当前位置: 仪器信息网 > 行业主题 > >

己酸叔丁酯

仪器信息网己酸叔丁酯专题为您提供2024年最新己酸叔丁酯价格报价、厂家品牌的相关信息, 包括己酸叔丁酯参数、型号等,不管是国产,还是进口品牌的己酸叔丁酯您都可以在这里找到。 除此之外,仪器信息网还免费为您整合己酸叔丁酯相关的耗材配件、试剂标物,还有己酸叔丁酯相关的最新资讯、资料,以及己酸叔丁酯相关的解决方案。

己酸叔丁酯相关的资讯

  • 好消息!热烈祝贺智易时代再获多项计算机软件著作权证书及专利!!
    好消息!热烈祝贺我司再获多项计算机软件著作权证书及Zhuan Li!!2021年已过小半,智易时代已喜迎多项软件著作权证书及Zhuan Li。软件著作权分别是:智慧环保大数据分析及指挥调度平台、机动车尾气遥感监测综合管理系统、道路车流量监测系统 、污染源在线监测APP系统、污染源在线监测IOS系统。实用新型Zhuan Li分别是:一种便携式β射线原位在线监测仪及监测方法、一种高精度车载微型空气质量监测仪及控制系统、一种负压型油烟探头及其检测方法、一种静电式净化器监测模块及其监测方法、一种恶臭在线监测系统、一种车辆尾气颗粒物监测装置。《计算机软件著作权登记证》是国家版权局为保护知识产权专为原创软件著作人颁发的产权证书。此次智易时代获得的三项计算机软件著作权,不仅是自主知识产权软件产品的quan威资质,也是智易时代核心技术及企业雄厚科技实力的证明,标志着智易时代技术研发及自主知识产权建设的又一新突破,同时也是公司致力于专业化技术的重要见证。实用新型Zhuan Li是三种Zhuan Li类型(发明、实用新型和外观设计)中的一种,实用新型是指对产品的形状、构造或者其结合所提出的适于实用的新的技术方案。Zhuan Li对于现在的企业发展至关重要,Zhuan Li的质量和数量直接反映了企业的核心竞争力。未来的市场竞争可以说是企业之间知识产权的竞争,拥有的技术Zhuan Li比别人多,就能在市场上占据一定地位。公司成立至今,着重加大对产品研发的投入力度,积极开展技术创新工作。截止目前,已获取计算机软件著作权登记证书60多个,Zhuan Li证书30多个,我司仍有多项软件著作权证书及Zhuan Li证书正在申报中。这些成果的获取为公司后续的发展积蓄了前进的动力,进一步提升了公司产品科技含量,增强了产品稳定性,提高企业核心竞争力,为公司的持续发展提供了强有力的科技支撑。
  • 2009年湘仪内训计算机课程圆满结束
    21世纪已是信息化时代,传统的办公方法已满足不了现今快节奏的办公方式,这就要求企业需要给自己量身制作一套适合自己的信息化系统。但是企业的信息化建设不仅仅是设备机器上的更新换代,更重要的是应该以使用计算机的人为中心,提升员工的计算机应用水平才是重点。 5月31日,应部分公司员工要求,由电子商务部技术人员主讲了一堂计算机基础知识普及课,主要包括OFFICE办公软件的用法讲解,以及提到了日常常见问题的处理办法,另综合阐述了计算机的组成结构和计算机网络的概念。 此类课程以后还会继续培训下去,这样使得我公司员工对计算机的认识上升一个台阶,更重要的是使他们更易于接受网络技术人员提出的新的系统和新的办公方式(OA,,VPN等)。企业不断完善自己的信息化系统,我们的员工也要不断完善自己的计算机知识。二者相辅相成才能造就企业的蓬勃发展和高效率应变能力。
  • 新型光学装置为超级计算机提速
    美国每日科学网站12月22日报道题:更强大的超级计算机?新装置或可传输光信息。   研究人员们已经研制出一种新型光学装置,其体积极小,一个计算机芯片就足以安装数百万个这种装置。该装置可提高信息处理速度和能力,让超级计算机变得更快、更强大。   这种“无源光学二极管”是由两个微小的硅质环状物制成的,环状物的直径仅有10微米,大约是人的一根头发直径的1/10。与其他光学二极管不同,这种“无源光学二极管”无需外部能源就能传播信号,还很容易被集成到计算机芯片上。   珀杜大学电子和计算机工程学副教授齐明豪说,这种二极管可进行“非交互性传输”,即单向信号传输,由此可具备信息处理能力。   齐明豪解释说:“这种单向传输是逻辑电路的最基本要素。因此,我们研制的这种二极管为实现光信息处理敞开了大门。”   虽然光缆可用于跨洋和跨大洲传输海量数据,但其信息处理速度会变慢,传输数据也容易遭到网络攻击,因为光学信号须转换成电子信号才能在计算机上使用,反之亦然。   研究人员说:“进行这种转换需要十分昂贵的设备。而你希望能做到的是,将这种光纤直接插入计算机而无需进行转换,那样的话,你就可以获得大量带宽,安全方面也会大有保障了。”   研究人员樊丽(音)说:“这些二极管非常小,它们身上还有一些特性也很有吸引力。这些二极管或可成为未来光子信息处理芯片的零部件。”   用这种新型光学二极管就无需进行光学-电子信号的转换了,因此有可能提高信息处理速度和安全度。这种装置现已接近投入商业生产。使用这种新型光学二极管将多个处理器连接起来,还有可能提高超级计算机的信息处理速度和能力。   研究人员利奥瓦尔盖塞说:“当今导致超级计算机受限的一个主要因素就是,系统内各种独立的超级芯片进行信息传输的速度和带宽。我们研制的这种光学二极管或可成为光互联通信系统的一个组成部分,而该系统或许就可以解决这样的瓶颈问题了。”   激光器以通信用波长发出的红外线通过光导纤维,并由被称为“波导管”的微结构进行控制。红外线会按顺序通过两个硅质环状物,并在微型环状物内进行“非线性相互作用”。根据先进入哪个环状物,光束要么向前通过,要么向后耗散,从而完成单向传输。环状物还可通过“微加热器”加热的方式进行调整。微加热器会改变传输波长,因此可对范围广泛的波段加以处理。
  • 看计算机专业“门外汉”如何变身化学分析“顶级专家”
    “要做就做到最好”——记国家电网江苏电科院技能专家朱洪斌  电力油气化验,在庞大的电力系统中是个附属小专业,看上去很不起眼。但朱洪斌却在这个小专业里实现了大作为。  身为国网江苏省电力公司电力科学研究院(以下简称江苏电科院)状态评价中心物资检测室油气化验组组长的他,参加工作28年来,在电力油气化验领域刻苦钻研,成果丰硕。由他主持研发的“绝缘油中溶解气体组分含量量值保证体系的创建及应用”项目成果,获第4届全国职工优秀技术创新成果二等奖,近3年在江苏电网已产生直接经济效益2.5亿多元。  由门外汉到顶级专家  1988年秋,经过江苏省自学考试,取得计算机应用专业大专毕业证书的朱洪斌被江苏省电力试验研究所(江苏电科院前身)录取。但没想到的是,他被分配到了完全陌生的化学室。“后来才知道,化学室仪器有大量的数据需要分析,这也是安排我去的原因。”朱洪斌说。  然而,朱洪斌对化学专业一窍不通,工作压力很大,但他心中始终坚持“要做就做到最好”的工作信条。朱洪斌一头扎进工作中,开始潜心钻研。白天,他钻进实验室,分析油品、检测成分,一干就是几个小时。为了验证数据,他在现场和实验室之间奔波,一遍遍采样、比对、分析。夜里用电设备少,对仪器杂波干扰小,是测试仪器控制性能和参数的最佳时机,他便一直坚守到深夜,在试验设备前查看运行情况,分析、记录试验数据。只要一有空,他就“啃”化学专业书。很快,他由“门外汉”变成行家里手,晋升为技师、高级技师,成了一个优秀的化验师。  但朱洪斌有着更高的追求。他将进一步提升油气试验能力确定为攻关方向,日复一日地试验、钻研,在他的主持下,江苏电科院油气试验技术和设备不断完善,到2009年,实现了电力用油、气常规分析项目的全覆盖,其中首次申报的19个检测项目全部获得中国合格评定国家认可委员会认可,由他主持研发的科技项目已获18项国家专利,还有15项国家专利正在申请中。  在持续不断的创新攻关中,朱洪斌获得了“江苏省企业首席技师”“国家电网公司技能专家”、全国五一劳动奖章获得者等荣誉,同时完成了从优秀化验师到全国顶级专家的跨跃:成为连续两届全国电气化学标准化技术委员会委员,且是两届委员中唯一非化学专业出身的委员 没有真正上过大学的他,成了江苏计量科学研究院博士后出站论文答辩的5名评审专家之一。  由偷点懒到乐在其中  “我创新的初衷,其实是想在工作中偷点懒。”朱洪斌风趣地说,过去做油色谱分析必须到现场取油样,再拿到实验室检测,来回折腾不仅十分辛苦,而且工作效率很低。于是,围绕解决这两大问题,他开始了油中水分、油中气体等在线测量装置等的研发。  然而,创新之路十分艰辛。爱好摄影、闲暇时常为家人做上一桌美食的朱洪斌,为了攻克专业上的难关,放弃了一个个爱好,全身心地投入一项项创新,并追求“做得最好”。  在油色谱分析标准油的配制研发中,制作满足要求的气囊是核心,气囊材料的选择是关键。朱洪斌找来大量橡胶材料的特性数据,详加分析后共选择6种橡胶反复做试验,历时达3个月,最终选定了一种军工用橡胶,获得了满意效果。该项目将标准油的量值稳定期由4天提升至了180天!而该领域国际知名的美国摩根谢弗公司在其官网上公布,由其生产并由国际大电网会议和国际电工委员会用来提高检测精度的世界上唯一的商品化标准油,产品保存期限也只有30天。  朱洪斌创新的步伐始终不会停下。2014年,针对江苏电网发展快速、六氟化硫设备日益增多的情况,他主持研发了“六氟化硫气体质量现场快速评价系统”,不仅实现了六氟化硫气体质量验收的现场检测,而且将单一检测样品的全分析时间由18小时缩短至了40分钟。2015年国家新出标准增加两项检测内容后,传统方法的全分析时间需增至20小时,朱洪斌及时改进其评价系统全分析时间仍只需40分钟。该项成果大大提升了检测效率,更杜绝了气体由现场运回实验室过程中的安全风险。  由“病后诊治”到“治未病”  2015年7月1日,国家能源局发布年度第4号公告,公布了133项行业标准。其中,编号为DL/T1463-2015标准《变压器油中溶解气体组分含量分析用工作标准油的配制》由江苏电科院负责制定,其主起草人就是朱洪斌。  这一标准是该院“绝缘油中溶解气体组分含量量值保证体系的创建及应用”项目成果的组成部分之一。同年8月29日,中国电机工程学会鉴定委员会对该项目成果进行了技术鉴定,认为其大大提高了变压器早期故障的诊断水平,整体技术国际领先。  早在2002年,朱洪斌和同事们发现,采用传统的油色谱分析法对变压器实施故障诊断,需要从现场取油样后拿回化学室检测,不仅误差大,而且费时费力。怎样提升油气化验检测质量和效率,减轻工作强度?朱洪斌开始走上了电力油气化验设备及技术的创新之路。  从2005年起,朱洪斌先后主持完成了“油中水分在线测量装置的开发”“变压器油中溶解气体在线测量装置评价校验系统的开发”及“变压器油色谱分析网络校准比对系统的开发”等项目,并于2011年集成前期创新成果,主持完成了“变压器油中溶解气体组分含量量值保证体系的研究开发及应用”项目,实现了对变压器油色谱分析全过程的现场实时监控,并且将数据分析误差降至传统方法的1/6。  “对电力系统中最重要、最昂贵设备之一的变压器而言,项目的完成实现了由‘病后诊治’到‘治未病’的转变,将变压器故障消除在了萌芽状态。”江苏电科院科技部主任陈久林说。  据统计,近3年,江苏电网利用该成果共筛查出220千伏及以上变压器早期缺陷68起,经过前期及时处理,合计降本增效超过2.5亿元。自2011年2月该成果在江苏电网全面应用以来,因缩短检修时间、减少设备故障及非计划停电,累计间接增加供电量达56.1亿千瓦时。如今,该成果已经在山东、福建、新疆、广东等省级电网推广应用,产生了巨大的经济和社会效益。
  • 我国积极参与国际标准研究和制定综述
    助推创新型国家发展——我国积极参与国际标准研究和制定综述   “做一流企业,参与国际标准制定是大势所趋。”带着颇有前瞻眼光的发展理念,以上海国际港务(集团)股份有限公司包起帆为代表的工作组历经5年、几经挫折,把由中国专家发起和主导的集装箱RFID货运标签系统推上国际标准舞台。   国际标准化组织(ISO)日前正式发布了《ISO 18186:货物集装箱-RFID货运标签系统》国际标准。这是自1978年我国参与国际标准化组织活动以来,在物流、物联网领域第一个由我国专家发起、起草和主导的国际标准,也是我国自主创新成果最终上升为国际标准的成功探索。   事实上,这种探索并非个例。随着我国经济贸易的快速发展,产业技术水平和自主创新能力的日益提升,近年来,我国实质性参与国际标准化活动的能力和水平明显提高,一批中国技术和标准成功走向世界。   国际标准化组织(ISO)和国际电工委员会(IEC)是世界范围内最有影响、最权威的国际标准化机构。2008年10月,我国成为ISO常任理事国 2011年10月,我国又成为IEC常任理事国。   国家质检总局的统计数据显示,截至目前,我国担任ISO/IEC技术委员会主席、副主席达到33个,承担秘书处增长到57个,担任工作组召集人达到72人 由我国提出并承担起草的国际标准,在ISO/IEC立项的已达到237项,其中109项已被ISO/IEC正式批准发布。   与此同时,我国自主关键技术和重要技术标准不断提升为国际标准新领域和新标准,尤其是近几年我国超高压直流输电、中医药、节能量计算方法、煤层气、烟花爆竹等优势领域先后成为ISO和IEC国际标准化新工作领域。截至目前,我国向ISO和IEC提交并立项的国际标准提案已达237项,其中已有109项正式发布为ISO和IEC标准。   近年来,我国参与国际标准制修订工作的广度和深度不断提高。截至目前,在ISO共740个技术委员会和分委员会中,我国以积极成员(P成员)身份参与了643个技术委员会的活动,参与比例达到86.9% 在IEC共177个技术委员会和分委员会中,我国以积极成员(P成员)参与了所有技术机构的国际标准化活动,在国际标准的制修订中充分发表意见。   此外,来自国内企业、行业协会、科研机构、高等院校、检测机构、消费者团体等各方面的专家积极参与国际标准制修订工作,我国在ISO和IEC直接参与国际标准起草工作的国际注册专家人数已达到1300余人,国际标准化人才队伍进一步壮大。由于我国专家在国际标准制修订工作中作出的突出贡献,自IEC2004年设立“IEC1906贡献奖”以来,我国已有13名专家获此殊荣。   “三流企业卖产品,二流企业卖专利,一流企业卖标准。”企业作为国家创新的主体,通过推动标准建设能够跻身上游。而提高自主创新能力也是国家发展战略的核心。如果没有国际标准的推动,发明创新成果在国际上也就无法得到普遍应用。参与国际标准研究和制定,也成为国家科技创新、经济发展的重要推动力。   近年来,由我国承担起草的国际标准涉及能源、环境、健康、海洋技术、空天技术、低碳技术、装备制造以及社会管理和文化事业等多个国际热点和事关我国经济社会发展的重要领域,这为推动我国创新技术的产业化应用、支撑培育和发展战略新兴产业,以及服务传统产业调整升级发挥了重要的技术基础作用。   据介绍,我国起草制定的《家用电子系统的资源共享协同服务(IGRS)》等3项国际标准,有效推动“闪联”的计算机、电视、机顶盒、投影机、桥接适配器等一批标志性闪联终端产品销售。据统计,已有20余种、近百款闪联产品上市销售,累计销量超过1400万台,带来的直接经济增加值超过30亿元。   基于我国自主创新技术研制的工业实时以太网国际标准,打破了工业自动化国际标准一直由欧美发达国家垄断的局面。依据该技术开发出的系列产品,已应用在青藏铁路线上,为国家节省了1500万元左右的采购资金。   据估算,我国在2006至2010年间总计付出了352.7亿元的工业以太网产品采购资金,如果各行业设计院所、系统集成商和最终用户能够使用中国自主创新的工业以太网产品,按照节省20%费用保守计算,5年间将为国家节省大约60亿元人民币采购资金。
  • “祖冲之号”量子计算云平台面向全球开放
