血栓闭塞性疾患等。   近期,欧盟、美国、加拿大等国外药品管理部门就含羟乙基淀粉类药品对特定健康条件患者的肾损伤及死亡率增高风险陆续发布了多项风险控制措施。在我国收集到的羟乙基淀粉类药品不良反应报告中,用药原因主要为手术中或手术后补充血容量、失血性低血流量、脑梗塞、外伤、烧伤等 仅有1例用药原因为感染性休克,未发现有明显的使用风险。   为确保用药安全,食品药品监管总局针对其安全性问题再次进行了分析和评估。评估认为,含羟乙基淀粉类药品常见不良反应包括寒战、过敏性休克、呼吸困难、胸闷、高热/发热、过敏样反应、皮疹、肾功能损害等,在特定健康条件的患者中存在着死亡率升高、肾损害及过量出血等风险。   食品药品监管总局表示,将统一修改含羟乙基淀粉说明书。建议医务人员和患者应充分重视此类药品的安全性问题,详细了解含羟乙基淀粉类药品的禁忌症、不良反应、注意事项、相互作用。在治疗前,医生应询问患者的既往病史(如严重脓毒血症、肝肾功能障碍、凝血功能异常等),将可能存在的安全性隐患告知患者,在增加剂量或调整治疗方案时,应密切关注患者的不良反应发生情况。同时,医务人员应根据患者的健康条件,权衡利弊后谨慎使用。如在使用过程中患者出现肾功能异常、凝血机制异常等不良事件,应及时处置。
  • “计算机化系统验证培训班”即将开班
    尊敬的企业科研人员、管理者: 为了帮助企业解决在执行计算机化系统验证中存在较多的困惑,指导企业自主找出数据完整性方面的缺陷,建立数据完整性质量体系,由北京创腾科技有限公司主办为期一天的“计算机化系统验证培训”将于2016年5月21日(周六)在北京凤凰会议中心(国家蛋白质科学研究中心)举办。我们诚挚地邀请您参加本次培训。 随着CFDA颁布并执行2010版GMP法规的新附录《计算机化系统》,随着国内GMP的监力度显著增强,越来越多的企业意识到能不能满足《计算机化系统》法规的要求将起着至关重要的作用。本届培训将围绕此命题,对计算机化系统法规进行深入的解读,理解法规对计算机化系统合规的要求及其重要性,对计算机化系统验证内容及流程进行详细阐述,并帮助企业识别生命科学行业。法规具体适用的计算机化系统验证法规以及实战解释相关规例和成功验证系统的指南。 我们邀请到具有计算机系统验证资质的资深培训师Shannon女士为嘉宾进行深入系统的培训,以下是培训详情,请您仔细阅读,我们诚邀您的参与!一、培训时间和地点:培训时间:2016年5月21日(周六)8:30-17:00培训地点:北京凤凰会议中心 小会议室北京市昌平区北清路中关村生命科学园(国家蛋白质科学研究中心)二、参加对象:企业管理人员和技术人员,包括质量保证部门、质量控制部门、IT部门、验证实施部门、技术支持部门等需要掌握CSV基础知识的管理人员、以及计算机系统的供应商等。三、培训专家介绍:Shannon Wang个人简介: 具有超过 15 年的经验,为政府机构、 电信、 建筑、 电子商务以及医疗行业提供有效应对技术挑战的解决方案。非常熟悉医药行业,按照监管要求及GAMP5指南提供完整的计算机化的系统实施和验证解决方案。 项目包括,ERP验证、 MES实施和验证、BMS/EMS 系统验证、 LIMS 系统实施和验证、WMS系统验证等。具有国际制药工程协会(ISPE) 中国培训委员会成员及ISPE中国GAMP培训师,以及中国食品药品查验审核中心(CFDI)计算机化系统验证培训师资质。为中国本地制药公司提供计算机化系统验证培训。四、培训详细议程:点击查看五、培训费用:培训费用:RMB 1000元/人 (包括:专家费、资料、中餐、证书,住宿和交通费自理)优惠费用及条件: RMB 800元/人,只限于参加“第三届数字化实验室建设与应用研讨会“的代表。收费方式:A、银行汇款信息(请在汇款时务必注明用途“培训费+姓名“)   户 名:北京创腾科技有限公司上海分公司 开户行:招商银行上海晨晖支行 账 户:121919707510501B、现金支付:会议现场注册,支持刷卡支付方式。六、报名方式:请您填写报名回执,并将回执以邮件、传真或邮寄方式于5月15日前提交会务组(报名信箱:huiyi@neotrident.com),以便我们在培训举办前,为您安排好相关培训事宜。收到您的报名回执后,会务组将用邮件方式与您确认。七、住宿与交通:梧桐苑商务酒店会议价格:RMB 328/晚 (含早,标准间)宾馆地址:北京市昌平区北清路中关村生命科学园内宾馆电话:010-61777200海诺康会馆会议价格:RMB 298 /晚(含早,标准间)宾馆地址:北京市昌平区生命科学园路 16 号(中关村生命科学园内)宾馆电话:010-80728999转8178会议地址:凤凰会议中心小会议室(北京昌平区中关村生命科学园入口东侧大楼)八、培训联系:北京创腾科技有限公司电话: 021- 51821768转233(陈女士) 13916858963 021-51821768转219 (崔小姐) 010-82676188转213(杨小姐)传真: 021- 51821758邮箱:huiyi@neotrident.com网站:www.neotrident.com
  • 金刚石量子计算教学机助阵华东师范大学,课还能这样上?!
    2021年3月,新学期伊始,一堂特殊的实验绪论课上,国仪量子陈明博士给华东师范大学2018级全体同学带来了前沿研究专题报告——量子计算。近年来,量子科技发展突飞猛进,成为新一轮科技革命和产业变革的前沿领域,加快发展量子科技,对促进高质量发展、保障国家安全具有非常重要的作用。华东师范大学物理实验教学中心的物理实验课程与时俱进,不断培优,在国仪量子的大力支持下,给同学们提供最新的量子科技相关实验项目。讲座由物理实验教学中心副主任尹亚玲老师主持与致辞,国仪量子陈明博士主讲。陈明博士从量子技术的发展历史讲起,介绍了第一次第二次量子革命对社会发展的影响,世界及我国目前的量子技术布局,量子计算在生物医疗、分子模拟、交通物流、金融等领域的重要应用,量子计算体系等内容,着重介绍了如何制造一台量子计算机,目前的研究阶段、面临的困难和发展方向等。华东师范大学近代物理实验教学团队积极创新授课形式,将前沿技术引入课程,邀请一线的科研人员,讲学生听得懂的前沿科普,将最近的研究领域和技术发展介绍给学生。基于金刚石量子计算教学机,国仪量子可以提供包括实验室建设、教学讲义、教学视频、教学课件、示范课培训等量子计算教学相关的整体配套解决方案定制服务,让学校和老师们更轻松地开设相关实验课程。类似的尝试最早始于菁英班物理实验五的绪论课,邀请超高真空技术领域的工程师为菁英班的同学们作报告。本学期的量子计算机讲座,经团队教师积极协调课程时间,将受益面扩大到所有大三下的学生。当天讲座中,约150名师生聆听报告,现场同学对量子技术研究的表现出极大兴趣。不少同学在讲座后主动留下来观看量子计算机实验演示,并与专家进行面对面的交流,还有同学表达了自己希望从事量子研究的意向。本次绪论讲座收获了同学们的好评,有效利用课堂时间,优化课程内容,“听得懂的前沿”为同学们拓展视野,更激发了同学们的学习兴趣。同时也帮助同学们近距离接触一线科研人员,拓宽同学们未来发展的选择范围,是一次很好的课程改革创新。下面隆重介绍一下本次实验教学的好助手——国仪量子金刚石量子计算教学机!金刚石量子计算教学机是国仪量子为了更好地促进量子力学和量子计算相关的教学,推出的全球首款、面向大众的基于金刚石中NV色心,以自旋磁共振为原理的设备,通过控制光、电、磁等基本物理量,实现对NV色心发光缺陷的自旋进行量子操控和读出,从而实现量子计算等功能的教学仪器。该仪器可以在室温大气下运行,无需低温真空环境,使得设备有着几乎为零的运行成本,桌面型的设计让它能适应各种不同的教学环境,无论是课堂还是实验室,都能轻松进行量子力学和量子计算实验教学。不仅如此,金刚石量子计算教学机丰富的硬件模块支持学生动手搭建和调试,多功能的软件支持自定义脉冲序列编写。金刚石量子计算教学机可以帮助和促进高校、科研机构在开设、优化大学物理实验课、近代物理实验课、量子信息科学专业课程的相关工作,方便教师展示教学,激发学生的兴趣和想象力,提高学科水平和教学质量。延伸阅读 了解更多赞!天津大学量子计算实验课圆满收官!金刚石量子计算教学机,助力高校推进量子信息学科建设
  • 财报 | 阿美特克公布第一季度财报
    阿美特克(纽交所代码:AME)近日公布截至2020年3月31日的第一季度财报。___阿美特克第一季度销售收入12亿美金,同比下跌6.6%。GAAP运营收入达2.32亿美金。调整后的营业利润为2.76亿美金,同比下降3%,调整后的营业利润率为23%,同比增长100个基点。___按通用会计准则(GAAP)计算,一季度摊薄每股收益为1.22美金。调整后的收益为摊薄每股1.02美金,较2019年同期增长2%。重新增加非现金、税后、收购相关无形资产摊销后的摊薄每股收益0.13美金,去除税前1.41亿美金或摊薄每股0.47美金,剥离Reading Alloys的销售收入税前4400万美金或摊薄每股0.15美金。阿美特克董事长兼首席执行官 David A. Zapico 表示:“2019新冠肺炎全球大流行给个人和公司带来前所未有的挑战,我们的同事应对新冠肺炎的方式令人满意” ,员工的安全和健康始终放在第一位。因此,我们实施了重要的措施保障员工安全,同时也为抗击疫情的关键客户持续提供支持”。“虽然一季度收入受到新冠肺炎的影响,但是我们快速调整了业务,强劲的运营实力使我们调整后的营业利润率扩大了100个基点,收益达到预期”,Zapico先生继续说道。___“此外,阿美特克本季度的营业现金流非常强劲,达2.71亿美金,同比增长38%。现金增值与剥离Reading Alloys让本就强劲的资产负债表更加稳健”。___电子仪器集团(EIG)_EIG一季度的收入达7.742亿美金,同比下降4%。按通用会计准则计算,EIG本季度的营业利润达1.713亿美金。去除调整费用,EIG本季度的营业利润达1.941亿美金,营业利润率达25.1%。_“虽然近期的收购包括Rauland、Mocon、Telular和Gatan带来稳健的业绩,服务于有吸引力并长期增长的市场,但是EIG在本季度依然受到新冠肺炎在全球传播的影响。尽管销售收入比预期稍低,我们的业务依然表现出强劲的运营业绩,核心利润率扩大”,Zapico提到。机电设备集团(EMG)_EMG在一季度的收入达4.28亿美金,较去年同期下降11%。按通用会计准则计算,EMG一季度的运营利润达7660万美金。去除调整费用,EMG的营业利润为9750万美金,营业利润率达22.8%,创历史新高。_“尽管新冠肺炎传播造成颇具挑战的宏观环境,EMG在本季度表现依然卓越。通过主动实施卓越运营计划,EMG在本季度表现出卓越的营业利润率”,Zapico先生评论道。长期展望____“鉴于新冠肺炎全球大流行带来的不确定性,我们之前撤回了2020年2月5日发布的全年收益指导”,Zapico先生提到,“待形势逐渐明朗,我们将重新提供收益指导”。___“在不确定时期,我们始终关注为股东、同事、客户、供应商和社区带来长期可持续的成功。阿美特克增长模式适应性强,在不确定经济环境中为业务导航提供所需的工具”,Zapico先生说道。_“我们出色的业务组合为客户提供创新解决方案,在应对挑战中处于有利位置。多样化的细分市场,优异的运营能力,强劲灵活的资产负债表,卓越的流动性。最重要的是,我们有着世界一流的人才队伍,致力于提供差异化的技术方案,帮助客户解决最具挑战的问题。我们对阿美特克的未来抱有信心”,Zapico先生说道”。 联系我们:https://www.instrument.com.cn/netshow/SH102493/关于阿美特克阿美特克是电子仪器和机电设备的全球领导者,年销售额约为50亿美金。为材料分析、超精密测量、过程分析、测试测量与通讯、电力系统与仪器、仪表与专用控制、精密运动控制、电子元器件与封装、特种金属产品等领域提供技术解决方案。全球共有18,000多名员工,150多家工厂,在美国及其它30多个国家设立了100多个销售及服务中心。
  • 超导量子计算用mK级国产稀释制冷机实现商用量产
