当前位置: 仪器信息网 > 行业主题 > >

甲基圣草酚

仪器信息网甲基圣草酚专题为您提供2024年最新甲基圣草酚价格报价、厂家品牌的相关信息, 包括甲基圣草酚参数、型号等,不管是国产,还是进口品牌的甲基圣草酚您都可以在这里找到。 除此之外,仪器信息网还免费为您整合甲基圣草酚相关的耗材配件、试剂标物,还有甲基圣草酚相关的最新资讯、资料,以及甲基圣草酚相关的解决方案。

甲基圣草酚相关的资讯

  • 浙江省计量院主持起草《卤素检漏仪》国家计量技术规范
    近日,浙江省计量科学研究院主持起草的国家计量校准规范JJF1964-2022《卤素检漏仪》经国家市场监督管理总局批准发布,将于2022年10月29日实施。   卤素检漏仪是广泛用于化工、制冷、电力等涉及卤素气体生产及使用相关行业的分析仪器,多用于泄漏报警和安全防护,因此其计量性能指标尤为重要。新发布的校准规范主要规定了卤素检漏仪漏率示值误差、报警响应时间等计量特性的校准方法,为卤素检漏仪校准工作提供了科学统一的技术依据,为制冷、电力、化工、消防等行业和相应的质检机构服务,确保各领域中漏率检测的准确可靠。   浙江省计量院长期以来一直致力于漏率检测及检测方法的研究,主持制定《空气微泄漏检测仪校准规范》,参加制定《真空氦漏孔校准规范》,具备开展空气微泄漏检测仪CNAS校准资质能力,同时还建有真空氦漏孔校准装置和通道型标准漏孔校准装置等。   目前漏率检测不仅是汽车、制冷、电器制造等产业产品质量的保证,更是关乎大气污染和环境安全,省计量院将不断研究漏率计量检测技术,进一步提高计量供给和服务能效,助力企业产品质量和公共安全,为市场监管作出新的计量贡献。
  • 权威标准 | 先临天远参加起草国家计量技术规范!
    在数字化转型的大背景下,数字化测量技术的发展突飞猛进,各项数字化计量技术规范也不断颁发,进一步推进其发展。各国国家计量院均致力于开发和验证各种新的数字化测量技术,我国也不例外,市场监督管理总局发布了《基于结构光扫描的光学三维测量系统校准规范》这项国家计量技术规范。先临天远和蔡司GOM、海克斯康等全球知名计量行业企业一起,参加起草《基于结构光扫描的光学三维测量系统校准规范》《基于结构光扫描的光学三维测量系统校准规范》的起草邀请了业内代表性企业的共同参加,先临天远作为中国较早进行自主研发工业级光学三维测量技术的企业,在此之列,是实力的见证,更是行业地位的认证。近20年精耕——专注高精度3D视觉检测天远品牌成立近20年,在这么多年里一直专注于高精度的三维扫描仪的研发,积累了丰富的行业经验。同时,作为先临三维旗下品牌,拥有良好的研发基础。(先临三维是国家白光三维测量系统行业标准的主要起草单位之一,拥有结构光立体匹配及三维重建算法等五项核心技术。)内修基本功——保持高精度且保证重复性精度稳定作为一种3D测量设备,其最核心的内容是测量准确,即我们所说三维扫描仪的高精度。天远研发团队一直坚守这一准则,非常关注设备测量的准确性,并重视重复性精度,天远追求的是每一次测量都准确,整体测量结果稳定。基于此,天远研发团队通过不断的算法优化,实现了每款设备的高精度且重复性精度稳定,为工业三维扫描检测提供强有力的技术保障。☝天远拍照式三维扫描仪精度报告☝天远手持式三维扫描仪精度报告外研客户实际需求——打造“多而全”的产品线不仅拥有扎实的“基本功”,天远的产品线多而全,能够满足客户各类三维扫描检测需求。自主研发了拍照式和手持式两种主流的工业级三维扫描仪,并不断根据客户需求,完善产品线。1对于精度和细节高要求选用天远OKIO系列高精度蓝光三维检测系统OKIO 9M最高精度可达0.005mm,且900万像素高度还原扫描数据细节。2对于便携性、材质适应性高要求选用天远FreeScan系列激光手持三维扫描仪无惧黑色、高亮、反光材质,灵活获取小中大型工件三维扫描数据。3要求不能贴点的三维扫描场景选用天远FreeScan Trak跟踪式激光扫描系统系统可实时跟踪定位扫描头,无需贴点,高效便捷。4进行批量精密零件检测选用AutoScan Inspec 全自动桌面三维检测系统全自动高效扫描,融合AI智能补扫功能,快速完成三维扫描、检测,实现批量精密零件高效检测。5自动化三维检测应用选用天远全自动3D视觉检测方案定制化方案,多种扫描方式可选(高精度蓝光扫描、激光扫描、跟踪扫描)。接下来,天远也将持续为工业级用户提供良好的三维扫描技术服务,同时通过不断自我创新,自我发展,来推动三维扫描这一数字化测量行业的进步,从而为智能制造的发展增添一份助力!
  • 普洱咖啡协会立项《咖啡豆中草甘膦及其代谢物氨甲基膦酸残留量的测定 液相色谱-质谱/质谱法》团体标准
    各有关单位:根据《普洱咖啡协会团体标准制定程序》的相关规定,经我会标准化技术委员会研讨、审查,批准《咖啡豆中草甘膦及其代谢物氨甲基膦酸残留量的测定 液相色谱-质谱/质谱法》团体标准进行立项,我会将牵头开展团体标准的制订工作。如有单位或个人对该标准项目存在异议,请在公告之日起五个工作日内将意见反馈至我会秘书处。同时欢迎与该团体标准有关的高等院校、科研机构、相关企事业单位、社会组织、专家学者等加入标准的研制工作,有意参与该团体标准研制工作者请与我会秘书处联系。联系人、手机:许祐慈(13987941464)电子邮箱:987604287@qq.com地址:云南省普洱市思茅区康平大道6号普洱咖啡协会二〇二三年七月十八日 团体立项的通知.pdf
  • 福利+干货>2,读透草甘膦衍生要点
    2022年3月15日,国家市场监督管理总局和国家标准化管理委员会联合发布《生活饮用水卫生标准》等5项强制性国家标准。新发布的《生活饮用水卫生标准》标准号定为GB5749-2022,将于2023年4月1日起正式实行,全面代替现行的GB5749-2006。 图1:《生活饮用水卫生标准》发布本次修订对标准的范围进行了更加明确的表述,对规范性引用文件及检验方法进行了更新,其中农残的测试仍占据很大的比重。可见我国对于农残危害以及检测依旧高度重视。 草甘膦作为通用型的广谱杀虫剂,日常的使用占比很大,在常规的环境检测中均属于必检项目。而在2022版的《生活饮用水卫生标准》中依然沿用了,草甘膦的经典测试方法——柱后衍生法。 针对标准相关要求,Pickering实验室开发了“草甘磷的完整应用方案”,本文也将剖析草甘磷衍生化中的关键问题,并进行逐一解释。草甘膦的衍生化原理是什么呢?草甘膦和AMPA在强阳离子交换柱(Pickering Lot No.1954150)上完全磺化,交联、分离。等度分离后,用柱再生液(Pickering Lot No.RG019)再生色谱柱后,再用洗脱液重新平衡。荧光检测遵循两阶段柱后反应。 *阶段,草甘膦通过次氯酸盐被氧化成氨基乙酸。在第二阶段,氨基乙酸与OPA(Pickering Lot No.0120)和Thiofluor™ (Pickering Lot No.3700-2000)在pH值为9-10反应时产生高荧光的异吲哚。而AMPA不需要初始氧化,可直接与OPA反应,事实上,氧化会降低AMPA的荧光效应。(如图2所示) 图2:氧化会降低AMPA的荧光效应 为何需同时测试草甘膦及AMPA?根据标准要求,需同时测试草甘膦及氨甲基膦酸(AMPA)。 这是因为,按照标准要求,衍生溶液制备过程中,OPA稀释液(Pickering Lot No.GA116)中需加入5%次氯酸钠溶液。草甘磷在含氯消毒液中会发生降解,信号值发生变化,AMPA作为草甘膦的降解产物,在测试过程中与草甘膦信号值有对应关系,可帮助校准和确定草甘膦信号值是否达到*状态。(参考图3) 图3:AMPA与草甘膦信号值有对应关系 此处请注意:在添加时次氯酸钠的浓度非常重要,目前市面上出售的溶液浓度标示有不准确情况,建议先从低浓度加起,缓慢调整。 Pickering应用方案的方法灵敏度如何?根据标准要求“本方法草甘膦和氨甲基膦酸的*检测质量均为5.0 ng,若取200 μL直接进样,则*检测质量浓度均为25 μg/L。” Pickering应用方案在优化流动相(Pickering Lot No.GA104、K200)梯度情况下,可达到100μL进样,*检测浓度达到12 μg/L,完全满足方法要求。 图4:12ug/L草甘膦 Pickering推荐配置方案&获取方式 图5:Pickering推荐配置方案 点击填写表单,即刻咨询更多相关内容 上述配置方案,还可用于扩展呋喃丹、甲萘威等农残的测试。
  • 浙江省计量院计34项国家计量技术规范获批立项
    近日,国家市场监管总局办公厅印发《2022年国家计量技术规范项目制定、修订计划》《2022年国家计量技术规范项目宣贯计划》,浙江省计量院共计34项国家计量技术规范获批立项。其中,作为主要起草单位的项目22项(牵头12项),作为参加起草单位的项目有12项,较去年有较大增长。   近年来,浙江省计量院以计量技术规范制修订为抓手,着眼提升浙江计量基础建设水平和计量服务供给能力。本次立项的国家计量技术规范项目涵盖机动车检测、智能水表、容量系统校准、数字压力计型式评价、数字指示秤检定、氦质谱检漏仪校准、冷冻运输车辆温度参数校准等多个计量领域。   浙江省计量院不断拓展计量科研范围,持续提升计量科研水平,充分体现计量工作在科学研究和技术进步中隐形特质的显性作用,为浙江省科技攻关和产业转型发展提供更为强劲的基础动力。
  • 干货分享 | HPLC柱后衍生法检测生活饮用水中的草甘膦
    Q:什么是草甘膦?A: 草甘膦化学名称为N-(磷酸甲基)甘氨酸,化学式为C3H8NO5P,是一种有机膦类除草剂,是一种内吸传导型广谱灭生性除草剂。几十年来一直被用于保护各种各样的农作物,由于在农业上被大量的使用,是世界上使用量最多的除草剂。 Q:草甘膦的致癌风险你知道吗?A: 2015年3月20日世界卫生组织(WHO)在日内瓦总部与联合国粮农组织(FAO)召开联合会议。公布了一份研究报告,认定孟山都的农药草甘膦,商品名“农达”可能致癌,这份研究报告来自WHO下属的国际癌症研究机构(IARC)官方网站,研究表明长期接触草甘膦会增加患非霍奇金淋巴瘤癌症的风险。 草甘膦如何通过水和土壤危害人体及环境 Q:如何监管草甘膦的使用?A: 面对使用量如此巨大的草甘膦,对其严苛管理是至关重要的,特别是应对其进行严格的检测和监控,将其的危害降到最小。目前世界各国都对大豆等作物及饮用水中草甘膦限量做出规定,甚至禁止使用草甘膦。2014年:斯里兰卡禁止使用和销售含有草甘膦,是全球首个禁用草甘膦农药的国家。2016年 :马耳他全面禁止使用草甘膦,欧盟出现首个禁用草甘膦国家,葡萄牙禁止在所有公共场所使用草甘膦。2017年:比利时禁止本国的园丁使用草甘膦,法国开始禁止在公共场所使用除草剂草甘膦。泰国限制使用草甘膦,限制使用地点,标签区域内禁止使用。2018年:丹麦政府出台了禁止在收获前喷洒草甘膦,印度旁遮普邦禁止草甘膦在该地区销售。2019年: 法国开始在农业生产上禁止使用草甘膦。 印度喀拉拉邦也宣布禁止销售、分销和使用草甘膦产品。 美国禁止将草甘膦作为干燥剂在燕麦收获前喷洒。 越南禁止进口草甘膦。 非洲马拉威暂停草甘膦进口许可。 奥地利全面禁用草甘膦。 我国在面对农药残留严重的这个棘手问题上,在对有致癌风险的草甘膦使用也是逐步收紧。其中,贵州省率先做出全面禁止草甘膦的决定,加强对农产品和生活饮用水及其水源中草甘膦残留量的检测与监管。点击可放大图片 Q:如何检测草甘膦?A:国家标准GB5749规定生活饮用水中的草甘膦限量值是0.7mg/L(与美国环保署EPA限量值一致 ),GB5750中对其检测方法做了详细描述。 作为柱后衍生的标杆企业,Pickering的应用科学家们,根据标准规定的柱后衍生方法,提供了完美的操作方法。草甘膦检测中易出现不出峰、峰型差等一系列问题,德祥售后团队凭借多年的服务经验,总结出一套成熟的应对方案,让客户无后顾之忧。 饮用水中的草甘膦可直接进样到带有柱后衍生的HPLC中。草铵膦包含一个伯胺基团也可以和邻苯二甲醛(OPA)试剂反应。利用离子色谱柱直接进样来开发一种简单方法来分离水中的草铵磷和草甘膦。这种方法消除了复杂的和繁琐的样品预处理步骤(LC/MS分析时需要)。柱后衍生利用OPA试剂确保高灵敏度的分析,消除了基质的干扰或者信号的抑制。 此方法不需要在进样前进行复杂的提取和衍生样品,避免繁琐的样品前处理步骤,减少分析时间和成本,也尽可能大程度上减少误差。 方法标准曲线草甘膦和草铵膦标准曲线范围从25 ug/L到1000 ug/L。草铵膦的二次校准曲线R2=0.9998,草甘膦的线性校准曲线R2=0.9998。 样品制备用0.45 um的尼龙滤膜过滤水样,进样 。 分析条件色谱柱:阳离子色谱柱色谱柱温度:55℃ 流速:1.0 mL/min流动相:85%的K200,15%的ACN2进样量:100 uL 柱后衍生条件柱后衍生系统:Onyx PCX 或者Vector PCX加热反应器体积:0.5 mL温度:36 ℃ 室温反应器:0.1 mL试剂1:次氯酸钠氧化剂溶液试剂2:OPA衍生试剂溶液(Picering配备加压试剂瓶,可延长试剂保留时间至两周)试剂流速:每种试剂0.3 mL/min检测器:荧光检测器 λ EX 330 nm, λ EM 465 nm Pickering柱后衍生系统用有优异的产品性能及完整的测试方案,可为企业自检、政府部门监督提供一整套优化的游离甲醛检测方法,一站式解决您所有难题。01可与任何HPLC系统一起工作02完整的分析方案03保证优越灵敏度和重现性04惰性流路设计,提高使用寿命,缩减维修成本05自动活塞冲洗,保护系统,延长使用寿命06整机安全保障,减少维护成本07快速实现方法拓展
  • 脂溶性聚合物环氧树脂及甲基硅油分子量分布测定
    脂溶性聚合物环氧树脂及甲基硅油分子量分布测定刘兴国 熊亮 曹建明 金燕美丽而寒冷的冬天又到了,室外大雪纷飞,喜欢运动的小伙伴们由户外转战室内,场馆内羽毛球、乒乓球、篮球大战相继上演,运动的身姿和蓝绿色地面、明亮的篮板构成了一道道靓丽的风景线。你可知道这漂亮的场地和器材是用什么材料制造的吗?学化学的你可能回答:“有机材料。”其实这些都是聚合物材料,绿色和蓝色的防滑地面材料为环氧树脂,有机玻璃的篮板材料为聚甲基丙烯酸甲酯。这些均为脂溶性聚合物材料的产品,它们已渗透到日常生活和高端科技的方方面面,从每天要用到的塑料袋到航天材料都可看见它们的身影。 今天,飞飞给大家重点介绍两种脂溶性聚合物。一种是低分子型环氧树脂,是由双酚A和环氧丙烷在氢氧化钠作用下缩聚而成,室温下为黄色液体或半固体,耐热、耐化学药品、电气绝缘性好,广泛用于绝缘材料、玻璃钢、涂料等领域,是常用的基础化工材料。另外一种为甲基硅油,它具有突出的耐高低温性、极低的玻璃化温度、很低的溶解度参数和介电常数等,在织物整理剂、皮革涂饰剂、化妆品、涂料和光敏材料等领域广泛应用。 分子量分布是表征聚合物的重要指标,对聚合物材料的物理机械性能和成型加工性能影响显著。常用测定方法有:粘度法、激光光散射法、质谱法和体积排阻色谱法 (SEC法),其中凝胶渗透色谱法(GPC法)作为体积排阻色谱法的一类,方便快捷、设备普及,具有广泛适用性。通过本文,飞飞给大家介绍以聚苯乙烯为标样,GPC法测定低分子量环氧树脂以及甲基硅油分子量的方法,通过对分子量分布的准确控制可以很好地保证产品的质量。变色龙软件GPC扩展包可以非常方便地将采集的GPC数据进行处理,快速地得到分子量分布的信息,而且该扩展包完全免费。 本实验仪器配置如下:仪器:赛默飞 U3000高效液相色谱仪泵:ISO3100 Pump自动进样器:WPS 3000SL Autosampler柱温箱:TCC3000 Column Compartment检测器:ERC 521示差检测器变色龙色谱管理软件 Chromeleon CDS 7.2 1. 环氧树脂分子量测定双酚A型环氧树脂基本结构及以它为材料制造的体育馆环氧地坪见图1:图1 双酚A型环氧树脂基本结构及体育馆环氧地坪色谱条件如下:分析柱:TSKgel G2500HXL 300*7.8mm,P/N:0016135(适用分子量范围100-20000);TSKgel G3000HXL 300*7.8mm,P/N:0016136(适用分子量范围500-60000);TSKgel G5000HXL 300*7.8mm,P/N:0016138(适用分子量范围1000-4000000);三根色谱柱串联分析。柱温:25℃RI检测器:过滤常数:2s,温度:35℃流动相:四氢呋喃,流速1.0mL/min进样量:15µL 对照品为聚苯乙烯,分子量分别为162,370,580,935,1250,1890,3050和4910;称取适量对照品用四氢呋喃超声溶解,浓度0.02mg/mL。样品用四氢呋喃溶解,浓度0.1mg/mL,测定谱图见图2。 图2不同分子量聚苯乙烯对照品测定谱图注:580和370两个对照品出厂报告上polydispersity多分散系数分别为1.13和1.15,分子量集中度差,所以峰形呈现为多簇小峰。其余对照品多分散系数均小于1.05,峰形呈对称单峰。 校正曲线及相关系数如下: 图3 校正曲线校正曲线方程y=-0.0006x3+0.0502x2-1.5496x+20.4439,相关系数R=0.9998。不同厂家不同批次环氧树脂样品测定结果如下: 表1 环氧树脂样品测定结果样品名称 重均分子量Mw样品-1 387样品-2 401样品-3 396 2. 甲基硅油分子量测定测试甲基硅油的分子量及其分布,常用的GPC方法是采用甲苯或四氢呋喃作为流动相,但是由于甲苯属于管制类试剂,不易购买,因此飞飞采用四氢呋喃(THF)作为流动相来测定硅油的分子量及其分布,结果显示分离与色谱峰形均较好。对照品为聚苯乙烯,分子量分别为1210,2880,6540,22800,56600和129000;称取适量对照品用四氢呋喃超声溶解,浓度约1.0mg/mL。样品用四氢呋喃溶解,浓度1mg/mL。色谱条件如下:分析柱:Shodex KF-805L 8.0*300mm(适用分子量范围300-2000000);柱温:30℃RI检测器温度:31℃流动相:四氢呋喃,流速0.8mL/min进样量:100µL 对照品测定谱图及校正曲线如下:图4 对照品测定谱图及校正曲线 校正曲线方程y=-0.0182x3+0.5987x2-7.1522x+34.6655,相关系数R=0.9996。甲基硅油样品测定结果数均分子量为20727,重均分子量为36273,Z均分子量为59280,Z+1均分子量为91320。总结到这里,飞飞给大家介绍了采用U3000液相结合变色龙软件采集和处理数据,分析低分子量环氧树脂和甲基硅油分子量的方法,由于两者分子量范围差异较大,实验采用了两组不同分子量的聚苯乙烯标准品作为对照品。对于环氧树脂由于需要测定的是低分子量聚合物且对照品分子量接近,所以采用了三根截留分子量不同的凝胶柱串联进行测定,结果更为准确。变色龙GPC分子量计算扩展包功能强大,导入和使用方便,为广大变色龙工作站用户扩展使用GPC功能带来便利。本文介绍的为脂溶性聚合物的分子量测定,对于水溶性聚合物的分子量分布测定,飞飞这里有较多应用文章供大家参考,感兴趣的朋友可联系我索取,这里给大家提供一篇最常用的,右旋糖酐40的分子量分布测定,扫描以下二维码既可查阅。