    联网就能用上全球领先的量子计算机?这一梦想正走进现实。5月31日,科大国盾量子技术股份有限公司携手弧光量子等合作伙伴发布新一代量子计算云平台,接入“祖冲之号”同款176比特超导量子计算机。这不仅刷新了我国云平台的超导量子计算机比特数纪录,也是国际上首个在超导量子路线上具有实现量子优越性潜力、对外开放的量子计算云平台,将进一步推动量子计算软硬件发展及生态建设。  据中国科学技术大学教授、“祖冲之号”量子计算总师朱晓波介绍,比特数是衡量量子计算机可实现的计算能力的重要指标,中国科大“祖冲之号”研发团队在原“祖冲之号”66比特的芯片基础上做出提升,新增了110个耦合比特的控制接口,使得用户可操纵的量子比特数达176比特。除了比特规模,在其他涉及量子计算机性能的连通性、保真度、相干时间等关键指标上,“祖冲之号”云平台接入的新一代量子计算机的设计指标也瞄准国际最高水平,不断在实际中调试提升其性能。  据悉,量子计算云平台旨在通过云技术连接用户与量子计算设备,支持用户远程进行量子计算实验和开发等。但由于量子计算机研发门槛极高、运行环境严苛、辅助设备复杂等,目前全球接入量子计算真机的云平台很少,更缺少能实现量子优越性的高性能量子计算机。此前,中国科大研究团队构建了66比特可编程超导量子计算机“祖冲之号”,是目前全球仅有的2台完成了“量子计算优越性”里程碑实验的超导量子计算机。但“祖冲之号”量子计算机需要服务于重大科技攻关项目,难以满足外部体验和使用的需要。  为了将高性能的量子计算机真机开放给社会,多方合作、产学研协同的新一代量子计算云平台项目因此诞生。其中,量子创新研究院提供了“祖冲之号”同款量子计算芯片,国盾量子提供了测控设备等硬件设施,承担了整机和云平台系统的搭建及运维工作,与中电科十六所、中科弧光量子等合作研制开发了关键核心器件、国产量子程序编译语言和软件,共同建设了新的176比特超导量子计算机并上线云平台。  “祖冲之号”量子计算常务副总指挥、国盾量子董事长彭承志认为,量子计算未来可为密码分析、人工智能、气象预报、资源勘探、药物设计等所需的大规模计算难题提供解决方案,其中量子计算云平台是量子计算走向应用的重要一步。对于社会大众来说,可以利用量子计算云平台进行科普,亲身体验简易的量子计算编程和图像实验等;对于更广泛的产业用户来说,可远程访问具备量子优越性潜力的量子计算机,能进一步发展量子编程框架,进行应用探索;高性能量子计算机和开放共赢的云平台的发布,也将促进中国量子计算自主可控产业链发展,有助于量子技术和产业生态的健康发展。  彭承志表示,量子计算现阶段正处于从原型机到专用机的攻坚时期,我们集合所有力量,就是希望以实现通用量子计算为目标,探索出一条切实可行的道路。
  • 超导量子计算用mK级国产稀释制冷机实现商用量产
    近日,安徽省量子信息工程技术研究中心及科大国盾量子技术股份有限公司联合发布消息,国产稀释制冷机“ez-Q Fridge”在交付客户后完成性能测试,实际运行指标达到同类产品国际主流水平,成为国内首款可商用可量产的超导量子计算机用稀释制冷机。据媒体报道,2023年下半年,国盾量子向两家科研单位交付了国产稀释制冷机产品,经客户多月测试,设备长时间连续稳定运行,能够结合主动减震系统以及磁屏蔽等,为量子芯片提供低至10mK级别的极低温低噪声环境,制冷功率达到450uW@100mK。在容纳78根低温测控同轴线缆的超导量子计算低温支撑系统中,分别对56比特和24比特超导量子芯片进行测试,稀释制冷机运转效果良好,达到了国际先进水平。实际上近年来,量子科技已引起国内外的广泛关注。而发展先进的量子科技离不开极低温制冷技术,这主要是由于量子本身是微观的效应,很容易受到干扰,而超低温可以将噪音降得很低。比如,对量子比特来讲,它最怕的就是温度,因为温度产生热耦合噪音,低温之后噪音就可以被极大的限制,使它成为孤立系统,这时它的退相干时间就会大大延长,量子比特才会成功,否则包括存储、读取、叠加等都需要时间。目前达到低温的手段主要有吸附制冷、绝热去磁制冷和稀释制冷。稀释制冷技术于 1950 年代首次提出,并在 60 年代建成了第一个完整的稀释制冷系统,随后便成功商业化。稀释制冷技术最低温度可以低至数个mK(10K),具有制冷过程连续不间断及制冷功率较大等优点,随着低温物理研究需求的不断增加,其已经成为目前最为流行的制冷方法。水有普通的水和重水,它们混合到一块是分不开的,但是氦三氦四不一样,液态的氦三和氦四在低温下在大约八九百mK的时候就会自动分开,自动分开的现象过程中会有所谓的制冷效应,其实这就是因为这两者复合在一起就会产生稀释效应,就会有降温效应,连续的补充和打破平衡,就使得混合液一直处于相分离状态,就实现了所谓的稀释制冷,这就是稀释制冷机的原理。随着量子计算等技术的不断发展,对mK级的稀释制冷机提出了更高的要求,当前国内有数家单位和企业在投入精力开发。中科院物理所2021年,中国科学院物理研究所自主研发的无液氦稀释制冷机6月下旬实现近10mK(比绝对零度-273.15摄氏度高0.01度)极低温,标志着中国在高端极低温仪器研制上取得突破性进展,具备了为量子计算等前沿研究提供极低温条件保障的能力。2023年3月28日,中国科学院物理研究所承担的北京市科技计划课题“400微瓦无液氦稀释制冷机研制”顺利通过了第三方技术测试。测试专家组认真听取了项目工作报告,审查了技术测试方案,查验了测试仪器和受试设备,通过现场测试和读取测试数据,一致认为该无液氦稀释制冷机长时间连续稳定运行最低温度已达到7.6mK,制冷功率达到450μW@100mK,两项指标均达到了国外主流中型商业稀释制冷机的水平。合肥知冷低温科技有限公司2023年6月13日,“量子计算用国产极低温稀释制冷机项目”在合肥高新区正式签约,并入驻量子信息未来产业科技园。“量子计算用极低温稀释制冷机”由安徽大学物质科学与信息技术研究院单磊教授、王绍良研究员团队自主研发。安徽大学研究员、合肥知冷低温科技有限公司董事长王绍良表示,项目是合肥“以投带引”的成功案例,在合肥市科技创新集团的支持下,项目公司将拿到第一笔种子基金,打通落地转化的最初一公里。本源量子2023年10月,由本源量子计算科技(合肥)股份有限公司完全自主研发的本源SL400国产稀释制冷机成功下线,这是国内科创企业的研发团队首次成功突破量子计算极低温制冷这一关键核心技术。省量子计算工程研究中心相关负责人张俊峰说:“该稀释制冷机可提供12mK以下的极低温环境及不低于400μW@100mK的制冷量,降温时间在40小时内,升温时间在24小时内,可满足超导量子计算的极低温运行环境和快速回温的要求,达到国际主流产品的水平。”此外,中船重工、飞斯科等国产厂商目前也在投入相关设备研发。中船重工鹏力(南京)超低温技术有限公司市场总监巢伟向仪器信息网透露,当前国内能用的最基础版本的是400-500μW,而国外主流厂商的1mW设备已经成熟了,甚至开展了10mW的研究,比如IBM的10mW的设备已经用起来了。林德等企业已开发了百瓦级、甚至数百瓦级别4K制冷量来预冷的稀释制冷机。当前中船低温已实现4K制冷机每年一千多套的量产。上世纪70年代物理所冉启泽老先生曾研制出湿式稀释制冷机,但后来无人从事相关研究,相当长一段时间内国内处于技术断层和研究空白,目前国内所用到的稀释制冷机均从欧美购买,比如Oxford Instruments ,Cryomagnetics,Janis Research Company,Bluefors Oy NanoMagnetics Instruments, ICE Oxford Ltd,Quantum Design, Inc.,Leiden Cryogenics Entropy等。2019年12月,美国商务部的一份内部文件提出,未来将限制向中国等美国在量子计算上的竞争对手出口稀释制冷机。一旦被限,中国的量子计算研究将面临重大挑战。据了解,国际主流稀释制冷机售价400万元至600万元,稀释制冷机的国产化,在一定程度上扭转了量子计算关键核心技术受限的局面,加快了量子计算领域自立自强步伐,增强我国在量子计算领域完全自主可控能力。
  • 滴定分析“新技术”:光谱滴定概述及进展
    摘要:光谱滴定方法作为滴定领域的新技术,是替代颜色滴定(感官滴定、人工滴定)的新一代革新技术。在可见光范围内,采用全波长同步监控+色空间算法+曲线算法技术,建立了试剂量与单一计量参数的在线二维滴定曲线坐标,从而使颜色滴定方法提升为自动化仪器分析方法。与电位方法、温度方法相比,应用面广、不干扰被测定反应、测量无延迟、无接触性传感器、不受温度影响、反应灵敏、沿用颜色测量方法原理等诸多优点,未来将在滴定分析技术中占主导地位。表1.四种滴定技术比对表滴定技术发明人时间距今优缺点滴定分析方法(感官滴定方法)法国化学家,Joseph Louis Gay-Lussac19世纪上半叶约150年现况:建立了深厚的理论、标准体系。优点:简单,至今仍是滴定分析的主流方法。缺点:主观方法,误差大,无法量值溯源。前景:逐步被淘汰。电位滴定德国化学家,Rorber Behrend1893127年现况:历史久,研究充分。优点:测量精确,图形化操作,可量值溯源。缺点:属间接测量,操作条件多、需要根据测量对象适配器材、要求高、受温度影响大、干扰化学反应、信号延迟。前景:应用受限,市场有限。温度滴定P.迪图瓦和E.格罗贝特192298年现况:目前通常作为电位滴定仪的附件。优点:反应灵敏,不干扰反应过程,可量值溯源。缺点:属间接测量,应用于简单反应体系。前景:应用面狭小,市场很有限。光谱滴定中国20183年现况:新技术,理论不完善,仪器未商品化。优点:属直接测量技术,高准确度、高可靠性、不受温度影响、不干扰化学反应、终点明显,可量值溯源,操作简单,应用面广。缺点:不能分析混浊、固体和半固体及终点无色变的化学反应溶液,应用尚不普及。前景:逐步替代感官滴定方法,成为滴定分析的主导技术,市场广阔。滴定分析法作为化学分析经典方法,是各领域的通用分析方法,目前有几千种颜色分析方法应用在药品、食品、农产品、土壤、化工、石油、冶金、机械、试剂、环保、生物、医疗、… 等各种行业,只要有化学物质分析的工作,就离不开滴定分析技术。高精度的滴定终点判别和自动化判别技术,直接决定了光谱滴定技术的高准确度和可靠性。光谱滴定的用途:1、替代原有的光度滴定分析方法;2、替代广泛应用的感官滴定方法;3、建立系列新的光谱滴定检测方法和标准;4、偶氮、稀土、苯基荧光酮等显色剂的研究;5、分子开关或分子机器的光化学性能研究;6、光辐射化学研究;7、应用于化学分子形态;8、生物酶活性研究;光谱滴定方法为近几年新研发的技术,尚未推广,科普宣传、仪器制造、方法原理、应用案例等方面属于初创状态,仅有原理样机和《化学光谱滴定技术》著作面世。研究人员和投资者不会立即看到技术体系的应用和效益,但目前的工作是实现后期专利技术独占的前期工作,是实现大规模替代感官滴定的理论、方法、标准、仪器提供关键的前瞻性基础。其经济价值方面,与电位滴定仪的中国十亿市值市场、世界70亿市值(瑞士万通,2015)相比,该技术属滴定行业内国内外首创,目前没有任何型号的商品机问世,故无法对其市场前景做出明确评价。参考滴定分析仪器的市场,光谱滴定技术的应用领域远远大于电位分析技术。一旦仪器商品化,研发机构将在该投入上取得知识产权保护和大于电位滴定仪的长期的效益。目前亟待解决与存在的问题建议:采取联合申请课题,取得科技部、基金、协会、企业的政策和资金支持,共同进行理论体系、测量原理、商品机型仪器生产、应用技术研究与方法推广、国际专利申报等方面的研究,尽快保持我国现有的国际领先地位。本资料简单介绍光谱滴定原理、算法、技术应用和案例分析,供制造商、技术研究者、合作者参考。滴定分析法发展历程滴定分析法(titrametric analysis)的研究历史可追溯到18世纪晚期。19世纪上半叶,法国化学家Joseph Louis Gay-Lussac命名了滴定分析方法,因此被认为是滴定分析法的发明者。如今,滴定法成为最重要的化学分析技术之一,应用普遍而频繁。其方法采用人工操作、眼睛观看颜色、大脑对颜色变化做出判断、语言形容滴定过程的额颜色变化,属于主观判断的感官分析方法,简单、应用广、速度快、成本低,也存在受色评价环境影响大、语言描述模糊、眼睛感受的个体差异大、手工控制滴定准确度差等缺点,这种建立在主观观察基础上的方法已经不适应现代检测技术的需求。只是由于历史过于悠久,其建立海量检测方法、技术标准以及应用领域的习惯,致使其还在广泛应用。化学反应过程的颜色变化,是化学结构变化的可见光表现,颜色变化代表反应过程的进程,是结构对光谱吸收的性质,所以测量的颜色变化可以准确表征反应中物质结构的变化,这也是与感官滴定方法一脉相承。现代研究证明,颜色的最精确的测量方式是分光式测量方法,颜色可以用CIE 1976(L*a*b*)彩色均匀空间的三维坐标位置标识,每个颜色都有其唯一指标位置,颜色的变化可以在CIE 1976(L*a*b*)彩色均匀空间的三维坐标中描述出变化轨迹,从而将主观的颜色变化描述转变为客观测量数据,进而实现化学分析过程的光谱滴定测量技术。光谱滴定方法的基础是色测量的分光式测量方法,所以,从原理上它就具有高准确度、高可靠性、可量值溯源的优点。计入相关变量因子算法的滴定曲线的凸变峰型非常明显清晰。具有准确、可靠、明显、自动等诸多优点。缺点与光分析方法相似,计算方法复杂、数据量庞大,严重依赖于数据处理系统,这在计算技术高速发展的今天已经不是问题了。而其替代逐步替代感官滴定方法的发展趋势,将成为滴定分析的主导技术,技术应用和仪器市场及其广阔。一、滴定原理与分类目前的滴定分析(titrametric analysis),按测量原理主要分为可见光颜色滴定、电位滴定、温度滴定等三种滴定方法,光谱滴定属于可见光颜色滴定的仪器分析方法,可以替代可见光颜色滴定的大部分方法。1、可见光颜色滴定法颜色测量包括光源颜色的测量与物体色的测量两大类,滴定分析领域关注反应液的颜色变化,属于非荧光物体测量。化学滴定分析反应中的可见光颜色测量属于非荧光物体测色,为感官颜色滴定法和传统仪器颜色滴定法两大类。其中,仪器颜色滴定法包括光密度法、紫外光度滴定、可见光光-电积分法和分光光度滴定(光电滴定)。仪器颜色滴定法测量反应液体颜色是测定液体在测量时的光谱光度特性反应液体光谱反射比P(λ)或者反应液体的光谱透射比τ(λ)等,计算出色刺激函数φ(λ)之后,根据色度学的三个基本方程求出被测颜色的CIE三刺激值X、Y、Z(标准照明体Y= 100)。 1.1 感官颜色滴定法其实质是一种目视光度测定法,原理是利用加色混合定律,将各个分量的未知色加在一起,以描述所得的未知色。是依靠反应过程中的颜色的变化,用人眼作为感受器、大脑判断颜色变化程度,在被测量溶液中加入指示剂或者依靠反应过程中的颜色感官颜色滴定法直观、简便、快速等优点,是滴定实验中最常用的方法之一,是一种完全主观评价方法,同时也是最简单的一种方法。眼睛是一种光学系统,能够在视网膜上产生图像。它由包括角膜、水状体、虹膜状体以及玻璃体等实体组成,使眼睛能够针对以105系数变化的照明水平简单而快速地做出反应。眼睛能够感知的最小照度为10-12Lx(相当于夜空中黯淡的星光)。为了能够感知到光,人眼中包含了锥状细胞和杆状细胞两种感光器:锥状细胞感受到各种颜色(“明视觉”),对波长555 nm的黄绿光谱区域,其灵敏度最高;杆状细胞使我们看到的是黑白的画面(“夜间视觉”),在波长507 nm的绿光谱区域,其灵敏度最高。人眼对光谱灵敏度曲线见图1。图1.人眼对光谱灵敏度曲线其弊端在于观察变色阈值是借助人眼,经验和心理、生理因素的个体差异引起较大的判断误差,无法溯源,受环境条件影响大,可变因素太多,且无法进行定量描述,从而影响到评估的准确性和可靠性。虽然感官颜色滴定法是应用面最广的分析方法,但其主观测量结果的缺陷致使其处于被逐步淘汰的趋势。1.2、可见光-光密度检测分析法 光密度测量是测量反射光量和入射光量的大小,光密度计提供的光之间的差别是光的吸收量,也即被测液体表面层的吸收光量大小,吸收特性的度量,只表示黑或灰的程度。该方法只要应用在印刷行业,“彩色密度”是指测量时,通过红、绿、蓝三种滤色片分别来测量黄、品、青油墨的密度。它直观地反映了C、M、Y、K四色印刷的密度、网点百分比、油墨叠印率等,被广泛用于印刷行业的颜色和墨层厚度控制当中。 1.3、可见光光-电积分法 光电积分法是20世纪60年代仪器测色中采用的常见方法。是测量整个测量波长区间内,通过积分测量测得样品的三刺激值X、Y、Z,再由此计算出样品的色品坐标等参数。通常用滤光片把探测器的相对光谱灵敏度S(λ)修正成CIE的光谱三刺激值x(λ)、y(λ)、z(λ)。用这样的三个光探测器接收光刺激时,就能用一次积分测量出样品的三刺激值X、Y、Z。滤光片必须需满足卢瑟条件,以精确匹配光探测器。卢瑟条件如下:此类型仪器的测色准确度是与仪器符合卢瑟条件的程度有直接关系的,要做到完全符合上述条件是很困难的。在实际的滤色修正中,由于色玻璃的品种有限,仪器不可能完全符合卢瑟条件,只能近似符合应用部分滤光片法可使x(λ)和z(λ)曲线的匹配积分误差小于2%,y(λ)曲线的匹配积分误差小于0.5%。光电积分式仪器不能精确测量出被透射液体的三刺激值和色品坐标,但能准确测出被透射液体的色差,因而又被称为色差仪。所以,色差仪原理也可以进行颜色滴定分析,受其依据的原理限制,误差大、应用范围有限。 1.4、可见光-分光光度法 分光光度滴定(spectrophotometric titration),又称光电滴定(photoelectric titration)。通过测量滴定过程中吸光度又称分光光度滴定法。它是通过样品液体的透射光能量与同样条件下标准样品透射的光能量进行比较,得到样品液体在每个波长下的光谱吸收率,然后利用CIE提供的标准观察者和标准光源公式计算,从而得到三刺激值X、Y、Z,再由X、Y、Z按CIEYxy,CIELab等公式计算色品坐标x.y,CIELAB色度参数等。该方法以待测组分、滴定剂、反应产物在滴定过程中吸光度的变化确定滴定终点的分析方法。它能在底色较深的溶液和无色溶液中滴定,检测微弱吸光度变化、可准确确定滴定终点。该方法通过测量探测样品的光谱成分确定其颜色参数,不仅可以给出X、Y、Z的绝对值和色差值△E,还可以给出物体的分光透射率值和分光透射率曲线。