当前位置: 仪器信息网 > 行业主题 > >

磷酸甜菜碱

仪器信息网磷酸甜菜碱专题为您提供2024年最新磷酸甜菜碱价格报价、厂家品牌的相关信息, 包括磷酸甜菜碱参数、型号等,不管是国产,还是进口品牌的磷酸甜菜碱您都可以在这里找到。 除此之外,仪器信息网还免费为您整合磷酸甜菜碱相关的耗材配件、试剂标物,还有磷酸甜菜碱相关的最新资讯、资料,以及磷酸甜菜碱相关的解决方案。

磷酸甜菜碱相关的资讯

  • 欧盟发布甜菜碱的安全性与效能意见
    欧洲食品安全局(EFSA)近期就甜菜碱作为饲料添加剂的安全性与效能发布了意见,认为按照每千克2000毫克的添加量,将甜菜碱添加至饲料中时,安全边际系数在5以下,不会对猪和消费者的健康构成威胁。   当甜菜碱作为饲料时,欧盟食品安全局提出4点建议:一是引入饲料与饮用水中补充甜菜碱的最大含量 二是避免甜菜碱同时补充于饲料和饮用水中 三是避免预混料中含有甜菜碱功能类似物氯化胆碱 四是在加工甜菜碱时应对操作工人进行必要的防护。   对此,检验检疫部门提醒相关出口企业:要提高风险防控意识,在销售的同时,不要忽略向使用企业尤其是欧盟的使用企业宣传欧盟食品安全局提出的新建议,在确保饲料安全的同时,发挥饲料添加剂的最大效用。
  • 加拿大修订肟菌酯和甜菜安残留限量
    今年11月,加拿大卫生部发布 EMRL2012-51号通报和EMRL2012-52号通报,称有害生物管理局修订了肟菌酯和甜菜安分别在香蕉中和菠菜、甜菜中的最大残留限量。具体内容是,肟菌酯在香蕉中的最大残留限量为0.1ppm 甜菜安在菠菜中的最大残留限量为6ppm 在甜菜根中的最大残留限量为0.1ppm。   据了解,肟菌酯属于甲氧基丙烯酸类杀菌剂,对几乎所有真菌纲病害,如白粉病、锈病、网斑病、霜霉病、稻瘟病等均有良好的活性作用。甜菜安则是一种除草剂,适用于甜菜作物,特别是糖甜菜,用于控制阔叶杂草生长。   对此,检验检疫部门提醒相关生产和出口企业:一是加强与客户沟通,及时了解加拿大方面法律法规的最新修订情况,尽早作出调整 二是建立健全自检自控体系,尤其是在水果、蔬菜种植及后续生产、包装等过程中加大检测力度,一定要选择规模大、信誉度高的机构进行检测,确保产品符合加拿大的相关规定 三是及时与检验检疫部门联系,在产品出口前做好抽样与检测工作,确保产品顺利出口。
  • 致力于最优的解决方案-吉天仪器SA-50 砷形态快速分析方法对比国标
    砷是自然界中常见的有毒致癌性元素之一,砷的生物毒性不仅与其含量有关,更大程度上还与其存在形态有关。砷的主要形态有亚砷酸盐(As3+)、砷酸盐(As5+)、一甲基砷(MMA)、二甲基砷(DMA)、砷甜菜碱(AsB)、砷胆碱、砷糖等。其中,无机砷的毒性大于有机砷,砷与有机基团结合越多,毒性越小。无机砷(As3+、As5+)的毒性很高,而有机砷仅一甲基砷和二甲基砷化合物有较小的毒性,其他有机砷形态大多无毒。所以,对砷的形态分析在环境科学、食品科学等方面具有十分重要的意义。GB5009.11-2014食品安全国家标准  食品中总砷及无机砷的测定中关于无机砷的测定方法采用了HPLC-AFS联用作为第一法对无机砷(As3+、As5+)进行含量测定。采用磷酸二氢铵缓冲盐作为流动相,使用聚光科(杭州)股份有限公司下属子公司北京吉天仪器有限公司(以下简称“吉天仪器”)针对砷形态分析专门研发的快速分析阴离子交换色谱柱进行分离,AFS进行检测。本解决方案在国标的基础上,优化了分析方法,采用快速色谱柱进行了4种As的形态分析,加快了分析速度、提高了灵敏度。吉天仪器SA-50液相色谱-原子荧光联用仪(LC-AFS形态分析仪)科研不断探索未知,攻克挑战,吉天仪器新品,强强联用,致在优质的解决方案!仪器型号:吉天仪器SA-50 与Kylin S18联用色谱柱:吉天砷形态快速分析专用柱待测物:砷酸盐、亚砷酸盐、一甲基砷、二甲基砷、砷甜菜碱均来自于中国计量科学研究院测试条件:  流动相:水、2种盐混合缓冲溶液梯度洗脱  载流:7%盐酸  还原剂:2%硼氢化钾/0.5%氢氧化钾  负高压:290V  灯电流:100mA-50mA  炉高:10mm测试结果:  1. 重复性:对于As3+、As5+、MMA、DMA(10ng/mL)混合溶液,在仪器稳定后连续进样6针,重复性RSD,结果见下图:  2. 线性: 对于不同浓度的As3+、As5+、MMA、DMA(20ng/mL、15 ng/mL 、10 ng/mL、5 ng/mL、2.5 ng/mL)混合溶液分别进样,制作曲线,结果见下表及下图;浓度(ng/mL)荧光强度As3+DMAMMAAs5+2.525002.114602.917859.17540.1550960.229006.234158.215092.61010146565544.675930.635131.21515279010056811529151291.82021360313807214945069886.4线性方程y=10662x-3189.3y=7098.1x-4971.3y=7657.9x-1870.5y=3579.7x-1798.4相关系数r0.99920.99960.99930.9994   3. 检出限:把As3+、As5+、MMA、DMA(1 ng/mL)混合溶液进样,测试结果见下图:只因内”芯“的从容!才要更出色!与国标等度方法对比分析:  在已发布的《液相色谱-原子荧光光谱法测定食品中无机砷的解决方案》文中采用了国标等度方法、HamiltonPRP-X100阴离子交换色谱柱(4.1mm*250mm*10μm)或CNWSep AX 4.0mm*250mm*10um色谱柱进行了四种As形态(As3+、As5+、MMA、DMA)的分析,测试结果与本文中采用优化方法的对比图分别如下(上图为方法一与国标法对比;下图为方法二与国标法对比),由实验结果可知四种As形态的分离时间有了较大的减少,灵敏度也有了较大提高。创新性LC-AFS分析技术,智能高效、精益求精  全内置的液相泵,结构紧凑,设计更美观  内置双柱柱温箱,实现双色谱柱同时预热  双色谱柱自动切换,提高更换效率  实现紫外消解流路自动切换  多色LED指示灯,直观显示仪器多种状态  全面的软件控制,人机友好互交  更多优异的性能、全面的解决方案等你关注哦!!!LC-AFS
  • 别让酸甜的果酱成为痛苦的来源|如何检测罐装果酱中的异物,确保产品安全?
    全球生产果酱以及产品中带有果酱的厂家和企业不计其数,如果这些厂家和企业不注重产品安全,致使含有玻璃等异物的产品流入市场和消费者手中,将会给消费者的人身安全甚至生命安全造成伤害。而企业自身也会到法律法规的惩罚,面临产品召回的风险和品牌声誉危机。尤其是出口企业,要严格按照出口国要求,保证产品的安全和质量,避免因此类原因给企业带来严重危机。 罐 装 果 酱 检 测 的 挑 战随着糕点、薯条、沙拉等食品备受青睐,酸甜可口的果酱也成为多数家庭和消费者的必备品。但生产果酱尤其是罐装果酱充满了挑战:• 玻璃容器内的玻璃碎片• 底冠区域检测• 质量控制:灌装量、重量、顶盖是否缺失等 罐 装 果 酱 检 测 解 决 方 案Eagle™ QuadView-S采用的四视角检测可以全方位检测产品,即使是难以检测的底冠区域,从而大幅提高了容器底部、侧壁与瓶颈玻璃碎片、金属片、矿石与钙化骨等污染物的检出率。 四视角检测范围X射线图像除异物检测外,QuadView-S还可同时执行多项质量检测任务,如:检查产品是否符合目标重量和特定灌装量等,可实时提供灌装机反馈,以便及时调整设备,使产品灌装量达标。多种检测模式提供更强大的功能和价值,有助于实现更高的投资回报率。此外,对于采用金属包装(如带有金属盖的玻璃瓶)和高速生产线的产品,该 X 射线检测系统也具有卓越的异物和质量检测性能。顶盖缺失和灌装量检测 Eagle™ QuadView-SQuadView-S 专门为检测高速罐、瓶、复合生产线以及立式容器包装产品而设计,占用空间小,能够轻松集成到现有的传送带中,与大多数工厂网络系统兼容,避免了高成本且耗时的传输机或生产线改造,是罐装果酱检测的理想解决方案。• SimulTask™ PRO 图像分析软件具有四视角检测范围,可以全面检测异物和灌装量等质量问题,确保遵循 HACCP 原则和全球安全规定• 通过 TraceServer™ 选配软件可在电脑或网络上储存、传输和管理重要的检测数据• 灌装机反馈灌装过量或灌装不足• 可连接网络,支持 Eagle 技术专家远程访问• 检测速度可根据实际生产线速度进行调节选配柔性的立式剔除装置,可使不符合质量要求的立式容器保持垂直地传输至平行传送带。非常适用于底部不规则和不稳定的塑料容器,和使用常规推杆式剔除装置可能会导致玻璃破碎而构成安全隐患的玻璃罐。 带有多达 15 个独立驱动的指状物,可适应高速生产线,每分钟可处理 1000 个产品或每分钟 120 米的处理速度 想要了解更多Eagle鹰光™ 的产品,请进入网站https://www.instrument.com.cn/netshow/SH101016/Search.htm?sType=0&Keywords=Eagle,留下您的信息,我们的专业工程师将竭诚为您服务。
  • 分享移液酸甜苦辣,赢取epMotion轻松大奖
    移液是生物及医学实验过程中必不可少的环节,是我们每天在实验室最常见的基本操作。现在与我们分享您在实验室中关于移液的各类趣事、囧事、新鲜事,就可以赢取Eppendorf的特殊&ldquo 轻松&rdquo 大奖。 Eppendorf全新推出的epMotion 5073系列工作站将是实验室繁琐移液的有效解决工具,可以帮助研究人员在实验室更加轻松地完成多种复杂的移液工作,解决移液难题。 epMotion 5073系列工作站可以实现全自动的常规移液、PCR体系构建及核酸纯化,不仅节省时间和人力,提高实验结果的可靠性和可重复性,还可以有效避免交叉污染,是您开展各项工作的有力工具。 从即日起至12月31日,登录活动页面,给我们留言或上传图片分享您移液的酸甜苦辣,或发微博 @eppendorf官方微博,即有机会获得epMotion轻松大奖,让您的实验室工作更舒适。 本次活动设: 一等奖:1名,奖品:OSIM OS-201颈肩音乐按摩器一部,价值2000元 二等奖:2名,奖品:OSIM OS-3300眼部音乐按摩器一部,价值800元 三等奖:10名,奖品:Eppendorf 超酷无线鼠标 点击参与活动 epMotion 5073 自动移液工作站 Eppendorf官方微博:http://weibo.com/eppendorfchina Eppendorf中文官网:http://www.eppendorf.cn 关于艾本德(Eppendorf) 德国艾本德股份公司于1945年在德国汉堡成立,是一家全球领先的生物技术公司。产品包括移液器、分液器和离心机,以及微量离心管和移液吸头等耗材,此外还提供从事细胞显微操作的仪器和耗材、全自动移液系统、DNA扩增的全套仪器。产品主要应用于科研、商业化的研发机构、生物技术公司以及其他从事相关生物研究的领域。2007年Eppendorf收购美国New Brunswick Scientific (NBS) 公司,2012年Eppendorf收购德国DASGIP公司,拓展了其细胞培养领域的产品线。 关于艾本德中国(Eppendorf China Ltd.) 2003年Eppendorf正式进入中国,分别在北京、广州设立分公司,启动直销的经营模式,为中国客户提供更便捷的技术售后服务。目前全国雇员数量近200名,产品销售覆盖各大中型城市,是Eppendorf全球发展最快的子公司。
  • 《饲料行业国家标准汇编》免费领取!
    《饲料行业国家标准汇编》免费领取!饲料是人饲养动物的食物的总称。饲料是畜牧业的基础,在畜牧业的发展中发挥这重要的作用,是畜产品向农产品转变的重要环节。目前我国的饲料年总产值接近万亿元市场规模。针对这庞大的市场,仪器信息网特意整理了一份关于饲料的标准:《饲料行业国家标准汇编》。上期我们整理了一份《食品农残国标G B23200系列标准汇编 》 ,就有用户强烈要求整理一份饲料行业的标准汇编,为了满足大家的需求,小编网络资源,汇编成册,以飨读者。《饲料行业国家标准汇编》共收集了现行的304个最新的饲料行业国家标准,旨在提升饲料行业的质量水平,促进优质、高效、安全、健康、生态的产业链。为了方便查询,我们特意增加了书签,便于检索之用。扫描二维码免费下载收藏汇编包括标准如下:GBT 5915-2020 仔猪、生长育肥猪配合饲料 1GBT 5916-2020产蛋后备鸡、产蛋鸡、肉用仔鸡配合饲料 8GBT 5917.1-2008 饲料粉碎粒度测定 两层筛筛分法 18GBT 6432-2018 饲料中粗蛋白的测定 凯氏定氮法 22GBT 6433-2006 饲料粗脂肪测定方法 29GBT 6434-2006 饲料中粗纤维测定方法 38GBT 6435-2014 饲料中水分的测定 50GBT 6436-2018 饲料中钙的测定 61GBT 6437-2018 饲料中总磷的测定 分光光度法 68GB 6438-2007T 饲料中粗灰分的测定 74GBT 7292-1999 饲料添加剂 维生素A乙酸酯微粒 81GB 7293-2017 饲料添加剂 DL-α-生育酚乙酸酯(粉) 86GB 7294-2017 饲料添加剂 亚硫酸氢钠甲萘醌(维生素K3) 121GB 7295-2018饲料添加剂 盐酸硫胺-维生素B1 98GB 7296-2018 饲料添加剂 硝酸硫胺 (维生素B1) 109GBT 7297-2006 饲料添加剂 维生素B2(核黄素) 134GB 7298-2017 饲料添加剂 维生素B6(盐酸吡哆醇) 140GBT 7299-2006 饲料添加剂 D-泛酸钙 151GB 7300-2017 饲料添加剂 烟酸 161 GB 7300.101-2019 饲料添加剂 第1部分:氨基酸、氨基酸盐及其类似物 L-苏氨酸 174 GB 7300.102-2019 饲料添加剂 第1部分:氨基酸、氨基酸盐及其类似物 甘氨酸 183 GB 7300.103-2020 饲料添加剂 第1部分:氨基酸、氨基酸盐及其类似物 蛋氨酸羟基类似物 192 GB 7300.201-2019 饲料添加剂 第2部分:维生素及类维生素 L-抗坏血酸-2-磷酸酯盐 201 GB 7300.203-2020饲料添加剂 第2部分:维生素及类维生素 甜菜碱 211 GB 7300.204-2019 饲料添加剂 第2部分:维生素及类维生素 甜菜碱盐酸盐 226 GB 7300.301-2019 饲料添加剂 第3部分:矿物元素及其络(螯)合物 碘化钾 237 GB 7300.302-2019 饲料添加剂 第3部分:矿物元素及其络(螯)合物 亚硒酸钠 246 GB 7300.401-2019 饲料添加剂 第4部分:酶制剂 木聚糖酶 255 GB 7300.402-2020 饲料添加剂 第4部分:酶制剂植酸酶 262 GB 7300.601-2020 饲料添加剂 第6部分:非蛋白氮 尿素 269 GB 7300.801-2019 饲料添加剂 第8部分:防腐剂、防霉剂和酸度调节剂 碳酸氢钠 274 GB 7300.901-2019 饲料添加剂 第9部分:着色剂 β-胡萝卜素粉 281 GB 7300.1001-2020 饲料添加剂 第10部分:调味和诱食物质 谷氨酸钠 291GB 7301-2017 饲料添加剂 烟酰胺 300GB 7302-2018 饲料添加剂 叶酸 311GB 7303-2018饲料添加剂 L-抗坏血酸-维生素C 320GBT 8381-2008 饲料中黄曲霉毒素B1的测定 半定量薄层色谱法 327 GBT 8381.2-2005 饲料中志贺氏菌的检测方法 340 GBT 8381.3-2005 饲料中林可霉素的测定 353 GBT 8381.4-2005 配合饲料中T-2毒素的测定 薄层色谱法 361 GBT 8381.5-2005 饲料中北里霉素的测定 366 GBT 8381.6-2005配合饲料中脱氧雪腐镰刀菌烯醇的测定薄层色谱法 374 GBT 8381.7-2009 饲料中喹乙醇的测定 高效液相色谱法 379 GBT 8381.8-2005 饲料中多氯联苯的测定气相色谱法 384 GBT 8381.9-2005 饲料中氯霉素的测定 气相色谱法 389 GBT 8381.10-2005 饲料中磺胺喹(口恶)啉的测定高效液相色谱法 394 GBT 8381.11-2005 饲料中盐酸氨丙啉的测定高效液相色谱法 398GBT 8622-2006 饲料用大豆制品中尿素酶活性的测定 403GB 9454-2017 饲料添加剂 DL-α-生育酚乙酸酯 409GBT 9455-2009 饲料添加剂 维生素AD3微粒 424GB 9840-2017 饲料添加剂 维生素D3(微粒) 431GBT 9841-2006 饲料添加剂 维生素B12(氰钴胺)粉剂 444GBT 10647-2008 饲料工业术语 451GB 10648-2013 饲料标签 481GBT 10649-2008 微量元素预混合饲料混合均匀度的测定 489GB 13078-2017 饲料卫生标准 493GBT 13079-2006 饲料中总砷的测定 504GBT 13080-2018 饲料中铅的测定 原子吸收光谱法 513GBT 13081-2006饲料中汞的测定 520GB 13082-1991 饲料中镉的测定方法 