    近日,安徽省量子信息工程技术研究中心及科大国盾量子技术股份有限公司联合发布消息,国产稀释制冷机“ez-Q Fridge”在交付客户后完成性能测试,实际运行指标达到同类产品国际主流水平,成为国内首款可商用可量产的超导量子计算机用稀释制冷机。据媒体报道,2023年下半年,国盾量子向两家科研单位交付了国产稀释制冷机产品,经客户多月测试,设备长时间连续稳定运行,能够结合主动减震系统以及磁屏蔽等,为量子芯片提供低至10mK级别的极低温低噪声环境,制冷功率达到450uW@100mK。在容纳78根低温测控同轴线缆的超导量子计算低温支撑系统中,分别对56比特和24比特超导量子芯片进行测试,稀释制冷机运转效果良好,达到了国际先进水平。实际上近年来,量子科技已引起国内外的广泛关注。而发展先进的量子科技离不开极低温制冷技术,这主要是由于量子本身是微观的效应,很容易受到干扰,而超低温可以将噪音降得很低。比如,对量子比特来讲,它最怕的就是温度,因为温度产生热耦合噪音,低温之后噪音就可以被极大的限制,使它成为孤立系统,这时它的退相干时间就会大大延长,量子比特才会成功,否则包括存储、读取、叠加等都需要时间。目前达到低温的手段主要有吸附制冷、绝热去磁制冷和稀释制冷。稀释制冷技术于 1950 年代首次提出,并在 60 年代建成了第一个完整的稀释制冷系统,随后便成功商业化。稀释制冷技术最低温度可以低至数个mK(10K),具有制冷过程连续不间断及制冷功率较大等优点,随着低温物理研究需求的不断增加,其已经成为目前最为流行的制冷方法。水有普通的水和重水,它们混合到一块是分不开的,但是氦三氦四不一样,液态的氦三和氦四在低温下在大约八九百mK的时候就会自动分开,自动分开的现象过程中会有所谓的制冷效应,其实这就是因为这两者复合在一起就会产生稀释效应,就会有降温效应,连续的补充和打破平衡,就使得混合液一直处于相分离状态,就实现了所谓的稀释制冷,这就是稀释制冷机的原理。随着量子计算等技术的不断发展,对mK级的稀释制冷机提出了更高的要求,当前国内有数家单位和企业在投入精力开发。中科院物理所2021年,中国科学院物理研究所自主研发的无液氦稀释制冷机6月下旬实现近10mK(比绝对零度-273.15摄氏度高0.01度)极低温,标志着中国在高端极低温仪器研制上取得突破性进展,具备了为量子计算等前沿研究提供极低温条件保障的能力。2023年3月28日,中国科学院物理研究所承担的北京市科技计划课题“400微瓦无液氦稀释制冷机研制”顺利通过了第三方技术测试。测试专家组认真听取了项目工作报告,审查了技术测试方案,查验了测试仪器和受试设备,通过现场测试和读取测试数据,一致认为该无液氦稀释制冷机长时间连续稳定运行最低温度已达到7.6mK,制冷功率达到450μW@100mK,两项指标均达到了国外主流中型商业稀释制冷机的水平。合肥知冷低温科技有限公司2023年6月13日,“量子计算用国产极低温稀释制冷机项目”在合肥高新区正式签约,并入驻量子信息未来产业科技园。“量子计算用极低温稀释制冷机”由安徽大学物质科学与信息技术研究院单磊教授、王绍良研究员团队自主研发。安徽大学研究员、合肥知冷低温科技有限公司董事长王绍良表示,项目是合肥“以投带引”的成功案例,在合肥市科技创新集团的支持下,项目公司将拿到第一笔种子基金,打通落地转化的最初一公里。本源量子2023年10月,由本源量子计算科技(合肥)股份有限公司完全自主研发的本源SL400国产稀释制冷机成功下线,这是国内科创企业的研发团队首次成功突破量子计算极低温制冷这一关键核心技术。省量子计算工程研究中心相关负责人张俊峰说:“该稀释制冷机可提供12mK以下的极低温环境及不低于400μW@100mK的制冷量,降温时间在40小时内,升温时间在24小时内,可满足超导量子计算的极低温运行环境和快速回温的要求,达到国际主流产品的水平。”此外,中船重工、飞斯科等国产厂商目前也在投入相关设备研发。中船重工鹏力(南京)超低温技术有限公司市场总监巢伟向仪器信息网透露,当前国内能用的最基础版本的是400-500μW,而国外主流厂商的1mW设备已经成熟了,甚至开展了10mW的研究,比如IBM的10mW的设备已经用起来了。林德等企业已开发了百瓦级、甚至数百瓦级别4K制冷量来预冷的稀释制冷机。当前中船低温已实现4K制冷机每年一千多套的量产。上世纪70年代物理所冉启泽老先生曾研制出湿式稀释制冷机,但后来无人从事相关研究,相当长一段时间内国内处于技术断层和研究空白,目前国内所用到的稀释制冷机均从欧美购买,比如Oxford Instruments ,Cryomagnetics,Janis Research Company,Bluefors Oy NanoMagnetics Instruments, ICE Oxford Ltd,Quantum Design, Inc.,Leiden Cryogenics Entropy等。2019年12月,美国商务部的一份内部文件提出,未来将限制向中国等美国在量子计算上的竞争对手出口稀释制冷机。一旦被限,中国的量子计算研究将面临重大挑战。据了解,国际主流稀释制冷机售价400万元至600万元,稀释制冷机的国产化,在一定程度上扭转了量子计算关键核心技术受限的局面,加快了量子计算领域自立自强步伐,增强我国在量子计算领域完全自主可控能力。
  • 青年才俊上演计算蛋白质组学头脑风暴——记CNCP 2016新技术
    记第四届中国计算蛋白质组学研讨会(CNCP-2016)新技术  仪器信息网讯 2016年8月10日-11日,第四届中国计算蛋白质组学研讨会(CNCP-2016)在中国科学院大连化学物理研究所盛大召开。(相关新闻:第四届中国计算蛋白质组学研讨会(CNCP-2016)在大连开幕)。本届研讨会邀请了26个大会报告,报告嘉宾是来自国内外的计算蛋白组学领域专家和奋战在第一线的青年科研工作者,嘉宾中的绝大多数是首次登上CNCP讲坛。报名参加本届会议的人员首次超过了200人。CNCP2016C参会代表合影张丽华研究员为研讨会致开幕辞  本届会议的开幕式只有简短的5分钟,没有领导讲话,没有任何仪式,充分体现了会议的简洁办会特色。开幕式由中国科学院大连化学物理研究所的张丽华研究员致欢迎词,她提到:“中国计算蛋白质组学研讨会在业界享有很高盛誉。每次会议的演讲嘉宾都是由会议发起者和主办方——中国科学院计算技术研究所贺思敏研究员、北京蛋白质组研究中心徐平研究员、北京生命科学研究所董梦秋研究员等资深学者以及往届会议报告人鼎力推荐的。本次研讨会的26个报告将由来自国内外相关领域的顶级专家和奋战在科研第一线的青年才俊精彩呈现。相信在这两天的会议中,大家不仅能够收获知识,也能收获友谊。”研讨现场  CNCP-2016会议邀请的26个报告多数都是最近一两年的研究成果,部分还没有发表,新技术频繁现身,特别是在交联质谱技术与蛋白质复合体,蛋白质相互作用、翻译后修饰技术、蛋白质鉴定数据处理、定量蛋白质组技术等领域报告较多,下面对这26个报告的内容逐一进行简介总结。  UCI(美国加利福尼亚大学尔湾分校)黄岚博士 报告题目《Developing Cross-Linking Mass Spectrometry (XL-MS) Strategies to Define Interaction and Structural Dynamics of Protein Complexes》  了解蛋白质复合物的相互作用和结构动力学对于揭示病理的分子学细节非常有帮助。交联质谱(XL-MS) 是目前研究大量多亚基蛋白复合物PPIs的重要技术,而精确的肽段鉴别是XL-MS分析一直以来面临的挑战。为了促进这方面的研究,黄岚博士研究组研发了DSSO 及一系列含亚砜(sulfoxide-containing)可分裂质谱交联剂以揭示蛋白质复合物表面相互作用机理。研究者通过这些(MS-cleavable reagents)质谱可分裂试剂在多级串联质谱上建立了实用的XL-MS工作流,快速、准确的鉴别交联肽段去研究体内和体外的PPIs。同时,研究者也研发了新的定量XL-MS途径,用以分析多种生理条件下蛋白质间的相互作用和蛋白质复合体的结构动态变化。据介绍,该课题组最近研发了新的羧基交联剂DHSO主要用来与酸性氨基酸反应,反应中需要DMTMM共同作用。 这样可以得到更广的蛋白相互作用信息。北京生命科学研究所 谭丹博士 报告题目《Trifunctional Cross-Linker for Mapping Protein-Protein Interaction Networks and Comparing Protein Conformational States》  该研究组最近有一项研究工作围绕一种含生物素标签的赖氨酸富集交剂Leiker,谭丹博士在报告中详细展示了课题组的相关研究,研究表明Leiker能够有效改进蛋白质化学交联质谱技术(CXMS)。研究组将以Leiker为交联剂的CXMS用于E.coli全细胞裂解液的分析,发现了3656种相互作用,是之前已有研究方法的10倍。Leiker CXMS比BS3得到的信息要立体很多,能得到更全面的蛋白质相互作用网络。研究者还将Leiker为基础的CXMS用于RNA结合位点鉴定与定量,该方法能够深入揭示蛋白质构象变化。在将Leiker CXMS用于大肠杆菌和秀丽线虫裂解液中的研究中,分别鉴定出3130和893个互补赖氨酸对,并各自发现了677和121种PPIs。Utrecht University (荷兰乌德勒支大学) 刘凡博士 报告题目《Charting the Cellular Interactome by Proteome-Wide Cross-Linking Mass Spectrometry》  据刘凡博士介绍,针对交联数据分析的n-square和交联肽段低效裂解这两大难题,该研究组建立了一种新XL-MS工作流-质谱可分裂交联剂法。该法是一种混合MS2-MS3裂解途径与专用的交联搜索数据库结合的方法。研究者将质谱裂解交联剂DSSO应用于测定每个交联肽段的前体质量,解决了n-square问题。交联裂解前体离子可通过质量差异确定数据的MS3采集方向,这些工作都可以在Oribitrap Fusion 和 Lumos Tribrid质谱上完成。这种采集途径提高了MS3实验的成功率,能够解决低效裂解问题和显著改善数据质量。与先前方法相比,报告中介绍的新方法包含以下三个优势。1)能够完成整体蛋白组数据库的交联鉴别 2)包括多种翻译后修饰的交联鉴别 3)在MS2和 MS3水平都有高质量范围。该研究组将此新XL-MS方法用于多种复杂样本,包括大肠杆菌裂解物、HeLa裂解物、排阻色谱分馏的HeLa细胞核提取物与细胞器。采用这种方法能够从每种样本得到成千上万个交联点。中国科学院计算技术研究所 刘超博士 报告题目《Development of the Cross-Linked Peptides Identificationin Large Scales》  由于检索空间过于庞大,蛋白组范围内交联肽段(双肽)的鉴定一直都是一项挑战。刘超博士和其团队考察了用于大范围交联肽段鉴定的普通搜索工具的应用效果,并开发了一种新的计算软件技术pLink 2.0。此技术比先前技术有三方面的改进:1)提高了双肽中单同位素鉴定的精度 2)由肽段索引升级为离子索引 3)引入机器学习(SVM在线训练)。该团队研究表明,通过使用离子索引pLink2.0检索人类数据库,在一小时以内可以完成5000张谱图的检索。干湿结合方法在人库检索1万张二级谱图仅用时不到2分钟。将pLink 2.0与美国西雅图研究人员研发的Kojak相比较,pLink2.0的分析速度约为Kojak的6倍,在精度方面也有一定优势。pLink2.0支持可碎裂交联,可减少可搜索空间和减少谱图数目。华中师范大学 万翠红博士 报告题目《Mapping Conserved Metazoan Protein Complexes with Biochemical Fractionationand LC/MS/MS》  对多蛋白复合物的了解对于生理进程探索非常重要。然而,对多蛋白复合物种类的分布特别是大规模网状图的发现比较困难。