采用此类仪器可实现高准确度的色测量,可对光电积分测色进行定标,建立色度标准等,故分光式仪器是颜色测量中的权威仪器。1.4.1光度滴定法光度滴定(photometric titration) 是在滴定过程中,用光度计记录特定波长的吸光度的变化(非颜色变化)。要求滴定过程中,溶液吸光度Abs的变化遵循朗伯-比尔定律。滴定时,每加入一定量的滴定剂,都同步在相同波长下记录其吸光度。然后以吸光度A为纵坐标,标准溶液的体积V为横坐标,绘出光度滴定曲线,从两条切线的交点可求得滴定终点。光度滴定方法要求被滴定溶液的吸光度的变化必须遵循朗伯-比尔定律。光度滴定法对于某些纯净液体和波长吸收特征性强的反应,非常方便,适用于滴定有色溶液、略微混浊的溶液、微量物质,有较高的灵敏度和准确度。由于采用单波长检测,不能适合反应前后由于结构改变导致的特征吸收波长偏移,而且当化学反应出现多次多个吸收波长时,无法获得多滴定终点的光度信号,可靠性和适用性差。1.4.2紫外光度滴定(ultraviolet photometric titration)利用溶液紫外光吸收的变化观察终点的一种光度滴定。例如,被测物是无色的,伴随滴定的进行,其紫外光吸收在改变。1.4.3浊度滴定(turbidimetric titration )又称比浊滴定法。利用沉淀的生成或消失,溶液浊度发生变化进行的滴定。用通常的光度滴定装置可进行滴定,由于沉淀粒子吸收光、沉淀的反应滴定。1.4.4可见光光谱滴定技术新一代可见光光谱滴定法技术(Visible Spectral Titration Technology, VSTT)是在可见光-分光光度法的基础上发展的。它是测量反应液体的多个设定波长的光谱透射比τ(λ),计算出光谱滴定曲线。在曲线上的凸变峰对应的体积值均为颜色突变点。该颜色突变点视为物质结构改变点,对应的加入试剂体积数为滴定终点的体积数。该方法的基础是色测量的分光式测量方法,所以,从原理上它就具有高准确度、高可靠性的优点。而采用现代数据处理技术剔除高速测量产生的噪音干扰,分离出的信号计入相关变量因子的算法,使滴定曲线的凸变峰型号非常明显清晰。具有准确、可靠、明显、自动等诸多优点。缺点与光分析方法相似,不能分析混浊、固体和半固体、终点无色变的化学反应溶液及其过程,而且计算方法复杂、数据量庞大,严重依赖于数据处理系统,这个缺点仅相对于其他方法相比,对于现代计算技术的发展根本不是问题。光谱滴定方法是2015年搭建成原理验证机、2018年提出光谱滴定的概念。依据该方法原理研发的设备和方法应用业内尚未普及,出版的文献著作仅有《化学光谱滴定技术》(王飞,著)。依据其原理和应用,光谱滴定方法可以替代感官颜色滴定法、可见光光-电积分法、单波长可见光分光光度法,与电位滴定方法、温度滴定方法一起成为滴定分析领域的3种仪器分析方法,相互补充。2、电化学分析法电化学分析法(electrochemical analysis)是以,测量原电池的电动势为基础,根据电动势与溶液中某种离子的活度(或浓度)之间的定量关系(Nernst 方程式)来测定待测物质活度或浓度的一种电化学分析法。是滴定领域中出现最早、应用最广的仪器测量技术。它是以待测试液作为化学电池的电解质溶液,比较其中一只电极电位随试液中待测离子的活度或浓度的变化而变化,与另外另一支是在一定温度下电极电位基本稳定不变之间的电动势来确定待测物质的念量。 1893 年德国学者 Rorbert Behrend 首次使用在滴定实验中应用电位分析方法做为判定终点方法。20 世纪中期自动电位滴定法在化学分析中开始流行,万通公司于 1949 年推出第一台用于酸度滴定的自动电位滴定仪 Titriskop。1957 年首创第一支活塞滴定管取代玻璃滴定管,1961 年诞生能够自动记录滴定曲线的自动电位滴定仪 Potentiograph。1971 年出现联用计算机的高性能电位滴定装置,1978 年,微处理技术与动态滴定技术结合,缩短分析时间的同时增强滴定精度。本世纪自动电位滴定仪的生产商较为著名的还有美国布鲁克海文公司、瑞士梅特勒-托利公司、英国马尔文公司、上海仪电科学仪器、上海雷磁科技公司、江苏新高科等。电位滴定法能有效减少人眼判断产生的主观误差,不需样品指示剂,无关溶液颜色和混浊度。是当前世界上最常用的自动化滴定方法。但其缺点在于电极使用不便、无法高温测定和滴定终点与颜色标准不一致。同时无法测定无离子参与、低浓度溶液、滴定产物稳定性小的单组分、滴定产物稳定性接近的多组分溶液浓度,严重影响的其使用范围。电分析法包括:电解法(electrolytic analysis method):电重量法(electtogravimetry):库伦法法(coulometric)库仑滴定分析法(coulometric tiyration):测定电解过程中所消耗的电量,按法拉第定律求出待测物质含量的分析方法称作库仑分析法。库仑分析法还可分为控制电位库仑分析法和恒电流库仑滴定法。电导法(conductometry) :电导分析法(conductometric analysis) :电导滴定法(conductometric titration):电位法(potentiometry) :直接电位法(dirext potentiometry):通过测量电池电动势来确定指示电极的电位,然后根据Nernst方程由所测得的电极电位值计算出被测物质的含量。电位滴定法(potentiometric titration):在滴定过程中通过测量电位变化以确定滴定终点的方法。和直接电位法相比,电位滴定法不需要准确的测量电极电位值,因此,温度、液体接界电位的影响并不重要,其准确度优于直接电位法。与感官颜色滴定法相比,对于待测溶液有颜色或浑浊时,终点的指示就比较困难,或者根本找不到合适的指示剂。电位滴定法是靠电极电位的突跃来指示滴定终点。在滴定到达终点前后,滴液中的待测离子浓度往往连续变化n个数量级,在等当点附近发生电位的突跃。被测成分的含量仍然通过消耗滴定剂的量来计算。因此测量工作电池电动势的变化,可确定滴定终点。电位滴定法无主观误差,是当前世界上最常用的自动化滴定方法。缺点在于必须针对不同化学反应类型选用特定电极、电极表面胶体与溶液交换接触交换电荷的接触式测量致使对含量低的样品测定产生较大影响、受温度影响大且不能高温测量、信号延迟、滴定终点与颜色滴定终点难以一致。伏安分析法(voltammetry):利用电解法过程中测得的电流-电压关系曲线(伏安曲线)进行分析的方法称作伏安分析法。极谱分析法(polarography):是用滴汞电极的伏安分析法称作极谱分析法。溶出法(stripping method):电流滴定法(amperometric titration):3、温度滴定法温度滴定法是非接触式传感探测技术。是一种量热分析技术,即用一种反应物滴定另一种反应物,随着加入滴定剂的数量的变化,测量反应体系温度的变化。滴定一般在尽可能接近绝热的条件下进行,被滴定物可以是液体或悬浮的固体;滴定剂可以是液体或气体。温度变化是由滴定剂与被滴定物间的化学作用或物理作用(例如一种有机分子吸附于固体表面)引起的。1922年P.迪图瓦和E.格罗贝特建立热滴定法,用于容量分析。1924年P.M.迪安和O.O.瓦茨最早使用测温滴定这一术语;以后又有人采用热滴定、焓滴定、测温焓滴定、量热滴定和测温滴定等术语,至今仍未统一。70年代以来,由于与滴定量热计相关的一些技术(如恒温浴、恒速滴定装置、反应容器、温度传感电路以及数据分析手段等)获得迅速发展,连续滴定法结果的精度已可与常用溶液量热计比美,而且能够滴定少于毫克级的试样。因此热滴定不仅可用于分析目的,而且已成为一种精密量热技术。滴定量热法特别适用于下述目的:在有连串反应或并行反应存在的情况下,测定焓变ΔH;用于包含微弱相互作用物种的反应,求吉布斯函数改变ΔG;鉴别络合反应中存在的物种等。还用于测定混合热、物质在两相中的分配系数和吸附容量等,并可用于生物化学、微生物学和环境化学等方面。实验数据以热谱图形式表示,它提供了有关反应中物质的量(滴定终点)和反应物质的特性(焓变)的数据。对图进行分析,可以得知反应容器中发生的反应的类型和数目,以及溶液中存在的各物种的浓度等信息。这部分内容称为热滴定,同时还可以确定反应的化学计量关系,计算反应的热力学量,如平衡常数K(ΔG°)、标准状态下的焓变ΔH°和熵变ΔS°,这部分内容称为滴定量热法。测温滴定法以热效应为基础,与溶液的许多性质(如粘度、光学透明度、介电常数、溶剂强度、以及离子强度等)无关,因此可以用于气相、液相、非水溶液、有色溶液、胶体溶液和粘稠浆状等体系。温度滴定法的特殊优点是不干扰滴定反应,如离子强度或溶剂等,则在很大程度上与它们无关。同时可以操作有色溶液,胶体溶液或浆液。同电化学方法中的电极比较,作为测量器件的温度传感器是惰性的,并且它不伪示试样成分参与反应的结果。3.2.1 CIE 1976(L*a*b*)均匀彩色空间的参数值计算CIE 1976(L*a*b*)色度值,由光谱滴定仪的数据处理软件读取的吸光度值后,按公式计算出样品在CIE 1964标准色度系统的三刺激值X、Y、Z,再按照公式计算CIE 1976(L*a*b*)色空间的心理明度235.601435.6334336.417336.4105436.267736.3003735.990236.02268
  • GMP附录《计算机化系统》法规解读之“发生什么事儿了?”
    2015年5月26日,CFDA正式发布了2010版GMP法规的新附录之一《计算机化系统》,引起了国内制药行业的广泛讨论和高度关注。其实许多制药企业对它的内容并不陌生,因为这则法规于2013年作为征求意见稿已经添加到新版GMP法规附录中。而现在,它将作为正式的法规于2015年12月1日起执行。这则法规附录将给国内制药企业带来什么新的挑战?从近两年来CFDA的一系列举措(频繁的飞行检查,2014年至今已取消近100家药企的GMP证书)来看,国内GMP的监管力度是显著增强的。所以届时如果企业不能满足《计算机化系统》法规的要求,将可能面临十分严重的后果。 CFDA为何要发布这则法规?国内外GMP法规有许多差异,而对计算机化系统的要求差异尤为明显。CFDA所执行的2010版GMP法规内容与国际上其他法规机构的cGMP法规是对等的,如FDA 21 CFR Part 211。但美国的制药企业除了执行 21 CFR Part 211以外,同时还要遵守21 CFR Part 11法规;欧盟国家的制药企业除了执行欧盟GMP以外,还要遵循Annex 11法规。FDA的21 CFR Part 11与欧盟的Annex 11的内容是类似的,都是针对于制药企业使用计算机化系统的法规要求。新颁布的《计算机化系统》法规附录是国内法规与国际接轨的重要一步,将填补国内对于计算机化系统要求的法规空白,是实现与国际法规监管机构之间相互认可的前提条件之一。 法规到底讲了些什么? 《计算机化系统》法规附录究竟讲了哪些内容?其实,我们发现内容并不多,全文共24条要求、6页,共计2500字。我们尝试对这些法规条文作了初步的解读,把所理解的核心内容概括如下: 1. CFDA明确提出进行计算机化系统验证的要求 以往,法规对于仪器的确认是一直有要求的,但对计算机软件验证的要求不明确。因而,大部分的制药企业不对计算机系统进行验证,或仅进行最简单的确认。真正按照GAMP5指南基于风险评估进行完整验证的企业不多,仅某些企业有国外业务、需要通过FDA或欧盟审计时才会考虑。而这则法规发布以后,明确对所有的国内制药企业提出进行计算机化系统验证的要求,为计算机化系统验证提供了法规依据。这里尤其值得注意的是,法规附录里要求进行基于风险评估的计算机化系统验证,实际上就是指遵循GAMP5的验证方法学,即计算机化系统验证的形式应该是验证(Validation),通常所说的确认(Qualification,IQ/OQ/PQ)是不足够的。 2. 数据合规性要求 法规明确了对数据输入的准确性和数据处理过程的正确性要求,以保证数据的合规性。概括来说,对计算机系统合规性的功能要求可以总结为:访问控制、权限分配、审计追踪和电子签名。 访问控制:只有经许可的人员才能进入和使用系统。 权限分配:应当对进入和使用系统制订授权、取消和授权变更的操作规程。 审计追踪:用于记录数据的输入和修改以及系统的使用和变更。 电子签名:明确了直接对电子数据进行电子签名是合规的,但电子签名需要符合相应法规。 其中,电子签名是“可以有”,而不是“必须”,这取决于企业对于主数据的定义是电子数据还是纸质数据。这与21 CFR Part 11和Annex 11是一致的。对于审计追踪记录的要求,是“根据风险评估的结果,考虑在计算机化系统中建立数据审计跟踪系统”,这可能是考虑到很多软件自身功能设计上无法实现的情况。然而,对于色谱数据系统这样的关键原始数据系统来说,审计追踪肯定是必然的要求。 3. 电子数据安全性要求 电子数据安全性一般分为逻辑安全性和物理安全性。逻辑安全性即是通过软件自身的权限控制对数据的访问、录入、修改和删除等操作,确保不被人为误操作或有意的篡改行为而影响数据安全。而物理安全性,即是对数据存储的介质(如硬盘、光盘、服务器等)进行保护,确保系统本身不会因为物理介质的损坏或故障造成数据丢失。 4. 数据备份要求 关于电子数据的备份要求不算是新的法规要求,GMP法规也一直要求数据备份以保证原始数据的安全性。国内制药企业通常也都制定了数据备份策略,但我们发现通常只是一个月甚至半年才做一次数据备份,真正发生故障时原始数据还是会严重丢失。这样的数据备份归档,其形式意义大过于实际意义;而即使是这样的一个备份频率,企业都已经觉得数据备份的工作任务很重。其根本原因是缺乏良好的解决方案。《计算机化系统》单独列出这条要求,将提高制药企业对数据备份的重视,进而采纳更先进的解决方案。 在下一期《计算机化系统》法规解读中,我们将继续逐项解析该则法规对制药企业带来的影响,工作站是否能应对新的法规要求?如何管理您实验室的非色谱类数据?等等。敬请关注。
  • 美国升级对量子计算/半导体设备/GAAFET出口管制
    当地时间9月5日,美国商务部工业和安全局(BIS)在《联邦公报》上发布了一项临时最终规则(IFR),升级了对量子计算、先进半导体制造、GAAFET等相关技术的出口管制。具体来说,该IFR 涵盖了:量子计算、相关组件和软件;先进的半导体制造;用于开发超级计算机和其他高端设备的高性能芯片的环绕栅极场效应晶体管 (GAAFET) 技术;以及用于制造金属或金属合金部件的增材制造工具。1、量子计算相关:随着具有更多量子位的更大型的量子计算机的开发,控制电路必须在低温恒温器内移动以减少这些延迟。目前,传统CMOS器件的一般温度下限为-40°C(233K)。CMOS设计目前正在开发中,以适用于在4K或以下温度下工作,用于量子计算。出于这些原因,BIS在CCL中添加了3A901.a,以控制3A001.a.2中未指定的CMOS集成电路,这些电路设计用于在等于或低于4.5 K(-268.65°C)的环境温度下运行。这一补充附带了一份技术说明,主要限制“低温CMOS或低温CMOS集成电路。”量子计算项目中的一个关键功能是读取非常微弱的信号的能力。为了执行该功能,量子比特和信号放大器需要冷却到非常低的温度以抑制噪声。因此,BIS在CCL中添加了3A901.b,以控制在极低温度、指定频率和噪声系数参数下工作的参数信号放大器。还添加了一个注释和一个技术注释,说明“参数信号放大器包括行波参数放大器(TWPA)”和“参数信号功放也可称为量子限幅放大器(QLA)。”根据3A901.a规定的CMOS集成电路和3A901.b规定的参数信号放大器需要获得所有目的地的许可证。此外,量子计算芯片所需的低温晶圆探测设备(3B904)也被进一步限制。低温晶圆探测器的目标是扩大基于固态量子位和其他类型量子位的量子计算。低温量子器件、电子学和探测器的发展可以从低温晶片探测器提供的更好的器件特性中受益。某些低温晶片探测器将加快被测量子比特器件的测试和表征(大容量数据的收集)。这在开发过程中提供了一个明显的优势,传统上,低温测试需要更多的时间。出于这个原因,BIS认为,这些设备需要出口管制。因此,BIS正在CCL中添加ECCN 3B904,以控制指定的低温晶片探测设备。根据国家安全控制和许可证审查政策集的规定,ECCN 3B904中指定的项目对所有目的地的NS和RS进行控制。2、GAAFET及相关针对3nm以下制程所需要采用的GAAFET,BIS在通用许可证中增加了两项授权,以补充第736部分第4号通用命令的第1项,即GAAFET出口、再出口和转让(国内)到目前与美国工业合作的实体,目的地为EAR国家组A:5或A:6中指定的目的地,以及ECCN 3E905中指定的GAAFET“技术”和“软件”的视同出口和视同再出口到已受雇于实体的外籍员工或承包商,其最近的公民身份或永久居留权是国家组中指定的目标。另外,由于美国此前已经对GAAFET设计软件进行了出口管制,因此,与GAAFET相关的制造设备此次也一并受到了限制。