当前位置: 仪器信息网 > 行业主题 > >

甲基壬乙醛

仪器信息网甲基壬乙醛专题为您提供2024年最新甲基壬乙醛价格报价、厂家品牌的相关信息, 包括甲基壬乙醛参数、型号等,不管是国产,还是进口品牌的甲基壬乙醛您都可以在这里找到。 除此之外,仪器信息网还免费为您整合甲基壬乙醛相关的耗材配件、试剂标物,还有甲基壬乙醛相关的最新资讯、资料,以及甲基壬乙醛相关的解决方案。

甲基壬乙醛相关的资讯

  • 磐诺A91 Plus测定PET树脂中残留乙醛含量
    方法概要——参考SH/T 1817-2017《瓶用聚对苯二甲酸乙二醇酯(PET)树脂中残留乙醛含量的测定 顶空气相色谱法》,利用顶空进样器进样,毛细管柱分离,氢火焰离子化检测器检测其中乙醛的残留含量,根据保留时间进行定性,外标法定量。 1、配置方案 序号主机配置数量备注1A91 Plus气相色谱仪1配分流/不分流进样口(S/SL)和氢火焰离子化检测器(FID)2色谱柱AB-FFAP 30m×0.32mm×0.25μm1或其他等效色谱柱3全自动顶空进样器14标准品1水中乙醛1000mg/L5计算机1Win10系统,64位专业版或旗舰版,4G以上内存 2、测试条件分流/不分流进样口(S/SL)温度:250℃,载气:N2,分流比:5:1柱箱恒温40℃,保持3min色谱柱AB-FFAP,30m×0.32mm×0.25μm氢火焰离子化检测器(FID)温度:250℃,氢气:30mL/min,空气:400mL/min,尾吹气:25mL/min顶空进样器平衡温度:70℃,管路温度:110℃,阀箱温度:100℃,平衡时间:30min,间隔时间:10min,吹扫时间:1min,载气压力:0.1Mpa,吹扫气压力:0.2Mpa 3、测试结果3.1 乙醛定性结果 图1 乙醛定性谱图 3.2 校正曲线的配置用超纯水将乙醛标准溶液(1000 mg/L)分别稀释成20、40、60、80、100 mg/L系列标准使用液; 将5个顶空瓶用氮气吹扫置换空气后, 用微量注射器分别吸取上述不同浓度的乙醛标准使用液各10 μL注入顶空瓶中, 迅速用封盖器将垫片及铝盖封好瓶口。按照气相色谱及顶空仪器的方法进行测试。以乙醛含量为横坐标, 峰面积为纵坐标绘制标准曲线。注意点:乙醛在室温下易挥发,在标准溶液配置过程中对移液针或移液枪头进行冷针处理,否则重现性和线性容易受到影响。3.3 不同浓度点谱图 图2 空白 图3 20 mg/L乙醛 图4 40mg/L乙醛 图5 60mg/L乙醛 图6 80mg/L乙醛 图7 100mg/L乙醛 3.4 重复性谱图 图8 20mg/L重复性 图9 100mg/L重复性 3.5 校正曲线
  • 国家标准化管理委员会对《水源水中乙醛、丙烯醛卫生检验标准方法 气相色谱法》等41项国家标准复审结论进行公示
    各有关单位:根据国家标准复审工作计划,国家标准化管理委员会已组织完成了《水源水中乙醛、丙烯醛卫生检验标准方法 气相色谱法》等41项国家标准的复审工作,现将复审结论进行公示。如对复审结论有不同意见,请于2024年5月19日前,通过下方意见反馈功能,将意见反馈至国标委。国家标准化管理委员会2024-03-20部分相关标准如下:序号标准号标准名称归口单位复审结论备注1GB/T 11934-1989水源水中乙醛、丙烯醛卫生检验标准方法 气相色谱法国家卫生健康委员会废止废止过渡期: 公告后12个月废止2GB/T 11935-1989水源水中氯丁二烯卫生检验标准方法 气相色谱法国家卫生健康委员会废止废止过渡期: 公告后12个月废止3GB/T 11936-1989水源水中丙烯酰胺卫生检验标准方法 气相色谱法国家卫生健康委员会废止废止过渡期: 公告后12个月废止4GB/T 11937-1989水源水中苯系物卫生检验标准方法 气相色谱法国家卫生健康委员会废止废止过渡期: 公告后12个月废止5GB/T 11938-1989水源水中氯苯系化合物卫生检验标准方法 气相色谱法国家卫生健康委员会废止废止过渡期: 公告后12个月废止6GB/T 11939-1989水源水中二硝基苯类和硝基氯苯类卫生检验标准方法 气相色谱法国家卫生健康委员会废止废止过渡期: 公告后12个月废止7GB/T 11940-1989水源水中巴豆醛卫生检验标准方法 气相色谱法国家卫生健康委员会废止废止过渡期: 公告后12个月废止8GB/T 11941-1989水源水中硫化物卫生检验标准方法国家卫生健康委员会废止废止过渡期: 公告后12个月废止
  • 上海伍丰-车内挥发性有机物和醛酮类物质 采样测定方法
    车内挥发性有机物和醛酮类物质 采样测定方法 一、说明 本方法可以测定15 种以上醛酮类化合物,包括:甲醛、乙醛、丙酮、丙烯醛、丙醛、丁烯醛、丁酮、丁醛、甲基丙烯醛、苯甲醛、戊醛、甲基苯甲醛、环己酮、己醛等。 二、仪器 等度、紫外、C18柱 固相萃取装置及其附件 超声波清洗器 DNPH 采样管 标准样品:2,4-二硝基苯腙 三、液相色谱分析条件 a) 色谱柱:等效C18 反相高效液相色谱柱; b) 流动相:乙腈/水; c) 洗脱:均相等梯度,60%乙腈/40%水; d) 检测器:紫外检测器360nm,或二极管阵列; e) 流速:1.0 ml/min; f) 进样量:25 &mu l。
  • 两项醛酮类化合物环境标准发布 涉及高效液相
    p   为贯彻《中华人民共和国环境保护法》,保护生态环境,保障人体健康,规范生态环境监测工作,现批准《固定污染源废气 醛、酮类化合物的测定 溶液吸收-高效液相色谱法》等两项标准为国家环境保护标准,并予发布。 /p p   标准名称、编号如下。 /p p   一、 img src=" /admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_pdf.gif" style=" vertical-align: middle margin-right: 2px " / a href=" https://www.instrument.com.cn/download/shtml/975321.shtml" target=" _self" title=" 固定污染源废气 醛、酮类化合物的测定 溶液吸收-高效液相色谱法(HJ 1153-2020).pdf" span style=" font-size: 16px " 固定污染源废气 醛、酮类化合物的测定 溶液吸收-高效液相色谱法(HJ 1153-2020).pdf /span /a /p p   本标准规定了测定固定污染源废气中醛、酮类化合物的高效液相色谱法。 /p p   本标准适用于固定污染源有组织排放废气中甲醛、乙醛、丙烯醛、丙酮、丙醛、丁烯醛、 2-丁酮、正丁醛、苯甲醛、异戊醛、正戊醛、正己醛共 12 种醛、酮类化合物的测定。 /p p   仪器和设备包括高效液相色谱仪、色谱柱、烟气采样器、连接管、棕色气泡吸收瓶、浓缩装置、分液漏斗、棕色试剂瓶、超声波清洗器等。 /p p   二、 img src=" /admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_pdf.gif" style=" vertical-align: middle margin-right: 2px " / a href=" https://www.instrument.com.cn/download/shtml/975320.shtml" target=" _self" title=" 《环境空气 醛、酮类化合物的测定 溶液吸收-高效液相色谱法》(HJ 1154-2020).pdf" span style=" font-size: 16px " 《环境空气 醛、酮类化合物的测定 溶液吸收-高效液相色谱法》(HJ 1154-2020).pdf /span /a /p p   本标准规定了测定环境空气和无组织排放监控点空气中醛、酮类化合物的高效液相色谱法。 /p p   本标准适用于环境空气和无组织排放监控点空气中甲醛、乙醛、丙烯醛、丙酮、丙醛、丁烯醛、2-丁酮、正丁醛、苯甲醛、异戊醛、正戊醛、正己醛、邻甲基苯甲醛、间甲基苯甲醛、对甲基苯甲醛和 2,5-二甲基苯甲醛共 16 种醛、酮类化合物的测定。 /p p   仪器和设备包括高效液相色谱仪、色谱柱、空气采样器、棕色多孔玻板吸收瓶、棕色气泡吸收瓶、浓缩装置、分液漏斗、棕色试剂瓶、超声波清洗器等。 /p p   以上标准自2021年3月15日起实施,由中国环境出版集团有限公司出版,标准内容可在生态环境部网站(http://www.mee.gov.cn)查询。 /p p   特此公告。 /p p style=" text-align: right "   生态环境部 /p p style=" text-align: right "   2020年12月14日 /p p   抄送:各省、自治区、直辖市生态环境厅(局),新疆生产建设兵团生态环境局,各流域生态环境监督管理局,环境标准研究所,各标准承担单位。 /p p   生态环境部办公厅2020年12月15日印发 /p
  • 博纳艾杰尔推出车内空气检测用醛酮采集管
    《汽车内环境质量标准》有望年底实施,DNPH-Silica助您维权   随着车内空气质量引发的维权纠纷日益增多,2008年3月1日,国家颁布了-《HJ/T 400—2007 车内挥发性有机物和醛酮类物质采样测定方法》,迈出了改善车内坏境的第一步;该《方法》规定了测量机动车乘员舱内挥发性有机物和醛酮类物质的采样点设置、采样环境条件技术要求、采样方法和设备、相应的测量方法和设备、数据处理、质量保证等内容,但并未包含如何判定车内空气污染物超标等问题,使消费者在维权的过程中无据可依。日前,该标准有望于今年年底出台。   车内空气污染物主要是含6个碳到16个碳的挥发性有机组分和甲醛、乙醛、丙酮、丙烯醛、丙醛、丁烯醛、丁酮、丁醛、甲基丙烯醛、苯甲醛、戊醛、甲基苯甲醛、环己酮、己醛等羰基化合物两类。   车内醛酮类污染物采样利用了羰基化合物和2,4-二硝基苯肼(DNPH)的特异性反应来富集污染物,再经洗脱、浓缩,进行HPLC定量分析。商品化的醛酮采集管DNPH-Silica一直被国公司垄断,而该产品经过进口漫长的运输过程,容易导致醛酮本底值的增加,使检测结果受到影响。   为打破国外产品垄断,克服进口产品货期过长、本底值增加等弊端,北京艾杰尔科技有限公司从2007年初启动了CleanertTM DNPH-Silica醛酮采集管的研发,该研发项目获海淀区科委专项资金资助(项目编号:k2007092);2007年12月,CleanertTM DNPH-Silica醛酮采集管实现产业化生产,产品通过了中国计量科学研究院计量验证;2007年12月,CleanertTM DNPH-Silica醛酮采集管获国家重点新产品证书。   博纳艾杰尔科技的CleanertTM DNPH-Silica醛酮采集管甫一推出,即受好评,国内率先开展车内气体质量检测的单位:北京市劳动保护科学研究所,华测检测技术股份有限公司,美国GD(高迪)深圳检测中心,北京大学环境学院,北京理工大学车辆与交通工程学院,上海市疾病与预防控中心等都选择了博纳艾杰尔科技的CleanertTM DNPH-Silica醛酮采集管。   博纳艾杰尔科技的CleanertTM DNPH-Silica醛酮采集管采用了与国际同步的先进制作生产工艺,更有本土化的供货优势,产品在一周内可到达国内任何手中,避免了长时间运输导致本底值增加的问题。所以,在客户的使用过程中,CleanertTM DNPH-Silica醛酮采集管的性能都优于同类进口产品;使得车内空气质量的检测更加快捷,更加方便,更加准确,为广大车主提供有力的安全保障。   同时,博纳艾杰尔科技联合国内检测专家,为客户提供车内气体质量检测的整体解决方案服务,包括:检测舱建立,实验室仪器配置,采样检测方法培训。 国家重点新产品证书 北京市劳动保护科学研究所使用报告 中国计量科学研究院测试报告
  • 空气醛酮污染亟待检测,艾杰尔受任于“危难”
    甲醛等羰基化合物是城市大气中主要的污染物,甲醛污染的主要来源包括汽车尾气排放,煤气及吸烟,在使用某些化学物质的工业生产过程中也会释放甲醛。在室内,甲醛来自硬木镶板,尿素、甲醛泡沫塑料制成的绝缘材料和家具。车内空气中所含的甲醛多是来自座椅沙发垫、车顶装饰布内衬等装饰材料。在美国健康和公共事业部及公共卫生局发布的致癌物质的报告中,已将甲醛列入一类致癌物质。国际癌症研究机构已经于2004年将甲醛上升为第一类致癌物质。专家研究认为,有足够的证据可以证明甲醛引起人类的鼻咽癌、鼻腔癌和鼻窦癌,并有证据证明甲醛可引发白血病。目前,国内已有多起由空气中甲醛超标引起的诉讼案。 醛酮检测势在必行:呼唤优越的检测方法 检测甲醛等羰基化合物在大气、室内,车内以及其他场所的含量水平和分布规律是十分重要的。但羰基化合物在大气中的浓度非常低,需要比较灵敏的方法才能检测,国内很多行业制定了空气中污染物的检测方法和标准,其中所有涉及检测甲醛和羰基类污染物方法中的大部分均采用DNPH衍生法。 汽车内空气中醛酮组分较为复杂,通常含有甲醛、乙醛及丙烯醛等多种物质,且含量分布较广,分光光度法不能同时测定多种醛酮组分,与气相色谱法相比,采用2,4-DNPH 吸附管吸附高效液相色谱法具有操作简便快捷、结果稳定等特点。 检测配件尚需进口:成本高,质量无保证 为了保护环境,促进人体健康,改变目前国内尚无车内环境检测标准的现状,为检测车内空气污染物工作提供技术依据,我国有关部门正在加紧制定国家环境保护标准&ldquo 车内空气污染物测量方法&rdquo 。方法征求意见稿中采用2,4-DNPH 吸附管吸附高效液相色谱法,正式的方法出台后,汽车生产厂家和检测机构将会大量使用DNPH-Silica样品采集管,检测成本也会因此成为影响效益的瓶颈问题。 目前国内使用的DNPH-Silica采集管全部从国外进口,由于DNPH-Silica采集管需要在4℃冷藏,不仅价格昂贵,而且供货周期漫长,质量无法保证。基于此现状,国内相关领域的企业也转向DNPH-Silica采集管的研发与生产,期望能够取代进口产品,降低使用成本,保证产品质量。 展望:艾杰尔将填补国内空白 北京艾杰尔科技有限公司在现有SPE产品技术的基础上,进行了国产DNPH-Silica气体样品采集管的研发,该项目已列入北京市海淀区2007年科技支持项目,完成了实验室试制,得到了小试样品,并对样品的质量进行了初步评价,其功能与进口产品性能相当,符合羰基化合物采样分析的要求;如能实现规模化生产,将对检测和监测大气环境污染起到很好的作用。本项目产品不但可替代进口,填补国内该类产品的空白,而且本产品的价格远低于进口产品,并可保证质量和及时供货。
  • 人冠状病毒广谱抑制剂的研究进展及展望