万翠红博士研究组通过高分辨生化分离与定量质谱直接分析了可溶性多蛋白复合物的组成,分析C.elegans、D.melanogaster、M.musculus、S.purpuratus和人类的可溶性细胞提取物。研究组采用以人类为中心的综合计算分析,鉴别出2153种蛋白,并新鉴定出7699种成对相互作用和981种共复合作用。这些相互作用能够反映后生动物生理过程相关的核心生理基础。重建的生理作用网有助于深入了解特殊的分子生物机理以及动物细胞的进化。国家蛋白质科学中心 郑勇博士 报告题目《Scaffold Protein-Mediated Dynamic Assembly of Protein Complexes in Normal and Cancer Cells》  很多细胞表面受体通过催化多组分蛋白复合物的形成开始信号传导过程。这个过程通过与受体结合的scaffold蛋白来传导。然而,目前这种scaffold的生物学基本原理仍不明晰。针对这个问题,郑勇博士研究组通过以IP-MRM为基础的方法,根据Shc1复合信号跟踪其空间和实时变化。研究人员进一步将这种方法与生化和基因技术结合,研究组发现Shc1以特殊的方式对EGF有即时的反应,包括明显的磷酸化和蛋白质相互作用。研究人员成功发现Shc1与一种抑制蛋白产生相互作用,是一种快速绑定蛋白基团能够激活促有丝分裂/存活通路,蛋白复合物围绕Shc1的装配变化在细胞间非常显著。对EGFR/Shc1复合物蛋白组分析能为以pTyr为基础的致肿瘤信号导致的乳腺癌提供诊断依据。暨南大学 张弓博士 报告题目《High-Throughput De Novo Proteome Identification Aided by Translatome Sequencing》  De novo肽段序列鉴定能够避免依赖数据库的检索法的缺点,但由于由于没有背景库,无法评估FDR,且极易受到干扰信号误导,因此长期以来无法应用于复杂样品的大规模鉴定。张弓教授介绍了研究团队研发的利用翻译组测序数据作为蛋白质de novo鉴定质量控制新方法,使肽段de novo鉴定能首次应用在蛋白质组复杂样品的实用化鉴定。研究人员在HCD质谱上应用此方法检测三种肝癌细胞(Hep3B, MHCC97H, MHCCLM3),单次实验鉴定出12000-13000种蛋白质,其灵敏度几乎达到了翻译组测序的水平 而用6种搜库软件鉴定到的真阳性蛋白并集也才7000-8000种。只能用新策略鉴定的4000余蛋白中随机挑选几十个进行MRM验证,几乎都能验证成功。这证明翻译组指导的de novo鉴定效能很高,能鉴定到大量搜索库法无法鉴定到的肽段和蛋白。De novo鉴定的大规模化可引致一系列新的蛋白质组应用。上海生命科学院 李辰博士 报告题目《De Novo Identification and Quantification of Single Amino-Acid Variants in Human Hepatocellular Carcinoma Tissues》  肿瘤蛋白质组-基因组学研究非常关注变异的发现。单核苷酸的多变性(SNPs) 数据库能够给单个氨基酸变体(SAVs)的检测提供依据。李辰博士在报告中介绍了一种在蛋白组水平发现SAVs的新方法。该法基于de novo算法,肽段的可能候选者可被鉴别并与理论蛋白数据库比较。在人类肝癌(HCC)组织中,研究者成功的应用此方法鉴别和定量已知和新的突变蛋白。在肝组织当中,在细胞核内的突变比较低,突变在内质网和线粒体的富集比例较高。这种新方法为病人提供了高通量的定制检测途径,可能为潜在临床生物标志物发现和机理研究提供帮助。中山大学 肖传乐博士 报告题目《Improving Peptide Identification for Tandem Mass Spectrometry by Incorporating Translatomics Informatio》  目前很多数据库检索方法是利用谱学数据而忽略能用于肽段鉴定的生物系统的其他信息。最近,转录物组RNA-seq的界面信息能提高肽段鉴别的灵敏度已经证实。与转录物组信息相比,翻译物组体现出与蛋白质的关系更为紧密,所以其可能对肽段鉴别更有效。在此报告中,肖传乐博士介绍了该研究组设计的高灵敏度肽段鉴定手段IPomics,其以翻译组学信息为主要蛋白鉴定参考。方法得到的推荐蛋白质优先性整合进了新的评分功能。与Mascot和pFind相比,IPomics方法蛋白质鉴定准确度更高,并能够增加整体肽段的鉴定率、谱学信息利用率,并已经利用LC-MS/MS数据集在人类和小鼠蛋白鉴定取得了显著效果。华大基因(BGI-Shenzhen) 闻博 报告题目《Protein Identification and Quantification based on Multiple Search Engines》  闻博在报告中介绍了团队有关以多搜索引擎为基础的蛋白鉴定和定量软件的研究进展。目前,串联质谱技术产生的质谱数据解析率往往不高,不同蛋白质鉴定软件由于谱图预处理、打分算法不同等原因导致对同一个数据的解析结果往往存在一定的互补性。虽然有一些开源的软件可以通过精巧的运算将多个鉴定引擎的鉴定结果整合起来取得与单引擎相比更好的鉴定效果,但由于操作往往较为复杂、下游软件比较缺乏等原因,故没有在蛋白鉴定与定量中推广开来。为了促进多引擎整合方法在蛋白鉴定和定量中的应用,该研究组研发了一种多引擎综合鉴定的开源软件IPeak和同重同位素(如iTRAQ、TMT)标记定量软件IQuant,并将IQuant升级到IQuant2。IQuant2采用精妙的算法和mzIdentML标准,整合多引擎搜索结果进行蛋白质定量。在分析水稻蛋白样品(用Q-Exactive分析)和人细胞系蛋白(用TripleTOF 5600分析)样本时,与单个引擎定量结果相比,IQuant2定量的蛋白能提高28.8%,检测的差异蛋白数量能提高多大40%。多引擎搜索不但能够提高蛋白鉴定效果,也能提高蛋白定量效果。中国科学院水生生物研究所 葛峰博士 报告题目《GAPP: a Proteogenomic Software for Genome Annotation and Global Profiling of Posttranslational Modifications in Prokaryotes》  葛峰博士在前期蓝细菌的蛋白基因组学研究工作的基础上,开发了一种用于原核生物的基因组注释和翻译后修饰全局发现的蛋白基因组分析软件GAPP。该软件最大的特点就是简单高效,具备初步生物信息学知识的研究者就能应用该软件进行原核生物的蛋白基因组数据的深度分析,利用该软件可以高效完成原核生物的全蛋白质组解析和翻译后修饰的全局发现的工作,该软件的开发和应用将有助于原核生物的基因组的精准鉴定,并有望成为原核生物基因组注释的一项标准流程。今后研究组还将根据用户的要求和体验继续对该软件进一步升级。复旦大学 周峰博士 报告题目《Genome-Wide Quantitative Proteomic and Transcriptomic Analysis Reveals Post-Transcriptional Regulation of Mitochondrial Biogenesis in Human Hematopoiesis》  蛋白质组学样品分析需要高分辨分离平台,周峰博士研究组搭建了一种长色谱柱三维蛋白组学定量分析平台(GWPQ), 整套系统完全在线和实现操作自动化。研究者将在此平台建立的蛋白质组学方法与Ribosome profiling相比较,水平相当,在分析模型样品时有80%的重叠。研究者还用此方法开展了人体造血相关细胞的研究,二代测序与应用该平台的蛋白质组方法重叠率达到92%。研究团队利用此方法比较了人体最重要的造血干细胞和红细胞发育中14502个基因蛋白表达变化和17127个基因mRNA表达变化。mTORC1信号极大的促进了红细胞进化中线粒体蛋白的翻译,线粒体和mTORC1的遗传和药理学干扰削弱了体内和体外的红细胞生成。该研究支持了线粒体理论机理,可能与线粒体疾病和老化相关的血液缺陷有关。研究者用模式生物小鼠实验验证了线粒体在血红细胞发育中起到关键作用,找到了全新控制血红细胞发育的通路。Johns Hopkins University(美国约翰霍普金斯大学) 张会博士 报告题目《Comprehensive Analyses of Glycoproteins》  已有不少实验证明,糖蛋白的变化与很多疾病相关。张会博士介绍了糖蛋白的生物合成、结构和功能以及分析糖蛋白的最新方法。糖蛋白的分析是蛋白质分析中最复杂的一种。研究者常把糖和蛋白分开分析,如已有的SPEG(固相提取糖基位点肽)法。该研究组建立了N-糖蛋白数据库,该库可用于检索已鉴定蛋白、通过精确质量数检索候选肽段、鉴定糖蛋白源等。该研究组最近还建立了分析N-linked糖链,糖基化位点,糖基化位点特异糖链,及O-linked糖链分析方法和软件,并探索了用糖基化酶推测多糖的方法。中国科学院大连化学物理研究所 于龙博士 报告题目《Isolation and Structural Analysisof N-Linked Glycansby Using Two-dimensional Chromatography, Mass Spectrometry and Nuclear Magnetic Resonance Spectroscopy》  糖蛋白糖链的纯化合物对糖链的结构分析、精准检测以及功能研究都具有十分重要的意义。然而,目前糖链纯化合物仍处于严重匮乏的状态。来自大连化物所的于龙博士介绍了该团队根据自身优势,采用纯化制备方法来获取N-糖链纯化合物并对其结构进行解析的相关研究进展。研究者首先介绍了糖链的结构特点并对其分离分析中存在的难点问题进行了阐述。针对这些难点问题,研究者结合课题组的材料优势,构建了以二维亲水作用色谱分离体系为核心的糖链纯化制备流程,该流程包括糖蛋白糖链的释放、富集、二维分离、质谱表征以及核磁结构分析等技术单元。在二维色谱分离体系中,第一维度主要根据糖链的羟基数量而实现不同聚合度糖链的分离,第二维度主要用于同分异构体的分离。由于串联质谱技术并不能得到糖链准确的结构信息,因此,研究者目前正在探索核磁共振技术进行准确结构的分析。以现有的糖链纯化合物为基础,研究者接下来将分别在功能、结构和定量三方面开展相关研究以拓展糖链样品库的应用。青岛大学 李磊博士 报告题目《Ultra-Deep Tyrosine Phosphoproteomics Enabled by a Phosphotyrosine Superbinder》  酪氨酸磷酸化网络应用在蛋白组学中不容忽视,如何找到pY尤为重要,但之前方法需要大量抗体才能富集pY。为解决业内这一问题,李磊博士研究组做了不少相关研究,团队研发的Superbinder(超亲体)易于制备,能够有效减轻实验室经济负担。研究者合成了pTyr1和pTyr2两个肽段,比较了SH2 superbinder法与其他几种方法的效果,又增加了Ti4+IMAX的去噪功能,证明其能有效富集pY。与抗体相比,src和grb2超亲体都能有效发现更多pTyr位点。研究者还应用superbinder富集方法进行了Tyr 磷酸化蛋白组学研究。如探索人细胞磷酸化蛋白不同功能分类和Tyrosine kinase (TK)的生物活性等。该项研究是与中科院大连化学物理研究所邹汉法团队、加拿大西安大略大学李顺成团队多方合作完成的。University of Minnesota (美国明尼苏达大学) 陈悦博士 报告题目《Discovery and Characterization of Short-chain Lysine Acylations with Mass Spectrometry and Quantitative Proteomics》  赖氨酸是细胞内蛋白质翻译后修饰的重要靶点。最近,除了赖氨酸乙酰化以外还有一些短链酰基化修饰逐渐被发现。在陈悦博士的早期研究工作中,他从细致的质谱分析中发现了组蛋白赖氨酸丙酰化和丁酰化,两种新的短链酰基化修饰。进一步的研究表明,这两类短链酰基化修饰都是广泛存在的,并可以被特定的酶所调控。