3、半导体设备3B001用于制造半导体器件、材料或相关设备的设备,如下(见受控物品清单)及其“特殊设计”的“组件”和“配件”:基于列表的许可证例外(有关所有许可证例外的描述,请参阅第740部分)LVS:500,3B001.a.4、c、d、f.1.b、j至p中规定的半导体制造设备除外。GBS:a.3(使用气体源的分子束外延生长设备)、c.1.a(为各向同性干法蚀刻设计或修改的设备)、c.1.c(为各向异性干法蚀刻设计和修改的设备”)、.e(仅当连接到由3B001.a.3或.f控制的设备时才自动装载多腔中央晶片处理系统)、.f(光刻设备)和.q(为集成电路设计的“EUV”掩模和掩模,未在3B001.g中指定,并具有3B001.j中指定的掩模“基板空白”)除外。IEC:3B001.c.1.a、c.1.c和.q为是,见《出口管理条例》第740.2(a)(22)条和第740.24条。STA的特殊条件STA:许可证例外STA不得用于将3B001.c.1.a、c.1.c或.q运送到国家组a:5或a:6中列出的任何目的地(见EAR第740部分补充1)。受控项目清单:相关控制:另见3B903和3B991项目:a.设计用于外延生长的设备如下:a.1.设计或改装的设备,用于在75毫米或更长的距离内生产厚度均匀小于±2.5%的硅以外的任何材料层;注:3B001.a.1包括原子层外延(ALE)设备。a.2:金属有机化学气相沉积(MOCVD)反应器,设计用于化合物半导体外延生长具有以下两种或多种元素的材料:铝、镓、铟、砷、磷、锑或氮;a.3:使用气体或固体源的分子束外延生长设备;a.4:为硅(Si)、碳掺杂硅、硅锗(SiGe)或碳掺杂SiGe外延生长并且具有以下所有特性:a.4.a.多个腔室,并在工艺步骤之间保持高真空(等于或小于0.01 Pa)或惰性环境(水和氧气分压小于0.01帕);a.4.b.至少一个预清洁室,其设计用于提供表面处理装置以清洁晶片的表面;和a.4.c.外延沉积操作温度为685°c或以下;b.设计用于离子注入的半导体晶片制造设备,具有以下任何一项:b.1:[保留]b.2:被设计和优化为在20keV或更高的束能量和10mA或更大的束电流下工作,用于氢、氘或氦注入;b.3:直接写入能力;b.4:用于将高能氧注入加热的半导体材料“基板”的65keV或更高的束能量和45mA或更高束电流;或b.5:被设计和优化为在20keV或更高的束能和10mA或更大的束流下工作,用于将硅注入加热到600˚C或更高温度的半导体材料“基板”;c.蚀刻设备:c.1:设计用于干法蚀刻的设备如下:c.1.a.为各向同性干法蚀刻而设计或修改的设备,其最大“硅锗对硅(SiGe:Si)蚀刻选择性”大于或等于100:1;或c.1.b.为介电材料的各向异性蚀刻而设计或修改的设备,能够制造纵横比大于30:1、顶面横向尺寸小于100nm的高纵横比特征,并具有以下所有特征:c.1.b.1:具有至少一个脉冲RF输出的射频(RF)电源;和c.1.b.2:一个或多个切换时间小于300毫秒的快速气体切换阀;或c.1.c:为各向异性干法蚀刻而设计或修改的设备,具有以下所有特征;c.1.c.1:具有至少一个脉冲RF输出的射频(RF)电源;c.1.c.2:一个或多个切换时间小于300毫秒的快速气体切换阀;和c.1.c.3:带有二十个或更多可单独控制的可变温度元件的静电卡盘;c.2:设计用于湿化学处理的设备,其最大“硅锗对硅(SiGe:Si)蚀刻选择性”大于或等于100:1;注1:3B001.c包括“自由基”、离子、顺序反应或非顺序反应的蚀刻。注2:3B001.c.1.c包括使用RF脉冲激发等离子体、脉冲占空比激发等离子体、电极上的脉冲电压修饰等离子体、与等离子体结合的气体循环注入和净化、等离子体原子层蚀刻或等离子体准原子层蚀刻的蚀刻。4、增材制造设备(i.ECCN 2B910)BIS对ECCN 2D910和2E910中增材制造设备(2B910)的“技术”和“软件”的外国人实施视同出口和再出口管制。美国工业和安全局副部长艾伦埃斯特维兹在一份声明中表示:“今天的行动确保我们的国家出口管制与迅速发展的技术保持同步,并且在与国际伙伴合作时更加有效。”“协调我们对量子和其他先进技术的控制,将使我们的对手更难以以威胁我们集体安全的方式开发和部署这些技术。”有什么改变?该规则在商务管制清单中增加了新的出口管制分类编号(ECCN),涵盖一般产品类别和能力,而不是特定产品。这基本上意味着,如果你想从美国出口某些类型的产品(已列入或已添加到管制清单的产品),你可能需要获得美国政府的许可。这让美国有能力限制向某些国家出口某些类型的技术。例如,管制清单上的新 ECCN B910 指定了与合金制造相关的套件,因为这些物质用于生产导弹、飞机和推进系统的零件。另一个新的 ECCN 是“3A904 低温冷却系统和组件”,重点关注“与研究具有大量物理量子比特的量子系统相关的项目”。此外,还有在ECCN 3E905中对GAAFET增加了两项授权要求。这些规则增加了 18 个 ECCN,并更新了 9 个现有 ECCN。这使美国能够与其他国家保持步调一致,主要限制向俄罗斯和伊朗等国输送装备。2023年美国国会研究服务处报告指出,与其他政府协调出口管制对于确保此类努力取得成效至关重要。该报告称:“协调对于旨在阻止或延迟外国采购某些商品或技术的政策的有效性至关重要。如果商品或技术很容易从外国获得,这种控制措施的效果可能会降低。”例如,在数年之前美国主要通过将一些企业列入“实体名单”进行限制。然而,美国随后认识到,在没有国际合作伙伴的协调下,这一举措收效有限。因此,美国商务部工业和安全局于2022年10月宣布新的出口管制措施,旨在遏制中国获取先进半导体技术。随后,在2023 年,美国、日本和荷兰这三个领先的芯片制造国同意协调努力,阻止中国获得先进的芯片技术。BIS最新出口管制似乎是加强与盟友合作的进一步例子。美国商务部负责出口管理的助理部长西娅罗兹曼肯德勒 (Thea D. Rozman Kendler) 在一份声明中表示:“保护我们国家安全的最有效方式是与志同道合的合作伙伴一起制定和协调我们的管控措施,今天的行动表明了我们在制定此类管控措施以实现国家安全目标方面的灵活性。”她还补充说,值得信赖的合作伙伴可以享受许可豁免。 内容转自:旺材芯片,本文所用视频、图片、文字如涉及作品版权问题,请联系小编进行处理。谢谢!联系我们 -欢迎前来咨询 竭诚为您服务-上海市高新技术企业上海市专精特新企业完善的半导体领域微纳米实验室测试方案集成商
  • 用于植物油快速质控的自动计算法以及品质鉴定
    Peter J. Lee、Yoji Ichikawa、Roger R. Menard和Alice J. Di Gioia沃特世公司,美国马萨诸塞州米尔福德市引言植物油是食品、化妆品和个人护理品的重要成分,主要来自于世界各地的22种油料作物。生产加工、贮存、运输和销售各环节都对植物油的质量起着至关重要的作用。偶发事件和故意事件均会导致植物油的交叉污染。现已颁布了包括315/93/EEC、2568/91/EEC、EC 333/2007和EC 640/2008在内的多部法规,要求鉴定植物油的品质,并避免污染,从而保障公共健康和公平交易1。 为了确保产品质量,满足法规要求并维护公司最有价值的资产&mdash &mdash 品牌形象,植物油公司对植物油的生产过程,从原料到成品全过程进行监控。目前,植物油分析主要依靠气相色谱法(GC)和高效液相色谱法(HPLC)。气相色谱法要求在分析前进行衍生化,这既耗时又费力2。为了实现完全分离,普通的高效液相色谱法要求使用卤代溶剂或使用会使运行时间更长的非卤代溶剂3-6,。自卤代溶剂被认识到具有致癌作用后,卤代溶剂的使用在大多数实验室受到了限制。因此,人们对用于植物油质量控制和品质鉴定更有效的分析工具的需求日渐增加。 ACQUITY UPLC系统是新一代液相色谱平台。使用UPLC/PDA/ELSD/质谱检测器,可以更快进行筛选、在不使用卤代溶剂7-10条件下对植物油的表征建立高分离度的方法。只需一次进样,超高效液相色谱(UPLC)系统就能得到多种类型的数据,产生重现好的指纹图谱数据,鉴别甘油三酸酯的组分,并评估植物油氧化和分解程度。与普通的高效液相色谱相比,超高效液相色谱缩短了分析时间,减少了溶剂用量,并能从一次进样中提供更高分离度并带有更多信息的色谱图。因此,超高效液相色谱法的性价比更高。本技术文献描述了用于植物油质控和品质鉴定的更为高效的系统解决方案,即使用UPLC和EmpowerTM 2软件的用户自定义字段的计算功能,自动定量并报告植物油样品是否符合用户设定的质控标准。此方案不再需要人工计算,从而避免了可能的人为误差并能够快速而准确地报告关键信息。掌握了准确、及时的结果,决策者就能提高交货效率和产量,即减少不合格产品,避免产品召回,并最大限度地减少责任诉讼。本文的实验部分提供了关于自定义字段计算的例子,并附有其详细步骤。实验样品准备:食用油,购买自当地的食品杂货店。用2-丙醇将食用油样品稀释为6 mg/ml的溶液,以备分析之用。超高效液相色谱条件:超高效液相色谱系统: ACQUITY UPLC,PDA检测器软件: Empower 2PDA参数:检测波长: 195-300nm采样率: 20 pts/s过滤响应速度: 快超高效液相色谱参数:色谱柱: ACQUITY BEH C18 2.1 x 150 mm弱洗脱: 2-丙醇(每次洗脱用量:500 &mu L)强洗脱: 2-丙醇(每次洗脱用量:500 &mu L)充填洗脱: 10%的CH3CN水溶液(每5分钟)流动相A: CH3CN流动相B: 2-丙醇柱温: 30° C进样量: 2 &mu L(满环定量)梯度条件:时间 (min) 流速 (mL/min) %B 曲线0 0.15 10 &mdash 22 0.15 90 6平衡色谱柱和UPLC系统条件:时间 (min) 流速 (mL/min) %B 曲线 0 0.13 100 &mdash 18 0.13 10 1121.5 0.7 10 1124.5 0.15 10 1125 0.15 10 11说明:运行样品组之前,先进一针空白试样2-丙醇;该检测值被用作PDA 3D谱图的空白扣除。用于鉴定特纯天然橄榄油A质量的质控 标准:为了便于演示,我们从纯天然橄榄油A的典型色谱图中选取六个峰。选择其中的一个峰作为标记峰,其余的峰为指示峰。&ldquo 峰面积比(指示峰面积除以标记峰面积)± 3xSTDEV&rdquo 用作指示峰的质控标准。1. 指示峰3O(峰面积OOL/标记峰面积)0.84或0.86,则合格;否则不合格。2. 指示峰OOL(峰面积OOL/标记峰面积)1.18或1.21,则合格;否则不合格。3. 指示峰LLO(峰面积LLO/标记峰面积)0.39或0.41,则合格;否则不合格。4. 指示峰LLL(峰面积LLL/标记峰面积)0.039或0.045,则合格;否则不合格。5. 指示杂质峰(杂质峰面积/标记峰面积)0.42,则合格;否则不合格。创建计算峰面积比自定义字段的步骤11 :1. 点击&ldquo 配置系统&rdquo ,进入配置管理员;在树形结构中点击&ldquo 项目&rdquo 。2. 选择并右击所需的项目。3. 选择&ldquo 属性&rdquo ,打开&ldquo 项目属性&rdquo 窗口。4. 点击&ldquo 自定义字段&rdquo 标签;然后点击&ldquo 新建&rdquo ,打开&ldquo 数据和类型选择&rdquo 窗口(图1)。5. 在字段类型中选取&ldquo 峰&rdquo ,在数据类型中选取&ldquo 实数(0.0)&rdquo ;然后点击&ldquo 下一步&rdquo 打开&ldquo 选择来源&rdquo 窗口,如图2所示。6. 在&ldquo 数据来源&rdquo 中选择&ldquo 计算&rdquo ,在&ldquo 样品类型&rdquo 和&ldquo 峰类型&rdquo 中选择&ldquo 全部&rdquo ;在&ldquo 搜索顺序&rdquo 中选择&ldquo 只限于结果组&rdquo ,然后在弹出窗口中点击&ldquo 确定&rdquo ;不要勾选&ldquo 全部或没有&rdquo 以及&ldquo 丢失峰&rdquo 选项;点击&ldquo 下一步&rdquo ,打开&ldquo 输入公式&rdquo 窗口,如图3所示。7. 将面积/IS[面积]输入至字段中;点击&ldquo 下一步&rdquo ,打开&ldquo 数值型参数&rdquo 窗口(使用默认值)。8. 点击&ldquo 下一步&rdquo ,打开&ldquo 输入名称&rdquo 窗口。9. 输入新的字段名(例如,此处所用的字段名是&ldquo Ratio _IS&rdquo );在&ldquo 创建该字段&rdquo 中选择&ldquo 项目&rdquo 。10. 点击&ldquo 完成&rdquo ,这样就创建了一个名为&ldquo Ratio_IS&rdquo 的自定义字段,用于计算峰面积比,如图4所示。创建自定义字段并根据特定指示峰面积比的标准确定&ldquo 合格&rdquo 或&ldquo 不合格&rdquo 的步骤如下:1. 点击&ldquo 配置系统&rdquo ,打开配置管理员;在树形结构中点击&ldquo 项目&rdquo 。2. 选择并右击所选择的工作项目。3. 选择&ldquo 属性&rdquo ,打开&ldquo 项目属性&rdquo 窗口。4. 点击&ldquo 自定义字段&rdquo 标签;然后点击&ldquo 新建&rdquo ,打开&ldquo 数据和类型选择&rdquo 窗口,如图1所示。5. 在字段类型中选择&ldquo 峰&rdquo ,在数据类型中选取&ldquo 布尔(0.0)&rdquo ;然后点击&ldquo 下一步&rdquo ,打开&ldquo 选择来源&rdquo 窗口。6. 在&ldquo 数据来源&rdquo 中选择&ldquo 计算&rdquo ,在&ldquo 样品类型&rdquo 和&ldquo 峰类型&rdquo 中选择&ldquo 全部&rdquo ;在&ldquo 搜索顺序&rdquo 中选择&ldquo 只限于结果组&rdquo ,然后在弹出窗口中点击&ldquo 确定&rdquo ;选择&ldquo 全部或没有&rdquo 选项,在弹出窗口中点击&ldquo 是&rdquo ;然后点击&ldquo 下一步&rdquo ,打开&ldquo 输入公式&rdquo 窗口。7. 将以下公式输入至字段中:GTE(3O[Ratio_IS],0.841)E(3O[Ratio_IS],0.859])*EQ(Name,&ldquo 3O&rdquo )+NEQ(Name,&rdquo 3O&rdquo )*-1*500008. 点击&ldquo 下一步&rdquo ,打开&ldquo 翻译定义&rdquo 窗口,如图5所示。9. 在&ldquo 0&rdquo 旁边,输入&ldquo 不合格&rdquo ;在&ldquo 1&rdquo 旁边,输入&ldquo 合格&rdquo ;然后点击&ldquo 下一步&rdquo ,打开&ldquo 输入名称&rdquo 窗口。10. 输入一个名称(例如,此处使用的是&ldquo Oly_OOO&rdquo );在&ldquo 创建该字段&rdquo 中选择&ldquo 项目&rdquo 。11. 点击&ldquo 完成&rdquo ,这就创建了一个名为&ldquo Oly_OOO&rdquo 的自定义字段用于检验峰面积比(OOO峰面积除以标记峰面积)是否符合指示峰OOO的质控标准,如图6所示。重复进行第1-8步,以确定其余的指示峰是否合格:对于指示峰OOL,在第4步中,在&ldquo 输入公式&rdquo 窗口中输入以下公式:GTE(OOL[Ratio_IS],1.18)E(OOL[Ratio_IS],1.21])*EQ(Name,&ldquo OOL&rdquo )+NEQ(Name,&ldquo OOL&rdquo )*-1*50000. 在第7步中,在字段名中输入&ldquo Oly_OOL&rdquo ,创建字段&ldquo Oly_OOL&rdquo ,以检验峰面积比(OOL峰面积除以标记峰面积)是否符合质控标准。对于指示峰LLO,在第4步中,在&ldquo 输入公式&rdquo 窗口中输入以下公式:GTE(LLO[Ratio_IS],0.39)E(LLO[Ratio_IS],0.41])*EQ(Name,&ldquo LLO&rdquo )+NEQ(Name,&ldquo LLO&rdquo )*-1*50000. 在第7步中,在字段名中输入&ldquo Oly_LLO&rdquo ,创建字段&ldquo Oly_LLO&rdquo , 以检验峰面积比(LLO峰面积除以标记峰面积)是否符合质控标准。