528GBT 13083-2018 饲料中氟的测定 离子选择性电极法 531GBT 13084-2006 饲料中氰化物的测定 536GBT 13085-2018 饲料中亚硝酸盐的测定 比色法 542GBT 13086-2020 饲料中游离棉酚的测定方法 547GBT 13087-2020 饲料中异硫氰酸酯的测定方法 555GBT 13088-2006 饲料中铬的测定 562GBT 13089-2020 饲料中噁唑烷硫酮的测定方法 569GBT 13090-2006 饲料中六六六、滴滴涕的测定 574GBT 13091-2018 饲料中沙门氏菌的测定 581GBT 13092-2006 饲料中霉菌总数测定方法 597GBT 13093-2006 饲料中细菌总数的测定 604GBT 13882-2010 饲料中碘的测定 硫氰酸铁-亚硝酸催化动力学法 612GBT 13883-2008 饲料中硒的测定 617GBT 13884-2018 饲料中钴的测定 原子吸收光谱法 623GBT 13885-2017 饲料中钙、铜、铁、镁、锰、钾、钠和锌含量的测定 原子吸收光谱法 628GBT 14698-2017 饲料原料显微镜检查方法 645GBT 14699.1-1993 饲料采样方法 652GBT 14700-2018 饲料中维生素B1的测定 656GBT 14701-2019 饲料中维生素B2的测定 665GBT 14702-2018 添加剂预混合饲料中维生素B6的测定 高效液相色谱法 674GBT 14698-2017 饲料原料显微镜检查方法 628GB 14924.1-2001 实验动物 配合饲料通用质量标准 682GB 14924.2-2001 实验动物 配合饲料卫生标准 688GBT 15399-2018 饲料中含硫氨基酸的测定 离子交换色谱法 691GBT 15400-2018 饲料中色氨酸的测定 698GBT 17243-1998 饲料用螺旋藻粉 707GBT 17480-2008 饲料中黄曲霉毒素B1的测定酶联免疫吸附法 713GBT 17481-2008 预混料中氯化胆碱的测定 720GBT 17776-2016 饲料中硫的测定 硝酸镁 727GBT 17777-2009 饲料中钼的测定 分光光度法 732GBT 17778-2005 预混合饲料中d-生物素的测定 737GBT 17810-2009 饲料级DL-蛋氨酸 743GBT 17811-2008 动物性蛋白质饲料胃蛋白酶消化率的测定 过滤法 750GBT 17812-2008 饲料中维生素E的测定 高效液相色谱法 755GBT 17813-2018 添加剂预混合饲料中烟酸与叶酸的测定 高效液相色谱法 762GBT 17814-2011 饲料中丁基羟基茴香醚、二丁基羟基甲苯、乙氧喹和没食子酸丙酯的测定 769GBT 17815-2018 饲料中丙酸、丙酸盐的测定 781GBT 17816-1999饲料中总抗坏血酸的测定 邻苯二胺荧光法 789GBT 17817-2010 饲料中维生素A的测定 高效液相色谱法 793GBT 17818-2010 饲料中维生素D3的测定 高效液相色谱法 801GBT 17819-2017 添加剂预混合饲料中维生素B12的测定 高效液相色谱法 809GBT 17890-2008 饲料用玉米 816GBT 18246-2019 饲料中氨基酸的测定 820GBT 18397-2014 预混合饲料中泛酸的测定 高效液相色谱法 832GBT 18632-2010 饲料添加剂 80%核黄素(维生素B2)微粒 838GBT 18633-2018 饲料中钾的测定 火焰光度法 845GBT 18634-2009 饲用植酸酶活性的测定 分光光度法 850GBT 18823-2010 饲料检测结果判定的允许误差 857GBT 18868-2002饲料中水分、粗蛋白质、粗纤维、粗脂肪、赖氨酸、蛋氨酸快速 867GBT 18869-2019 饲料中大肠菌群的测定 875GBT 18872-2017 饲料中维生素K3的测定 高效液相色谱法 892GBT 18969-2003 饲料中有机磷农药残留量的测定 气相色谱法 899GBT 18970-2003 饲料添加剂 10%β,β-胡萝卜-4,4-二酮(10%斑蝥黄) 907GBT 19164-2003 912GBT 19370-2003 饲料添加剂1%β-胡萝卜素 923GBT 19371.1-2003 饲料添加剂 液态蛋氨酸羟基类似物 928GBT 19371.2-2003 饲料中液态蛋氨酸羟基类似物的测定 高效液相色谱法 934GBT 19372-2003 饲料中除虫菊酯类农药残留量测定 气相色谱法 939GBT 19373-2003 饲料中氨基甲酸酯类农药残留量测定-气相色谱法 944GBT 19422-2003 饲料添加剂 L-抗坏血酸-2-磷酸酯 949GBT 19423-2020 饲料中尼卡巴嗪的测定 956GBT 19424-2018 天然植物饲料原料通用要求 967GBT 19539-2004 饲料中赭曲霉毒素A的测定 976GBT 19540-2004 饲料中玉米赤霉烯酮的测定 983GBT 19541-2017 饲料原料 豆粕 990GBT 19542-2007 饲料中磺胺类药物的测定 高效液相色谱法 998GBT 19684-2005 饲料中金霉素的测定 高效液相色谱法 1003GBT 20189-2006 饲料中莱克多巴胺的测定 高效液相色谱法 1007GBT 20190-2006 饲料中牛羊源性成分的定性检测 定性聚合酶链式反应(PCR)法 1012GBT 20191-2006 饲料中嗜酸乳杆菌的微生物学检验 1021GBT 20192-2006 环模制粒机通用技术规范 1028GBT 20193-2006 饲料用骨粉及肉骨粉 1046GBT 20194-2018 动物饲料中淀粉含量的测定 旋光法 1051GBT 20195-2006 动物饲料 试样的制备 1063GBT 20196-2006 饲料中盐霉素的测定 1071GBT 20363-2006饲料中苯巴比妥的测定 1082GBT 20411-2006 饲料用大豆 1088GBT 20715-2006 犊牛代乳粉 1092GB 20802-2017 饲料添加剂 蛋氨酸铜络(螯)合物 1102GBT 20803-2006 饲料配料系统通用技术规范 1109GBT 20804-2006 奶牛复合微量元素维生素预混合饲料 1127GBT 20805-2006 饲料中酸性洗涤木质素(ADL)的测定 1134GBT 20806-2006 饲料中中性洗涤纤维(NDF)的测定 1140GBT 20807-2006 绵羊用精饲料 1146GBT 21033-2007 饲料中免疫球蛋白IgG的测定 高效液相色谱法 1153GBT 21034-2007饲料添加剂 羟基蛋氨酸钙 1157GBT 21035-2007 饲料安全性评价 喂养致畸试验 1162GBT 21036-2007 饲料中盐酸多巴胺的测定 高效液相色谱法 1168GBT 21037-2007 饲料中三甲氧苄胺嘧啶的测定 高效液相色谱法 1173GBT 21100-2007 动物源性饲料中骆驼源性成分定性检测方法 PCR方法 1178GBT 21102-2007 动物源性饲料中兔源性成分定性检测方法 实时荧光PCR方法 1184GBT 21103-2007 动物源性饲料中哺乳动物源性成分定性检测方法 实时荧光PCR方法 1190GBT 21104-2007 动物源性饲料中反刍动物源性成分(牛,羊,鹿)定性检测方法 PCR方法 1197GBT 21105-2007 动物源性饲料中狗源性成分定性检测方法 PCR方方法 1204GBT 21106-2007 动物源性饲料中鹿源性成分定性检测方法 PCR方法 1210GBT 21107-2007 动物源性饲料中马、驴源性成分定性检测方法 PCR方法 1216GBT 21108-2007 饲料中氯霉素的测定 高效液相色谱串联质谱法 1222GBT 21264-2007 饲料用棉籽粕 1230GBT 21514-2008 饲料中脂肪酸含量的测定 1235GBT 21515-2008 饲料添加剂 天然甜菜碱 1248GBT 21516-2008 饲料添加剂 10%β-阿朴-8 -胡萝卜素酸乙酯(粉剂) 1257GBT 21517-2008 饲料添加剂 叶黄素 1264GBT 21542-2008 饲料中恩拉霉素的测定 微生物学法 1272GBT 21543-2008 饲料添加剂 调味剂 通用要求 1279GB 21694-2017 饲料添加剂 蛋氨酸锌络(螯)合物 1285GB 21695-2008-T 饲料级 沸石粉 1292GBT 21696-2008 饲料添加剂 碱式氯化铜 1300GBT 21979-2008 饲料级L-苏氨酸 1307GBT 21995-2008 饲料中硝基咪唑类药物的测定 液相色谱串联质谱法 1313GB 21996-2008-T 饲料添加剂 甘氨酸铁络合物 1320GBT 22141-2008 饲料添加剂 复合酸化剂通用要求 1328GBT 22142-2008 饲料添加剂 有机酸通用要求 1334GBT 22143-2008 饲料添加剂 无机酸通用要求 1340GBT 22144-2008 天然矿物质饲料通则 1346GBT 22145-2008 饲料添加剂 丙酸 1352GBT 22146-2008 饲料中洛克沙胂的测定 高效液相色谱法 1360GBT 22147-2008 饲料中沙丁胺醇、莱克多巴胺和盐酸克仑特罗的测定 1365GBT 22259-2008 饲料中土霉素的测定 高效液相色谱法 1371GBT 22260-2008 饲料中甲基睾丸酮的测定 高效液相色谱串联质谱法 1376GBT 22261-2008 饲料中维吉尼亚霉素的测定 高效液相色谱法 1383GBT 22487-2008 水产饲料安全性评价 急性毒性试验规程 1389GBT 22488-2008 水产饲料安全性评价 亚急性毒性试验规程 1398GB 22489-2017 饲料添加剂 蛋氨酸锰络(螯)合物 1404GBT 22544-2008 蛋鸡复合预混合饲料 1412GBT 22545-2008 宠物干粮食品辐照杀菌技术规范 1420GBT 22546-2008 饲料添加剂 碱式氯化锌 1426GBT 22547-2008 饲料添加剂 饲用活性干酵母(酿酒酵母) 1435GB 22548-2017 饲料添加剂 磷酸二氢钙 1444GB 22549-2017 饲料添加剂 磷酸氢钙 1453GBT 22919.1-2008 水产饲料 第1部分:斑节对虾配合饲料 1463GBT 22919.2-2008 水产饲料 第2部分:军曹鱼配合饲料 1470GBT 22919.3-2008 水产饲料 第3部分:鲈鱼配合饲料 1475GBT 22919.4-2008 水产配合饲料 第4部分:美国红鱼配合饲料 1480GBT 22919.5-2008 水产配合饲料 第5部分:南美白对虾配合饲料 1486GBT 22919.6-2008 水产配合饲料 第6部分:石斑鱼配合饲料 1493GBT 22919.7-2008 水产配合饲料 第7部分:刺参配合饲料 1499GBT 23179-2008 饲料毒理学评价 亚急性毒性试验 1505GBT 23180-2008 饲料添加剂 2%d-生物素 1510GBT 23181-2008 微生物饲料添加剂通用要求 1516GBT 23182-2008 饲料中兽药及其他化学物检测试验规程 1520GBT 23184-2008 饲料企业HACCP安全管理体系指南 1527GBT 23185-2008 宠物食品 狗咬胶 1545GBT 23186-2009 水产饲料安全性评价 慢性毒性试验规程 1551GBT 23187-2008 饲料中叶黄素的测定 高效液相色谱法 1564GBT 23385-2009饲料中氨苄青霉素的测定 高效液相色谱法 1559GB 23386-2017 饲料添加剂 维生素A棕榈酸酯(粉) 1570GBT 23387-2009 饲草营养品质评定 GI法 1581GBT 23388-2009 水产饲料安全性评价 残留和蓄积试验规程 1588GBT 23389-2009 水产饲料安全性评价 繁殖试验规程 1596GBT 23390-2009 水产配合饲料环境安全性评价规程 1602GBT 23710-2009 饲料中甜菜碱的测定 离子色谱法 1610GBT 23735-2009 饲料添加剂 乳酸锌 1616GBT 23736-2009 饲料用菜籽粕 1623GBT 23737-2009 饲料中游离刀豆氨酸的测定 离子交换色谱法 1628GBT 23741-2009 饲料中4种巴比妥类药物的测定 1633GBT 23742-2009 饲料中盐酸不溶灰分的测定 1641GBT 23743-2009 饲料中凝固酶阳性葡萄球菌的微生物学检验 Bair 1649GBT 23745-2009 饲料添加剂 10%虾青素 1659GBT 23746-2009 饲料级糖精钠 1666GBT 23747-2009 饲料添加剂 低聚木糖 1672GBT 23873-2009 饲料中马杜霉素铵的测定
  • 全新升级丨Welchrom® Alumina-B 碱性氧化铝小柱
    甜菜碱是一种碱性物质,主要为强心甙和其他甾类成分,可从天然植物的根、茎、叶及果实中提取或采用三J胺和氯Y酸为原料化学合成。 甜菜碱是枸杞果、叶、柄中主要的生物碱之一,学名三J基胺乙内酯,许多枸杞属植物果实、根皮、叶中均含有甜菜碱。枸杞对脂质代谢或抗脂肪肝的作用主要是由于所含的甜菜碱引起的,多项研究结果显示,枸杞叶片内的甜菜碱含量比其他耐盐植物高。 月旭科技根据2020年版《中国药典》枸杞子品种中甜菜碱的含量测定法开发出了新一代Welchrom® Alumina-B 碱性氧化铝小柱。概述碱性氧化铝小柱应用于枸杞子中甜菜碱的测定,该方法速度快、操作简单、准确性高。原理碱性氧化铝小柱能够特异性的纯化样品中的甜菜碱。试样中的甜菜碱经提取剂提取,提取液通过碱性氧化铝小柱净化,其中杂质吸附在小柱上,洗脱目标物后浓缩复溶,最后注入HPLC进行测定。净化程序碱性氧化铝小柱活化→上样→洗脱→浓缩→复溶色谱条件色谱柱:月旭Ultimate® Hilic NH2 4.6× 250mm,5μm。流动相:乙腈:水=85:15;流速:1.0mL/min;柱温:30℃;进样量:10μL;检测波长:195nm。 色谱图及实际样品测试结果 结论:Welchrom® Alumina-B在《中国药典2020版》下测试,加标回收率满足实验要求。订货信息‍
  • 全新升级丨Welchrom® Alumina-B 碱性氧化铝小柱
    甜菜碱是一种碱性物质,主要为强心甙和其他甾类成分,可从天然植物的根、茎、叶及果实中提取或采用三J胺和氯Y酸为原料化学合成。 甜菜碱是枸杞果、叶、柄中主要的生物碱之一,学名三J基胺乙内酯,许多枸杞属植物果实、根皮、叶中均含有甜菜碱。枸杞对脂质代谢或抗脂肪肝的作用主要是由于所含的甜菜碱引起的,多项研究结果显示,枸杞叶片内的甜菜碱含量比其他耐盐植物高。 月旭科技根据2020年版《中国药典》枸杞子品种中甜菜碱的含量测定法开发出了新一代Welchrom® Alumina-B 碱性氧化铝小柱。概述碱性氧化铝小柱应用于枸杞子中甜菜碱的测定,该方法速度快、操作简单、准确性高。原理碱性氧化铝小柱能够特异性的纯化样品中的甜菜碱。试样中的甜菜碱经提取剂提取,提取液通过碱性氧化铝小柱净化,其中杂质吸附在小柱上,洗脱目标物后浓缩复溶,最后注入HPLC进行测定。净化程序碱性氧化铝小柱活化→上样→洗脱→浓缩→复溶色谱条件色谱柱:月旭Ultimate® Hilic NH2 4.6× 250mm,5μm。流动相:乙腈:水=85:15;流速:1.0mL/min;柱温:30℃;进样量:10μL;检测波长:195nm。 色谱图及实际样品测试结果 结论:Welchrom® Alumina-B在《中国药典2020版》下测试,加标回收率满足实验要求。订货信息‍
  • 助战食安,海能仪器添彩华中科仪展
    122016年11月10日—12日,第八届华中科教仪器与技术装备展览会,在武汉国博中心拉开序幕。本届科仪展汇聚了来自国内外二十多个国家和地区的仪器企业,海能多款仪器在会上亮相,添彩华中科仪展。展位精彩海能、新仪展位号:b1展馆A08 、A09 展会第一天,展位便吸引了包括高等院校、研发机构、检验检测机构、第三方检测公司等专业观众前来。海能技术人员或与老用户交流经验,或对新朋友的咨询给出详细解答,或同经销商朋友深入洽谈……海能此次亮相展出的仪器到有哪些呢?元素分析系列、样品前处理系列、电化学系列及通用仪器系列。包括k1160全自动凯氏定氮仪、spe400全自动机械臂固相萃取仪、d100杜马斯定氮仪、uwave-2000多功能微波合成萃取仪、master超高通量密闭微波消解/萃取仪等。助战食安不同于往届,本届科仪展食品安全成为热点之一。维护食品质量与安全,维护广大消费者的身体健康,是关系到我们切身利益的大事!在食品事件频频曝出的今天,真正确保舌尖上的安全,我们有场硬战要打。海能致力于食品药品的安全营养与科学分析仪器、分析方法的研究,为科技工作者提供仪器及全面的解决方案。专注科学仪器事业,制造高品质仪器,诠释完美服务。海能仪器愿为您的食品安全保驾护航!