最近最新的研究表明赖氨酸丁酰化在Bromo domain识别和精子发育过程中起到重要的调控作用。为了进一步探索质谱信息中隐藏的其他新的修饰,研究者设计了PTMap软件,用来分析非限定性搜索,得到了一些可靠的新蛋白质修饰鉴定,包括琥珀酰化,巴豆酰化,羟基丁酰化等。在定量研究方面,该团队比较关心蛋白质修饰丰度,因为普遍使用的相对定量的分析方法对解释蛋白质修饰的生物学意义有一定的局限性,但是质谱分析得到的离子峰强度并不能直接比较来计算蛋白质修饰的丰度。研究者针对此问题开发了稳定同位素标记为主的新的蛋白质修饰丰度定量方法,可以直接比较离子峰强度,通缩计算得到每个位点上赖氨酸位点丰度,准确性和重现性都很好。中国科学院昆明动物研究所 赖仞博士 报告题目《Mite Allergen Diversity Identification by Proteomics Coupling with Pharmacological Testing》  螨虫、马蜂、牛虻和蟑螂等带有很多种过敏原,一些过敏甚至会导致死亡。过敏的标准治疗方式就是利用过敏原进行脱敏治疗,现在很多机构希望把过敏原纯化出来进行过敏治疗,因此对过敏原发现和提取纯化都有更多要求。屋尘螨(HDM) 是最常见的室内过敏原。赖仞博士希望结合蛋白质组学、药理和病理学手段来进行过敏原的多样性研究。过敏原蛋白组学研究一般是将分离提取出的过敏原与病人血清进行IgE反应。赖仞研究组将蛋白组学技术和二维免疫印迹法结合,从粉尘螨提取物中鉴定出分属于12个组群的17种过敏原,由Edman降解、质谱分析和cDNA克隆等技术鉴定出其一级结构。通过酶联免疫吸附试验抑制测试、免疫印迹、粒细胞活化试验、皮肤点刺试验测定,该研究组发现了8种新的尘螨过敏原。中国医学科学院基础医学研究所 邵晨博士 报告题目《Opportunities and Challenges for Urinary Biomarker Discovery Using Proteomic Approaches》  邵晨博士对业内目前围绕尿蛋白质组生物标志物的发现研究进展进行了综述。据介绍,现在很多科研和医疗开始倾向于做尿液,因其具有易得性和稳定性,且含有丰富蛋白信息。邵晨博士研究组曾通过二维液相与串联质谱鉴定做了一些尿中蛋白质组的研究,尿液蛋白质组可以包括其他体液70%的蛋白质。研究组也通过3DLC-MS/MS鉴定出尿液中的6400多种蛋白,并发现与尿蛋白重合率最高的是脑组织中的高表达蛋白。尿蛋白能够反映很多远端的变化,如帕金森症和脑肿瘤等脑部疾病。在肾脏病中,肾小球损伤病人的肾小球会失去过滤功能而造成尿蛋白显著上升。目前很多研究发现尿蛋白中的生物标记物与一些疾病相关,主要集中在泌尿系统疾病的发现,如膀胱癌和急性肾损伤的标志物已获FDA批准,也有在消化系统疾病、肿瘤等疾病中的相关发现。其中,肺癌的研究比较成熟且已进入临床阶段。
  • 京企发布国内首台相干光量子计算机
    量子计算机从实验室走向产业化应用的步伐正在加快。北京玻色量子科技有限公司日前发布了自研100量子比特相干光量子计算机——“天工量子大脑”,该成果目前已在通信、金融、生物医药、交通等产业领域进行了真机应用测试。量子计算,是一种遵循量子力学规律调控量子信息单元进行计算的新型计算模式。随着电子计算机赖以提升算力的摩尔定律逐渐走到尽头,人们对新一代计算工具无比渴求,量子计算机正是备受关注的新一代计算工具的代表。量子比特是量子计算机的基本信息单元,当前,在实验室里制备单个或少量的量子比特对量子物理学家来说已经不再是难题,如何制备出成百上千的量子比特并使其在系统中稳定运行,成为量子计算技术从实验室走向产业应用的最大挑战。据悉,“天工量子大脑”具有100个计算量子比特,可以解决最高超过100个变量的数学问题,已达国际领先水平。此外,它还实现了上百规模光量子之间的“全连接”控制,具备完整的可编程能力,也就是对应不同的应用场景和不同算法时硬件无需修改,完全通过软件配置就能实现可扩展、可编程,充分利用光量子计算优势,极大降低了实际问题的建模复杂度。公司首席技术官魏海介绍,当光穿过非线性材料时,其光子的波长和相位都会发生变化,在精准控制其能量和相位的过程中,在相空间会出现量子叠加态效应,这也是“天工量子大脑”实现加速计算的根本原因,玻色量子技术团队利用该效应,完成了100光量子比特的并行加速计算。为了满足光量子存储运算的极高精度需求,实现超过100个量子比特的存储,技术团队自主研发了一款光量子计算专用光纤恒温控制设备——“量晷”,该设备能将光纤的温度变化稳定在千分之一摄氏度量级,即能够做到0.001摄氏度的温度稳定维持,有效避免环境温度波动带来的光纤内存长度误差。为了导入计算问题的参数矩阵,玻色量子自研了光量子测控一体机——“量枢”,集光量子测量反馈、系统状态检测、计算流程控制等功能于一体,同时控制、读取和执行快速反馈来操控100个计算量子比特。量子计算应用在产业的实际场景中,究竟有何优势?平安银行LAMBDA创新实验室负责人崔孝林介绍,其在“天工量子大脑”上实现了对德国信用数据集特征筛选计算的加速,在不到一毫秒的时间内完成了相关问题的求解。这一计算速度与传统的经典计算机最优算法相比,至少实现了100倍加速。北京航空航天大学教授、数据智能与智慧管理工信部重点实验室主任吴俊杰也举例说道,在复杂环境下的动态决策问题困扰了其很久,量子计算为其提供了新的解决思路和技术路径。北京量子信息科学研究院科研副院长、清华大学物理系教授龙桂鲁说,在量子计算机的多种技术路径里,“天工量子大脑”所属的相干伊辛机是最经济实用的,也是当前具产业化应用条件的方向之一。据悉,玻色量子2020年11月成立于北京朝阳区,其团队来自斯坦福、清华、中科院等顶尖院所,目前其成果已率先在金融、通讯、生物医药、交通等领域进行了应用探索,推动光量子计算领域实用化与产业化。3个月前,因“天工量子大脑”在通信、金融等领域的巨大潜力,玻色量子团队获得了中国移动的产业投资,这也是量子计算行业里首例来自产业领域的战略投资。
  • 行业重磅 深度解析 | 南京大学依托国仪量子教学机开设量子计算实验课程
    南京大学物理学院依托于国仪量子研发的金刚石量子计算教学机实验课程10月17日正式开课1教学机开课南大校徽为了推进量子力学学科建设,完善和创新学科教学内容、教学方法、教学手段,实现量子力学的基础教学以及量子技术人才的教育与培养,南京大学本学期正式开设了与量子理论教育紧密结合的依托于金刚石量子计算教学机的实验课程。实验课程现场该实验课程内容丰富,涵盖了众多量子力学的基础理论与经典实验,课程内容包括有:连续波实验、拉比振荡实验、T2实验、回波实验、DJ算法实验以及自由实验等。近十多年来量子信息处理成为快速发展的新兴研究领域,如何为量子计算的未来储备人才,引起物理界和教育界的特别关注,与此同时各国政府也在积极推出政策支持量子技术的研究与教育。2第二次量子革命2014年,英国《自然》杂志吹响“第二次量子革命”的号角。以量子信息技术为代表的量子调控,是量子力学的最新发展,其带来了“第二次量子革命”。人类对量子世界的探索已从单纯“探测时代”走向主动“调控时代”,成为解决人类对能源、环境、信息等需求的重要新手段、新技术。2018年9月,美国发布了量子信息发展国家战略书,特别强调了量子技术和量子科技在国家战略中的重要性。欧盟从2018年开始,投入10亿欧元实施“量子旗舰”计划。牛津大学英国早在2014年就发布了量子科技发展蓝图并在牛津大学等高校建立量子研究中心,投入约2.5亿美元培养人才。我国也在《“十三五”国家科技创新规划》中强调了量子技术发展的重要性,量子通信与量子计算被列为“十三五”科技规划100项重大技术与工程项目的前三位。3国内外现状谷歌量子技术团队近日中外媒体纷纷报道,谷歌公司在一篇论文中宣称已成功演示“量子霸权”,其研发的量子系统只用了约200秒就完成了经典计算机大约需要1万年才能完成的计算任务,这一划时代的技术进展是量子计算研究也是量子技术应用的一个重要里程碑。谷歌已率先宣称实现“量子霸权”,IBM亦成功研制50多比特的量子计算机原型,虽然技术离真正付诸实用都还尚需时日,但美国已经在考虑对量子计算等技术领域设置出口禁令,我们不禁要问中国如何在未来的量子技术应用领域不被外国“卡脖子”并实现领先?各大公司布局量子技术近年来,一方面国内各大高校、科研院所不断加大科研投入,华为、腾讯、阿里巴巴等公司也在布局量子技术应用相关平台,另一方面随着量子科研的不断深入,各大高校的量子教育也在加大投入与创新,这其中,有百年历史的南京大学物理学院是国内最早依托金刚石量子计算教学机对量子力学和量子计算进行创新实验教学和探索的高等院校之一。4量子教育现阶段,与量子技术快速发展不相适应的是,我国量子技术从业人员严重缺乏,工程技术人员对量子技术的理解不够深入、实操能力不足,这些已成为限制该技术发展和应用的严重瓶颈。量子力学大师普朗克物理定律不能单靠“思维”来获得,还应致力于观察和实验。——普朗克人才的匮乏源于教育的缺失,更源于教育方式的桎梏,虽然目前很多高校开设了量子力学相关课程,但是现有的课程和教材从思维模式和体系结构上,大多侧重讲述物理原理和基础方案的验证性实验,缺乏类似工科专业教学的案例、教材和实验资源。量子力学的教育,离不开量子理论和实验的紧密结合。推进量子力学学科建设,完善和创新学科教学内容、教学方法、教学手段,不仅符合我国建设量子技术强国的国家需求,还能解决高校量子技术相关应用型人才培养的实际问题。作为我国高等院校中创立最早的物理学科之一的南京大学走在了这方面国内的最前沿,2019年10月17日依托于国仪量子金刚石量子计算教学机的实验课程在南京大学物理学院正式开课。5南京大学物理学院南京大学物理学院是国家物理学基础学科人才培养基地,大学物理教学实验中心是国家物理学基础学科人才培养基地和国家物理实验教学示范中心。物理学院的“物理学”博士后流动站是全国最优秀博士后流动站之一。百年南大南京大学物理学科创立于1915年的南京高等师范学校(物理学系建立于1920年),是我国高等院校中创立最早的物理学科之一。百年来,南京大学物理学院追求卓越,名家辈出,为我国物理学发展作出了重要贡献,成为我国最有影响的物理学科之一。在南京大学学习和工作过的老一辈物理学家有吴有训、严济慈、赵忠尧、施汝为、陆学善、余瑞璜、吴健雄、朱光亚、程开甲、杨澄中、魏荣爵、汤定元、冯康等数十位中科院和工程院院士。6单电子固态量子计算实验南京大学物理学院的金刚石量子计算教学机实验课程命名为《单电子固态量子计算实验》,由黄璞老师和孔煕老师授课,课程自10月17号正式开课,每周四周五下午和晚上上课。一周共4批次课程,每次4个课时,一人上两次共8课时完成实验课程。实验课程本学期一经推出就受到学生的热情关注,共有120多人成功选修该课程。实验课程剪影物理学院的同学普遍表示通过教学机生动形象的实验课程学习,让他们更加深入理解了量子力学的相关知识,课程的开设得到了学校师生的一致好评。7金刚石量子计算教学机金刚石量子计算教学机是国仪量子为了更好地促进量子力学和量子计算相关的教学,推出的全球首款、面向大众的基于金刚石中NV色心,以自旋磁共振为原理的设备,通过控制光、电、磁等基本物理量,实现对NV色心发光缺陷的自旋进行量子操控和读出,从而实现量子计算等功能的教学仪器。教学机功能丰富金刚石量子计算教学机可以帮助和促进高校、科研机构在开设、优化大学物理实验课、近代物理实验课、量子信息科学专业课程的相关工作,方便教师展示教学,激发学生的兴趣和想象力,提高学科水平和教学质量。基于金刚石量子计算教学机,国仪量子可以提供包括实验室建设、教学讲义、教学视频、教学课件、示范课培训等量子计算教学相关的整体配套解决方案,让学校和老师们更轻松的开设相关实验课程。在近日谷歌宣称实现“量子霸权”的背景下,南京大学金刚石量子计算教学机实验课程的顺利开课对我国探索量子技术发展与应用具有十分积极的影响,对国仪量子在量子领域的深入研发、对南京大学在量子教育的发展创新也都有重要的意义,未来,国仪量子也将与包括南京大学在内的国内各大高校院所共同努力、砥砺前行,为量子技术人才的培养与教育、为中国高科技的发展与创新、为量子技术科学强国做出更多贡献!
