当前位置: 仪器信息网 > 行业主题 > >

苄基四氮唑

仪器信息网苄基四氮唑专题为您提供2024年最新苄基四氮唑价格报价、厂家品牌的相关信息, 包括苄基四氮唑参数、型号等,不管是国产,还是进口品牌的苄基四氮唑您都可以在这里找到。 除此之外,仪器信息网还免费为您整合苄基四氮唑相关的耗材配件、试剂标物,还有苄基四氮唑相关的最新资讯、资料,以及苄基四氮唑相关的解决方案。

苄基四氮唑相关的资讯

  • 基因编辑10大公司榜单
    p /p p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/201808/uepic/8bc7001e-94f6-4c02-8845-6af9a4efc65c.jpg" title=" 1.jpg" alt=" 1.jpg" / /p p style=" text-align: justify " & nbsp & nbsp 前段时间,CRISPR的负面新闻可谓是此消彼长,就在上个月,Wellcome Sanger研究所的科学家报告CRISPR诱导的基因重排,对CRISPR-Cas9基因编辑的精确性提出质疑,三家专注该技术的上市公司股价瞬间由云端跌入谷底,3月9日至8月20日期间: /p p style=" text-align: justify " § CRISPR Therapeutics在7月27日从56.72美元跌至47.01美元,然后回归48.92美元。 /p p style=" text-align: justify " § Editas Medicine在8月8日从44.08美元跌至27.65美元,然后反弹至30.41美元。 /p p style=" text-align: justify " § Intellia Therpeutics在8月1日从34.95美元跌至25.78美元,然后小幅上涨至27.74美元。 /p p style=" text-align: justify " & nbsp & nbsp 尽管他们发表声明说从未使用研究中提到的方法CRISPR Therapeutics,但股价的下跌仍然在所难免。 /p p style=" text-align: justify " & nbsp & nbsp 本文详细列举了专注于开发和应用基因编辑技术十大公司的名单,张锋的公司也位列其中。其中包含五家上市公司和五家私营公司。上市公司按其2017年的收入排名,私营公司按其筹集的资本总额进行排名。每家公司最近动态的简短说明也被囊括其中。 /p p /p p style=" text-align: justify " strong 顶级上市公司 /strong /p p style=" text-align: justify " 5、Editas Medicine /p p style=" text-align: justify " 2017年收入:1372.8万美元 /p p style=" text-align: justify " & nbsp & nbsp 收入完全由合作和其他研发活动组成,比2016年增加了一倍以上,增长了近127%。这一增长其实是其合作伙伴Allergan的功劳,Allergan 在2017年3月启动的研发合作伙伴关系下,针对Editas的5个眼科疾病的早期CRISPR基因组编辑计划持有许可权,目前正在计划开发和商业化。 /p p style=" text-align: justify " 4、Intellia Therapeutics /p p style=" text-align: justify " 2017年收入:2611.7万美元 /p p style=" text-align: justify " & nbsp & nbsp 收入完全由协作收入构成,比2016年增长58.5%,这主要得益于Regeneron Pharmaceuticals授权Intellia的CRISPR-Cas基因编辑技术,根据2016年启动的合作,开发可通过编辑肝脏基因治疗的疾病治疗方法。8月1日,Intellia报告其转甲状腺素蛋白淀粉样变性(ATTR)体内计划的进展,并计划在今年晚些时候与FDA进行研究前新药会议,并在2019年底前提交IND新药临床试验申请。 /p p style=" text-align: justify " 3、Sangamo Therapeutics /p p style=" text-align: justify " 2017年收入:3656.7万美元 /p p style=" text-align: justify " & nbsp & nbsp 去年,Sangamo Therapeutics的收入几乎翻了一番,比2016年增长了近89%,这主要归功于它与辉瑞的首次合作。2017年5月,两家公司同意为血友病A开发重组腺相关病毒(AAV)基因治疗,包括SB-525。8月8日,Sangamo公布了I / II期“Alta”试验(NCT03061201)的阳性初步数据,包括治疗性因子VIII活性水平的实现。这些公司在1月份同意开发基因疗法,使用锌指蛋白转录因子进行ALS和与C9ORF72基因突变相关的额颞叶变性。 /p p style=" text-align: justify " 2、 CRISPR Therapeutics /p p style=" text-align: justify " 2017年收入:40997万美元 /p p style=" text-align: justify " & nbsp & nbsp 合作计入了CRISPR Therapeutics的所有收入,去年这一收入增长了近700%。但在5月份,该公司与Vertex制药公司合作遭遇重创,当时FDA对镰状细胞病候选人CTX001的公司IND实施临床控制,等待该机构在审查申请时提出的未公开问题的解决。在8月7日,CRISPR Therapeutics公司表示它有明确渠道来解决这一问题,并补充说,这些公司仍然有望在今年晚些时候开始进行CTX001的输血依赖性β-地中海贫血的I / II期试验。 /p p style=" text-align: justify " 1、Horizon Discovery Group /p p style=" text-align: justify " 2017年收入:3650万英镑(4653.2万美元) /p p style=" text-align: justify " & nbsp & nbsp Horizon Discovery预计将通过RNAi和CRISPR终端市场实现蓬勃发展,预计2017年至2021年之间的复合年增长率约为18%。该公司去年的收入增长了52%,并且进行了转型通过收购 GE 的 Dharmacon,赋予Horizon Discovery基因调制功能,额外收入和全球销售机会。去年年底,Horizon Discovery通过推出其CRISPR激活(CRISPRa)试剂平台增加了其Edit-R产品组合,该平台旨在实现天然基因过表达,从而实现有意义的功能。 /p p style=" text-align: justify " strong 顶级私营公司 /strong /p p style=" text-align: justify " 5、Inari Agriculture /p p style=" text-align: justify " 筹集的资金总额:5500万美元 /p p style=" text-align: justify " & nbsp & nbsp Inari Agriculture于8月9日增加了4000万美元的B轮融资,其筹资总额不到一个月,此前专注农业的CRISPR基因编辑技术开发商脱颖而出。该公司成立于2016年,现已有80多位科学家,统计学家,工程师和学术顾问。Inari表示,收益将使其能够加速技术在作物中的部署,扩大工具的开发,并增加员工。 /p p style=" text-align: justify " 4、Inscripta /p p style=" text-align: justify " 总募集资金:84.5万美元 /p p style=" text-align: justify " & nbsp & nbsp 早在2月份,Inscripta获得5550万美元的C轮融资,该资本加速了其基因编辑工具(包括仪器,试剂和软件)的开发和商业化,公司的员工也日益增加。上个月,Inscripta获得了第一个使用MAD7的美国专利,该公司的第一个免费CRISPR酶,以及使用另一种MADzyme,MAD2的系统的专利保护。Inscripta去年更名为Muse bio。 /p p style=" text-align: justify " 3、Beam Therapeutics /p p style=" text-align: justify " 筹集的资金总额:8700万美元 /p p style=" text-align: justify " & nbsp & nbsp Beam Therapeutics成立于5月,迅速成为精准基因医学开发者,其共同创始人包括CRISPR先驱张锋博士。