  • 四川省大区国家计量测试中心工作会在遂宁召开
    4月8日,2011年度大区国家计量测试中心工作会议在遂宁隆重召开。会议的主要任务是:检查2009年度各大区中心工作计划完成情况。下达2010年度各大区工作任务。研究制定2011年度各大区中心工作计划和经费预算。布置“十二五”计量技术机构发展规划起草工作。国家质量监督检验检疫总局计量司副巡视员马素林主持会议。   四川省质监局党组成员、副局长张光伟到会致词,对国家质量监督检验检疫总局计量司副司长刘新民等领导及来自全国七大区相关代表表示热烈欢迎。   刘新民在会议中对各大区2009年度的中心工作给予充分肯定。在听取了华北、西北、中南、东北、华南、华东、西南七大区的工作计划完成情况和经费使用情况之后,他分别指出各大区普遍存在的问题,并提出相关解方案和建议。各大区代表从量值传递能力、检验规程的调整、量值比对、计量标准考核、计量基准标准能力建设等方面总结工作,提出计划。   为全面做好“十二五”计量发展规划编制工作,充分发挥大区中心的作用。国家质量监督检验检疫总局司要求各大区要直面困难和正视问题,因地制宜寻求解决措施。大家拧成一股绳,同树一条心,将大区中心计量测试工作落到实处,做出特色。
  • 头发有助于除草剂监测
    瑞安德沃特-约翰逊(Ryan De Vooght-Johnson)一种新的LC-MS/MS方法用于检测头发中的草甘膦及其代谢物AMPA(氨甲基膦酸),有助于监测这种除草剂的暴露情况,并与健康问题建立联系。草甘膦暴露是潜在的健康风险草甘膦是孟山都公司于1974年推出的一种广谱除草剂,是世界上使用最广泛的除草剂之一。美国有750多种产品含有这种除草剂。其专利于2000年到期,草甘膦现在由一系列制造商销售。喷洒在作物上后,除草剂会进入河流和水体,细菌将其转化为氨甲基膦酸(AMPA)。接触草甘膦被认为与某些癌症有关,包括非霍奇金淋巴瘤。据报道,草甘膦具有细胞毒性和遗传毒性作用,并引起炎症,以及影响淋巴细胞功能和微生物与免疫系统之间的相互作用。世界卫生组织国际癌症研究机构(International Agency for Research on Cancer)报告称,草甘膦“可能对人类致癌”,尽管美国环境保护署(US Environmental Protection Agency)认为草甘膦小心使用是安全的。欧洲食品安全局(EFSA)表示,它不太可能导致人类癌症,但在2015年,EFSA规定急性参考剂量的限值为每千克体重0.5毫克,并承认这是一种有毒化学品。头发中草甘膦的快速分析研究人类草甘膦暴露对于建立与健康问题的联系很重要,但草甘膦在暴露后3天内就从体内消除,因此在尿样中检测的窗口很短。头发分析可以提供接触一系列化学物质的时间信息,这些化学物质通常用于药物检测。为了监测草甘膦暴露情况,巴黎萨克雷大学MasSpecLab的科学家开发了一种用于测定头发中的草甘膦和AMPA的LC-MS/MS方法。对短于3厘米的头发进行批量分析,但在长度足够长的情况下,则将头发分为2厘米的段进行分析。头发在DCM(二氯甲烷)中清洗,然后磨成粉。在研磨后的样品中,根据需要加入校准标准溶液或QC溶液,然后在5µL 10 mg/L内标溶液中进行超声处理。将溶液在真空下蒸发至干,将残渣重新溶解在水中,然后进行LC-MS/MS分析。使用带有Luna HILIC色谱柱和TSQ Altis三重四极杆MS的Dionex Ultimate 3000进行分析。梯度模式以0.5 mL/min的流速进行,5mM甲酸盐缓冲液作为流动相A,乙腈作为流动相B。梯度从90% B开始,持续2 min,在0.5 min内下降至20%,然后保持1.5 min。在负模式下使用ESI进行检测,离子喷射电位为-3.5 kV,毛细管温度为350°C,氮气作为屏蔽气体,氩作为碰撞诱导离解气体。MRM(Multiple Reaction Monitoring,质谱多反应监测)用于监测下列转换:168.2→63.2和168.2→79.2适用于草甘膦,110.0→79.2和110.0→63.2适用于AMPA。按照2011年EMA(European Medicines Agency,欧洲药品管理局)指南进行验证。选择性、交叉污染、线性、LOD/LOQ、准确度、精密度、基质效应和稳定性都被认为是可以接受的。对于现实生活中的分析,从使用草甘膦多年的农民身上采集了头发样本,确保他们的头发足够长,足以覆盖最近使用的除草剂。为了进行比较,还从生活在城市中没有接触草甘膦的人和其中一位农民的妻子身上采集了样本,他们没有在农场工作,但住在同一个地方,吃同一种食物。其中一位农民还提供了一份尿液样本进行比较,并使用改进版的HPLC方法进行分析。四个农民中有三个头发中含有草甘膦。农民甲每年喷洒作物三到四次,头部、阴毛和尿液中的草甘膦含量都很高。农民丁与农民甲合作,接触情况相似,但草甘膦检测结果未呈阳性。作者解释说,这是因为她经常漂白头发,然后把头发染成红色,这肯定消除了任何残留物。农民甲的妻子没有在农场工作,头发中的草甘膦含量很低,与城市居民中的草甘膦含量相似。现在可以进行长期暴露监测通过可以使用本文报道的新LC-MS/MS方法测量头发中的除草剂及其代谢物AMPA来评估长期暴露于草甘膦的可能性。只有四位农民参与了这项研究,因此作者计划研究更多的主题,并进一步优化方法。这种方法对于监测这种除草剂的暴露情况和评估其毒性很有用。相关链接Alvarez JC,Etting I,Larabi IA。通过 LC/MS-MS 方法定量人发中的草甘膦和氨基甲基膦酸。生物医学铬。2022. https://doi.org/10.1002/bmc.5391除草剂草甘膦是一种“重要的”癌症因素。英国广播公司新闻。2019 年 3 月 20 日(https://www.bbc.co.uk/news/business-47633086;2020年 5 月 12 日访问)。草甘膦会损害昆虫的免疫系统。威利分析科学。2021 年 5 月 28 日(https://analyticalscience.wiley.com/do/10.1002/was.00080263;2020年 5 月12 日访问)。关于作者瑞安德沃特-约翰逊Ryan 是一名自由科学作家和编辑。在获得仪器和分析方法硕士学位后,他在制药行业担任过各种分析开发职务,之后担任编辑职务。作为委托编辑,他创办了两本与分析化学和药物相关的期刊,Bioanalysis 和 Therapeutic Delivery,并管理了许多其他期刊。他现在是一名自由科学作家和编辑,让他有更多的时间陪伴家人、骑自行车和分配土地。符 斌,北京中实国金国际实验室能力验证研究有限公司 供稿
  • 河北省精细化工行业协会发布《2-甲基喹啉》等7项团体标准公开征求意稿
    各相关单位、专家:根据河北省精细化工行业团体标准工作安排,《2-甲基喹啉》《α-甲基萘》《工业苊》《工业芴》《氧芴》《吲哚》《茚》7项团体标准征求意见稿已经完成,现面向社会公开征求意见。欢迎广大行业企业和专家提出宝贵意见。征求意见截止时间为2023年5月1日协会标委会联系电话:0311-68072978邮箱:hbjxhg@163.com附件:《对苯基苯酚》《十氢化萘》2项团体标准征求意见稿 河北省精细化工行业协会管理标准化委员会2023年3月30日2-甲基喹啉-征求意见稿.pdf工业苊-征求意见稿.pdfα-甲基萘-征求意见稿.pdf氧芴-征求意见稿.pdf吲哚-征求意见稿.pdf茚-征求意见稿.pdf工业芴-征求意见稿.pdf精细化工协会团体标准征求意见表-2-甲基喹啉.doc精细化工协会团体标准征求意见表-工业苊.doc精细化工协会团体标准征求意见表-工业芴.doc精细化工协会团体标准征求意见表-α-甲基萘.doc精细化工协会团体标准征求意见表-氧芴.doc精细化工协会团体标准征求意见表-茚.doc精细化工协会团体标准征求意见表-吲哚.doc
  • 农业部牧草与草坪草种子质检中心(北京)通过“2+1”评审
    9月16~18日,农业部牧草与草坪草种子质量监督检验测试中心(北京)(以下简称“中心”)顺利通过了农产品质量检测机构考核、机构审查认可、国家计量认证复查现场评审。农业部科技发展中心标准处处长崔野韩,我校副校长兼中心主任孙其信出席评审会议。   评审过程中,以农业小麦玉米种子质检中心主任张进生研究员为组长的专家组听取了中心副主任毛培胜同志关于“中心”三年质检工作情况汇报,通过看、听、查、问、考等形式,按照评审计划分软件、硬件两个小组对中心三年的运行情况进行了全面评审。专家组认为,“中心”在机构与人员、质量体系、仪器设备、检测工作、记录与报告、设施与环境六个方面,符合《农业部产品质量监督检验测试机构基本条件》的要求,在申请承检的项目范围内,具备标准检测的能力,同意现场评审“基本通过”。   孙其信代表学校和中心对评审专家的辛勤工作表示感谢,并表示对专家提出的建议和希望表示认同,中心将按照专家组意见按期高质量完成整改。孙其信说,中心加入ISTA协会要有更高的要求,要充分发挥中心在种子检测领域的表率作用,加强标准制定,推动检测事业的发展,维护民族种业的发展。学校将在专职人员、中心条件等方面加以改善以保证检测中心的基本检测工作的需要。   崔野韩对中心20年来取得成绩表示肯定,对老中心今后的发展提出了新要求,希望中心以建立一套好的制度、树立好的意识、养成好的习惯、创造好的形象、形成好的战士的“五好”中心为目标,加强法律意识、质量意识、岗位责任意识、服务意识、防范风险意识,苦练内功,加强科学研究,使中心的检测工作在国际上占有一席之地。   评审期间,科研院常务副院长高旺盛感谢农业部长期以来给予农大和中心的关系和支持,他介绍,学校对科研基地的建设很重视,已制定了未来10年科研基地规划。科研基地在培育成果、培养人才、构建学科等方面发挥了重要作用,特别是牧草检测中心痛过20年来的建设,使草业科学跃升为国家级重点学科。他也希望中心按照建设“五好”中心的要求,以高质量检验检测任务、完成高水平科研任务、培养高层次人才为目标,加强运行管理制度的标准化规范化、加强国内同行交流(建议牧草检测的联盟体系)、加强国际化拓展(扩大支持的措施)。高旺盛表示,科研院将全力配合和支持中心的建设。   科研院基地管理处处长吴海芹及全体评审专家,实验室相关工作人员参加了评审活动。
  • 《食品中百草枯等54种农药最大残留限量》发布
    中华人民共和国卫生部 中华人民共和国农业部 公告 2011年第2号   根据《食品安全法》规定,经食品安全国家标准审评委员会审查通过,现发布食品安全国家标准《食品中百草枯等54种农药最大残留限量》(GB26130—2010),自2011年4月1日起实施。   特此公告。   二〇一一年一月二十一日   附件: 食品中百草枯等54种农药最大残留限量.doc   目 录   前 言. 3   1 范围. 4   2 规范性引用文件. 4   3 术语和定义. 5   4 技术要求. 5   4.1 百草枯(paraquat). 6   4.2 苯丁锡(fenbutatin oxide). 6   4.3 苯菌灵(benomyl). 6   4.4 苯醚甲环唑(difenoconazole). 6   4.5 吡蚜酮(pymetrozine). 7   4.6 丙森锌(propineb). 7   4.7 草甘膦(glyphosate). 7   4.8 虫酰肼(tebufenozide). 7   4.9 除虫脲(diflubenzuron). 8   4.10 春雷霉素(kasugamycin). 8   4.11 敌百虫(trichlorfon). 8   4.12 地虫硫磷(fonofos). 9   4.13 丁硫克百威(carbosulfan). 9   4.14 毒死蜱(chlorpyrifos). 9   4.15 多菌灵(carbendazim). 9   4.16噁草酮(oxadiazon). 10   4.17噁霉灵(hymexazol). 10   4.18二嗪磷(diazinon). 10   4.19氟虫腈(fipronil). 10   4.20氟硅唑(flusilazole). 11   4.21氟氯氰菊酯(cyfluthrin). 11   4.22腐霉利(procymidone). 11   4.23 甲胺磷(methamidophos). 12   4.24甲基毒死蜱(chlorpyrifos-methyl). 12   4.25甲基硫菌灵(thiophanate-methyl). 12   4.26甲基异柳磷(isofenphos-methyl). 12   4.27甲萘威(carbaryl). 13   4.28甲氧虫酰肼(methoxyfenozide). 13   4.29腈苯唑(fenbuconazole). 13   4.30喹啉铜(oxine-copper). 13   4.31 乐果(dimethoate). 14   4.32硫丹(endosulfan). 14   4.33马拉硫磷(malathion). 14   4.34咪鲜胺(prochloraz). 15   4.35嘧菌酯(azoxystrobin). 15   4.36灭多威(methomyl). 15   4.37灭瘟素(blasticidin-S). 15   4.38灭锈胺(mepronil). 16   4.39嗪草酮(metribuzin). 16   4.40噻虫嗪(thiamethoxam). 16   4.41噻菌灵(thiabendazole). 16   4.42噻嗪酮(buprofezin). 17   4.43噻唑磷(fosthiazate). 17   4.44三唑锡(azocyclotin). 17   4.45杀螟丹(cartap). 17   4.46杀螟硫磷(fenitrothion). 18   4.47五氯硝基苯(quintozene). 18   4.48烯唑醇(diniconazole). 18   4.49辛硫磷(phoxim). 18   4.50氧乐果(omethoate). 19   4.51乙烯利(ethephon). 19   4.52 乙酰甲胺磷(acephate). 19   4.53异丙甲草胺(metolachlor). 20   4.54异菌脲(iprodione). 20   农药英文通用名称索引. 21   农药中文通用名称索引. 23   前 言   本标准按照GB/T 1.1-2009给出的规则起草。   本标准中乙酰甲胺磷和甲胺磷在糙米中的相关规定代替GB 2763-2005中乙酰甲胺磷和甲胺磷在稻谷上的相关规定。   本标准与国际食品法典委员会(CAC)标准《食品中农药最大残留限量》(2009)中的相关规定的一致性程度为非等同。   食品中百草枯等54种农药最大残留限量   1 范围   本标准规定了食品中百草枯等54种农药的最大残留限量。   本标准适用于与限量相关的食品种类。   2 规范性引用文件   下列文件对于本标准的应用是必不可少的。凡是注日期的引用文件,仅所注日期的版本适用于本文件。凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。   