  • FEI第一季度收入2.212亿美元 创历史新高
    2013年4月30日,FEI公司报告了2013年第一季度的收入和盈利情况。2013年第一季度FEI收入为2.212亿美元,为公司历年来第一季度的最高收入。同2012年第一季度的2.176亿美元收入相比,增长了2%,同2012年第四季度的2.309亿美元收入相比下降了4%。   根据美国公认会计原则计算,摊薄每股收益为0.65美元,2012年第一季度为0.63美元,2012年第四季度为0.72美元。本季度的净收入为2680万美元,2012年第一季度为2570万美元、2012年第四季度为2980万美元。第一季度的毛利率为46.4%,2012年第一季度为45.1%,第四季度为47.2%。   FEI总裁兼首席执行官Don Kania表示:&ldquo 2013年第一季度的订单,营业收入,每股收益和经营性现金流均创了历史新高。同2012年第一季度相比,由于世界其他地区的强劲需求,科技集团的收入增长了15%。而工业集团的收入下降了11%,但同2012年第四季度相比,随着半导体设备业务的改善,收入有所增长。我们预计在2013年环比将继续增长。尽管受日元贬值的负面影响,同2012年第一季度相比,毛利依然上升了130个基点。&rdquo   预计2013年第二季度收入将在2.22亿美元至2.31亿美元的范围内,并将至少有2.3亿美元的订单。GAAP每股收益预计将在0.62美元至0.71美元,包括0.01美元的重组费用。实际税率预计将为20%。2013年全年的收入预计将比2012年多5%至9%。 编译:秦丽娟
  • “生物计算”:比超级计算机更聪明、高效、紧凑
    上图 真菌可能与标准电子设备相连。图片来源:安德鲁阿达马茨基下图 实验室培养的脑细胞可用于计算。图片来源:托马斯哈滕/约翰斯霍普金斯大学细菌和超级计算机有什么区别?区别是细菌更“高级”,因为它有更多的回路和更强的处理能力。所有生命都在“计算”。从响应化学信号的单个细胞,到在特定环境中航行的复杂生物体,信息处理是生命系统的核心。经过数十年的尝试,科学家终于开始收集细胞、分子甚至整个生物体,来为人类自己的目的执行计算任务。从本质上讲,计算机也只是信息处理器,而且人们越来越认识到大自然拥有丰富的这种能力。最明显的例子是复杂生物体的神经系统,它能处理来自环境的大量数据并对各种复杂的行为“下指令”。但即使是最小的细胞,也充满了复杂的生物分子通路,这些通路响应输入信号,打开和关闭基因、产生化学物质或进行自我组织。最终,生命中所有令人难以置信的壮举,都依赖于DNA存储、复制和传递遗传指令的能力。如何构建一台生物计算机?生物系统有自身的独特优势:更紧凑、能源效率更高、可自我维持和自我修复,而且特别擅长处理来自自然界的信号。在过去的20年里,强大的细胞和分子工程工具让人们终于能在构建生物计算机领域迈出一步。美国麻省理工学院生物合成学家克里斯托弗沃伊特说,该方法的核心是“生物电路”,类似于计算机中的电子电路。这些电路涉及各种生物分子相互作用以获取输入,并对其进行处理以产生不同的输出,就像它们的硅对应物一样。通过编辑支撑这些过程的遗传指令,人们现在可以重新连接这些电路以执行自然界从未计划的功能。2019年,瑞士联邦理工学院利用CRISPR技术,构建了相当于计算机中央处理器(CPU)的生物等效物。这个CPU被插入一个细胞,在那里它调节不同基因的活动以响应专门设计的RNA序列,使细胞实现了类似于硅计算机中的逻辑门。印度萨哈核物理研究所在2021年更进一步,诱使一群大肠杆菌计算简单迷宫的解决方案。该电路分布在几个大肠杆菌菌株之间,每个菌株都被设计用来解决部分问题。通过共享信息,该电路成功地实现了如何在多个迷宫中导航。大多数生物系统并不同于经典计算机的二进制逻辑,它们也不会像计算机芯片那样一步步解决问题。它们充满了重复、奇怪的反馈循环和以不同速度并排运行的截然不同的过程。更怪异的是,生物的计算能力还能完全脱离其自然环境。瑞典隆德大学科学家正在试验一种完全不同的生物计算方法,使用由分子马达驱动的微小蛋白质丝围绕迷宫推进。迷宫的结构经过精心设计,而细丝能同时探索所有路线。这意味着解决更大的问题不需要更多的时间,只需要更多的细丝。重新设计生物系统会带来什么?但美国马萨诸塞州塔夫茨大学的迈克尔莱文认为,生命系统已经在生物学的各个层面展示了令人惊叹的计算壮举,人们应该将重点从尝试重新设计生物系统,转移到寻找与现有系统交互的方法。莱文实验室已经证明,他们可以操纵细胞之间的电通信,帮助它们决定如何以及在哪里生长。举个恐怖的例子,这可能让蝌蚪的内脏上长出眼睛,或让青蛙长出额外的腿。它并不等同于计算,但团队认为它代表了如何将自然界预先存在的电路折射为一个“新目标”。类似的方法可用来解决广泛的计算任务。此外,真菌计算的深奥领域也正在显示其应用潜力。英国布里斯托尔西英格兰大学研究显示,真菌在感知pH值、化学物质、光线、重力和机械应力等方面具有的能力令人印象深刻。它们似乎使用电活动的尖峰进行交流,这开辟了将它们与传统电子设备连接的前景。类器官智能有多智能?要探寻生物计算,离不开人们迄今已知的最强大计算设备:大脑。当前组织工程学的进步意味着,科学家们可从干细胞中培育出相当于微型大脑的复杂神经元簇,也就是“大脑类器官”。与此同时,能将信号传输到脑细胞并能解码它们的反应,意味着人们已经开始试验类器官的记忆和学习能力。今年早些时候,美国约翰斯霍普金斯大学团队概述了“类器官智能”这一新领域的愿景。目标与人工智能相反:他们不会让计算机更像大脑,而是试图让脑细胞更像计算机。初创公司Cortical已可训练在硅芯片上培养的人类脑细胞来玩电子乒乓游戏Pong。而在它们的新软件中,任何具有基本编码技能的人都能为“培养皿大脑”编程。不过,所有这些生物计算方法目前都远未成为主流。与设计和制造硅芯片的能力相比,人们操纵生物学的能力仍处于初级阶段。但生物计算的巨大潜力和投入生物技术的数十亿美元,将在未来几年为这个领域带来快速进步。
  • 安捷伦2011第一季度净利润1.93亿美元
    安捷伦2011第一季度净利润1.93亿美元 生命科学业务成最大亮点     2011年2月14日,安捷伦科技(Agilent Technologies)(A)今天发布了2011财年第一季度财报。报告显示,安捷伦科技第一季度营收为15.2亿美元,净利润为1.93亿美元,高于去年同期,且超出华尔街分析师预期。   在2011年第一季度,安捷伦有2800万美元的无形资产摊销,其中与瓦里安相关的整合成本1900万美元,重组费用1300万美元。此外,税收优惠4100万美元。   安捷伦科技总裁兼首席执行官Bill Sullivan说:“2011年,我们有一个良好的开端,我们将继续展示安捷伦产品组合的实力,使安捷伦在全球所有地区都实现两位数的收入增长。”   电子测量业务收入增长23%,超过去年同期水平。除去网络解决方案业务剥离的影响,订单和收入均增长30%。强劲增长驱动力来源于通信业务,以及工业、计算机和半导体市场。   化学分析业务收入较一年前增长超过43%。订单增长16%和收入增长8%。石化、食品、环境和法医市场持续增长为化学分析业务增长贡献了力量。   生命科学业务收入叫去年同期增长19%。订单增长11%,收入增长7%。制药市场的良好的增长,伴随着学术界和政府市场的强劲需求使得生命科学业务成为本季度的亮点。   Bill Sullivan说,“我们期待着今年是稳健增长的一年,并相信随着全球经济持续复苏,我们能够很好地利用市场机遇。”   2011年第二财政季度收入预计将在15.9亿美元至16.1亿美元之间,对于整个2011财年,安捷伦的指导是提高其收入到63亿至64亿美元。
  • 生态环境部《土壤和沉积物中甲基汞和乙基汞测定》 (征求意见稿) 标准解读
    生态环境部办公厅2020年12月31日发布《土壤和沉积物 甲基汞和乙基汞的测定 吹扫捕集/气相色谱-冷原子荧光光谱法(征求意见稿)》 (环办标征函〔2020〕62号) ,我国国内第一个土壤和沉积物中甲基汞和乙基汞的测定方法标准公开征求意见。 该标准的主要起草单位是由中国环境监测总站和江苏省环境监测中心,验证单位包括:山东省生态环境监测中心、广西壮族自治区生态环境监测中心、四川省生态环境监测总站、湖南省长沙生态环境监测中心、贵阳市环境监测中心站和合肥市环境监测中心站等七家单位。为什么需要对土壤和沉积物中的甲基汞和乙基汞进行测定呢?土壤中的汞主要包括金属汞、无机化合态汞和有机化合态汞。有机化合态汞以有机汞(烷基汞)和有机络合汞普遍存在。其中烷基汞主要包括甲基汞和乙基汞;甲基汞是有机汞中毒性最大的一种形态,甲基汞很容易穿过血脑屏障,对人神经系统进行侵害,尤其对妇女和儿童有很大的影响;土壤中的甲基汞易被植物吸收,通过食物链在生物体内富集,从而暴露给人体;而土壤中的腐殖质与汞结合形成的络合物不易被植物吸收。另外,乙基汞也属于亲脂性化合物,中毒后可引起急性肠胃炎以及造成严重的肾脏损伤等。土壤和沉积物中的甲基汞和乙基汞国内是否有相关限值控制标准? 2018年6月,生态环境部与国家市场监督管理总局联合发布了《土壤环境质量 建设用地土壤污染风险管控标准(试行)》(GB36600—2018)国家环境质量标准,该标准于2018年8月1日正式实施,标准中明确了不同类型建设用地中甲基汞的筛选值和管制值,其中甲基汞在第一类用地的筛选值为5mg/kg。 目前国内暂无涉及土壤和沉积物中乙基汞的限值控制标准。《土壤和沉积物 甲基汞和乙基汞的测定 吹扫捕集/气相色谱-冷原子荧光光谱法(征求意见稿)》内容简介原理:土壤或沉积物样品经碱液提取后,提取液中的甲基汞和乙基汞经四丙基硼化钠衍生,生成挥发性的甲基丙基汞和乙基丙基汞,经吹扫捕集、热脱附和气相色谱分离后,再高温裂解为汞蒸气,用冷原子荧光光谱仪检测。根据保留时间定性,外标法定量。 方法检出限和定量下限:当取样量为0.5 g 时,甲基汞和乙基汞的方法检出限均为0.2 μg/kg,测定下限均为0.8 μg/kg 前处理过程:分析过程:标准曲线:8 个40 ml 棕色进样瓶,分别加入实验用水约35 ml,再分别加入0 pg,2.00 pg,5.00 pg,10 pg,50 pg,100 pg,500 pg,1500 pg的甲基汞和乙基汞混合标准溶液,,然后加入300 μl 乙酸-乙酸钠缓冲溶液及50 μl 四丙基硼化钠溶液(如果只进行甲基汞的分析,可加入四乙基硼酸钠溶液进行衍生化反应),迅速加入实验用水至瓶满,不留空隙,盖紧盖子静置10 min ~15 min。