Beam宣布自己是第一家使用CRISPR基础编辑技术开发新疗法的公司,该公司于5月14日披露,它在F-Prime Capital Partners和ARCH Venture Partners的带领下筹集了高达8700万美元的A轮融资。 /p p style=" text-align: justify " 2、Pairwise Plants /p p style=" text-align: justify " 筹集的资金总额:1.25亿美元 /p p style=" text-align: justify " & nbsp & nbsp 孟山都投资了Pairwise Plants筹集的1.25亿美元中的大部分资产,这是一家农业创业公司,致力于利用植物的自然遗传多样性开发新的基因组编辑工具。3月20日,孟山都公司表示将捐赠1亿美元用于在农作物应用中获取和开发知识产权,包括将公司合作产生的产品商业化。孟山都公司的风险投资公司Monsanto Growth Ventures加入了迪尔菲尔德管理公司,共同促成了Pairwise公司2500万美元的A轮融资。 /p p style=" text-align: justify " 1、Precision BioSciences /p p style=" text-align: justify " 筹集的资金总额:1.3565亿美元 /p p style=" text-align: justify " & nbsp & nbsp Precision BioSciences在私营基因编辑公司中名列前茅,6月26日,它由ArrowMark Partners领导认购了1.1亿美元B轮融资 ,这是上半年获得风险投资的私人生物医院的第三大融资。 Precision表示,收益将用于基于其ARCUS® 基因组编辑平台的进一步产品开发工作,该平台源自称为归巢核酸内切酶的天然基因组编辑酶。 /p p style=" text-align: justify " & nbsp & nbsp 由以上名单,我们可以看出,CRISPR绝不会因为一些负面消息而“一蹶不振”,私营公司的投资者依然相信CRISPR的广阔前景。让我们期待未来的某一天CRISPR可以“重振雄风”。 /p p br/ /p
  • 衢州打造四省边际大型仪器共享专区促共富
    衢州市科技局按照“一平台+一中心+N驿站+N专员”组织架构,构建四省边际大型仪器设备共享中心。一是探索本市大仪管理单位评价机制。依托大型仪器设备管理单位,建设N个“服务驿站”,对其制度建设、管理系统对接、设备入网共享、共享服务成效等方面开展考核。绩效评价结果作为科研仪器设备购置审核、资产管理、财政补助资金安排的重要依据。二是强化四地市协同工作机制。由衢州市科技局牵头,建立四地市联席会议机制,加强大仪共享业务对接,健全相关业务标准规范,定期研究解决工作中存在的困难和问题,推动大仪共享工作有序高效开展。二是建立即时响应机制。制作各地业务审批和技术支撑联络图,确定专职联络员,定时开展业务培训交流,提高沟通效率,落实联席会议各项工作部署。三是加快四省边际大仪共享平台建设。依托浙江省大型科研仪器开放共享平台,利用四地市大型科研仪器资源,上线“四省边际共享专区”。以大型科研仪器“闭环管理、动态监管、全流程服务”为核心,以科研人员、科技企业的创新需求为导向,强化跨地、跨部门协同,建设多跨协同场景应用,实现大型科研仪器管理“一网办”和大型科研仪器开放共享服务“一指办”。
  • 新型安全高效的单碱基编辑系统—TaC9-CBE
    近十年来,以 CRISPR 系统为代表的基因编辑技术迅猛发展,在包括农业、畜牧业和生物医药等各个领域的基础科研和应用中不断涌现出耀眼成果。2020年 CRISPR 技术因其强大的功能和影响力摘得诺贝尔化学奖。然而,随着研究的深入,其引起的 DNA 双链断裂和高脱靶效应等一系列副反应也逐渐走入人们的视野,CRISPR 技术的安全性开始备受关注。单碱基编辑技术以其高效和精确的基因编辑能力,成为目前最有希望治愈各种遗传疾病的明星工具。由 gRNA 与 Cas9-脱氨酶形成 RNP 复合物,gRNA 引导复合物结合在基因组目标位点,Cas9 负责解开 DNA 双链,并将靶向链切断,脱氨酶对非靶向单链 DNA(ssDNA)上的碱基进行脱氨,细胞修复过程中实现碱基转换。然而,单碱基编辑工具被发现具有明显的脱靶编辑效应,主要包括 Cas9 非依赖的 DNA 和 RNA 脱靶效应和 Cas9 依赖的 DNA 脱靶效应。通过对脱氨酶的修饰可大大降低蛋白对核酸链的非特异结合,从而最大限度地减少 Cas9 非依赖的脱靶效应。但由于 Cas9 蛋白本身存在的 Cas9 依赖性脱靶,人们依然对其临床应用的安全性表示担忧。尽管目前已有多种方法尝试解决这一问题,但都无法在保持目标效率的同时解决 Cas9 依赖性脱靶问题。2022年3月,中国科学院广州生物医药与健康研究院赖良学研究员与五邑大学邹庆剑副教授团队合作,首次将腺苷脱氨酶与转录激活因子样效应子(TALE)融合,开发了一种新型腺嘌呤碱基编辑系统——TaC9-ABE。该新型碱基编辑系统可以完全消除Cas9依赖性脱靶,而不影响任何靶向编辑效率。相关成果以:Elimination of Cas9-dependent off-targeting of adenine base editor by using TALE to separately guide deaminase to the target site 为题在线发表在 Cell Discovery 期刊上。TaC9-ABE单碱基编辑技术原理近日,该团队再次证实将 TALE 技术与 Cas9 技术结合起来,同样可以实现更加安全高效的胞嘧啶碱基编辑系统——TaC9-CBE。相关成果以:Eliminating predictable DNA off-target effects of cytosine base editor by using dual guiders including sgRNA and TALE 为题于在线发表在 Molecular Therapy 期刊上。TaC9-CBE单碱基编辑技术原理在 TaC9-ABE 和 TaC9-CBE 碱基编辑系统中,研究人员将脱氨酶与 nCas9 分离,脱氨酶与 TALE 连接,nCas9 与 gRNA 结合,由 TALE 和 gRNA 分别将两个效应器引导到 DNA 靶位点,同时发挥作用,实现靶位点的 A to G 或 C to T 的突变。如果 nCas9 被 gRNA 带到错误的位点,由于没有脱氨酶的存在,碱基转换就不能发生;同理,如果脱氨酶被 TALE 引导至错误的位点,由于没有 nCas9 的存在,不能形成单链 DNA,脱氨酶发挥不了作用,碱基转换也不能发生,这样就彻底地排除了发生 Cas9 依赖性脱靶的可能性。研究结果证实,TaC9-碱基编辑系统在保证高效但碱基编辑的同时,对 gRNA 依赖的脱靶位点以及 TALE 依赖的脱靶位点进行深度测序均未检测到脱靶现象。图3.各种CBE编辑器的Cas9依赖脱靶测试这项研究为基因编辑动植物的培育和人类遗传性疾病的基因治疗提供了一个安全的单碱基编辑工具。TaC9-ABE 论文中,中国科学院广州生物医药与健康研究院博士研究生刘洋和蓝婷、五邑大学周小青博士和广东工业大学博士研究生周继曾为论文共同第一作者。中国科学院广州生物医药与健康研究院赖良学研究员和五邑大学邹庆剑副教授为论文的共同通讯作者。TaC9-CBE 论文中,广东工业大学博士生周继曾、中国科学院广州生物医药与健康研究院博士生刘洋、硕士生魏愈惠和五邑大学硕士生郑淑文为论文共同第一作者。中国科学院广州生物医药与健康研究院赖良学研究员、五邑大学张焜教授和邹庆剑副教授为论文的共同通讯作者。论文链接:https://www.nature.com/articles/s41421-022-00384-4https://doi.org/10.1016/j.ymthe.2022.04.010
  • 世界首例基因编辑婴儿诞生 科学界强烈谴责