  • 用户之声|和黄白猫洗洁精的表面活性剂分析神器—CAD检测器
    今天赛默飞就带大家跟随“和黄白猫”,探寻下最常用的日用品之一——洗洁精。洗洁精由多种表面活性剂及助剂复配而成。可能的成分有:“烷基苯磺酸钠(LAS),脂肪醇聚氧乙烯醚硫酸钠(AES)和烯基/羟基磺酸钠(AOS)̷̷”,这些阴离子表面活性剂去油污能力强,在皮肤上残留会有干燥紧绷的感觉;因此,很多厂家会添加比较温和的两性离子表面活性剂进行复配,如椰油酰胺丙基甜菜碱,椰油酰胺丙基氧化胺,非离子表面活性剂脂肪醇聚氧乙烯醚等,以取得更好的清洁效果并降低对人体皮肤的刺激。椰油酰胺丙基甜菜碱结构式 由于成分复杂,开发合适的检测方法对这类产品进行质控分析,是一项高难度挑战。1两性表面活性剂在酸性条件下以阳离子形式存在,会影响其他阴离子表面活性剂的定量,无法用化学滴定法定量;2大部分表面活性剂无紫外吸收,缺乏标准物质,紫外检测器很难检测所有组分;3示差折光检测器重复性差、只能等度洗脱无法完全分离;4质谱检测器只能检测可以离子化的化合物,而且长时间使用离子源和四极杆会难以清洗造成交叉污染;自从接触了赛默飞的电雾式检测器CAD,以上这些难题都迎刃而解。“通过调研我们发现:CAD的重现性和灵敏度远高于示差折光检测器,与ELSD相比也具有较明显优势。2016年我们研发部门配置了CAD和紫外双检测器的Ultimate 3000双三元液相色谱,通过一个二位六通阀连接,实现了一台仪器当两台液相使用的强大功能,方便了我们的工作,降低了购买成本。”——和黄白猫公司上海和黄白猫有限公司是洗涤清洁用品行业的知名企业,在国内同行业中技术领xian、设备先进、质量过硬,享有相当高的市场信誉度;“白猫”品牌,几乎成为国内洗涤清洁用品的代名词。 电雾式检测器(CAD)电雾式检测器(CAD),是一种新型通用型检测器,重现性好,能检测大部分非挥发性和半挥发性的有机物,并提供几乎一致的响应,且不受化合物紫外吸收基团的影响,在定量分析中具有明显的优势。 赛默飞带您来看和黄白猫公司使用CAD检测器对洗洁精中表面活性剂的日常分析色谱条件数据结果分析由于表面活性剂中包含不同碳链的非极性基团,检测中会出现多个连续峰,如AES和LAS的CAD图谱无法完全分离,但由于LAS有紫外吸收,可使用紫外检测器定量;AES无紫外吸收,使用CAD检测器定量。椰油酰胺丙基氧化胺(上)和月桂酰胺丙基甜菜碱(下)标准品CAD图谱脂肪醇聚氧乙烯醚硫酸钠(AES)和烷基苯磺酸钠(LAS)标准品CAD图谱烷基苯磺酸钠(LAS)的CAD图谱和UV(254nm)图谱 对于二者同时存在的情况,可以依据CAD响应一致性的特性,使用CAD检测器以AES为标品,计算二者的总量,再减去用紫外检测器得到LAS含量,即为AES的含量,对比使用其他方法的检测结果,无显著性差异。洗洁精实际样品的CAD和UV图 以上可知,赛默飞表面活性剂专用色谱柱Acclaim Surfactant Plus(可同时提供反相机制和阴、阳离子交换保留机制),配合DAD和CAD检测器串联使用,可以有效、准确的检测各表面活性剂成分的含量。 在对某些进口品牌的洗涤剂配方研究中我们发现,大部分产品都不同程度添加了相应的两性离子表面活性剂,使同时具有良好的乳化性和分散性,其对织物有优异的柔软平滑性和抗静电性。CAD检测器为洗涤剂类产品的配方优化和产品质量控制提供了良好的检测手段。 鸣谢:感谢和黄白猫公司的徐艳丽工程师提供的实验数据!色谱质谱明星产品前处理气相色谱离子色谱液相色谱气质联用液质联用AA/ICP/ICPMS软件 更多仪器配置和方案推荐色谱质谱全流程食品安全固废专项临床检测RoHS检测中药分析化药分析代谢组学
  • 2020版药典 | 您所关注的中药元素形态分析全在这里
    01什么是元素形态?元素形态通常是指某种元素在实际样品中的不同物理-化学形态,其中化学形态是指元素在该样品中的氧化还原形态(如:三价砷、五价砷),金属有机物形态(如:甲基汞),生物分子形态(如硒蛋白)等。元素形态分析为超痕量分析,需要灵敏度高、检出限低的分析方法。同时要求在样品制备和分析过程中必须尽可能避免样品中原来存在的形态平衡的破坏和变动。 不同砷形态结构(点击查看大图) 02中药为什么要检测元素形态?元素的不同形态具有不同的物理化学性质和生物活性,例如无机砷的毒性很大,有机砷的毒性较小或者基本没有毒性;甲基汞毒性较大,但无机汞却相反,毒性相对比较小。此外,六价铬对健康有很大的危害,可导致多器官功能衰竭和发生肠道肿瘤,但是三价铬却是机体中的葡萄糖耐量因子的重要组成部分,被认为适量有益健康。元素形态及其价态的分析对于评价不同形态价态元素的生物功能与毒理作用有非常重要的影响。目前形态分析已经成为分析科学领域的一个重要分支。 历史上最严重的的汞中毒事件—1953 年日本水俣病事件2012 年中国问题胶囊事件 03中药形态分析标准和法规世界各国对于毒性元素的价态,特别是无机砷、甲基汞、六价铬的价态均有明确的限量规定。美国药典通则232中明确规定注射剂砷、汞的限量以无机砷、无机汞来计算。2015版《中国药典》首次制定了通则《2322元素形态及其价态测定法》,新增汞元素形态及其价态测定法以及砷元素形态及其价态测定法。方法确定了分析3种价态汞和6种价态砷的色谱条件。通则 《0412 电感耦合等离子体质谱法》增订了第6点,高效液相色谱-电感耦合等离子体质谱法(HPLC-ICP-MS)。2020版药典对通则2322进行了修订和完善,进一步规范了矿物药及其制剂和动、植物类中药(除甲类、毛发类)的前处理方法。 04中药汞、砷元素形态及价态样品前处理方法2020版药典调整了《2322汞和砷元素形态及其价态测定法》中的部分文字描述;针对矿物药及其制剂和动、植物类中药(除甲类、毛发类)的供试品溶液制备方案给出了较为清晰明确的前处理过程,如下表格所列:表 矿物药及制剂前处理方法(点击查看大图)表 动、植物类中药前处理方法(点击查看大图) 赛默飞元素形态分析全面解决方案 应用实例:砷形态及价态分析采用赛默飞AS7 (4.0*250mm)阴离子交换柱,可实现六种砷有效分离。其中砷胆碱(AsC)和砷甜菜碱(AsB)分离度为1.65,砷甜菜碱(AsB)和亚砷酸根(As3+)分离度为4.55,完全符合药典规定的砷胆碱、砷甜菜碱、亚砷酸根分离度应不小于1的规定。图 砷形态及价态分离色谱图(点击查看大图) 应用实例:汞形态及价态分析采用赛默飞Acclaim 120 C18 色谱柱可以有效实现无机汞、甲基汞、乙基汞的分离。汞 图 汞形态及价态分离色谱图(点击查看大图) 更多元素形态分析案例详见赛默飞ICPMS联用解决方案 扫描以上二维码填写表单后立刻下载方案 应用特点(点击查看大图) 总结赛默飞拥有完整的色谱、质谱、微量元素解决方案,卓越的仪器性能能够有效的满足中药材生产企业检测的全部需求,助力药企达到质量控制的先进水平,实现质量源于设计的理念。
  • 食品中元素形态分析解决方案
    元素的不同存在形态下具有不同的物理化学性质和生物活性,决定了其在环境中表现出不同的毒性和生物效应,如:无机砷化合物的毒性比较大,有机砷化合物的毒性较小或者基本没有毒性。痕(微)量元素的化学形态信息在环境科学、生物医学、中医医学、食品科学、营养学、微量元素医学以及商品中有毒元素限量新标准等研究领域中起着非常重要的作用。 国家新近实施了两个国标GB 5009.11-2014(食品中总砷及无机砷的测定)和GB 5009.17-2014(食品中总汞及有机汞的测定)分别规定了食品中无机砷和有机汞的检测方法。针对两个标准,安谱推出食品中形态分析解决方案,分别采用安谱的阴离子交换色谱柱和C18色谱柱检测食品中的无机砷和有机汞,各组分峰型完美、分离度良好、稳定性高,完全符合国标的检测要求。一、砷形态分析(对应标准GB 5009.11-2014) 样品前处理:可参考国标GB 5009.11-2014 分析方法:(1) LC-AFS法: 仪器:液相色谱-原子荧光联用仪(SA-20,吉天仪器) 色谱柱:CNWSep AX 阴离子交换色谱柱,250mm x 4.0mm,10μ m(LAEQ-4025G7) 保护柱:CNWSep AX 保护柱,5.0×4.0mm,10μ m LBEQ-4005G7K) 流动相:15mmol/L磷酸二氢铵; 流速:1mL/min; 柱温:30℃; 进样量:100ul(100ppb) 谱图: 实验数据:峰号组分名保留时间(min)峰高(mV)面积(mV*s)含量(%)分离度1As(III)2.6321067.742593038.592DMA3.971356.2217407.119.71.00593MMA5.339552.2253954.823.010.92564As(V)12.604286.1206314.718.694.0549(2) LC-ICP-MS法 色谱柱:CNWSep AX 阴离子交换色谱柱,250mm x 4.0mm,10μ m(LAEQ-4025G7) 保护柱:CNWSep AX 保护柱,5.0×4.0mm,10μ m(LBEQ-4005G7K) 流动相:(含10mmol/L无水乙酸钠、3mmol/L硝酸钾、10mmol/L磷酸二氢钠、0.2mmol/L乙二胺四乙酸二钠的缓冲溶液,氨水调节 pH=10):无水乙醇 99:1 流速:1ml/min 柱温:30℃ 进样量:50 ul 实验数据:序号组分名样品测定值 (青口贝)加标值)加标测得值回收率1As(III)12.110ppb21.698%2DMAND9.797%3MMAND9.595%4As(V)ND10.1101%二、汞形态分析(对应标准GB 5009.17-2014) 样品前处理:可参考国标GB 5009.17-2014 分析条件: 仪器:液相色谱-原子荧光联用仪(SA-20,吉天仪器) 分析柱:C18分析柱 250mm x 4.6mm,5μ m(LAEQ-462571) 保护柱:C18保护柱4×20mm,5μ m(LBEQ-400271K) 流动相:5%甲醇+0.06mol/L乙酸铵+0.1%L-半胱氨酸 流速:1ml/min 进样量:100ul 谱图: 实验数据:序号组分名样品测定值 (鱼)加标值)加标测得值回收率1Hg2+0.16ppb5.285%2MeHg311102.6%3EtHgND5.378.8% ND:未检出 相关耗材:货号名称规格价格(元)LAEQ-4025G7CNWSep AX 阴离子交换色谱柱250mm x 4.0mm,10um,100A6990LBEQ-4005G7KCNWSep AX 保护柱套装1个柱套+2个柱芯,5.0×4.0mm,10μm1990LAEQ-462571Athena C18液相色谱柱250mm x 4.6mm,5um2247LBEQ-400271KAthena C18保护柱套装1个柱套+1个柱芯,4×20mm,5μm1100 SGEQ-C40055微波消解内罐适配CEM Mars6 Xpress,55mL微波消解罐,TFM罐体,PFA盖子,TFM垫片3000SGEQ-C24110微波消解内罐适配CEM Mars6 Xpress,110mL微波消解罐,TFM罐体,PFA盖子,TFM垫片4000SGEQ-C12100-V微波消解内罐适配CEM Mars5 OMNI Mars5 EasyPrep Mars6 EasyPrep,100mL微波消解罐,TFM罐体3000CFGG-060033-26-01砷(As5+)ICP-MS标准溶液1000mg/L溶于H2O,100mL750CFGG-060033-34-01砷(As5+)ICP-MS标准溶液100mg/L溶于H2O,100mL675CFGG-060033-08-01 砷(As3+)ICP-MS标准溶液1000mg/L溶于2% HCl,100mL650CFGG-060033-31-01 砷(As3+)ICP-MS标准溶液1000mg/L溶于2% NaOH,100mL700CFGG-060080-02-01 汞(Hg)ICP-MS标准溶液1000mg/L±0.3%溶于2% HNO3,100mL450CDGG-030355-02 氯化甲基汞标准品 1000 mg/L于丙酮, 1 ml666CDGG-130413-01-1ml 氯化甲基汞和氯化乙基汞混标1000 mg/l于甲苯,1ml1050CFEQ-4-430525-0100L-半胱氨酸≥98.0%,100g850CFEQ-4-120022-0100 (易制爆)硼氢化钾,98%,还原剂,for AAS100g640SBEQ-CA0854CNWBOND HC-C18 SPE 小柱500mg, 6mL/30 个/盒520CFEQ-4-120123-0250 优级纯磷酸二氢铵, ≥98.0%250g400CFEQ-4-110040-2501优级纯硝酸,≥65% ,金属元素杂质ppm级别2.5L380CAEQ-4-013456-0250 HPLC级氨水,氢氧化铵,≥25%(NH3)250ml380CFEQ-4-198528-0500优级纯无水乙酸钠,≥99.0%500g420CAEQ-4-012929-0100 HPLC级磷酸二氢钠二水化合物,≥99.0%100g335CFEQ-4-120095-0100 优级纯乙二胺四乙酸二钠盐二水合物,EDTA二钠盐(ACS),99.0-101.0%100g210CAEQ-4-011518-4000 HPLC级正己烷, 95%4L490CAEQ-4-016362-4000 HPLC级乙醇,ethanol absolut4L525特别推荐: 吉天仪器-SA系列液相色谱-原子荧光联用仪(原子荧光形态分析仪)仪器特点: 独创的紫外消解技术,无需氧化剂 多功能的数据工作站,简单易学 先进的气液分离技术(专利),高效的除水率 可配置自动进样器可检测元素形态元素定性定量检测定性半定量检测定性检测砷砷酸盐[As(V)]、亚砷酸盐[As(III)]、一甲基砷酸[MMA(V)]、二甲基砷酸[DMA(V)]、砷甜菜碱(AsB)、砷胆碱(AsC)、饲料中的有机砷制剂(阿散酸p-ASA和洛克沙胂Roxarsone)一甲基亚砷酸[MMA(III)]、二甲基亚砷酸[DMA(III)]、二甲基砷酸的硫代物砷糖(AsS)汞无机汞(Hg2+)、甲基汞(MetHg)、乙基汞(EtHg)、苯机汞(PhHg)硒亚硒酸盐[Se(IV)]、硒酸盐[Se(VI)]、硒代胱氨酸(SeCys)、硒甲基硒代半胱氨酸(SeMeCys)和硒代蛋氨酸(SeMet)锑锑酸盐[Sb(V)],三价锑[Sb(III)]应用领域 食品卫生检验、环境样品检测、水样品检测、农产品检测、地质冶金检测、临床医学样品检测、药品检测、化妆品检测、土壤饲料肥料检测、纺织纤维样品检测、教育及科研。
  • 食品药监局就化妆品用乙醇等9种原料征求意见
    关于征求有关化妆品用乙醇等9种原料要求意见的函   食药监许函[2011]21号 有关单位:   为规范化妆品原料技术要求,我司组织编制了化妆品用乙醇等9种原料要求(征求意见稿)。现向社会公开征求意见,请将修改意见于2011年2月10日前反馈我司。   联 系 人:陈志蓉   电子邮件:chenzr@sfda.gov.cn   传  真:010-88373268   附件:   1.《化妆品用乙醇原料要求》(征求意见稿)和编制说明   2.《化妆品用滑石粉原料要求》(征求意见稿)和编制说明   3.《化妆品用甘油原料要求》(征求意见稿)和编制说明   4.《化妆品用DMDM乙内酰脲原料要求》(征求意见稿)和编制说明   5.《化妆品用月桂醇聚醚硫酸酯钠原料要求》(征求意见稿)和编制说明   6.《化妆品用合成熊果苷原料要求》(征求意见稿)和编制说明   7.《化妆品用聚丙烯酰胺原料要求》(征求意见稿)和编制说明   8.《化妆品用乙醇胺原料要求》(征求意见稿)和编制说明   9.《化妆品用椰油酰胺丙基甜菜碱原料要求》(征求意见稿)和编制说明   10.反馈意见表   国家食品药品监督管理局食品许可司   二〇一一年一月二十日
  • 创新产品:电化学式酶抑制法快速农残检测仪
    仪器信息网讯 7月18日,2015北京国际食品及农产品安全检测技术展览会在北京国家会议中心召开。在同期举办的“食品和农产品安全检测技术研讨会”中,来自台湾的恩莱生医科技股份有限公司王文博士给与会听众介绍了一款全新的农药残留快速检测产品。该产品仍然采用酶抑制发的原理,但与传统相比不同的是酶抑制率是通过电化学方式进行表达。恩莱生医科技股份有限公司 王文博士  该产品原理是采用双酵素反应机制,乙酰胆碱通过乙酰胆碱酶水解生成胆碱和乙酸,胆碱在胆碱氧化酶的作用下生成双氧水和甜菜碱,双氧水通过外加电位生成氧气、两个氢离子和两个负电子,通过电极产生电信号。有机磷及氨基甲酸酯类农药对乙酰胆碱酶的抑制,影响后续的反应机制,进而产生有别电信号,通过分析有别电信号与原信号的差异来进行检测结果的判定。反应原理图  传统的酶抑制率是通过目测颜色变化或通过分光光度计测定吸光度值来计算,目测颜色变化很难精确表达检测结果 而采用分光光度计测定吸光度值尽管数据相对精确,但是在仪器小型化、便携化发展趋势下有其局限性。市场上的小型化的光学式酶抑制法快速检测仪器,通常采用LED光源,但测量准确度不高。  而电化学技术相对成熟,仪器设计简单,价格低廉,灵敏度及准确性高。在仪器满足小型化的需求的同时,还能保持高准确度,检测结果可直接读数。其优势明显,可携带,准确性和再现性佳,操作简单,检测时间短,10分钟即可完成检测。安心测农药残留快速检测系统恩莱生医科技股份有限公司展位编辑:孙立桐
  • 省时省气│形态砷与形态汞,您可以同时测!