对于指示峰LLL,在第4步中,在&ldquo 输入公式&rdquo 窗口中输入以下公式:GTE(LLL[Ratio_IS],0.039)E(LLL[Ratio_IS],0.045])*EQ(Name,&ldquo LLL&rdquo )+NEQ(Name,&ldquo LLL&rdquo )*-1*50000. 在第7步中,在字段名中输入&ldquo Oly_ LLL&rdquo ,创建字段&ldquo Oly_ LLL&rdquo , 以检验峰面积比(LLL峰面积除以标记峰面积)是否符合质控标准。对于杂质指示峰,在第4步中,在&ldquo 输入公式&rdquo 窗口中输入以下公式:GT(Impurity[Ratio_IS],0.42)*EQ(Name,&rdquo Impurity&rdquo )+NEQ(Name,&ldquo Impurity&rdquo )*-1*50000. 在第7步中,在字段名中输入&ldquo Oly_Impurity&rdquo ,创建字段&ldquo Oly_ Impurity&rdquo ,以检验峰面积比(杂质峰面积除以标记峰面积)是否符合质控标准。本方法用定时组功能计算杂质峰的总和:1. 在&ldquo 编辑处理方法&rdquo 窗口中,选择&ldquo 定时组&rdquo 标签,如图7所示。2. 在&ldquo 名称&rdquo 字段中输入杂质名称,在&ldquo 开始时间&rdquo 字段中输入&ldquo 3&rdquo ,在&ldquo 结束时间&rdquo 字段中输入&ldquo 13.6&rdquo 。3. 勾选&ldquo 不包括已知峰&rdquo 字段。在处理方法中标记选定的标记峰和指示峰:1. 在&ldquo 编辑处理方法&rdquo 窗口中选择&ldquo 组分&rdquo 标签。2. 将保留时间为9.81 min的峰名称改为IS,在&ldquo 峰标签&rdquo 字段中输入&ldquo 标记峰&rdquo ,如图8所示。3. 将保留时间为13.79 min的峰名称改为3L,在&ldquo 峰标签&rdquo 字段中输入&ldquo LLL&rdquo 。4. 将保留时间为14.85 min的峰名称改为2LO,在&ldquo 峰标签&rdquo 字段中输入&ldquo LLO&rdquo 。5. 将保留时间为15.87 min的峰名称改为2OL,在&ldquo 峰标签&rdquo 字段中输入&ldquo OOL &rdquo 。6. 将保留时间为16.85 min的峰名称改为OOO,在&ldquo 峰标签&rdquo 字段中输入&ldquo OOO&rdquo 。在处理方法中创建命名组的步骤:1. 在&ldquo 编辑处理方法&rdquo 窗口中选择&ldquo 命名组&rdquo 标签。2. 在&ldquo 名称&rdquo 栏中输入3O、LLL、LLO、OOL和Oly,如图9所示。3. 分别将OOO、3L、2LO、2OL和IS从&ldquo 单峰组分&rdquo 拖至各自相应的命名组中,如图9所示。创建合格或不合格报告模板的步骤:1. 点击&ldquo 方法&rdquo 标签,选择一份报告,右击该报告;选择&ldquo 打开&rdquo ,以显示&ldquo 编辑报告方法&rdquo 窗口。2. 在&ldquo 编辑报告方法&rdquo 窗口中选择&ldquo 新建&rdquo ,打开&ldquo 新方法/组&rdquo 窗口。3. 选择&ldquo 创建新报告方法&rdquo ,勾选&ldquo 使用报告方法/组向导&rdquo 选项;然后点击&ldquo 确定&rdquo ,打开&ldquo 报告方法模板向导&rdquo 。4. 选择&ldquo 单个报告&rdquo ,然后点击&ldquo 下一步&rdquo ,打开&ldquo 新方法向导&rdquo 窗口。5. 在报告类型中选择&ldquo 单个&rdquo ,然后点击&ldquo 完成&rdquo ,显示一个报告方法模板。6. 在色谱图上右击,选择&ldquo 属性&rdquo ,打开&ldquo 色谱图属性&rdquo 窗口(图10)。7. 选择&ldquo 峰标签&rdquo ,勾选&ldquo 仅使用峰标签&rdquo ,然后点击&ldquo 确定&rdquo 。8. 右键单击&ldquo 表&rdquo ,选择&ldquo 属性&rdquo ,打开&ldquo 表属性&rdquo 窗口。9. 选择&ldquo 峰&rdquo 标签,勾选&ldquo 峰组&rdquo 。10. 点击&ldquo 表&rdquo 标签,然后在树形结构中点击所需的峰。双击每个指示峰,以将相应的自定义字段添加到结果表格中,如图11所示。11. 点击&ldquo 确定&rdquo ,输入该报告模板的名称(例如,此处显示的名称是&ldquo 特级天然橄榄油质控报告&rdquo ),然后在工具栏中点击&ldquo 保存&rdquo 。结果和讨论不使用卤代溶剂做流动相的普通高效液相色谱法很难分离植物油的主要组分&mdash &mdash 甘油三酸酯。图12为普通高效液相色谱法(2根5&mu m粒径颗粒填充的150mm长的C18柱,蒸发光散射检测器ELSD)得到的大豆油的典型色谱图,使用乙腈和二氯甲烷作为流动相,实现该分离需要60多分钟。由于二氯甲烷在240nm以内具有紫外吸收,这会干扰甘油三酸酯的紫外吸收(最大波长吸收值约210nm),因此使用蒸发光散射检测器(ELSD)进行检测。ACQUITY UPLC系统的设计特点是使用小颗粒装填技术的高效色谱柱,以进行更快速、更灵敏和更高分离度的分离。UPLC的溶剂传送系统能承受高达15,000 psi的背压,因此能够使用2-丙醇等高黏度溶剂进行植物油分析。由于2-丙醇对植物油的溶解性好12、低毒,透射度限制低,便于对甘油三酸酯进行紫外检测,因此2-丙醇被选作强洗脱液。图13为关于同一大豆油样品的10张叠加的紫外色谱图说明UPLC法的重现性,此分离使用1.7&mu m粒径的2.1 x 150mm的 BEH C18色谱柱,乙腈/2-丙醇作为流动相,整个运行时间缩短为22分钟。图12和图13比较,具有相似的甘油三酸酯峰型,但UPLC法具有更高的分离度,更短的运行时间。数据表明不使用致癌溶剂作为流动相,使用 UPLC分离植物油中的组分具有明显优势。用于植物油分析的乙腈/2-丙醇流动相的UPLC系统可使用PDA、ELSD和MS检测器,不像其他用于普通高效液相色谱法的溶剂。一次进样便可得到多种数据类型,并可以产生可重现的指纹图谱数据7,通过质谱法鉴别甘油三酸酯组分10,并用PDA多波长扫描测定植物油的氧化程度8。目前已知植物油具有特征的甘油三酸酯比,这对植物油指纹图谱5-8的鉴别很有用。如图14-16所示,核桃油、葡萄籽油、芝麻油、特级天然橄榄油A、特级天然橄榄油B、榛子油、茶籽油、玉米油、加拿大低酸油、高油酸葵花籽油和普通葵花籽油的紫外色谱图证实,每种油样品都具有独特的色谱类型,即相对峰强度。为了高效使用峰强度比进行品牌质控和质量鉴定,Empower 2软件的自定义字段计算功能可根据用户设定的质控标准自动将原始色谱数据转换为合格或不合格报告。以特级天然橄榄油A为例说明该改进的方法。图17为特级天然橄榄油A的叠加紫外色谱图和峰面积。甘油三酸酯的峰面积从最强峰(OOL)到最弱峰(LLL)其RSD值(n=6)0.9%。共有20多个可见峰,任一峰都能被用作标记峰或指示峰,用以计算峰面积比。为了便于讨论,将之前确定的甘油三酸酯的峰OOO、OOL、LLO和LLL选作指示峰10,将仅出现在橄榄油产品中、通过紫外检测观察到的保留时间为9.8分钟的强峰选作标记峰13。由于大多数廉价的蔬菜油和降解油具有很多保留时间低于13.6分钟的其它强峰9,因此可用定时组功能(图7)创建杂质指示峰,以监测是否存在污染。该杂质指示峰是指标记峰之外的保留时间介于3-13.6分钟的所有峰的总和。通过创建自定建自定义字段&ldquo Ratio_IS&rdquo (图4),可用Empower 2软件自动计算峰面积比(指示峰面积除以标记峰面积)。表1总结了峰面积比的结果以及STDEV值。&ldquo 峰面积比± 3xST-DEV&rdquo 被用作每个指示峰的质控标准。由于地理和其它种植条件的差异,植物油的某一特定类型会存在差异。该数值在比较其它植物油样品是否符合基于特定油品的质控标准方面具有极大的价值。现在,Empower 2软件能够使用自定义字段计算、命名组、定时组和报告模板(如图6、7、9、10和11所示),根据特级天然橄榄油A的质控标准,自动计算并报告样品合格与否的结果。图18为特级天然橄榄油A的典型Empower质控报告。该报告表明所有指示峰均符合质控标准。Empower软件的这些高级功能避免了人工计算步骤,因此能避免可能出现的人为误差。昂贵的特级天然橄榄油通常会被掺入廉价橄榄油和其它植物油(例如大豆油和榛子油)。图19为一份特级天然橄榄油B的报告。所有指示峰均表明该特级天然橄榄油B未通过根据特级天然橄榄油A制定的质控标准。在该色谱图中存在保留时间13.6 min的额外峰,这些数据清楚地表明两种品牌的橄榄油样品存在差异,并证实并非所有市售的特级天然橄榄油的品质都相同。图20为一份掺入9%榛子油的特级天然橄榄油A的报告。所有指示峰均表明该掺假样品不符合质控标准。而且,根据特级天然橄榄油A制定的同一质控标准也应用于分析其它植物油(图14-16),同样掺入1%大豆油或1%玉米油的特级天然橄榄油A,均不合格。之前描述的是使用UPLC-TOF和集成软件工具检测橄榄油掺假的化学计量方法14。本技术文献为植物油质控和品质鉴定提供了可供选择的另一种解决方案。本方法可完全自动地获取并处理数据,从而生成明确的合格或不合格报告。结论具有Empower 2 软件的ACQUITY UPLC系统能不需要衍生化和卤化溶剂,且能快速分析植物油样品并进行品质鉴定。UPLC系统得出的数据具有良好的重现性、精确性和准确性,而且简单易懂。分离速度比普通高效液相色谱法快三倍,所消耗的溶剂量减少8倍,所产生的有害废物也减少8倍;从而能够节省成本,提高安全性。ACQUITY PDA检测器能产生高分离度和高重现性的数据,这有助于轻松建立用于制定每种品牌植物油的质控和品质鉴定标准的指纹图谱数据。借助Empower 2软件的自定义字段计算功能,关键的产品质控数据可从原始数据中准确得出并根据用户设定的标准快速传送,有效地出具简单易懂的合格或不合格报告。决策者能根据这些重要信息及时做出决定,从而提高生产率。使用本UPLC方法,植物油公司能够轻松自信地鉴定产品的品质和质量。与植物油产品纯度方面利益相关的其他行业,例如化妆品公司、个人护理品公司和食品公司,也将从本方法中受益。参考文献1. http://www.fediol.org/5/pdf/legislation.pdf2. VG Dourtoglou et al. JAOCS, Vol.80, No.3: 203-208, 2003.3. LCGC, The Application Notebook, Sept 1, p51, 2006.4. A J Aubin, C B Mazza, D A Trinite, P McConvile. Analysis of Vegetable Oils byHigh Performance Liquid Chromatography Using Evaporative Light ScatteringDetection and Normal Phase Eluents. Waters Corporation, No. 720002879EN,2008.5. P Sandra et al J Chromatogr. A 974: 231-241, 2002.6. International Olive Oil Council standard method COI/T.20/Doc. No. 20 2001.7. P J Lee, C H Phoebe, A J Di Gioia. ACQUITY UPLC Analysis of Seed Oil (Part 1):Olive Oil Quality & Adultration. Waters Corporation, No. 720002025EN, 2007.8. P J Lee, C H Phoebe, A J Di Gioia. ACQUITY UPLC Analysis of Seed Oil (Part 2)Olive Oil Quality & Adultration. Waters Corporation, No. 720002026EN, 2007.9. P J Lee, and A J Di Gioia. ACQUITY UPLC/ELS/UV: One Methodology for FFA,FAME and TAG Analysis of Biodiesel. Waters Corporation, No. 720002155EN,2007.10. P J Lee and A J Di Gioia. Characterization of Tea Seed Oil for Quality Controland Authentication. Waters Corporation, 720002980en, 2009.11. Empower\help\Custom Field Calculation.12. F O Oyedeji et al Characterization of Isopropanol Extracted Vegetable Oils. JApplied Sci. 6: 2510-2513, 2006.13. The marker (Oly) peak at 9.8 min was well detected by UV but had weak MSresponse with APCI positive ionization mode. According to the SQD MS spectra,the marker peak is not a triglyceride. High resolution mass spectrometers withexact mass capabilities are needed in order to properly elucidate its chemicalstructure. However, it is not necessary to have peak identification for this QCand authentication methodology.14. P Silcock and D Uria. Characterization and Detection of Olive Oil AdulterationsUsing Chemometrics. Waters Corporation No. 720002786en, 2008.
  • 喜讯|盛奥华三款产品获得国家计算机软件证书
    近日,公司申报的三款仪器软件操作系统已获得国家计算机软件著作权登记证书,可喜可贺。其中包含:多参数水质检测仪(6B-3000A型 V10)检测系统、智能消解仪(6B-12型 V9)消解系统和新款触屏式消解仪(6B-30A型 V10)消解系统。盛奥华从创立开始,所研发生产的水质检测仪器屡有突破性地创新,先后获得各项国家专利、软件证书等,得到相关部门的肯定和用户的认可,实实在在、兢兢业业地做好产品、树好品牌、铸好厂商,不断努力,更好地回馈广大用户,为祖国的环保事业贡献绵薄之力。
  • 联合仪器制造工作正在研制俄罗斯首款工程计算系统
    据报道,2016年7月4日,新型100%国产程序将在“厄尔布鲁士”平台上开发。  联合仪器制造公司与莫斯科SPARC技术中心、TESIS公司联合开发俄罗斯首款工程计算系统。新程序将在“厄尔布鲁士”平台上进行开发。  联合仪器制造公司已经完成“厄尔布鲁士”平台复杂空气动力学和流体力学FlowVision转化的第一阶段,创造了国内工程计算软硬件系统的新型工作样件。  FlowVision可解决水力、气体动力学及燃烧过程中的各种问题。该系统广泛用于军工企业、导弹航天领域、航空及船舶制造业和“俄罗斯原子能公司”。利用该系统可以进行复杂计算,例如,描述各种管线和泵的特性,计算航天器的降落,绘制舰船或飞机外层流线图。  联合仪器制造公司IT部门主管帕韦尔赫里蓬诺夫表示,“各合作企业共同推进全寿命周期的国产工程任务解决方案软硬件系统的研制进程”。  赫里蓬诺夫表示,该项目实施的迫切性取决于工业领域,特别是国防工业领域日益提升的各项需求。  赫里蓬诺夫强调,“该系统可与国外类似产品相媲美,价格具有竞争力,已准备全面应用于企业,以对抗西方制裁”。  目前FlowVision软件可兼容四路服务器“厄尔布鲁士-4.4”开展计算工作,以及 “厄尔布鲁士401” 可视化及数据分析工作站。
  • GMP附录《计算机化系统》法规解读之“为制药企业带来哪些影响?”