    p style=" text-indent: 2em text-align: justify " 11月26日,首例人类基因编辑婴儿诞生的消息在朋友圈刷了屏。中国科学家们转发相关消息时评论:“头一次深刻领会了细思极恐的含义”、“至少先把动物试验做扎实了,怎么能糊里糊涂对人类胚胎动手”?? /p p style=" text-indent: 2em text-align: justify " 中科院院士、清华大学生命科学学院教授孟安明说:“这项实验存在巨大的技术风险和伦理争议。”多名受访专家表示,强烈反对在人类胚胎中进行基因编辑。 /p p style=" text-indent: 2em text-align: justify " strong 技术风险未知 /strong /p p style=" text-indent: 2em text-align: justify " 据报道,南方科技大学贺建奎课题组的这项研究在类似试管婴儿的生育治疗过程中进行。比试管婴儿多出来的一个步骤便是,在胚胎处于受精卵时期时,把Cas9蛋白和特定的引导序列,用5微米、约头发二十分之一细的针注射到还处于单细胞的受精卵里。这意味着,研究人员采用了CRISPR-Cas9技术对人类胚胎中的CCR5基因进行修改,使胚胎发育成婴儿后能天然抵抗艾滋病。 /p p style=" text-indent: 2em text-align: justify " 对此,清华大学艾滋病综合研究中心主任张林琦表示:“把基因编辑技术运用在人胚胎上,是一件非常恐怖的事情。” /p p style=" text-indent: 2em text-align: justify " 脱靶是当前基因编辑技术的主要问题之一。张林琦介绍,目前,诸多动物实验表明,CRISPR-Cas9技术存在一定脱靶率,正如子弹打偏了会给人的基因造成不可修复的损伤。“不能保证100%不出错之前,是不可以用于人的。”他强调。 /p p style=" text-indent: 2em text-align: justify " 同时,孟安明指出,CCR5对人体免疫功能具有重要作用,其作为“细胞趋化因子”指导免疫细胞转移到感染部位。而目前,尚无科学实验证据表明敲除CCR5后会对人体免疫功能造成何种影响。 /p p style=" text-indent: 2em text-align: justify " 对于这项试验出于治疗艾滋病的目的,香港大学艾滋研究所所长陈志伟也批评,由于艾滋病毒的高变性,即使CCR5基因敲除,也无法完全阻断艾滋病毒感染。“HIV感染的父亲和健康的母亲,一定可以生出健康的孩子,根本无需进行CCR5编辑。”他表示。 /p p style=" text-indent: 2em text-align: justify " “接受基因编辑的都是正常的新生命,我认为这种做法是不可接受的。” 中科院植生生态研究所研究员覃重军说,“科学家们往往容易过于乐观地估计自己当前的科技水平和取得的重大研究成果。特别是很多所谓的疾病靶点,经过多年的更深入的研究后,很可能发现不是最初想象的那样。” /p p style=" text-indent: 2em text-align: justify " 他进一步指出,老百姓一般对于具体疾病的分子机理和最新生物技术缺乏了解,如果用一些很吓人的疾病和听起来很厉害的技术去游说,当然有可能说动他们接受这样的实验。这就更需要科学家坚守自己的良知,守住科学研究的底线。 /p p style=" text-indent: 2em text-align: justify " strong 伦理审查存在漏洞 /strong /p p style=" text-indent: 2em text-align: justify " 在科学家们看来,就算技术上百分之百准确,中国科学家率先“越线”进行人类基因编辑,也是一个超越技术的伦理问题,涉及人类生存和前途。 /p p style=" text-indent: 2em text-align: justify " “谁来对这两个孩子负责?”孟安明说。 /p p style=" text-indent: 2em text-align: justify " 从中国临床试验注册中心官网下载的该项目医学伦理委员会审查申请书(以下简称审查申请书)显示,该项目曾于2017年3月通过了深圳和美妇儿科医院医学伦理委员会的审查——“符合伦理规范,同意开展”。 /p p style=" text-indent: 2em text-align: justify " 贺建奎课题组还在这份审查申请书中称:“这将是超越2010年获得诺贝尔奖的体外受精技术领域的开创性研究,将为无数重大遗传性疾病的治疗带来曙光。” /p p style=" text-indent: 2em text-align: justify " 国家卫健委生命伦理专家委员会的一位委员:“这是重大的伦理问题,医院伦理委员会没有资格审查涉及人类基因这样的临床试验,应向上一级、甚至国家相关部门提交。”医院伦理委员会往往只有对简单的药物试验、手术等试验进行审查的能力和资格。 /p p style=" text-indent: 2em text-align: justify " 据原国家卫计委曾于2016年10月发布《涉及人的生物医学研究伦理审查办法》,医疗卫生机构是涉及人的生物医学研究伦理审查工作的管理责任主体。而对于医疗卫生机构伦理委员会的管理采取“备案”的形式,由地方卫生部门进行日常监督管理。《办法》尚未界定哪些试验应当向上级卫生部门提出伦理审查申请。 /p p style=" text-indent: 2em text-align: justify " 昆明理工大学灵长类转化研究院教授李天晴向《中国科学报》记者介绍,这项研究已经突破了多项规定。 /p p style=" text-indent: 2em text-align: justify " 根据国际干细胞协会2016年发布的《干细胞研究和临床转化指南》,基因组修饰的人类胚胎包括对核DNA进行工程修饰的人类胚胎,或从核DNA经过修饰的人类配子中产生的胚胎,这样的胚胎禁止植入人或动物的子宫进行研究,因为“国际上普遍认为这类实验缺乏令人信服的科学依据,引起重大的伦理问题,且在许多司法管辖区是非法的”。 /p p style=" text-indent: 2em text-align: justify " 2003年我国科技部和卫生部联合下发《人胚胎干细胞研究伦理指导原则》,其中也明确指出,不得将遗传修饰获得的人类囊胚植入人或任何其他动物的生殖系统。 /p p style=" text-indent: 2em text-align: justify " 最后,上述卫健委伦理专家委员会委员表示,当前,竞争性科研决定了科学家们的关注点在“技术上不落后”上,来不及考虑伦理问题。“这是全世界科学界共同面对的问题。”他告诉《中国科学报》记者,当前,应从程序上、制度上来加强对科学研究在伦理的把关。 /p p style=" text-indent: 2em text-align: justify " strong 多方迅速回应 /strong /p p style=" text-indent: 2em text-align: justify " 正是由于技术上的风险和伦理争议,122位科学家11月26日下午发表联合声明,坚决反对和强烈谴责了这项研究。 /p p style=" text-indent: 2em text-align: justify " 截至11月26日晚间21点,另有78位从事生物信息学研究的科学家通过华中科技大学生命科学与技术学院教授薛宇的科学网博客发布“联署声明”。声明中表示,科学家应当有基本的职业操守,科学研究的伦理底线不容突破;生命科学或医学相关技术,在未能充分证明其有效性和安全性之前,不能贸然应用于人体;建议相关部门彻查此事,同时推动中国生命科学和医学研究及应用相关伦理法规和制度的完善。 /p p style=" text-indent: 2em text-align: justify " 贺建奎担任董事长的瀚海基因公司发送的一段视频中介绍,这对婴儿的胚胎在被放回母亲葛女士的子宫前,研究人员通过全基因组测序评估了基因手术的效果,结果显示,手术如预想的那样安全进行。“我们不能见死不救,伦理终将站在我们这边。”贺建奎在视频中用英语表示,“为了他们,我愿意接受指责。” /p p style=" text-indent: 2em text-align: justify " 同时,截至记者发稿时,已有多个相关机构也对此进行了回应。批准这一试验的深圳和美妇儿科医院曾被媒体怀疑为“莆田系”医院,这家医院向媒体公开否认其进行了该试验,称“这件事不属实,我们没有接受过相关信息”。据媒体最新报道,院方工作人员表示,医院正在对该申请表的真实性进行调查,审查申请表上涉及到黄华锋、褚振忠、邓兴书确实在该院工作。 /p p style=" text-indent: 2em text-align: justify " 深圳卫计委就“免疫艾滋病的基因编辑婴儿”发布声明称,深圳和美妇儿科医院医学伦理委员会未按要求进行备案,深圳市医学伦理专家委员会已启动调查。 /p p style=" text-indent: 2em text-align: justify " 11月26日晚间,南方科技大学发表声明称校方“深表震惊”,该项目负责人副教授贺建奎已于2018年2月1日停薪留职,离职期为2018年2月至2021年1月。声明指出,此项工作为贺建奎在校外开展,未向学校和所在生物系报告,该校生物系学术委员会认为其严重违背学术伦理和学术规范,校方将立即聘请专家成立独立委员会深入调查。 /p
  • FIDA分子互作仪:带你复现Nature青睐蛋白质与核酸互作50分顶级发文思路,还不快学起来!