GB/T 5009.21 粮、油、菜中甲萘威残留量的测定   GB/T 5009.102 植物性食品中辛硫磷农药残留量的测定   GB/T 5009.103 植物性食品中甲胺磷和乙酰甲胺磷农药残留量的测定   GB/T 5009.107 植物性食品中二嗪磷残留量的测定   GB/T 5009.144 植物性食品中甲基异柳磷残留量的测定   GB/T 5009.145 植物性食品中有机磷和氨基甲酸酯类农药多种残留的测定   GB/T 5009.147 植物性食品中除虫脲残留量的测定   GB/T 5009.184 粮食、蔬菜中噻嗪酮残留量的测定   GB/T 5009.201 梨中烯唑醇残留量的测定   GB/T 19648 水果和蔬菜中500种农药及相关化学品残留的测定 气相色谱-质谱法   GB/T 19649 粮谷中475种农药及相关化学品残留量的测定 气相色谱-质谱法   GB/T 20769 水果和蔬菜中450种农药及相关化学品残留量的测定 液相色谱-串联质谱法   GB/T 23376 茶叶中农药多残留测定 气相色谱/质谱法   GB/T 23380 水果、蔬菜中多菌灵残留的测定 高效液相色谱法   GB/T 23750 植物性产品中草甘膦残留量的测定 气相色谱-质谱法   NY/T 761 蔬菜和水果中有机磷、有机氯、拟除虫菊酯和氨基甲酸酯类农药多残留的测定   NY/T 1016 水果蔬菜中乙烯利残留量的测定 气相色谱法   NY/T 1096 食品中草甘膦残留量测定   NY/T 1453 蔬菜及水果中多菌灵等16种农药残留测定 液相色谱-质谱-质谱联用法   NY/T 1680 蔬菜水果中多菌灵等4种苯并咪唑类农药残留量的测定 高效液相色谱法   SN 0150 出口水果中三唑锡残留量检验方法   SN 0340 出口粮谷、蔬菜中百草枯残留量检验方法 紫外分光光度法   SN 0493 出口粮谷中敌百虫残留量检验方法   SN 0592 出口粮谷及油籽中苯丁锡残留量检验方法   SN/T 1923 进出口食品中草甘膦残留量的检测方法 液相色谱-质谱 质谱法   SN/T 1975 进出口食品中苯醚甲环唑残留量的检测方法 气相色谱-质谱法   SN/T 1976 进出口水果和蔬菜中嘧菌酯残留量检测方法 气相色谱法   SN/T 1982 进出口食品中氟虫腈残留量检测方法 气相色谱-质谱法   SN/T 1990 进出口食品中三唑锡和三环锡残留量的检测方法 气相色谱-质谱法   SN/T 2158 进出口食品中毒死蜱残留量检测方法   SN/T 2236 进出口食品中氟硅唑残留量检测方法 气相色谱-质谱法   JAP-018 吡蚜酮检测方法   JAP-055 氟定脲、除虫脲、虫酰肼、氟苯脲、氟虫脲、氟铃脲和氟丙氧脲检测方法   德国食品与饲料法(LFGB §64) 推荐官方分析方法(2010年版)   3 术语和定义   下列术语和定义适用于本文件。   3.1   残留物 pesticide residues   任何由于使用农药而在农产品及食品中出现的特定物质,包括被认为具有毒理学意义的农药衍生物,如农药转化物、代谢物、反应产物以及杂质等。   3.2   最大残留限量 maximium residue limits (MRLs)   在生产或保护商品过程中,按照农药使用的良好农业规范(GAP)使用农药后,允许农药在各种农产品及食品中或其表面残留的最大浓度。   3.3   每日允许摄入量 acceptable daily intakes (ADI)   人类每日摄入某物质至终生,而不产生可检测到的对健康产生危害的量,以每千克体重可摄入的量(毫克)表示,单位为mg/kg bw。   4 技术要求   每种农药的最大残留限量规定如下。   4.1 百草枯(paraquat)   4.1.1 主要用途:除草剂   4.1.2 ADI: 0.005 mg/kg bw   4.1.3 残留物:百草枯阳离子   4.1.4 最大残留限量:应符合表1的规定。   表 1 食品名称 最大残留限量( mg/kg) 棉籽 0.2 香蕉 0.02 苹果 0.05* *: 因该数值为方法的最低检出限,该限量为临时限量,下同。   4.1.5 检测方法:按SN 0340规定的执行。   4.2 苯丁锡(fenbutatin oxide)   4.2.1 主要用途:杀螨剂   4.2.2 ADI: 0.03 mg/kg bw   4.2.3 残留物:苯丁锡   4.2.4 最大残留限量:应符合表2的规定。  表 2 食品名称 最大残留限量(mg/kg) 柑橘 1   4.2.5 检测方法:参照SN 0592规定的方法测定。   4.3 苯菌灵(benomyl)   4.3.1 主要用途:杀菌剂   4.3.2 ADI: 0.1 mg/kg bw   4.3.3 残留物:苯菌灵和多菌灵的总和   4.3.4 最大残留限量:应符合表3的规定。   表 3   食品名称 最大残留限量(mg/kg) 柑橘 5** 梨 3** **: 因无相关的监测方法,该限量为临时限量,下同。   4.3.5 检测方法:参照GB/T 23380、NY/T 1680规定的方法执行。   4.4 苯醚甲环唑(difenoconazole)   4.4.1 主要用途:杀菌剂   4.4.2 ADI: 0.01 mg/kg bw   4.4.3 残留物:苯醚甲环唑   4.4.4 最大残留限量:应符合表4的规定。   表 4 食品名称 最大残留限量(mg/kg) 茶叶 10 大蒜 0.2 柑橘 0.2 荔枝0.5   3.4.5 检测方法:按GB/T 19648、GB/T 20769、SN/T 1975规定的方法执行。   4.5 吡蚜酮(pymetrozine)   4.5.1 主要用途:杀虫剂   4.5.2 ADI: 0.03 mg/kg bw   4.5.3 残留物:吡蚜酮   4.5.4 最大残留限量:应符合表5的规定。   表 5 食品名称 最大残留限量(mg/kg) 小麦 0.02   4.5.5 检测方法:按JAP-018规定的方法执行。   4.6 丙森锌(propineb)   4.6.1 主要用途:杀菌剂   4.6.2 ADI: 0.007 mg/kg bw   4.6.3 残留物:丙森锌(以CS2计)   4.6.4 最大残留限量:应符合表6的规定。   表 6 食品名称 最大残留限量(mg/kg) 大白菜 5 番茄 5 黄瓜 5   4.6.5 检测方法:按GB/T 20769规定的方法执行。   4.7 草甘膦(glyphosate)   4.7.1 主要用途:除草剂   4.7.2 ADI: 1 mg/kg bw   4.7.3 残留物:草甘膦   4.7.4 最大残留限量:应符合表7的规定。   表 7 食品名称 最大残留限量(mg/kg) 茶叶 1 柑橘 0.5 苹果 0.5   4.7.5 检测方法:茶叶、柑橘按SN/T 1923规定的方法执行 苹果按GB/T 23750、NY/T 1096规定的方法执行。   4.8 虫酰肼(tebufenozide)   4.8.1 主要用途:杀虫剂   4.8.2 ADI: 0.02 mg/kg bw   4.8.3 残留物:虫酰肼   4.8.4 最大残留限量:应符合表8的规定。   表 8 食品名称 最大残留限量(mg/kg) 结球甘蓝 1   4.8.5 检测方法:按GB/T 20769 规定的方法执行。   4.9 除虫脲(diflubenzuron)   4.9.1 主要用途:杀虫剂   4.9.2 ADI: 0.02 mg/kg bw   4.9.3 残留物:除虫脲   4.9.4 最大残留限量:应符合表9的规定。   表 9   食品名称 最大残留限量(mg/kg) 茶叶 20   4.9.5 检测方法:按JAP-055或参照GB/T 5009.147规定的方法执行。   4.10 春雷霉素(kasugamycin)   4.10.1 主要用途:杀菌剂   4.10.2 ADI: 0.113 mg/kg bw   4.10.3 残留物:春雷霉素   4.10.4 最大残留限量:应符合表10的规定。   表 10 食品名称 最大残留限量(mg/kg) 糙米 0.1** 番茄 0.05**   4.11 敌百虫(trichlorfon)   4.11.1 主要用途:杀虫剂   4.11.2 ADI: 0.002 mg/kg bw   4.11.3 残留物:敌百虫和敌敌畏的总和。   4.11.4 最大残留限量:应符合表11的规定。   表 11 食品名称 最大残留限量(mg/kg) 糙米 0.1 结球甘蓝 0.1 普通白菜 0.1   4.11.5 检测方法:糙米按SN 0493规定的方法执行 甘蓝、普通白菜按GB/T 20769、NY/T 761规定的方法执行。   4.12 地虫硫磷(fonofos)   4.12.1 主要用途:杀虫剂   4.12.2 ADI: 0.002 mg/kg bw   4.12.3 残留物:地虫硫磷   4.12.4 最大残留限量:应符合表12的规定。   表 12 食品名称 最大残留限量(mg/kg) 花生 0.1 甘蔗 0.1   4.12.5 检测方法:花生按GB/T 19649规定的方法执行 甘蔗按GB/T 19648、GB/T 20769、NY/T 761规定的方法执行。   4.13 丁硫克百威(carbosulfan)   4.13.1 主要用途:杀虫剂   4.13.2 ADI: 0.01 mg/kg bw   4.13.3 残留物:丁硫克百威、克百威、3-羟基克百威的总和。   4.13.4 最大残留限量:应符合表13的规定。   表 13 食品名称 最大残留限量(mg/kg) 糙米 0.5 柑橘 1 苹果 0.2 花生 0.05 黄瓜 0.2 节瓜 1 结球甘蓝 1   4.13.5 检测方法:柑橘、苹果、黄瓜、节瓜、甘蓝按NY/T 761规定的方法执行 花生、糙米按LFGB §64规定的方法执行。   4.14 毒死蜱(chlorpyrifos)   4.14.1 主要用途:杀虫剂   4.14.2 ADI: 0.01 mg/kg bw   4.14.3 残留物:毒死蜱   4.14.4 最大残留限量:应符合表14的规定。   表 14 食品名称 最大残留限量(mg/kg) 荔枝 1   4.14.5 检测方法:按GB/T5009.145、GB/T 19648、GB/T 20769、NY/T 761、SN/T 2158规定的方法执行。   4.15 多菌灵(carbendazim)   4.15.1 主要用途:杀菌剂   4.15.2 ADI: 0.03 mg/kg bw   4.15.3 残留物:多菌灵   4.15.4 最大残留限量:应符合表15的规定。   表 15 食品名称 最大残留限量(mg/kg) 柑橘 5 西瓜 0.5 韭菜 2   4.15.5 检测方法:按GB/T 23380、NY/T 1453、NY/T 1680规定的方法执行。   4.16噁草酮(oxadiazon)   4.16.1 主要用途:除草剂   4.16.2 ADI: 0.0036 mg/kg bw   4.16.3 残留物:噁草酮   4.16.4 最大残留限量:应符合表16的规定。   表 16 食品名称 最大残留限量(mg/kg) 糙米 0.05 花生 0.1 棉籽 0.1   4.16.5 检测方法:糙米按GB/T 19649规定的方法执行 花生、棉籽按LMBG §35规定的方法执行。   4.17噁霉灵(hymexazol)   4.17.1 主要用途:杀菌剂   4.17.2 ADI: 0.2mg/kg bw   4.17.3 残留物:噁霉灵   4.17.4 最大残留限量:应符合表17的规定。   表 17 食品名称 最大残留限量(mg/kg) 糙米 0.1**   4.18二嗪磷(diazinon)   4.18.1 主要用途:杀虫剂   4.18.2 ADI: 0.005 mg/kg bw   4.18.3 残留物:二嗪磷   4.18.4 最大残留限量:应符合表18的规定。   表 18 食品名称 最大残留限量(mg/kg) 花生 0.5   4.18.5 检测方法:按GB/T 5009.107、GB/T 19649或参照NY/T 761规定的方法执行。   4.19氟虫腈(fipronil)   4.19.1 主要用途:杀虫剂   4.19.2 ADI: 0.0002 mg/kg bw   4.19.3 残留物:氟虫腈母体。   4.19.4 最大残留限量:应符合表19的规定。   表 19 食品名称 最大残留限量(mg/kg) 结球甘蓝 0.02 糙米 0.02   4.19.5 检测方法:甘蓝按GB/T 19648、GB/T 20769规定的方法执行 糙米按GB/T 19649、SN/T 1982规定的方法执行。   4.20氟硅唑(flusilazole)   4.20.1 主要用途:杀菌剂   4.20.2 ADI: 0.007 mg/kg bw   4.20.3 残留物:氟硅唑   4.20.3 最大残留限量:应符合表20的规定。   表 20 食品名称 最大残留限量(mg/kg) 黄瓜 1 刀豆 0.2 葡萄 0.5 香蕉 1   4.20.5 检测方法:按GB/T 19648、GB/T 20769、SN/T 2236规定的方法执行。   4.21氟氯氰菊酯(cyfluthrin)   4.21.1 主要用途:杀虫剂   4.21.2 ADI: 0.04 mg/kg bw   4.21.3 残留物:氟氯氰菊酯   4.21.4 最大残留限量:应符合表21的规定。   表 21 食品名称 最大残留限量(mg/kg) 蘑菇 0.3   4.21.5 检测方法:按GB/T 19648、NY/T 761规定的方法执行。   4.22腐霉利(procymidone)   4.22.1 主要用途:杀菌剂   4.22.2 ADI: 0.1 mg/kg bw   4.22.3 残留物:腐霉利   4.22.4 最大残留限量:应符合表22的规定。   表 22 食品名称 最大残留限量(mg/kg) 番茄 2   4.22.5 检测方法:按GB/T 19648、NY/T 761规定的方法执行。   4.23 甲胺磷(methamidophos)   4.23.1 主要用途:杀虫剂   4.23.2 ADI:0.004mg/kg体重   4.23.3 残留物:甲胺磷(乙酰甲胺磷的代谢物)   4.23.4 最大残留限量:应符合表23的规定。   表 23 食品名称 最大残留限量(mg/kg) 糙米 0.5   4.23.5 检测方法:按GB/T 5009.103。   4.24甲基毒死蜱(chlorpyrifos-methyl)   4.24.1 主要用途:杀虫剂   4.24.2 ADI: 0.01 mg/kg bw   4.24.3 残留物:甲基毒死蜱   4.24.4 最大残留限量:应符合表24的规定。   表 24 食品名称 最大残留限量(mg/kg) 棉籽 0.02 结球甘蓝 0.1   4.24.5 检测方法:棉籽按GB/T 19649规定的方法执行 甘蓝GB/T 19648、GB/T 20769、NY/T 761规定的方法执行。   4.25甲基硫菌灵(thiophanate-methyl)   4.25.1 主要用途:杀菌剂   4.25.2 ADI: 0.08 mg/kg bw   4.25.3 残留物:甲基硫菌灵和多菌灵之和   4.25.4 最大残留限量:应符合表25的规定。   表 25 食品名称 最大残留限量(mg/kg) 小麦 0.5 糙米 1   4.25.5 检测方法:按GB/T 20769、NY/T 1680规定的方法执行。   4.26甲基异柳磷(isofenphos-methyl)   4.26.1 主要用途:杀虫剂   4.26.2 ADI: 0.003 mg/kg bw   4.26.3 残留物:甲基异柳磷   4.26.4 最大残留限量:应符合表26的规定。   表 26 食品名称 最大残留限量(mg/kg) 玉米 0.02   4.26.5 检测方法:按GB/T 5009.144或参照NY/T 761规定的方法执行。   4.27甲萘威(carbaryl)   4.27.1 主要用途:杀虫剂   4.27.2 ADI: 0.008 mg/kg bw   4.27.3 残留物:甲萘威   4.27.4 最大残留限量:应符合表27的规定。   表 27 食品名称 最大残留限量(mg/kg) 普通白菜 1******: 因膳食暴露评估依据的数据不充分,该限量为临时限量,下同。   4.27.5 检测方法:按GB/T 5009.21、GB/T 5009.145、GB/T 20769、NY/T 761规定的方法执行。   4.28甲氧虫酰肼(methoxyfenozide)   4.28.1 主要用途:杀虫剂   4.28.2 ADI: 0.1 mg/kg bw   4.28.3 残留物:甲氧虫酰肼   4.28.4 最大残留限量:应符合表28的规定。   表 28 食品名称 最大残留限量(mg/kg) 结球甘蓝 2 苹果 3   4.28.5 检测方法:按GB/T 20769规定的方法执行。   4.29腈苯唑(fenbuconazole)   4.29.1 主要用途:杀菌剂   4.29.2 ADI: 0.03 mg/kg bw   4.29.3 残留物:腈苯唑   4.29.4 最大残留限量:应符合表29的规定。   表 29 食品名称 最大残留限量(mg/kg) 糙米 0.1   4.29.5 检测方法:按GB/T 19648、GB/T 20769规定的方法执行。   4.30喹啉铜(oxine-copper)   4.30.1 主要用途:杀菌剂   4.30.2 ADI: 0.02 mg/kg bw   4.30.3 残留物:喹啉铜   4.30.4 最大残留限量:应符合表30的规定。   表 30 食品名称 最大残留限量(mg/kg) 苹果 2** 黄瓜
  • 全国饲料工业标准化技术委员会发布国家标准《饲料中新甲基橙皮苷二氢查耳酮的测定 高效液相色谱法》征求意见稿
    国家标准计划《饲料中新甲基橙皮苷二氢查耳酮的测定 高效液相色谱法》由 TC76(全国饲料工业标准化技术委员会)归口 ,主管部门为国家标准化管理委员会。主要起草单位 山东省畜产品质量安全中心 、山东奔月生物科技股份有限公司 。附件:《饲料中新甲基橙皮苷二氢查耳酮的测定 高效液相色谱法》征求意见稿.pdf《饲料中新甲基橙皮苷二氢查耳酮的测定 高效液相色谱法》编制说明.pdf
  • 【百家论坛】直播回顾:学习了这篇,草甘膦等强极性农药将不再困扰!