实际样品:40 ml 进样瓶中加入实验用水约35 ml 至瓶颈处,取试样150 μl 至进样瓶中,依次加入300 μl 乙酸-乙酸钠缓冲溶液及50 μl 四丙基硼化钠溶液(如果只进行甲基汞的分析,可加入四乙基硼酸钠溶液进行衍生化反应),最后迅速加入实验用水至瓶满,盖紧盖子静置10 min ~15 min 上机分析:标准内部验证和外部验证均采用美国知名仪器厂家Brooks Rand公司生产的MERX全自动烷基汞分析系统:MERX全自动烷基汞分析系统异位吹扫捕集,样品满瓶式进样,衍生化效率和烷基汞分析结果不受环境空气的影响三通道Tenax 捕集阱交替捕集,效率高液体传感器,水汽进入捕集阱会报警精密流量控制,气流波动小,避免因吹扫气流量过大造成大量水汽进入吸附阱或因流量过小造成的吸附不完全甲基汞检出限可达0.002ng/L;乙基汞检出限可达0.005ng/L宽线性范围:甲基汞0.0125-50ng/L,乙基汞0.025-50ng/L残留低:高浓度样品运行后仪器残留低于2‰重复性好,数据结果可靠国内销售数量超过300家,用户的普遍选择MERX全自动烷基汞分析系统同时还是《水质烷基汞的测定吹扫捕集/气相色谱-冷原子荧光光谱法》(HJ 977-2018)的验证仪器。该仪器数据质量稳定可靠,在国内饱受好评。谱图:质量控制:空白试验:每20 个样品或每批次样品(<20 个/批)应至少做一个空白试样,空白试样的测定值应低于方法检出限(甲基汞和乙基汞的方法检出限均为0.2 μg/kg)校准:建议每次分析前均应建立工作曲线,若采用线性回归法,相关系数≥0.995;若采用响应因子法,校准系数RSD≤15%(工作曲线绘制后,每批样品测定时需要测定工作曲线中间浓度点的标准溶液,其相对误差值应该控制在±20%以内。否则,需重新绘制工作曲线)平行样:每20 个或每批次样品(<20 个/批)应至少测定一个平行双样,测定结果的相对偏差应≤30%基体加标:每20 个样品或每批次样品(<20 个/批)应至少测定一个基体加标样品或一个土壤或沉积物的有证标准物质。甲基汞加标回收率控制在75%~130%之间;乙基汞加标回收率控制在70%~120%之间标准物质测定:测定甲基汞有证标准物质的允许相对误差在﹣40%~+10%之间展望:本标准的检出限、精密度等性能指标能满足《土壤环境质量 建设用地土壤污染风险管控标准(试行)》(GB 36600-2018)的相应要求,相信该标准正式出台后,会使涉及土壤和沉积物中甲基汞和乙基汞分析检测的单位有据可依,并为相关分析检测人员提供新的思路和手段。 参考文献:1. 关于征求《土壤和沉积物 甲基汞和乙基汞的测定吹扫捕集/气相色谱-冷原子荧光光谱法》国家环境保护标准意见的通知 (链接:http://www.mee.gov.cn/xxgk2018/xxgk/xxgk06/202012/t20201231_815730.html);2. 《土壤和沉积物 甲基汞和乙基汞的测定 吹扫捕集/气相色谱-冷原子荧光光谱法(征求意见稿)》及编制说明;3. 《土壤环境质量 建设用地土壤污染风险管控标准(试行)》(GB36600—2018)。
  • 2012羟乙基淀粉(HES) 专题培训课程通知
    尊敬的用户: 您好!非常感谢您一直以来对美国怀雅特技术公司的支持,为了协助您更好的使用仪器开展工作,诚邀您参加2012年07月27日举办的 羟乙基淀粉(HES)专题培训课程,现将具体安排通知如下: 一、培训时间 2012年7月27日,共计1天。 二、培训日程安排 日 期 培 训 内 容 07月26日 报 到 07月27日 1. 静态光散射技术基本理论(MALS); 2. dn/dc与Optilab T-rEX/RID; 3. SOP解析:MALS & Optilab T-rEX/RID; 1. 光散射色谱联用技术(SEC-MALS)基本原理; 2. SOP解析:SEC-MALS; 3. SEC-MALS实践&数据处理与分析 三、培训地点 北京 四、培训费用 1500.00元/人;(含培训费及资料;工作餐(中餐));其他费用自理。 五、报名截止日期 2012年06月06日下午17:00(注: 报名截止日期后将不再受理培训报名); 六、联系人及联系方式 联系人:兰先生 ; Email:lanjing@wyatt.com.cn 电 话:010-82292806; 传 真:010-82290337 如您有意参加培训,敬请您于2012年06月06日17:00之前将以下回执单(HES下载)传真至010-82290337或者发送至lanjing@wyatt.com.cn,我们会根据回执回复顺序安排培训,并电话与您取得联系。
  • 综述硬度计的应用领域,包括布氏、洛氏、维氏、努氏,以及布洛维硬度计等
    硬度测试重要性&应用布、洛、维、努氏硬度是材料抵抗弹性变形,塑性变形或破坏的能力。对于被检测的材料而言,硬度代表着在一定的压头和力的作用下所反映出的弹性、塑性、强度、韧性,以及抗摩擦性能等一系列不同物理量的综合性能指标。01硬度测试两种材质的物体相互划磨,软的材质会产生划痕,人类最早就是根据材料抵抗划磨的能力来比较材料的软与硬。随着科学技术的发展,测定材料硬度的方法有了很大的进步,硬度试验法有十几种,按施加试验力的方法分为静载压入法和动载试验法。 常用的布氏、洛氏及维氏硬度试验等属静载试验法;肖氏、里氏硬度属动载试验法。硬度试验具有以下特点:非破坏实验硬度试验对工件的损伤极小,一般不影响使用 方法不复杂试验方法方便不复杂,对大小部件均可直接测量;操作简单、快速硬度试验操作简单、效率高;换算关系硬度值与其他机械性能,如强度极限有近似的换算关系;应用广泛硬度试验是理化分析,金相试验及材料科学的重要手段。02硬度检测的重要性硬度是衡量金属材料力学性能的重要参数,硬度检测能反映金属材料的显微组织和结构变化,通过硬度检测可以发现材料的微观结构和相组成,从而评估其力学性能和加工性能。硬度检测是质量控制和生产过程控制的重要手段之一,在铸造、锻造、焊接和热处理等加工过程中,通过硬度检测可以监测工艺参数和产品质量,及时发现并解决潜在问题,确保生产过程的稳定性和产品质量的一致性。洛氏硬度计洛氏硬度测试通过测量压痕深度来计算硬度值,在成批生产和大量检测的机械、冶金热加工过程中以及半成品或成品检验中得到广泛应用,特别适用于刃具、模具、量具、工具等的成品制件检测。常用于测试金属和硬质塑胶材料的硬度,如钢、合金钢、不锈钢等。全自动洛氏硬度计,推荐轶诺的NEMESIS 6200.维氏硬度计维氏硬度测试通过测量压痕对角线的长度来计算硬度值,具有较高的精度和分辨率,测量范围可覆盖所有金属。适用范围:热处理、碳化、淬火硬化层,表面覆层,钢,有色金属和微小及薄形零件等。配备努氏压头后能测玻璃、陶瓷、玛瑙、人造宝石等较脆而又硬的材料的努氏硬度。全自动维氏硬度计,推荐轶诺的FALCON600 G2.布氏硬度计常用于测试金属材料零件的硬度,如铸铁、锻件、轧制件等。通过测量压痕直径来计算硬度值,具有较大的测试压痕和较高的测试精度,适用于大型零件检测。全自动布氏硬度计,推荐轶诺的NEXUS3400FA.03硬度计的应用领域硬度计在材料测试、研发、失效分析和预防、质量控制、工艺优化等领域有着广泛的应用,遍及汽车、航空航天、钢铁、机械、高校、科研、船舶、铁路、交通、电子、能源、医疗、石化等行业。汽车零部件的硬度检测,如发动机活塞、曲轴、缸体、刹车盘、齿轮、紧固件、轴承等,确保零件的耐磨性、耐久性和可靠性,从而提高汽车的整体性能和安全性;检测航空发动机零部件的硬度,如涡轮叶片、涡轮等硬度,可以及时发现材料内部的缺陷和问题,为发动机的维护和修复提供重要依据;能源行业通过硬度测试,及时发现设备内部的损伤和缺陷,预防事故的发生;医疗行业需要测试医疗器械和人工假体的硬度;电子行业需要测试材料的硬度,以确保其在使用过程中的可靠性和耐久性;石化行业检测管道的硬度,可以预防管道腐蚀和泄漏等安全问题,等等。质量控制硬度计用于生产过程中的监控与质量控制,确保产品符合质量标准和客户要求。通过定期对产品进行硬度测试,及时发现材料的质量问题,预防不合格品的产生。硬度计还可用于生产过程中的快速筛选和分类,提高生产效率和产品质量。轴承的硬度检测通过硬度测试可以评估轴承材料的硬度和质量,确保轴承具有足够的耐磨性和耐久性。以及,监测轴承在使用过程中的硬度变化,预测其寿命和可靠性,预防早期失效的发生。失效分析通过测量材料硬度,并与标准值进行比较,提供失效原因的线索。例如,如果材料过度磨损或腐蚀,其硬度可能会降低。通过分析硬度变化,分析失效的原因,提出相应的改进措施,减少材料的失效可能性,提高产品的质量和可靠性。工艺过程控制在工艺过程中,材料经过各种处理,如热处理、加工、焊接等,可能会影响材料的硬度。通过对材料硬度的测量,可以监测工艺过程对材料的影响,从而控制和优化工艺过程,减少失效的可能性。焊接结构的失效预防:检测焊缝的硬度和热影响区的范围,分析焊接接头的机械性能。通过了解焊缝和热影响区的硬度分布,评估焊接结构的可靠性和安全性,避免因硬度分布不均或热影响区过宽导而致焊接结构失效。复合材料的失效预防复合材料是由两种或多种材料组成的新型材料,具有优良的力学性能和多功能性。在复合材料的研发和应用中,硬度计被用于评估复合材料的硬度和相关机械性能,预测其在不同环境和使用条件下的适用性和可靠性,预防因材料不匹配或性能不稳定导致的失效问题。材料研发通过对比不同材料的硬度值,可以评估材料的性能优劣,为新材料的研发提供依据。例如,研究新型材料的硬度特性、比较不同材料的硬度差异、分析材料的微观结构和硬度之间的关系等。硬度计为这些研究提供重要的实验数据和结果。教学科研主要体现在实验操作与演示、比较不同材料的硬度、研究材料的微观结构、实践应用与案例分析,以及实验数据处理与分析等方面。学生可以更好地理解硬度的概念、测试方法和实际应用,培养实验技能和科学素养,也有助于提高教学质量和学生的综合素质。科研人员也经常使用硬度计进行科研项目,研究新型材料的硬度特性、材料的微观结构和硬度之间的关系等,推动材料科学的发展。表面硬度检测通过表面硬度检测,可以评估热处理工件的耐磨性、耐久性和抗疲劳性能等,为后续的热处理工艺调整提供依据,提高热处理工件的质量和性能。热处理工艺控制在热处理过程中,硬度是衡量材料内部组织结构变化的重要参数。通过硬度检测,可以了解热处理过程中材料的硬化程度和相变过程,从而优化热处理工艺参数,提高热处理工件的质量和性能。总之,硬度测试广泛应用于各种材料,包括金属、非金属、硬质塑料、复合材料和新材料等。用硬度计进行材料性能检测,对于评估材料性能、控制产品质量、实效分析、优化工艺参数、教育和科学研究等方面都具有重要意义。轶诺INNOVATEST品质硬度计荷兰INNOVATEST轶诺高品质硬度计,涵盖布、洛、维、努氏等多种测试方法,具有创新性的技术和工艺、高精度和可靠性、自动化和智能化、人性化的软件系统,以及全面的售后服务等优势,满足不同的硬度测试需求。轶诺为全球诸多用户提供了先进的硬度测试解决方案,行业遍及汽车、航空航天、钢铁、机械、高校、科研、船舶、铁路、交通、电子、能源、医疗、石化、桥梁、建筑、骨科/牙科实验室等领域。