    展鹏教授团队分享了聚焦冠状病毒生命周期中的药物靶点,综述了现有广谱冠状病毒抑制剂的研究进展,以期为研发抗冠状病毒药物提供参考,更好地应对当下及未来的冠状病毒疫情。人冠状病毒广谱抑制剂的研究进展(一)(点击查看)人冠状病毒广谱抑制剂的研究进展(二)(点击查看)4.3靶向冠状病毒多聚蛋白裂解过程的抑制剂SARS-CoV-2进入细胞后完成生命周期并制 造出子代病毒的关键步骤是多聚蛋白的裂解,这个过程依赖的是病毒自身产生的蛋白酶Mpro和 PLpro[84]。测序结果表明,编码SARS-CoV-2和 SARS-CoV蛋白酶的RNA序列显示出高度的一 致性[85]。因此针对上述蛋白酶的抑制剂是阻断各种冠状病毒在宿主细胞内增殖的有效手段。在抗病毒药物治疗中已经有多种蛋白酶抑制剂在临床上用于治疗HIV等病毒感染。随着对 NT。活性催化位点及其周边结构的认识不断深入(图10),基于靶标的合理药物设计也促进了此类 药物的发现与发展。在针对SARS-CoV-2的治疗 中,大多数蛋白酶抑制剂仅处于计算机模拟(in silico)研究阶段,急需进一步的体外与临床研究数据。4.3. 1 主蛋白酶(Mpro)抑制剂洛匹那韦(lopinavir,20,图11)是已经上市的 拟肽类HIV蛋白酶抑制剂[86]。利托那韦 (ritronavir,21,图11)可抑制药物代谢酶,常与洛匹那韦联合应用以起到增效作用[87],二者组成的复方制剂Kaletra相对于单一的洛匹那韦作用时 间更长[88]。2004年一项非盲临床试验显示,在 SARS-CoV感染者中,服用洛匹那韦-利托那韦 (400 mg:100 mg)的试验组产生负面临床结果的风险以及病毒载量明显降低[89]。洛匹那韦针对 MERS-CoV也有抑制作用師如,但仍需进一步的 临床试验确认。洛匹那韦在体外细胞中抑制 SARS-CoV-2 的 EC50值为 26.1μmol• L-1,但单 一的利托那韦无抗病毒活性。洛匹那韦-利托那 韦复方疗法在新冠治疗中受到普遍关注[92-94]。N3(22,图12)是含有迈克尔加成受体的拟 肽类冠状病毒抑制剂[95]。作为共价抑制剂,N3 分子的乙烯基与SARS-CoV-2的Mpro催化中心的 Cysl45共价结合,并通过3个侧链分别结合于催化中心周边的各个口袋,形成额外的作用力。此外,α-酮酰胺片段被看作高效的共价结合基团,可增强分子柔性、提高稳定性和透膜性,常用于病毒蛋白酶抑制剂的设计[96]。基于此,Zhang等[97]设计了一系列以α-酮酰胺为“共价弹头”的广谱主 蛋白酶抑制剂,针对α属、β属冠状病毒与肠病毒Mpro 均有良好的抑制活性。其中代表化合物为 23(图12),其抑制 SARS-CoV 与 HCoV-NL63 主 蛋白酶的IC50值分别为0.71μmol• L-1和12.27μmol• L-1,在 Huh-7 细胞系中针对MERS- CoV的EC50值达到0. 0004 μmol• L-1。为进一步提高酮酰胺类抑制剂针对SARS-CoV-2的抑制作 用,Zhang等[98]对化合物23的结构进行修饰,将疏水性过强的肉桂酰基替换为具有一定亲水性的基团从而得到一系列化合物,其中化合物24(图 12)抑制 SARS-CoV-2、SARS-CoV与MERS-CoV 主蛋白酶的IC50值分别为(0.67±0.18)、(0.90 ±0.29)、(0.58 ±0.22) μmol• L-1。Rupintrivir ( AG7088,25,图12)对肠道病毒 EV71与鼻病毒有突出的抑制作用,但对冠状病毒活性不佳[99]。Dai等[100]通过解析AG7088与EV71 3Cpro的共晶结构,以醛基共价弹头取代了易水解失活的α,伊不饱和酯基,并结合数个蛋白 酶抑制剂的优势结构,设计了 一类靶向肠道病毒 EV71 3C蛋白酶的共价抑制剂。高亲电性的醛 基作为共价弹头,与主蛋白酶Cysl45的疏基结合稳定,广泛用于设计高活性的蛋白酶抑制剂。其中代表化合物26(图12)对各种肠道病毒、鼻病毒有广谱抑制作用。与先导化合物及同时合成的其他修饰物相比,化合物26具有更好的药代动力学特性与广谱抗冠状病毒作用,对SARS-CoV-2 Mpro。及病毒复制均有较好的抑制作用(IC50 = 0.034μmol• L-1 ,EC50 =0. 29 μmol• L-1)。四川大学杨胜勇团队基于SARS-CoV-2的 Mpro催化中心周边结构,结合已上市蛋白酶抑制剂的优势片段,设计了以双环脯氨酸为核心骨架的拟肽分子,部分化合物为27~32(图13)[101]门, 并首次在动物模型中测定了所合成化合物对Mpro 的抑制作用。该类化合物以环状γ-丁内酰胺基团(P1)靶向S1区域,脂肪稠环结构(P2)靶向S2 区域,并以结构多样的取代芳环(P3)靶向S4区域(图14)。在P2提高分子刚性与疏水性、增强 靶标结合力的同时,P3大小合适的疏水芳基有助 于进一步增强分子的活性与代谢稳定性。抑酶活性结果显示,化合物29、30、31的IC50值分别为7.6 ,7.6,9. 2 nmol• L-1。在 Vero E6 细胞中,化合物28,31,32抑制SARS-CoV-2复制的 EC50值分别为 0. 53,0.67,0.54μmol• L-1(表 2)。在体内活性测试中,化合物32的药代动力学性质较好,在鼠体内有效抑制了SARS-CoV-2的增殖,显著降低了病理损伤,经治疗的感染小鼠 未出现任何体重损失与异常状况。4.3.2 PLpro抑制剂PLpro在不同的冠状病毒中具有类似的氨基 酸序列与空间构象,显示出高度相似性(图15)。因此,针对特定冠状病毒PLpro抑制剂也具有开发 为广谱PLpro抑制剂的潜力。Figure 15 The conformation and amnio acid sequence of SARS-CoV PLpro ( PDB:2FE8 ) and SARS-CoV-2 PLpro(PDB:7CMD)Ratia等[102]建立了基于荧光的高通量筛选方法,在包含上万种类药分子的化合物库中发现了先导化合物33(图16),其R型异构体抑制SARS- CoV PLpro的 IC50值为(8.7±0.7)μmol• L-1 此类分子结构按药效团可分为“头部-链接基团-尾 部”三部分,其中,“头部基团”一般是1-萘基或2-萘基,而“链接基团”中的亚氨基作为氢键供体对分子活性至关重要,N-甲基化修饰的化合物34(图 16)活性则明显减弱(IC50=22.6μmol• L-1)。为进一步提高药效,Bdez-Santos[103]结合此 类分子中的先导化合物35(图17-A)与SARS- CoV PL。,。的共晶结构以及构效关系,设计了尾部 含有不同取代苯基的新一代SARS-CoV PL。”抑 制剂36 -39(图17-A)。共晶结构显示,此类分 子结合于Tyr269与活性中心围绕而成的狭长空 腔内(图17-B、C),活性与代谢稳定性均有提高, 活性数据如表3所示。双硫仑(disulfiram, 40,图18)是乙醛脱氢酶抑制剂,用于辅助矫正酒精成瘾[104]。2018年, Lin等[105]发现双硫仑针对SARS-CoV主蛋白酶 具有竞争性抑制作用,针对MERS-CoV PLpro。则具 有变构抑制作用。证据表明,双硫仑通过分子中 的硫原子与金属离子配位,或与蛋白质疏基相互作用,因此可以靶向PLpro和NT。中具有催化作用 的半胱氨酸[106]。在以往的临床实践中,双硫仑 表现出毒副作用小、作用机理明确、成本低的独特优势。但其针对包括SARS-CoV-2在内的多种冠 状病毒的体外实验及临床试验尚待完成。疏瞟吟即6-疏基瞟吟(6-MP,41,图18)早已 广泛用于治疗急性淋巴细胞白血病和急性髓细胞白血病。2008年,Chou[107]等首先报道了疏嚓吟作为SARS-CoV PLpro小分子可逆抑制剂的活性。 在MERS-CoV与SARS-CoV的蛋白酶的相似性 被确证之后,Cheng等[109]质旳又发现了疏瞟吟针对 MERS-CoV PLpro的竞争性抑制作用。但不可忽视的是,PLpro抑制剂的设计与研发 相对存在一定难度。候选分子中的游离疏基可能 与人体内各种蛋白质的半胱氨酸残基发生作用,导致专一性较差以及毒副作用增强[108]。此外, 宿主细胞的去泛素酶与PLpro 的相似性还会带来 抑制剂脱靶的风险。Figure 18 The structures of disiilfiram (40) and6-MP(41)5 结语与展望本文作者总结了靶向冠状病毒刺突蛋白、RdRp、蛋白酶及宿主靶标的一系列冠状病毒广谱抑制剂,对抗击新冠肺炎疫情、预防未来的冠状病 毒传播具有重要意义。针对冠状病毒的高效广谱抑制剂,是疫情爆发初期迅速响应危机、并在第一时间治疗患者的法宝[109]。对冠状病毒广谱抑制剂的发现、评估和修饰,是人类对抗未来的公共卫生危机的重要 战略举措。对于具有“老药新用”潜力的已上市药物,要尽快开展科学严谨的大规模双盲临床实 验,为大范围推广提供最真实可靠的依据,最大程 度保护患者的生命健康。长远看来,从头研发出一款针对新型冠状病 毒的“魔弹”药物需要进行漫长的设计、开发及疗效验证。一方面,不同的冠状病毒生命周期中发 挥关键作用的生物大分子有明显的种间同源性,为基于靶标结构寻找广谱抑制剂提供了重要信息;另一方面,从治疗新型冠状病毒的中药方剂中寻找天然来源的先导化合物,也是开发抗冠状病 毒药物的重要源泉。参考文献见 中国药物化学杂志 第31卷 第9期,2021年9月总173期
  • 二次公示|关于药包材环氧乙烷测定法标准草案的公示
    2023年12月7日,国家药典委发布关于药包材环氧乙烷测定法标准草案(第二次),拟向社会各界征求意见。公示期自发布之日起三个月。 环氧乙烷是一种可刺激体表并引起强烈反应的易燃性气体,能对体内的多个器官系统产生损害。1994年国际癌症研究机构(IARC)将其划分为人类致癌物质(一类)。 本标准适用于采用环氧乙烷灭菌的药包材中环氧乙烷残留量的测定,在一定温度下,用水萃取试样中所含环氧乙烷,用顶空气相色谱法测定环氧乙烷的含量,照气相色谱法(通则0521)测定。本标准制修订依据YBB00242005-2015环氧乙烷残留量测定法,增加了第三法(气质联用色谱法),以对环氧乙烷进行定性验证。基于试验验证,本标准对YBB00242005 环氧乙烷残留量测定法中的色谱条件进行了优化,给出了供参考的色谱条件。环氧乙烷在药包材中的使用主要是作为灭菌剂,乙醛也是药包材中经常存在的成,二者极性相似,不容易分离。根据反馈意见,在标准中增加了适用于本测定法的色谱柱的相关描述。可实现环氧乙烷和乙醛完全分离的中等极性色谱柱,其固定相一般为(6%)氰丙基苯-(94%)二甲基硅氧烷,如DB-624 (30m×0.25mm×1.4μm) 和DB-VRX (30m×0.25mm×1.4μm)。 根据反馈意见,在系统适用性部分,明确连续进样次数,将“对照品溶液应连续进样不少于3次,所得待测物峰面积的RSD应不大于10%”修改为“对照品溶液连续进样5次,所得待测物峰面积的RSD应不大于10%”。 根据反馈意见,明确标准曲线线性相关系数r应不小于0.995。附件:4209 药包材环氧乙烷测定法.docx附件2-反馈意见表.xlsx
  • 3月15日实施!这两项新标准你注意到了吗?
    2020年12月24日,《固定污染源废气 醛、酮类化合物的测定 溶液吸收-高效液相色谱法》(HJ 1153-2020)和《环境空气 醛、酮类化合物的测定 溶液吸收-高效液相色谱法》(HJ 1154-2020)两项标准正式发布,并将于2021年3月15日正式实施。 为了更好地帮助客户深入掌握标准要求,崂应现将标准简析如下:1.标准中规定的醛、酮类化合物有哪些?本标准适用于固定污染源有组织排放废气中甲醛、乙醛、丙烯醛、丙酮、丙醛、丁烯醛、2-丁酮、正丁醛、苯甲醛、异戊醛、正戊醛、正己醛共12 种醛、酮类化合物的测定。2.方法检出限和测定下限为多少?当采集有组织排放废气20L(标准状态下干烟气)时,方法的检出限为0.01mg/m3~0.02mg/m3,测定下限为0.04mg/m3~0.08mg/m3。3.需要哪些采样仪器和设备?1)烟气采样器:具有抗负压功能,采样流量0.2 L/min ~1.5L/min,采样管为硬质玻璃或氟树脂材质,应具备加热和保温功能,加热温度≥120℃。2)连接管:聚四氟乙烯软管或内衬聚四氟乙烯薄膜的硅橡胶管;3)棕色气泡吸收瓶:75mL。4.如何进行现场采样?a)采样位置和采样点1)采样位置:采样位置应避开涡流区,如果同时测定排气流量,采样位置应该优先选择垂直管段,应设置在距弯头、阀门、变径管下游方向不小于6倍直径和距上述部件不小于3倍直径处。2)采样点:由于气态污染物在采样断面内一般混合均匀,可取靠近烟道中心的一点作为采样点。b)采样参数的测定采样参数包括烟温、流速、含湿量,具体测定方法参照HJ 397 标准中“6排气参数的测定”。c)采样方法1)预热采样管,打开采样管加热电源,将采样管加热到≥120℃;2)串联三支各装有50mL DNPH(2,4-二硝基苯肼)饱和溶液的棕色气泡吸收瓶,与烟气采样器连接,如下图所示;3)正式采样前,排气应先通过旁路吸收瓶,将吸收瓶前管路的空气置换干净;4)接通采样管路,设置采样流量,以0.2L/min ~0.5L/min的流量,连续采集1h,或在1h内以等时间间隔采集3个~4个样品,流量波动应不大于±10%;5)采样结束后,切断采样泵和吸收瓶之间气路,抽出采样管,取下吸收瓶6)用密封帽密封吸收瓶,样品应于4℃以下密封避光冷藏保存,样品采集后3日之内完成试样制备,制备好得试样在3日内完成分析。7)将同批采样的三支装有50mL DNPH饱和溶液的棕色气泡吸收瓶带到采样现场但不进行样品采集,随样品一同运回实验室,作为运输空白样品。 1.标准中规定的醛、酮类化合物有哪些? 用于环境空气和无组织监控点空气中甲醛、乙醛、丙烯醛、丙酮、丙醛、丁烯醛、2-丁酮、正丁醛、苯甲醛、异戊醛、正戊醛、正己醛、邻甲基苯甲醛、间甲基苯甲醛、对甲基苯甲醛和2,5-二甲基苯甲醛共16 种醛、酮类化合物的测定。2.方法检出限和测定下限为多少? 当采样体积为20 L(标准状态下)时,方法的检出限为0.002 mg/m3~0.003 mg/m3,测定下限为0.008 mg/m3~0.012 mg/m3。3.需要哪些采样仪器和设备?1)空气采样器:采样流量0.1 L/min ~1.0L/min;2)棕色多孔玻板吸收瓶:25mL;3)棕色气泡吸收瓶:25mL。4.如何进行现场采样?a)采样位置和采样点环境空气采样点位的布设及采样符合HJ 194的要求,无组织排放监控点的布设及采样符合HJ/T 55中的相关规定。b)采样方法 1)按照下图将装有20mL DNPH饱和吸收液的棕色多孔玻板吸收瓶和分别装有20mL、10mL吸收液的棕色气泡吸收瓶串联到空气采样器。 2)设置采样流量,以0.3L/min ~0.5L/min的流量,连续采集1h。如果浓度偏低可适当延长采样时间,但总采样量不超过80L。注:采样时温度低于4℃,吸收瓶应放在恒温箱中。 3)采样结束后,取下吸收瓶,用密封帽密封,避光保存。样品应于4℃以下密封避光冷藏保存,样品采集后3日之内完成试样制备,制备好得试样在3日内完成分析。 4)将同批采样的装有20mL DNPH饱和吸收液的棕色多孔玻板吸收瓶和分别装有20mL、10mL吸收液的棕色气泡吸收瓶带到采样现场但不进行样品采集,随样品一同运回实验室,作为运输空白样品。
  • 重磅官宣:新版《生活饮用水卫生标准》征求意见!