    草甘膦是世界上应用最广泛的除草剂之一,而中国是草甘膦生产和使用的大国。但是长期接触草甘膦会增加患非霍奇金淋巴瘤癌症的风险,所以草甘膦被世卫组织列为“可能致癌物质”。草甘膦及其附属物,长期残留在各种植物中,慢慢的进入食物链,人体中的毒素堆积愈来愈多,会对身体造成严重的影响,破坏人类的免疫系统,危害人类健康。因此gb 2763-2021 《食品安全国家标准 食品中农药zui大残留限量》对十几种农作物的草甘膦限量都作了明确的规定,同时美国、日本等国家也都有非常严格的限量要求。然而草甘膦及其主要代谢物氨甲基磷酸(ampa)具有强极性、强亲水性的特点,实现对它们的保留和分离一直是色谱研究领域的难题。所以4月28日,坛墨质检邀请徐敦明老师深度解析草甘膦,百草枯,敌草快这类强极性农药的分析关键点。徐老师首先介绍了极性物质的概念和结构,然后重点讲解液相色谱分析的核心-分离柱,尤其是亲水性hillic色谱柱的特点和应用,并详细列举了草甘膦及其代谢物,百草枯,敌草快的典型分析方法的步骤和结果指标。复杂基质的农残检测和质量控制 讲师介绍 徐敦明 博士厦门海关技术中心研究员硕士生导师,厦门市第十批拔尖人才,第二届食品安全国家标准审评委员会委员。 长期从事食品安全研究与检测、食品安全科普。主持参与35项国家及省部级科技项目,主持参与28项国家标准、行业标准的制修订。获各类科技进步奖17项、省标准贡献奖4项。 非常感谢徐老师的干货分享,直播间的小伙伴们纷纷提出自己的问题,徐老师一一进行解答。错过直播的小伙伴们,一定要记得来看哦,可以帮您少走很多弯路。 q1:请问百草枯和敌草快的流动相条件?a: 推荐百草枯和敌草快的流动相条件a:5 mmol/l乙酸铵缓冲液-体积分数为0.2%甲酸 b:乙腈。q2:草甘膦、草铵膦以及代谢物的检测流动相条件是一样的吗?可以合并到一个方法中吗? a: 流动相条件一样;可以合并到一个方法中。
  • 广西计量院参加6个国家计量比对项目获满意结果
    近日,市场监管总局发布通报,向社会公布29项国家计量比对结果,广西计量院参加的6个国家计量比对项目全部获得满意结果。本次广西计量院参加计量比对的6个比对项目分别是:“无创自动测量血压计检定装置、标准焦度计顶焦度”“平板式制动检验台检定装置”“可燃气体检测报警器检定装置”“密度计标准装置”“中频振动加速度计”等计量比对。计量比对作为实验室质量监控的重要手段,是保障量值准确可靠、提升技术机构测量能力的有效手段,比对获满意结果,充分验证了广西计量院的量值传递及校准能力。同时,广西计量院还发挥计量技术优势,作为主导实验室承担区内各类计量比对工作,每年编制比对计划,比对项目覆盖医疗卫生、安全防护、环境监测、贸易结算等多个领域,圆满完成区内压力表、冷水表等的计量比对工作,为防范实验室技术方面可能存在的风险,切实培养和提高专业技术人员工作水平,为更好满足民生领域测量和产业发展需求、促进相关行业高质量发展提供强有力的计量技术支持。广西壮族自治区计量检测研究院是自治区市场监督管理局直属公益二类事业单位,是具有第三方公正性地位的全区最高级别(省级)法定计量检定、检测机构。主要履行的职责有保证全区计量单位制统一和量值准确可靠,研究建立广西最高社会公用计量标准;承担授权范围内的量值传递,执行强制检定和法律规定的其他检定、测试任务;开展校准工作;研究起草计量检定规程、计量技术规范;承办有关计量监督中的技术性工作。
  • 沃特世为分析饮料中的2-甲基咪唑和4-甲基咪唑含量提供解决方案
    沃特世ACQUITY UPLC H-CLASS-PDA系统和ACQUITY UPLC/Xevo TQ MS系统分析饮料中的2-甲基咪唑和4-甲基咪唑含量 赵嘉胤.蔡麒.孙庆龙 引言 焦糖色素是一种允许使用的着色剂,我国对焦糖色使用量的规定除个别产品外均为按生产需要适量使用,其中规定仅有亚硫酸铵法生产地焦糖色允许使用在碳酸饮料中。而以加氨或其铵盐制成的焦糖(Ⅲ类氨法焦糖和Ⅳ类亚硫酸铵法焦糖)会产生4-甲基咪唑,并且4-甲基咪唑是一种能够诱发肿瘤的高水平的化学物质。 焦糖色素被广泛用于食品以及饮料中,所以4-甲基咪唑的含量监控也是必须被重视的,由于4-甲基咪唑分子极性很大,含量很低,所以如何快速、准确地检测出其含量,就成为人们现阶段研究的重点。目前我国国家标准中只有《焦糖色中的4-甲基咪唑的测定-高效液相色谱法》,而对于饮料中的4-甲基咪唑则没有相关检测方法。 沃特世(Waters® )公司所提供的整体解决方案,同时来监控饮料中的4-甲基咪唑以及2-甲基咪唑。使用沃特世SPE的固相萃取策略来对于复杂的样品基质进行净化,完成对于4-甲基咪唑以及2-甲基咪唑的提取浓缩,而沃特世HILIC模式的色谱保留,对于极性分子的色谱分离提供完美的效果,最后通过UPLC® H-CLASS PDA以及UPLC/Xevo® TQ MS的分析,完成出色的定性定量工作。 实验条件 样品前处理方案 固相萃取SPE解决方案&mdash &mdash Oasis® MCX (3cc/60mg) 小柱净化取3g饮料样品,超声5分钟,后待净化。 ACQUITY UPLC H-CLASS PDA超高效液相色谱分离条件: 色谱柱: ACQUITY UPLC® BEH HILIC Column 2.1x100 mm,1.7&mu m 流动相 A: 乙腈 流动相 B: 5mM甲酸铵 柱温: 35˚ C 检测波长: 215nm 进样量: 5&mu L 运行时间: 3min 梯度表: Time (min) Flow (mL/min) %A Curve 0.00 0.5 80 6 3.00 0.5 80 6 ACQUITY UPLC Xevo TQ MS超高效液相色谱-串联质谱分析条件: 色谱柱: ACQUITY UPLC BEH HILIC Column 2.1x100 mm,1.7&mu m 流动相 A: 乙腈 流动相 B: 5mM 甲酸铵 柱温: 35˚ C 进样量: 2&mu L 运行时间: 3min 梯度表: Time (min) Flow (mL/min) %A Curve 0.00 0.5 80 6 3.00 0.5 80 6 实验结果及讨论 1、ACQUITY UPLC H-CLASS PDA分析 混合标准品色谱图 饮料空白样品图 基质添加回收色谱图 2、ACQUITY UPLC/Xevo TQ MS分析 混合标准品TIC 3.2.3 茶饮料样品加标与空白对比分析 3.2.4 可乐样品加标与空白对比分析 通过分析结果可以看出,4-甲基咪唑和2-甲基咪唑分子极性很大,一般反相很难保留,多用离子对试剂来增加保留,但由于离子对色谱方式平衡时间很长,增加整体分析周期,同时对于色谱柱以及仪器的损耗很大,最关键是无法进行有效的质谱方法分析。而沃特世公司HILIC模式的极性分析方案可以非常好的进行极性分子的保留,流动相简单,优异兼容质谱条件,使4-甲基咪唑和2-甲基咪唑有非常好的分离效果以及灵敏度。 同时由于目标化合物极性很大,对于前处理的要求非常高,分离提取是个难点,而沃特世公司的固相萃取方案能使样品达到非常好的净化效果,通过Oasis MCX进行保留分离,同时能够减少样品杂质对于色谱柱以及整个仪器系统的损害。由沃特世ACQUITY UPLC H-CLASS-PDA和ACQUITY UPLC / Xevo TQ MS所提供的超高效性能以及灵敏度,使得4-甲基咪唑和2-甲基咪唑的分析达到理想效果。 结论 1.采用ACQUITY UPLC H-CLASS-PDA和ACQUITY UPLC / Xevo TQ MS可以快速高效地对4-甲基咪唑和2-甲基咪唑的含量进行测定,ACQUITY UPLC H-CLASS-PDA灵敏度可以达到1mg/kg,ACQUITY UPLC / Xevo TQ MS灵敏度可以达到1&mu g/kg。 2.应用沃特世固相萃取SPE解决方案配合HILIC模式色谱保留,对于大极性的小分子有很好的保留以及分离提取的作用,达到理想净化效果以及色谱分离效果。 3.从样品前处理到样品色谱质谱分析的整体解决方案,给客户提供一体化的服务解决样品分析过程中可能遇到的所有问题,帮助客户成功! 关于沃特世公司 (www.waters.com) 50多年来,沃特世公司(NYSE:WAT)通过提供实用和可持续的创新,使医疗服务、环境管理、食品安全和全球水质监测领域有了显著进步,从而为实验室相关机构创造了业务优势。 作为一系列分离科学、实验室信息管理、质谱分析和热分析技术的开创者,沃特世技术的重大突破和实验室解决方案为客户的成功创造了持久的平台。 2011年沃特世公司拥有18.5亿美元的收入,它将继续带领全世界的客户探索科学并取得卓越成就。 联系方式: 叶晓晨 沃特世科技(上海)有限公司 市场服务部 xiao_chen_ye@waters.com 周瑞琳(GraceChow) 泰信策略(PMC) 020-83569288 13602845427 grace.chow@pmc.com.cn
  • 泽泉科技应邀参加第九届国际牧草与草坪草分子育种学术研讨会
    2016年8月15-19日,由中国工程院、中国草学会、兰州大学、草地农业生态系统国家重点实验室主办,中国草学会草业生物技术专业委员会和兰州大学草地农业科技学院承办的第九届国际牧草与草坪草分子育种学术研讨会(The 9th International Symposium on Molecular Breeding of Forage and Turf, MBFT)和第三届全国草业生物技术大会在甘肃兰州隆重召开。国际牧草与草坪草分子育种学术研讨会是草类植物分子育种学术界规格最高、规模最大的世界性学术与技术盛会,会议每2-3年举办一次,迄今已举办过8届。这是该学术研讨会首次在中国和发展中国家举办,彰显了我国牧草与草坪草分子育种方面的科技实力已被国际学术界认可。 会议现场 本届研讨会会期4天,来自澳大利亚、美国、英国、荷兰、墨西哥、日本、韩国、巴基斯坦、中国等国草业科学研究领域的相关专家250余人参会。与会专家围绕&ldquo 种质资源多样性及其对育种的影响&rdquo 、&ldquo 非生物和生物胁迫&rdquo 、&ldquo 生物质能源&rdquo 、&ldquo 牧草和草坪草研究的新技术、新工具和新方法&rdquo 、&ldquo 功能基因组学和遗传图谱构建&rdquo 、&ldquo 植物微生物互作&rdquo 等议题探讨牧草与草坪草分子育种的国际前沿问题,分享最新研究成果,寻求未来分子育种发展方向。澳大利亚German Spangenberg教授和王增裕教授分别作大会开幕式和闭幕式主旨报告。 泽泉展台 上海泽泉科技股份有限公司应邀出席本次研讨会,并在会议期间向广大用户展示了德国WALZ公司光合作用测量仪器、美国CID公司便携式测量仪器、种子质量评价与检测方案(种子成熟度和活力检测新方法)、植物CT三维成像系统等,吸引了来自中国农业大学、河南农业大学、山东省农科院等单位的专家们前来展台交流。泽泉科技工程师与现场参会的老用户交流了仪器的使用技巧,如CI-600根系成像输出等,专业耐心的解答得到了用户的认可与好评。部分用户对泽泉科技在上海浦东建立的AgriPheno&trade 高通量植物基因型-表型-育种服务平台产生了极大的兴趣,表达了亲自前往平台参观考察的意愿。 展台交流 本次参会得到了会议承办方中国草学会草业生物技术专业委员会、兰州大学草地农业科技学院和与会专家们的大力支持,泽泉科技在此表示衷心的感谢!