    上周,我们对GMP法规的新附录《计算机化系统》的新变化进行了解读。那么,这些变化对制药企业带来什么影响?企业又该如何应对由此带来的挑战?我们将和大家做进一步的探讨。 预期影响一:单机版色谱软件被网络版软件取代的步伐将加快目前,国内有些制药企业采用单机版色谱工作站来处理色谱数据,尤其是在规模较小的实验室(少于5套色谱系统),在仪器数量较少时,单机版软件初始成本较低,能满足实验室日常操作需求。当仪器数量超过5台以上,企业就需要考虑单机版和网络版软件的平均成本了。而《计算机化系统》附录对计算机化系统明确提出了验证的要求,如果按照这一要求来做,网络版软件在合规性和成本上的优势将越发显著。 1. 成本有效降低 按照以往的认知,网络版软件价格是贵于单套单机版软件的,通常在实验室规模化了之后,企业才会考虑。而现在,《计算机化系统》附录明确要求对每套计算机化系统进行验证,这将大大增加单机版色谱系统的验证成本。比如,如果一家企业的实验室有10套色谱系统,就意味着需要做10次验证,每一台仪器都需要作为独立系统逐一进行计算机系统验证。而一套网络版软件可接入多套仪器,而只在第一次部署的时候产生验证成本。未来再接入新仪器时,都只需对仪器硬件进行确认即可,无需再对软件进行全面的重新验证。这样下来,单机版和网络版的验证成本可能相差数十倍。 这种情况下,网络版软件无疑将成为制药企业满足验证要求的同时降低成本的有效途径。沃特世Empower 3网络版软件可控制包括安捷伦、PE、岛津、Thermo等在内的多家色谱系统,最大程度上将实验室的计算机化系统数量和类型减至最低,帮助制药企业摆脱单机版高昂的验证成本,一劳永逸地解决色谱系统的计算机化系统验证问题。 2. 数据的合规性与安全性 《计算机化系统》附录明确表示电子数据是可以接受的。其实电子数据相比纸质数据,可以更完整地反应数据的状态,包括:报告、仪器方法、积分方法、样品序列、审计追踪报告等。当电子数据变得越来越重要,它的合规性和安全性需要得到足够的保障。 单机版软件都会面临一个物理安全性的问题,那就是数据都存储于本地电脑,而电脑处于实验室环境中,存在客观的物理损坏、易被获取等风险。普通的电脑硬盘也有一定的工作寿命,一旦硬盘损坏,数据将会丢失。而网络版软件采用服务器将原始数据存储于更为安全的IT机房,并采用服务器的硬件镜像技术,确保了数据的物理安全性。此外,通过服务器可以实现数据的自动备份,并且可以将备份周期从原来的一个月或半年提高到每天,显著提高了便利性和效率。 除了确保电子数据的物理安全性,数据的逻辑安全性也要得到保障。所谓的逻辑安全性,即是通过软件自身的权限控制对数据的访问、录入、修改和删除等操作,确保不被人为误操作或有意的篡改行为而影响数据安全。Empower 3网络版软件基于Oracle数据库而开发,具有严谨详细的权限控制功能,通过权限控制使用户无法对仪器方法、积分方法和原始数据等进行篡改或删除,确保了数据的逻辑安全性。 图1. 通过Empower 3软件指导,管理员可确保该系统配置符合GxP和21 CFR Part 11的规定。 预期影响二:计算机化系统验证需求显著增长 计算机化系统验证比较耗时且操作复杂,需要多领域的专家花费大量时间去完成。沃特世从欧洲ISPE制药工程协会聘请了资深的验证咨询顾问(GAMP5指南的编辑之一),为国内企业提供全套专业的合规性和验证(Computer System Validation, CSV)服务,可协助广大用户顺利完成验证工作,使系统尽快投入运行,并满足法规要求。 下期文章中,我们将继续关注《计算机化系统》附录对制药企业带来的影响以及未来趋势,如数据备份、电子审批等,敬请关注。如您对法规、验证、软件产品等有任何问题,可发送邮件至yong_jin@waters.com,将您关心的问题告诉我们,沃特世信息学专家将尽快回复您。
  • 澳大利亚通报计算机和计算机显示器的强制性能效要求
    为了提高电器设备和各行业产品能源利用效率,提升显著的经济和环境效益,澳大利亚颁发了温室和能源最低标准法规(简称GEMS)并于2012年10月1日起生效,新的GEMS法规涵盖了以往的主要政策工作,包括强制性的最低能效标准(简称MEPS)和能源星级标签要求(简称ERLs),其主要目的是提高管制产品的能效,确保消费者能够做出选择,以提高能源、利用效率,降低能源消耗、能源成本和温室气体排放。GEMS法规规定凡是涵盖的产品,无论是在澳大利亚制造或出口至澳大利亚,在GEMS决定生效日期之后,必须满足决定的相关能效要求。   2013年6月12日,澳大利亚发布了G/TBT/N/AUS/75号通报,GMES法规中关于计算机和显示器的决定草案。   温室和能源最低标准(计算机)决定2013草案中规定了计算机产品的最低能效和产品性能要求,并给出了相关的测试方法,该决定拟于2013年10月1日起生效。其涵盖的主要设备包括台式计算机、一体式台式机、笔记本电脑、平板电脑(同时支持物理键盘和触摸屏)、小型服务器,不包括手持式计算设备(如PDA、掌上电脑或智能手机等)、游戏机、手持游戏设备、刀片式个人电脑、工作站、移动式工作站、不在小型服务器范围中的服务器设备、平板电脑(只支持触摸屏)、瘦客户机式计算机、高端的D类计算机。其中台式机、一体式台式机、笔记本电脑、平板电脑(同时支持物理键盘和触摸屏)须满足AS/NZS 5813.3: 2012中的年度典型能耗要求,小型服务器产品需要满足AS/NZS 5813.3: 2012中空闲状态和待机状态下的功耗要求。   其依据的主要标准:   AS/NZS 4665.1: 2005 外部电源性能要求第1部分:测试方法和能效标签   AS/NZS 5813.1: 2012 信息技术设备-计算机能效要求第1部分:能效测试方法   AS/NZS 5813.3: 2012 信息技术设备-计算机能效要求第2部分:计算机最低能效要求   AS/NZS 5814.1: 2012 信息技术设备-内部电源能效要求第1部分:能效测试方法   温室和能源最低标准(计算机显示器)决定2013草案中规定了计算机显示器产品的最低能效和能效标签要求,并给出了相关的测试方法。该决定拟于2013年10月1日起生效。其涵盖的主要设备包括对角尺寸不大于60英寸的计算机显示器,不包括专门用来显示数字信号或数字图片的电子显示器、专门用于显示广告的电子显示器、高性能电子显示器、专用电子显示器以及类似组合产品、电视机用显示器等类似装置。根据其显示器尺寸和分辨率,显示器应满足按照公式计算出的相应能效要求,显示器还应按照星级指数计算公式标识出相应的星级标签。   AS/NZS 4665.1: 2005 外部电源性能要求第1部分:测试方法和能效标签   AS/NZS 5815.1: 2012 信息技术设备-计算机显示器能效要求第1部分:能效测试方法
  • GMP附录《计算机化系统》法规解读之“如何管理非色谱类数据?”
    上一期中,我们预期了GMP法规新附录《计算机化系统》将为制药企业带来的影响,提到Empower 3网络版软件可以解决色谱数据的安全性、合规性和备份问题。那么,对于非色谱类仪器,如何解决它们的数据管理问题?本期我们将进行详细的讨论。 根据《计算机化系统》附录的要求,除了色谱类(LC和GC)数据,实验室也要确保非色谱类数据的安全性和合规性,比如质谱、红外、核磁等仪器。对于这些无法通过Empower网络版软件控制的系统,沃特世提供另一种数据管理解决方案——NuGenesis SDMS科学数据管理系统,它可以自动采集、编目原始数据和报告数据,将来自任何仪器的原始数据归档至安全、可靠的Oracle数据库中,符合电子记录和电子签名的规定等,最终帮助企业满足法规要求。 数据备份、归档 CFDA的《计算机化系统》法规附录里强调了电子数据的备份和归档的重要性,不论是以电子数据作为主数据,还是纸质打印件作为主数据。而FDA也认为,完整、准确的数据副本非常重要,因为纸质打印件已不再适合代替电子数据。NuGenesis SDMS以Oracle作为底层数据库,可以自动、准确地采集原始数据和报告数据,并归档到数据库中;可对数据的变化进行追踪,并将每一次变化保存到数据库,保护其不被篡改。相比其他备份软件采用的固定备份周期,如:每天一次或每周一次,NuGenesis SDMS对数据进行实时备份,显著降低了故障发生时的数据丢失率。 审计追踪 通过“审计追踪”功能,可追踪对数据的访问的更改,是维护系统安全的关键。审计追踪不完整或缺失会影响数据的完整性,甚至影响产品质量。从过去的审查案例中可以看到,通过审计追踪可以有效发现是否有数据操纵行为发生。而当在审查过程中发现数据偏差时,审计追踪显得尤为重要。 NuGenesis科学数据管理系统(SDMS)审计追踪自动生成,能够为所有非色谱类系统提供: 1. 采集所有历史信息(人员、时间、内容),包括任何数据的插入、对元数据的修改、记录副本及删除等动作。 2. 不允许更改数据本身。 3. 追溯用户权限的修改。 4. 识别无效或已修改的记录。 5. 能够对所有原始数据和报告数据进行校验确认,保护系统内的数据免遭修改。这些功能大大降低了信息丢失或修改的风险,保持记录的完整性。当面临审计要求、要提供客观证据时,可以从在线NuGenesis SDMS数据库中快速、方便地找到证明文档,而无需人工翻查纸质打印报告,显著提高了效率。 电子审批 《计算机化系统》附录明确认可电子数据和电子签名,这意味着原始数据可以不用像以往那样打印出来再签名,直接对电子数据进行签名是合规的。在不久的将来,制药企业或将由传统的纯纸质记录逐渐转向更为灵活的电子数据和信息环境。如果企业决定采用电子审批,那么同样的,Empower网络版软件可以快速、方便地解决色谱类仪器的电子签名;而对于实验室中的非色谱类仪器,同样可以交给NuGenesis SDMS去解决它们的电子审批过程。 虽然《计算机化系统》附录并没有明确电子签名的相应法规,但从NuGenesis SDMS在满足21 CFR Part 11对电子签名的要求中可以看出,它可以提供一系列功能,满足Part 11对电子签名的要求。 1. 签名的显示——NuGenesis SDMS中的电子签名可显示:1)签名者的完整印刷体姓名;2)执行签名的日期和时间;3)签名的含义(复核、审批、授权、职责)。在签署记录时,这些都是必需要素。此外,NuGenesis SDMS可防止电子签名被重新分配和使用,不允许在应用电子记录后删除该电子记录中的签名信息,确保了电子签名的唯一性。 2. 签名/记录链接——NuGenesis SDMS能够在电子签名和原始电子记录间建立无法破坏的链接,确保签名无法被删除、复制或转移。 以上仅列出了NuGenesis SDMS的几项关键功能,帮助制药企业轻松、可靠地管理非色谱类仪器数据,满足合规性要求。 如您对法规、软件等有任何问题,欢迎继续通过微信向我们留言或发送邮件至yong_jin@waters.com,我们将在下期文章中收集读者最关心的问题,给予详细的解答,敬请关注。
  • 南科大科学家获固态量子计算突破,实现单原子直写的量子计算芯片
    如今,量子计算研究已成为全球科技发展的一大热点,各主要国家高度关注量子计算的发展,启动国家级量子战略行动计划,大幅增加研发投入,同时开展顶层规划以及研究应用布局。同时,国际产业界也纷纷投资量子计算,如谷歌、IBM、英特尔、微软等巨头企业更是积极推动量子计算产业的发展,其中以谷歌公司在 2019 年首次实现量子霸权,为产业界在量子计算方面发展的标志。据波士顿咨询公司(Boston Consulting Group)预测,量子计算机将很快开始解决许多今天的计算机无法解决的工业问题。那么量子计算机离我们还有多远呢?从当前硬件、算法和计算机架构上来说,量子计算机还不是很成熟。在 20 多年前,澳大利亚的量子计算机专家 Bruce Kane 在《自然》上发表了名为“A silicon-based nuclear spin quantum computer”论述了搭建硅基量子计算机的问题,并指出之中的关键是要将量子比特放置在间距 10—20nm 时所能够实现的一种两比特门。众所周知,我们的电脑是由很多具有特定功能的复杂电路组成,其中就有很多逻辑门电路。这些逻辑门电路及其有序组合就是电脑中形形色色的功能的基础,进而成就了人类数字社会的今天,而逻辑门操作的稳定性和开关特性决定了电脑的很多关键性能,例如计算速度等。这种特殊的两比特门就像是我们通向通用硅基单原子量子计算机的最后一道门一样,来自南方科技大学的贺煜副研究员也许就是开启这扇通向单原子级别硅基量子计算大门的开门人。他和团队成员一起,利用高精度微纳加工方式,将两个磷原子构成的量子点分别放置在相距 13nm(也就是130)的位置上,实现了第一个适用于量子计算机的高速两比特门。图 | 《麻省理工科技评论》中国区“35 岁以下科技创新 35 人”榜单入选者贺煜贺煜现在是南方科技大学量子科学与工程研究院的副研究员、独立 PI、硅量子器件和量子计算方向团队带头人。多年来,他在量子计算和量子网络方面取得了系列开创性成果,利用前沿量子技术操纵单个原子、电子和光子,在微观世界构建未来信息技术。突破关键量子门,推进量子计算机构建从硬件的角度来说,如果能基于硅制作量子计算机无疑是最方便的,因为从材料上来说,硅在地球上的含量是十分富足的。再者,如今的半导体工艺大都基于硅材料,那么与传统半导体工艺的兼容性也能使得量子计算机的构建变得更加方便。在 2019 年,贺煜带领团队证明了硅基磷原子体系第一个两比特门,是满足通用量子计算判据的最后一条,也正是 Bruce Kane 提出的量子计算方案中关键的一环。来自南方科技大学的俞大鹏院士以此推荐贺煜博士入选“35 岁以下科技创新 35 人”榜单,并表示:“这个工作为大规模量子计算芯片奠定了坚实基础,是一个里程碑式的工作。”该成果以封面文章发表在《自然》上,贺煜为第一作者,且该工作被列为“2019 年量子计算实验十大进展”。图 | 贺煜发表在《自然》的论文贺煜创造性地采用扫描隧道显微镜技术(STM)实现纳米尺度芯片加工,成功地以单原子级别的精度将两个磷原子构成的量子点放置在 13 纳米间距上,在硅基量子芯片上实现了第一个高速两比特门——800 皮秒的根号交换门,并实现了利用全统计计数方法对比特读出保真度的优化、参与构建比特读出保真度分析的理论工作等。这是一种高精度的微纳加工方式,可用于制备单原子、单电子量子器件以及人工量子材料,并能够实现单原子尺度的量子计算,为大规模可扩展的硅基量子计算奠定了坚实基础。师从潘建伟院士和陆朝阳教授多年来,贺煜在量子计算和量子网络方面取得了系列开创性成果,用前沿量子技术操纵单个原子、电子和光子,在微观世界构建未来量子信息技术平台。回顾他的求学之路,用“根正苗红”来形容再合适不过。自本科起,贺煜就在中科大这片量子的土壤中成长,并以优异的成绩保送本校硕博连读。期间在导师潘建伟院士和陆朝阳教授的指导下,贺煜主要研究砷化镓自组装量子点,核心成果包括一系列单光子源方面开创性工作,以及首次观察到自发辐射谱线擦除效应——实现量子光学的实验突破,以及单光子向单电子自旋的量子传态等。谈及选择量子技术作为研究方向的原因,他告诉 DeepTech:“之所以一直选择量子物理、量子计算的方向,首先是兴趣爱好,是自己对于微观世界的好奇心和对量子世界的喜爱所驱动,其次是因为量子计算是一个将改变人类未来的前沿科技,尤其是硅量子计算芯片具有很大的产业潜力,希望通过自己的耕耘为社会贡献一份力量,为科学发展做一份努力。”图 | 贺煜发表在《自然-光子学》的论文2015 年以后,贺煜继续在陆朝阳教授团队做了半年的博后研究,结合博士期间的工作,实现了当时世界最高光子数玻色抽样——证明了量子计算机对于第一台电子管计算机 ENIAC 的超越和第一台晶体管计算机 TRADIC 的超越,研究成果以论文形式发表于 2017 年的《自然-光子学》上,并入选“2017 年中国十大科技进展新闻”。论文指出,为完成高性能玻色抽样实验,研究团队克服的技术难点有两个:一是基于砷化镓量子点,研究团队设计了稳定的高亮度单光子源;二是设计并使用了性能卓越的多光子干涉仪(multiphoton interferometers),其传输效率高达 99%。研究团队完成并实现了 3 光子、4 光子以及 5 光子玻色抽样实验,采样率分别为 4.96kHz、151Hz 和 4Hz,都达到之前实验的 24000 倍以上。图 | 贺煜团队开发的高性能玻色抽样实验平台这是一项十分惊人的突破,是首次量子计算机超越传统计算机的案例。火车刚刚出现时比马车还慢,飞机刚刚问世时只能在空中短暂停留,如今都是改变生活的重要科技成果。量子计算机从理论上来说,会比传统计算机快很多,是基于量子比特运行的计算机。通过量子物理学中的两个奇异的原理——“纠缠(entanglement)”和“叠加(superposition)”,量子计算机能以指数形式扩展计算机的处理速度。着眼未来,布局固态量子网络从根本上来说,量子计算机目前仍处在产业发展的初期阶段,但军工、金融、石油化工、材料科学、生物医疗、航空航天、汽车交通等行业都已注意到其巨大的发展潜力。随着时间的推移,预计 2050 年左右将达到每年 3000 亿美元的营业收入,将成为改变世界的下一代技术革命关键领域之一。回顾计算机的发展历史,世界上的第一台计算机是 ENIAC,它生于第二次世界大战,主要任务是计算弹道,是一台军用计算机。而计算机的全面普及其实与商业计算机的出现和网络的构建息息相关。那么量子计算机会不会也沿着这一条“老路”发展呢?这也是一个值得思考的问题。贺煜认为,量子计算机要走向应用,量子网络和通信是十分关键的技术,必须做以突破。如今他任教于南方科技大学,除了量子计算之外,主要研究方向还有量子网络。2017 年,他和团队实现了单光子到单电子的量子传态,开发了一整套全新的单光子频率比特控制和测量方案,验证了单个光子和电子之间的纠缠,并且把光子的量子信息传递到 5 米远的电子自旋上去,为固态量子网络研究的重要突破。图 | 贺煜及研究团队完成的“单光子-单电子”量子传态而谈及接下来的研究方向,贺煜表示:“根据硅量子计算的发展趋势,在南方科技大学量子科学与工程研究院,我将带领硅量子计算团队,研究硅基量子计算芯片和量子计算,从根本问题入手,解决目前的一些技术瓶颈:进行硅基单原子量子器件的基本物理研究;研究新型的硅基原子比特和研究比特耦合技术;利用低温扫描隧道显微镜直写技术构建新型芯片等。并将研发的新工艺和半导体芯片产业化进行对接,为将来的广阔商业前景奠定基础。”