    重磅官宣:新版《生活饮用水卫生标准》征求意见!哈希公司导读:众所周知,安全的饮用水是人类健康的基本保障,是关系国计民生的重要公共健康资源。因此,国家出台生活饮用水卫生标准的着力点和出发点是为了保护人群身体健康和保障人类生活质量的。生活饮用水卫生标准会对饮用水中与人群健康相关的各种因素做出量值规定,并且其规定要求是经过国家相关部门批准的。现行GB 5749-2006《生活饮用水卫生标准》是2006年12月由原卫生部和国家标准委员会联合发布的。自2007年7月1日开始实施,至今已有13年。自06年该标准颁布实施以来,在今年的应用中,逐渐反映出了一些问题。因此,国家从2018年3月至今,就已经委派相关部门开展新一轮标准修订工作。此次《生活饮用水卫生标准》修订版规定了生活饮用水水质要求、生活饮用水水源水质要求、集中式供水单位卫生要求、二次供水卫生要求、涉及饮用水卫生安全的产品卫生要求、水质检验方法。那么相比GB 5749-2006《生活饮用水卫生标准》,除编辑性修改外,主要技术变化如下:(一)水质指标由GB 5749—2006的106项调整为97项,包括常规指标43项和扩展指标54项;其中:增加了4项指标,包括高氯酸盐、乙草胺、2-甲基异莰醇、土臭素;删除了13项指标,包括耐热大肠菌群、三氯乙醛、硫化物、氯化氰(以CN-计)、六六六(总量)、对硫磷、甲基对硫磷、林丹、滴滴涕、甲醛、1,1,1-三氯乙烷、1,2-二氯苯、乙苯;修改了2项指标的名称,包括耗氧量(CODMn法,以O2计)名称修改为高锰酸盐指数(以O2计)、氨氮(以N计)名称修改为氨(以N计);调整了8项指标的限值,包括硝酸盐(以N计)、浑浊度、高锰酸盐指数(以O2计)、游离氯、硼、氯乙烯、三氯乙烯、乐果;增加了总β放射性指标进行核素分析评价的具体要求及微囊藻毒素-LR指标的适用情况;删除了小型集中式供水和分散式供水部分水质指标及限值的暂行规定(见GB 5749—2006第4章);(二)水质参考指标由GB 5749—2006的28项调整为55项;其中:增加了29项指标,包括钒、六六六(总量)、对硫磷、甲基对硫磷、林丹、滴滴涕、敌百虫、甲基硫菌灵、稻瘟灵、氟乐灵、甲霜灵、西草净、乙酰甲胺磷、甲醛、三氯乙醛、氯化氰(以CN-计)、亚硝基二甲胺、碘乙酸、1,1,1-三氯乙烷、乙苯、1,2-二氯苯、全氟辛酸、全氟辛烷磺酸、二甲基二硫醚、二甲基三硫醚、碘化物、硫化物、铀、镭-226;删除了2项指标,包括2-甲基异莰醇、土臭素;修改了2项指标的名称,包括二溴乙烯名称修改为1,2-二溴乙烷,亚硝酸盐名称修改为亚硝酸盐(以N计);调整了1项指标的限值,为石油类(总量)。《生活饮用水卫生标准》是众多涉水行业的标准,且对于老百姓的生活也是至关重要。该标准内容涵盖了饮用水供水的全过程,对水源、制水、输水等均提出了控制性要求。进一步加强了从源头开始的供水全流程管控。因此各涉水行业和领域都应及时关注。获取标准编制原则和主要修订内容通过关注“哈希公司”公众号留下您的信息,为您发送至邮箱END
  • 标准解读|一点一点看新版GB 5749—2022《生活饮用水标准》,保障国人饮水安全
    导读:近期,新版《生活饮用水标准》GB 5749-2022发布并于2023年4月1日起开始正式实施。那么,新版与2006版相比,内容上有哪些变化?我们如何应对等一系列问题,今天小编带您一起拨云见日!标准的使用范围本标准适用于各类生活饮用水水质要求。规范性引用文件规范性引用文件删除“CJ/206城市供水水质标准、SL308村镇供水单位资质要求及生活饮用水集中式供水单位卫生规范(卫生部)”3项。术语和定义增加了“出厂水”和“末梢水”的定义,同时删除“二次供水”定义,调整了“集中式供水”和“小型集中式供水”定义;将“非常规指标”修正为“扩展指标”:扩展指标定义为能反应地区生活饮用水水质特征及在一定时间内或特殊情况下水质状况的指标。指标数量调整水质指标由 GB 5749-2006 的 106 项调整到 97 项(常规指标 43 项和扩展指标 54 项)。增加了 4 项指标:高氯酸盐、乙草胺、2- 甲基异莰醇和土臭素;删除了 13 项指标:耐热大肠菌群、三氯乙醛、硫化物、氯化氰(以 CN-计)、六六六(总量)、对硫磷、甲基对硫磷、林丹、滴滴涕、甲醛、1,1,1- 三氯乙烷、1,2-二氯苯和乙苯。 指标限值调整调整了 8 项指标的限值,包括硝酸盐(以 N 计)、浑浊度、高锰酸 盐指数(以 O2计)、游离氯、硼、氯乙烯、三氯乙烯和乐果。 指标项目名称调整调整了2项指标名称:耗氧量(CODMn法,以 O2计)和氨氮(以 N计)。指标分类调整调整了11 项指标的分类:一氯二溴甲烷、二氯一溴甲烷、三溴甲烷、三卤甲烷(三氯甲烷、一氯二溴甲烷、二氯一溴甲烷、三溴甲烷的总和)、二氯乙酸、三氯乙酸、氨(以N 计)、硒、四氯化碳、挥发酚类(以苯酚计)和阴离子合成洗涤剂。修正总β放射性指标评价及微囊藻毒素-LR 指标 总β放射性测定包括了40钾。本次修订明确了总β放射性扣除40钾 后仍 然大于 1 Bq/L,应进行核素分析和评价,判定能否饮用;本次修订将微囊藻毒素-LR 表达的形式调整为微囊藻毒素-LR(藻类暴发情况发生时), 使表述更有针对性。 附录 A 中水质参考指标的调整附录A(资料性)水质参考指标由原来的28项调整到55项。其中新增29项指标:钒、六六 六(总量)、对硫磷、甲基对硫磷、林丹、滴滴涕、敌百 虫、甲基硫菌灵、稻瘟灵、氟乐灵、甲霜灵、西草净、乙 酰甲胺磷、甲醛、三氯乙醛、氯化氰(以 CN-计)、亚硝 基二甲胺、碘乙酸、1,1,1-三氯乙烷、乙苯、1,2-二氯苯、 全氟辛酸、全氟辛烷磺酸、二甲基二硫醚、二甲基三硫醚、 碘化物、硫化物、铀和镭-226;删除了2项指标:2- 甲基异莰醇和土臭素;修改了 2 项指标的名称:二溴乙烯和亚硝酸盐;调整1项指标的限值:石油类(总量)。其它删除小型集中式供水和分散式供水部分水质指标及限值的暂行规定;删除涉及饮用水管理方面的内容。应对方案在生活饮用水卫生标准中,金属、类金属、无机非金属、挥发性有机物、半挥发性有机物、农药残留、卤代烃等指标是主要的检测项目,仪器涉及原子吸收、原子荧光、液相-原子荧光形态分析仪、电感耦合等离子体发射光谱仪、电感耦合等离子体质谱仪、气质联用仪、气相色谱仪、液相色谱仪、离子色谱、紫外-可见分光光度计等。金属、类金属、无机非金属检测AA-7090型原子吸收分光光度计AA-7050原子吸收分光光度计SavantAA原子吸收分光光度计AF-7550型双道氢化物-原子荧光光度计LC-AF 7590液相色谱-原子荧光联用仪ICP-7760HP型全谱电感耦合等离子体发射光谱仪ICP-7700型电感耦合等离子发射光谱仪GBC Quantima电感耦合等离子发射光谱仪GBC Integra电感耦合等离子发射光谱仪GBC OptiMass 9600电感耦合等离子体直角加速式飞行时间质谱仪Cintra 4040 紫外-可见分光光度计IC-2800离子色谱仪有机物检测GC-4100型气相色谱仪GC-MS 3200型气相(四极)色谱质谱联用仪LC-5520型高效液相色谱仪相关解决方案解决方案|GC-MS在水质中挥发性有机污染物、挥发性卤代烃、农药等检测中的应用吹扫捕集/GC-MS联用法分析饮用水中挥发性卤代烃吹扫捕集/GC-MS联用法测定水中57种挥发性有机物饮用水中有机氯农药的GC-MS分析饮用水中有机磷农药的GC-MS分析水中溴氰菊酯的GC-MS分析饮用水中苯并(α)芘的测定GC-MS测定饮用水中塑化剂解决方案|水盲样中铅含量测定解决方案|废水砷元素测定解决方案|原子荧光法测定废水中的硒解决方案|水中钙镁离子的测定解决方案|水样中可溶性钡元素测定解决方案|自来水中三氯甲烷、四氯化碳的检测“家乡的水”-东西分析水检测公益活动圆满结束解决方案|地表水中元素的ICP-TOF-MS法测定解决方案|利用东西分析LC-5510型液相色谱仪检测自来水中的草甘膦含量利用东西分析解决方案,测定水中碳酸盐东西分析农饮水视频教程之“原子荧光检测水中的As、Hg、Se”东西分析农饮水视频教程之“原子吸收检测水中的金属元素”东西分析农饮水视频教程之“顶空-气相色谱法检测水中的三氯甲烷和四氯化碳”第一讲东西分析农饮水视频教程之“顶空-气相色谱法检测水中的三氯甲烷和四氯化碳”第二讲东西分析“IC-2800测定饮用水中的阴离子”视频教程第一讲东西分析“IC-2800测定饮用水中的阴离子”视频教程第二讲东西分析“IC-2800测定饮用水中的阴离子”视频教程第三讲东西分析“农村饮用水安全工程分析方法视频教程”上线后记东西分析在水质安全领域深耕多年,拥有丰富的行业经验及完整的生活饮用水解决方案和应用文集,欢迎您与我们联系,一起守护民众健康安全。添加“东西分析”微信公众号了解相关方案详细内容
  • 新品上市:醛、酮-DNPH溶液
    醛酮类化合物具有毒性,对人体有很大危害。由于许多醛酮类化合物化学性质不稳定,直接配置标准溶液稳定性差,尤其是甲醛,甲醛在溶液中容易发生聚合、歧化等反应;用分光光度法分析醛酮类混合物选择性差,本标准推荐使用2,4-二硝基苯肼(DNPH)对醛酮类化合物进行原位衍生化后,用高效液相色谱法或气相色谱法进行分离检测;此方法用于检测多种醛酮类化合物的混合样品,具有选择性好,灵敏度高等特点。一、方法原理:使用填充了涂渍2,4-二硝基苯肼(DNPH)的硅胶柱采集空气样品,在酸性条件下,空气中的醛、酮类化合物与DNPH发生反应,生成稳定的2,4-二硝基苯腙类衍生物,用乙腈洗脱后,用具紫外检测器的高效液相色谱仪(HPLC-UV)或具有电子捕获检测器的气相色谱仪(GC-ECD)分离、检测。 醛酮类 2,4-二硝基苯肼 稳定有色的腙类衍生物注1:R和R1是烷基或芳香基团(酮)或是氢原子(醛)二、参见国标:HJ/T400-2007《车内挥发性有机物和醛酮类物质采样测定方法》HJ 683-2014 《空气 醛、酮类化合物的测定 高效液相色谱法》GBT 18204.26-2000 《公共场所空气中甲醛测定方法》三、产品信息:我司配置了乙腈中甲醛-2,4-二硝基苯腙、乙醛-2,4-二硝基苯腙和丙烯醛-2,4-二硝基苯腙等三种标准溶液(具体见下表),下一步将配置其他醛酮类标准溶液及其混标。四、高效液相色谱检测方法及色谱图:乙腈中甲醛-2,4-二硝基苯腙1.分析条件: 检测器:HPLC-DAD色谱柱:Inert sustain C18 (4.6mm×250mm,5μm )流动相:乙腈:水=60:40波 长:360nm流 速:1.0ml/min进样量:2μL 2.色谱图:乙腈中乙醛-2,4-二硝基苯腙1.分析条件: 检测器:HPLC-DAD色谱柱:Inert sustain C18 (4.6mm×250mm,5μm )流动相:乙腈:水=70:30波 长:363nm 流 速:1.0ml/min进样量:2μL 2.色谱图:乙腈中丙烯醛-2,4-二硝基苯腙1.分析条件: 检测器:HPLC-DAD色谱柱:Inert sustain C18 (4.6mm×250mm,5μm )流动相:乙腈:水=70:30波 长:374nm流 速:1.0ml/min进样量:2μL 2.色谱图:
  • 一种全自动在线连续分析水中四乙基铅和甲基叔丁基醚的方法
    概述石油被誉为“工业的血液”,其产品被广泛用于国民经济的各个领域。近年来由于安全管理不到位、人员违规操作等原因导致石油企业事故屡屡发生,泄露的石油不仅污染了空气,还污染了地表水和地下水,其中四乙基铅和甲基叔丁基醚作为石油中重要的添加剂常在污染水体中被检出。目前,实验室普遍采用《HJ 959-2018 水质 四乙基铅的测定 顶空/气相色谱-质谱法》测定水中四乙基铅的含量,而谱育科技EXPEC 2100 水中挥发性有机物在线监测系统已实现对四乙基铅和甲基叔丁基醚的现场自动连续监测。图EXPEC 2100 水中挥发性有机物在线监测系统由EXPEC 240 全自动吹扫捕集进样器 和 EXPEC 2000-MS 在线GC-MS组成,搭配 EXPEC 243 自动稀释仪实现了标准溶液的自动配制。本文使用该系统建立了水中四乙基铅和甲基叔丁基醚的在线监测方法。 方法参数吹扫捕集参数:吹扫时间:3 min;解吸温度:200 ℃;解吸时间:1 min;色谱参数:进样口温度:100 ℃;分离比:5:1;载气流量:1 mL/min;程序升温:初始温度40 ℃保持2 min,以15 ℃/min升至80 ℃,再以20 ℃升至200 ℃并保持3.3 min;质谱参数:离子阱温度:70 ℃;扫描模式:全扫描模式;质量数扫描范围:40-300 amu。分析结果方法学指标绘制标准曲线如上图所示:四乙基铅和甲基叔丁基醚的校准曲线线性相关系数R2均在0.99以上。小结EXPEC 2100水中挥发性有机物监测系统参照HJ 959-2018标准建立的一种在线监测水中四乙基铅和甲基叔丁基醚的方法。与HJ 959-2018方法相比:1. 具有更低的检出限;2. 全流程在线监测,省时省力;3. 可实时上传分析数据。
  • 甲基化成肿瘤检测新靶标?五种新型DNA甲基化酶检测技术进展揭秘