    导读 对于从事砷元素形态和汞元素形态分析的小伙伴们来说,更换色谱柱更换流动相是一项令人烦躁的存在,总想一劳永逸。然而,砷元素和汞元素化学形态多、性质差异大,通常需要独立的分离条件才能实现各自准确的定量。定量两个元素多种形态,耗费时间长,仪器运行成本高,员工期盼下班早,有没有解决办法呢?这里有锦囊妙计与您分享。汞好极性攀比,砷喜离子交换自然界中常见的砷形态有亚砷酸(As(Ⅲ))、砷酸(As(Ⅴ))、一甲基砷酸(MMA)、二甲基砷酸(DMA)、砷甜菜碱(AsB)和砷胆碱(AsC)等;常见的汞形态有无机汞(iHg)、甲基汞(MeHg)和乙基汞(EtHg)。对于以上6种形态砷和3种形态汞的定量来说,HPLC-ICPMS联用是常用的分析方法,其中,LC的分离条件是关键。在现有的法规标准和文献资料里,无机汞、甲基汞和乙基汞由于具有比较明显的极性差异,分离方法多选用反相色谱原理为依据;6种形态砷由于具有一定的离子特性,以离子交换的方式来实现对它们的分离是常用的手段。以《中国药典2020版》第四部通则2322为例,形态汞分离选用的是C18柱,而形态砷分离选用的是阴离子交换色谱柱。实验希望降成本,人员期盼提效率受限于形态砷和形态汞的液相色谱分离通常需要不同的色谱柱和不同的流动相,当需要定量分析两种元素的形态时,往往需要分别测试。抛开色谱柱的消耗更换以及流动相的区别配制不说,实验耗费时间常常是最受每一位实验人员关注的,既影响了仪器运行成本,也降低了分析效率。质谱定量原省气,液相分离更省时如果在HPLC的分离部分能够实现同时对6种形态砷和3种形态汞的分离,那么分析效率和运行成本将会得到有效改善。方案选用岛津LC-20Ai高效液相色谱仪和ICPMS-2030系列电感耦合等离子体质谱仪联用系统。2017年 AnTop智能化节能ICPMS开创者奖的获得者,岛津公司ICPMS-2030系列电感耦合等离子体质谱产品通过快速匹配的高频发生器降低对氩气纯度要求、Mini炬管减少工作时氩气的流量消耗以及ECO模式待机时更低的功率和氩气损耗,综合可实现降低70%的使用成本。① 超低氩气消耗运行;② 全惰性液相系统;③ 集成软件同时实现对LC和ICPMS的控制• HPLC分离条件:形态砷、汞共用一根色谱柱,相同的流动相,在等度洗脱的条件下实现分离。HPLC分离时间10min。表1. HPLC 分析条件• ICP-MS定量条件:在总氩气消耗量为9.80L/min条件下稳定运行Mini炬管示意图您要的图我没忘,定量结果这也有元素形态的分离是大家关心的永恒问题,让我们一起看看6种形态砷和3种形态汞在一针进样的条件下分离情况如何吧:形态砷和形态汞混合标准溶液色谱图1. 砷胆碱(AsC) 2. 砷甜菜碱(AsB)3. 亚砷酸(As(Ⅲ)) 4. 无机汞(iHg)5. 二甲基砷酸(DMA) 6. 甲基汞(MeHg)7. 一甲基砷酸(MMA) 8. 乙基汞(EtHg)9. 砷酸(As(Ⅴ))基于反相色谱原理我们使用HPLC同时分离了6种形态砷和3种形态汞,使用ICPMS-2030系列测定了地表水中的6种形态砷和3种形态汞的含量,并进行加标回收率实验。表2. 环境地表水样品分析结果注:N.D.表示未检出写在最后在探索中前进,从客户需求出发。困扰您的费时费力问题,也许,联系我们,您就可以豁然开朗。形态砷与形态汞,您可以同时测定。撰稿人:钟跃汉本文内容非商业广告,仅供专业人士参考。
  • 追求卓越 助力教育发展 上海衡平携重磅产品为高博会添彩
    追求卓越 助力教育发展 上海衡平携重磅产品为高博会添彩 科教兴国,教育强国,教育的发展对一个*来说是举足轻重的。为助力高等教育发展,2020年11月8日-10日,由中国高等教育学会主办,国*励展展览有限责任公司承办的第55届中国高等教育博览会(简称“高博会”)在长沙会展中心盛大召开。作为政府、高校、企业之间协同创新和共谋发展的重要桥梁,本届高博会吸引了近1000家高等教育产业的企业前来参展。展会上,上海衡平仪器仪表厂也应邀前来,向观众展示了多款重磅产品。 上海衡平展位 上海衡平成立于1996年,是一家专注于*、生产各类实验室仪器的科技创新型企业,能为客户提供一体式解决方案。上海衡平主要经营的产品包括全自动表面张力仪、微波消解仪、*高低温恒温槽、旋转式粘度计、低温冷却液循环泵、沉降式粒度仪及各类*电子天平等。凭借着雄厚的*实力、*的产品品质及*的服务质量,上海衡平的产品得到了市场的*,深受石油化工、环境保护、*卫生、纺织印染、油漆涂料等领域用户的青睐。 此次展会上,上海衡平重点展示了DC-0506数显式低温恒温槽、Titan 6高通量密闭式微波消解/萃取工作平台两款产品。得益于上海衡平的品牌影响力,产品一经亮相便得到了新老客户的关注,参展观众也纷纷前往展台咨询。 DC-0506数显式低温恒温槽 DC-0506数显式低温恒温槽是上海衡平为恒温、生化、材料、物化等领域*的一款仪器。该设备采用单片微处理控制、自整定PID调节,仪器工作稳定*;测温单元采用的是*铂电阻(Pt100),控温*、波动度小;**的压缩机不仅制冷*,且噪声低;低温恒温槽采用整体发泡工艺,具有*的隔热性能、*减少了冷量的损失;*的循环搅拌*,保证了槽内液体在内循环中分散均匀流畅,热交换平稳。在*上,为方便搬运仪器,这款产品在两边设有折叠式把手,20L及以上系列和低于-40℃低温恒温槽则采用重型带自锁脚轮,便于移动。为了*延长仪器使用寿命,这款恒温槽*了多种保护功能,如断电保护功能、温度失控保护功能、低水位防干烧功能、防爆功能、报警功能等。 据工作人员介绍,这款仪器不仅可用于直接加热或制冷,还能作为辅助加热或制冷的温度来源, 如对反应釜、全自动合成仪器、萃取以及冷凝装置的控温。由于该仪器可以为用户提供*的、受控的、温度均匀的恒定场源,目前已经被*应用于生物工程、医*、食品、化工、冶金、化学分析、石油等领域。 Titan-6高通量密闭式微波消解/萃取工作平台 TITAN系列高通量密闭式微波消解/萃取工作平台是上海衡平集多年*经验与行业**于一体的重磅产品,可*用于实验室极端条件下的微波工作。秉承操作便捷、*、**的理念,上海衡平将仪器硬件、操作软件、监控手段、高压罐体高度融合在一起,使TITAN系列性能得到了很大的提升。 Titan-6采用了自主创新的多重*监护系统,即可从终端实时观察并监控微波腔体中的一切情况,给予操作者*角度*距离的*监控;仪器使用了*的PID控制理论,运用高性能微处理器和新传感*,实现了微波功率对温度、压力的闭环控制;该设备采用的压电晶体测压*,可隔绝测压元件与样品,避免了交叉污染;*的非脉冲微波功率自动变频控制*,提高了磁控管的微波发射效率,节能*。此外,*式宇航复合纤维材料制成的防爆外罐具备三维定向防爆*,不仅具有很强的耐压和防腐蚀性能,还有多重主被动*措施,*人员*。 历经二十多年的发展,上海衡平始终遵循“品质为先,服务至上"的企业宗旨,力求以更好的产品,更优的服务及更完善的解决方案来回报的*位用户。此次展会上,上海衡平以饱满的热情接待了来自五湖四海的新老客户,向他们展示了上海衡平的*与真诚,同时也向业界展示了公司的雄厚实力。未来,上海衡平还会继续专注于实验室仪器的研究和开发,为促进实验教学改革、提升高校实验室建设水平提供助力。
  • 《功能性饮料中维生素B12的测定 液相色谱-质谱/质谱法》等5项团体标准征求意见
    2021年2月22日,宁夏化学分析测试协会发布《功能性饮料中维生素B12的测定 液相色谱-质谱/质谱法》、《枸杞清汁(浆)中甜菜碱含量的测定 液相色谱法》、《黑(果)枸杞》、《再生活性炭负载Ce3+-TiO2光催化剂》、《再生活性炭负载纳米零价铁催化剂》5项团体标准征求意见的通知。宁夏化学分析测试协会起草组已完成五项团体标准征求意见稿的编制工作。现按照协会《团体标准制修订程序》要求,公开征求意见,希望有关单位及专家提出宝贵意见,并将征求意见表(附件)于2021年3月22日前反馈给秘书处。联系人:张小飞 电 话:13995098931E-mail:1904691657@qq.com征求意见稿:附件:团标表格-专家意见表.doc黑(果)枸杞.pdf再生活性炭负载纳米零价铁催化剂.pdf再生活性炭负载Ce3+-TiO2光催化剂-送审稿.pdf
  • 6大系列41种固定相,岛津新品ShimNex系列色谱柱重磅发布!
    津心匠造,慧启未来。岛津全新液相色谱柱ShimNex系列于2021年6月8日线上隆重发布。该款色谱柱,是岛津公司全流程研发、品控、应用开发的色谱柱产品,自此SGLC产品阵容更加壮大,服务与技术能力又上新台阶。研发初心伴随着分析测试领域日新月异的变化,液相色谱柱产品呈现多样、高效、品质统一的趋势。岛津公司顺应客户的需求,从研发、生产、品质管理、应用开发等方面,投入了近两年的时间,开发了这一款一系列包含6大系列41种固定相的ShimNex系列色谱柱。品牌概念ShimNex,传承SHIMADZU基因,蕴含岛津精心打磨的匠心品质,与岛津Nexera系列液相色谱仪一脉相承。岛津公司以精益求精的专业态度不断探索,以打造一款引领未来,更尖端更智慧的液相色谱柱为追求。同时,岛津公司也秉承一贯的“惠及客户”之宗旨,使ShimNex的性能更符合实际需求,与客户协作进取,合作共赢。适用领域该系列色谱柱应用领域广泛。可应用包括中药、化药、生物药、食品、化妆品在内的多种日常项目以及疑难项目,可以满足教育科研、医药、食品安全、环境化工、临床检验、公安司法、工业制造等领域的需求。产品阵容该系列产品包含六大系列,针对不同的项目,各具特色:n ShimNex CS C18高柱效、高保留、高分离,适合复杂组份分析n ShimNex WR 系列高惰性、耐碱柱n ShimNex UP系列规格丰富,实现方法的快速转移n ShimNex WP 系列300Å 大孔径色谱柱,适合大分子量样品分析n ShimNex HE 系列20种固定相,丰富的选择性n ShimNex 专用柱系列ShimNex S-NH2-SUG 糖类专用柱ShimNex S-NH2-TMG 甜菜碱专用柱ShimNex S-SAX-CS 硫酸软骨素钠专用柱ShimNex S-Sil-SB 大豆专用柱ShimNex S-C18-PR 经济型农残专用柱ShimNex S-C18-PAH 多环芳烃专用柱
  • 欧盟修订食品添加剂磷酸三钙的相关规定
    据欧盟网站消息,3月20日欧盟发布(EU)No 244/2013号法规,修订了(EC)No 1333/2008法规附件III中关于磷酸三钙用于婴儿以及儿童食品的规定。   最新规定如下: E341(iii) 磷酸三钙 作为P2O5的最大残留量150mg/kg,并在钙,磷与钙的限量内:氮磷比见2006/141/EC指令中的规定 所有营养物 婴儿奶粉以及较大婴儿奶粉见2006/141/EC指令中的规定 成品中以P2O5计的最大限量为1000 mg/kg见附件II中E部分13.1.3条规定 所有营养物 用于婴儿与儿童的加工类谷物食品以及儿童食品见2006/125/EC指令中的规定   新规定将自公布20天后生效。   原文链接:   http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2013:077:0003:0004:EN:PDF
  • 加拿大拟提出食品添加剂磷酸三钠用于相关食品建议
    近日,加拿大发出通报(G/SPS/N/CAN/636),加拿大卫生部公布关于准许食品添加剂磷酸三钠用于某些标准化肉类、家禽、海产和淡水产品及非标准化食品建议的信息咨询文件。加拿大卫生部收到一项提案,要求凡是已准许使用焦磷酸钠(四元磷酸钠)及/或酸式焦磷酸钠的情况下,合法批准磷酸三钠用于标准化肉类、家禽肉、海产和淡水产品及非标准化食品。磷酸三钠是一种具有不同技术功能的磷酸盐,它能代替其他已允许使用的磷酸盐产品。按磷酸二钠计算,标准化肉类、家禽及海产和淡水类动物产品内磷酸三钠的拟定最高使用标准占磷酸盐添加总量的0.5%。当磷酸三钠单独使用或与其他磷酸盐结合使用时,该最高使用标准适用于磷酸三钠。非标准化食品的使用标准拟作为一种符合良好制造规范(GMP)的使用标准。这些拟定最高使用标准与其他当前已准用于这些食品磷酸盐的法定使用标准相同。   加拿大卫生部完成了支持拟定使用食品添加剂提案所述磷酸三钠相关信息的安全评估,并确定不存在与规定使用相关的卫生或安全问题。卫生部确定申请人符合食品药品法规第B.16.002节概述的食品添加剂提案要求。因此,加拿大卫生部拟准许磷酸三钠按技术咨询文件所述合法使用。   目前该通报正在征求意见中。
  • 卫生部征集55种食品添加剂的技术必要性和安全性评价材料
    各有关单位:  根据工作安排,我部正在组织修订《食品添加剂使用标准》(GB2760-2011)。为做好标准修订工作,现征集《食品添加剂使用标准》(GB2760-2011)附录A中L-半胱氨酸盐酸盐等55种食品添加剂的技术必要性和安全性评价材料。对于上述食品添加剂品种中已无技术必要性或安全性存在问题的,我部将组织重新评估和审查,并按照《食品添加剂新品种管理办法》第十四条规定予以处理。请于2012年1月31日前按下列方式反馈意见:传真010-67711813或电子信箱gb2760@gmail.com。  附件:L-半胱氨酸盐酸盐等55种食品添加剂  二○一二年一月九日  附件:L-半胱氨酸盐酸盐等55种食品添加剂序号食品添加剂品种名称功能食品分类号食品名称最大使用量(g/kg)备注1. L-半胱氨酸盐酸盐面粉处理剂06.03.02.03发酵面制品0.06 06.08冷冻米面制品0.6以L-半胱氨酸盐酸盐计2. 2,4-二氯苯氧乙酸防腐剂04.01.01.02经表面处理的鲜水果0.01残留量≤2.0mg/kg04.02.01.02经表面处理的新鲜蔬菜0.01残留量≤2.0mg/kg3. 2-苯基苯酚钠盐防腐剂04.01.01.02经表面处理的鲜水果(仅限柑橘类)0.95残留量≤12mg/kg4. 4-苯基苯酚防腐剂04.01.01.02经表面处理的鲜水果(仅限柑橘类)1.0残留量≤12mg/kg5. 4-己基间苯二酚抗氧化剂09.01鲜水产(仅限虾类)按生产需要适量使用残留量≤1mg/kg6. 半乳甘露聚糖其他表A.2 7. 冰结构蛋白其他03.0冷冻饮品(03.04食用冰除外)按生产需要适量使用 8. 不饱和脂肪酸单甘酯乳化剂02.02水油状脂肪乳化制品10.0 9. 茶黄色素着色剂04.01.02.09装饰性果蔬按生产需要适量使用 05.02糖果按生产需要适量使用 07.02.04糕点上彩装按生产需要适量使用 14.02.03果蔬汁(肉)饮料(包括含发酵型产品等)按生产需要适量使用固体饮料按稀释倍数增加使用量14.04.02.02风味饮料(包括果味饮料、乳味、茶味、咖啡味及其他味饮料等)(仅限果味饮料)按生产需要适量使用固体饮料按稀释倍数增加使用量14.05.01茶饮料类按生产需要适量使用固体饮料按稀释倍数增加使用量15.02配制酒按生产需要适量使用 10. 茶绿色素着色剂04.01.02.09装饰性果蔬按生产需要适量使用 05.02糖果按生产需要适量使用 07.02.04糕点上彩装按生产需要适量使用 14.02.03果蔬汁(肉)饮料(包括含发酵型产品等)按生产需要适量使用固体饮料按稀释倍数增加使用量14.04.02.02风味饮料(包括果味饮料、乳味、茶味、咖啡味及其他味饮料等)(仅限果味饮料)按生产需要适量使用固体饮料按稀释倍数增加使用量14.05.01茶饮料类按生产需要适量使用固体饮料按稀释倍数增加使用量15.02配制酒按生产需要适量使用 11. 刺梧桐胶稳定剂01.01.03调制乳按生产需要适量使用 02.02水油状脂肪乳化制品按生产需要适量使用 12. 单辛酸甘油酯防腐剂06.03.02.01生湿面制品(如面条、饺子皮、馄饨皮、烧麦皮)1.0 07.02糕点1.0 07.04焙烤食品馅料及表面用挂浆(仅限豆馅)1.0 08.03.05肉灌肠类0.5 13. 多穗柯棕着色剂03.0冷冻饮品(03.04食用冰除外)0.4 05.02糖果0.4 14.04.01.01可乐型碳酸饮料1.0 15.02配制酒0.4 14. 甘草甜味剂04.01.02.08蜜饯凉果按生产需要适量使用 05.02糖果按生产需要适量使用 07.03饼干按生产需要适量使用 08.03.08肉罐头类按生产需要适量使用 12.0调味品按生产需要适量使用 14.0饮料类(14.01包装饮用水类除外)按生产需要适量使用 15. 甘草酸三钾甜味剂04.01.02.08蜜饯凉果按生产需要适量使用 05.02糖果按生产需要适量使用 07.03饼干按生产需要适量使用 08.03.08肉罐头类按生产需要适量使用 12.0调味品按生产需要适量使用 14.0饮料类(14.01包装饮用水类除外)按生产需要适量使用 16. 柑桔黄着色剂06.03.02.02生干面制品按生产需要适量使用 17. 谷氨酰胺转氨酶 稳定剂和凝固剂04.04豆制品0.25 18. 海萝胶增稠剂05.02.01胶基糖果10.0 19. 黑加仑红着色剂07.02.04糕点上彩装按生产需要适量使用 14.04.01碳酸饮料按生产需要适量使用 15.03.03果酒按生产需要适量使用 20. 红花黄着色剂03.0冷冻饮品(03.04食用冰除外)0.5 04.01.02.04水果罐头0.2 04.01.02.08蜜饯凉果0.2 04.01.02.09装饰性果蔬0.2 04.02.02.03腌渍的蔬菜0.5 04.02.02.04蔬菜罐头0.2 04.05.02.01熟制坚果与籽类(仅限油炸坚果与籽类)0.5 05.02糖果0.2 06.04.02.01八宝粥罐头0.2 06.07方便米面制品0.5 06.10粮食制品馅料0.5 07.02.04糕点上彩装0.2 08.02.02腌腊肉制品类(如:咸肉、腊肉、板鸭、中式火腿、腊肠)0.5 12.0调味品(12.01盐及代盐制品除外)0.5 14.02.03果蔬汁(肉)饮料(包括发酵型产品等)0.2固体饮料按稀释倍数增加使用量14.04.01碳酸饮料0.2 14.04.02.02风味饮料(包括果味饮料、乳味、茶味、咖啡味及其他味饮料等)(仅限果味饮料)0.2固体饮料按稀释倍数增加使用量15.02配制酒0.2 16.01果冻0.2如用于果冻粉,按冲调倍数增加使用量16.06膨化食品0.5 21. 