  • 生态环境部《土壤和沉积物中甲基汞和乙基汞测定》 (征求意见稿) 标准解读
    生态环境部办公厅2020年12月31日发布《土壤和沉积物 甲基汞和乙基汞的测定 吹扫捕集/气相色谱-冷原子荧光光谱法(征求意见稿)》 (环办标征函〔2020〕62号) ,我国国内第一个土壤和沉积物中甲基汞和乙基汞的测定方法标准公开征求意见。 该标准的主要起草单位是由中国环境监测总站和江苏省环境监测中心,验证单位包括:山东省生态环境监测中心、广西壮族自治区生态环境监测中心、四川省生态环境监测总站、湖南省长沙生态环境监测中心、贵阳市环境监测中心站和合肥市环境监测中心站等七家单位。为什么需要对土壤和沉积物中的甲基汞和乙基汞进行测定呢?土壤中的汞主要包括金属汞、无机化合态汞和有机化合态汞。有机化合态汞以有机汞(烷基汞)和有机络合汞普遍存在。其中烷基汞主要包括甲基汞和乙基汞;甲基汞是有机汞中毒性最大的一种形态,甲基汞很容易穿过血脑屏障,对人神经系统进行侵害,尤其对妇女和儿童有很大的影响;土壤中的甲基汞易被植物吸收,通过食物链在生物体内富集,从而暴露给人体;而土壤中的腐殖质与汞结合形成的络合物不易被植物吸收。另外,乙基汞也属于亲脂性化合物,中毒后可引起急性肠胃炎以及造成严重的肾脏损伤等。土壤和沉积物中的甲基汞和乙基汞国内是否有相关限值控制标准? 2018年6月,生态环境部与国家市场监督管理总局联合发布了《土壤环境质量 建设用地土壤污染风险管控标准(试行)》(GB36600—2018)国家环境质量标准,该标准于2018年8月1日正式实施,标准中明确了不同类型建设用地中甲基汞的筛选值和管制值,其中甲基汞在第一类用地的筛选值为5mg/kg。 目前国内暂无涉及土壤和沉积物中乙基汞的限值控制标准。《土壤和沉积物 甲基汞和乙基汞的测定 吹扫捕集/气相色谱-冷原子荧光光谱法(征求意见稿)》内容简介原理:土壤或沉积物样品经碱液提取后,提取液中的甲基汞和乙基汞经四丙基硼化钠衍生,生成挥发性的甲基丙基汞和乙基丙基汞,经吹扫捕集、热脱附和气相色谱分离后,再高温裂解为汞蒸气,用冷原子荧光光谱仪检测。根据保留时间定性,外标法定量。 方法检出限和定量下限:当取样量为0.5 g 时,甲基汞和乙基汞的方法检出限均为0.2 μg/kg,测定下限均为0.8 μg/kg 前处理过程:分析过程:标准曲线:8 个40 ml 棕色进样瓶,分别加入实验用水约35 ml,再分别加入0 pg,2.00 pg,5.00 pg,10 pg,50 pg,100 pg,500 pg,1500 pg的甲基汞和乙基汞混合标准溶液,,然后加入300 μl 乙酸-乙酸钠缓冲溶液及50 μl 四丙基硼化钠溶液(如果只进行甲基汞的分析,可加入四乙基硼酸钠溶液进行衍生化反应),迅速加入实验用水至瓶满,不留空隙,盖紧盖子静置10 min ~15 min。实际样品:40 ml 进样瓶中加入实验用水约35 ml 至瓶颈处,取试样150 μl 至进样瓶中,依次加入300 μl 乙酸-乙酸钠缓冲溶液及50 μl 四丙基硼化钠溶液(如果只进行甲基汞的分析,可加入四乙基硼酸钠溶液进行衍生化反应),最后迅速加入实验用水至瓶满,盖紧盖子静置10 min ~15 min 上机分析:标准内部验证和外部验证均采用美国知名仪器厂家Brooks Rand公司生产的MERX全自动烷基汞分析系统:MERX全自动烷基汞分析系统异位吹扫捕集,样品满瓶式进样,衍生化效率和烷基汞分析结果不受环境空气的影响三通道Tenax 捕集阱交替捕集,效率高液体传感器,水汽进入捕集阱会报警精密流量控制,气流波动小,避免因吹扫气流量过大造成大量水汽进入吸附阱或因流量过小造成的吸附不完全甲基汞检出限可达0.002ng/L;乙基汞检出限可达0.005ng/L宽线性范围:甲基汞0.0125-50ng/L,乙基汞0.025-50ng/L残留低:高浓度样品运行后仪器残留低于2‰重复性好,数据结果可靠国内销售数量超过300家,用户的普遍选择MERX全自动烷基汞分析系统同时还是《水质烷基汞的测定吹扫捕集/气相色谱-冷原子荧光光谱法》(HJ 977-2018)的验证仪器。该仪器数据质量稳定可靠,在国内饱受好评。谱图:质量控制:空白试验:每20 个样品或每批次样品(<20 个/批)应至少做一个空白试样,空白试样的测定值应低于方法检出限(甲基汞和乙基汞的方法检出限均为0.2 μg/kg)校准:建议每次分析前均应建立工作曲线,若采用线性回归法,相关系数≥0.995;若采用响应因子法,校准系数RSD≤15%(工作曲线绘制后,每批样品测定时需要测定工作曲线中间浓度点的标准溶液,其相对误差值应该控制在±20%以内。否则,需重新绘制工作曲线)平行样:每20 个或每批次样品(<20 个/批)应至少测定一个平行双样,测定结果的相对偏差应≤30%基体加标:每20 个样品或每批次样品(<20 个/批)应至少测定一个基体加标样品或一个土壤或沉积物的有证标准物质。甲基汞加标回收率控制在75%~130%之间;乙基汞加标回收率控制在70%~120%之间标准物质测定:测定甲基汞有证标准物质的允许相对误差在﹣40%~+10%之间展望:本标准的检出限、精密度等性能指标能满足《土壤环境质量 建设用地土壤污染风险管控标准(试行)》(GB 36600-2018)的相应要求,相信该标准正式出台后,会使涉及土壤和沉积物中甲基汞和乙基汞分析检测的单位有据可依,并为相关分析检测人员提供新的思路和手段。 参考文献:1. 关于征求《土壤和沉积物 甲基汞和乙基汞的测定吹扫捕集/气相色谱-冷原子荧光光谱法》国家环境保护标准意见的通知 (链接:http://www.mee.gov.cn/xxgk2018/xxgk/xxgk06/202012/t20201231_815730.html);2. 《土壤和沉积物 甲基汞和乙基汞的测定 吹扫捕集/气相色谱-冷原子荧光光谱法(征求意见稿)》及编制说明;3. 《土壤环境质量 建设用地土壤污染风险管控标准(试行)》(GB36600—2018)。
  • 重磅:生态环境部《土壤和沉积物 甲基汞和乙基汞的测定》 (HJ 1269—2022) 标准发布
    生态环境部办公厅2023年1月29日正式发布《土壤和沉积物 甲基汞和乙基汞的测定 吹扫捕集/气相色谱-冷原子荧光光谱法》(HJ 1269—2022),该标准为我国国内第一个土壤和沉积物中甲基汞和乙基汞的测定方法标准,标准将于2023年6月16日正式实施。 该标准的主要起草单位是由中国环境监测总站和江苏省环境监测中心,验证单位包括:山东省生态环境监测中心、广西壮族自治区生态环境监测中心、四川省生态环境监测总站、湖南省长沙生态环境监测中心、贵阳市环境监测中心站和合肥市环境监测为什么需要对土壤和沉积物中的甲基汞和乙基汞进行测定呢?土壤中的汞主要包括金属汞、无机化合态汞和有机化合态汞。有机化合态汞以有机汞(烷基汞)和有机络合汞普遍存在。其中烷基汞主要包括甲基汞和乙基汞;甲基汞是有机汞中毒性最大的一种形态,甲基汞很容易穿过血脑屏障,对人神经系统进行侵害,尤其对妇女和儿童有很大的影响;土壤中的甲基汞易被植物吸收,通过食物链在生物体内富集,从而暴露给人体;而土壤中的腐殖质与汞结合形成的络合物不易被植物吸收。另外,乙基汞也属于亲脂性化合物,中毒后可引起急性肠胃炎以及造成严重的肾脏损伤等。土壤和沉积物中的甲基汞和乙基汞国内是否有相关限值控制标准? 2018年6月,生态环境部与国家市场监督管理总局联合发布了《土壤环境质量 建设用地土壤污染风险管控标准(试行)》(GB36600—2018)国家环境质量标准,该标准于2018年8月1日正式实施,标准中明确了不同类型建设用地中甲基汞的筛选值和管制值,其中甲基汞在第一类用地的筛选值为5mg/kg。目前国内暂无涉及土壤和沉积物中乙基汞的限值控制标准。《土壤和沉积物 甲基汞和乙基汞的测定 吹扫捕集/气相色谱-冷原子荧光光谱法》(HJ 1269—2022)内容简介原理:土壤或沉积物样品经碱液提取后,提取液中的甲基汞和乙基汞与四丙基硼化钠发生衍生化反应,生成挥发性的甲基丙基汞和乙基丙基汞,经吹扫捕集、热脱附和气相色谱分离后,再高温裂解为汞蒸气,用冷原子荧光光谱法测定。根据保留时间定性,外标法定量。 方法检出限和定量下限:当取样量为0.5 g 时,提取液体积为 30 ml 时,甲基汞和乙基汞的方法检出限均为0.2 μg/kg,测定下限均为0.8 μg/kg 前处理过程:分析过程:标准曲线:8 个40 ml 棕色进样瓶,分别加入实验用水约35 ml,再分别加入0 pg,2.00 pg,5.00 pg,10 pg,50 pg,100 pg,500 pg,1000 pg的甲基汞和乙基汞混合标准溶液,,然后加入300 μl 乙酸-乙酸钠缓冲溶液及50 μl 四丙基硼化钠溶液,迅速加入实验用水至瓶满,不留空隙,盖紧盖子静置20 min实际样品:40 ml 进样瓶中加入实验用水约35 ml 至瓶颈处,取试样150 μl 至进样瓶中,依次加入300 μl 乙酸-乙酸钠缓冲溶液及50 μl 四丙基硼化钠溶液,最后迅速加入实验用水至瓶满,盖紧盖子静置20 min 上机分析:标准内部验证和外部验证均采用美国知名仪器厂家Brooks Rand公司生产的MERX全自动烷基汞分析系统:异位吹扫捕集,样品满瓶式进样,衍生化效率和烷基汞分析结果不受环境空气的影响三通道Tenax 捕集阱交替捕集,效率高液体传感器,水汽进入捕集阱会报警精密流量控制,气流波动小,避免因吹扫气流量过大造成大量水汽进入吸附阱或因流量过小造成的吸附不完全甲基汞检出限可达0.002ng/L;乙基汞检出限可达0.002ng/L宽线性范围:甲基汞0.0125-50ng/L,乙基汞0.025-50ng/L残留低:高浓度样品运行后仪器残留低于2‰重复性好,数据结果可靠国内销售数量超过350家,用户的普遍选择来源:《土壤和沉积物 甲基汞和乙基汞的测定 吹扫捕集/气相色谱-冷原子荧光光谱法(征求意见稿)》编制说明第65页MERX全自动烷基汞分析系统同时还是《水质烷基汞的测定吹扫捕集/气相色谱-冷原子荧光光谱法》(HJ 977-2018)的验证仪器。该仪器数据质量稳定可靠,在国内饱受好评。 谱图:质量控制:空白试验:每20 个样品或每批次样品(<20 个/批)应至少做一个空白试样,空白试样的测定值应低于方法检出限(甲基汞和乙基汞的方法检出限均为0.2 μg/kg)校准:每次分析样品前均应建立不少于 6 个点的校准曲线,采用线性回归法计算结果,曲线的相关系数≥0.995;采用校准系数法计算结果,校准系数 CFi的相对标准偏差≤15%。每20 个样品测定一个校准曲线中间浓度点的标准溶液,其相对误差值应该控制在±20%以内,否则应重新建立校准曲线平行样:每 20 个或每批次样品(少于 20 个样品)应至少测定 1 个平行双样,平行双样测定结果的相对偏差应在±30%以内基体加标:每 20 个样品或每批次样品(少于 20 个样品)应至少测定 1 个基体加标样品或1 个有证标准物质。甲基汞加标回收率控制在 75%~130%之间;乙基汞加标回收率控制在 65%~120%之间 展望:本标准的检出限、精密度等性能指标能满足《土壤环境质量 建设用地土壤污染风险管控标准(试行)》(GB 36600-2018)的相应要求,该标准会使涉及土壤和沉积物中甲基汞和乙基汞分析检测的单位有据可依,并为相关分析检测人员提供新的手段。 参考文献:1. 土壤和沉积物 甲基汞和乙基汞的测定 吹扫捕集/气相色谱-冷原子荧光光谱法 (HJ 1269—2022)(链接:https://www.mee.gov.cn/ywgz/fgbz/bz/bzwb/jcffbz/202301/t20230128_1014026.shtml);2. 土壤和沉积物 甲基汞和乙基汞的测定 吹扫捕集/气相色谱-冷原子荧光光谱法(征求意见稿)及编制说明(链接:http://www.mee.gov.cn/xxgk2018/xxgk/xxgk06/202012/t20201231_815730.html);3. 土壤环境质量 建设用地土壤污染风险管控标准(试行)(GB36600—2018)。
  • 生态环境部发布《土壤和沉积物 甲基汞和乙基汞的测定 吹扫捕集/气相色谱-冷原子荧光光谱法》国家生态环境标准
    为贯彻《中华人民共和国环境保护法》《中华人民共和国土壤污染防治法》,防治生态环境污染,改善生态环境质量,规范土壤和沉积物中甲基汞和乙基汞的测定方法,制定此标准,自 2023 年 6 月 15 日起实施。此标准由生态环境部生态环境监测司、法规与标准司组织制订,主要起草单位为中国环境监测总站、江苏省环境监测中心,验证单位包括山东省生态环境监测中心、广西壮族自治区生态环境监测中心、四川省生态环境 监测总站、山东省济南生态环境监测中心、湖南省长沙生态环境监测中心、贵阳环境监测中心和安徽省合肥生态环境监测中心。此标准适用于土壤和沉积物中甲基汞和乙基汞的测定,规定了测定土壤和沉积物中甲基汞和乙基汞的吹扫捕集/气相色谱-冷原子荧光光谱法。标准内容如下(附录A 为规范性附录,附录B 为资料性附录):
  • 甲基化成肿瘤检测新靶标?五种新型DNA甲基化酶检测技术进展揭秘
    DNA甲基化是哺乳动物基因组中最常见的表观遗传事件之一,即DNA中核苷酸与甲基基团的共价修饰[2]。DNA甲基化与人的生命进程有着密不可分的关系。细胞的增殖与分化、染色体完整性的维护或者X染色体的活性等等都离不开DNA甲基化的控制,DNA甲基化流程在胚胎发育中是无处不在的[1]。如果DNA甲基化进程出现异常,会导致生物体出现各种各样的疾病以及身体的生长缺陷或生理紊乱。DNA与蛋白质之间的相互作用如果出现异常,会影响基因的表达,从而引起人体内肿瘤的发生或者肿瘤的转移,这一切的源头都是DNA甲基化进程出现异常的结果[3]。DNA甲基化酶是肿瘤治疗靶点DNA甲基化酶是一种修饰酶,经常与限制性内切酶一同出现。在真核生物基因组以及原核生物基因组中,普遍存在DNA甲基化酶维持以及催化DNA甲基化过程的现象。DNA甲基化酶被广泛认为是一种治疗靶点以及预测生物甲基化过程的标志物,在单细胞水平上准确灵敏地检测DNA甲基化酶对于肿瘤医学上的临床诊断以及临床治疗甚至是生物学研究有着至关重要的作用。根据甲基化的核苷酸和位置被分为三组,即腺嘌呤的甲基化、胞嘧啶的4-N甲基化和胞嘧啶的5-C甲基化。所有已知的DNA甲基化酶在其甲基化过程中以s-腺苷甲硫氨酸作为甲基供体。最常见的DNA甲基化不仅发生在胞嘧啶嘧啶环5-C位置的CpG位点上,还发生在对称四核苷酸5’-G-A-T-C-3’ 中腺嘌呤环的6-N位置[4,5]。传统DNA甲基化酶检测方法有局限 DNA甲基化酶活性的高灵敏度检测在基因调控、表观遗传修饰、临床诊断和治疗等方面具有重要意义。传统用于检测DNA甲基化酶活性的方法包括高效液相色谱法(HPLC)[6], 聚合酶链反应(PCR)[7],凝胶电泳[8],高效毛细管电泳(HPCE)[9],以及使用同位素标记的s-腺苷甲硫氨酸甲基化检测[10,11]。尽管这些技术在实验室实践中被证明是有用的,但它们具有局限性。例如,大多数技术不仅使用笨重昂贵的设备,而且需要复杂的样品制备和数据分析所需的大量时间。同位素标记等技术是有效的,但它们往往需要费力的样品制备、同位素标记、复杂的设备和大量的DNA,使得它们不适合在医护点使用。所以,DNA甲基化酶活性检测迫切需要简单、便携、高灵敏度和低成本的检测方法。在最近的技术进步中,许多替代的DNA甲基化酶活性测定方法,如放射法、比色法、荧光法、电化学法等已被提出。此外,其中许多与纳米材料或酶结合,以显著提高它们的敏感性。放射法、蛋白质纳米孔等新型检测技术兴起 放射法:同位素标记作为最早检测DNA甲基化酶活性的方法之一,早期广泛应用于检测DNA甲基化酶和DNA甲基化的活性[12,13]。在由DNA甲基化酶催化的甲基化过程中,同位素标记的甲基部分转移到DNA上,从而赋予甲基化的DNA放射性。这种放射性可以很方便地用闪烁计数器或放射自显像仪来检测。可惜的是,放射性试剂的介入是限制这种试验在中央实验室进行的最大缺点。对无辐射DNA甲基化酶活性检测的研究导致了甲基化特异性PCR[14]、HPCE[9]和HPLC等替代品的发展[7,14],而甲基化特异性PCR被认为是较好的方法。尽管非放射性,上述DNA甲基化酶活性检测需要庞大且通常昂贵的设备,冗长且耗时的样品制备和数据分析,以及繁琐的检测方案,这在临床实践中也比较难以实现全覆盖。比色法:比色法用于DNA甲基化酶活性检测依赖于颜色变化的目视观察或与DNA甲基化酶相关的吸收光谱的光谱测量。它们具有成本低、简单、可移植性和在某些情况下无需仪器的优点。虽然紫外-可见光谱法可以量化DNA,但甲基化和未甲基化DNA在紫外-可见吸收特性上的低灵敏度和不显著差异基本否定了紫外-可见光谱法直接检测DNA甲基化酶活性[15~17]。金纳米粒子:金纳米粒子(AuNPs)由于其表面的等离子体共振吸收的高消光系数且强依赖于粒子间距离,在DNA甲基化酶活性检测的比色法研究中引起了广泛关注。如图1 所示,金纳米粒子表面包覆有双链DNA (ds-DNA),其中一条链包含DNA甲基化酶识别序列和5’-硫醇末端。在DNA甲基化酶存在的情况下,如图1 B 所示,DNA甲基化酶被共价标记在ds-DNA中碱基环的6-C位置,因为在5-N位置缺乏一个质子阻止了β-消除,甲基化的DNA不能被核酸外切酶 ExoⅠ剪切,因此金纳米粒子仍然均匀地分散在溶液中 [18]。从而实现DNA甲基化酶活性的检测。结果表明,在526 nm处,金纳米粒子聚集物的吸光度与DNA甲基化酶的活性呈2 ~ 32 U / mL的线性关系,检出限为0.5 U/ mL。图1. (A)基于ABP的比色生物传感器的示意图(B) DNA甲基化酶的检测机制 荧光法:荧光指吸收激发荧光团的光,以促进电子从基态到激发态,电子迅速地回到激发态的最低能级,然后当电子最终返回基态时,发出波长较长的光。与其他DNA甲基化酶活性测定法相比,荧光法检测DNA甲基化酶活性的优点是检测过程简单,灵敏度高,但其复杂的光学性能限制了其在集中实验室的应用[19~20]。图2. 基于外切酶的靶循环的DNA甲基化酶活性检测原理图电化学法:电化学生物分析技术的发展一直是现代分析化学研究的热点之一。电化学法用于DNA甲基化酶分析包括测量电流、电压、电荷和电阻等电量,以反映DNA甲基化酶的活性。与许多其他类型的DNA甲基化酶活性的检测相比,它们具有低成本、高灵敏度、执行现场监测的能力以及非常适合微型化和集成微制造技术的优点[22~23]。Zhi-Qiang Gao等人在2014年报道了一种简单、高灵敏度的DNA甲基化酶电化学活性测定方法。该方法采用电催化氧化抗坏血酸(AA)的信号放大手段,通过一个螺纹插层N,N -2(3-丙基咪唑)-1,4,5,8-萘二酰亚胺(PIND)电催化氧化还原Os(bpy)2Cl+ (PIND-Os),包含5’-CCGG-3’ 对称序列的ds-DNA首先固定在金电极上。然后用DNA甲基化酶孵育电极,经过酶催化特定CpG二核苷酸的甲基化,然后用识别5’-CCGG-3’ 序列的限制性内切酶 Hpa II 剪切酶处理电极,从而实现DNA甲基化酶活性检测的目的[24]。图3. DNA甲基化酶活性的检测原理示意图蛋白质纳米孔:蛋白质纳米孔检测技术是在单分子水平上以低成本、无标签和高通量的方式研究生物分子的检测技术。