    DNA甲基化是哺乳动物基因组中最常见的表观遗传事件之一,即DNA中核苷酸与甲基基团的共价修饰[2]。DNA甲基化与人的生命进程有着密不可分的关系。细胞的增殖与分化、染色体完整性的维护或者X染色体的活性等等都离不开DNA甲基化的控制,DNA甲基化流程在胚胎发育中是无处不在的[1]。如果DNA甲基化进程出现异常,会导致生物体出现各种各样的疾病以及身体的生长缺陷或生理紊乱。DNA与蛋白质之间的相互作用如果出现异常,会影响基因的表达,从而引起人体内肿瘤的发生或者肿瘤的转移,这一切的源头都是DNA甲基化进程出现异常的结果[3]。DNA甲基化酶是肿瘤治疗靶点DNA甲基化酶是一种修饰酶,经常与限制性内切酶一同出现。在真核生物基因组以及原核生物基因组中,普遍存在DNA甲基化酶维持以及催化DNA甲基化过程的现象。DNA甲基化酶被广泛认为是一种治疗靶点以及预测生物甲基化过程的标志物,在单细胞水平上准确灵敏地检测DNA甲基化酶对于肿瘤医学上的临床诊断以及临床治疗甚至是生物学研究有着至关重要的作用。根据甲基化的核苷酸和位置被分为三组,即腺嘌呤的甲基化、胞嘧啶的4-N甲基化和胞嘧啶的5-C甲基化。所有已知的DNA甲基化酶在其甲基化过程中以s-腺苷甲硫氨酸作为甲基供体。最常见的DNA甲基化不仅发生在胞嘧啶嘧啶环5-C位置的CpG位点上,还发生在对称四核苷酸5’-G-A-T-C-3’ 中腺嘌呤环的6-N位置[4,5]。传统DNA甲基化酶检测方法有局限 DNA甲基化酶活性的高灵敏度检测在基因调控、表观遗传修饰、临床诊断和治疗等方面具有重要意义。传统用于检测DNA甲基化酶活性的方法包括高效液相色谱法(HPLC)[6], 聚合酶链反应(PCR)[7],凝胶电泳[8],高效毛细管电泳(HPCE)[9],以及使用同位素标记的s-腺苷甲硫氨酸甲基化检测[10,11]。尽管这些技术在实验室实践中被证明是有用的,但它们具有局限性。例如,大多数技术不仅使用笨重昂贵的设备,而且需要复杂的样品制备和数据分析所需的大量时间。同位素标记等技术是有效的,但它们往往需要费力的样品制备、同位素标记、复杂的设备和大量的DNA,使得它们不适合在医护点使用。所以,DNA甲基化酶活性检测迫切需要简单、便携、高灵敏度和低成本的检测方法。在最近的技术进步中,许多替代的DNA甲基化酶活性测定方法,如放射法、比色法、荧光法、电化学法等已被提出。此外,其中许多与纳米材料或酶结合,以显著提高它们的敏感性。放射法、蛋白质纳米孔等新型检测技术兴起 放射法:同位素标记作为最早检测DNA甲基化酶活性的方法之一,早期广泛应用于检测DNA甲基化酶和DNA甲基化的活性[12,13]。在由DNA甲基化酶催化的甲基化过程中,同位素标记的甲基部分转移到DNA上,从而赋予甲基化的DNA放射性。这种放射性可以很方便地用闪烁计数器或放射自显像仪来检测。可惜的是,放射性试剂的介入是限制这种试验在中央实验室进行的最大缺点。对无辐射DNA甲基化酶活性检测的研究导致了甲基化特异性PCR[14]、HPCE[9]和HPLC等替代品的发展[7,14],而甲基化特异性PCR被认为是较好的方法。尽管非放射性,上述DNA甲基化酶活性检测需要庞大且通常昂贵的设备,冗长且耗时的样品制备和数据分析,以及繁琐的检测方案,这在临床实践中也比较难以实现全覆盖。比色法:比色法用于DNA甲基化酶活性检测依赖于颜色变化的目视观察或与DNA甲基化酶相关的吸收光谱的光谱测量。它们具有成本低、简单、可移植性和在某些情况下无需仪器的优点。虽然紫外-可见光谱法可以量化DNA,但甲基化和未甲基化DNA在紫外-可见吸收特性上的低灵敏度和不显著差异基本否定了紫外-可见光谱法直接检测DNA甲基化酶活性[15~17]。金纳米粒子:金纳米粒子(AuNPs)由于其表面的等离子体共振吸收的高消光系数且强依赖于粒子间距离,在DNA甲基化酶活性检测的比色法研究中引起了广泛关注。如图1 所示,金纳米粒子表面包覆有双链DNA (ds-DNA),其中一条链包含DNA甲基化酶识别序列和5’-硫醇末端。在DNA甲基化酶存在的情况下,如图1 B 所示,DNA甲基化酶被共价标记在ds-DNA中碱基环的6-C位置,因为在5-N位置缺乏一个质子阻止了β-消除,甲基化的DNA不能被核酸外切酶 ExoⅠ剪切,因此金纳米粒子仍然均匀地分散在溶液中 [18]。从而实现DNA甲基化酶活性的检测。结果表明,在526 nm处,金纳米粒子聚集物的吸光度与DNA甲基化酶的活性呈2 ~ 32 U / mL的线性关系,检出限为0.5 U/ mL。图1. (A)基于ABP的比色生物传感器的示意图(B) DNA甲基化酶的检测机制 荧光法:荧光指吸收激发荧光团的光,以促进电子从基态到激发态,电子迅速地回到激发态的最低能级,然后当电子最终返回基态时,发出波长较长的光。与其他DNA甲基化酶活性测定法相比,荧光法检测DNA甲基化酶活性的优点是检测过程简单,灵敏度高,但其复杂的光学性能限制了其在集中实验室的应用[19~20]。图2. 基于外切酶的靶循环的DNA甲基化酶活性检测原理图电化学法:电化学生物分析技术的发展一直是现代分析化学研究的热点之一。电化学法用于DNA甲基化酶分析包括测量电流、电压、电荷和电阻等电量,以反映DNA甲基化酶的活性。与许多其他类型的DNA甲基化酶活性的检测相比,它们具有低成本、高灵敏度、执行现场监测的能力以及非常适合微型化和集成微制造技术的优点[22~23]。Zhi-Qiang Gao等人在2014年报道了一种简单、高灵敏度的DNA甲基化酶电化学活性测定方法。该方法采用电催化氧化抗坏血酸(AA)的信号放大手段,通过一个螺纹插层N,N -2(3-丙基咪唑)-1,4,5,8-萘二酰亚胺(PIND)电催化氧化还原Os(bpy)2Cl+ (PIND-Os),包含5’-CCGG-3’ 对称序列的ds-DNA首先固定在金电极上。然后用DNA甲基化酶孵育电极,经过酶催化特定CpG二核苷酸的甲基化,然后用识别5’-CCGG-3’ 序列的限制性内切酶 Hpa II 剪切酶处理电极,从而实现DNA甲基化酶活性检测的目的[24]。图3. DNA甲基化酶活性的检测原理示意图蛋白质纳米孔:蛋白质纳米孔检测技术是在单分子水平上以低成本、无标签和高通量的方式研究生物分子的检测技术。近年来,纳米孔技术正从生物传感的角度进行研究[25]。应用于核酸特征鉴定、化学反应过程的测量、蛋白质分析、疾病相关蛋白状态的检测以及酶动力学的研究等[26]。α-溶血7素是一种蛋白质纳米孔,它自发地插入到脂质双层膜中,形成一个纳米孔[27]。当一个带电分子在外加电势下通过蛋白质纳米孔时,它会引起离子电流的瞬态变化,电流变化事件被记录下来。被分析物可以通过当前电流发生的频率进行量化,特征电流信号则可以揭示被分析物的各种特征[28~30]。该检测方法不需要对DNA探针进行任何化学修饰,既方便又节约成本,减少了样品消耗。 图4. 用于分析DNA甲基化酶活性的纳米孔试验的示意图 在过去的十几年中,DNA甲基化酶活性的检测取得了重大进展。有几种方法有希望可在临床检测,使得该方法在用于癌症诊断、预后和治疗方面显示出了希望。比色法依赖于颜色变化的目视观察或与DNA甲基化酶相关的吸收光谱的光谱测量,具有成本低、简单、可移植性和在某些情况下无需仪器的优点,但是检出限相对较高。荧光法检测DNA甲基化酶活性的检测过程简单,检出限相对理想,但其复杂的光学性能以及昂贵的仪器设备限制了其在生活中的应用。电化学法由于需要构建较复杂的反应电极材料而使得其在临床上受到了一定的限制。蛋白质纳米孔的检测方法不需要对DNA探针进行任何化学修饰,既方便又节约成本,减少了样品消耗,检出限相对较为理想,并且已经成功应用于人类血清样本。这类检测可能最终为常规DNA甲基化酶活性的检测和分子诊断打开大门,为疾病的管理和诊断带来新的前景。 作者:王家海、骆 乐 作者简介:王家海,博士,教授,硕士生导师/博士生导师,广州大学化学化工学院;分析化学专业;主要研究领域为“基于核算纳米结构为信号传导载体的纳米孔传感器”;在核酸探针和仿生纳米孔两方面开展了一系列分子识别的工作,也为将来进一步开展分析化学研究打下了坚实的基础,期间积累了多种前沿分析方法和技术:仿生纳米孔制备和检测;微纳米加工技术;核酸探针人工合成技术。参 考 文 献 [1] 陈晓娟,闫少春,邵国,等.人DNA甲基化转移酶的分类及其功能[J].包头医学院学报,2014,30(04):136-138.[2] Das PM, et al. DNA methylation and cancer[J]. Clin. Oncol. 2004 22: 4632-4642.[3] Jurkowska RZ, et al. Structure and function of mammalian DNA methyltransferases[J]. ChemBioChem 2011 12: 206-222.[4] Lee GE, et al. DNA methyltransferase 1-associated protein (dmap1) is a co-repressor that stimulates DNA methylation globally and locally at sites of double strand break repair[J]. Biol. Chem. 2010 285: 37630-37640.[5] Liu SN, et al. Assay Methods of DNA Methylation and Their Applications in Cancer Diagnosis and Therapy[J]. Chinese J.Anal. Chem. 2011 39: 1451-1458.[6] Boye E, et al. Quantification of dam methyltransferase in Escherichia coli[J]. Bacteriol. 1992 174: 1682-1685.[7] Eads CA, et al. CpG island hypermethylation in human colorectal tumors is not associated with DNA methyltransferase overexpression[J]. Cancer Res. 1999 59: 2302-2306.[8] Bergerat A, et al. Allosteric and catalytic binding of s-adenosylmethionine to escherichia coli DNA adenine methyltransferase monitored by 3H NMR[J]. Proc. Natl. Acad. Sci. U. S. A. 1991 88: 6394-6397.[9] Fraga MF, et al. Rapid quantification of DNA methylation by high performance capillary electrophoresis[J]. Electrophoresis 2000 21: 2990-2994.[10] Yokochi T, et al. DMB (dnmt-magnetic beads) assay: measuring DNA methyltransferase activity in vitro[J]. Methods Mol. Biol. 2004 287: 285-296.[11] Adams RLP, et al. Microassay for DNA methyltransferase[J]. Biochem. Bioph. Methods 1991 22: 19-22.[12] Jurkowska RZ, et al. DNA methyltransferase assays[J]. Methods Mol. Biol. 2011 791: 157-177.[13] Pradhan S, et al. Recombinant human DNA (cytosine-5) methyltransferase [J]. Biol. Chem. 1999 274: 33002-33010.[14] Herman JG, et al. Methylation-specific PCR: a novel PCR assay for methylation status of CpG islands[J]. Proc. Natl. Acad. Sci. U. S. A. 1996 93: 9821-9826.[15] Kattenhorn, L. M. Korbel, G. A. Kessler, B. M. Spooner, E. Ploegh, H. L. Mol. Cell 2005, 19, 547−557.[16] Mosammaparast, N. Shi, Y. Annu. Rev. Biochem. 2010, 79, 155−179.[17] Barglow, K. T. Cravatt, B. F. Angew. Chem., Int. Ed. 2006, 45, 7408−7411.[18] Wu Z, et al. Activity-based DNA-gold nanoparticle probe as colorimetric biosensor for DNA methyltransferase/glycosylase assay[J]. Anal. Chem. 2013 85: 4376-4383.[19] Zhu, C. Wen, Y. Peng, H. Long, Y. He, Y. Huang, Q. Li, D. Fan, C. Anal. Bioanal. Chem. 2011, 399, 3459−3464.[20] Chen, F. Zhao, Y. Analyst 2013, 138, 284−289.[21] Xing XW, et al. Sensitive detection of DNA methyltransferase activity based on exonuclease-mediated target recycling[J]. Anal. Chem. 2014 86: 11269-11274.[22] Wu, H. Liu, S. Jiang, J. Shen, G. Yu, R. Chem. Commun. 2012, 48, 6280−6282[23] Wang, M. Xu, Z. Chen, L. Yin, H. Ai, S. Anal. Chem. 2012, 84, 9072−9078[24] Deng H, et al. Highly sensitive electrochemical methyltransferase activity assay[J]. Anal. Chem. 2014 86: 2117-2123.[25] Howorka, S. Siwy, Z. Nanopore Analytics: Sensing of Single Molecules. Chem. Soc. Rev. 2009, 38, 2360−2384.[26] Song, L. Hobaugh, M. R. Shustak, C. Cheley, S. Bayley, H. Gouaux, J. E. Structure of Staphylococcal α-Hemolysin, a Heptameric Transmembrane Pore. Science 1996, 274, 1859−1865.[27] Lin, L. Yan, J. Li, J. Small-Molecule Triggered Cascade Enzymatic Catalysis in Hour-Glass Shaped Nanochannel Reactor for Glucose Monitoring. Anal. Chem. 2014, 86, 10546−10551.[28] Li, J. Yan, H. Wang, K. Tan, W. Zhou, X. Anal. Chem. 2007, 79, 1050−1056.[29] Wood, R. J. Maynard-Smith, M. D. Robinson, V. L. Oyston, P. C. F. Titball, R. W. Roach, P. L. PLoS One 2007, 2, e801−e801.[30] Wood, R. J. McKelvie, J. C. Maynard-Smith, M. D. Roach, P. L. Nucleic Acids Res. 2010, 38, e107−e107.[31] Jinghong Li, et al. Nanopore-based, label-free, and real-time monitoring assay for DNA methyltransferase activity and inhibition[J]. Anal. Chem. 2017 89: 13252−13260.