葫芦巴胶增稠剂03.0冷冻饮品(03.04食用冰除外)0.1 05.0可可制品、巧克力和巧克力制品(包括代可可脂巧克力及制品)以及糖果0.2 06.03.01小麦粉0.3 07.0焙烤食品0.15 22. 黄蜀葵胶增稠剂03.0冷冻饮品(03.04食用冰除外)5.0 04.01.02.05果酱10.0 07.01面包10.0 07.02糕点10.0 07.03饼干10.0 23. 己二酸酸度调节剂05.02.01胶基糖果4.0 14.06固体饮料类0.01 16.01果冻0.1如用于果冻粉,按冲调倍数增加使用量24. 姜黄素着色剂02.02.01.02人造黄油及其类似制品(如黄油和人造黄油混合品)按生产需要适量使用 03.0冷冻饮品(03.04食用冰除外)0.15 04.05.02.01熟制坚果与籽类(仅限油炸坚果与籽类)按生产需要适量使用 05.0可可制品、巧克力和巧克力制品(包括代可可脂巧克力及制品)以及糖果0.01 05.02.01胶基糖果0.7 05.04装饰糖果(如工艺造型,或用于蛋糕装饰)、顶饰(非水果材料)和甜汁0.5 06.03.02.04面糊(如用于鱼和禽肉的拖面糊)、裹粉、煎炸粉0.3 06.07方便米面制品0.5 06.10粮食制品馅料按生产需要适量使用 11.05调味糖浆0.5 12.10复合调味料0.1 14.04.01碳酸饮料0.01 16.01果冻0.01如用于果冻粉,按冲调倍数增加使用量16.06膨化食品按生产需要适量使用 25. 金樱子棕着色剂07.02糕点0.9 07.04焙烤食品馅料及表面用挂浆1.0 14.04.01碳酸饮料1.0 15.02配制酒0.2 26. 酒石酸酸度调节剂表A.2 27. 聚二甲基硅氧烷被膜剂04.01.01.02经表面处理的鲜水果0.0009 04.02.01.02经表面处理的新鲜蔬菜0.0009 28. 聚乙二醇被膜剂05.03糖果和巧克力制品包衣按生产需要适量使用 29. 聚乙烯醇被膜剂05.03糖果和巧克力制品包衣18.0 30. 联苯醚(二苯醚)防腐剂04.01.01.02经表面处理的鲜水果(仅限柑橘类)3.0残留量≤12mg/kg31. 罗汉果甜苷甜味剂表A.2 32. 落葵红着色剂05.02糖果0.1 07.02.04糕点上彩装0.2 14.04.01碳酸饮料0.13 16.01果冻0.25如用于果冻粉,按冲调倍数增加使用量33. 密蒙黄着色剂05.02糖果按生产需要适量使用 07.01面包按生产需要适量使用 07.02糕点按生产需要适量使用 14.02.03果蔬汁(肉)饮料(包括发酵型产品等)按生产需要适量使用固体饮料按稀释倍数增加使用量14.04.02.02风味饮料(包括果味饮料、乳味、茶味、咖啡味及其他味饮料等)(仅限果味饮料)按生产需要适量使用固体饮料按稀释倍数增加使用量15.02配制酒按生产需要适量使用 34. 偏酒石酸酸度调节剂04.01.02.04水果罐头按生产需要适量使用 35. 桑椹红着色剂04.01.02.08.06果糕类5.0 05.02糖果2.0 14.02.03果蔬汁(肉)饮料(包括发酵型产品等)1.5固体饮料按稀释倍数增加使用量14.04.02.02风味饮料(包括果味饮料、乳味、茶味、咖啡味及其他味饮料等)(仅限果味饮料)1.5固体饮料按稀释倍数增加使用量15.03.03果酒1.5 16.01果冻5.0如用于果冻粉,按冲调倍数增加使用量36. 沙棘黄着色剂02.01.01.02氢化植物油1.0 07.02.04糕点上彩装1.5 37. 酸枣色着色剂04.02.02.03腌渍的蔬菜1.0 05.02糖果0.2 07.02糕点0.2 12.04酱油1.0 14.02.03果蔬汁(肉)饮料(包括发酵型产品等)1.0固体饮料按稀释倍数增加使用量14.04.02.02风味饮料(包括果味饮料、乳味、茶味、咖啡味及其他味饮料等)(仅限果味饮料)1.0固体饮料按稀释倍数增加使用量38. 橡子壳棕着色剂14.04.01.01可乐型碳酸饮料1.0 15.02配制酒0.3 39. 辛基苯氧聚乙烯氧基被膜剂04.01.01.02经表面处理的鲜水果0.075 04.02.01.02经表面处理的新鲜蔬菜0.075 40. 薪草提取物稳定剂和凝固剂04.04.01.01豆腐类按生产需要适量使用 41. 叶绿素铜钾盐着色剂03.0冷冻饮品(03.04食用冰除外)0.5 04.02.02.04蔬菜罐头0.5 04.04.01.06熟制豆类0.5 04.05.02加工坚果与籽类0.5 05.02糖果0.5 07.0焙烤食品0.5 14.0饮料类(14.01包装饮用水类除外)0.5固体饮料按稀释倍数增加使用量,果蔬汁(肉)饮料除外14.02.03果蔬汁(肉)饮料(包括发酵型产品等)按生产需要适量使用 15.02配制酒0.5 16.01果冻0.5如用于果冻粉,以冲调倍数增加42. 乙二胺四乙酸二钠钙抗氧化剂12.10复合调味料0.075 43. 乙萘酚防腐剂04.01.01.02经表面处理的鲜水果(仅限柑橘类)0.1残留量≤70mg/kg44. 玉米黄着色剂02.01.01.02氢化植物油5.0 05.02糖果5.0 45. 藻蓝(淡、海水)着色剂01.06干酪0.8 03.0冷冻饮品(03.04食用冰除外)0.8 05.02糖果0.8 12.09.01香辛料及粉0.8 14.02.03果蔬汁(肉)饮料(包括发酵型产品等)0.8固体饮料按稀释倍数增加使用量14.04.02.02风味饮料(包括果味饮料、乳味、茶味、咖啡味及其他味饮料等)(仅限果味饮料)0.8固体饮料按稀释倍数增加使用量16.01果冻0.8如用于果冻粉,按冲调倍数增加使用量46. 皂荚糖胶增稠剂03.01冰淇淋、雪糕类4.0 06.03.01.02专用小麦粉(如自发粉、饺子粉)4.0 12.0调味品4.0 14.0饮料类(14.01包装饮用水类除外)4.0固体饮料按冲调倍数增加使用量47. 植酸钠抗氧化剂02.01基本不含水的脂肪和油0.2 04.01.02加工水果0.2 04.02.02加工蔬菜0.2 05.04装饰糖果(如工艺造型,或用于蛋糕装饰 )、顶饰(非水果材料)和甜汁0.2 08.02.02腌腊肉制品类(如咸肉、腊肉、板鸭、中式火腿、腊肠)0.2 08.03.01酱卤肉制品类0.2 08.03.02熏、烧、烤肉类0.2 08.03.03油炸肉类0.2 08.03.04西式火腿(熏烤、烟熏、蒸煮火腿)类0.2 08.03.05肉灌肠类0.2 08.03.06发酵肉制品类0.2 09.01鲜水产(仅限虾类)按生产需要适量使用残留量≤20mg/kg11.05调味糖浆0.2 14.02.03果蔬汁(肉)饮料(包括发酵型产品等)0.2 48. 仲丁胺防腐剂04.01.01.02经表面处理的鲜水果按生产需要适量使用残留量:柑橘(果肉)≤0.005mg/kg,荔枝(果肉)≤0.009mg/kg,苹果(果肉)≤0.001mg/kg04.02.01新鲜蔬菜(仅限蒜苔和青椒)按生产需要适量使用残留量≤3mg/kg49. 花生衣红着色剂05.02糖果0.4 07.03饼干0.4 08.03.05肉灌肠类0.4 14.04.01碳酸饮料0.1 50. 甲壳素(几丁质)增稠剂、稳定剂02.01.01.02氢化植物油2.0 02.05其他油脂或油脂制品(仅限植脂末)2.0 03.0冷冻饮品03.04食用冰(除外)2.0 04.01.02.05果酱5.0 04.05.02.04坚果与籽类的泥(酱),包括花生酱等2.0 12.03醋1.0 12.10.02.01蛋黄酱、沙拉酱2.0 14.03.01.03乳酸菌饮料2.5 15.03.05啤酒和麦芽饮料0.4 51. 甲基纤维素增稠剂表A.2 52. 蓝锭果红着色剂03.0冷冻饮品(03.04食用冰除外)1.0 05.02糖果2.0 07.02糕点(07.02.04糕点上彩装除外)2.0 07.02.04糕点上彩装3.0 14.02.03果蔬汁(肉)饮料(包括发酵型产品等)1.0固体饮料按稀释倍数增加使用量14.04.02.02风味饮料(包括果味饮料、乳味、茶味、咖啡味及其他味饮料等)(仅限果味饮料)1.0固体饮料按稀释倍数增加使用量53. 天门冬酰苯丙氨酸甲酯乙酰磺胺酸甜味剂01.02.02风味发酵乳0.79 03.0冷冻饮品(03.04食用冰除外)0.68 04.01.02.04水果罐头0.35 04.01.02.05果酱0.68 04.01.02.08.01蜜饯类0.35 04.02.02.03腌渍的蔬菜0.20 05.02 糖果4.5 05.02. 01胶基糖果(仅限无糖胶基糖果)5.00 06.04.02.01八宝粥罐头0.35 11.04餐桌甜味料0.09 12.0调味品1.13 12.04酱油2.00 14.0饮料类(包装饮用水除外)0.68 54. 酸性磷酸铝钠膨松剂06.03.02.04面糊(如用于鱼和禽肉的拖面糊)、裹粉、煎炸粉 按生产需要适量使用干品中铝的残留量≤100mg/kg06.03.02.05油炸面制品按生产需要适量使用干品中铝的残留量≤100mg/kg07.0焙烤食品按生产需要适量使用干品中铝的残留量≤100mg/kg55. 液体二氧化碳(煤气化法)防腐剂14.04.01碳酸饮料类按生产需要适量使用 15.03.06其他发酵酒类(充气型)按生产需要适量使用 , , DIV0.075 43. 乙萘酚防腐剂04.01.01.02经表面处理的鲜水果(仅限柑橘类)0.1残留量≤70mg/kg44. 玉米黄着色剂02.01.01.02氢化植物油5.0 05.02糖果5.0 45. 藻蓝(淡、海水)着色剂01.06干酪0.8 03.0冷冻饮品(03.04食用冰除外)0.8 05.02糖果0.8 12.09.01香辛料及粉0.8 14.02.03果蔬汁(肉)饮料(包括发酵型产品等)0.8固体饮料按稀释倍数增加使用量14.04.02.02风味饮料(包括果味饮料、乳味、茶味、咖啡味及其他味饮料等)(仅限果味饮料)0.8固体饮料按稀释倍数增加使用量16.01果冻0.8如用于果冻粉,按冲调倍数增加使用量46. 皂荚糖胶增稠剂03.01冰淇淋、雪糕类4.0 06.03.01.02专用小麦粉(如自发粉、饺子粉)4.0 12.0调味品4.0 14.0饮料类(14.01包装饮用水类除外)4.0固体饮料按冲调倍数增加使用量47. 植酸钠抗氧化剂02.01基本不含水的脂肪和油0.2 04.01.02加工水果0.2 04.02.02加工蔬菜0.2 05.04装饰糖果(如工艺造型,或用于蛋糕装饰 )、顶饰(非水果材料)和甜汁0.2 08.02.02腌腊肉制品类(如咸肉、腊肉、板鸭、中式火腿、腊肠)0.2 08.03.01酱卤肉制品类0.2 08.03.02熏、烧、烤肉类0.2 08.03.03油炸肉类0.2 08.03.04西式火腿(熏烤、烟熏、蒸煮火腿)类0.2 08.03.05肉灌肠类0.2 08.03.06发酵肉制品类0.2 09.01鲜水产(仅限虾类)按生产需要适量使用残留量≤20mg/kg11.05调味糖浆0.2 14.02.03果蔬汁(肉)饮料(包括发酵型产品等)0.2 48. 仲丁胺防腐剂04.01.01.02经表面处理的鲜水果按生产需要适量使用残留量:柑橘(果肉)≤0.005mg/kg,荔枝(果肉)≤0.009mg/kg,苹果(果肉)≤0.001mg/kg04.02.01新鲜蔬菜(仅限蒜苔和青椒)按生产需要适量使用残留量≤3mg/kg49. 花生衣红着色剂05.02糖果0.4 07.03饼干0.4 08.03.05肉灌肠类0.4 14.04.01碳酸饮料0.1 50. 甲壳素(几丁质)增稠剂、稳定剂02.01.01.02氢化植物油2.0 02.05其他油脂或油脂制品(仅限植脂末)2.0 03.0冷冻饮品03.04食用冰(除外)2.0 04.01.02.05果酱5.0 04.05.02.04坚果与籽类的泥(酱),包括花生酱等2.0 12.03醋1.0 12.10.02.01蛋黄酱、沙拉酱2.0 14.03.01.03乳酸菌饮料2.5 15.03.05啤酒和麦芽饮料0.4 51. 甲基纤维素增稠剂表A.2 52. 蓝锭果红着色剂03.0冷冻饮品(03.04食用冰除外)1.0 05.02糖果2.0 07.02糕点(07.02.04糕点上彩装除外)2.0 07.02.04糕点上彩装3.0 14.02.03果蔬汁(肉)饮料(包括发酵型产品等)1.0固体饮料按稀释倍数增加使用量14.04.02.02风味饮料(包括果味饮料、乳味、茶味、咖啡味及其他味饮料等)(仅限果味饮料)1.0固体饮料按稀释倍数增加使用量53. 天门冬酰苯丙氨酸甲酯乙酰磺胺酸甜味剂01.02.02风味发酵乳0.79 03.0冷冻饮品(03.04食用冰除外)0.68 04.01.02.04水果罐头0.35 04.01.02.05果酱0.68 04.01.02.08.01蜜饯类0.35 04.02.02.03腌渍的蔬菜0.20 05.02 糖果4.5 05.02. 01胶基糖果(仅限无糖胶基糖果)5.00 06.04.02.01八宝粥罐头0.35 11.04餐桌甜味料0.09 12.0调味品1.13 12.04酱油2.00 14.0饮料类(包装饮用水除外)0.68 54. 酸性磷酸铝钠膨松剂06.03.02.04面糊(如用于鱼和禽肉的拖面糊)、裹粉、煎炸粉 按生产需要适量使用干品中铝的残留量≤100mg/kg06.03.02.05油炸面制品按生产需要适量使用干品中铝的残留量≤100mg/kg07.0焙烤食品按生产需要适量使用干品中铝的残留量≤100mg/kg55. 液体二氧化碳(煤气化法)防腐剂14.04.01碳酸饮料类按生产需要适量使用 15.03.06其他发酵酒类(充气型)按生产需要适量使用
  • 质检总局公布我国最新食品添加剂标准目录
    国家质检总局7月26日消息,我国最新的食品添加剂标准目录公布,详细见下表: 食品添加剂品种名称 标准名称 备注 1.食品添加剂 柠檬酸 GB 1987-2007 食品添加剂 柠檬酸   2.食品添加剂 乳酸 GB 2023-2003 食品添加剂 乳酸   3.食品添加剂 dl-酒石酸 GB 15358-2008 食品添加剂 dl-酒石酸   4.食品添加剂 L(+)-酒石酸 GB 25545-2010 食品添加剂 L(+)-酒石酸 卫生部公告2010年第19号 5.食品添加剂 L-苹果酸 GB 13737-2008 食品添加剂 L-苹果酸   6.食品添加剂 DL-苹果酸 GB 25544-2010 食品添加剂 DL-苹果酸 卫生部公告2010年第19号 7.食品添加剂 冰乙酸(冰醋酸) GB 1903-2008 食品添加剂 冰乙酸(冰醋酸)   8.食品添加剂 碳酸钾 GB 25588-2010 食品添加剂 碳酸钾 卫生部公告2010年第19号 9.食品添加剂 柠檬酸钾 GB 14889-1994 食品添加剂 柠檬酸钾   10.食品添加剂 柠檬酸钠 GB 6782-2009 食品添加剂 柠檬酸钠   11.食品添加剂 富马酸 GB 25546-2010 食品添加剂 富马酸 卫生部公告2010年第19号 12.食品添加剂 磷酸三钾 GB 25563-2010 食品添加剂 磷酸三钾 卫生部公告2010年第19号 13.食品添加剂 碳酸氢三钠(倍半碳酸钠) GB 25586-2010 食品添加剂 碳酸氢三钠(倍半碳酸钠) 卫生部公告2010年第19号 14.食品添加剂 盐酸 GB 1897-2008 食品添加剂 盐酸   15.食品添加剂 氢氧化钠 GB 5175-2008 食品添加剂 氢氧化钠   16.食品添加剂 碳酸钠 GB 1886-2008 食品添加剂 碳酸钠   17.食品添加剂 氢氧化钙 GB 25572-2010 食品添加剂 氢氧化钙 卫生部公告2010年第19号 18.食品添加剂 氢氧化钾 GB 25575-2010 食品添加剂 氢氧化钾 卫生部公告2010年第19号 19.食品添加剂 碳酸氢钾 GB 25589-2010 食品添加剂 碳酸氢钾 卫生部公告2010年第19号 20.食品添加剂 磷酸二氢钾 GB 25560-2010 食品添加剂 磷酸二氢钾 卫生部公告2010年第19号 21.食品添加剂 磷酸三钠 GB 25565-2010 食品添加剂 磷酸三钠 卫生部公告2010年第19号 22.食品添加剂 磷酸二氢钙 GB 25559-2010 食品添加剂 磷酸二氢钙 卫生部公告2010年第19号 23.食品添加剂 磷酸氢钙 GB 1889-2004食品添加剂 磷酸氢钙   24.食品添加剂 焦磷酸二氢二钠 GB 25567-2010 食品添加剂 焦磷酸二氢二钠 卫生部公告2010年第19号 25.食品添加剂 焦磷酸钠 GB 25557-2010 食品添加剂 焦磷酸钠 卫生部公告2010年第19号 26.食品添加剂 乳酸钠(溶液) GB 25537-2010 食品添加剂 乳酸钠(溶液) 卫生部公告2010年第19号 27.食品添加剂 磷酸 GB 3149-2004 食品添加剂 磷酸   28.食品添加剂 六偏磷酸钠 GB 1890-2005 食品添加剂 六偏磷酸钠   29.食品添加剂 硫酸钙 GB 1892-2007 食品添加剂 硫酸钙   30.