近年来,纳米孔技术正从生物传感的角度进行研究[25]。应用于核酸特征鉴定、化学反应过程的测量、蛋白质分析、疾病相关蛋白状态的检测以及酶动力学的研究等[26]。α-溶血7素是一种蛋白质纳米孔,它自发地插入到脂质双层膜中,形成一个纳米孔[27]。当一个带电分子在外加电势下通过蛋白质纳米孔时,它会引起离子电流的瞬态变化,电流变化事件被记录下来。被分析物可以通过当前电流发生的频率进行量化,特征电流信号则可以揭示被分析物的各种特征[28~30]。该检测方法不需要对DNA探针进行任何化学修饰,既方便又节约成本,减少了样品消耗。 图4. 用于分析DNA甲基化酶活性的纳米孔试验的示意图 在过去的十几年中,DNA甲基化酶活性的检测取得了重大进展。有几种方法有希望可在临床检测,使得该方法在用于癌症诊断、预后和治疗方面显示出了希望。比色法依赖于颜色变化的目视观察或与DNA甲基化酶相关的吸收光谱的光谱测量,具有成本低、简单、可移植性和在某些情况下无需仪器的优点,但是检出限相对较高。荧光法检测DNA甲基化酶活性的检测过程简单,检出限相对理想,但其复杂的光学性能以及昂贵的仪器设备限制了其在生活中的应用。电化学法由于需要构建较复杂的反应电极材料而使得其在临床上受到了一定的限制。蛋白质纳米孔的检测方法不需要对DNA探针进行任何化学修饰,既方便又节约成本,减少了样品消耗,检出限相对较为理想,并且已经成功应用于人类血清样本。这类检测可能最终为常规DNA甲基化酶活性的检测和分子诊断打开大门,为疾病的管理和诊断带来新的前景。 作者:王家海、骆 乐 作者简介:王家海,博士,教授,硕士生导师/博士生导师,广州大学化学化工学院;分析化学专业;主要研究领域为“基于核算纳米结构为信号传导载体的纳米孔传感器”;在核酸探针和仿生纳米孔两方面开展了一系列分子识别的工作,也为将来进一步开展分析化学研究打下了坚实的基础,期间积累了多种前沿分析方法和技术:仿生纳米孔制备和检测;微纳米加工技术;核酸探针人工合成技术。参 考 文 献 [1] 陈晓娟,闫少春,邵国,等.人DNA甲基化转移酶的分类及其功能[J].包头医学院学报,2014,30(04):136-138.[2] Das PM, et al. DNA methylation and cancer[J]. Clin. Oncol. 2004 22: 4632-4642.[3] Jurkowska RZ, et al. Structure and function of mammalian DNA methyltransferases[J]. ChemBioChem 2011 12: 206-222.[4] Lee GE, et al. DNA methyltransferase 1-associated protein (dmap1) is a co-repressor that stimulates DNA methylation globally and locally at sites of double strand break repair[J]. Biol. Chem. 2010 285: 37630-37640.[5] Liu SN, et al. Assay Methods of DNA Methylation and Their Applications in Cancer Diagnosis and Therapy[J]. Chinese J.Anal. Chem. 2011 39: 1451-1458.[6] Boye E, et al. Quantification of dam methyltransferase in Escherichia coli[J]. Bacteriol. 1992 174: 1682-1685.[7] Eads CA, et al. CpG island hypermethylation in human colorectal tumors is not associated with DNA methyltransferase overexpression[J]. Cancer Res. 1999 59: 2302-2306.[8] Bergerat A, et al. Allosteric and catalytic binding of s-adenosylmethionine to escherichia coli DNA adenine methyltransferase monitored by 3H NMR[J]. Proc. Natl. Acad. Sci. U. S. A. 1991 88: 6394-6397.[9] Fraga MF, et al. Rapid quantification of DNA methylation by high performance capillary electrophoresis[J]. Electrophoresis 2000 21: 2990-2994.[10] Yokochi T, et al. DMB (dnmt-magnetic beads) assay: measuring DNA methyltransferase activity in vitro[J]. Methods Mol. Biol. 2004 287: 285-296.[11] Adams RLP, et al. Microassay for DNA methyltransferase[J]. Biochem. Bioph. Methods 1991 22: 19-22.[12] Jurkowska RZ, et al. DNA methyltransferase assays[J]. Methods Mol. Biol. 2011 791: 157-177.[13] Pradhan S, et al. Recombinant human DNA (cytosine-5) methyltransferase [J]. Biol. Chem. 1999 274: 33002-33010.[14] Herman JG, et al. Methylation-specific PCR: a novel PCR assay for methylation status of CpG islands[J]. Proc. Natl. Acad. Sci. U. S. A. 1996 93: 9821-9826.[15] Kattenhorn, L. M. Korbel, G. A. Kessler, B. M. Spooner, E. Ploegh, H. L. Mol. Cell 2005, 19, 547−557.[16] Mosammaparast, N. Shi, Y. Annu. Rev. Biochem. 2010, 79, 155−179.[17] Barglow, K. T. Cravatt, B. F. Angew. Chem., Int. Ed. 2006, 45, 7408−7411.[18] Wu Z, et al. Activity-based DNA-gold nanoparticle probe as colorimetric biosensor for DNA methyltransferase/glycosylase assay[J]. Anal. Chem. 2013 85: 4376-4383.[19] Zhu, C. Wen, Y. Peng, H. Long, Y. He, Y. Huang, Q. Li, D. Fan, C. Anal. Bioanal. Chem. 2011, 399, 3459−3464.[20] Chen, F. Zhao, Y. Analyst 2013, 138, 284−289.[21] Xing XW, et al. Sensitive detection of DNA methyltransferase activity based on exonuclease-mediated target recycling[J]. Anal. Chem. 2014 86: 11269-11274.[22] Wu, H. Liu, S. Jiang, J. Shen, G. Yu, R. Chem. Commun. 2012, 48, 6280−6282[23] Wang, M. Xu, Z. Chen, L. Yin, H. Ai, S. Anal. Chem. 2012, 84, 9072−9078[24] Deng H, et al. Highly sensitive electrochemical methyltransferase activity assay[J]. Anal. Chem. 2014 86: 2117-2123.[25] Howorka, S. Siwy, Z. Nanopore Analytics: Sensing of Single Molecules. Chem. Soc. Rev. 2009, 38, 2360−2384.[26] Song, L. Hobaugh, M. R. Shustak, C. Cheley, S. Bayley, H. Gouaux, J. E. Structure of Staphylococcal α-Hemolysin, a Heptameric Transmembrane Pore. Science 1996, 274, 1859−1865.[27] Lin, L. Yan, J. Li, J. Small-Molecule Triggered Cascade Enzymatic Catalysis in Hour-Glass Shaped Nanochannel Reactor for Glucose Monitoring. Anal. Chem. 2014, 86, 10546−10551.[28] Li, J. Yan, H. Wang, K. Tan, W. Zhou, X. Anal. Chem. 2007, 79, 1050−1056.[29] Wood, R. J. Maynard-Smith, M. D. Robinson, V. L. Oyston, P. C. F. Titball, R. W. Roach, P. L. PLoS One 2007, 2, e801−e801.[30] Wood, R. J. McKelvie, J. C. Maynard-Smith, M. D. Roach, P. L. Nucleic Acids Res. 2010, 38, e107−e107.[31] Jinghong Li, et al. Nanopore-based, label-free, and real-time monitoring assay for DNA methyltransferase activity and inhibition[J]. Anal. Chem. 2017 89: 13252−13260.
  • 市场监管总局发布《国家计量技术规范管理办法(征求意见稿)》
    为加强国家计量技术规范的全周期管理,以保障国家计量单位制的统一和量值的准确可靠,更好适应我国经济社会发展和计量工作改革需要,市场监管总局组织起草了《国家计量技术规范管理办法(征求意见稿)》,现向社会公开征求意见,请于2023年6月21日前反馈市场监管总局。公众可通过以下途径和方式提出意见:   1.登录中华人民共和国司法部中国政府法制信息网(网址:www.moj.gov.cn、www.chinalaw.gov.cn),进入首页主菜单的“立法意见征集”栏目提出意见。   2.登录国家市场监督管理总局网站(网址:http://www.samr.gov.cn),通过首页“互动”栏目中的“征集调查”提出意见。   3.通过电子邮件将意见发送至:jlsglc@samr.gov.cn,邮件主题请注明“《国家计量技术规范管理办法》反馈意见”字样。   4.通讯地址:北京市东城区安定门外大街56号,市场监管总局计量司,邮编100088。请在信封注明“《国家计量技术规范管理办法》反馈意见”字样。   市场监管总局   2023年5月22日   附件: 附件1:《国家计量技术规范管理办法(征求意见稿)》.docx    附件2:起草说明.docx  国家计量技术规范管理办法(征求意见稿)  (原名称:国家计量检定规程管理办法)   第一章 总则   第一条 为加强对国家计量技术规范的管理,保障国家计量单位制的统一和量值的准确可靠,根据《中华人民共和国计量法》和《中华人民共和国计量法实施细则》的有关规定,制定本办法。   第二条 国家计量技术规范的立项、制定(含修订,下同)、批准发布、组织实施以及监督管理工作,适用本办法。   第三条 本办法所称国家计量技术规范,是指由国家市场监督管理总局(以下简称市场监管总局)组织制定并批准发布,在全国范围内实施的计量技术规范,包括国家计量检定系统表、国家计量检定规程、国家计量器具型式评价大纲、国家计量校准规范以及其他国家计量技术规范。其他国家计量技术规范包括:   (一)各领域计量名词术语及定义;   (二)测量不确定度的评定与表示要求;   (三)规范计量活动的规则、细则、指南、通用要求;   (四)测量方法、测量程序;   (五)标准参考数据的技术要求;   (六)算法溯源技术方法;   (七)计量比对方法;   (八)其他需要规范的技术要求。   第四条 制定国家计量技术规范应当有利于提升量值传递溯源能力、服务和支撑计量管理、促进科技进步、推动产业发展、便利经贸往来、实施国家战略。   第五条 制定国家计量技术规范应当符合国家有关法律、行政法规和部门规章的规定;适用范围必须明确,在其界定的范围内力求完整;各项要求科学合理,并考虑操作的可行性及实施的经济性;全过程应当公开、透明,广泛征求各方意见。   第六条 积极推动采用国际法制计量组织(OIML)发布的国际计量技术规范及有关国际组织发布的国际技术文件。在采用中应当符合国家有关法规和政策,坚持结合国情、注重实效的原则。   第七条 市场监管总局统一管理国家计量技术规范,负责国家计量技术规范的立项、组织制定、编号、批准发布和组织实施及监督管理。   第八条 由市场监管总局组织建立的全国专业计量技术委员会、分技术委员会(以下简称技术委员会),受市场监管总局委托,负责开展国家计量技术规范的立项评估、起草、征求意见、技术审定、效果评估、复审和宣贯工作,承担归口国家计量技术规范的解释工作。   第九条 国家计量技术规范及外文版依法受到版权保护。市场监管总局享有国家计量技术规范的版权。   第十条 对具有先进性、引领性,实施效果良好,需要在全国范围推广实施的部门行业和地方计量技术规范,可以按程序制定为国家计量技术规范。   第二章 国家计量技术规范的立项   第十一条 市场监管总局提出国家计量技术规范项目的申报原则要求,政府部门、社会团体、企事业单位、个人根据经济社会发展以及计量法制管理需要,可以向有关技术委员会提出国家计量技术规范的立项建议,也可以直接向市场监管总局提出国家计量技术规范的立项建议。   立项建议应说明制定国家计量技术规范的必要性、可行性、适用范围和与现行国家计量技术规范的兼容性等。   第十二条 市场监管总局应当组织技术委员会对立项建议进行评估。  第十三条 国家计量技术规范立项建议经评估后适合立项的,由技术委员会报市场监管总局提出立项申请。未成立技术委员会的,市场监管总局可以委托有关技术委员会提出立项申请。   立项申请材料应当包括项目申报书和国家计量技术规范草案。   项目申报书应当说明制定国家计量技术规范的必要性和可行性,国内外技术规范水平现状和发展趋向、与相关国际技术文件的一致性程度,关键技术要求(或者主要内容),实施国家计量技术规范的条件,进度安排,预期的经济和社会效益等。   第十四条 对立项建议存在重大分歧的,市场监管总局应当组织有关技术委员会对争议内容进行协调,形成处理意见。   第十五条 市场监管总局决定予以立项的,应当下达项目计划至各技术委员会。   第十六条 在执行国家计量技术规范计划过程中,有下列情形时可以对计划项目进行调整:   (一)确属急需制定国家计量技术规范的项目,可以增补;   (二)确属不再适宜制定国家计量技术规范的项目,应予撤销;   (三)确属特殊情况,可以对计划项目进行调整。   第十七条 调整国家计量技术规范计划项目应当由归口技术委员会提出,经市场监管总局批准后实施;未获批准的,有关技术委员会和起草单位应当按照原计划实施。   第三章 国家计量技术规范的制定   第十八条 市场监管总局批准下达的国家计量技术规范制修订项目计划应当由技术委员会组织起草单位实施。   起草单位应当具有专业性和广泛代表性,负责国家计量技术规范起草的调研、试验验证、编制和征求意见处理等工作。   第十九条 制定国家计量技术规范从计划下达到报送报批材料的周期一般不得超过二十四个月。不能按照项目计划规定周期报送的,应当提前三十日申请延期。制定国家计量技术规范的延长周期不得超过十二个月。   无法继续执行项目计划的,由技术委员会报市场监管总局批准后,终止国家计量技术规范项目。   第二十条 制定国家计量技术规范应当按照编写规则要求,在调查研究、试验验证的基础上,起草国家计量技术规范征求意见稿、编写说明以及其他有关材料。   第二十一条 编写说明应当包含以下内容:阐明任务来源、编写依据、起草过程、与相关国际技术文件的一致性程度、与国家标准的兼容情况,对所规定的主要技术要求、试验条件、试验方法的有关说明,对重要条款的解释,对重大分歧意见的处理结果和依据等,必要时还应说明实施技术规范的风险评估及对经济社会发展可能产生的影响、贯彻实施国家计量技术规范的要求、措施、过渡期和实施日期等建议,以及其他应当说明的事项。在修订时,还应列出和原国家计量技术规范的主要差异情况并进行说明。   如适用,附件还应包括以下文件:   (一)试验报告。对国家计量技术规范规定的技术要求,应当用规定的试验条件和试验方法对其适用范围的对象进行检测,用试验数据证明其是否科学、合理和可行。   (二)测量不确定度评定报告。应当用测量不确定度评定方法分析所规定的技术要求、试验条件、试验方法是否科学合理。   (三)采用相关国际技术文件的原文及中文译本。   第二十二条 国家计量技术规范征求意见稿和编写说明应当向社会公开征求意见,同时向涉及的有关政府部门、企事业单位、科研机构、社会组织等相关方征求意见。   国家计量技术规范公开征求意见的期限不得少于三十日。   第二十三条 起草单位应当对征集的意见进行处理,形成征求意见汇总表,对征求意见稿修改完善后,形成国家计量技术规范报审稿,报送归口技术委员会。   第二十四条 技术委员会应当按照《全国专业计量技术委员会章程》规定的工作程序,对国家计量技术规范报审稿开展审定。技术委员会应当审定以下内容:   (一)是否符合国家有关法律、行政法规和部门规章的情况,以及与相关国际技术文件和国家标准的兼容性;   (二)主要技术内容的科学性、先进性、合理性和可操作性;   (三)国家计量技术规范的规范性、严谨性以及试验报告、测量不确定度评定报告的可靠性;   (四)是否符合公平竞争的规定;   (五)意见采纳情况和重大分歧意见的处理结果。   