  • 辽阳石化首创醛及同系物含量分析方法
    中国石油网消息:(特约记者 董新光 通讯员 刘爱明)8月25日,经过连续10多天攻关,辽阳石化公司首创醛及同系物含量检测分析方法。   近一段时间以来,辽阳石化新建乙二醇装置中醛含量居高不下,影响下游聚酯装置的产品质量。为突破这一困扰生产的瓶颈,公司从检测分析入手,组织技术力量攻关,迅速建立液相色谱法和分光光度计法相结合的醛及同系物含量测定方法。   新建立的检测分析方法不仅准确测出182个样品的甲醛、乙醛含量,还能发现未知醛的存在和产生部位,为工艺参数调整提供了可靠的技术保障。
  • 新版《生活饮用水卫生标准》发布 水质指标由106项调整为97项(附详细目录)
    日前,国家市场监督管理总局、国家标准化管理委员会批准发布《生活饮用水卫生标准》GB 5749—2022,2023年4月1日开始实施。现行 GB 5749—2006《生活饮用水卫生标准》于 2006 年 12 月由原卫生部和国家标准委员会联合发布,自 2007 年 7 月 1 日开始实施。 在近年的应用中,逐渐反映出一些问题。因此,从 2018 年 3 月至今,国家卫生健康委联合有关部委开展了新一轮标准修订 工作。本次标准修订对标准的范围进行更加明确的表述,对规范性引用文件进行更新,对集中式供水、小型集中式供 水、二次供水、出厂水、末梢水、常规指标和扩展指标等术语和定义进行修订完善或增减,对全文一些条款中的文 字进行编辑性修改。在此基础上,与 GB 5749—2006 相比, 修订主要内容有:1、指标数量的调整标准正文中的水质指标由 GB 5749—2006 的 106 项调整到 97 项,修订后的文本包括常规指标 43 项和扩展指标 54 项。其中增加了 4 项指标,包括高氯酸盐、乙草胺、2- 甲基异莰醇和土臭素;删除了 13 项指标,包括耐热大肠菌群、三氯乙醛、硫化物、氯化氰(以 CN-计)、六六六(总量)、对硫磷、甲基对硫磷、林丹、滴滴涕、甲醛、1,1,1- 三氯乙烷、1,2-二氯苯和乙苯。2、指标分类方法的调整 根 据 水 质 指 标 的 特 点 , 将 指 标 分 类 方 法 由 GB 5749—2006 的“常规指标和非常规指标”调整为“常规指标和扩展指标”,修改后指标分类表述更确切,避免了歧义的产生。其中,常规指标指反映生活饮用水水质基本状况的 水质指标;扩展指标指反映地区生活饮用水水质特征及在 一定时间内或特殊情况下水质状况的指标。3、指标限值的调整根据水质指标的监测意义以及在人群健康效应或毒理 学方面最新的研究成果,结合我国的实际情况,调整了 8 项指标的限值,包括硝酸盐(以 N 计)、浑浊度、高锰酸 盐指数(以 O2计)、游离氯、硼、氯乙烯、三氯乙烯和乐 果。4、指标名称的调整根据水质指标表达的涵义,调整了2项指标的名称, 包括耗氧量(CODMn法,以 O2计)和氨氮(以 N计)。5、指标分类的调整根据水质指标的监测意义、检出情况及浓度水平,调整了11 项指标的分类,包括一氯二溴甲烷、二氯一溴甲烷、三溴甲烷、三卤甲烷(三氯甲烷、一氯二溴甲烷、二氯一溴甲烷、三溴甲烷的总和)、二氯乙酸、三氯乙酸、氨(以N 计)、硒、四氯化碳、挥发酚类(以苯酚计)和阴离子合成洗涤剂。6、增加了总β放射性指标进行核素分析评价前扣除 40K 的要求及微囊藻毒素-LR 指标的适用情况 钾是人体必需的元素,总β放射性测定包括了钾-40。 基于评价总β放射性指标综合致癌风险时应排除钾-40 筛 查水平的考量,本次修订明确了总β放射性扣除钾-40 后仍 然大于 1 Bq/L,应进行核素分析和评价,判定能否饮用。每克天然钾中含有 31.2 Bq/g 的钾-40,可用于计算钾-40 对 总β活度浓度的贡献。 基于只有在藻类暴发情况发生时才有可能出现微囊藻 毒素-LR 暴露风险的考量,本次修订将微囊藻毒素-LR 表 达的形式调整为微囊藻毒素-LR(藻类暴发情况发生时), 使表述更有针对性。7、删除小型集中式供水和分散式供水部分水质指标及 限值的暂行规定 统筹考虑现阶段我国城乡的饮用水水质状况,本次修 订删除了 GB 5749—2006 中表 4“小型集中式供水和分散式 供水部分水质指标及限值”的过渡性要求。同时结合现阶段 我国小型集中式供水和分散式供水的现状,因水源与净水 技术限制时对菌落总数、氟化物、硝酸盐(以 N 计)和浑 浊度等 4 项指标保留了过渡性要求8、完善对饮用水水源水质的要求 鉴于我国个别地区存在饮用水水源水质暂时无法达到 相应国家标准要求但限于条件限制又必须加以利用的实际 情况,本次修订对生活饮用水水源水质要求加以完善,提出当水源水质不能满足相应要求,但“限于条件限制需加以利用,应采用相应的净化工艺进行处理,处理后的水质应 满足本文件要求”9、删除涉及饮用水管理方面的内容 鉴于技术标准中不宜提出行政管理性要求,本次修订删除了相关要求,同时删除了 GB 5749—2006 中“水质监测” 的相关内容10、附录 A 中水质参考指标的调整 附录 A(资料性)水质参考指标由 GB 5749—2006 的 28 项调整到 55 项。其中新增了 29 项指标,包括钒、六六 六(总量)、对硫磷、甲基对硫磷、林丹、滴滴涕、敌百 虫、甲基硫菌灵、稻瘟灵、氟乐灵、甲霜灵、西草净、乙 酰甲胺磷、甲醛、三氯乙醛、氯化氰(以 CN-计)、亚硝 基二甲胺、碘乙酸、1,1,1-三氯乙烷、乙苯、1,2-二氯苯、 全氟辛酸、全氟辛烷磺酸、二甲基二硫醚、二甲基三硫醚、 碘化物、硫化物、铀和镭-226;删除了 2 项指标,包括 2- 甲基异莰醇和土臭素;修改了 2 项指标的名称,包括二溴乙烯和亚硝酸盐;调整了 1 项指标的限值,为石油类(总量)。 GB5749生活饮用水卫生标准(报批稿).pdf 生活饮用水卫生标准编制说明.pdf
  • 卫生部:53项食安标准征求意见
    12月21日,卫生部发布消息,征求《食品用香料通则》等53项食品安全国家标准及2项食品安全国家标准修改单意见的函,并要求于2013年2月20日前将相关意见反馈至卫生部。原文如下: 卫生部办公厅关于征求《食品用香料通则》等53项食品安全国家标准(征求意见稿)及2项食品安全国家标准修改单意见的函 卫办监督函〔2012〕1145号   各有关单位:   根据《食品安全法》及其实施条例的规定,我部组织制定了《食品用香料通则》等53项食品安全国家标准(征求意见稿)和《食品添加剂 二丁基羟基甲苯(BHT)》等2项食品安全国家标准修改单。现向社会公开征求意见,请于2013年2月20日前将意见反馈表(附件56)以传真或电子邮件形式反馈我部。   传 真:010-52165424   电子信箱:zqyj@cfsa.net.cn   附件:   《食品用香料通则》征求意见稿及编制说明.zip   《食品添加剂 琥珀酸二钠》征求意见稿及编制说明.zip   《食品添加剂 1-辛烯-3-醇》征求意见稿及编制说明.zip   《食品添加剂 2,5-二甲基吡嗪》征求意见稿及编制说明.zip   《食品添加剂 2-己烯醛(叶醛)》征求意见稿及编制说明.zip   《食品添加剂 2-巯基-3-丁醇》征求意见稿及编制说明.zip   《食品添加剂 2-乙酰基吡咯》征求意见稿及编制说明..zip   《食品添加剂 2-异丙基-4-甲基噻唑》征求意见稿及编制说明.zip   《食品添加剂 3-巯基-2-丁酮(3-巯基-丁-2-酮)》征求意见稿及编制说明.zip   《食品添加剂 4,5-二氢-3(2H)噻吩酮(四氢噻吩-3-酮)》征求意见稿及编制说明.zip   《食品添加剂 6-甲基-5-庚烯-2-酮》征求意见稿及编制说明.zip   《食品添加剂 d,l-薄荷酮甘油缩酮》征求意见稿及编制说明.zip   《食品添加剂 l-薄荷醇丙二醇碳酸酯》征求意见稿及编制说明.zip   《食品添加剂 N-[N-(3,3-二甲基丁基)]-L-α-天门冬氨-L-苯丙氨酸1-甲酯(纽甜)》征求意见稿及编.zip   《食品添加剂 N-乙基-2-异丙基-5-甲基-环己烷甲酰胺》征求意见稿及编制说明.zip   《食品添加剂 γ-辛内酯》征求意见稿及编制说明.zip   《食品添加剂 δ-己内酯》征求意见稿及编制说明.zip   《食品添加剂 δ-壬内酯》征求意见稿及编制说明.zip   《食品添加剂 δ-十四内酯》征求意见稿及编制说明.zip   《食品添加剂 δ-十一内酯》征求意见稿及编制说明.zip   《食品添加剂 δ-突厥酮》征求意见稿及编制说明.zip   《食品添加剂 δ-辛内酯》征求意见稿及编制说明.zip   《食品添加剂 阿拉伯胶》征求意见稿及编制说明.zip   《食品添加剂 苯甲醛丙二醇缩醛》征求意见稿及编制说明.zip   《食品添加剂 丁苯橡胶》征求意见稿及编制说明.zip   《食品添加剂 二丙基二硫醚》征求意见稿及编制说明.zip   《食品添加剂 二甲基二硫醚》征求意见稿及编制说明.zip   《食品添加剂 二丁基羟基甲苯(BHT)》修改单.doc   《食品添加剂 二糠基二硫醚》征求意见稿及编制说明.zip   《食品添加剂 二氢-β-紫罗兰酮》征求意见稿及编制说明.zip   《食品添加剂 二烯丙基硫醚》征求意见稿及编制说明.zip   《食品添加剂 甘油》征求意见稿及编制说明..zip   《食品添加剂 海藻酸钾(褐藻酸钾)》征求意见稿及编制说明.zip   《食品添加剂 槐豆胶(刺槐豆胶)》征求意见稿及编制说明..zip   《食品添加剂 聚丙烯酸钠》征求意见稿及编制说明.zip   《食品添加剂 糠基硫醇(咖啡醛)》征求意见稿及编制说明.zip   《食品添加剂 离子交换树脂》征求意见稿及编制说明.zip    《食品添加剂 吗啉脂肪酸盐果蜡》修改单.doc   《食品添加剂 明胶》征求意见稿及编制说明.zip   《食品添加剂 柠檬酸三乙酯》征求意见稿及编制说明.zip   《食品添加剂 柠檬酸亚锡二钠》征求意见稿及编制说明.zip   《食品添加剂 柠檬酸脂肪酸甘油酯》征求意见稿及编制说明.zip   《食品添加剂 肉桂酸苄酯》征求意见稿及编制说明..zip   《食品添加剂 肉桂酸肉桂酯》征求意见稿及编制说明.zip   《食品添加剂 四氢芳樟醇》征求意见稿及编制说明.zip   《食品添加剂 萜烯树脂》征求意见稿及编制说明.zip   《食品添加剂 脱乙酰甲壳素(壳聚糖)》征求意见稿及编制说明.zip   《食品添加剂 维生素E(dl-α-生育酚)》征求意见稿及编制说明.zip   《食品添加剂 烯丙基二硫醚》征求意见稿及编制说明.zip   《食品添加剂 纤维素》征求意见稿及编制说明..zip   《食品添加剂 氧化芳樟醇》征求意见稿及编制说明.zip   《食品添加剂 叶醇(顺式-3-己烯-1-醇)》征求意见稿及编制说明.zip   《食品添加剂 乙醛二乙缩醛》征求意见稿及编制说明.zip   《食品添加剂 异硫氰酸烯丙酯》征求意见稿及编制说明.zip   《食品添加剂 棕榈酸视黄酯(棕榈酸维生素A)》征求意见稿及编制说明.zip   卫生部办公厅   2012年12月18日
  • 仪真分析独家代理美国EPA推荐的BRL全自动甲基汞/总汞测定仪
    仪真分析仪器有限公司(以下简称仪真)于2011年10月份正式成为美国布鲁克兰实验室(Brooks Rand Lab)的全自动总汞,全自动甲基汞及二位一体形态汞分析仪器MERX的全国独家代理商,并且全面负责该产品的市场推广,销售以及培训和售后服务等工作。从此,中国的众多客户可以得到近距离的贴切服务。 MERX 系统功能齐全,可用于总汞和甲基汞和其他汞形态的分析,一个系统全部搞定。MERX还可以与市场上所有ICP/MS 联用,实现GC-ICP/MS 形态汞测定。模块式的设计让系统具备无与伦比的灵活性,为客户节省费用及开支。MERX系统还是全球运用最多,市场占有率最大的甲基汞分析仪器,为美国EPA 1630方法所推荐。MERX所拥有的优越性能,将有助于推广总汞及甲基汞的检测范围和应用领域。特别有助于在环境,农林牧渔的样品中总汞及形态汞的研究及检测。 关于美国布鲁克兰实验室(Brooks Rand Lab)-http://www.brooksrand.com 美国的布鲁克兰试验室是世界上最大的甲基汞分析仪器生产商及商业分析实验室,具有三十多年重金属分析经验,在原有的知名总汞分析仪器基础上,三年前推出了世界上第一台商品化的,完全符合美国EPA 1630 甲基汞分析方法的,应用气相色谱-高温裂解-冷原子荧光检测的最新全自动甲基汞分析仪器MERX,能够分析从常量到痕量的甲基汞,结束了甲基汞测试步骤繁琐且重复性差的历史。布鲁克兰实验室的研发人员来自在美国从事汞分析的多年的专家,对从总汞到形态汞的检测具备独到的经验,为客户分析提供完整的解决方案。 仪真分析拥有强大的技术支持团队,为布鲁克兰实验室钦定的大中国的独家代理.相关产品垂询,敬请与我们联系将为您的实验室提供最优质的服务和解决方案。 更多产品请登陆仪真官网:www.esensing.net 仪真分析仪器有限公司 电话:(021) 62087664 传真:(021) 62191934 E-Mail:yu@esensing.net
  • 嘉德元素独家代理SYFT公司选择离子流动管质谱仪
    新西兰SYFT公司,是世界领先的选择离子流动管质谱仪(SIFT-MS)生产商。该公司日前正式授权北京嘉德元素科技有限公司为其中国地区独家代理商。   选择离子流动管质谱(SIFT-MS)是专用于监测挥发性有机物(VOCs)的新一代质谱仪器。结合流动管技术、化学电离和质谱,有选择地使用H3O + 、NO +和O 2+等初始离子,可在几秒之内对空气、呼吸气体和液体表面蒸气中的痕量有机气体(如乙醇、乙醛、丙酮、氨和2-甲基丁二烯等)进行多组分实时在线分析。   如下图,选择离子流动管质谱的分析过程可以分成五个主要步骤:   1. 离子生成   Syft Techonolgy的选择离子流动管质谱用微波放电或射频离子源来产生正离子。   2. 离子选择   离子进入一个上游的的腔室,在该腔室中一个四极杆滤质器过滤掉除了首选的母离子之外的其他离子,通常情况下,选择H3O+,NO+和O2+为母离子。   3. 样品导入和反应   母离子通过一个文丘里管进入到反应腔室(流动管)中,在这里母离子与样品气反应,样品气以精确控制的速度进入流动管。   4. 反应产物离子选择   反应产物离子进入一个下游的腔室,在那里,另一个四极杆滤质器对它们进行质量过滤。   5. 检测   用电子倍增器检测,对选择出来的目标反应产物离子进行离子计数。   选择离子流动管质谱仪可用于环境监测、海运集装箱有毒气体检查、熏蒸剂监测、轿车内部空气质量监测、录井油气分析、食品风味分析、作业现场危险气体分析等等。还可以车载移动至现场监测。 SYFT公司Voice 200选择离子流动管质谱仪 车载移动海运集装箱气体监测   选择离子流动管质谱分析的常见挥发性有机物有:   烷烃类、二烯、炔烃、芳香烃、萜类、醇类和二醇、醚类和溶纤剂、醛类、酮类、羧酸、酯类、含氧杂环化合物、胺类、酰胺、含氮杂环化合物、硝化有机物、丁腈、 肟类化合物、卤代烷烃或烯烃、卤代芳香烃、硫醇和硫醚、杂硫化合物、有机磷化合物、氨、二氧化氮、膦。
  • 17项国家计量比对项目将组织实施,涉及多种仪器设备
    市场监管总局办公厅关于组织实施2023年国家计量比对项目的通知中国计量科学研究院,中国测试技术研究院,中国计量测试学会,中国计量协会,各大区国家计量测试中心,各参加比对实验室:为贯彻落实《市场监管总局关于加强计量比对工作的指导意见》(国市监计量〔2020〕127号),更好发挥计量比对在保障量值准确可靠、提升计量技术机构能力方面的重要作用,市场监管总局决定组织实施17项国家计量比对项目。现将有关事项通知如下:一、2023年国家计量比对项目(一)国家计量基准比对项目。根据国家计量基准管理需求,结合具体工作实际,市场监管总局决定组织中频振动基准计量比对等10项国家计量基准比对项目(附件1)。(二)大区计量比对项目。为提升大区国家计量测试能力水平,市场监管总局决定组织二等标准铂电阻温度计计量比对等7项大区计量比对项目(附件2)。二、认真抓好项目组织实施(一)各主导实验室要对国家计量比对项目的具体实施负主体责任,按照《计量比对管理办法》和相关计量技术规范要求,认真做好国家计量比对实施方案编制与论证、征求意见以及项目实施、验收、总结等工作。实施方案应当充分考虑传递标准(样品)稳定性、溯源性、重复性以及实验操作安全、数据处理、避免串通或作弊、结果利用等方面内容,确保国家计量比对结果的真实性、科学性、公正性和权威性。主导实验室要加强技术交流研讨,及时妥善处置参加计量比对实验室技术需求和疑难问题。计量比对实施过程中,不得擅自更改计量比对参数及计量比对实施方案,无正当理由且未经市场监管总局同意,不得延误国家计量比对。主导实验室不得收取参加比对实验室任何费用。各主导实验室在项目完成后15日内组织专家评审,经征求各参加比对实验室意见后,向市场监管总局计量司报送国家计量比对总结报告、专家评审意见以及参加机构名单等相关材料。各主导实验室要对参加计量比对实验室提交比对结果的不确定度与其国家计量基准、计量标准、计量授权考核的不确定度、准确度等级和最大允许误差进行对比分析。(二)各参加比对实验室要按照要求参加国家计量比对,在规定时间内报送真实有效的比对结果,配合主导实验室做好结果分析等相关工作。对于参加比对实验室比对结果异常的,视为本次计量比对结果不符合规定要求。参加计量比对有关具体事宜可直接与项目主导实验室联系。(三)各主导实验室和参加比对实验室要结合实际制定内部激励约束和奖励惩罚措施,可以将国家计量比对工作量作为年度考核内容予以重视。要加强诚信和保密管理,在国家计量比对结果公布前不得泄露相关数据和信息。三、国家计量比对结果使用(一)市场监管总局定期向社会公布国家计量比对结果。国家计量比对结果符合规定要求的,可以作为计量基准和计量标准复查考核、计量授权以及实验室认可的参考依据。对主导实验室和比对结果符合规定要求的计量技术机构,在接受计量授权监督检查和到期复核、国家计量基准现场复核、计量标准监督检查和复查考核,相关项目可在5年内免于现场试验。(二)对于应参加国家计量比对,但无正当理由拒不参加,以及参加过程中经核实存在串通结果或提供虚假数据等情况的单位,将根据有关规定进行处理。(三)对于参加国家计量比对项目但比对结果不符合规定要求的计量技术机构,已取得相关国家计量基准证书、计量标准考核证书的,应暂停相关量值传递工作并限期改正。对在规定期限内不能完成整改并重新确认的计量技术机构,将根据有关规定进行处理。 联系人:计量司 刘国传 010-82262865 张 楠 010-82261832 附件:1.2023年国家计量基准比对项目汇总表W020230421360603789596.pdf2.2023年大区计量比对项目汇总表W020230421360603792923.pdf市场监管总局办公厅2023年4月18日
  • 全自动乌氏粘度仪-甲基乙烯基硅橡胶粘均分子量测定
    甲基乙烯基硅橡胶简称乙烯基硅橡胶,是由二甲基硅氧烷与少量乙烯基硅氧烷共聚而成,乙烯基含量一般为0.1%~0.3% (摩尔分数)。少量不饱和乙烯基的引入使它的硫化工艺及成品性能,特别是耐热老化性和高温抗压缩变形有很大改进。甲基乙烯基硅氧烷单元的含量对硫化作用和硫化胶耐热性有很大影响,含量过少则作用不显著,含量过大【达0.5% (摩尔分数)】 会降低硫化胶的耐热性。甲基乙烯基硅橡胶具有很好的耐高、低温性,可在-50~250℃下长期工作,防潮、电绝缘性,耐电弧,电晕性。耐老化、耐臭氧性。表面不粘性和憎水性。压缩变形小,耐饱和蒸汽性。广泛应用于耐高、低温密封管、垫圈、滚筒、按键胶辊、瓷绝缘子的更新换代。按照GB/T 28610粘均分子量测定方法。粘度法是测定聚合物分子量较为简捷的方法。特性粘度[η]是高分子溶液浓度趋近于零时的粘数值或对数粘数值(ηsp/C或Inηr/C)。在甲苯溶剂中,高分子物质的分子量和特性粘度的关系用下式表示: [η]=KMα式中:K-----常数,K=9.46×10-3;M----粘均分子量; α-----特性常数值;α=0.71用此计算公式计算得到分子量。实验所需仪器:卓祥全自动粘度仪、多位溶样器、自动配液器、万分之一电子天平。实验所需试剂:甲苯、无水乙醇。(AR级)溶剂粘度的测定:卓祥全自动粘度仪设置到实验目标温度值并且稳定后,加入甲苯,软件中启动测试任务待结束。粘度管的清洗:启动卓祥全自动粘度仪清洗、干燥程序,仪器自动将粘度管清洗干燥后待用。样品制备:在万分之一天平上精准称量精确到0.0001g,通过自动配液器将溶液浓度精准配制,再将样品瓶放置到多位溶样器室温中溶解,待溶解完毕取出待用(室温静置需N小时以上)。样品粘度的测定:加入样品,启动软件中特定公式测试,待任务结束。粘度管的清洗:再次启动卓祥全自动粘度仪清洗、干燥程序,仪器自动将粘度管清洗干燥后待用。按照以下公式1-5计算:ηr=t/t0---------------------------------------------------1ηsp=ηr-1--------------------------------------------------2c=m/v---------------------------------------------------3[η]=KMα-------------------------------------------------5式中:ηr------相对粘度;t ------溶液时间值,单位为秒(s);t0-----溶剂时间值,单位为秒(s);ηsp-----增比粘度;c------样品的浓度,单位为克每毫升g/ml;m----样品质量,单位为g;v---溶剂体积,单位为ml;[η]------特性粘度;M----粘均分子量; K-----常数,K=9.46×10-3; α-----特性常数值,α=0.71;
  • 曝光!“副”产物生产N,N-二甲基乙酰胺,难道这是新工艺?