食品添加剂 乳酸钙 GB 6226-2005 食品添加剂 乳酸钙   31.食品添加剂 L-乳酸钙 GB 25555-2010 食品添加剂 L-乳酸钙 卫生部公告2010年第19号 32.食品添加剂 磷酸三钙 GB 25558-2010 食品添加剂 磷酸三钙卫生部公告2010年第19号 33.食品添加剂 柠檬酸一钠 食品添加剂 柠檬酸一钠 卫生部公告2011年第8号指定标准 34.食品添加剂 亚铁氰化钾(黄血盐钾) GB 25581-2010 食品添加剂 亚铁氰化钾(黄血盐钾) 卫生部公告2010年第19号 35.食品添加剂 二氧化硅 GB 25576-2010 食品添加剂 二氧化硅 卫生部公告2010年第19号 36.食品添加剂 硅铝酸钠 GB 25583-2010 食品添加剂 硅铝酸钠 卫生部公告2010年第19号 37.食品添加剂 滑石粉 GB 25578-2010 食品添加剂 滑石粉 卫生部公告2010年第19号 38.食品添加剂 微晶纤维素 食品添加剂 微晶纤维素 卫生部公告2011年第8号指定标准 39.食品添加剂 叔丁基-4-羟基茴香醚 GB1916-2008 食品添加剂 叔丁基-4-羟基茴香醚   40.食品添加剂 二丁基羟基甲苯(BHT) GB 1900-2010 食品添加剂 二丁基羟基甲苯(BHT) 卫生部公告2010年第19号 41.食品添加剂 没食子酸丙酯 GB 3263-2008食品添加剂 没食子酸丙酯   42.食品添加剂 茶多酚 QB 2154-1995(2009)食品添加剂 茶多酚   43.食品添加剂 植酸(肌醇六磷酸) HG 2683—1995(2007)食品添加剂 植酸(肌醇六磷酸)   44.食品添加剂 特丁基对苯二酚 GB 26403-2011食品添加剂 特丁基对苯二酚 卫生部公告2011年第7号 45.食品添加剂 甘草抗氧物 QB 2078-1995(2009)食品添加剂 甘草抗氧物   46.食品添加剂 抗坏血酸钙 GB 15809-1995食品添加剂 抗坏血酸钙   47.食品添加剂 L-抗坏血酸棕榈酸酯 GB 16314-1996食品添加剂 L-抗坏血酸棕榈酸酯 食品添加剂 抗坏血酸棕榈酸酯 卫生部公告2011年第8号指定标准 48.食品添加剂 迷迭香提取物 QB/T 2817-2006食品添加剂 迷迭香提取物   49.食品添加剂 D-异抗坏血酸钠 GB 8273-2008食品添加剂 D-异抗坏血酸钠   50.食品添加剂 D-异抗坏血酸 GB 22558-2008食品添加剂 D-异抗坏血酸   51.食品添加剂 抗坏血酸钠 GB 16313-1996食品添加剂 抗坏血酸钠   52.食品添加剂 维生素E(dl-a-醋酸生育酚) GB 14756-2010食品添加剂 维生素E(dl-a-醋酸生育酚) 卫生部公告2010年第19号 53.食品添加剂 山梨酸 GB 1905-2000食品添加剂 山梨酸   54.食品添加剂 山梨酸钾 GB 13736-2008食品添加剂 山梨酸钾   55.食品添加剂 羟基硬脂精(氧化硬脂精) 食品添加剂 羟基硬脂精(氧化硬脂精) 卫生部公告2011年第8号指定标准 56.食品添加剂 硫代二丙酸二月桂酯 食品添加剂 硫代二丙酸二月桂酯 卫生部公告2011年第8号指定标准 57.食品添加剂 连二亚硫酸钠(保险粉) GB 22215-2008食品添加剂 连二亚硫酸钠(保险粉)   58.食品添加剂 焦亚硫酸钠 GB 1893-2008食品添加剂 焦亚硫酸钠   59.食品添加剂 无水亚硫酸钠 GB 1894-2005食品添加剂 无水亚硫酸钠   60.食品添加剂 焦亚硫酸钾 GB 25570-2010 食品添加剂 焦亚硫酸钾 卫生部公告2010年第19号 61.食品添加剂 亚硫酸氢钠 GB 25590-2010 食品添加剂 亚硫酸氢钠 卫生部公告2010年第19号 62.食品添加剂 硫磺 GB 3150—2010 食品添加剂 硫磺 卫生部公告2010年第19号 63.食品添加剂 碳酸氢铵 GB 1888-2008食品添加剂 碳酸氢铵   64.食品添加剂 酒石酸氢钾 GB 25556-2010 食品添加剂 酒石酸氢钾 卫生部公告2010年第19号 65.食品添加剂 复合膨松剂 GB 25591-2010 食品添加剂 复合膨松剂 卫生部公告2010年第19号 66.食品添加剂 硫酸铝钾 GB 1895-2004食品添加剂 硫酸铝钾   67.食品添加剂 硫酸铝铵 GB 25592-2010 食品添加剂 硫酸铝铵 卫生部公告2010年第19号 68.食品添加剂 羟丙基淀粉醚 QB 1229-1991(2009)食品添加剂 羟丙基淀粉醚   69.食品添加剂 山梨糖醇液 GB 7658-2005食品添加剂 山梨糖醇液   70.食品添加剂 聚葡萄糖 GB 25541-2010 食品添加剂 聚葡萄糖 卫生部公告2010年第19号 71.食品添加剂 碳酸氢钠 GB 1887-2007食品添加剂 碳酸氢钠   72.食品添加剂 碳酸钙 GB 1898-2007食品添加剂 碳酸钙   73.食品添加剂 碳酸镁 GB 25587-2010 食品添加剂 碳酸镁 卫生部公告2010年第19号 74.食品添加剂 偶氮甲酰胺 食品添加剂 偶氮甲酰胺 卫生部公告2011年第8号指定标准 75.食品添加剂 苋菜红 GB 4479.1—2010 食品添加剂 苋菜红 卫生部公告2010年第19号 76.食品添加剂 苋菜红铝色淀 GB 4479.2-2005食品添加剂 苋菜红铝色淀   77.食品添加剂 胭脂红 GB 4480.1-2001食品添加剂 胭脂红   78.食品添加剂 胭脂红铝色淀 GB 4480.2-2001食品添加剂 胭脂红铝色淀   79.食品添加剂 柠檬黄 GB 4481.1—2010 食品添加剂 柠檬黄 卫生部公告2010年第19号 80.食品添加剂 柠檬黄铝色淀 GB 4481.2—2010 食品添加剂 柠檬黄铝色淀 卫生部公告2010年第19号 81.食品添加剂 日落黄 GB 6227.1—2010 食品添加剂 日落黄 卫生部公告2010年第19号 82.食品添加剂 日落黄铝色淀 GB 6227.2-2005食品添加剂 日落黄铝色淀   83.食品添加剂 亮蓝 GB 7655.1-2005食品添加剂 亮蓝   84.食品添加剂 亮蓝铝色淀 GB 7655.2-2005食品添加剂 亮蓝铝色淀   85.食品添加剂 新红 GB 14888.1-2010 食品添加剂 新红 卫生部公告2010年第19号 86.食品添加剂 新红铝色淀 GB 14888.2-2010 食品添加剂 新红铝色淀 卫生部公告2010年第19号 87.食品添加剂 诱惑红 GB 17511.1-2008食品添加剂 诱惑红   88.食品添加剂 诱惑红铝色淀 GB 17511.2-2008食品添加剂 诱惑红铝色淀   89.食品添加剂 赤藓红 GB 17512.1-2010 食品添加剂 赤藓红 卫生部公告2010年第19号 90.食品添加剂 赤藓红铝色淀 GB 17512.2-2010 食品添加剂 赤藓红铝色淀 卫生部公告2010年第19号 91.食品添加剂 β-胡萝卜素 GB 8821—2010 食品添加剂 β-胡萝卜素 卫生部公告2010年第19号 92.食品添加剂 天然β-胡萝卜素 QB 1414-1991(2009)食品添加剂 天然β-胡萝卜素   93.食品添加剂 甜菜红 QB/T 3791-1999(2009)食品添加剂 甜菜红   94.食品添加剂 紫胶红色素 GB 4571—1996食品添加剂 紫胶红色素   95.食品添加剂 辣椒红 GB 10783-2008食品添加剂 辣椒红   96.食品添加剂 焦糖色(亚硫酸铵法、氨法、普通法) GB 8817-2001食品添加剂 焦糖色(亚硫酸铵法、氨法、普通法)   97.食品添加剂 红米红 GB 25534-2010 食品添加剂 红米红 卫生部公告2010年第19号 98.食品添加剂 栀子黄 GB 7912-2010 食品添加剂 栀子黄 卫生部公告2010年第19号 99.食品添加剂 菊花黄 QB 3792-1999(2009)食品添加剂 菊花黄   100.食品添加剂 黑豆红 QB 3793-1999(2009)食品添加剂 黑豆红   101.食品添加剂 高粱红 GB 9993-2005食品添加剂 高粱红   102.食品添加剂 可可壳色素 GB 8818-2008食品添加剂 可可壳色素   103.食品添加剂 红曲米(粉) GB 4926-2008食品添加剂 红曲米(粉)   104.食品添加剂 红曲红 GB 15961-2005食品添加剂 红曲红   105.食品添加剂 天然苋菜红 QB 1227-1991(2009)食品添加剂 天然苋菜红   106.食品添加剂 姜黄色素 QB 1415-1991(2009)食品添加剂 姜黄色素   107.食品添加剂 叶绿素铜钠盐 GB 26406-2011 食品添加剂 叶绿素铜钠盐 卫生部公告2011年第7号 108.食品添加剂 萝卜红 GB 25536-2010 食品添加剂 萝卜红 卫生部公告2010年第19号 109.食品添加剂 二氧化钛 GB 25577-2010 食品添加剂 二氧化钛 卫生部公告2010年第19号 110.食品添加剂 蔗糖脂肪酸酯 食品添加剂 蔗糖脂肪酸酯 GB 8272-2009食品添加剂 蔗糖脂肪酸酯   食品添加剂 蔗糖脂肪酸酯(丙二醇法) GB 10617-2005食品添加剂 蔗糖脂肪酸酯(丙二醇法)   食品添加剂 蔗糖脂肪酸酯(无溶剂法) QB 2245-1996(2009)食品添加剂 蔗糖脂肪酸酯(无溶剂法)   111.食品添加剂 酪蛋白酸钠 QB/T 3800-1999(2009)食品添加剂 酪蛋白酸钠(原GB 10797-89)   112.食品添加剂 蒸馏单硬脂酸甘油酯 GB 15612-1995 食品添加剂 蒸馏单硬脂酸甘油酯   113.食品添加剂 山梨醇酐单硬脂酸酯(司盘60) GB 13481-2010 食品添加剂 山梨醇酐单硬脂酸酯(司盘60) 卫生部公告2010年第19号 114.食品添加剂 山梨醇酐单油酸酯(司盘80) GB 13482-2010 食品添加剂 山梨醇酐单油酸酯(司盘80) 卫生部公告2010年第19号 115.食品添加剂 单、双硬脂酸甘油酯 GB 1986-2007食品添加剂 单、双硬脂酸甘油酯   116.食品添加剂 辛癸酸甘油酯 QB 2396-1998(2009)食品添加剂 辛癸酸甘油酯   117.食品添加剂 聚氧乙烯木糖醇酐单硬脂酸脂 QB/T 3790-1999(2009)食品添加剂 聚氧乙烯木糖醇酐单硬脂酸脂   118.食品添加剂 木糖醇酐单硬脂酸酯 QB/T 3784-1999(2009)食品添加剂 木糖醇酐单硬脂酸酯   119.食品添加剂 改性大豆磷脂LS/T 3225-1990食品添加剂 改性大豆磷脂(原GB 12486-90)   120.食品添加剂 山梨醇酐单月桂酸酯(司盘20) GB 25551-2010 食品添加剂 山梨醇酐单月桂酸酯(司盘20) 卫生部公告2010年第19号 121.食品添加剂 山梨醇酐单棕榈酸酯(司盘40) GB 25552-2010 食品添加剂 山梨醇酐单棕榈酸酯(司盘40) 卫生部公告2010年第19号 122.食品添加剂 双乙酰酒石酸单双甘油酯 GB 25539-2010 食品添加剂 双乙酰酒石酸单双甘油酯 卫生部公告2010年第19号 123.食品添加剂 三聚甘油单硬脂酸酯 GB 13510-1992食品添加剂 三聚甘油单硬脂酸酯   124.食品添加剂 聚氧乙烯(20)山梨醇酐单硬脂酸酯(吐温60) GB 25553-2010 食品添加剂 聚氧乙烯(20)山梨醇酐单硬脂酸酯(吐温60) 卫生部公告2010年第19号 125.食品添加剂 聚氧乙烯(20)山梨醇酐单油酸酯(吐温80) GB 25554-2010 食品添加剂 聚氧乙烯(20)山梨醇酐单油酸酯(吐温80) 卫生部公告2010年第19号 126.食品添加剂 果胶 GB 25533-2010 食品添加剂 果胶 卫生部公告2010年第19号 127.食品添加剂 卡拉胶 GB 15044-2009食品添加剂 卡拉胶   128.食品添加剂 藻酸丙二醇酯 GB 10616-2004食品添加剂 藻酸丙二醇酯   129.食品添加剂 松香甘油酯和氢化松香甘油酯 GB 10287-1988食品添加剂 松香甘油酯和氢化松香甘油酯 食品添加剂 氢化松香甘油酯 卫生部公告2011年第8号指定标准 130.食品添加剂 乳酸脂肪酸甘油酯 食品添加剂 乳酸脂肪酸甘油酯 卫生部公告2011年第8号指定标准 131.食品添加剂 乙酰化单、双甘油脂肪酸酯 食品添加剂 乙酰化单、双甘油脂肪酸酯 卫生部公告2011年第8号指定标准 132.食品添加剂 硬脂酸钙 食品添加剂 硬脂酸钙 卫生部公告2011年第8号指定标准 133.食品添加剂 硬脂酸镁 食品添加剂 硬脂酸镁 卫生部公告2011年第8号指定标准 134.食品添加剂 硬脂酰乳酸钙 食品添加剂 硬脂酰乳酸钙 卫生部公告2011年第8号指定标准135.食品添加剂 硬脂酰乳酸钠 食品添加剂 硬脂酰乳酸钠 卫生部公告2011年第8号指定标准 136.食品添加剂 丙二醇脂肪酸酯 食品添加剂 丙二醇脂肪酸酯 卫生部公告2011年第8号指定标准 137.食品添加剂 聚甘油脂肪酸酯 食品添加剂 聚甘油脂肪酸酯 卫生部公告2011年第8号指定标准 138.食品添加剂 乳糖醇 食品添加剂 乳糖醇 卫生部公告2011年第8号指定标准 139.食品添加剂 α-淀粉酶制剂 GB 8275-2009食品添加剂 α-淀粉酶制剂   140.食品添加剂 糖化酶制剂 GB 8276-2006食品添加剂 糖化酶制剂   141.食品添加剂 果胶酶制剂 QB 1502-1992(2009)食品添加剂 果胶酶制剂   142.食品添加剂 真菌α-淀粉酶 QB 2526-2001(2009)食品添加剂 真菌α-淀粉酶   143.食品添加剂 α-葡萄糖转苷酶 QB 2525-2001(2009)食品添加剂 α-葡萄糖转苷酶   144.食品添加剂 a-乙酰乳酸脱羧酶制剂 GB 20713-2006食品添加剂 a-乙酰乳酸脱羧酶制剂   145.食品添加剂 纤维素酶制剂 QB 2583-2003 纤维素酶制剂   146.食品工业用酶制剂 GB 25594-2010 食品添加剂 食品工业用酶制剂 卫生部公告2010年第19号 147.食品添加剂 5'-鸟苷酸二钠 QB/T 2846-2007食品添加剂 5'-鸟苷酸二钠   148.食品添加剂 呈味核苷酸二钠 QB/T 2845-2007食品添加剂 呈味核苷酸二钠   149.食品添加剂 甘氨酸(氨基乙酸) GB 25542-2010 食品添加剂 甘氨酸(氨基乙酸) 卫生部公告2010年第19号 150.食品添加剂 L-丙氨酸 GB 25543-2010 食品添加剂 L-丙氨酸 卫生部公告2010年第19号 151.食品用石蜡 GB 7189-1994食品用石蜡   152.食品级白油 GB 4853-2008食品级白油   153.食品添加剂 吗啉脂肪酸盐果蜡 GB12489-2010 食品添加剂 吗啉脂肪酸盐果蜡 卫生部公告2010年第19号 154.食品添加剂 紫胶(虫胶) LY 1193—1996 食品添加剂 紫胶(虫胶)   155.食品添加剂 松香季戊四醇酯 食品添加剂 松香季戊四醇酯 卫生部公告2011年第8号指定标准 156.食品添加剂 巴西棕榈蜡 食品添加剂 巴西棕榈蜡 卫生部公告2011年第8号指定标准 157.食品添加剂 蜂蜡 食品添加剂 蜂蜡 卫生部公告2011年第8号指定标准 158.食品添加剂 三聚磷酸钠 GB 25566-2010 食品添加剂 三聚磷酸钠 卫生部公告2010年第19号 159.食品添加剂 磷酸氢二钾 GB 25561-2010 食品添加剂 磷酸氢二钾 卫生部公告2010年第19号 160.食品添加剂 磷酸二氢铵 GB 25569-2010 食品添加剂 磷酸二氢铵 卫生部公告2010年第19号 161.食品添加剂 磷酸氢二钠 GB 25568-2010 食品添加剂 磷酸氢二钠 卫生部公告2010年第19号 162.食品添加剂 磷酸二氢钠 GB 25564-2010 食品添加剂 磷酸二氢钠 卫生部公告2010年第19号 163.食品添加剂 L-赖氨酸盐酸盐 GB 10794-2009 食品添加剂 L-赖氨酸盐酸盐   164.食品添加剂 牛磺酸 GB 14759-2010食品添加剂 牛磺酸 卫生部公告2010年第19号 165.食品添加剂 左旋肉碱 GB 17787-1999 食品添加剂 左旋肉碱 食品添加剂 左旋肉碱 卫生部公告2011年第8号指定标准 166.食品添加剂 维生素A GB 14750-2010 食品添加剂 维生素A 卫生部公告2010年第19号 167.食品添加剂 维生素B1(盐酸硫胺) GB 14751-2010 食品添加剂 维生素B1(盐酸硫胺) 卫生部公告2010年第19号 168.食品添加剂 维生素B2(核黄素) GB 14752-2010 食品添加剂 维生素B2(核黄素) 卫生部公告2010年第19号 169.食品添加剂 维生素B6(盐酸吡哆醇) GB 14753-2010 食品添加剂 维生素B6(盐酸吡哆醇) 卫生部公告2010年第19号 170.食品添加剂 维生素C(抗坏血酸) GB 14754-2010 食品添加剂 维生素C(抗坏血酸) 卫生部公告2010年第19号 171.食品添加剂 维生素D2(麦角钙化醇) GB 14755-2010 食品添加剂 维生素D2(麦角钙化醇) 卫生部公告2010年第19号 172.食品添加剂 烟酸 GB 14757-2010 食品添加剂 烟酸 卫生部公告2010年第19号 173.食品添加剂 叶酸 GB 15570-2010 食品添加剂 叶酸 卫生部公告2010年第19号 174.食品添加剂 乳酸亚铁 GB 6781-2007 食品添加剂 乳酸亚铁   175.食品添加剂 柠檬酸钙 GB 17203-1998 食品添加剂 柠檬酸钙   176.食品添加剂 葡萄糖酸钙 GB 15571-2010食品添加剂 葡萄糖酸钙 卫生部公告2010年第19号 177.食品添加剂 生物碳酸钙 QB 1413-1999(2009)食品添加剂 生物碳酸钙   178.食品营养强化剂 煅烧钙 GB 9990-2009 食品营养强化剂 煅烧钙   179.食品添加剂 L-苏糖酸钙 GB17779-2010 食品添加剂 L-苏糖酸钙 卫生部公告2010年第19号 180.食品添加剂 乙酸钙 GB 15572-1995 食品添加剂 乙酸钙及第1号修改单   181.食品添加剂 葡萄糖酸锌 GB 8820-2010 食品添加剂 葡萄糖酸锌 卫生部公告2010年第19号 182.食品添加剂 天然维