    研究背景Nature:清北团队合作发现CRISPR免疫增效子,建立Cas9核酸酶生长进化模型CRISPR-Cas系统是一种强大的基因编辑工具,但Cas9核酸酶活性仍需提高。现有的方法存在着种种局限性,例如优化序列可能破坏结构、改变表达方式可能导致副作用、使用辅助蛋白会增加复杂性等。因此,开发新的方法来增强Cas9核酸酶的活性仍是CRISPR-Cas系统研究中的一个重要课题。2024年5月29日,来自清华大学和北京大学的研究团队在Nature上合作发表了题为:Pro-CRISPR PcrIIC1-associated Cas9 system for enhanced bacterial immunity的研究论文研究团队通过生物信息学分析、结构生长轨迹分析、生化实验、冷冻电镜解析和大肠杆菌抗噬菌体实验等手段,发现了一类新型CRISPR免疫增效子PcrIIC1,可以显著增强Cas9核酸酶的活性。研究团队还建立了Cas9核酸酶生长进化模型,揭示了Cas9蛋白结构和功能的演变规律,并阐明了PcrIIC1增强Cas9活性的分子机制。这项研究为我们进一步理解CRISPR系统的进化历程,以及开发基于CRISPR免疫增效子的高效基因编辑工具奠定了基础。研究思路通过生物信息学分析,研究团队观察到一类新型关联基因(Novel-associated genes, NAGs),显著富集存在于较大蛋白体积的II-C型Cas9的基因簇中,并推测这些NAGs可能参与到Cas9介导的细菌免疫过程。图1. 结构生长轨迹分析方法(左)和II-C型Cas9的生长轨迹图(右)通过生化实验和冷冻电镜解析复合体结构表明,来自金黄色细菌属(Chryseobacterium sp.)的CbCas9生长出了一个全新的增强Cas9活性的β-REC2结构域,以及一个全新的能够与其关联基因PcrIIC1互作的CTH结构域。通过蛋白间相互作用,2个CbCas9蛋白和2个PcrIIC1蛋白能够形成异源四聚体复合物。图2. 冷冻电镜分析CbCas9和PcrIIC1结合的三个阶段蛋白质与核酸的分子互作实验表明,与单独的CbCas9相比,CbCas9-PcrIC1复合物表现出增强的DNA结合进而体现出切割活性,对原间隔区相邻基序序列的兼容性更广,对错配的耐受性更强,抗噬菌体免疫性增强。研究利用溶液中标记的分子互作方式获得亲和力,得出与单独的CbCas9相比,CbCas9-PcrIC1复合物表现出增强的DNA结合(图3a)进而体现出切割活性,对原间隔区相邻基序序列的兼容性更广,对错配的耐受性更强,抗噬菌体免疫性增强。图3. PcrIIC1增强CbCas9的DNA结合(a)、切割(b)、PAM兼容性(c)、DNA解旋 (d) 和错配容忍 (e) 能力最后,为了检验CRISPR免疫增效子PcrIIC1对CbCas9抗噬菌体免疫能力的影响,研究人员在大肠杆菌中进行了抗噬菌体实验。以上结果说明CbCas9-PcrIIC1复合体的形成对整个CRISPR-Cas系统的免疫增强至关重要。图4. PcrIIC1显著增强了CbCas9系统的细菌免疫活性FIDA如何更好复现Nature蛋白与核酸互作发文思路流体动力分散技术(FIDA)通过第一性物理原理直接获取分子的绝对流体动力学半径(Rh),通过追踪分子微妙的变化来表征生物分子的行为、特征以及功能。Fida Neo分子互作仪涵盖亲和力表征、亲和动力学表征、分子质量表征三大功能,一次实验即可获得互作与分子质控的数据,让互作的数据有“法”可依。FIDA技术无需固定、无需加热,甚至无需标记,可兼容所有缓冲液,是对现有分子互作技术是一次不一样的升级。FIDA技术可用于CbCas9-PcrIIC1复合物冷冻电镜前样品质控,CbCas9-PcrIC1复合物与DNA的亲和力实验以及动力学实验,以及CRISPR- cas以及核酸复合物的大小和定量表征等方面,具体如下:FIDA多维蛋白复合体表征,快速无稀释优化冷冻电镜样品,丰富您的蛋白质表征数据。FIDA所获得的Rh为绝对的粒径大小,可以直接与后期的电镜数据做比较。此外FIDA内置的 PDB 关联程序,可以将实际获得的 Rh 与数据库中的结构信息进行比较,有助于结构的精细解析。FIDA技术单次运行只需要40 nL 蛋白质在 4 分钟内获得的完整蛋白质 QC 图,包括冷冻电镜样品QC的关键参数表征,例如多分散性指数(PDI),聚集(Agg),粘度(Viscosity),粘附性(Stickiness),完整性(Rh)等指标,FIDA是一种非常有效的支持所有生物物理学和结构生物学的基本工具。图5. FIDA单次测试的得到8个蛋白表征数据冷冻电镜应用:FIDA:4分钟给您无稀释的冷冻电镜样品优化解决方案FIDA和本篇研究中应用的分子互作技术都是一种在溶液状态下通过荧光分子标记表征分子互作的技术。对于蛋白可能需要形成多聚体,在溶液环境下,更能有效的体现蛋白与蛋白或蛋白与核酸互作的真实情况。FIDA 可以使用含盐和洗涤剂的缓冲液条件,具有不同环境中(类体内环境)进行测试的灵活性。这使得研究者能够分析不受缓冲液成分限制的核苷酸,以确保其数据的准确性和可靠性。FIDA 这种在溶液内检测分子互作技术,是理想的结合能力检测,因为它不依赖于潜在的阻碍性表面固定,不受结合域空间方向影响的表征。图6. FIDA实验原理示意图FIDA不仅可以表征互作亲和力,也同时无标记检测CRISPR核酸酶与gDNA相互作用的热力学、亲和力、和结合动力学,全面表征蛋白与核酸互作。FIDA不仅可以完成本研究中得到的CbCas9-PcrIC1复合物表现出增强的DNA结合亲和力,还可在无标记下表征蛋白与核酸的热力学参数与结合动力学,甚至表征结合时蛋白构象变化与获得有关基因编辑过程的分子细节的定量表征。FIDA技术可以处理带负电荷分析物和带正电荷配体,使利用FIDA能够深入了解CRISPR- cas组分之间的结合相互作用,并以更高的准确性和效率表征和优化CRISPR系统。FIDA是一种序列无关的技术-不需要事先了解序列。FIDA的序列独立性质可对未知或未表征的基因组区域进行研究,同时简化工作流程。图7.(A) FIDA实验示意图。ReporterRNA用于识别RNP的大小和饱和点(上),用其报告RNP结构作为竞争分析的起点(下) (B)正向结合(上)和反向滴定(下)期间获得的原始FIDA数据 本研究在分子层面直观的揭示了免疫增效子PcrIIC1的作用。首次发现了一类新型的CRISPR免疫增效子可以通过二聚化Cas9效应器提升Cas9活性,这些结果不仅有助于我们进一步理解CRISPR系统的进化历程,还为未来基于CRISPR免疫增效子的高效基因编辑工具的开发奠定了基础。FIDA对于蛋白质复合体的多维表征和对蛋白与核酸互作亲和力与动力学的的检测,不依赖于分子量变化,样本用量少(仅需40nL),是一种在溶液状态下且不受缓冲液成分影响的多维表征技术。对于在本研究中相似的蛋白可能需要形成多聚体,在溶液环境下,更能有效的体现互作的真实情况。
  • 基因编辑巨头Horizon Discovery与罗格斯大学合作开发碱基编辑技术
    p style=" text-indent: 2em text-align: justify " Horizon Discovery Group 基因编辑和基因调控技术的全球领军者,宣布和新泽西州立大学(美国)罗格斯大学建立独家战略合作伙伴关系,共同开发一种称为碱基编辑的新的基因编辑技术并使之商业化。 /p p style=" text-indent: 2em text-align: justify " 获悉,2019年1月28日, Horizon Discovery Group plc(LSE:HZD),基因编辑和基因调控技术的全球领军者,宣布和新泽西州立大学(美国)罗格斯大学建立独家战略合作伙伴关系,共同开发一种称为碱基编辑的新的基因编辑技术并使之商业化。该技术将应用于新细胞疗法的开发,同时也将丰富Horizon集团的现有技术,帮助拓展其服务范围。 /p p style=" text-indent: 2em text-align: justify " 本次合作将进一步开发Rutgers Robert Wood Johnson医学院药理学副教授Shengkan Jin博士实验室的新型碱基编辑平台。作为协议的一部分,Horizon已向Rutgers提供了独家许可的碱基编辑技术,以用于所有治疗应用。此外,该集团还将在罗格斯大学进行基础编辑的进一步研究,并在集团内部继续进行评估和概念证明研究。& nbsp /p p style=" text-indent: 2em text-align: justify " 碱基编辑是一种新颖的技术平台,用于在细胞中设计DNA或基因,并通过使用酶修饰基因,纠正DNA中的错误或突变。与目前可用的基因编辑方法(例如CRISPR / Cas9)相比,这种新技术可以更准确地进行基因编辑,同时减少意外的基因组变化,避免在基因中产生可能导致负面影响的“切割”。 /p p style=" text-indent: 2em text-align: justify " 该技术将对通过临床开发和商业化促进细胞疗法的发展产生重大影响。Horizon集团首席执行官Terry Pizzie说:“碱基编辑对于基因编辑技术领域来说就像一场潜在的革新,极有可能实现靶向治疗众多迄今无法医治的疾病的目标。此次Horizon集团与Jin博士和罗格斯大学的合作将帮助我们在研究与应用市场扩展科学和知识产权能力。作为我们五年投资战略的一部分,Horizon将致力于投资保持市场领导地位的高价值技术,碱基编辑技术就是一个很好的例子。” /p p style=" text-indent: 2em text-align: justify " 罗格斯大学的Shengkan Jin博士表示:“单独使用该技术的胞苷脱氨酶可用于开发离体疗法,如用于镰状细胞贫血和β地中海贫血的基因修饰细胞、用于艾滋病的HIV抗性细胞,用于白血病的现成CAR-T细胞以及遗传性疾病的治疗,可谓潜力巨大。” /p p style=" text-indent: 2em text-align: justify " 罗格斯大学研究与经济发展部的临时高级副总裁David Kimball博士认为:“基因编辑技术真正彻底改变了科学家们思考如何在疾病治疗方面寻求更好结果的方法。