第二十五条 审定可通过会议审定或函件审定。   会议审定时,该技术委员会三分之二以上委员参加方为有效。会议审定应当协商一致,如需投票(赞成、反对、弃权)表决,应当获得到会委员人数四分之三以上赞成方为通过。技术委员会委员和被审定国家计量技术规范起草人应当参加审定会议;咨询委员、顾问、工作组成员和通讯单位成员可列席审定会议。必要时可邀请特邀代表列席审定会议。   函件审定时,该技术委员会四分之三以上委员回函赞成方为通过。   起草人员不参加表决。咨询委员、顾问、工作组成员、通讯单位成员、特邀代表不参加表决,但应当将其意见记录在案。   会议审定和函件审定应形成审定意见书,并经参加全体委员签字。审定意见书应当包括审定时间地点、参加委员名单、具体对技术规范的审定意见和结论等。   第二十六条 起草单位根据审定意见整理形成报批稿和相关报批材料,经技术委员会审核同意后,报市场监管总局。报批材料包括:   (一)国家计量技术规范报批公文;   (二)国家计量技术规范报批稿;   (三)国家计量技术规范报批表;   (四)编写说明;   (五)征求意见汇总表;   (六)审定意见书;   (七)试验报告(如适用);   (八)测量不确定度评定报告(如适用);   (九)国际相关技术文件的原文和中文译本(如适用);   (十)其他有关材料。   第二十七条 市场监管总局委托国家计量技术规范审查部对国家计量技术规范的报批材料进行审查。国家计量技术规范审查部应当审查下列内容是否符合相关规定和要求:   (一)国家计量技术规范的编写质量;   (二)国家计量技术规范的法制性;   (三)国家计量技术规范的适用性;   (四)国家计量技术规范的兼容性;   (五)国家计量技术规范的技术性。   第四章 国家计量技术规范的批准发布   第二十八条 国家计量技术规范由市场监管总局统一批准、编号,以公告形式发布。   第二十九条 国家计量技术规范的编号由其代号(JJG或JJF)﹑顺序号和发布年号组成。   代号“JJG”用于国家计量检定规程和国家计量检定系统表;代号“JJF”用于国家计量校准规范、国家计量器具型式评价大纲和其他国家计量技术规范。   第三十条 制定国家计量技术规范过程中形成的有关资料应当由市场监管总局和归口技术委员会分别归档。   第三十一条 国家计量技术规范经批准发布后,由市场监管总局委托出版机构出版。   市场监管总局按照有关规定公开国家计量技术规范文本,供公众查阅。   需要翻译成外文的国家计量技术规范,其译文由归口的技术委员会组织翻译和审定,如需出版,应当经市场监管总局批准,由国家计量技术规范的出版机构出版。   第五章 国家计量技术规范的实施与监督管理   第三十二条 国家计量技术规范的发布与实施之间应当设置合理的过渡期。   第三十三条 国家计量技术规范发布后,市场监管总局应当组织技术委员会开展国家计量技术规范的宣贯和推广工作。鼓励各级市场监管部门、各有关政府部门、行业协会、计量技术机构采用多种形式开展国家计量技术规范的宣传和推广工作。   第三十四条 鼓励各级市场监管部门、各有关政府部门、行业协会和技术委员会在日常工作中收集相关国家计量技术规范实施信息,主要起草单位应当对已发布的计量技术规范进行有效性跟踪。鼓励社会公众通过相关门户网站反馈国家计量技术规范在实施中产生的问题和意见建议。   第三十五条 市场监管总局建立国家计量技术规范实施效果评估机制,定期组织开展重点领域国家计量技术规范实施效果评估。国家计量技术规范实施效果评估主要包括技术规范的适用性、协调性、技术水平、结构内容、应用状况、实施成效和问题等内容。   第三十六条 市场监管总局委托技术委员会开展国家计量技术规范复审工作。技术委员会应根据复审情况提出继续有效、修订或者废止的结论,报市场监管总局。复审周期一般不超过五年。   各技术委员会应当密切关注可能影响国家计量技术规范合法合规性和科学性的国际、国内重大变化情况,或者经济社会和科技发展导致现有国家计量技术规范整体或部分条款不适用等情况,经研判后及时向市场监管总局提出复审建议。   第三十七条 国家计量技术规范经复审按照下列情形分别处理:   (一)对不需要修订的国家计量技术规范,确认继续有效,由归口技术委员会填写复审意见表,报市场监管总局批准。   (二)对需要修订的国家计量技术规范,由归口技术委员会填写复审意见表,报市场监管总局批准,作为修订项目列入计划;修订的国家计量技术规范顺序号不变,将年号改为修订后批准发布的年号。   (三)对不再符合国家相关法律法规规定或经济社会发展需要的国家计量技术规范,由归口技术委员会填写复审意见表,提出废止建议,报市场监管总局批准。拟废止的国家计量技术规范由市场监管总局向社会公开征求意见,征求意见期限不少于三十日。   第三十八条 经过复审确认继续有效或批准废止的国家计量技术规范目录,由市场监管总局以公告形式发布。   第三十九条 国家计量技术规范发布后,个别技术要求需要调整、补充或者删减,可以通过修改单进行修改。由起草单位填写修改国家计量技术规范申报表,经归口技术委员会审核同意,报市场监管总局批准,以公告形式发布。国家计量技术规范修改单与技术规范文本具有同等效力。   第六章 附则   第四十条 任何单位和个人,未经市场监管总局批准,不得随意改动国家计量技术规范。违反本办法规定的,应当对直接责任人进行批评、教育,给予行政处分,直至依法追究刑事责任。   第四十一条 国家计量技术规范属于计量科技创新,应当纳入国家或部门科技进步奖项范围。   第四十二条 本办法自20XX年X月X日起实施。2002年12月31日原国家质量监督检验检疫总局第36号令发布的《国家计量检定规程管理办法》同时废止。  《国家计量技术规范管理办法  (征求意见稿)》起草说明   为加强国家计量技术规范体系管理,以更好适应我国经济社会发展和计量工作改革需要,市场监管总局组织修订了《国家计量检定规程管理办法》(以下简称《办法》)。现就修订的有关问题说明如下。   一、修订《办法》必要性   计量技术规范是计量活动中使用的技术文件,是贯彻实施计量法律和规章制度的重要技术支持, 是保证计量单位的统一和计量器具量值的准确的重要技术依据,是完善国家计量体系的重要保障。当前我国的国家计量技术规范体系,既包括国家计量检定系统表、国家计量检定规程,也包括国家计量器具型式评价大纲、国家计量校准规范,以及其他随着计量科学技术及其应用发展和计量活动实践演进逐步形成的新类型计量技术规范。据最新统计数据,市场监管总局发布的现行国家计量技术规范共1958项,包括国家计量检定系统表95项、国家计量检定规程824项、计量器具型式评价大纲147项、国家计量校准规范767项和其他计量技术规范125项。近年来,党中央、国务院对完善国家计量技术规范体系建设多次提出要求,《中共中央 国务院关于加快建设全国统一大市场的意见》指出,要紧贴战略性新兴产业、高新技术产业、先进制造业等重点领域需求,突破一批关键测量技术,研制一批新型标准物质,不断完善国家计量体系。《计量发展规划(2021—2035年)》提出,要加快完善以国家计量技术规范为主体、部门行业和地方计量技术规范为补充的计量技术规范体系。建立计量技术规范与计量标准建设协调机制,开展计量技术规范制修订、实施和效果评估。积极采用国际计量规范,提升我国计量技术规范的国际化水平。   按照《计量法》第十条规定,国家计量检定系统表和国家计量检定规程被赋予法律地位,原质检总局于2002年12月31日发布实施《国家计量检定规程管理办法》,二十年来,《办法》对保障国家计量技术规范体系的不断完善和逐步实现国家计量技术规范全生命周期的管理起到重要作用。目前,对国家计量检定系统表和国家计量检定规程依据《办法》管理,对其他类型的国家计量技术规范的管理也全部参照《办法》执行,相关工作程序和管理要求完全一致。在此背景下,为完善优化国家计量技术规范体系建设,明确国家计量技术规范的定义和范围,总局计量司启动《办法》修订工作,将名称修改为《国家计量技术规范管理办法》。此外,近年来因机构改革和管理模式变化,《办法》部分条款需调整,因此,对《办法》作出修订。《办法》的发布实施,将进一步明确国家计量技术规范定义和范围,规范国家计量技术规范全生命周期管理,切实保障对各项法定计量职责的履行和国家法定计量任务的落实。   二、修订过程   2020年开始组织前期调研工作,2022年成立起草小组,多次召开研讨会并广泛听取意见,先后对《办法》修订初稿进行三次修订。2023年3月16日召开专家研讨会,根据意见反馈,形成修订讨论稿,3月31日现场听取各全国专业计量技术委员会秘书长意见建议,修改完善后形成修订稿,5月5日征求计量司各处意见建议后形成征求意见稿。现通过中华人民共和国司法部中国政府法制信息网和国家市场监督管理总局网站向社会公开征求意。下一步,在广泛征求各方意见基础上,形成修订草案,并按照有关程序进行公平竞争性审查,与宏观政策取向一致性评估以及社会稳定风险评估等工作。   三、修订的主要内容   本次主要修订内容如下:   (一)根据《国家市场监督管理总局职能配置、内设机构和人员编制规定》,计量司承担国家计量技术规范体系建立及组织实施工作。为了做到规章与工作实践相符,履行好国家计量技术规范管理职能,本次修订将《国家计量检定规程管理办法》更名为《国家计量技术规范管理办法》,并将正文中的“国家计量检定规程”统一修改为“国家计量技术规范”。   (二)根据《国家市场监督管理总局职能配置、内设机构和人员编制规定》,市场监管总局负责统一管理计量工作,本次修订将《办法》涉及国家质量监督检验检疫总局(质检总局)的内容统一修改为国家市场监督管理总局(市场监管总局)。   (三)本次修订进一步明确了国家计量技术规范在立项、制定修订、批准发布和实施监督管理各阶段程序的工作要求,完善了国家计量技术规范发布实施后的信息反馈机制。增加对国家计量技术规范制定周期的具体要求,增加总局委托开展国家计量技术规范审查工作的内容,增加国家计量技术规范实施与监督的内容和要求等。   (四)关于测量不确定度评定,由国际计量局(BIPM)和国际标准化组织(ISO)等国际组织共同发布的国际标准《测量不确定度表示指南》,被社会广泛应用,其评定方法吸纳了包括误差分析方法在内的新发展。而误差分析方法则无统一的国际标准。本次修订,将原《办法》要求提供的误差分析材料改为测量不确定度评定度报告。采用测量不确定度评定,是制造和贸易全球化的需要,有利于测量结果间的可比性,有利于国际交流与互认。   (五)删除原《办法》附件。附件为国家计量检定规程的申报计划、制修订、审批、发布、复审过程中的文件、表格样式,删除的内容将在其他配套行政性文件中作出具体要求。   (六)明确国家计量技术规范版权所属。   (七)其他文字性修改。
  • 法国向欧委会通报双酚A标签法令草案
    最近,法国向欧盟发出通报,表示订立了一项法令草案,规定含双酚A(BPA)的食品包装必须贴上健康警告,对象为怀孕妇女及3岁以下幼童的父母。之前,法国已通过法例限制双酚A的使用,生效日期为2015年。   法国国民议会及参议院分别于2012年11月28日及12月13日通过法例,禁止生产、进口、出口及在市场投放含双酚A的食品包装。法国的《官方公报》于2012年12月26日刊登了该法例,禁令将于2015年1月1日生效。   该法令草案将落实上述法例中的部分条款,而法国已向欧委会作出通报。法令草案于2013年8月5日前不会实行,以便欧委会及各成员国有时间可向法国提出意见或作出反对。   法令的适用范围包括免费或为盈利而生产、进口、出口或推广任何含双酚A的包装、容器或器皿,这些包装、容器或器皿会直接与食物接触。因此,由2013年10月1日至双酚A禁令于2015年1月1日生效期间,所有售予最终消费者并含双酚A的包装必须附上以下其中一种警告标签:   「包装使用双酚A制造,不建议孕妇、喂哺母乳妇女或3岁以下幼童使用」   「使用双酚A制造,不建议孕妇、喂哺母乳妇女或3岁以下幼童使用」   在供应予最终消费者前,含双酚A的食品包装只须把健康警告标示于附带文件上。若公司违反标签规定,将会被罚款。   法国的法令草案载于以下网址:   http://ec.europa.eu/enterprise/tris/pisa/app/search/index.cfm?fuseaction=pisa_notif_overview&sNlang=EN&iyear=2013&inum=230&lang=EN&iBack=6   - See more at:   http://economists-pick-research.hktdc.com/business-news/article/%E6%AC%A7%E7%9B%9F%E5%95%86%E6%83%85%E5%BF%AB%E8%AE%AF/%E6%B3%95%E5%9B%BD%E5%90%91%E6%AC%A7%E5%A7%94%E4%BC%9A%E9%80%9A%E6%8A%A5%E5%8F%8C%E9%85%9AA%E6%A0%87%E7%AD%BE%E6%B3%95%E4%BB%A4%E8%8D%89%E6%A1%88/baeu/sc/1/1X2ZT68A/1X09TRBG.htm#sthash.LoDPHaPN.dpuf
  • 环境计量委组织召开8项国家计量技术规范预审会
    4月24日至26日,全国生态环境监管专用计量技术委员会(MTC41,以下简称环境计量委)对及即将报审的8项国家计量技术规范在浙江杭州进行了集中研讨及预审工作,8项国家计量技术规范项目负责人、项目主审专家、环保跟踪专家、相关行业专家参加会议。环境计量委2021年共获批立项8项国家计量技术规范,涉及PM2.5污染治理急需的环境空气臭氧前体物、非甲烷总烃在线监测系统,以及污染源执法监测急需的烟气预处理装置和水质自动采样器校准规程/规范,8项国家计量技术规范均已于2022年发布征求意见稿。   预审会分组对8个国家计量技术规范进行预审,分为环境空气组、污染源组、名词术语组三个小组。会上,委员、起草小组、行业专家对规范进行研讨及预审,针对规范的重要内容,重大技术问题,不确定度分析报告,征求意见反馈情况进行了充分的讨论并完成送审意见。下一步,环境计量委秘书处将与各承担单位继续推进8项国家计量技术规范的制订进度,力争于2023年底通过委员会终审后报批。同时,环境计量委也将按照市场监管总局计量司和生态环境部监测司的要求,推进2022与2023年国家计量技术规范制定项目的编制工作,并统筹谋划急需的生态环境监测自动、现场、在线监测仪器计量技术与规划体系,提升重点仪器的准确性和计量溯源性。
  • 本草奇遇记——干燥制剂之旅
    4本草奇遇记干燥制剂之旅”在上一期的本草奇遇记中,我们详细介绍了步琦在中药分离纯化方面的解决方案,希望能通过高效且操作简单的分离纯化系统助力“十四五”中医药的发展。这期我们将带领大家开启活性物质分离提纯后的旅程,领略步琦在中医药研究发展领域中最为全面的产品解决方案。干燥 & 制剂中草药原料经过萃取、分离、提纯后的活性成分,一般需要干燥长期保存或与其他组分混合再利用。根据活性成分特性和所用试剂类型,选择合适的干燥方式及制剂再制备方式非常重要。步琦拥有多种干燥及制剂应用的产品仪器——冷冻干燥机、微米级和纳米级喷雾干燥仪以及微胶囊造粒仪,不管是干燥还是包埋再造粒,均可满足不同应用需求,为您耗费精力提取出的活性组分保驾护航。冷冻干燥机 L-300第一款双冷阱实验室冷冻干燥机冷冻干燥机 L-300 最瞩目的功能是通过交替冷凝器加载,实现了无限捕冰能力。通过 Smart-Switch 确保稳定、可重现的参数(包括冷却温度、搁板温度变化 ±1°C 以及真空压力),首次实现冻干过程的连续升华。市场首台具有双冷凝器交替工作的冷冻干燥机,搭载 Infinite-Technology TM 技术,捕冰能力无极限自动蒸汽除霜,无需耗费人力工作,删除实验停工时间冷凝器温度 -105 ℃,凝冰能力 ≥12 kg/24 h多种干燥配件可供选择,满足不同应用需求推荐配件:Pt 1000 样品温度探头实时监测冻干过程中样品温度变化可以判定冷冻干燥终点(左右滑动查看)推荐配件:干燥配件不同层数、可加热和不可加热的样品搁板多种歧管配件,满足不同应用需求应用实例中药浸提膏冷冻干燥样品:白果皮甘草浸提膏(水煎)冷冻干燥参数:(点击放大查看)干燥后样品:小型喷雾干燥仪 B-290世界领先的喷雾干燥研发解决方案拥有超过 400 项专利的小型喷雾干燥仪 B-290 获得业界众多研究人员的信任。基于我们超过 40 年的喷雾干燥经验,我们的喷雾干燥解决方案备受业界推崇:样品消耗量少(低至 5 g)、高产出量(高达 70 %)及操作直观等,轻松实现经济高效、便于升级至工业生产规模等目的。仪器配置灵活,多种玻璃组件和喷嘴尺寸可供选择喷雾干燥过程清晰可见,颗粒大小可调 1 – 60 μm标配红宝石喷嘴,喷雾效果稳定蒸发量:1 L/h H2O,有机溶剂蒸发量更高推荐配件:高效旋风分离器内镀纳米涂层,有效防止静电粘连适用于处理少量样品,回收率更高应用实例使用小型喷雾干燥仪 B-290 制备丹参微囊粉末样品:丹参提取物+明胶+羧甲基纤维素钠乳化液喷雾干燥参数:加热温度 80 ℃,蠕动泵速 6 %,雾化气流 357 L/h,核壳比(质量比)1/4 或 1/6纳米喷雾干燥仪 B-90 HP小颗粒,小样品,高产出纳米喷雾干燥仪高性能款 B-90 HP 能够将最少量的样品温和处理成亚微米级颗粒,且几乎不产生损失。该用户友好型系统可提高生产效率,适用于小颗粒关系影响重大的行业。压电驱动喷头,优化生产效率和操作性,颗粒大小 200 nm – 5 μm专利气流系统实现温和溶剂蒸发,静电粒子收集器实现更高回收率(高达 90 %)样品量需求小(推荐配件:惰性气体循环系统 B-295 SE惰性气体分为,安全处理有机溶剂,可避免喷雾干燥过程发生爆炸配备氧气和压力传感器,双重保险防止出现爆炸条件有机试剂回收再利用,加大降低环境污染并控制实验成本微胶囊造粒仪 B-390 / B-395 Pro用于创新的微型液珠和微胶囊微胶囊造粒仪 B-390 / B-395 Pro 是一个多功能系统,适用于包埋活性成分和材料。从制药、化工到食品样品,步琦微胶囊造粒仪的适应性可让您获得创新的微型液珠和微胶囊。同时,我们提供广泛的技术支持,让您可以轻松地使设备适应您的特定样品和应用需求。可制得 150 – 2000 μm 的微型液珠或微胶囊液滴形成全过程可视,有助于快速优化,设备操作直观并易于维护多种尺寸喷嘴可选,满足不同造粒尺寸需求可无菌包埋细胞、微生物和活性物质,符合 GMP标准推荐配件:同心喷嘴系统生产芯材 & 壁材结构的微胶囊包埋、缓释和控释的首选配件死体积极小,有效控制样品量应用实例制备白藜芦醇海藻酸盐微粒样品:白藜芦醇+海藻酸钠,氯化钙(接收液)喷嘴类型:单喷嘴系统制备参数:频率 1200Hz,电压 1000V,喷嘴尺寸 300μm,接收液搅拌转速 100rpm制备的湿粒和冷冻干燥后的样品 SEM 图(点击放大查看)此次中草药干燥制剂的旅程就在此告一段落,步琦还有很多精彩纷呈的旅行线路等待着大家,下期会为您带来步琦旁线与在线近红外产品对中药质量把控的解决方案,尽情期待我们后续的分享吧!