  • 普析公司2017年03月27日至03月30日举办原子荧光形态分析仪应用及维护培训班,敬请参加,欢迎垂询
    邀 请 函____________ 先生/女士:  随着现代科学技术的不断发展,人们对分析化学的要求已不能满足于元素总浓度的测定。元素的生理活性或毒性依赖于其不同的化学形态,如甲基汞、乙基汞等有机汞化合物的毒性远大于无机汞;砷糖、砷甜菜碱等有机砷化物的毒性要远小于无机砷;而硒代蛋氨酸已经没有无机硒化物的毒性,甚至成为一种营养物质。因此,元素形态分析在食品安全、环境保护和临床检验等领域具有十分重要的意义。  为使您在今后的工作中更好地掌握和使用原子荧光形态分析仪器,提高工作效率,我公司定于2017年03月27日至03月30日举办原子荧光形态分析仪应用及维护培训班,敬请贵单位参加。培训采用理论讲解及实践操作相结合方式,突出对学员实验操作能力的培养。报到时间: 2017年03月27日下午13:00-15:00报到地点:北京市昌平区回龙观科星路43号楼培训时间: 2017年03月28日-30日培训地点: 普析公司平谷总部 (北京市平谷区距北京市内80公里)培训内容:1、原子荧光形态仪理论知识2、原子荧光形态仪操作讲解3、仪器日常维护、保养4、常见故障的排除5、上机操作及最佳测试条件选择6、应用实例分析收费标准:2360元/人汇款信息:单位名称:北京普析通用仪器有限责任公司开户银行:中国银行股份有限公司北京平谷支行;银行账号:344161842701感谢贵公司及您对普析公司的支持!祝您工作顺利!全家平安幸福! 北京普析通用仪器有限责任公司培训班报名回执表          备注:1、 请您把报名回执表认真填好后在有效时间内回传,以便会务组安排学习资料以及席位,为确保您报名无误,请您再次电话确认!2、 如果您在公司规定的报到时间内无法报到,请在备注一栏里注明具体到达日期,以便我们作出相应安排。3、 每期安排25人,额满之后收到回执我们将及时通知您安排在下次培训班学习。4、 报名截止时间为:2017年03月24日。5、 参加考核人员请提前与 于国军 联系,做好考核前的报名申请工作。 (一寸免冠照片两张及身份证复印件一份、填好考核报名表)联系人:于国军 报名咨询电话:010-69910518 /13911519606 传真:010-69910609电子邮箱:guojun.yu@pgeneral.com.cn参加培训班报名学员,请您与培训班联系人,电话确认您的报名信息已收到。具体位置(报道地点):见下图:乘车路线:1. 北京西站 乘坐 地铁7号线在 菜市口站 (焦化厂方向)下车, 站内换乘 地铁4号线大兴 线在 平安里站 (安河桥北方向)下车,站内换乘 地铁6号线, 在 南锣鼓巷站(潞城方向) 下车站内换乘地铁8号线到霍营站下车(朱辛庄方向)在E出口直行至回龙观科星路43号楼(霍营中心小学对面)。2. 北京站乘坐地铁2号线到鼓楼大街站(东直门方向)下车,站内换乘地铁8号线(朱辛庄方向)到霍营站下车(朱辛庄方向)在E出口直行至回龙观科星路43号楼(霍营中心小学对面)。3.机场到公司的路线:可乘机场快轨至东直门站,换乘地铁2号线到鼓楼大街站(东直门方向)下车,站内换乘地铁8号线(朱辛庄方向)到霍营站下车(朱辛庄方向)在E出口直行至回龙观科星路43号楼(霍营中心小学对面)。4. 北京南站乘坐 地铁4号线大兴 线在 平安里站 (安河桥北方向)下车,乘坐 地铁6号线, 在 南锣鼓巷站(潞城方向) 下车站内换乘地铁8号线到霍营站下车(朱辛庄方向)在E出口直行至回龙观科星路43号楼(霍营中心小学对面)。
  • 普析公司2017年10月23日至10月26日举办原子荧光形态分析仪应用及维护培训班,敬请参加,欢迎垂询。
    邀 请 函____________ 先生/女士:  随着现代科学技术的不断发展,人们对分析化学的要求已不能满足于元素总浓度的测定。元素的生理活性或毒性依赖于其不同的化学形态,如甲基汞、乙基汞等有机汞化合物的毒性远大于无机汞;砷糖、砷甜菜碱等有机砷化物的毒性要远小于无机砷;而硒代蛋氨酸已经没有无机硒化物的毒性,甚至成为一种营养物质。因此,元素形态分析在食品安全、环境保护和临床检验等领域具有十分重要的意义。  为使您在今后的工作中更好地掌握和使用原子荧光形态分析仪器,提高工作效率,我公司定于2017年10月23日至10月26日举办原子荧光形态分析仪应用及维护培训班,敬请贵单位参加。培训采用理论讲解及实践操作相结合方式,突出对学员实验操作能力的培养。报到时间: 2017年10月23日下午13:00-15:00报到地点:北京市昌平区回龙观科星路43号楼培训时间: 2017年10月24日-26日培训地点: 普析公司平谷总部 (北京市平谷区距北京市内80公里)培训内容:1、原子荧光形态仪理论知识2、原子荧光形态仪操作讲解3、仪器日常维护、保养4、常见故障的排除5、上机操作及最佳测试条件选择6、应用实例分析收费标准:2360元/人汇款信息:单位名称:北京普析通用仪器有限责任公司开户银行:中国银行股份有限公司北京平谷支行;银行账号:344161842701感谢贵公司及您对普析公司的支持!祝您工作顺利!全家平安幸福! 北京普析通用仪器有限责任公司     备注:1、请您把报名回执表认真填好后在有效时间内回传,以便会务组安排学习资料以及席位,为确保您报名无误,请您再次电话确认!2、 如果您在公司规定的报到时间内无法报到,请在备注一栏里注明具体到达日期,以便我们作出相应安排。3、 每期安排25人,额满之后收到回执我们将及时通知您安排在下次培训班学习。4、 报名截止时间为:2017年10月20日。5、 参加考核人员请提前与 于国军 联系,做好考核前的报名申请工作。 (一寸免冠照片两张及身份证复印件一份、填好考核报名表)联系人:于国军 报名咨询电话:010-69910518 /13911519606 传真:010-69910609电子邮箱:guojun.yu@pgeneral.com.cn参加培训班报名学员,请您与培训班联系人,电话确认您的报名信息已收到。具体位置(报道地点):见下图:乘车路线:1.北京西站 乘坐 地铁7号线在 菜市口站 (焦化厂方向)下车, 站内换乘 地铁4号线大兴 线在 平安里站 (安河桥北方向)下车,站内换乘 地铁6号线, 在 南锣鼓巷站(潞城方向) 下车站内换乘地铁8号线到霍营站下车(朱辛庄方向)在e出口直行至回龙观科星路43号楼(霍营中心小学对面)。2.北京站乘坐地铁2号线到鼓楼大街站(东直门方向)下车,站内换乘地铁8号线(朱辛庄方向)到霍营站下车(朱辛庄方向)在e出口直行至回龙观科星路43号楼(霍营中心小学对面)。3.机场到公司的路线:可乘机场快轨至东直门站,换乘地铁2号线到鼓楼大街站(东直门方向)下车,站内换乘地铁8号线(朱辛庄方向)到霍营站下车(朱辛庄方向)在e出口直行至回龙观科星路43号楼(霍营中心小学对面)。4.北京南站乘坐 地铁4号线大兴 线在 平安里站 (安河桥北方向)下车,乘坐 地铁6号线, 在 南锣鼓巷站(潞城方向) 下车站内换乘地铁8号线到霍营站下车(朱辛庄方向)在e出口直行至回龙观科星路43号楼(霍营中心小学对面)。
  • 普析公司2017年8月7日至8月10日举办原子荧光形态分析仪应用及维护培训班,敬请参加,欢迎垂询。
    邀 请 函____________ 先生/女士:  随着现代科学技术的不断发展,人们对分析化学的要求已不能满足于元素总浓度的测定。元素的生理活性或毒性依赖于其不同的化学形态,如甲基汞、乙基汞等有机汞化合物的毒性远大于无机汞;砷糖、砷甜菜碱等有机砷化物的毒性要远小于无机砷;而硒代蛋氨酸已经没有无机硒化物的毒性,甚至成为一种营养物质。因此,元素形态分析在食品安全、环境保护和临床检验等领域具有十分重要的意义。  为使您在今后的工作中更好地掌握和使用原子荧光形态分析仪器,提高工作效率,我公司定于2017年08月07日至08月10日举办原子荧光形态分析仪应用及维护培训班,敬请贵单位参加。培训采用理论讲解及实践操作相结合方式,突出对学员实验操作能力的培养。报到时间: 2017年8月7日下午13:00-15:00报到地点:北京市昌平区回龙观科星路43号楼培训时间: 2017年8月8日-10日培训地点: 普析公司平谷总部 (北京市平谷区距北京市内80公里)培训内容:1、原子荧光形态仪理论知识2、原子荧光形态仪操作讲解3、仪器日常维护、保养4、常见故障的排除5、上机操作及最佳测试条件选择6、应用实例分析收费标准:2360元/人汇款信息:单位名称:北京普析通用仪器有限责任公司开户银行:中国银行股份有限公司北京平谷支行;银行账号:344161842701感谢贵公司及您对普析公司的支持!祝您工作顺利!全家平安幸福! 北京普析通用仪器有限责任公司     备注:1、请您把报名回执表认真填好后在有效时间内回传,以便会务组安排学习资料以及席位,为确保您报名无误,请您再次电话确认!2、 如果您在公司规定的报到时间内无法报到,请在备注一栏里注明具体到达日期,以便我们作出相应安排。3、 每期安排25人,额满之后收到回执我们将及时通知您安排在下次培训班学习。4、 报名截止时间为:2017年8月7日。5、 参加考核人员请提前与 于国军 联系,做好考核前的报名申请工作。 (一寸免冠照片两张及身份证复印件一份、填好考核报名表)联系人:于国军 报名咨询电话:010-69910518 /13911519606 传真:010-69910609电子邮箱:guojun.yu@pgeneral.com.cn参加培训班报名学员,请您与培训班联系人,电话确认您的报名信息已收到。具体位置(报道地点):见下图:乘车路线:1.北京西站 乘坐 地铁7号线在 菜市口站 (焦化厂方向)下车, 站内换乘 地铁4号线大兴 线在 平安里站 (安河桥北方向)下车,站内换乘 地铁6号线, 在 南锣鼓巷站(潞城方向) 下车站内换乘地铁8号线到霍营站下车(朱辛庄方向)在e出口直行至回龙观科星路43号楼(霍营中心小学对面)。2.北京站乘坐地铁2号线到鼓楼大街站(东直门方向)下车,站内换乘地铁8号线(朱辛庄方向)到霍营站下车(朱辛庄方向)在e出口直行至回龙观科星路43号楼(霍营中心小学对面)。3.机场到公司的路线:可乘机场快轨至东直门站,换乘地铁2号线到鼓楼大街站(东直门方向)下车,站内换乘地铁8号线(朱辛庄方向)到霍营站下车(朱辛庄方向)在e出口直行至回龙观科星路43号楼(霍营中心小学对面)。4.北京南站乘坐 地铁4号线大兴 线在 平安里站 (安河桥北方向)下车,乘坐 地铁6号线, 在 南锣鼓巷站(潞城方向) 下车站内换乘地铁8号线到霍营站下车(朱辛庄方向)在e出口直行至回龙观科星路43号楼(霍营中心小学对面)。
  • 2016年12月19日普析公司原子荧光形态分析仪应用及维护培训班开班在即
    邀 请 函____________ 先生/女士:随着现代科学技术的不断发展,人们对分析化学的要求已不能满足于元素总浓度的测定。元素的生理活性或毒性依赖于其不同的化学形态,如甲基汞、乙基汞等有机汞化合物的毒性远大于无机汞;砷糖、砷甜菜碱等有机砷化物的毒性要远小于无机砷;而硒代蛋氨酸已经没有无机硒化物的毒性,甚至成为一种营养物质。因此,元素形态分析在食品安全、环境保护和临床检验等领域具有十分重要的意义。为使您在今后的工作中更好地掌握和使用原子荧光形态分析仪器,提高工作效率,我公司定于2016年12月19日至12月22日举办原子荧光形态分析仪应用及维护培训班,敬请贵单位参加。培训采用理论讲解及实践操作相结合方式,突出对学员实验操作能力的培养。 报到时间: 2016年12月19日下午13:00-15:00报到地点:北京市昌平区回龙观科星路43号楼培训时间: 2016年12月19日-22日培训地点: 普析通用公司生产基地 (北京市平谷区距北京市内80公里)培训内容:1、原子荧光形态仪理论知识2、原子荧光形态仪操作讲解3、仪器日常维护、保养4、常见故障的排除5、上机操作及最佳测试条件选择6、应用实例分析收费标准:2360元/人 汇款信息:单位名称:析致通标技术检测(北京)有限公司开户银行:中国银行股份有限公司北京平谷支行;银行账号:327256009131感谢贵公司及您对普析通用的支持!祝您工作顺利!全家平安幸福! 北京普析通用仪器有限责任公司 析致通标技术检测(北京)有限公司 培训班报名回执表 参加时间原子荧光形态培训班:2016年12月19日单位名称发票抬头□服务费 地址 邮编订单类型联系人手机电话参加人数 人费用共计付款方式□现金 □电汇产品型号附件安装时间参加人员姓名性别手机号所属部门/职务是否参加考核到京时间关注重点内容和需要解决的问题:备注:1、 请您把报名回执表认真填好后在有效时间内回传,以便会务组安排学习资料以及席位,为确保您报名无误,请您再次电话确认!2、 如果您在公司规定的报到时间内无法报到,请在备注一栏里注明具体到达日期,以便我们作出相应安排。3、 每期安排25人,额满之后收到回执我们将及时通知您安排在下次培训班学习。4、 报名截止时间为:2016年12月16日。 联系人:于国军 报名咨询电话:010-69910518 /13911519606 传真:010-69910609 电子邮箱:guojun.yu@pgeneral.com.cn 参加培训班报名学员,请您与培训班联系人,电话确认您的报名信息已收到。 具体位置(报道地点):见下图: 乘车路线:1. 北京西站 乘坐 地铁7号线在 菜市口站 (焦化厂方向)下车, 站内换乘 地铁4号线大兴 线在 平安里站 (安河桥北方向)下车,站内换乘 地铁6号线, 在 南锣鼓巷站(潞城方向) 下车站内换乘地铁8号线到霍营站下车(朱辛庄方向)在E出口直行至回龙观科星路43号楼(霍营中心小学对面)。2. 北京站乘坐地铁2号线到鼓楼大街站(东直门方向)下车,站内换乘地铁8号线(朱辛庄方向)到霍营站下车(朱辛庄方向)在E出口直行至回龙观科星路43号楼(霍营中心小学对面)。3. 机场到公司的路线:可乘机场快轨至东直门站,换乘地铁2号线到鼓楼大街站(东直门方向)下车,站内换乘地铁8号线(朱辛庄方向)到霍营站下车(朱辛庄方向)在E出口直行至回龙观科星路43号楼(霍营中心小学对面)。4. 北京南站乘坐 地铁4号线大兴 线在 平安里站 (安河桥北方向)下车,乘坐 地铁6号线, 在 南锣鼓巷站(潞城方向) 下车站内换乘地铁8号线到霍营站下车(朱辛庄方向)在E出口直行至回龙观科星路43号楼(霍营中心小学对面)。
  • 合作研究|岛津HPLC-ICPMS助力砷中毒患者尿液中砷形态研究
    导读 临床金属组学是金属组学的一个分支,主要研究尿液、血液和组织中的金属组。砷中毒的临床诊断主要依据尿中总砷的浓度,由于不同形态砷的毒性差异很大,分析尿中总砷超标的砷形态,可为精确治疗提供依据,也可用于了解砷中毒患者经二巯基丙烷钠治疗后体内砷的去向。首都医科大学附属北京朝阳医院职业病与中毒医学科是国家临床重点专科,多年来承担着中毒事件的处置工作。近期,岛津企业管理(中国)有限公司与该单位合作,利用LC20-Ai+ICPMS-2030测定了砷中毒患者经过治疗后不同时间段内尿液中不同形态和价态砷的含量分析。合作文章发表在Atomic Spectroscopy期刊上,岛津应用工程师宋晓红老师为第一作者,首都医科大学附属北京朝阳医院职业病与中毒医学科李惠玲老师为通讯作者。 砷中毒主要由砷化物引起,其中以毒性较大三氧化砷(俗称砒霜)多见,还包括二硫化砷(雄黄)、三硫化二砷(雌黄)及砷化氢等。一般经口、皮肤或伤口吸收,当体内的砷蓄积到中毒量,机体会产生一系列病理生理变化及其临床表现,临床表现为急性胃肠炎、神经系统、肝和砷功能损害等,严重者可危及生命。 (期刊截图) 砷形态分析强有力手段图1. 岛津LC-20Ai+ICPMS-2030元素形态分析联用系统• 全PEEK的泵头和管路,更好的惰性• TRM软件同时控制LC和ICPMS方法参数设置• 节约气体,提高工作效率 方法建立:文章中尝试了不同的梯度洗脱条件,优化了砷化合物的分离度和检测灵敏度。表1.和表2.分别为优化的色谱参数和梯度洗脱参数。图2.为在表1.和表2.设定的参数条件下,各砷化合物的色谱图。 表1. 色谱参数表2. 梯度洗脱参数图2. 色谱图1. 砷胆碱(AsC)+ 砷甜菜碱(AsB) 2. 二甲基砷(DMA) 3. 亚砷酸(As(Ⅲ)) 4. 一甲基砷(MMA) 5. 砷酸(As(Ⅴ)) 临床应用取服用雄黄粉后引起砷中毒患者的尿样进行尿砷形态分析,该患者随机尿检结果显示尿砷浓度6.7 µg/mL。采用二巯基丙磺酸钠治疗后,收集该患者的尿样进行尿砷浓度测定评估疗效。检测结果显示(见表3.),尿中AsC+AsB均未检出,其余形态砷在治疗过程中浓度逐渐下降,其中As(III)降低明显,至第16天未检出。第15天总砷结果显示<0.1 µg/mL,低于中毒限值。雄黄中溶于水的As(III)及As(V),进入体内后,一般认为砷在体内的简要代谢过程为:iAs(Ⅲ)→iAs(Ⅴ)→MMA(Ⅴ)→MMA(Ⅲ)→DMA(Ⅲ)→DMA(Ⅴ)→尿排出。本研究发现雄黄摄入后砷在体内代谢导致患者尿中DMA和MMA增高,明显高于健康人群。在用二巯基丙磺酸钠治疗后,As(III)被络合排出体外,其余各种形态的砷也逐渐减少。 表3. 砷中毒患者治疗后尿液测定结果(ng/mL)结论建立高效液相色谱-电感耦合等离子体质谱(LC-ICP-MS)测定尿液中形态砷含量的检测方法,用于评估总砷超标患者体内形态砷的浓度。该方法可应用于健康人尿液、接受砷剂治疗的患者尿液和其他砷中毒患者尿液中砷形态的分析 专家观点 文章通讯作者李惠玲老师表示:砷的毒性与其存在的形态密切相关,生物样品中砷形态分析需要精准可靠的联用技术和仪器设备。岛津LC-20Ai和ICPMS-2030联用完成了砷中毒患者的中毒筛查及治疗过程中尿砷形态的检测。该方法实现了尿中砷形态良好的分离,准确度、灵敏度及稳定性均满足检测的需求。