  • PerkinElmer公布2012年第一季度财务业绩
    PerkinElmer公布2012年第一季度财务业绩 持续经营业务的收入5.11亿美元,报告的收入增长为14%,整体营业收入增长为6% 持续经营的收入为3600万美元;调整后的营业收入为7900万美元,按百分比计算,上升了160个基本点 来自持续经营业务的每股GAAP收益为0.19美元;调整后代每股收益为0.43美元,增长23% 提升全年调整后的每股收益指导 马萨诸塞州沃尔瑟姆--(商业资讯)&mdash &mdash 专注于提高人类健康及其生存环境安全的全球领先公司 PerkinElmer, Inc.(NYSE:PKI),今日公布了截至2012年4月1日的第一季度财务结果。公司公布的持续经营的每股GAAP收益为0.19美元,超过了2011年第一季度的0.24美元。GAAP 每股收益受到了因2011年完成的收购而产生的非现金费用的不利影响。依据非 GAAP(包括随附的记账单中注明的调整)原则,公司宣布调整过的每股0.43美元的收益比2011年第一季度增长了23%。 &ldquo 我们很高兴在2012年开始阶段就获得了超过预期的收入和调整后每股盈利的增长。考虑到我们在2011年第一季度的强劲的财务业绩,该表现尤其令人鼓舞,&rdquo PerkinElmer董事长兼首席执行官Robert Friel说。&ldquo 通过我们对创新的关注、我们的多年生产力以及我们成功的收购整合,我们将继续在战略举措方面取得进展。&rdquo 2012年第一季度的收入是5.109亿美元,比去年同期增长14%。2012年第一季度调整后收入为5.174亿美元,其中包括附件记账单中指出的调整,比2011年第一季度高出16%。与去年同期相比,人类和环境安全领域的调整后收入分别增加了27%和6%。整体营业收入(包括随附的记账单中注明的调整)与2011年第一季度相比,在人类健康领域增加了9%,而在环境安全领域增加了3%。 2012年第一季度的持续经营的收入为3640万美元,而去年同期则为4140万美元。调整后的营业收入(包括随附的记账单中注明的调整)为7900万美元,如果按照百分比计算,与2011年第一季度的6110万美元相比增加了160个基本点。 对于2012年第一季度,与2011年第一季度的4730万美元相比,持续经营的现金流为1530万美元。公司为其在美国的受益养老金计划贡献了2012年第一季度的1700万美元,并且收到了2011年第一季度的约890万美元的退税。 部门财务报告概要 人类健康: 2012年第一季度的收入为2.54亿美元,相比之下,2011年同期收入为2.013亿美元。 营业收入为2190万美元,而去年同期为2150万美元。 以百分比形式计算,调整手段营业利润为调整后收入的20.4%,与2011年第一季度相比,增加了约200个基本点。 环境安全 2012年第一季度的收入为2.569亿美元,而2011年第一季度为2.459亿美元。 营业收入为2640万美元,相比去年同期为3020万美元。 以百分比形式计算,调整后的营业利润率为调整后收入的14.4%,相比2011年第一季度增加了约30个基本点。 财务指标 对于2012年全年,公司重新确认了其预测的整体收入与2011年相比,实现了单位数居中的增长范围。对于2012年全年,公司预计持续经营的每股GAAP收益范围在1.27-1.32美元之间,而非GAAP 方面,预计包含随附的记账单中注明的调整,与公司之前提供的指导范围1.98-2.04美元相比,2012年的调整后每股GAAP收益范围在2.00-2.05美元之间。 电话会议信息 公司将在2012年4月26日东部时间下午5点讨论第一季度的业绩并展望其业务发展趋势。要参加电话会议,请在预定的会议时间前拨打(617) 213 &ndash 8856并提供访问代码90431696。此会议将从2012年4月26日星期四下午7:00开始重播,重播电话号码是(617) 801-6888,而访问代码是76741664。 电话会议网络视频的直播音频文件还将在公司官网(www.perkinelmer.com.)的&ldquo 投资者&rdquo 栏目页面上提供。请至少提前15分钟在网站上注册,下载并安装任何必要的软件网络广播的存档版本将在电话会议结束约两小时后于公司的网站上公布两周。 使用非GAAP财务衡量标准 除了根据通用会计准则 (GAAP) 制定的财务衡量标准,此财务公告还包含非 GAAP 财务衡量标准。我们使用这些衡量标准的原因、这些衡量标准与最具直接可比性的 GAAP 衡量标准的结果对比,以及与这些衡量标准相关的其它信息,将在后面进行说明。 影响未来业绩的因素 此新闻稿包含的前瞻性声明依据1995 年《美国私人证券诉讼修正法案(United States Private Securities Litigation Reform Act of 1995)》中的有关规定发布,其中包括但不限于与未来每股股票收益、现金流和收入增长及其它财务结果的预测和估计有关的声明、与我们的客户和最终市场有关的发展以及与企业发展机会和剥离相关的计划。&ldquo 相信&rdquo 、&ldquo 意图&rdquo 、&ldquo 期待&rdquo 、&ldquo 计划&rdquo 、&ldquo 期望&rdquo 、&ldquo 预计&rdquo 、&ldquo 预想&rdquo 、&ldquo 将会&rdquo 等词汇及其相似表达均可作为判定前瞻性声明的依据。此类声明是基于管理层的当前设想和预期做出的,我们无法保证所有的设想或预期都完全正确。许多重要的风险因素可能会导致实际结果与任何前瞻性声明中所描述的、暗示的或预计的结果存在显著差异。这些因素包括但不限于:(1) 我们的产品销售市场萎缩或者未达到预期发展水平;(2) 全球经济和政治环境的波动;(3) 公司未能及时推出新产品;(4) 执行收购和获得许可技术的能力、或将已收购业务和许可技术成功整合到公司现有业务中或从中赢利的能力,或成功剥离业务的能力;(5) 未能充分地保护公司的知识产权;(6) 公司失去任何许可或许可权;(7) 公司进行强有力竞争的能力;(8) 公司的季度运营结果出现波动以及调整公司的运营来解决意外变故的能力;;(9) 第三方软件包供应和进口/出口服务出现重大中断或以上服务的价格大大增加;(10) 原材料和供应品供应中断;(11) 制造和销售产品可能会使我们遭受产品责任索赔;(12) 未能严格遵守适用的政府法规;(13) 法规变更;(14) 未能符合保健行业的法规要求;(15) 经济、政治以及与外部运营相关的其它风险;(16) 与重要人员保持雇佣关系的能力;(17) 信息技术系统的重大故障;(18) 获得未来融资的能力;(19) 公司信用协议中的限制;(20) 认识到无形资产完全价值的能力;(21) 股票价格的显著波动;普通股股息的减少或取消;以及 (23) 其它因素,这些因素在最新的 10-K年度财务报表的&ldquo 风险因素&rdquo 标题下以及我们向美国证券交易委员会提供的档案中进行了说明。此新闻稿发布后,本公司不承担就发生的进展更新任何前瞻性声明的意图和义务。 PerkinElmer公司及子公司 合并损益表 (单位:千;每股数据除外) 至前三个月 2012年4月1日 2012年4月3日 收入 $ 510,890 $ 447,178 收入成本 278,876 246,867 研发费用 32,624 26,185 销售、一般及行政开支 156,849 132,695 重组及租赁费用(净) 6,159 - 持续经营收入 36,382 41,431 利息收入 (210 ) (322 ) 利息支出 11,437 3,916 其他开支 1,603 2,162 持续经营的税前收入 23,552 35,675 备付所得税 1,476 8,384 持续经营净收入 22,076 27,291 停业业务处置的税前收益(亏损) 535 (1,584 ) 停业业务和处置的备付所得税 42 794 停业业务及处置的净收入(亏损) 493 (2,378 ) 净收入 $ 22,569 $ 24,913 每股摊薄盈利(亏损): 持续经营的净收入 $ 0.19 $ 0.24 停业业务和处置的净收入(亏损) 0.00 (0.02 ) 净收入 $ 0.20 $ 0.22 普通发行股的加权平均摊薄每股收益 114,119 115,140 以上根据GAAP(通用会计准则)编制 额外的补充信息: (每股,持续经营) 持续经营的每股GAAP收益 $ 0.19 $ 0.24 无形资产摊销,不含所得税 0.13 0.09 收购账务调整,不含所得税 0.06 0.00 收购相关成本,不含所得税 0.00 0.02 退休后福利市值换算及缩减,不含所得税 0.01 (0.00 ) 重组和租赁费用,不含所得税 0.04 - 调整后每股收益 $ 0.43 $ 0.35 PerkinElmer公司及子公司 收入和经营收入(亏损) (单位:千) 截至三个月底 2012年4月1日 2012年4月3日 人类健康 收入 $ 253,961 $ 201,321 收购账务调整 2,411 191 调整后收入 256,372 201,512 营业收入 21,945 21,537 OP% 8.6% 10.7% 无形资产摊销 17,666 12,650 收购账务调整 7,470 592 收购相关成本 191 2,244 重组和租赁费用净值 4,941 - 调整后营业收入 $ 52,213 $ 37,023 调整后OP% 20.4% 18.4% 环境安全 收入 $ 256,929 $ 245,857 收购账务调整 4,062 - 调整后收入 260,991 245,857 营业收入 26,395 30,242 OP% 10.3% 12.3% 无形资产摊销 5,733 3,735 收购账务调整 4,077 - 收购相关成本 60 626 重组和租赁费用净值 1,218 - 调整后营业收入 $ 37,483 $ 34,603 调整后OP% 14.4% 14.1% 企业 经营亏损 (11,958) (10,348) 退休后福利市值换算及缩减 1,219 (163) 调整后经营亏损 $ (10,739) $ (10,511) 持续经营 收入 $ 510,890 $ 447,178 收购账务调整 6,473 191 调整后收入 517,363 447,369 营业收入 36,382 41,431 OP% 7.1% 9.3% 无形资产摊销 23,399 16,385 收购账务调整 11,547 592 收购相关成本 251 2,870 退休后福利市值换算及缩减 1,219 (163) 重组和租赁费用净值 6,159 - 调整后营业收入 $ 78,957 $ 61,115 调整后OP% 15.3% 13.7% 