    前言:聚四氢呋喃生产过程中产生副产物生产N,N-二甲基乙酰胺新工艺研究报道一、背景介绍精细化工生产过程中常常会产生副产物。处理或有效利用副产物是生产企业非常关注的问题。将副产物深度加工,生产出更有价值的产品-“变副为宝",既可减少三废,又能为企业创造更多价值。今天,小编来分享一个利用上游工艺副产物作为原料,通过康宁G1反应器生产N,N-二甲基乙酰胺工艺研究成果。在聚四氢呋喃生产过程中产生副产物乙酸甲酯甲醇溶液。但由于该溶液易形成二元共沸物,常规的乙酸甲酯精馏或萃取提纯,很难得到高纯度的乙酸乙酯,且操作复杂、能耗很高。将副产物直接用于反应生产高附加值的产品,那是一条更加经济的解决方案。研究者决定将该副产物溶液用于N,N-二甲基乙酰胺(缩写为DMAC)的生产。TipsN,N-二甲基乙酰胺( 缩写为DMAC),是一种重要的精细化工产品,主要被应用在塑料、化妆品、制药、纤维、有机合成等多个领域。预计到2025年,DMAC产能达到22万吨。目前,乙酸甲酯法合成DMAC 采用传统间歇釜式。连续流技术是未来的发展方向,可以减少占地和人员,提高生产效率和自动化的程度,对传统工艺有着巨大的冲击。因此,传统工艺的连续流技术改造有着非常重要的意义。此外,釜式工艺的连续流改造升级,可以创造新的知识产权,为未来的发展获得竞争力。作者使用康宁G1反应器,对DMAC 的连续流工艺进行了研究。考察了反应温度、停留时间、催化剂含量等对反应结果的影响,优化工艺条件,形成一种以微通道反应器合成DMAC 的合成工艺技术。图1. 工艺流程图二、研究过程1、釜式实验研究者进行了釜式工艺的实验,结果如表1。经过分析,在釜式反应时间4h时选择性最高是96.2%。2、连续流工艺简介研究者结合微通道反应器的特点,可模块化设计,对反应器进行设计及改装如图2所示,选择9个模块组建成反应区。乙酸甲酯甲醇溶液与甲醇钠混合形成进料1,无水二甲胺液体储存于密封容器( 压力使无水二甲胺保持液相) 为进料2,两股物料泵入微通道反应器,然后在反应器进行液-液均相反应。调节仪器温度和压力,待反应温度和压力稳定,以及物料流速都达到测试要求时,开始计时。当运行时间达到为3 ~ 5 倍停留时间进行取样,用于气相色谱分析。3、连续流工艺条件优化作者研究了反应温度、 催化剂量、 原料配比、 停留时间等主要因素对乙酸甲酯转化率、 DMAC 选择性的影响,其实验结果及分析如下。如上图结果经过分析,该连续流工艺最佳反应条件为:反应温度 140 ℃,停留时间 72 s,反应压力为 1. 5 MPa,n(甲醇钠) ∶ n( 乙酸甲酯)= 0. 02∶ 1,乙酸甲酯与二甲胺摩尔比例为 1∶ 1. 1。在最佳条件下乙酸甲酯单程转化率 97. 5% ,DMAC选择性达到 100%。从连续流结果可以看出:对于均相反应,在不需要工艺强化的条件下,微反应取得了比釜式反应更好的结果,尤其是在微通道反应器内停留时间只有72秒。三、实验总结以聚四氢呋喃装置副产物乙酸甲酯甲醇溶液、无水二甲胺为原料、甲醇钠为催化剂,应用微通道反应器得到了新的 DMAC连续流新工艺。通过实验筛选获得较优的工艺条件和较佳实验结果,乙酸甲酯单程转化率 97. 5%,DMAC 选择性达到 100% 均优于釜式工艺。与传统间歇高压釜工艺相比,微通道反应器内乙酸甲酯转化率和DMAC选择性更高,且明显缩短反应时间。四、编者语微通道反应器常用于解决化学工艺中的安全问题被人熟知。实际上对于平时一般的釜式反应,即使是不需要强混合的均相反应,微通道连续流技术也是可行的。这对于化工的连续化,智能化以及多步反应的全连续至关重要;釜式工艺的连续流改造升级,可以创造新的知识产权,为未来的发展获得竞争力; 康宁反应器无缝放大的技术特性有助于快速实现工业化生产。参考文献:《广 州 化 工》,2019 年 10 月,第 47 卷第 20 期
  • 生活饮用水水源地特定项目分析方法发布
    中国环境监测总站发布《集中式生活饮用水地表水源地特定项目分析方法》 各省、自治区、直辖市及环境保护重点城市环境监测中心(站): 为进一步做好饮用水源地保护工作,更好地完成国家环境监测任务,我站会同重庆、江苏、四川、辽宁、浙江、宁波等监测站,结合全国环境监测系统的监测设备现状,立足高效、实用的原则,参考相关国家标准、行业标准、国外分析方法与实践经验,共同编制了《集中式生活饮用水地表水源地特定项目分析方法》(见附件),供各监测站在地表水水质监测工作中参考。 由于时间和水平所限,《集中式生活饮用水地表水源地特定项目分析方法》中可能存在不够完善的问题,望各监测站在工作实践中,提出修改反馈意见。 联系人: 吕怡兵 010-84943183,13621344720,lvyb@cnemc.cn 付 强 010-84943180,13910330572,fuqiang@cnemc.cn 附件:集中式生活饮用水地表水源地特定项目分析方法 二〇〇九年八月二十六日 附:集中式生活饮用水地表水源地特定项目分析方法目录 检测项目 分析方法 对应页码 三氯甲烷、四氯化碳、三溴甲烷、二氯乙烷、1,2-二氯乙烷 8 (一)顶空-毛细管气相色谱法 8 (二)吹脱捕集-毛细管气相色谱法 11 (三)吹脱捕集-毛细管气相色谱质谱法 13 环氧氯丙烷 19 (一)吹扫捕集-毛细管气相色谱质谱法 20 (二)液液萃取-气相色谱法 20 氯乙烯 22 (一)吹扫捕集-毛细管气相色谱质谱法 22 (二)顶空-毛细管气相色谱法 22 1,1-二氯乙烯,1,2-二氯乙烯,三氯乙烯、四氯乙烯 24 (一)吹扫捕集-毛细管气相色谱法 25 (二)吹扫捕集-毛细管气相色谱质谱法 25 氯丁二烯 25 (一)吹扫捕集-毛细管气相色谱法 25 (二)吹扫捕集-毛细管气相色谱质谱法 25 (三)顶空-毛细管气相色谱法 25 六氯丁二烯 27 (一)顶空-毛细管气相色谱法 27 (二)吹扫捕集-毛细管气相色谱法 27 (三)吹扫捕集-毛细管气相色谱质谱法 28 苯乙烯、苯、甲苯、乙苯、二甲苯和异丙苯 28 (一)顶空气相色谱法 28 (二)吹脱捕集-毛细管气相色谱法 31 (三)吹脱捕集-毛细管气相色谱质谱法 33 甲醛 33 乙酰丙酮光度法 34 乙醛 36 (一)顶空-毛细管气相色谱法 36 (二)2,4-二硝基苯肼柱后衍生液相色谱法 39 丙烯醛 41 顶空-毛细管气相色谱法 41 三氯乙醛 41 顶空-毛细管气相色谱法 41 氯苯、1,2-二氯苯、1,4二氯苯 44 (一)吹脱捕集-毛细管气相色谱法 44 (二)吹脱捕集-毛细管气相色谱质谱法 44 三氯苯 44 气相色谱质谱法 44 四氯苯 51 (一)气相色谱质谱法 51 (二)气相色谱法 52 六氯苯 54 气相色谱质谱法 54 硝基苯、二硝基苯、2,4-二硝基甲苯、2,4,6-三硝基甲苯、硝基氯苯,2,4二硝基氯苯 54 (一)气相色谱质谱法 54 (二)液液萃取-气相色谱法 54 2,4-二氯苯酚、2,4,6-三氯苯酚、五氯苯酚、苯胺 57 气相色谱质谱法 57 联苯胺 57 (一)液液萃取-气相色谱质谱法 57 (二)固相萃取-高效液相色谱质谱联用法 61 (三)分光光度法 63 丙烯酰胺 65 (一)固相萃取-高效液相色谱法 65 (二)衍生化液液萃取-气相色谱法 67 (三)溴化衍生-液液萃取-气相色谱三重四极杆质谱法 70 丙烯腈 72 (一)吹扫捕集-毛细管气相色谱质谱法 72 (二)顶空-毛细管气相色谱法 72 (三)吹扫捕集-毛细管气相色谱法 72 邻苯二甲酸二丁酯、邻苯二甲酸二(2-乙基己基)酯 72 气相色谱质谱法 73 水合肼 73 (一)对二甲氨基苯甲醛直接分光光度法 73 (二)糠醛衍生化-液液萃取-气相色谱质谱法 74 四乙基铅 77 (一)双硫腙目视比色法 77 (二)液液萃取-气相色谱质谱法 79 吡啶 82 (一)气相色谱质谱法 82 (二)顶空-毛细管气相色谱法 82 松节油 84 (一)气相色谱质谱法 85 (二)气相色谱法 85 (三)吹扫捕集-气相色谱质谱法 87 苦味酸 90 (一)气相色谱-ECD方法 90 (二)直接进样-液相色谱-三重四级杆质谱方法 92 丁基黄原酸 94 铜试剂亚铜分光光度法 94 活性氯 95 N,N-二乙基-1,4-苯二胺光度法 96 滴滴涕、林丹和环氧七氯 98 (一)气相色谱质谱法 98 (二)气相色谱法 98 对硫磷、甲基对硫磷、马拉硫磷、乐果、敌敌畏、敌百虫、内吸磷 101 气相色谱法 102 百菌清 105 (一)气相色谱质谱法 105 (二)气相色谱法 105 甲萘威 107 (一)高效液相色谱法 107 (二)高效液相色谱法-质谱法 109 溴氰菊酯 111 (一)气相色谱质谱法 111 (二)气相色谱法 112 阿特拉津 112 (一)气相色谱质谱法 112 (二)液液萃取-气相色谱法 112 (三)液相色谱法(HPLC) 114 (四)液液萃取-气相色谱-质谱法 115 (五)液液萃取-液相色谱-三重四极杆质谱联用法 117 苯并[a]芘 119 高效液相色谱法 120 甲基汞 123 (一)气相色谱法 123 (二)高效液相色谱-原子荧光法 126 多氯联苯 129 液液萃取-气相色谱法(GC-ECD) 129 微囊藻毒素 135 (一)液相色谱法 135 (二)固相萃取-液相色谱-质谱联用法 138 黄磷 140 钼-锑-抗分光光度法 141 钼、钴、镍 142 (一)石墨炉原子吸收法 142 (二)电感耦合等离子发射光谱法(ICP-AES) 144 (三)电感耦合等离子体质谱法(ICP-MS) 148 铍 152 (一)石墨炉原子吸收法 152 (二)电感耦合等离子发射光谱法(ICP-AES) 154 (三)电感耦合等离子体质谱法(ICP-MS) 154 硼 154 (一)甲亚胺-H分光光度法 154 (二)电感耦合等离子发射光谱法(ICP-AES) 155 (三)电感耦合等离子体质谱法(ICP-MS) 155 锑 155 原子荧光光度法 156 钡 158 (一)石墨炉原子吸收法 158 (二)电感耦合等离子发射光谱法(ICP-AES) 160 (三)电感耦合等离子体质谱法(ICP-MS) 160 钒 160 (一)电感耦合等离子发射光谱法(ICP-AES) 160 (二)电感耦合等离子体质谱法(ICP-MS) 160 钛 161 (一)水杨基荧光酮分光光度法 161 (二)电感耦合等离子发射光谱法(ICP-AES) 162 (三)电感耦合等离子体质谱法(ICP-MS) 162 铊 162 (一)石墨炉原子吸收法 162 (二)电感耦合等离子体质谱法(ICP-MS) 164
  • 车内空气质量标准的前世今生
    最近相关报道说车内空气标准即将修订为强制性标准,难道GB/T27630-2011《乘用车内空气质量评价指南》将&ldquo 翻身农奴把歌唱&rdquo ?虽然总体来,这是好事。但作为消费者,眼瞅着GB/T27630-2011这两年的实施情况,不免担心&mdash &mdash 是否变为强制标准就能解决问题了?我看未必!下面我们来回顾下GB/T27630-2011《乘用车内空气质量评价指南》出台历程。   2004年5月下达的《关于下达〈土壤环境质量标准〉等环境保护标准制修订工作任务的函》(环办函[2004]318号)中将《车内空气污染物浓度限值及测量方法》列入2004年国家环保标准制修订计划。   2004年7月,原国家环保总局正式宣布《车内空气污染物浓度限值及测量方法》制订工作正式启动,由中国兵器装备集团公司、北京市环境保护监测中心、北京市劳动保护科学研究所、中国标准化研究院、中国兵器工业集团公司环境科技开发中心、大众汽车(中国)投资有限公司、日产(中国)投资有限公司、通用汽车(中国)投资有限公司等单位专家组成的标准编制组负责编制。   2004年9月国家标准化管理委员会将该标准列入了《国家标准制(修)订计划〈车内空气污染物浓度限值及测量方法〉》(国标委计划函[2004]58号)。本来是限量标准和检测方法合二为一的,但是标准编写组和相关专家组认为应先编写《车内空气污染物测量方法》作为环境保护行业标准,以便进一步开展大批量的数据采集工作,为国家标准《车内空气污染物浓度限值及测量方法》确定限值提供技术支持。   通过几年的调查和研究,标准编制组起草了《车内空气污染物测量方法》,后更名为《车内挥发性有机物和醛酮类物质采样测定方法》,于2007年11月29日通过原国家环保总局组织召开得标准审议会,并于2007年12月7日批准发布,标准号:HJ/T 400-2007,于2008年3月1日正式实施。时间过的很快,一晃眼过了三年了,估计很多人都忘记国家最初要制订《车内空气污染物浓度限值及测量方法》这回事了,话说这几年的调查和研究应该也够了?   HJ/T 400-2007《车内挥发性有机物和醛酮类物质采样测定方法》对挥发性有机组分(正己烷到正十六烷之间具有挥发性的有机物总称)和醛酮类化合物(甲醛、乙醛、丙酮、丙烯醛、丙醛、丁烯醛、丁酮、丁醛、甲基丙烯醛、苯甲醛、戊醛、甲基苯甲醛、环己酮、己醛等化合物总称)进行检测,至少可以分析超过20中有害物质。   到2008年,编写组大概拟定了8种有机物作为标准的限量物质,至于他们为什么仅仅拟定8种(配套检测方法可检测至少20种),而不是更多,我们姑且相信这是权威调查和研究的最佳结果。   2008年,环保部科技标准司发文对车内污染物数据进行征集(环科函[2008]37号&ldquo 关于开展车内空气质量状况调查的函&rdquo ),目的是为标准的制定提供实测数据参考。期间,标准编制组完成了《车内空气污染物浓度限值》征求意见稿初稿。   2008年9月,标准编制组召开会议将《车内空气污染物浓度限值》更名为《车内空气挥发性有机污染物浓度要求》,并确定为推荐性标准。2008年各大媒体也纷纷发文称&ldquo 标准&rdquo 有望在2009年3月1日实施,就在大家以为尘埃落定的时候,时间又这么慢慢的流逝了。   到2011年10月27日,环保部才正式发布&ldquo 标准&rdquo ,这次又改名为GB/T27630-2011《乘用车内空气质量评价指南》。   除了,《乘用车内空气质量评价指南》和《车内空气挥发性有机污染物浓度要求》除了适用范围少有区别之外,对污染物的限制均完全一致,为什么标准出台之后又要暂停3年才发布?是因为用这3年作为缓冲期吗?或者是遭到厂家的一致反对?   过了两年后的今天,又折腾要转为强制标准了,何不一开始就弄成强制。还有,转为强制标准就解决问题了吗?我看未必! GB/T27630-2011规定的只有8种污染物的现值,但是车内挥发的有机物估计有好几十种甚至上百种,就算拿HJ/T 400-2007检测也不只检测8种有机物。要是其他有机物危害,难道消费者就只能默默忍受了?   还有,就算GB/T27630-2011变成强制标准,但是里面的指标和限值会不会变?是变好还是变坏?中国据说被企业绑架的标准不在少数。   有人说,不管怎么样这对第三方检测机构有好处,呵呵,真的吗?大家都知道,汽车厂商都是大佬,你拿份报告,别人不见得认可。他们可能只会认可内部或指定检测机构的报告,就类似美泰为什么要他们的供应商的实验室都通过他们的认可和CNAS认可,一定程度上也是不想认可外面第三方的报告。这种情况在汽车行业已有先例,你说这个市场能暂时开放给多少第三方?   虽然,国务院法制办关于《缺陷汽车产品召回管理条例释义》&ldquo 常见的具体缺陷表现形式&rdquo 中,就包括了&ldquo 车内的苯、甲苯、甲醛等挥发性有毒有害物质影响车内人员健康&rdquo 的解释。因此,车内空气质量问题应属于缺陷产品范畴。但是,大家都知道这些有机物的检测费用对一般消费者来说是笔不小的费用,这样算下来维权成本过高,导致大部分人可能放弃维权。这个估计也是为什么今年到4月份,国家质检总局缺陷产品管理中心就收到有关车内异味或污染问题投诉/报告1564例。维权不成(成本太高),只能投诉了!   总之,车内空气质量标准的执行是一条漫漫长路,仅仅是强制标准不见得会改变现在&ldquo 一纸空文&rdquo 的局面。