  • 英国食品标准局商讨起草双酚A禁令
    英国食品标准局(FSA)12月23日召开磋商会议,商议起草相关国家条例以执行欧盟关于婴儿(大于12个月)喂食用具中双酚A(BPA)的禁令。食品标准局渴望能听取到各利益相关方的就此国家条例(草案)的相关建议。   关于双酚A   双酚A主要用于生产聚碳酸酯,使塑料更加透明,坚固,耐冲击。它几乎被应用于各种产品当中,从汽车头灯到食品储存容器,也包括婴儿喂食用具。BPA也被用于罐头食品的内层涂料当中,用于防止因罐体腐蚀而对食物或饮料造成污染。研究表明只有非常微量的BPA会从包装中迁移到食物和饮料当中,根据每日允许摄入量,现已制定了食品接触性材料中BPA的法定限量。   相关欧盟指令   由于消费者对BPA的持续关注,欧盟委员会已于2010年11月实施了关于婴儿喂食器具中BPA的禁令。而相关行业也已采取自愿行为,限制在婴儿奶瓶生产中使用BPA。   来自欧盟食品安全局专家小组的最新科学评估报告表明:截至目前,都还没有新的证据表明有必要修改现行的对于BPA的每日允许摄入量。而英国食品标准局对于BPA的观点认为,目前食品接触性材料中BPA的暴露量对消费者的健康并不构成风险(包括婴儿)。但同时FSA也不得不承认,目前消费者对于婴儿饮食用具中BPA的关注程度实在是太高了。
  • 担心农残标准不合格?甲胺磷、甲基对硫磷等高毒农残标准现状
    目前我国农产品农药残留现状,可以用三句话来概括,即近年不断好转,总体现状较好,但仍存在隐患。具体来说,一是全国每年3-5次的农产品质量安全例行监测显示逐年好转和大为改善的结果,不仅表现于农药残留超标率逐年持续下降,已从十年前的超过50%到目前的10%以下;而且表现在残留检出值也是明显降低,十年前检出超过1 mg/kg农药残留量的蔬菜数量较多,但现已很少见,仅偶有检出超过1 mg/kg的。二是目前农产品农药残留监测合格率总体较高,如稻米和水果高达98%以上,蔬菜和茶叶也达95%以上。 三是目前农药残留状况尚不稳定,仍然存在着一些风险隐患,如南方地区或其他地区的夏季由于病虫害发生重、农药使用量大、易造成农产品农药残留超标,又如在设施反季节栽培情况下由于农药用量大并且不易降解、也易引起农药残留超标,还有随着国内外残留限量标准的提高或监测农药种类的增加、原来不超标的农产品变成了超标;特别是由于我国农业生产的产业规模太小,有众多千家万户的农民分散生产和经营,加上生产技术较为落后,基地准出和市场准入难以真正做到,造成监管更加困难。 同时,人们往往喜欢比较我国与欧美发达国家的标准。在农药残留标准数量方面,由于欧美农药管理历史长,我国农药残留的标准数量相对还比较少,因此,加快制定和完善农药残留标准是十分重要的工作。但有一点要明白,在标准的水平方面,很难比较各国残留标准的高低。从技术层面讲,各国的农业生产、农药使用情况和食物结构等不同,因此,残留标准会存在一定差异。从管理层面讲,尽管制定残留标准的主要目的是为了确保食品安全,但现在各国越来越将农药残留作为农产品国际贸易的技术壁垒,必要时进而用作政治筹码。各国农药残留标准差异还受以下几个因素的影响。一是对于本国不生产不使用的农药,往往制定最严格的标准,而本国使用的农药特别是在出口农产品上使用的农药,残留标准在安全范围内尽可能松。如美国、欧盟和日本对本国没有登记使用的农药按照一律限量标准(即0.01~0.05mg/kg)执行,而这个浓度许多发展中国家的仪器都难以检测;但是在本国登记使用的农药,即使农药毒性高,其标准却松。如美国规定高毒农药甲胺磷在芹菜上的标准为1mg/kg,花椰菜上为0.5mg/kg,日本规定芹菜上为5mg/kg,花椰菜上为1mg/kg。 二是本国没有或主要依靠进口的作物上的标准严。如氯虫苯甲酰胺是个新杀虫剂,欧盟在葡萄上的标准为1mg/kg,而在大米等粮谷上却为0.01mg/kg,茶叶上为0.02mg/kg,按理葡萄可鲜食,标准应该更高,但葡萄是欧洲的优势作物,因此制定的标准松;再如常用的杀菌剂百菌清,欧盟在直接食用的苹果、梨上标准为1mg/kg,而在大米等粮谷上却为0.01mg/kg,在茶叶上为0.1mg/kg。 三是同一作物,各国标准也不同,如安全性不很高的杀菌剂克菌丹在稻谷中的残留标准,日本是5mg/kg,欧盟为0.02mg/kg,相差100倍;又如高毒农药甲基对硫磷,日本为1mg/kg,欧盟为0.02mg/kg,相差50倍。 为了协调和统一残留标准,国际食品法典委员会负责制定农药残留国际标准,但即使有国际残留标准,大部分发达国家都执行自己的本国标准,而绝大部分发展中国家因为制定残留标准能力弱,往往只能执行国际标准。 我国是国际食品法典农药残留标准委员会的主席国,因此,我国的农药残留标准尽可能与国际食品法典标准(而不是欧美日标准)接轨,有的标准比发达国家低,但有的标准比发达国家高。 如新农药甲氧虫酰肼我国在甘蓝中的标准为2mg/kg,而美国和日本的为7mg/kg;马拉 硫磷是老农药,我国在柑橘、苹果、菜豆中的标准为2mg/kg,在糙米中为1mg/kg,在萝卜中为0.5mg/kg,均严于美国8mg/kg的标准;嗪草酮在大豆中标准为0.05mg/kg,而美国的为0.3mg/kg、欧盟和日本为0.1mg/kg的标准;常用杀菌剂噻菌灵我国在蘑菇中的标准为5mg/kg,美国为40mg/kg、欧盟10mg/kg、日本60mg/kg,分别比他们严格8、2、和12倍。 我国制定农药残留标准主要考虑安全,很少涉及贸易保护问题。由此可知,不管各国残留标准水平是否存在差异,残留标准都是根据安全风险评价而制定的,只要符合残留标准,农产品是安全的,不能用别国的标准来判断是否存在安全,不能用一国标准否定别国的标准,这缺乏科学性。因为农药残留标准是不仅仅根据安全风险评估结果来制定,也综合考虑产业发展、国际贸易等各方面因素。 如果不能确定或者过分担心农药残留标准不合格,还可以自行进行检测。 BePure专注于标准物质的研发和生产已有20多年,对于农药残留检测有着丰富的经验,满足国内检测实验室在农残领域的要求。配套的营运中心和售前售后团队保证产品品质和服务可靠快速。现在是很多政府实验室、制药企业、第三方机构和科研单位“指定供应商”。
  • 中美烟草分子育种联合实验室在昆明揭牌
    近日,由美国北卡罗来纳州立大学、浙江大学、云南省烟草农业科学研究院联合组建的“中美烟草分子育种联合实验室”在昆明揭牌。   联合实验室将通过项目合作、人才培养、学术交流等方式,全方位、深层次开展烟草分子育种、生物技术减害、优质特色品种选育等研究。据介绍,我省将以联合实验室为平台,利用国际先进科技资源,力争在烟草分子育种、生物技术减害等烟草科技“瓶颈”上实现突破,尽快培育出3至5个在抗病性、低危害等方面有突破的烟草品种。   据介绍,云南省烟草育种研究水平全国领先。云南省烟草农业科学研究院通过自育与引进相结合、传统技术与高新技术互动,培育出的云烟85、云烟87、云烟97等一批具有自主知识产权的优良品种,已成为我国烟草种植的主栽品种。2009年,我省面向全国22个省区市供种,占全国烤烟种植面积的75%以上,彻底扭转了我国烤烟品种长期依赖进口的被动局面。
  • LC-MS/MS直接进样法高灵敏度分析大米中草甘膦和草铵膦等极性农药
    高灵敏度分析 草甘膦和草铵膦是广泛使用的叶面除草剂中的活性成分。近年来,草甘膦的产量和销售额一直占据世界除草剂品种的前列。当在土壤和水中降解时,草甘膦会产生代谢产物氨甲基膦酸 (AMPA)。 各国标准对于农产品中草甘膦的最大残留限量大多介于0.05mg/kg-50mg/kg之间。如GB2763-2021《食品安全国家标准食品中农药最大残留限量》中规定,草甘膦在不同食品中的最大残留限量从0.05mg/kg-7mg/kg不等。 一直以来,高极性农药的检测都是液质分析的难点之一。草甘膦、草铵膦和AMPA都是高极性化合物,很难在反相模式下使用液相或液质进行分析。因此,对于草甘膦的液质分析通常采取FMOC衍生化的方法。本文[1]介绍了一种无需复杂预处理或耗时衍生化的草甘膦、草铵膦和AMPA的高灵敏度直接分析方法。 01样品前处理 本方法基于欧盟制定的食品中高极性农药快速分析方法(QuPPe),使用含有甲酸的甲醇:水 (50:50) 作为最终提取溶剂。将1g均质大米样品称入 50 mL离心管中,加入9 mL水和100 μL混标溶液,然后将样品静置15 min。之后,加入10 mL含有1%甲酸的甲醇,振摇1min。加入1 mL 10% EDTA水溶液,在振荡器上混合15min并离心。取上清液用0.22 μm尼龙滤膜过滤,取2mL滤液转移到含有2mL乙腈的试管中,涡旋1分钟,使用3 kDa的超滤管离心并将滤液转移至聚丙烯塑料瓶中。02色谱图 2.5ng/mL混标样品在纯溶剂(a)和大米基质(b)中的MRM色谱图 从左到右分别为0.5、1.0和2.5ng/mL样品的MRM色谱图(上:AMPA、中:草铵膦、下:草甘膦)利用岛津三重四极杆液质联用仪,基于QuPPe的样品前处理方法,无需衍生化、直接进样定量分析大米基质中的草甘膦、草铵膦和 AMPA。并对线性、准确度、精密度、基质效应和回收率等方法学进行了考察,结果良好。 03高极性农药分析的小诀窍 1、选用HILIC或混合模式色谱柱以获得良好峰形,可参考欧盟QuPPe方法中推荐的色谱柱型号。2、为避免高极性化合物被玻璃瓶吸附,建议使用聚丙烯塑料材质的样品瓶、离心管等用于样品和标准品的制备和储存。3、高极性化合物可能会吸附在金属表面,LC自动进样器和色谱柱之间的不锈钢管路用 PEEK材质管路替换。推荐使用Nexera XS inert生物惰性液相系统作为质谱前端。 Nexera XS inert生物惰性液相系统本文中涉及的分析仪器:三重四极杆液相色谱质谱联用仪LCMS-8060NX请访问以下链接,了解更多信息https://www.shimadzu.com.cn/an/lcms/lcms-8060nx/index.html 04其他相关应用 LCMS-8050直接分析饮料中草甘膦 复制链接前往查看:https://www.an.shimadzu.com/direct_analysis_of_glyphosate_glufosinate_and_ampa_in_beverages_using_a_tq_lcmsms.html LCMS-8060 在线衍生化分析啤酒中草甘膦 复制链接前往查看:https://www.an.shimadzu.com/glyphosate_glufosinate_and_ampa__uhplcmsms.html 参考文献:1.Zhe Sun and Zhaoqi Zhan, Quantitative Determination of Residual Glufosinate, Glyphosate and AMPA in Rice Matrix by Direct LC-MS/MS Method,Shimadzu Application News 本文内容非商业广告,仅供专业人士参考。
  • 保健品掺假现状曝光:虫草混合铁粉铅粉出售
    “医药保健品的原材料造假比较常见,何止阿胶以猪皮造假这一例!”   当记者就央视曝光阿胶造假事件采访几位业内人士时,意外获得他们的一致回应。业内人士揭露,除了造假,以次充好、缺斤短两等情况在中药材行业更普遍,尤其在药材集散地、中小型加工企业,以及私人收购站点。   对于阿胶造假事件,国家药监部门高度重视,并对问题阿胶展开调查。记者了解到,这类市场混乱现象,早在央视报道阿胶造假之前,已为大众所关注,之所以依旧屡禁不绝,除了商家为牟利,还因为监管上存在空白。   ●花旗参里掺萝卜干   在广州清平药材市场,记者走访了十多家中药材档口发现,同是美国花旗参,不同的店家价格从200元/公斤到1200元/公斤不等。“同是花旗参,价格怎么相差如此之多?”面对记者的疑问,不少店主给出的解释是,不同价位的花旗参治疗和药效不同,自然价格也不同。而对于同一大小、外观的花旗参价格不一致,一位店主小心地向记者透露,那些比较便宜的、个头较大的花旗参,跟萝卜干极其相似,少数无良中药材卖家会往花旗参里掺萝卜干,以假充真,欺骗消费者。   ●湿燕窝增重量   燕窝中最好的要数血燕了,价格卖到17000元/公斤。”一位档主随后向记者推荐了一种碎的燕窝,她告诉记者,这些都是整盏燕窝的边角料,但效果并不差,价格也相对便宜,卖到6000元/公斤。她同时透露,购买燕窝最需要注意的是燕窝的干湿度,很多价格比较便宜的燕窝正是因为没有晒干,水分比较大,有不少消费者不明白缘由而上当受骗。   ●树胶成山寨版蜂胶   蜂胶的造假竟来自树胶,这是一位国内保健品企业负责人向记者透露的秘密。他介绍,蜂胶是蜜蜂采集树脂、挥发油等分泌物,经过蜜蜂反复咀嚼加工,与蜜蜂上颚腺、舌腺等腺体分泌物和一定比例的蜂蜡、花粉混合转化而成的,具有抗氧化、增强免疫等作用。上述保健品企业负责人介绍,相比树胶,蜂胶产量很有限,由于蜂胶、树胶外观上没有明显差别,成分也有类似的,因此树胶成为最好的山寨版蜂胶。   ●虫草混合铁粉、铅粉卖   作为名贵药材,虫草也不能幸免。和萝卜干、树胶不一样,虫草造假问题可以很严重,因为有的不法商家为了增加重量牟暴利,不惜损害他人健康在虫草里添入铁粉、铅粉。广东省中医院一位药师介绍,虫草造假还有用面粉和模具做、用其他生物做混进去的,但是铅粉的危害最大,因为“煲到汤里还是看不出来,全部融进去喝掉了”!   原因监管缺失、检测水平滞后   多年研究医药保健品市场的中国保健协会市场工作委员会秘书长王大宏分析说,就个人看来,造成现今市场混乱的因素有三个重要方面。   首先是有些企业为求生存,缺乏自律,通过造假来牟利。再则是医药保健品原材料行业的监管薄弱,没有生产许可证,也没有行业准入许可证,从而导致管理出现盲区。   其次,我国医药成品有卫生部、药监局、中医药管理局来监管,但中药原材料却属于农副产品,而且天然的中药材以自然采摘居多,如虫草是一种天然的菌类,人工几乎无法种植,采收更难统一监管。目前,全国大部分药材都是由民间的药材公司在负责采购、收购。而民间的药材公司很难由专人负责对药农进行技术指导,农民没有种植中药的专业知识,又缺乏相应的监管部门,因此很容易在这个环节出现造假现象。   再次,科学研究、检测水平的发展滞后于行业的发展,这也是导致市场混乱、造假频现的一个重要因素。   提醒买中药材勿贪小便宜   不法商贩造假,很重要一点是看中真品和假货价格差别大,可获得巨大利润。上述保健品企业负责人介绍说,例如蜂胶1公斤几百元,而树胶质量上乘的也才1公斤几十元,如果用次等的树胶造假,利润会更高。专家表示,在市面上同种药材什么价位的都有,因此提醒消费者,不要贪小便宜,越是那种价格低得离谱的产品越要留心,通常掺假产品价格可以比正品便宜一半到六成。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制