我们期待通过与Horizon合作,发展这一新型碱基编辑平台以改善人类健康。” /p p style=" text-indent: 2em text-align: justify " 美国早在2018年1月就宣布将在未来6年出资1.9亿美元支持体细胞基因编辑研究,以开发安全有效的基因编辑工具,治疗更多人类疾病。显然,美国政府也对基因编辑市场前景十分看好。 /p p style=" text-indent: 2em text-align: justify " 另据中商产业研究院最新报告,预计2020年,全球精准医疗市场规模将破千亿,达到1050亿美元,而基因编辑技术将是撬动千亿级大市场的一把钥匙。 /p p style=" text-indent: 2em text-align: justify " 关于Horizon Discovery Group plc /p p style=" text-indent: 2em text-align: justify " Horizon Discovery Group plc(LSE:HZD)是基因编辑和基因调控技术的全球领军者,总部位于英国剑桥。 /p p style=" text-indent: 2em text-align: justify " Horizon集团提供广泛的技术产品和相关研究服务,以支持医学界和生物学界更好地了解所有物种的基因功能、人类疾病的遗传驱动因素以及个性化分子、细胞和基因疗法的发展。这些技术和产品已经被全球10000多家学术机构、药物研发机构、药物制造商和临床诊断公司所采用。 /p p style=" text-indent: 2em text-align: justify " 关于罗格斯大学 /p p style=" text-indent: 2em text-align: justify " 罗格斯大学,全称新泽西州立罗格斯大学,简称罗大(Rutgers, The State University of New Jersey )是美国新泽西州的最大高等学府,也是一所公立研究型大学。罗格斯大学的主要校园位于新布朗斯维克和皮斯卡特维,另有两所分校在纽瓦克和肯顿。 /p
  • 丹纳赫与诺奖获得者合作启动CRISPR基因编辑疗法开发项目
    近日,丹纳赫集团和创新基因组研究所(Innovative Genomics Institute, IGI)宣布成立联合研发中心,共同开发治疗罕见病和其他疾病的基因编辑疗法,为未来开发各类基因药物打造新模式。该研发中心名为Danaher-IGI Beacon for CRISPR Cures,旨在通过一体化的研究、开发和监管,利用基于CRISPR的基因编辑技术永久性地治疗数百种疾病。• 这一新联合研发中心位于加州大学伯克利分校,计划开发易于编辑的平台型方法,用以开发能够治疗数百种绝症的基因编辑药物。• 针对目前难以获得资金的罕见病疗法研究,此项创新模式旨在大幅减少其临床前和临床开发所需的时间及费用。• 诺贝尔奖获得者Jennifer Doudna及其团队将与丹纳赫共同完成该联合研究中心的转化和临床研究工作。诺贝尔奖获得者、CRISPR先驱、IGI创始人Jennifer Doudna将与IGI技术与转化董事兼新Beacon项目总监Fyodor Urnov一起在IGI总部负责研发工作的开展。两人均为加州大学伯克利分校的教授。IGI 执行董事 Brad Ringeisen 也将在新研发中心发挥关键作用。作为全球生命科学和医学诊断的创新者,丹纳赫将为 CRISPR 疗法的生产制造提供丰富的技术支持和解决方案,同时开发新的技术和方法,简化并标准化临床前和临床开发。诺贝尔奖获得者、CRISPR先驱、IGI创始人Jennifer Doudna这项合作是迄今为止丹纳赫规模最大的Beacon项目,将使 IGI 开展实质性的新研究项目。Danaher Beacon项目旨在资助科研院所开展前沿性的科学研究,开发改善人类健康的创新技术和应用。该项目专注的领域包括基因组药物、精准诊断、下一代生物制品制造、人类系统和数据科学。丹纳赫集团总裁、首席执行官毕睿宁表示:“CRISPR在疾病治疗方面拥有巨大的前景,但目前还没有标准的学界的或监管领域的框架来指导我们如何将其应用于患者。要应对如此巨大的挑战,我们需要联合学术界、产业界和政府共同协作。我们很激动能与来自IGI的基因编辑领域最为优秀的科研人员联手,将丹纳赫旗下多家运营公司在研发生产中的人才、技术和专业知识汇聚在一起,携手为极其重要但尚未得到充分服务的患者们开创革命性的解决方案。丹纳赫集团总裁、首席执行官毕睿宁Doudna表示:“新的联合研发中心结合了IGI 和丹纳赫各自的优势,是实现CRISPR治疗承诺的独特而有力的方式。我们知道如何将CRISPR分子输送到目标组织中。我们了解患者群体。我们的团队拥有研究这些疾病的世界级专家。我们需要共同绘制一个蓝图,描绘使用CRISPR治疗所需的所有科学和技术。一旦实现了这一点,我坚信 CRISPR 将成为许多疾病临床治疗的标准。”作为第一步,Danaher-IGI Beacon项目将为两种先天性免疫缺陷(IEIs)疾病——嗜血细胞淋巴组织细胞增多症(HLH)和Artemis缺陷型重症联合免疫缺陷(Artemis-SCID)——开发基因编辑疗法。双方认为,IEIs的几大特性使其适合丹纳赫/IGI 联合方法,包括广泛的患者记录和基于移植的给药途径,从而克服了将 CRISPR 分子递送至目标组织的一些关键挑战。总的来说,IEI 包含约 500 种不同的疾病,影响着全球数十万人。然而,它们目前还不是任何重大基因编辑试验的重点对象,很大程度上是由于为每个非常小的 IEI 患者群体设计和测试疗法都颇具挑战,进程缓慢且成本高昂。由于CRISPR可以很容易地重新编程以处理任何基因突变的独特能力,因此Danaher-IGI Beacon for CRISPR Cures的目标是开发一种可扩展的平台型方法,从而能够快速构建新的药物,甚至用于治疗IEIs以外的疾病。Beacon项目的目标是让联合研发中心开发出的平台型方法能够扩展应用于更多IEIs和其他罕见疾病,以及更多通过编辑单个特定基因就能治疗的常见疾病。Urnov表示,CRISPR对公共卫生的影响必须迅速扩大,而不是仅限于生物技术行业目前正在推进的最初规模有限的疾病。CRISPR的独特性使其成为开发和部署CRISPR按需治疗平台型方式的理想选择。结合丹纳赫和IGI各自的优势,我们可以建立这样的平台,并首创CRISPR治疗方法,供希望治疗更多疾病的其他团队使用。与来自加州大学旧金山分校和加州大学洛杉矶分校的IEI顶尖临床医生合作,IGI将提供独特的专业知识,支持 CRISPR 工程、先天性免疫缺陷的非临床模型、基因编辑细胞产品的制造、监管部门在这一疾病领域的工作,以及为患有这些严重疾病的患者设计和执行临床试验。丹纳赫旗下的运营公司将提供仪器、试剂、资源和专业知识,简化临床前和临床开发,并制定新的安全性和有效性标准。其中,IDT将利用其新启用的治疗性寡核苷酸生产设施,在 CRISPR 核酸酶和向导RNA 的合成、修饰、纯化和质量控制方面提供业界领先的能力。Aldevron 此前与 IGI 合作推进基于 CRISPR 的基因编辑技术在大脑中的应用。Cytiva、贝克曼库尔特生命科学、徕卡生物系统和徕卡显微系统等丹纳赫旗下运营公司将一同在此次合作中发挥关键作用。关于创新基因组学研究所创新基因组学研究所由美国旧金山湾区领先科研机构——加州大学伯克利分校、加州大学旧金山分校、加州大学戴维斯分校、劳伦斯伯克利国家实验室、劳伦斯利弗莫尔国家实验室、格拉德斯通研究所和其他机构共同构成。IGI 的多元化顶尖科学家团队拥有强大的跨学科专业知识。他们开展世界一流的研究,其驱动力是利用基因组工程治疗人类疾病、消除饥饿和应对气候变化。除了科学成就外,IGI 还致力于促进公众对基因组工程的理解,为广大社区提供资源,并指导技术使用合乎伦理。
  • 遗传发育所建立基因组编辑高效调控内源基因蛋白质翻译新方法