收入报告及营业损益报告均依据GAAP(通用会计准则)编制 PerkinElmer公司及子公司 合并现金流量表 截至三个月底 (单位:千) 2012年4月1日 2012年4月3日 经营活动: 净收入 $ 22,569 $ 24,913 增加: 停业业务和处置的净(收益)亏损 (493 ) 2,378 持续经营的净收入 22,076 27,291 从持续经营净收入到持续经营净现金流的调整: 股票补偿 5,476 3,054 重组和租赁费用净值 6,159 - 递延债务发行成本摊销 867 635 折旧及摊销 32,007 23,953 收购库存重估的摊销 4,495 110 提供(使用)现金的资产和负债的变更,不考虑公司收购和出售的影响: 应收账款净值 5,850 24,609 库存净值 (12,970 ) (9,743 )应付账款 (11,719 ) (16,330 ) 预提费用及其他 (36,981 ) (6,299 ) 持续经营活动的净现金流 15,260 47,280 停业业务活动提供(使用)的净现金额 279 (4,629 ) 经营活动的净现金流 15,539 42,651 投资活动: 资本支出 (5,228 ) (7,681 ) 收购和投资支付,净现金和等价物收购 - (56,602 ) 投资活动中的净现金流 (5,228 ) (64,283 ) 融资活动: 债务支付 (122,000 ) (118,200 ) 借贷所得款项 111,000 208,000 支付债务发行成本 (279 ) - 支付其他信贷 - (38 ) 收购支付相关或有报酬 - (137 ) 普通股权行使的税务收益 1,139 7,772 根据股票计划发行普通股所得款项 9,499 18,030 购买普通股 (1,632 ) (109,224 ) 股息支付 (7,922 ) (8,106 ) 持续经营活动融资活动所用净现金 (10,195 ) (1,903 )停业业务融资活动所用净现金 - (1,908 ) 融资活动净现金 (10,195 ) (3,811 ) 汇率变动对现金及现金等价物的影响 2,299 21,205 现金及现金等价物的净增长(减少) 2,415 (4,238 ) 初期现金及现金等价物 142,342 420,086 期末现金及现金等价物 $ 144,757 $ 415,848 依据GAAP(通用会计准则)编制 PerkinElmer公司及子公司 合并资产负债表 (单位:千) 2012年4月1日 2012年1月1日 流动资产: 现金及现金等价物 $ 144,757 $ 142,342 应收账款净值 407,867 409,888 库存净值 251,858 240,763 其他流动资产 103,380 69,023 停业业务的流动资产 202 202 流动资产总计 908,064 862,218 物业、厂房及设备净值: 成本 458,233 451,953 累计折旧 (286,550 ) (277,386 ) 物业、厂房及设备净值 171,683 174,567 有价证券及投资 1,113 1,105 无形资产净值 638,763 661,607 商誉 2,103,059 2,093,626 其他资产净值 41,556 41,075 总资产 $ 3,864,238 $ 3,834,198 流动负债: 应付账款 $ 163,003 $ 173,153应计重组费用 15,056 13,958 应计费用 423,517 411,526 停业业务业务的流动负债 1,210 1,429 流动负债总额 602,786 600,066 长期债务 933,971 944,908 长期重组成本 8,437 8,928 其他长期负债 436,461 438,080 负债总额 1,981,655 1,991,982 资本承担及或有负债 股东权益合计 1,882,583 1,842,216 总负债及股东权益 $ 3,864,238 $ 3,834,198 依据GAAP(通用会计准则)编制 PerkinElmer公司及子公司 GAAP到非GAAP财务指标的记账单 (单位:百万;不含每股数据) PKI 截至三个月底 2012年4月1日 2011年4月3日 调整后收入: 收入 $ 510.9 $ 447.2 收购账务调整 6.5 0.2 调整后收入 $ 517.4 $ 447.4 调整后毛利率: 毛利率 $ 232.0 45.4 % $ 200.3 44.8 % 无形资产摊销 13.0 2.5 % 11.4 2.6 %收购账务调整 11.0 2.1 % 0.3 0.1 % 退休后福利市值换算及缩减 1.2 0.2 % (0.2 ) 0.0 % 调整后毛利率 $ 257.2 49.7 % $ 211.9 47.4 % 调整后SG&A(销售管理费): SG&A $ 156.8 30.7 % $ 132.7 29.7 % 无形资产摊销 (10.3 ) -2.0 % (4.6 ) -1.0 % 收购账务调整 (0.6 ) -0.1 % (0.3 ) -0.1 % 收购相关成本 (0.3 ) 0.0 % (2.9 ) -0.6 % 调整后SG&A $ 145.7 28.2 % $ 124.9 27.9 % 调整后R&D(研发费用): R&D $ 32.6 6.4 % $ 26.2 5.9 % 无形资产摊销 (0.1 ) 0.0 % (0.3 ) -0.1 % 调整后R&D$ 32.5 6.3 % $ 25.8 5.8 % 调整后营业收入: 营业收入 $ 36.4 7.1 % $ 41.4 9.3 % 无形资产摊销 23.4 4.5 % 16.4 3.7 % 收购账务调整 11.5 2.2 % 0.6 0.1 % 收购相关成本 0.3 0.0 % 2.9 0.6 % 退休后福利市值换算及缩减 1.2 0.2 % (0.2 ) 0.0 % 重组和租赁费用净值 6.2 1.2 % - 0.0 % 调整后营业收入 $ 79.0 15.3 % $ 61.1 13.7 % PKI 截至三个月底 2012年4月1日 2012年4月3日 调整后每股收益: EPS $ 0.20 $ 0.22 停业业务业务,不含所得税 0.00 (0.02 ) 持续经营业务每股收益 0.19 0.24 无形资产摊销,不含所得税 0.13 0.09 收购账务调整,不含所得税 0.06 0.00 收购相关成本,不含所得税 0.00 0.02 退休后福利市值换算及缩减,不含所得税 0.01 (0.00 ) 重组和租赁费用,不含所得税 0.04 - 调整后每股收益 $ 0.43 $ 0.35 PKI 2012财年 调整后每股收益: 预计 持续经营业务每股收益 $1.27 - $1.32 无形资产摊销,不含所得税 0.51 收购账务调整,不含所得税 0.17 收购相关成本,不含所得税 0.00 退休后福利市值换算及缩减,不含所得税 0.01 重组和租赁费用,不含所得税 0.04 调整后每股收益 $2.00 - $2.05 人类健康 截至三个月底 2012年4月1日 2012年4月3日调整后收入: 收入 $254.0 $ 201.3 收购账务调整 2.4 0.2 调整后收入 $256.4 $ 201.5 调整后营业收入: 营业收入 $ 21.9 8.6 %
  • “量子计算用国产极低温稀释制冷机项目”入驻量子信息未来产业科技园
    6月13日,“量子计算用国产极低温稀释制冷机项目”在合肥高新区正式签约,并入驻量子信息未来产业科技园。安徽省科技厅推进发展处处长殷黎莉,安徽大学资产经营有限公司党委副书记、总经理张彤,安徽大学校地合作办副主任刘泉,合肥市科技局党组成员、副局长谢成军,合肥高新区党工委委员、管委会副主任吕长富,合肥市科创集团、高新区科技局、财政局等有关领导出席签约仪式并见证签约。“量子计算用极低温稀释制冷机”由安徽大学物质科学与信息技术研究院单磊教授、王绍良研究员团队自主研发,是一种能够提供接近绝对零度低温环境的高端科研仪器,是现代量子科学研究与量子技术发展的关键核心设备之一。项目基于量子计算对稀释制冷机的无液氦、极低温、大冷量、大空间、高稳定性的技术需求,解决了量子计算等领域极低温稀释制冷机完全依赖进口的难题,为相关科研及产业领域提供了替代进口的极低温稀释制冷技术。极低温稀释制冷机在产业化后,将广泛应用于量子计算、凝聚态物理、天文观测等领域。安徽大学研究员、合肥知冷低温科技有限公司董事长王绍良表示,项目是合肥“以投带引”的成功案例,在合肥市科技创新集团的支持下,项目公司将拿到第一笔种子基金,打通落地转化的最初一公里。“合肥高新区量子产业链完备,创新创业生态健全,高效、贴心的服务赢得了团队的一致肯定。”王绍良表示,下一步,公司将扎根合肥高新区发展,加大科研投入,力争做到国内第一,世界领先。殷黎莉高度肯定了合肥高新区在量子信息未来产业园建设取得的成绩,她表示,省科技厅将会同合肥市大力支持量子信息未来产业园建设,支持开展量子领域关键核心技术攻关和科技成果应用转化,在提升创新平台能级、培育壮大科技企业、引育科技人才队伍、科技体制改革攻坚等方面持续发力,助力合肥高新区建设极具活力、引领未来、享誉世界的“量子中心”和创新之谷,争创国家未来产业培育发展的探路先锋。谢成军强调,市科技局将调动所有能调动的资源,凝聚所有能凝聚的力量,全力支持高新区创新发展,在创新支持、成果转化、试点工程、场景建设方面给予量子企业政策支持。近年来,合肥高新区充分认识量子科技发展的重要性和紧迫性,把量子信息未来产业科技园建设作为“科大硅谷”建设和世界领先一流高科技园区建设的“一号工程”,加强量子科技发展战略谋划和系统布局,把握大趋势,下好“先手棋”。在省市政府关心指导下,合肥高新区于2022年11月28日获批量子信息未来产业科技园建设试点培育单位,这是全国唯一一个正式批复的量子信息未来产业科技园。截至目前,量子信息未来产业科技园已集聚上下游产业链企业53家,量子企业总数约占全国量子企业总数的三分之一。量子信息“关键核心技术环”在国内已经具备领先优势。量子计算方面,高新区是全国唯一一个已销售超导量子计算机整机的地区,并诞生全国第一个量子计算机操作系统和第一条量子芯片生产线;量子通信方面,高新区诞生了全国首个上市的量子科技企业,正在建设全国第二个量子通信城域网;在量子测量方面,高新区企业开发出全球首台量子钻石原子力显微镜,并获批全国首批计量文化和科普资源创新基地。吕长富表示,下一步,合肥高新区将抓好抓实量子信息未来产业科技园专班工作,在项目服务、品牌宣传、产业生态培育等方面做专做细,在量子科技产品应用场景上再下一步“先手棋”,在培育全国龙头量子企业上再下一步“先手棋”,在合肥未来持续高质量发展上再下一步“量子先手棋”。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制