  • 75项食品安全国家标准发布 含多项检测标准
    近日,根据《食品安全法》的规定,《国家卫生计生委2013年第7号公告》发布了75项新食品安全国家标准。   本次公布的《食品添加剂标识通则》(GB 29924-2013)对食品添加剂的标签、说明书和包装等内容进行了规范。参考相关国际标准,结合我国食品添加剂的实际生产、经营和使用情况,本标准规范了食品添加剂标签标识的术语、定义、基本内容和有关要求,进一步细化了对食品添加剂标签标识的管理。认真贯彻执行GB 29924-2013,对于确保食品添加剂的使用者、消费者和管理者获取真实、准确的信息,依法加强食品添加剂的管理具有重要意义。   本次公布的《食品用香料通则》(GB29938-2013)是食品用香料通用的质量规格与安全要求标准。制定本标准参考了世界卫生组织(WHO)和联合国粮农组织(FAO)食品添加剂联合专家委员会(JECFA)的规定,也参考了美国《食品化学法典》(FCC)关于食品用香料的质量规格要求,共对 1600多种食品用香料的质量规格作出了规定,基本解决了食品用香料质量规格标准缺失问题。   第7号公告同时公布了《食品微生物学检验 副溶血性弧菌检验》(GB 4789.7-2013)等8项检验方法食品安全国家标准和《食品添加剂 明胶》(GB 6783&mdash 2013)等65项食品添加剂质量规格方面的食品安全国家标准。 关于发布《食品微生物检验 副溶血性弧菌检验》(GB4789.7-2013)等75项食品安全国家标准等的公告   根据《中华人民共和国食品安全法》和《食品安全国家标准管理办法》规定,经食品安全国家标准审评委员会审查通过,现发布《食品微生物学检验副溶血性弧菌检验》(GB 4789.7-2013)等75项食品安全国家标准和《食品添加剂二丁基羧基甲苯(BHT)》(GB 1900-2010)第1号修改单。其编号和名称如下:   GB 4789.7-2013 食品微生物学检验 副溶血性弧菌检验(代替GB/T 4789.7-2008)   GB 4789.26-2013 食品微生物学检验 商业无菌检验(代替GB/T 4789.26-2003)   GB 4789.28-2013 食品微生物学检验 培养基和试剂的质量要求(代替GB/T 4789.28-2003)   GB 4789.31-2013 食品微生物学检验 沙门氏菌、志贺氏菌和致泻大肠埃希氏菌的肠杆菌科噬菌体诊断检验(代替GB/T 4789.31-2003)   GB 4789.39-2013 食品微生物学检验 粪大肠菌群计数(代替GB/T 4789.39-2008)   GB 5009.205-2013 食品中二噁英及其类似物毒性当量的测定(代替GB/T 5009.205-2007)   GB 5413.20-2013 婴幼儿食品和乳品中胆碱的测定(代替GB 5413.20-1997)   GB 5413.31-2013 婴幼儿食品和乳品中脲酶的测定(代替GB 5413.31-1997)   GB 6783-2013 食品添加剂 明胶(代替GB 6783-1994)   GB 29924-2013 食品添加剂标识通则   GB 29925-2013 食品添加剂 醋酸酯淀粉   GB 29926-2013 食品添加剂 磷酸酯双淀粉   GB 29927-2013 食品添加剂 氧化淀粉   GB 29928-2013 食品添加剂 酸处理淀粉   GB 29929-2013 食品添加剂 乙酰化二淀粉磷酸酯   GB 29930-2013 食品添加剂 羟丙基淀粉   GB 29931-2013 食品添加剂 羟丙基二淀粉磷酸酯   GB 29932-2013 食品添加剂 乙酰化双淀粉己二酸酯   GB 29933-2013 食品添加剂 氧化羟丙基淀粉   GB 29934-2013 食品添加剂 辛烯基琥珀酸铝淀粉   GB 29935-2013 食品添加剂 磷酸化二淀粉磷酸酯   GB29936-2013 食品添加剂 淀粉磷酸酯钠   GB 29937-2013 食品添加剂 羧甲基淀粉钠   GB 29938-2013 食品用香料通则   GB 29939-2013 食品添加剂 琥珀酸二钠   GB 29940-2013 食品添加剂 柠檬酸亚锡二钠   GB 29941-2013 食品添加剂 脱乙酰甲壳素(壳聚糖)   GB 29942-2013 食品添加剂 维生素E(dl-&alpha -生育酚)   GB 29943-2013 食品添加剂 棕榈酸视黄酯(棕榈酸维生素A)   GB 29944-2013 食品添加剂 N-[N-(3,3-二甲基丁基)]-L-&alpha -天门冬氨-L-苯丙氨酸1-甲酯(纽甜)   GB 29945-2013 食品添加剂 槐豆胶(刺槐豆胶)   GB 29946-2013 食品添加剂 纤维素   GB 29947-2013 食品添加剂 萜烯树脂   GB 29948-2013 食品添加剂 聚丙烯酸钠   GB 29949-2013 食品添加剂 阿拉伯胶   GB 29950-2013 食品添加剂 甘油   GB 29951-2013 食品添加剂 柠檬酸脂肪酸甘油酯   GB 29952-2013 食品添加剂 &gamma -辛内酯   GB 29953-2013 食品添加剂 &delta -辛内酯   GB 29954-2013 食品添加剂 &delta -壬内酯   GB 29955-2013 食品添加剂 &delta -十一内酯   GB 29956-2013 食品添加剂 &delta -突厥酮   GB 29957-2013 食品添加剂 二氢-&beta -紫罗兰酮   GB 29958-2013 食品添加剂 l-薄荷醇丙二醇碳酸酯   GB 29959-2013 食品添加剂 d,l-薄荷酮甘油缩酮   GB 29960-2013 食品添加剂 二烯丙基硫醚   GB 29961-2013 食品添加剂 4,5-二氢-3(2H)噻吩酮(四氢噻吩-3-酮)   GB 29962-2013 食品添加剂 2-巯基-3-丁醇   GB 29963-2013 食品添加剂 3-巯基-2-丁酮(3-巯基-丁-2-酮)   GB 29964-2013 食品添加剂 二甲基二硫醚   GB 29965-2013 食品添加剂 二丙基二硫醚   GB 29966-2013 食品添加剂 烯丙基二硫醚   GB 29967-2013 食品添加剂 柠檬酸三乙酯   GB 29968-2013 食品添加剂 肉桂酸苄酯   GB 29969-2013 食品添加剂 肉桂酸肉桂酯   GB 29970-2013 食品添加剂 2,5-二甲基吡嗪   GB 29971-2013 食品添加剂 苯甲醛丙二醇缩醛   GB 29972-2013 食品添加剂 乙醛二乙缩醛   GB 29973-2013 食品添加剂 2-异丙基-4-甲基噻唑   GB 29974-2013 食品添加剂 糠基硫醇(咖啡醛)   GB 29975-2013 食品添加剂 二糠基二硫醚   GB 29976-2013 食品添加剂 1-辛烯-3-醇   GB 29977-2013 食品添加剂 2-乙酰基吡咯   GB 29978-2013 食品添加剂 2-己烯醛(叶醛)   GB 29979-2013 食品添加剂 氧化芳樟醇   GB 29980-2013 食品添加剂 异硫氰酸烯丙酯   GB 29981-2013 食品添加剂 N-乙基-2-异丙基-5-甲基-环己烷甲酰胺   GB 29982-2013 食品添加剂 &delta -己内酯   GB 29983-2013 食品添加剂 &delta -十四内酯   GB 29984-2013 食品添加剂 四氢芳樟醇   GB 29985-2013 食品添加剂 叶醇(顺式-3-己烯-1-醇)   GB 29986-2013 食品添加剂 6-甲基-5-庚烯-2-酮   GB 29987-2013 食品添加剂 丁苯橡胶   GB 29988-2013 食品添加剂 海藻酸钾(褐藻酸钾)   GB 29989-2013 婴幼儿食品和乳品中左旋肉碱的测定   GB 1900-2010 第1号修改单 食品添加剂 二丁基羧基甲苯(BHT)第1号修改单   特此公告。   附件:75项食品安全国家标准及BHT第1号修改单.zip   国家卫生计生委   2013年11月29日
  • Alpha助力DNA甲基化表型调控新发现
    DNA甲基化(DNA methylation)是指在DNA甲基化转移酶的作用下,在基因组CpG二核苷酸的胞嘧啶5' 碳位共价键结合一个甲基基团。为DNA化学修饰的一种形式,能够在不改变DNA序列的前提下,改变遗传表现。DNA甲基化能引起染色质结构、DNA构象、DNA稳定性及DNA与蛋白质相互作用方式的改变,从而控制基因表达。Nature上一项新的研究揭示了一种跨染色质调节途径,即NSD1(一种组蛋白甲基转移酶)介导的H3K36me2是在基因间区域招募DNMT3A和维持DNA甲基化所必需的,并将异常的基因间CpG甲基化与人类肿瘤生长和过度发育相关联在一起。作者发现了一个有趣的现象:塔顿布朗拉赫曼综合征(Tatton–Brown–Rahman syndrome, TBRS)是一种儿童过度生长障碍,是由生殖系统DNMT3A(DNA甲基转移酶3A)突变导致的。儿童期巨脑畸形综合征(Sotos syndrome)是由NSD1(组蛋白甲基转移酶)的单倍剂量不足引起的。这两种疾病具有相同的临床特征,这就非常有意思了:这预示着组蛋白修饰和DNA甲基化修饰可能存在机制上的关联性。首先,研究人员通过全基因组分析和ChIP-seq分析方法发现,组蛋白甲基化修饰H3K36me2和H3K36me3的富集区域非常类似,且明显区别于其他组蛋白甲基化修饰如H3K9me3和H3K27me3所划分的区域。而且H3K36me2和H3K36me3水平与CpG甲基化呈正相关,这与之前报道的H3K36me3介导靶向DNMT3B的活性一致。然而,由于这种相互作用仅限于基因小体,染色质水平上的调控机制并不清楚。在进一步的检测和比较全基因组分析,发现H3K36me3在基因体中表现出特征性的富集,而H3K36me2则表现出更为弥散的分布,包括基因区和基因间区。与H3K36me3相比,DNMT3A选择性富集在H3K36me2高水平区域。接下来,就是我们的独家法宝Alpha技术大显身手的时候了。研究人员采用体外高灵敏度、匀相免疫AlphaLISA技术来阐明H3K36me2介导的DNMT3A募集特异性背后的机制。首先GST标记DNMT3A,纯化后将GST-DNMT3A与生物素化的核小体(不同甲基化的H3K36)置于384孔板。依次加入谷胱甘肽受体微珠,链霉亲和素供体微珠。避光反应60min后置于Envision多模式读板仪中对信号进行检测。通过亲和曲线分析可得知,DNMT3A与H3K36me2修饰的核小体的亲和力最高,其次是H3K36me3,但不与其他价态结合。这些结果表明DNMT3A可以识别H3K36两种甲基化状态,但对H3K36me2的亲和力更强。同时,作者也在体外NSD1突变细胞和临床Sotos综合症病人的血样本中验证组蛋白H3K36甲基化与DNA甲基化修饰的相关性,揭示DNMT3A优先选择H3K36二甲基化区域,促进基因间区的DNA甲基化。这一机制在疾病发生过程中有潜在的生物学意义。珀金埃尔默公司一如既往的为用户提供客制化Alpha Assay检测试剂和高品质的检测设备:EnVision多标记微孔板读板仪EnSight多标记微孔板读板仪Victor Nivo多标记微孔板读板仪参考文献Weinberg D N, Papillon-Cavanagh S, Chen H, et al. The histone mark H3K36me2 recruits DNMT3A and shapes the intergenic DNA methylation landscape[J]. Nature, 2019, 573(7773): 281-286.Dor Y, Cedar H. Principles of DNA methylation and their implications for biology and medicine[J]. Lancet. 2018
  • 冷热冲击试验箱维护保养有哪些注意事项以及禁测产品?