  • 朗诚《海洋浮标自动监测系统》获得计算机软件著作权证书
    经中华人民共和国国家版权局审核,根据《计算机软件保护条例》和《计算机软件著作权登记办法》的规定,由深圳市朗诚实业有限公司自主研发的《海洋浮标自动监测系统》于2011年11月18日获得中华人民共和国国家版权局颁发的《计算机软件著作权登记证书》。即日起,其版权将得到&ldquo 中国版权保护中心&rdquo 的有效保护。 海洋浮标自动监测系统是基于自动监测浮标的监测对象,分别对水质、气象、营养盐等各类数据信息进行综合管理,建立模型对数据进行分析、评价,开发管理决策专题子系统,满足海上运动赛区环境监测、海水浴场与滨海旅游区环境、赤潮灾害监测预警、海洋排污监控管理、海洋环境信息发布等功能,为政府管理部门、海上运动执行部门、海水浴场和滨海旅游区管理部门、及其它涉海企业、社会公众等提供海洋环境信息应用服务。 附证书:
  • 量子计算机的“心脏”长啥样? 揭秘量子计算机核心部件--离子阱
    量子计算机前段时间着实在朋友圈火了一把,这主要得益于中国科学技术大学陆朝阳教授和潘建伟教授领导的科学团队研发出10个比特的超导量子计算机的重要成果。经过各大新闻的争相播报,它现在不仅是“人尽皆知”,更让我国在量子领域步入国际行列。那么,量子计算机究竟是什么样的呢? 简单来说量子计算机是一个计算速度非常快的计算机,如果将现代的计算机比做自行车,那量子计算机就是飞机。但是对于它的长相,我们现在无法想象,就好比处在晶体管和电子管时代的人不能想象出超大规模集成电路的计算机长什么样。谁曾想过智能手机芯片已经“完爆”了占地上千平方米的初期计算机呢! 话不多说,今天就带你看看现在的量子计算机长啥样。目前初阶段的量子计算机还真说不上高颜值,跟早期计算机一样,它的“身躯”遍布在实验室的各处。但是谈到关键部分,也就是量子计算机的“心脏”,那可就是“高大上”了。与现在计算机的cpu不同,量子计算机的核心部分是参与运算的量子比特,通常来说是相干光子或离子。产生这些相干光子或离子的方法通常有超导环和离子阱两种方法。其中超导环在多量子比特拓展方面还有一些困难,从而离子阱成为目前较为优势的手段。而无论是超导环还是离子阱,这些器件的稳定运行都需要端苛刻的外界条件,那就是超高真空和低温,也就是说他们要冻在抽真空的“冰箱”里...... advanced microfabricated ion traps. left: high-optical access (hoa) trap from sandia national laboratories (image courtesy of duke university). right: ball-grid array (bga) trap from gtri/honeywell (image courtesy of honeywell). 上图中的器件就是典型的芯片式离子阱,用于产生量子比特的原子就在该芯片的中心位置被激发并被电磁场和库伦相互作用所束缚。而下图是为芯片提供超高真空和超低温环境的montana超精细光学恒温器。该恒温器具有超低温(3k)、超高真空的特点,并且提供多路自由光学通道和光线通道以及多可达100根电学引线,是量子计算机的“心脏”所在。(做为离子阱的标准装置,图片来源于christopher monroe发表在《nature》旗下《量子信息》杂志上的综述文章)。说完“心脏”的外观,那这个心脏的能力如何呢?采用传统离子阱式的量子计算机方案能做到多少比特呢?预计是50个!不要小看这个数字哦,如果能够完全利用它们的相干性,那就是250个数据量,并且信息处理速度可以达到ghz。经过改进的新型离子阱预计可以达到1000个量子比特甚至更多,计算能力和信息量也会大大增加,这会给以后的计算机带来天翻地覆的变化。 compact cryogenic uhv enclosure for trapped ions. (a) on-package vacuum enclosure, sealed in a uhv environment, that contains the ion trap, getter pumps and the atomic source. (b) upon installation and cooling in a compact cryostat, the uhv environment is established. (c) the optical components can be arranged in a compact volume around the cryostat to support the ion trap operation. 后再次祝贺quantum design的用户陆朝阳教授和潘建伟教授在量子计算机领域取得的惊人成就,希望祖国科研再上新台阶。相关参考文献:co-designing a scalable quantum computer with trapped atomic ions. npj quantum information (2016) 2, 16034相关产品链接:美国montana无液氦超低振动低温光学恒温器 http://www.instrument.com.cn/netshow/c122418.htm无液氦低温强磁场共聚焦显微镜 http://www.instrument.com.cn/netshow/c159541.htm低温纳米位移台-attocube http://www.instrument.com.cn/netshow/c80795.htm
  • 国产量子计算超低温温度传感器研制成功
    量子芯片运行对温度环境要求极为苛刻,如何实时监测温度变化,了解制冷机运行状态?近日,记者从安徽省量子计算工程研究中心获悉,国产量子计算超低温温度传感器研制成功,并已投入国产量子计算机中使用。安徽省量子计算工程研究中心相关研发团队负责人张俊峰向记者介绍:“随着稀释制冷机技术的发展,国内外稀释制冷机技术越来越成熟,与之相配套的温度测量需求也不断加大。为了保证量子芯片在合适的温区运行,需要实时监测量子芯片运行的温度环境,这款传感器就像是‘量子芯片温度计’,可实时监测温度变化。”该超低温温度传感器由合肥本源量子完全自主研发,支持实时温度监测,具备较高测量精度等优势。该产品通用性很广,可以非常方便地安装到稀释制冷机上,目前已投入国产量子计算机中使用。张俊峰表示,量子芯片是量子计算机的核心器件,实时监测量子芯片运行的温度环境能够对整个量子计算机系统起到关键性作用。该国产超低温温度传感器的成功研制,使我国在极低温领域的温度测量精度达到国际先进水平,向着量子计算机完全自主可控迈出了重要一步。
  • “生物计算”:比超级计算机更聪明、高效、紧凑
    上图 真菌可能与标准电子设备相连。图片来源:安德鲁阿达马茨基下图 实验室培养的脑细胞可用于计算。图片来源:托马斯哈滕/约翰斯霍普金斯大学细菌和超级计算机有什么区别?区别是细菌更“高级”,因为它有更多的回路和更强的处理能力。所有生命都在“计算”。从响应化学信号的单个细胞,到在特定环境中航行的复杂生物体,信息处理是生命系统的核心。经过数十年的尝试,科学家终于开始收集细胞、分子甚至整个生物体,来为人类自己的目的执行计算任务。从本质上讲,计算机也只是信息处理器,而且人们越来越认识到大自然拥有丰富的这种能力。最明显的例子是复杂生物体的神经系统,它能处理来自环境的大量数据并对各种复杂的行为“下指令”。但即使是最小的细胞,也充满了复杂的生物分子通路,这些通路响应输入信号,打开和关闭基因、产生化学物质或进行自我组织。最终,生命中所有令人难以置信的壮举,都依赖于DNA存储、复制和传递遗传指令的能力。如何构建一台生物计算机?生物系统有自身的独特优势:更紧凑、能源效率更高、可自我维持和自我修复,而且特别擅长处理来自自然界的信号。在过去的20年里,强大的细胞和分子工程工具让人们终于能在构建生物计算机领域迈出一步。美国麻省理工学院生物合成学家克里斯托弗沃伊特说,该方法的核心是“生物电路”,类似于计算机中的电子电路。这些电路涉及各种生物分子相互作用以获取输入,并对其进行处理以产生不同的输出,就像它们的硅对应物一样。通过编辑支撑这些过程的遗传指令,人们现在可以重新连接这些电路以执行自然界从未计划的功能。2019年,瑞士联邦理工学院利用CRISPR技术,构建了相当于计算机中央处理器(CPU)的生物等效物。这个CPU被插入一个细胞,在那里它调节不同基因的活动以响应专门设计的RNA序列,使细胞实现了类似于硅计算机中的逻辑门。印度萨哈核物理研究所在2021年更进一步,诱使一群大肠杆菌计算简单迷宫的解决方案。该电路分布在几个大肠杆菌菌株之间,每个菌株都被设计用来解决部分问题。通过共享信息,该电路成功地实现了如何在多个迷宫中导航。大多数生物系统并不同于经典计算机的二进制逻辑,它们也不会像计算机芯片那样一步步解决问题。它们充满了重复、奇怪的反馈循环和以不同速度并排运行的截然不同的过程。更怪异的是,生物的计算能力还能完全脱离其自然环境。瑞典隆德大学科学家正在试验一种完全不同的生物计算方法,使用由分子马达驱动的微小蛋白质丝围绕迷宫推进。迷宫的结构经过精心设计,而细丝能同时探索所有路线。这意味着解决更大的问题不需要更多的时间,只需要更多的细丝。重新设计生物系统会带来什么?但美国马萨诸塞州塔夫茨大学的迈克尔莱文认为,生命系统已经在生物学的各个层面展示了令人惊叹的计算壮举,人们应该将重点从尝试重新设计生物系统,转移到寻找与现有系统交互的方法。莱文实验室已经证明,他们可以操纵细胞之间的电通信,帮助它们决定如何以及在哪里生长。举个恐怖的例子,这可能让蝌蚪的内脏上长出眼睛,或让青蛙长出额外的腿。它并不等同于计算,但团队认为它代表了如何将自然界预先存在的电路折射为一个“新目标”。类似的方法可用来解决广泛的计算任务。此外,真菌计算的深奥领域也正在显示其应用潜力。英国布里斯托尔西英格兰大学研究显示,真菌在感知pH值、化学物质、光线、重力和机械应力等方面具有的能力令人印象深刻。它们似乎使用电活动的尖峰进行交流,这开辟了将它们与传统电子设备连接的前景。类器官智能有多智能?要探寻生物计算,离不开人们迄今已知的最强大计算设备:大脑。当前组织工程学的进步意味着,科学家们可从干细胞中培育出相当于微型大脑的复杂神经元簇,也就是“大脑类器官”。与此同时,能将信号传输到脑细胞并能解码它们的反应,意味着人们已经开始试验类器官的记忆和学习能力。今年早些时候,美国约翰斯霍普金斯大学团队概述了“类器官智能”这一新领域的愿景。目标与人工智能相反:他们不会让计算机更像大脑,而是试图让脑细胞更像计算机。初创公司Cortical已可训练在硅芯片上培养的人类脑细胞来玩电子乒乓游戏Pong。而在它们的新软件中,任何具有基本编码技能的人都能为“培养皿大脑”编程。不过,所有这些生物计算方法目前都远未成为主流。与设计和制造硅芯片的能力相比,人们操纵生物学的能力仍处于初级阶段。但生物计算的巨大潜力和投入生物技术的数十亿美元,将在未来几年为这个领域带来快速进步。
  • 量子计算用极低温稀释制冷机打破两项纪录
    作者:吴长锋 来源:科技日报3月26日,安徽大学物质科学与信息技术研究院单磊教授、王绍良研究员团队自主研发的“量子计算用国产极低温稀释制冷机”项目,顺利通过鉴定委员会鉴定。专家认为,研制的极低温稀释制冷机满足量子计算需求,连续稳定运行的最低温度为8.5mK,项目创造了已公开报道的连续运行最低温度和制冷量两项国内纪录。安徽大学供图“量子计算用国产极低温稀释制冷机”是一种能够提供接近绝对零度低温环境的高端科研仪器,是现代量子科学研究与量子技术发展的关键核心设备之一。由领域内知名专家组成的鉴定委员会听取了项目工作汇报,审阅了技术报告和相关技术资料,考察了实验现场,查看了系统运行状况;经质询、答疑和讨论,一致认为:针对无液氦、极低温、大冷量、大空间、高稳定性等量子计算需求,单磊教授、王绍良研究员团队成功研制出无液氦型量子计算用极低温稀释制冷机,连续循环运行最低温度达到8.5mK。相关成果增强了我国相关基础科学和技术领域的原始创新能力,进一步解决了大摩尔流量条件下极低温流体热交换效率低的技术难题,研发出具有超大比表面积的极低温高效换热部件,同时实现了相关核心部件的完全自主研发,扭转核心技术“卡脖子”的被动局面。据悉,去年12月31日,这台机器已经获得在100毫K具有435微瓦和120毫K具有671微瓦的制冷量,达到国际主流产品的水平,满足量子计算的温度和冷量需求。
  • 我国研制出新一代云计算操作系统
    就在作为舶来品的“云计算”热浪余热未消时,10月出版的最新一期《国际云计算杂志》(International Journal of Cloud Computing)以长达百余页的专辑形式介绍了我国科学家研制的新型云计算操作系统TransOS,给了IT业界一个“意外”,引起国际科技新闻界的广泛关注。   在题为《TransOS:基于透明计算的云操作系统》的论文中,中国工程院院士、中南大学校长张尧学首次向国际业界全面介绍了新一代网络化操作系统TransOS:它将包含传统操作系统、应用程序和数据的“代码”全部存储在一台服务器(云)上,允许多台只装有少量代码的“裸机”连接访问,用户只需动态调用必要代码即可运行。在该组专辑其他文章中,来自清华大学、英特尔公司以及日本和加拿大的研究人员分别从数据管理、实现案例、移动和嵌入式设备上的应用及隐私保护模式等方面对该操作系统进行了详尽讨论。   TransOS基于“透明计算”的理念研制。该理念最早由张尧学于2004年提出,其核心是将存储与运算分离、将软件与硬件(终端)分离,通过有缓存的“流”式运算,将计算还原为“不知不觉、用户可控”的个性化服务。在这种模式下,操作系统被视为一种网络资源从终端“剥离”。   这一变化导致了诸多改变的发生,使TransOS成为了名符其实的“管理操作系统的操作系统”,它不仅占用资源更少、可靠性更高,更具有谷歌Chrome等类似云操作系统所不具备的跨平台、跨设备操作的优点,不仅可在个人电脑、服务器、智能手机、平板电脑乃至智能家电上运行,而且适用于苹果、谷歌、微软等公司开发的不同平台,从而打破了不同“云”之间的垄断和分割。   张尧学告诉记者,尽管TransOS对经典的冯诺依曼计算机体系结构进行了“革命性改进”,但在网络足够快的条件下,用户几乎感觉不到后台这种变化的存在。   该组文章发表后,国际知名新闻媒体《每日科学》(ScienceDaily)、《技术视野》(TechEYE), 《每日技术新闻》(TechNewsDaily)等媒体分别以《在云中的操作系统:TransOS或将取代传统桌面操作系统》,《中国人希望把计算机大脑放在云中》,《研究人员将操作系统推送到云中》等为题进行了报道。   对TransOS的应用前景,张尧学保持了谨慎的乐观。他向记者表示,TransOS目前还不会对现有的桌面式操作系统造成威胁,但会派生出许多新的终端、产生大量新的应用机会。他同时坦承,由于TransOS对网络带宽提出了更高要求,这将使对高速互联网的需求变得更为迫切。