    p style=" text-align: justify " & nbsp & nbsp 基因组编辑是在基因组水平对基因进行精确、定向修饰的一种高效生物技术方法。简单、高效的CRISPR/Cas9编辑体系的出现给生命科学带来了新的技术革命。CRISPR/Cas9通常在基因组靶向位点造成DNA碱基的添加或删除,导致基因功能的缺失。近日,中国科学院遗传与发育生物学研究所高彩霞研究组建立了一个通过CRISPR/Cas9高效调控内源mRNA翻译的方法。该方法可通过提高蛋白质翻译效率,增加目标基因的编码蛋白水平。 /p p style=" text-align: justify " & nbsp & nbsp 蛋白编码基因的表达产物一般受到转录、转录后RNA加工、蛋白质翻译及翻译后加工、蛋白降解等多个水平的调控。真核细胞的mRNA由5’非翻译区(5’Untranslated Region,5’UTR)、编码蛋白的开放阅读框区(Open Reading Fragment)及3’端非翻译区(3’Untranslated Region,3’UTR)构成。研究发现,5’UTR存在一些具有翻译能力的开放阅读框,称为上游开放阅读框(Upstream Open Reading Fragment,uORF)。与之对应,5’UTR之后的开放阅读框被称为主开放阅读框(Primary Open Reading Fragment,pORF)。uORF通常能够抑制下游的pORF的翻译。生物信息学分析表明,uORF在动植物中广泛存在,人、小鼠、拟南芥、水稻、玉米中超过30%的mRNA含有预测的uORF,但还缺乏高效、精细的方法对uORF进行功能研究与遗传操作。 /p p style=" text-align: justify " & nbsp & nbsp 高彩霞研究组利用CRISPR/Cas9对uORF进行编辑,发现能够显著提高目标基因的翻译效率。通过CRISPR/Cas9编辑拟南芥和生菜中的4个基因的uORF翻译起始区及周边序列,获得了多个相应基因的uorf突变体。这些uorf突变体目标基因的pORF的mRNA翻译水平都有不同程度的提高。其中,通过突变维生素C合成途径中关键基因GGP(GDP-L-galactose phosphorylase)上游的uORF,可使生菜叶片中维生素C含量提高约150%。利用CRISPR/Cas9编辑uORF翻译起始区会出现两种结果:(1)完全破坏uORF的翻译起始能力导致uORF功能缺失;(2)改变uORF的翻译起始密码子(例如ATG突变为翻译起始能力较弱的GTG)及其周边序列,使uORF对pORF的抑制效率发生微调。该研究展示了通过基因组编辑uORF操纵mRNA翻译,调控蛋白质水平在植物分子生物学研究及遗传育种中的应用前景。此外,该方法可能随着新型基因组编辑工具不断出现及方法的进一步优化,而变得覆盖率更广且更易操作。由于uORF在动植物基因中普遍存在,该方法也具有广阔的应用前景。 /p p style=" text-align: justify " & nbsp & nbsp 相关成果于8月6日发表在《自然-生物技术》上。高彩霞研究组副研究员张华伟,博士研究生司小敏、姬祥为论文共同第一作者。该研究得到了科技部、国家自然科学基金委基础科学中心、中科院的资助。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201808/insimg/db01d975-1e1c-43d2-8ca4-feabbe73f981.jpg" title=" W020180807251428902441.jpg" / /p p style=" text-align: center " CRISPR编辑uORF调控蛋白质翻译水平 /p
  • 可检测基因编辑脱靶效应,此技术有望完善基因编辑治疗
    p style=" text-align: center "   img src=" https://img1.17img.cn/17img/images/201903/uepic/22506cf5-5909-4022-83a3-3fd7e13aec9a.jpg" title=" 00.jpg" alt=" 00.jpg" style=" text-align: center " / /p p style=" text-align: center " 研究人员在观察胚胎培养情况。中科院神经科学研究所供图 br/ /p p   “渐冻人”(运动神经元症)、“玻璃娃娃”(成骨不全症 )、“月亮孩子”(白化病)、地中海贫血……各种各样的罕见病一直因发病率低而缺乏有效的治疗方案,给患者和家庭带来无限的痛苦。 /p p   据统计,全球有7000多种罕见病,其中80%的罕见病是单基因遗传病。近年来,随着基因编辑技术的逐渐成熟,基因治疗被人们寄予厚望。 /p p   然而,基因治疗的风险不可低估,其中“脱靶效应”是基因编辑技术最大的风险来源。 /p p   近日,中科院神经科学研究所、脑科学与智能技术卓越创新中心杨辉研究组与中科院马普计算生物学研究所、中国农科院深圳农业基因组研究所及美国斯坦福大学团队合作,开发出一种名为GOTI的全新的检测基因编辑工具脱靶技术。该技术可精准客观地评估基因编辑工具的脱靶率。该研究于3月1日在线发表于《科学》。 /p p   strong  难题: /strong /p p strong   如何有效检测基因编辑工具的安全性 /strong /p p   CRISPR/Cas9是广受关注的新一代基因编辑工具。学术界普遍认为,基于CRISPR/Cas9及其衍生工具的临床技术将为人类的健康作出巨大贡献。然而,基因编辑工具“脱靶”风险也一直备受关注。若将其应用于临床,“脱靶效应”可能会引起包括癌症在内的很多种副作用。 /p p   中科院神经科学研究所研究员杨辉在接受《中国科学报》采访时表示,临床技术对于潜在风险和副作用的容忍度极低,因此一种能突破之前限制的脱靶检测技术,将成为CRISPR/Cas9及其衍生工具能否最终走上临床的关键。 /p p   “其实,过去人们推出过多种检测脱靶的方案,但这些方法都存在局限性。传统上,对脱靶的检测依赖于算法预测,靠不靠谱无人得知 或依赖于体外扩增,但这个会引入大量的噪音,会导致检测的精确度大打折扣。”杨辉说。 /p p   由于不能高灵敏度地检测到脱靶突变,尤其是单核苷酸突变,因此关于CRISPR/Cas9及其衍生工具的真实脱靶率一直存在争议。 /p p   然而,任何科学技术归根结底都需要服务于全人类,尤其像基因编辑这样的神奇技术。想要有效地操纵这把“上帝的手术刀”,还得给它做个全方面的体检。 /p p    strong 突破: /strong /p p strong   GOTI技术精准捕捉“脱靶”逃兵 /strong /p p   要提升检测脱靶效应的精度,就必须彻底颠覆原有的脱靶检测手段。 /p p   为实现这一目标,实验人员建立了一种名叫GOTI的脱靶检测技术。“我们在小鼠受精卵分裂到二细胞期时,编辑一个卵裂球,并使用红色荧光蛋白标记。小鼠胚胎发育到14.5天时,将整个小鼠胚胎消化成为单细胞,利用流式细胞分选技术并基于红色荧光蛋白,分选出基因编辑细胞和没有基因编辑的细胞,然后通过全基因组测序比较两组差异。这样就避免了单细胞体外扩增带来的噪音问题。”中国农科院深圳农业基因组研究所研究员左二伟告诉《中国科学报》。 /p p   同时,由于实验组和对照组来自同一枚受精卵,理论上基因背景完全一致,因此直接比对两组细胞的基因组,其中的差异基本就可以认为是基因编辑工具造成的。这样便能发现此前脱靶检测手段无法发现的完全随机的脱靶位点。 /p p   随后,该团队将成功建立的GOTI投入基因编辑技术脱靶检测。 /p p   实验人员先是检测了最经典的CRISPR/Cas9系统。结果发现,设计良好的CRISPR/Cas9并没有明显的脱靶效应。但是,同样被寄予厚望的CRISPR/Cas9衍生技术BE3则存在非常严重的脱靶,而且这些脱靶大多出现在传统脱靶预测认为不太可能出现脱靶的位点。 /p p   杨辉建议,人们应冷静地分析一些新兴技术的安全性。这些脱靶位点有部分出现在抑癌基因上,因此经典版本的BE3有着很大的隐患,目前不适合作为临床技术。 /p p    strong 未来: /strong /p p strong   完善基因编辑治疗手段、建立行业标准 /strong /p p   杨辉告诉记者,团队接下来将进一步检测BE3除导致异常基因突变外还可能存在的其他问题,并在此基础上,设法改进这个系统,从而建立一种不会脱靶,也没有其他风险的单碱基突变技术。 /p p   中科院马普计算生物学研究所研究员李亦学表示,最新工作建立了一种在精度、广度和准确性上远超之前的基因编辑脱靶检测技术,显著提高了基因编辑技术的脱靶检测敏感性,有望借此开发出精度更高、安全性更好的新一代基因编辑工具。 /p p   “我们希望未来可基于这项新技术,制定一些行业标准。凡是进入临床的基因编辑技术,必须经过这套系统的检验才能证明其安全性,以便让这个领域有序、健康地发展下去。”他说。 /p p   中科院院士、中科院神经科学研究所所长蒲慕明认为,该技术针对基因编辑的安全性问题,“有了它,便可以更加客观、可靠地评估基因编辑工具的脱靶率”。 /p p   针对该技术在单碱基编辑工具BE3中发现的重大“安全隐患”,蒲慕明表示:“这能让我们重新审视基因编辑技术的安全性,但不是说这项技术不能再开展基因治疗了。正是因为已经建立新的检测技术,我们才知道如何去修正、改善BE3,从而开发安全性更高的新一代基因编辑工具,造福患者。” /p
  • IF: 50.5! NanoTemper 解密 Nature 顶刊蛋白质与核酸互作发文思路