    冷热冲击试验箱维护保养有哪些注意事项以及禁测产品?首先我们先了解冷热冲击试验箱是做什么的,他是用于测试零部件承受温度迅速变化之耐力,三箱式冷热冲击试验箱即适用于质量控制的实验室又可满足生产过程中筛选商用和军用产品。蓄热式冷热冲击箱不需要使用液态气体(LN2 或 LCO2)辅助降温,待测物完全静止测试方式是当前电子部品测试、研究、以及半导体生产线大量选用,可大量节省耗材测试费用,操作快捷。下面有爱佩科技为您详细说明:1.冷热冲击箱 应固定每3个月清洗一次冷凝器:对于冷冻系统采用风冷冷却的,应定期检修冷凝风机,并对冷凝器进行去污除尘,以保证其良好的通风换热性能;对于冷冻系统采用水冷冷却的,除了要保证其进水压力、进水温度在规定范围内,还必须保证相应流量,并定期对冷凝器内部进行清洗除垢,以获取其持续的换热性能。2冷热冲击箱 如是长时间做低温时,当做完一个周期后,应设定温度为110度,小幅度开箱门做两个小时除霜处理。同时应坚持每次试验完毕后,将温度设定在环境温度附近,工作30分钟左右,再切断电源,并擦干净工作室内壁。3.冷热冲击箱 应定期清洗蒸发器:因试品的洁净等级各异,在强制风循环作用下,蒸发器上会凝聚很多尘埃等小颗粒物体,应定期进行清洗。低温试验箱循环风叶、冷凝器风机清洁和校平衡:与清洗蒸发器相似,因试验箱的工作环境各异,循环风叶、冷凝器风机上会凝聚很多尘埃等小颗粒物体,应定期进行清洗。4.冷热冲击冷热冲击箱箱 水路、加湿器清洗:若水路不畅、加湿器结垢易导致加湿器干烧,可能损坏加湿器,所以必须定期对水路、加湿器进行清洗。5.冷热冲击箱 设备若需搬迁尽量在华凯公司技术人员指导下进行,以免造成设备损坏,如客户自行搬迁,一定要有专业的电工,确认电路正确后再开机运行,不然会烧坏设备相关元器件。6.冷热冲击箱 长期停机不使用,应定期每半月通电,通电时间不小于1小时,并检测设备相关零部件运行是否正常。冷热冲击试验箱维护保养有哪些注意事项以及禁测产品?冷热冲击箱禁此测试的试样一、爆炸物:  1.硝化甘醇(乙二醇二硝酸酯)、硝化甘油(丙三醇三硝酸酯)、硝化纤维素及其它爆炸性的硝酸酯类。  2.三硝基苯、三硝基甲苯、三硝基苯酚(苦味酸)及其它爆炸性的硝基化合物。  3.过乙酸、甲基乙基甲酮过氧化物、过氧化苯甲酰以及其它有机过氧化物。  二、可燃物:  1. 自燃物: 金属:"锂"、”钾”、"钠"、黄磷、硫化磷、红磷。 赛璐璐类:碳化钙(电石)、磷化石灰、镁粉、铝粉、亚硫酸氢钠。  2. 氧化物性质类:  (1) 氯酸钾、氯酸钠、氯酸铵以及其它的氯酸盐类。  (2) 过氧酸钾、过氧酸钠、过氧酸铵以及其它的过氧酸盐类。  (3) 过氧化钾、过氧化钠、过氧酸钡以及其它的无机过氧化物。  (4) 硝酸钾、硝酸钠以及其它的硝酸盐类。  (5) 次氯酸钾以及其它的次氯酸盐类。  (6) 亚氯酸钠以及其它的亚氯酸盐类。  三、易燃物:  (1) 乙醚、汽油、乙醛、氧化丙烯、二硫化碳及其它燃点不到-30℃的物质。  (2) 普通乙烷、氧化乙烯、丙酮、苯、甲基乙基甲酮及其它燃点在-30℃以上而小于0℃的物质。  (3) 甲醇、乙醇、二甲笨、酸醋戊酯及其它燃点在0℃以上低于30℃的物质。  (4) 煤油、汽油、松节油、异戊醇、酸醋及其它燃点在30℃以上低于65℃的物质。  四、可燃性气体:氢、乙炔、乙烯、甲烷、乙烷、丙烷、丁烷及其它在温度为15℃时1大气压情况下可能会燃烧的气体。五、生物试样的试验或储存  六、强电磁发射源试样的试验及储存  七、放射性物质试样的试验及储存  八、剧毒物质试样的试验及储存
  • 安捷伦推出新一代测序成员—全新SureSelect人全外显子UTR捕获试剂
    安捷伦科技公司推出新一代测序成员 &mdash 全新SureSelect 人全外显子 UTR捕获试剂 超乎寻常的效率;为次日测序准备好外显子样品 2012 年 11 月 8 日,加利福尼亚州圣克拉拉市 &mdash 安捷伦科技公司(纽约证交所:A)今日宣布推出新一代靶向序列捕获测序产品 SureSelect 人全外显子 V5 以及 V5 + UTR。做为此项技术的发起机构,新型的全外显子捕获解决方案结合了安捷伦基因组学的最新技术革新。 SureSelect 人全外显子 V5 建立在业内领先的 SureSelect 靶向序列捕获平台上,具有更快的周转时间,可以为次日测序生成外显子样品。它还提供了更高的测序效率,并全面覆盖了最新的基因组学数据库,包括RefSeq、CCDS、GENCODE、miRBase、TCGA 和 UCSC。 新型全外显子解决方案经过特别的优化,为用户提供了最高的特异性和灵敏度,仅需 4 Gb 的总测序量,与竞争对手的类似产品相比,可以减少 60% 的测序量。 &ldquo 我们很高兴可以不断提供高性能的外显子序列捕获产品,&rdquo 安捷伦基因组学高级市场总监 Kathleen Shelton 说道。&ldquo 我们的 V5 以及 V5+ UTR 是现有的最新、最全面的外显子捕获试剂盒。配合最新简化的工作流程,我们在显著减少测序量的基础上提供了更大的样品通量&mdash &mdash 对于研究者这意味着可以在测序上花费更少的时间和经费,而将更多的时间用于研发。&rdquo SureSelect 人全外显子 V5 是 SureSelect 产品系列的最新一员,提供完整的SureSelectXT 或 SureSelectXT2 解决方案。同时也可以与 SureSelect 的定制版和 HaloPlex 靶向序列捕获系统相匹配,成为后续研究的理想之选。 此外,安捷伦还提供了完整的新一代测序工作流程解决方案,包括质量控制、自动化、PCR 以及数据分析。更多信息,请访问 www.genomics.agilent.com/CollectionSubpage.aspx?PageType=Product&SubPageType=ProductDetail&PageID=3041 关于安捷伦产品在基因组学方面的应用 安捷伦科技公司是针对下一代测序和基因组学芯片进行靶向序列捕获的全球领导者。Agilent SureSelect 和 HaloPlex 靶向序列捕获系统能使研究人员轻松选择待测序的基因组片段,无需花费对整个基因组进行测序所需要的时间和金钱。HaloPlex 系统具有&ldquo 当日完成样品至测序仪&rdquo 的工作流程,非常适合于下一代台式测序仪;而 SureSelect 系统能够在一个反应对中准确捕获所有的外显子和甲基化组,很适合配用高通量的下一代测序系统。这两个系统仅仅是两种代表性产品,其源自安捷伦在芯片制造过程中所获得的合成复杂定制的长寡核苷酸混合物的专业知识。其他基于此项核心技术的产品线包括用于基因表达的全基因组测量和比较基因组杂交的芯片,以及 SureFISH 试剂,它是一种用于原位杂交的高特异性、高灵敏度寡核苷酸荧光染料产品线。除了寡核苷酸类产品之外,安捷伦还提供用于测量样品质量的微流体生物分析仪、能够提高下一代测序效率的靶向序列捕获工具,以及用于基因组实验的全套试剂、硬件、方法和生物信息学软件。 关于安捷伦科技 安捷伦科技(纽约证交所:A)是全球领先的测量公司,是化学分析、生命科学、诊断学、电子和通讯领域的技术领导者。公司的 20,000 名员工为 100 多个国家的客户提供服务。在 2011 财政年度,安捷伦的业务净收入为 66 亿美元。有关安捷伦科技的更多信息,请访问:www.agilent.com.cn。
  • 赛默飞乘用车内空气质量检测培训班取得圆满成功
    随着人们生活水平的提高,国内汽车工业的飞速发展以及轿车给人们生活带来快捷方便,其使用率在当今社会正逐步上升,然而其室内的空气质量也令人担忧。由于坐垫、靠背及其他设施大都由塑料制成,而塑料中含有甲苯、甲醛等芳香类和醛酮类化合物。这些化合物具有慢性毒性,在汽车使用过程中随着封闭室内温度上升会从塑料中自动释放出来,随着时间逐步积累而浓度增加。人在此种环境下会对呼吸道和神经系统等产生损害,因此空气中挥发性有害物质受到人们的关注。国家环保部和国家质量监督检验检疫总局联合发布GB/T 27630-2011《乘用车内空气质量评价指南》,赛默飞积极响应相关行业政策标准,参照HJ/T400-2007《车内挥发性有机物和醛酮物质采样方法》,就该问题提供了合理科学的解决方案。 2012年5月17-19日,赛默飞色谱质谱部应用中心和LPG-TCD二部门联合汽车网及上海环科院联合举办了第一届车内空气VOCs和醛酮分析培训班,来自行广州本田,无锡吉兴汽车,欧诺法装饰材料,上海普利特复合材料,上海延锋江森座椅,SGS等12家单位的15位专家及用户参加了本次培训,上海环境科学研究院钱华所长就汽车车内空气污染状况,《乘用车内空气质量评价指南》及《车内挥发性有机物和醛酮物质采样方法》做了详细解读。 培训会上,赛默飞为整车车内空气挥发性有机物检测、车内零部件释放的有机物检测和车内非金属材料释放的有机物检测进行了详细的介绍:我们提供包括雾化测试(Fogging Tester)及热脱附-气相色谱与质谱联用(TD-GCMS)方法,采用Tenax管对汽车空气中有害物质进行吸附,通过Markers TD-100热脱附仪将吸附的汽车空气中的有害物质二次脱附并转移至Trace 1300 GC-ISQ气质联用仪上进行分析,35分钟内可准确检测空气中9种挥发性有害物质(苯、甲苯、乙基苯、乙酸丁酯、对/间二甲苯、苯乙烯、邻二甲苯、正十一烷)。运用高效液相色谱和超高效液相色谱方法成功分析空气中13种醛酮,该法采用涂渍有2,4-二硝基苯肼(DNPH)的硅胶采样管,将空气中醛酮类挥发性物质吸附到管中并与DNPH发生反应生成稳定不挥发的有色化合物。将该化合物溶解在适当的溶剂中,利用Ultimate 3000液相色谱联合紫外检测器进行分析,HPLC及UHPLC可分别在20分钟及10分钟内准确有效地检测汽车空气中13种醛酮化合物(甲醛、乙醛、丙酮、丙醛、丙烯醛、丁烯醛、丁酮、丁醛、甲基丙烯醛、苯甲醛、戊醛、间甲基苯甲醛、己醛)。 本次培训主要针对车内空气VOCs和醛酮分析方法和标准,专业性很强,引起了来会专家和用户的广泛兴趣,用户根据工作中遇到的实际问题,与工程师展开讨论,现场讨论十分热烈。赛默飞的专业能力获得了在场人士的高度好评。 会后,应用中心工程师在仪器操作现场,与大家进行使用介绍与技术交流。 关于赛默飞世尔科技 赛默飞世尔科技(纽约证交所代码:TMO)是科学服务领域的世界领导者。我们的使命是帮助客户使世界更健康、更清洁、更安全。公司年销售额120亿美元,员工约39,000人。主要客户类型包括:医药和生物技术公司、医院和临床诊断实验室、大学、科研院所和政府机构,以及环境与过程控制行业。借助于Thermo Scientific、Fisher Scientific和Unity&trade Lab Services三个首要品牌,我们将创新技术、便捷采购方案和实验室运营管理的整体解决方案相结合,为客户、股东和员工创造价值。我们的产品和服务帮助客户解决在分析领域所遇到的复杂问题与挑战,促进医疗诊断发展、提高实验室生产力。欲了解更多信息,请浏览公司网站:www.thermofisher.com 关于赛默飞中国 赛默飞世尔科技进入中国发展已有30年,在中国的总部设于上海,并在北京、广州、香港、成都、沈阳等地设立了分公司,目前已有超过1900名员工、6家生产工厂、5个应用开发中心、2个客户体验中心以及1个技术中心,成为中国分析科学领域最大的外资企业。赛默飞的产品主要包括分析仪器、实验室设备、试剂、耗材和软件等,提供实验室综合解决方案,为各行各业的客户服务。为了满足中国市场的需求,目前国内已有6家工厂运营,苏州在建的大规模工厂2012年也将投产。赛默飞在北京和上海共设立了5个应用开发中心,将世界级的前沿技术和产品带给国内客户,并提供应用开发与培训等多项服务;位于上海的中国技术中心结合国内市场的需求和国外先进技术,研发适合中国的技术和产品;遍布全国的维修服务网点和特别成立的维修服务中心,旨在提高售后服务的质量和效率。我们致力于帮助客户使世界更健康、更清洁、更安全。欲了解更多信息,请登录www.thermofisher.cn
  • 仪真分析诚招美国EPA推荐的全自动甲基汞分析系统/总汞测定仪代理商
    美国的布鲁克兰试验室是世界上最大的甲基汞分析仪器生产商及商业分析实验室,目前向中国推出了气相色谱-高温裂解-冷原子荧光检测的最新全自动甲基汞分析仪器MERX,能够分析从常量到痕量的甲基汞,结束了甲基汞测试步骤繁琐且重复性差的历史。布鲁克兰实验室的研发人员来自在美国从事汞分析的多年的专家,对从总汞到形态汞的检测具备独到的经验。 MERX 系统功能齐全,可用于总汞和甲基汞和其他汞形态的分析,一个系统全部搞定。MERX还可以与市场上所有ICP/MS 联用,实现GC-Pyrolysis-ICP/MS 形态汞测定。模块式的设计让系统具备无与伦比的灵活性,为客户节省费用及开支。MERX系统还是全球运用最多,市场占有率最大的甲基汞分析仪器,为美国EPA 1630方法所推荐。MERX所拥有的优越性能,将有助于推广总汞及甲基汞的检测范围和应用领域。特别有助于在环境,农林牧渔的样品中总汞及形态汞的研究及检测。 在品牌的辐射力量下,许多中国用户已经使用MERX系统,仪真分析拥有强大的技术支持团队,为了为广大客户提供更为便捷的技术支持及市场推广,仪真作为布鲁克兰实验室钦定的大中国的独家代理,现面向全国诚征代理商合作,欢迎有意者来电来函与我司洽谈联系。我司同时还是全自动石墨消解仪器Deena的独家代理,Deena 目前已在全国重金属项目中得到广大客户的青睐,仪器已经分布20多个省市。 仪真分析仪器有限公司 电话:(021) 62087664 传真:(021) 62191934 www.esensing.net E-Mail:yu@esensing.net
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制