  • 硬科技出海!国仪量子量子计算装置交付美澳发达国家
    以“第二次量子革命”为代表的新一轮科技革命和产业变革方兴未艾,越来越多的国家将量子信息技术定义为国家战略级科研项目。2021年3月起,多家欧美高校着手引入国仪量子的高端科学仪器,成为发达国家在量子信息领域持续加大投入的一个缩影,也显示出中国在量子科技产业化发展方面取得长足进步。 基于金刚石NV色心的量子计算教学机2021年9月,美国纽约州立大学石溪分校收到一台金刚石量子计算教学机。这台用于开展近代物理实验教学和NV色心科学研究的科学仪器,由中国的国仪量子公司自主研发、生产并提供实验教学解决方案。“我们是今年3月发起需求的。量子计算是量子信息中心最重要的一门课程,为了使学生更好地了解和体验量子计算,我们计划利用金刚石量子计算教学机为学生提供量子计算实验课程。”纽约州立大学石溪分校量子信息中心主任Eden Figueroa介绍,根据学校计划,2021年下学期,即9月份将正式以线上线下相结合的方式开始教学。 美国纽约州立大学石溪分校产品交付在此之前,澳洲两所知名学府也基于这款仪器制定了教学计划。为结合学校量子教育计划、量子计算与量子通信卓越中心(CQC²T),2021年8月,澳大利亚昆士兰大学采购了金刚石量子计算教学机,结合现有的量子力学、量子计算理论课程,用于量子人才的培养和量子计算基础教学。 澳大利亚昆士兰大学产品交付另外,澳大利亚麦考瑞大学也向国仪量子下了采购订单。麦考瑞大学Thomas Volz表示,“我们2022年第一学期将开设量子计算的理论课程,同时,由几位研究金刚石NV色心的老师共同提交的量子计算实验课,也已经通过学校的审批。购买金刚石量子计算教学机符合学校建设量子中心的长远目标,同时满足学校正常授课的需求。” 金刚石量子计算教学机当前各国政府都在积极布局量子信息产业,然而全球量子人才普遍短缺,亟需高校重点培养相关人才。美国诺特丹大学、阿联酋沙迦大学等名校也计划与国仪量子展开合作,而在此之前,基于金刚石量子计算教学机,中国近百所知名高校和顶级中学开展了实验教学课程。 2020年12月,江苏省锡山高级中学量子计算实验课正式开课国仪量子的金刚石量子计算教学机,是一台基于金刚石中NV色心和自旋磁共振为原理,通过控制激光、微波、磁场等物理量,对NV色心的自旋进行量子操控和读出,从而实现量子计算功能的教学仪器。该仪器在室温大气条件下运行,桌面型的设计让它能适应各种不同的教学环境,无论是在课堂还是实验室,都可以进行量子力学与量子计算实验教学。 量子计算教学机光路模块国仪量子是一家源自中国科学技术大学的高新技术企业,自主研发的量子精密测量仪器应用于量子计算、材料科学、生命科学、医疗诊断、药物研发、环境科学、食品科学等众多领域,已交付到遍及全球的高校、企业、医院等数百家单位,如美国加州伯克利分校、德国美因茨大学、多特蒙德工业大学等。目前,除了金刚石量子计算教学机,国仪量子的高端科学仪器如量子钻石原子力显微镜、电子顺磁共振波谱仪等,也在国际市场发力。 量子钻石原子力显微镜中国科技创新令人瞩目,一批具有国际竞争力的优势产业和高新技术企业迈向全球。科学仪器是经济发展和产业进步的一面镜子,随着中国经济的快速发展和科技水平、创新能力的大幅提升,中国的科学仪器正在世界舞台上崭露头角。
  • 扫描电镜在列!日本扩大对半导体、量子计算相关四项技术出口限制
    仪器信息网讯 据日本媒体报道,4月26日,日本经济产业省(METI)对外宣布,将半导体和量子科技领域的四个品类纳入全新的出口管控名单。这意味着,日本面向全球任何国家和地区出口这些货物,都需经过官方政府的审批流程。这一举措的背后,是日本这样拥有相应技术的国家率先实施限制,以防止这些新兴技术被不当利用,尤其是被转用于军事目的。出口管制措施日本政府本次措施将影响用于分析纳米粒子图像的扫描电子显微镜,以及三星电子公司采用的用于改进半导体设计的全栅晶体管技术,还要求量子计算机中使用的低温CMOS电路以及量子计算机本身的运输都必须要取得许可证。在部分国家,这些品类在国际间形成共识之前就已被纳入管理范畴。日本也紧跟这一趋势,相应提高出口管制的实效性。经济产业省表示,这些措施旨在更好地监管军事用途设备的出口,该措施与世界各地实施的措施类似。还补充道,这一变化从4月26日到5月25日征集公众意见,意见征集结束后公布,最早将于7月生效。目前,国际社会在《瓦森纳协定》的框架下,主要就限制品类展开深入讨论。各国基于协定所达成的共识,进一步将其融入本国的限制清单之中。但在《瓦森纳协定》中,新增品类必须得到全体成员国的共同认可,这使得协定在应对技术进步时稍显滞后。不过,日本此次所限制的品类将依照既定计划,逐步纳入《瓦森纳协定》的范畴。4月24日,日本经济产业省发布的中间报告明确了出口管制制度的调整方向。针对《瓦森纳协定》框架内难以达成共识的品类以及紧迫性较高的新技术,报告强调了与志同道合的国家先行实施限制措施的必要性,以应对当前复杂的国际技术交易环境。商务部回应根据商务部网站29日消息,商务部新闻发言人表示:“我们注意到,日本政府宣布拟对半导体等领域相关物项实施出口管制,中方对此表示严重关切。”商务部新闻发言人称,半导体是高度全球化的产业,经过数十年发展,已形成你中有我、我中有你的产业格局,这是市场规律和企业选择共同作用的结果。一段时间以来,个别国家频频泛化国家安全概念,滥用出口管制措施,人为割裂全球半导体市场,严重背离自由贸易原则和多边贸易规则,严重冲击全球产业链供应链稳定。日方拟议的有关措施,将严重影响中日企业间的正常贸易往来,损人不利己,也损害全球供应链的稳定。商务部新闻发言人表示,中方敦促日方从双边经贸关系大局出发,及时纠正错误做法,共同维护全球产业链供应链稳定,中方将采取必要措施,坚决维护企业正当权益。拓展阅读早在去年1月,华盛顿官员游说日本和荷兰等国际伙伴对中国实施贸易制裁,美国、日本、荷兰就美国拜登政府主导的尖端芯片技术对华出口限制达成协议。日本随后修改外汇法相关法规,宣布加强尖端芯片领域出口管制,被限制出口的芯片制造设备共有23种,涵盖清洁、沉积、退火、光刻、蚀刻和测试。自去年7月始,该管制正式实施。去年7月日本相关管制措施正式生效前,中国商务部发言人曾评论称,个别国家将经贸问题政治化,泛化国家安全,在半导体等领域人为削弱同中国的联系,这将严重损害双方企业利益,破坏产业界长期以来形成的互利共赢的合作格局,冲击全球产业链供应链安全稳定。希望日方从维护自身利益和中日经贸合作大局出发,信守自由贸易和市场经济承诺,遵守国际经贸规则,避免对两国经贸合作进行政治干扰、限制企业正常自主经营和企业间公平竞争。
  • 喜讯丨国仪量子金刚石量子计算教学机全球出货突破100台!
    近日,国仪量子金刚石量子计算教学机全球出货突破100台,走进海内外近百家单位,覆盖大学物理实验教学和中小学创新教育等多种应用场景。全球布局量子人才培养计划量子科技发展具有重大科学意义和战略价值,是一项对传统技术体系产生冲击、进行重构的重大颠覆性技术创新,将引领新一轮科技革命和产业变革方向。技术创新关键在人才,世界各国在布局量子信息产业时都将量子科技人才培养放到重要位置。2018年12月,美国通过《国家量子倡议》法案,开启量子领域的“登月计划”,国家科学基金会获资2.5亿美元,支持量子科技人才建设。欧盟从2018年开始,投入10亿欧元实施“量子旗舰”计划,总计划在学术界和工业界涉及超过5000名欧洲研究人员。英国在牛津大学等高校建立量子研究中心,投入约2.5亿美元培养人才。我国加大量子人才培养力度在2020年10月16日中央政治局第二十四次集体学习中,习近平总书记就量子科技研究和应用前景强调:要充分认识推动量子科技发展的重要性和紧迫性,加强量子科技发展战略谋划和系统布局,把握大趋势,下好先手棋。指出要加快量子科技领域人才培养力度,加快培养一批量子科技领域的高精尖人才,建立适应量子科技发展的专门培养计划。金刚石量子计算实验装置“圈粉”全球作为国内首家入选教育部“产学合作 协同育人”项目的量子科技企业和量子信息实验教学整体解决方案提供方,国仪量子一直致力于将量子科技研究成果产品化。其中,在室温条件下运行的金刚石量子计算实验装置,可以让学生亲身体验量子操控、量子算法,有效促进了量子技术工程师和交叉应用型人才的培养,已与南京大学、复旦大学、上海交通大学、中国科学技术大学等高校合作,开设实验课程并取得良好效果。2020年12月,江苏省锡山高级中学正式开课,这是量子计算首次进入中国中小学课堂,将助力量子科技人才梯队储备的形成。此外,该实验装置在美国纽约州立大学石溪分校、澳大利亚昆士兰大学等海外单位的交付,让中国量子科技闪耀国际舞台。国仪量子金刚石量子计算教学机的“从零到一”和“从一到百”,是我国量子科技发展突飞猛进的一个缩影。在多国竞逐量子信息技术的规模化应用和我国加快实现科技自立自强的进程中,更多量子科技创新成果将“从百到万”,赋能千行百业。
  • 禾工AKF-1卡尔费休水分仪进入特种纤维行业,测量“叔丁醇”中的水分含量
    常熟灵达特种纤维有限公司于2011年与杜邦共同研发环保型地毯纱——杜邦Sorona(索罗那),并成为了全国独家Sorona环保型地毯纱线的生产商。 于2017年4月客户经对我们公司的了解和对仪器的考察,最终在国内外仪器层层筛选中选择在我司购买一台生产线中要使用到的卡尔费休容量法水分仪设备。对于这款目前市场上售价只有26800的全自动卡尔费休水分测定仪,除了常规的数据存储,自动计算,外接打印等功能外,大部分连接件采用模具制作,并设计了滴定延迟,延迟滴定。仪器使用三四年的日常零配件销售成本只有最多区区不过几百元,更是感觉仪器购买的绝对超值。 在确认仪器签收后,客户联系到禾工销售部经理,安排专业技术人员赴江苏地区进行AKF全自动卡尔费休水分测定仪的安装调试作业工作。 仪器安装完成后,我司专业技术人员协助用户一起使用禾工AKF-1水分测定仪对样品“叔丁醇”(中文名称:2-甲基-2-丙醇、叔丁醇、三甲基甲醇)进行水分检测工作,样品检测结果重复性、准确性较好。测量结果和售后服务态度得到了客户的一致好评,本次安装、调试、培训作业顺利完成!
  • 首次商业交付!国仪量子离子阱量子计算平台ION I
    近日,国仪量子离子阱量子计算平台ION I正式交付。  该套交付设备由国仪量子与国内某高校用户围绕科研场景需求,在系统的设计、制造、测试等方面进行了深入合作研发。用户将基于该平台进行量子计算、量子模拟与量子算法等领域的研究。据公开报道显示,该平台为国内首台实现商业化交付的离子阱量子计算平台。  离子阱量子计算平台ION I  ION I离子阱量子计算平台具有超高的集成化和小型化优势,整机由真空与阱系统、光路与稳频系统、测控与电子学系统、激光与微波控制系统组成,具有较高的量子比特保真度和操作精度。  ION I离子阱量子计算平台可操控比特数目2~12任意可选,单比特门保真度超99.97%,两比特门保真度超99.7%,相干时间T2*大于100 ms。该系统可稳定囚禁离子数目超90+,一维离子阱晶体数目数小时不变云。多项核心技术指标达到国际一流水准。  国仪量子离子阱量子计算机项目负责人吴亚表示:“ION I离子阱量子计算平台基于用户科研需求,充分整合了真空、激光和光学、射频和微波技术以及电子学系统等,进行了模块化设计与标准化制造。它的首次商业化交付,标志着我国科研团队在离子阱量子计算领域已具备了较高的研发水平与一定的产品化、工程化能力。”  国仪量子基于在量子信息技术与高端科学仪器领域长期的技术积累与产品工程化经验,根据用户需求,打造了高度工程化、适应多场景、稳定可靠的离子阱量子计算研究平台。未来,国仪量子将与用户携手,充分发挥离子阱量子计算平台优势,开展量子计算算法、应用研究,为量子计算技术的突破贡献力量。
  • 京企发布国内首台相干光量子计算机
    量子计算机从实验室走向产业化应用的步伐正在加快。北京玻色量子科技有限公司日前发布了自研100量子比特相干光量子计算机——“天工量子大脑”,该成果目前已在通信、金融、生物医药、交通等产业领域进行了真机应用测试。量子计算,是一种遵循量子力学规律调控量子信息单元进行计算的新型计算模式。随着电子计算机赖以提升算力的摩尔定律逐渐走到尽头,人们对新一代计算工具无比渴求,量子计算机正是备受关注的新一代计算工具的代表。量子比特是量子计算机的基本信息单元,当前,在实验室里制备单个或少量的量子比特对量子物理学家来说已经不再是难题,如何制备出成百上千的量子比特并使其在系统中稳定运行,成为量子计算技术从实验室走向产业应用的最大挑战。据悉,“天工量子大脑”具有100个计算量子比特,可以解决最高超过100个变量的数学问题,已达国际领先水平。此外,它还实现了上百规模光量子之间的“全连接”控制,具备完整的可编程能力,也就是对应不同的应用场景和不同算法时硬件无需修改,完全通过软件配置就能实现可扩展、可编程,充分利用光量子计算优势,极大降低了实际问题的建模复杂度。公司首席技术官魏海介绍,当光穿过非线性材料时,其光子的波长和相位都会发生变化,在精准控制其能量和相位的过程中,在相空间会出现量子叠加态效应,这也是“天工量子大脑”实现加速计算的根本原因,玻色量子技术团队利用该效应,完成了100光量子比特的并行加速计算。为了满足光量子存储运算的极高精度需求,实现超过100个量子比特的存储,技术团队自主研发了一款光量子计算专用光纤恒温控制设备——“量晷”,该设备能将光纤的温度变化稳定在千分之一摄氏度量级,即能够做到0.001摄氏度的温度稳定维持,有效避免环境温度波动带来的光纤内存长度误差。为了导入计算问题的参数矩阵,玻色量子自研了光量子测控一体机——“量枢”,集光量子测量反馈、系统状态检测、计算流程控制等功能于一体,同时控制、读取和执行快速反馈来操控100个计算量子比特。量子计算应用在产业的实际场景中,究竟有何优势?平安银行LAMBDA创新实验室负责人崔孝林介绍,其在“天工量子大脑”上实现了对德国信用数据集特征筛选计算的加速,在不到一毫秒的时间内完成了相关问题的求解。这一计算速度与传统的经典计算机最优算法相比,至少实现了100倍加速。北京航空航天大学教授、数据智能与智慧管理工信部重点实验室主任吴俊杰也举例说道,在复杂环境下的动态决策问题困扰了其很久,量子计算为其提供了新的解决思路和技术路径。北京量子信息科学研究院科研副院长、清华大学物理系教授龙桂鲁说,在量子计算机的多种技术路径里,“天工量子大脑”所属的相干伊辛机是最经济实用的,也是当前具产业化应用条件的方向之一。据悉,玻色量子2020年11月成立于北京朝阳区,其团队来自斯坦福、清华、中科院等顶尖院所,目前其成果已率先在金融、通讯、生物医药、交通等领域进行了应用探索,推动光量子计算领域实用化与产业化。3个月前,因“天工量子大脑”在通信、金融等领域的巨大潜力,玻色量子团队获得了中国移动的产业投资,这也是量子计算行业里首例来自产业领域的战略投资。
  • 我公司“气体配制计算设计系统 V 1.0”成功获得国家版权局软件著作权认证
    日前,由大连大特气体有限公司自主开发的“气体配制计算设计系统 V 1.0”软件系统顺利通过国家版权保护中心审核,获得国家版权局颁发的计算机软件著作权登记证书。这是大连大特气体在将计算机应用于气体配制设计、计算方面取得完全自主知识产权的首枚成果。 大连大特气体在20多年气体设计、生产配制中不断摸索、不断创新,积累大量经验,发明了一套行之有效的气体配制计算方法,并根据气体特有的压力、浓度、钢瓶体积、气体分子量等性质,结合计算机编程技术,通过电脑编程将气体配比进行设计,计算出每种气体需充装的质量,广泛应用于气体生产当中。 此次申报的气体配制计算设计系统软件由大连大特气体研发团队独立开发,并经过不断测试、实践后运用到气体生产中,相比于以前的计算方法,操作更加便捷,结果更加精准。 本次软件著作权的取得,有利于我公司进一步健全知识产权保护体系,形成持续创新机制,发挥自主知识产权优势,提高企业核心竞争力。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制