  • 深扒中国特色的“形态分析仪”
    历史总是裹挟着泥沙咆哮在纷繁的世间把真相搅得混乱,真相就在泥沙俱下的潮流中左右飘摇,沾染了人的情感后沦落为主观的历史,生活如此,科学亦如此!还好“造物主”为了使通往真理的道路不那么拥堵,选择让大部分人保持无知。这种无知保护了真相安静地立在圣洁的角落窥视这戏剧的凡尘消长浮沉。 不知从什么时候开始,无论哪个领域,凡是国人创造出异于国际的新鲜事物,都被冠以“中国特色”的名号,在那个特殊的年代“中国特色”作为一个中性词而被国人贴上了激进的标签,这无疑是个引以为傲的字眼,而近些年又是在不同的历史环境下这个字眼显得格外刺眼,很多语境下略带几分嘲讽的意味。“中国特色”、“中国制造”到底怎么了?这不应该是“穷矮搓”的代名词。今天小编不想论证什么,只是想通过讲述一台国产实验室分析仪器的前世今生,为“中国制造”发声。 在整个实验室仪器界,气态氢化物发生法原子荧光光谱仪是为数不多的具有中国自主知识产权的实验室分析仪器,可以说到目前为止原子荧光光谱仪是唯一一款可以为国产实验室分析仪器代言的大型实验室分析设备。商品化原子荧光光谱仪的诞生有其特殊的历史原因,在特定的历史环境下,这是上世纪第一代仪器人共同努力的结果。虽然那些曾经参与研发的老一辈科学家都已迟暮,有的甚至早已离我们而去,但这些前辈的研发轶事至今还被业内的后人津津乐道。而新世纪下,在这种仪器基础上发展起来的液相色谱与原子荧光联用仪既形态分析仪有着怎样的研发历程,恐怕听闻者甚少。 事情要从本世纪初说起,随着现代科学技术的迅猛发展,科技工作者发现,一种元素的生理毒理特性、生物利用度、环境行为和迁移性在很大程度上取决于它的形态,形态间差异造成了这些特性截然不同。这样仅测定体系中元素的总量已不能满足科学家们在生物、环保、临床医学、毒理学等各个研究领域的需要,研究人员迫切地需要知道元素在样品内的实际状态以及化学活性、生物活性和毒性等重要信息。以砷为例,在自然界,砷元素可以以许多不同形态的化合物存在,在空气、土壤、沉积物和水中发现的主要砷化物有三氧化二砷或亚砷酸盐(As(III))、砷酸盐(As(V))、一甲基砷酸(MMA)和二甲基砷酸(DMA);在海产品中则主要以砷甜菜碱(AsB)和砷胆碱(AsC)形式存在。另外,还有其他更复杂的砷化合物,例如砷糖(Arsenosugars)、砷脂类化合物等。不同形态的砷其毒性相差很大,如砷的无机化合物一般具有毒性,无机三价砷As(III)能与带巯基(SH)的酶生成稳定的螯合物,使得很多的酶活性降低或消失,严重干扰细胞的生物功能、结构和正常代谢;而有机砷的毒性一般比无机砷小得多,有些形态甚至几乎无毒,像一些海产品中,虽然总砷含量较高,但绝大部分都是以砷糖、砷甜菜碱等无毒形态存在,因此人吃了后并不会引起砷中毒。 那时国际上早有研究者在研究用于形态分析的各种方法,其中以冷阱法和色谱法的研究最为热门,并且均有相应的产品上市。在贸易市场方面,检测手段的落后,使得国际社会的进口标准对中国部分水产品的出口形成强大的贸易壁垒,国内出口贸易受损事件屡见不鲜。针对这些情况,清华大学张新荣教授团队率先开始着手研究液相色谱与原子光谱联用技术,用以解决样品检测中元素形态分析的难题。北京吉天仪器有限公司再得知此消息后,立即联系该研究团队,并将一台当时生产的AFS-820型原子荧光光谱仪送到张教授实验室,进行联用试验。经过一段时间的摸索,基本攻克了液相色谱与原子荧光联用接口技术的难题,2004年吉天公司开始正式上马形态分析仪项目,组建以刘霁欣博士牵头的研发队伍,欲将这种仪器商品化。经过反复的硬件调试和方法开发,于2005年10月正式推出SA-10型形态分析仪,同年被仪器信息网评为“2004-2005年仪器新产品”。至此,又一完全具有中国自主知识产权的“中国特色”形态分析仪正式登上历史舞台。不久这一仪器就在全国范围内得到实际应用,其中2006年12月12日的《科学时报》、2006年第6期《现代科学仪器》和2006年12月26日的《仪器信息网》分别报道了《北京吉天色光联用仪纠正“紫菜”错案》的信息。此时,针对这一新型仪器,吉天的应用工程师通过大量实验摸索已经开发和优化出诸多样品如海产品、饲料,血、尿等的前处理和检测方法。由于这款仪器的出色表现,于2007年不负众望勇折当年BCEIA桂冠。SA-10型形态分析仪 随后的几年中,根据检测市场的需求,吉天又先后开发出硒、汞、锑的形态分析方法,并在多个检测领域推广应用。尤其是对汞元素不同形态的检测条件的摸索,直接推动了深圳出入境检验检疫局和湖南出入境检验检疫局关于汞形态行标的制定,为我国海产品的出口检测做出重要贡献。而SA-10也经过反复改进,升级为SA-20型形态分析仪,仪器性能有了进一步提高。SA-20型形态分析仪 这款仪器的诞生无疑为当时过分依赖进口仪器而国产仪器普遍疲软的的检测市场注入了一针强心剂,中国除了制造也可以创造。当然同为一类色谱联用技术的高端仪器“液相色谱与电感耦合等离子体质谱联用仪”不得不直面形态分析仪带来的挑战。毫无疑问,与价格高昂、运行成本昂贵、操作复杂的“液质联用”仪相比,形态分析仪在中国现有的经济条件下更具备普适性,就如同当年原子荧光一样,形态分析仪的普及有着它独特的土壤,等到“春暖花开时”必定会红遍大江南北。 现在,这股春风来了!随着食品中砷汞检测新国标的正式实施,形态分析仪这个国产仪器的宠儿再一次被推到了风口浪尖。只不过这次不再是吉天来唱独角戏,而是整个原子荧光厂商的联袂演出。我们可喜的看到经过众多国内仪器人的努力,国产仪器的整体实力有了飞跃式的发展,当下的时代再不是“唯进口论”的时代,为国产仪器而发声的呼吁越来越多。这场大戏刚一开锣,舞台上的群演们就按捺不住,吵得沸反盈天,煞有群猴大闹凌霄殿的气势,个个誓要在猴年把这猴戏唱到底,殊不知这闹得天宫的只有那吉天大圣一人,我们暂且不评论这场开年大戏,先来看看这佛祖的经文上写了什么。 此次国标GB 5009.11当中将2003版的GB/T 5009.11“食品中总砷及无机砷的测定”这一标准名称改为“食品安全国家标准 食品中总砷及无机砷的测定”,仔细辨认标准号少了一个T,这意味着 “砷标”从此由推荐标准升级为强制标准,既然上升到国家食品安全的高度那么无机砷由过去的总砷超标才检测变为必须检测,这对检测人员的职业技能是个不小的考验。取消了总砷测定的砷斑法及硼氢化物还原比色法,取消了食品中无机砷测定的原子荧光和银盐法。毫无疑问,手工方法一直存在着操作繁琐,重现性差的缺陷,此次被取消意料之内。增加了食品中总砷测定的电感耦合等离子体质谱法;增加了食品中无机砷测定的液相色谱与原子荧光光谱法和液相色谱与电感耦合等离子体质谱法。那么重点来了,ICP-MS被作为总砷检测的第一方法,意味着这一国际上常用的方法,逐渐被国内所接受,在未来将会对原子荧光产生不小的冲击。今天主扒形态分析仪,总砷的测定方法暂不展开论述。而无机砷的检测的第一方法被规定为液相色谱与原子荧光联用法,这是各原子荧光厂家为之躁动的主要原因,为什么不将液相色谱与ICP-MS联用的方法作为第一方法而选了液相与荧光联用作为第一方法,小编猜测除了ICP-MS操作繁琐,运行成本高,现阶段不利于推广外,还与它本身原理上存在的问题会对砷信号产生影响有关。从总体上看“液相色谱与原子荧光光谱联用”这一标准方法前处理相对简单,对于含油脂脂肪和大分子蛋白质的样品专门设计了样品净化的过程,可降低色谱柱的损耗。当然作为一类针对性强的标准,也存在部分不足。比如标准中只列出了稻米样品、水产动物样品和婴幼儿辅助食品三类样品的提取方法,而对于广泛食用的植物性水产品没有给出相应提取方法。所有样品均用稀酸浸泡过夜,虽然提高了提取率,但是也延长了检测周期。对于动物性水产品洗脱采用梯度程序,提高了无机砷与有机砷的分离效果,但是流动相平衡时间较长,检测一个样品所用时间为32分钟,那么做一条7个点的标准曲线就需要将近4个小时,同时还要消耗掉大量的反应试剂,这不利于样品的大量检测。另外,整个标准缺乏相应的编制说明或指导性文件,没有向操作者解释条件选择优化的过程和机理以及遇到问题后的解决对策。吉天拥有成熟的应用案例,可在两小时内完成样品的提取,并且可以在等度条件下完成动植物水产品的检测,提高检测效率。 另一个备受关注的国标GB 5009.17将2003版的GB/T5009.17“食品中总汞及无机汞的测定”改为“食品国家安全标准 食品中总汞及无机汞的测定”,这也意味着“汞标”同样成为食品安全标准而被强制推行。取消了总汞测定的二硫腙比色法,有机汞测定的气象色谱法和冷原子吸收法,和“砷标”类似手工检测方法存在重现性差的缺陷,而气象色谱法和冷原子吸收法的检出限和灵敏度均不及原子荧光光谱法。增加了甲基汞测定的液相色谱-原子荧光光谱法(LC-AFS),并作为甲基汞检测的第一法被写入该标准。这同样为形态分析仪的全面爆发,吹响了号角。从整体上看,甲基汞的检测方法与吉天早期摸索的方法类似,均是将样品经酸提取后,用C18反相柱分离,分离液再经紫外消解将有机汞转化为易于氢化物发生的无机汞,然后被原子荧光检测。这一方法分离效果佳,检测速度快,但是也存在一些不足,比如标准中对样液的pH 范围的规定太宽泛,2-7的范围足以影响到样品中目标组分的电离度,进而影响样品极性,造成甲基汞在反相柱中的分离状况出现差异。另外标准溶液以流动相定容,这又与样品pH不一致,造成两个基体间存在差异。150mm的色谱柱虽然能将无机汞和甲基汞分离,但是分离效果不佳,如果改用250mm的色谱柱分离效果会更好。吉天自主研发的恒温混悬离心集成系统,可在短时间内完成样品的提取,无需浸泡过夜,超高效的紫外消解装置,不需要通入辅助氧化剂,简化了管路,减小柱后扩散的风险。 以上是关于食品新国标的简单分析,不难看出吉天的形态分析仪足以满足国标方法的要求,而吉天长期摸索的检测方法,又是对国标方法的补充,既可以满足广大用户对国标方法的需求,又可以适应不同类型用户对特殊方法的需求。 这次食品国标对“液相色谱与原子荧光光谱联用”技术的肯定,将为形态分析仪带来新一轮的采购热潮,连锁反应下又会带动仪器生产、销售以及终端检测甚至技能培训环节的快速增长,这对国产仪器扩大影响力是个很好的契机,我们呼吁各位仪器界同仁在赚得盆满钵满的同时,认真思考国产仪器的未来,积极探索国产仪器突围的新道路,相信通过各界关心国产仪器同仁们的努力,国产仪器真正与进口仪器分庭抗衡公平竞争的时代指日可期。
  • DX系列比表面积仪-正极材料磷酸铁锂比表面积测试
    在动力电池界,三元锂和磷酸铁锂是最常用的两种锂离子电池。三元锂电池因为其正极材料中的镍钴铝或镍钴锰而得名“三元”,而磷酸铁锂电池的正极材料为磷酸铁锂。由于三元锂电池当中的钴元素是一种战略金属,全球的供应价格连年来一路飙升,相较之下,磷酸铁锂电池中没有钴这种价格昂贵的金属,更加便宜。因此,更多的造车企业采用磷酸铁锂电池来降低生产成本,抢占市场份额。在过去的2021年,磷酸铁锂凭借高性价比优势成为市场选择的宠儿,主流材料生产企业大多实现扭亏为盈,而下游动力方面需求的强劲支撑也使其在年末阶段面对高价的碳酸锂原料依然积极扫货。2022年1月国内磷酸铁锂产量为5.91万吨,同比增长158.9%,环比小幅提升3.3%。2021年1-12月国内动力电池装机量达到154.5Gwh,同比增长142.8%,其中磷酸铁锂电池在7月实现对三元电池产量与装机量的双重超越后,领先优势不断扩大,1-12月累计装机量达到79.8Gwh,占比51.7%,同比增幅达到227.4%,其中宁德时代、比亚迪和国轩高科分列磷酸铁锂电池装机前三甲,CR3集中度超过85%。从生产企业来看,德方纳米凭借稳定的客户渠道和产能优势,全年产量继续领跑;国轩高科在储能和自行车领域开疆拓土,自产铁锂需求稳健,紧随其后;湖南裕能、贝特瑞、湖北万润是市场供应的坚实后盾。考虑到未来全球动力电池与储能电池需求,预计2025年全球磷酸铁锂正极材料需求约为98万吨,对应市场规模约为280亿元。伴随着宁德时代年产8万吨磷酸铁锂投资项目签署,磷酸铁锂新一轮周期即将来临。大规模的量产也必将刺激比表面积分析仪的市场需求。众所周知,比表面积分析仪在锂离子电池行业有着广泛的应用需求,主要应用于正极材料、三元前驱体材料、负极材料、隔膜涂覆用氧化铝等材料的比表面积测试。比表面积过大的石墨粉在粉碎过程中更易于使其晶型结构发生改变,小颗粒石墨粉中菱形晶数量相对较多,而菱方结构的石墨具有较小的储锂容量,使电池的充放电容量有所降低。另外比表面积过大,单位重量总表面积就会很大,需要的包覆材料越多,导致电极材料的堆积密度减小而体积能量密度下降。如果能准确的对各种原材料进行比表面积测试,在一定程度上有助于研判后续产品的性能。磷酸铁锂作为动力电池的正极材料,其比表面积与电池的性能密切相关。通常情况下,磷酸铁锂的比表面积与碳含量呈线性关系。生产中有比表面积测试仪进行测试。比表面积太小,说明材料的碳包覆量不够,直接体现是电池内阻偏高、循环性能不好。比表面积过大,说明材料的碳包覆量过高,直接的体现是材料的电化学性能极好,但易团聚、极片加工困难,且涂布不均匀等。行业标准《YS/T1027-2015磷酸铁锂》明确规定了磷酸铁锂比表面积测试方法及流程。快速高效、精确规范的测试离不开性能优良的测试仪器,JW-DX系列快速比表面积测试仪,测试方法及数据符合《YS/T 1027-2015磷酸铁锂》的要求。JW-DX比表面积测试仪采用专利号为20140320453.2的吸附法专利测试,完全避免了常温下样品脱附不完全带来的测试误差,非常适合粉体生产厂家的在线快速测定。测试范围:比表面测试范围:0.0001m2/g,重复精度:±1%产品特性:1、测试速度快,5分钟测试一个样品;2、吸附峰的峰形尖锐,灵敏度大幅提高;3、独立4个分析站,实现了多样品的无干扰、无差异测试;4、外置式4站真空脱气机,避免污染测试单元。
  • FJA-2型自动滴定仪测定食品添加剂磷酸氢二钠
    FJA-2型微机控制自动滴定系统测定食品添加剂磷酸氢二钠 方建安 张振兴 (南京传滴仪器设备有限公司、徐州天嘉食用化工有限公司) 徐州天嘉食用化工有限公司携带样品与有关分析试剂前来我公司,利用FJA-2 型微机控制自动滴定系统对磷酸氢二钠含量的测定,对多个样品的测试结果表明,电位滴定法测定磷酸氢二钠含量,具有较高的灵敏度与好的测定精度,滴定图谱清晰。现将测试结果报告如下,供能考。 (一)磷酸氢二钠测定方法与结果 用天平称取样品溶液零点几克,精确到0.001g(视样品含量不同而不同)于100ml烧杯中,加c1mol/L盐酸10ml,加50 ml蒸馏水,待样品溶解后,以PH复合电极为指示电极,用NaOH[C(NaOH)=0.9795mol/L]为滴定剂,在FJA-2微机控制自动滴定系统上进行自动滴定,叁个样品测量结果如下表。滴定曲线如图所示。 测量次数 样品号 样重(克) 滴定剂体积 终点1 (ml) 滴定剂体积 终点2(ml) 磷酸氢二钠含量 (%) NaN2 0.516 6.265 9.894 97.82 NaN2 0.526 6.047 9.750 97.92 NaN2 0.652 5.405 9.987 97.75 计算 磷酸氢二钠%=[C (V2-V1) 0.1420 100]/m 式中: C&mdash &mdash NaOH滴定剂的摩尔浓度; V&mdash &mdash 滴定剂NaOH的耗用量(ml); m&mdash &mdash 试样重量; 0.1420&mdash &mdash 为磷酸氢二钠的毫摩尔质量。 (二)讨论 1、上述是连续3次测定结果,可以看出,几次测定结果的最大值减最小值的绝对差值都在于0.2% 以内。最后一个图谱为体积对pH滴定曲线。 2、为了保证测定的精度要注意下面几个重要环节: (1)、正确配置NaOH溶液也是控制滴定的精度的一个重要因素。要点是要用饱和NaOH溶液来配制滴定剂,不要固体称重来配制;要用新的去离子水(电导值小于5µ S)来配制滴定剂;滴定剂瓶上要装吸收二氧化碳的过滤器等。 (2)、pH复合电极要靠滴定池边,磁力搅拌要平稳,不要太剧烈,以防样液的损失。 参考文献 【1】 斯维拉。G著,高立译。自动电位滴定。北京。原子能出版社。1985 【2】 方建安,夏 权编著。电化学分析仪器。南京,东南大学出版社,1992 【3】 方建安,影响电位滴定精度的几个问题,分析仪器,(4),1993 【4】 方建安,方 晖等,一种微机控制的自动光度滴定系统,分析化学,(10)24,1233,1996
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制