    01研究背景CRISPR系统是在原核生物中发现的一种适应性免疫系统,可保护宿主细胞免受外来DNA的入侵。作为噬菌体和细菌免疫系统之间持续斗争的一部分,CRISPR系统已经进化成各种类型,每种类型都具有不同的功能。Cas9蛋白通过向导RNA(sgRNA)切割外源DNA的免疫特性被广泛研究和应用到基因编辑领域。II型Cas9是这些系统中研究最广泛的,具有多种亚型。目前尚不确定该家族成员是否能进化出额外的机制来对抗病毒入侵。 本期文献,研究者们通过前期鉴定大量基因及蛋白预测工作,揭示了II-C型Cas9的三个结构生长轨迹,进而发现了Chrysobacterium物种的CbCas9会与CRISPR–Cas系统促进(pro-CRISPR)蛋白(PcrIIC1)形成异源四聚体复合物。验证PcrIIC1能够作为一种CRISPR免疫增效子。作者借助MST技术直接在分子层面直观揭示了PcrIIC1免疫增效子的增强效果,降低实验设计难度,节省大量成本和时间。https://doi.org/10.1038/s41586-024-07486-xIF: 64.8 Q102研究内容2024年5月29日,清华大学生命学院刘俊杰 (Jun-Jie Gogo Liu) 课题组联合北京大学生命学院白洋课题组和清华大学生命学院陈春来课题组在 Nature 杂志在线发表了题为“Pro-CRISPR PcrIIC1-associated Cas9 system for enhanced bacterial immunity” 的研究论文。 研究者鉴定了2062个完整的Cas9基因座,预测出相关蛋白结构,并揭示了II-C型Cas9的三个结构生长轨迹。研究者发现新的相关基因(NAG)往往存在于较大的II-C Cas9的基因座中。通过生化实验和冷冻电镜解析复合体结构表明,来自金黄色细菌属(Chryseobacterium sp.)的CbCas9生长出了一个全新的增强Cas9活性的β-REC2结构域,以及一个全新的能够与其关联基因PcrIIC1互作的CTH结构域。通过蛋白间相互作用,2个CbCas9蛋白和2个PcrIIC1蛋白能够形成异源四聚体复合物。这意味着PcrIIC1可以在整个CRISPR防御过程中与CbCas9结合。为什么PcrIIC1要和Cas9结合呢?研究者通过MST实验直观地揭晓了答案。MST实验显示PcrIIC1和apo-CbCas9之间具有中等的结合亲和力(Kd=2.56±0.28μM)(图1a)。值得注意的是,PcrIIC1和CbCas9–sgRNA之间的结合亲和力增加到334±120 nM的Kd值,PcrIIC1和Cb Cas9–sgRNA–dsDNA之间的结合亲和性增加到275±86 nM(28 bp)(图1b,c),表明sgRNA表达可能作为天然宿主中异源四聚体组装的检查点。(CRISPR免疫防御系统是通过Cas9蛋白与sgRNA结合来切割外源DNA来实现的,这个特性也被广泛研究和应用到基因编辑领域。)图1. MST和冷冻电镜分析CbCas9和PcrIIC1结合的三个阶段 CbCas9与PcrIIC1结合后复合物有什么作用,为什么说PcrIIC1是免疫增效子呢?MST实验也给出了直观的答案。与单独的CbCas9相比,CbCas9-PcrIC1复合物表现出增强的DNA结合(图2a)进而体现出切割活性,对原间隔区相邻基序序列的兼容性更广,对错配的耐受性更强,抗噬菌体免疫性增强。图2. PcrIIC1增强CbCas9的DNA结合(a)、切割(b)、PAM兼容性(c)、DNA解旋 (d) 和错配容忍 (e) 能力*图片来源https://life.tsinghua.edu.cn/info/1131/5848.htm 最后,为了检验CRISPR免疫增效子PcrIIC1对CbCas9抗噬菌体免疫能力的影响,研究人员在大肠杆菌中进行了抗噬菌体实验。实验结果表明PcrIIC1显著提升CbCas9系统对噬菌体的抵抗,且如果破坏CbCas9与PcrIIC1的相互作用,会导致增强的免疫力丧失。以上结果说明CbCas9-PcrIIC1复合体的形成对整个CRISPR-Cas系统的免疫增强至关重要。03技术优势本研究利用MST技术在分子层面直观的揭示了免疫增效子PcrIIC1的作用。对于分子互作亲和力的检测,Monolith系列仪器不依赖于分子量变化,蛋白用量少,是一种在溶液状态下表征分子互作的技术。对于蛋白可能需要形成多聚体,在溶液环境下,更能有效的体现蛋白与蛋白互作的真实情况。当蛋白质形成复合物后,进一步的功能探究,如蛋白复合物与核酸的相互作用,通过Monolith系列仪器进行的实验设计更为简便,能够直观地展示相互作用的结果,从而凸显您研究的分子功能。Monolith分子互作检测仪
  • 【大咖分享】用外泌体投递CRISPR/Cas9核酸蛋白进行基因编辑
    课程主题:【大咖分享】用外泌体投递CRISPR/Cas9核酸蛋白进行基因编辑课程时间:2021/06/04 10:30课程简介:1) 介绍基因编辑以及报告人课题组开发的基于RNA适配子的类慢病毒颗粒基因编辑投递系统2) 综述目前基于外泌体的基因编辑投递方法3) 被告人课题组设计的基于外泌体的基因编辑投递方法卢柏松 美国维克森林大学医学院讲师、助理教授、副教授1)目前从事基因编辑和基因治疗的研究,主要研究方向是如何安全有效地投递基因编辑的功能组分2)设计了利用慢病毒颗粒来投递Cas9 mRNA以及核酸蛋白复合物的新方法,以实现Cas9蛋白的短暂表达和高效基因编辑3)设计了一种在外泌体中富集Cas9 核酸蛋白复合物的方法,为实现Cas9蛋白的短暂表达提供了一种可选途径
  • 精准基因编辑时代到来!华人科学家重排原子精准编辑基因!
    p   当我们在谈论生命时,我们谈论的都是化学分子。DNA也好,蛋白质也罢,正是这些生物大分子发生的原子重排,才催生出无数生化反应,为地球带来生命。 /p p style=" text-align: center " img title=" 001.JPEG" src=" http://img1.17img.cn/17img/images/201710/insimg/c0bbe2b5-3415-4594-bc51-72b794f474de.jpg" / /p p style=" text-align: center " strong   本研究的主要负责人David Liu教授(图片来源:Broad研究所) /strong /p p   今日,Broad研究所的华人学者David Liu教授公布了一项了不起的研究!他的团队开发了一种“碱基编辑器”,能在细胞内用简单的化学反应,使DNA的一种碱基进行原子重排,让它变成另一种碱基。与CRISPR-Cas9等流行的基因编辑手段不同,这种技术无需使DNA断裂,就能完成基因的精准编辑。这项研究发表在了顶尖学术期刊《自然》上。 /p p style=" text-align: center " img title=" 002.JPEG" src=" http://img1.17img.cn/17img/images/201710/insimg/25395cd0-f659-4486-b95c-07cbee1c729a.jpg" / /p p style=" text-align: center "   strong  将近一半的致病变异来源于C-G组合到A-T组合的改变(图片来源:《自然》) /strong /p p   要看懂这项研究,我们先来看看DNA本身。我们知道,DNA的双螺旋结构由4种碱基:腺嘌呤(A)、胸腺嘧啶(T)、胞嘧啶(C)与鸟嘌呤(G)组成。它们A和T配对,C和G配对,就像字母一样,编写了人类的遗传信息。然而由于化学结构的问题,C这个字母不大稳定,容易出现自发的脱氨突变,把原本的好好的C-G组合,变成A-T组合。据估计,每天人类的每个细胞里都会出现100-500次这样的突变。而人类已知的致病单碱基变异,高达一半属于这种突变。 /p p style=" text-align: center " img title=" 003.JPEG" src=" http://img1.17img.cn/17img/images/201710/insimg/3079c9ad-aff8-4c2e-b7ab-54dc17de1cbe.jpg" / /p p style=" text-align: center " strong   合适的脱氨反应能将腺嘌呤转变为结构类似于鸟嘌呤的肌苷(图片来源:《自然》) /strong /p p   换句话说,如果我们能定点修复这些基因突变,把A-T变回C-G,就有望从根源上纠正人类的许多遗传疾病。这正是Liu教授团队的研究思路。在实验室中,他们观察到了一个很有意思的现象——腺嘌呤(A)在出现脱氨反应后,会变成一种叫做肌苷的分子,而它与鸟嘌呤(G)的结构非常接近,也能成功骗过细胞里的DNA聚合酶。简单的几轮DNA复制后,A-T组合就能变回C-G。 /p p   但科学家们遇到一个棘手的问题——自然界中并没有能够在DNA中催化腺嘌呤进行脱氨反应的酶。 /p p   如果没有现成的道路,那就开辟一条!在人体中,科学家们发现了一种叫做TadA的酶,它能催化转运RNA上的腺嘌呤(A),使它脱氨。尽管催化的对象不同,但Liu教授的团队认为它有足够的应用潜力。于是,利用演化的力量,科学家们对TadA进行了改造。他们将编码TadA的基因引入大肠杆菌内,并寄希望于这种酶能在大肠杆菌快速的繁衍中,突变出催化DNA腺嘌呤的能力。 /p p style=" text-align: center " img title=" 004.JPEG" src=" http://img1.17img.cn/17img/images/201710/insimg/77d2e2cb-4181-4432-b16c-f701f36c851b.jpg" / /p p style=" text-align: center "   strong  本研究中,碱基编辑器的作用机理(图片来源:《自然》) /strong /p p   同时,科学家们也想到,DNA上的腺嘌呤特别多,总不能把他们全都转化为鸟嘌呤吧。因此,特异性地对某个碱基进行催化,是这套系统迈入实际应用的关键。Liu教授想到了自己的实验室邻居张锋教授,这名华人学者以CRISPR基因编辑技术而闻名于世。如果我们借助CRISPR-Cas9系统的精准,但不让它切开双链DNA,或许就能定点对腺嘌呤进行原子重排,让它变成另一种碱基。为此,科学家们在筛选TadA酶的过程中,也同样引入了一套切不动DNA的特殊CRISPR-Cas9系统,用于精准定位。 /p p   功夫不负有心人!这套系统虽然极为复杂,但在经历了漫长的7代筛选后,Liu教授团队终于开发出了一款全新的“碱基编辑器”,其核心正是能有效针对DNA的TadA酶。无论是在细菌里,还是在人类细胞中,这款编辑器都能顺利发挥作用。在人类细胞里,它的编辑效率超过了50%! /p p style=" text-align: center " img title=" 005.JPEG" src=" http://img1.17img.cn/17img/images/201710/insimg/e1500d56-ca99-4809-932c-2bd6c898751f.jpg" / /p p style=" text-align: center "   strong  这套系统能有效用于人类细胞(图片来源:《自然》) /strong /p p   尽管这套系统利用了CRISPR-Cas9系统,但科学家们在这篇论文里指出,他们开发的技术与CRISPR-Cas9系统各有千秋。在矫正单碱基突变方面,它比CRISPR-Cas9系统更为有效,也更“干净”。它几乎没有引起任何随机插入和删除等突变,在全基因组里的脱靶效应也要好于CRISPR-Cas9技术。要知道,这可是人们对CRISPR-Cas9技术安全性的最大担忧之一。 /p p   先前,研究人员们也同样开发了编辑其他碱基的方法。目前,Liu教授的团队已经有了把C变成T,把A变成G,把T变成C,以及把G变成A的工具。诚然,这些工具目前距离人类临床应用还有不小的距离。但要知道,它只涉及碱基的原子重排,无需让DNA双链断裂,从而降低了基因治疗过程中的风险。此外,许多遗传病都是单基因突变,用这些工具进行治疗也显得更为有的放矢。 /p p   我们感谢Liu教授的团队为我们带来如此令人兴奋的基因编辑新工具。毫无疑问,基因编辑的时代已经到来,你准备好迎接冲击了吗? /p p   参考资料:[1] Programmable base editing of AT to GC in genomic DNA without DNA cleavage /p p & nbsp /p
  • 衢州牵头,浙皖闽赣四省边际质量基础检验检测技术联盟成立
    6月20日,浙皖闽赣四省边际质量基础检验检测技术联盟成立大会暨“世界认可日”系列活动在浙江衢州举行,来自浙江衢州、安徽黄山、福建南平、江西上饶四省边际城市的市场监督管理部门及四地市、县两级食品、药品、计量、质量检验机构负责人等约200人参加。本次活动由衢州市市场监督管理局主办,黄山市市场监督管理局、南平市市场监督管理局、上饶市市场监督管理局协办。据了解,这次联盟成立是顺应社会发展需要:自2017年开展质量提升行动以来,我国质量总体水平显著提高,今年《质量强国建设纲要》正式印发,更对我国质量强国建设作出整体部署。为全方位推动质量升级,充分发挥认证认可检验检测助推经济稳进提质、促进全球贸易的功能和作用,进一步提升质量认证供给水平和创新能力。衢州、黄山、南平、上饶四市地缘相近、人文相通,此次共建质量基础检验检测技术联盟,有利于共同构建区域检验检测行业发展新格局,推动开放开发经济实现新增长。会上,浙江衢州、安徽黄山、福建南平、江西上饶四省边际城市检验检测机构代表进行“四省边际质量基础检验检测联盟”电子签约。衢州市食品药品检验研究院作为首届联盟轮值主席单位,发布了“共建联盟 共创未来 ”联盟倡议书,倡议推进高端人才、仪器设备、环境设施等要素合作互助、资源共享、平台共建,共同推进检验检测行业区域一体化,把联盟打造成政府认可、企业信赖、社会赞誉的四省边际检验检测品牌。与会嘉宾共同启动“四省边际质量基础检验检测技术联盟”,并为联盟成员单位进行授牌。浙江省市场监督管理局相关负责人称,衢州以“世界认可日”活动为契机,牵头成立四省边际质量基础检验检测技术联盟,是聚焦中心、服务大局的主动作为和生动实践,希望联盟聚焦中心大局,优化营商环境,坚持需求导向,协同提供精准高效服务,加强交流合作,推进区域一体化高质量发展,充分发挥技术平台作用,为产业健康可持续发展贡献更大力量。衢州市食品药品检验研究院院长宋剑锋说,下一步将充分发挥联盟平台的体制机制优势,引导更多认证认可检验检测资源要素向四省边际城市集中,进一步打通品牌链、人才链、科技链、产业链,形成“开放、协同、创新、共赢”的发展模式,最大化发挥资源优势,为建设现代化区域中心城市注入新动力。
  • 新!基因编辑婴儿事件初步查明:系贺建奎为追逐个人名利私自开展?
    p style=" text-align: justify text-indent: 2em " 新华社广州记者从广东省“基因编辑婴儿事件”调查组获悉,现已初步查明,该事件系南方科技大学副教授贺建奎为追逐个人名利,自筹资金,蓄意逃避监管,私自组织有关人员,实施国家明令禁止的以生殖为目的的人类胚胎基因编辑活动。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201901/uepic/c87dca19-ee4b-4564-b02a-b139cb3acfc4.jpg" title=" 企业微信截图_20190121160939.png" alt=" 企业微信截图_20190121160939.png" / /p p style=" text-align: justify text-indent: 2em " 据调查组介绍,2016年6月开始,贺建奎私自组织包括境外人员参加的项目团队,蓄意逃避监管,使用安全性、有效性不确切的技术,实施国家明令禁止的以生殖为目的的人类胚胎基因编辑活动。2017年3月至2018年11月,贺建奎通过他人伪造伦理审查书,招募8对夫妇志愿者(艾滋病病毒抗体男方阳性、女方阴性)参与实验。为规避艾滋病病毒携带者不得实施辅助生殖的相关规定,策划他人顶替志愿者验血,指使个别从业人员违规在人类胚胎上进行基因编辑并植入母体,最终有2名志愿者怀孕,其中1名已生下双胞胎女婴“露露”“娜娜”,另1名在怀孕中。其余6对志愿者有1对中途退出实验,另外5对均未受孕。该行为严重违背伦理道德和科研诚信,严重违反国家有关规定,在国内外造成恶劣影响。 /p p style=" text-align: justify text-indent: 2em " 调查组有关负责人表示,对贺建奎及涉事人员和机构将依法依规严肃处理,涉嫌犯罪的将移交公安机关处理。对已出生婴儿和怀孕志愿者,广东省将在国家有关部门的指导下,与相关方面共同做好医学观察和随访等工作。 /p p style=" text-align: justify text-indent: 2em " 2018年11月26日,贺建奎团队对外宣布,一对基因编辑婴儿诞生。随即,广东省对“基因编辑婴儿事件”展开调查。 /p p style=" text-align: center text-indent: 0em " strong style=" text-align: center text-indent: 2em color: rgb(0, 112, 192) " 贺建奎“基因编辑婴儿事件”回顾 /strong /p p style=" text-align: justify text-indent: 2em " 2018年11月26日,中国科学家贺建奎在第二届国际人类基因组编辑峰会召开前一天宣布,一对名为露露和娜娜的基因编辑婴儿已在中国健康出生。按照贺建奎的说法,在受精卵阶段,这对双胞胎的CCR5基因经过了修改,出生后可以天然抵抗艾滋病,是世界首例免疫艾滋病的基因编辑婴儿。这一消息发布后,立即在全球掀起巨大波澜,数百名生物学家公开谴责了贺建奎的行为,他们认为,即使修改了胎儿的CCR5基因,也不意味着可以免疫艾滋病,而在现阶段对生殖细胞进行基因编辑,完全违背了科学研究的伦理准则,可能给人类带来一系列无法预料的后果。 /p
  • 化学蛋白质组学揭示高铁血红素-蛋白互作谱
    大家好,本周为大家分享一篇最近发表在Journal of The American Chemical Society上的文章,A Chemical Proteomic Map of Heme−Protein Interactions1。该文章的通讯作者是美国斯克利普斯研究所的Christopher G. Parker研究员。高铁血红素(heme)是人体中许多蛋白质的辅助因子,也是血液中氧气的主要转运体。最近的研究也证实了高铁血红素可以作为一种信号分子,通过与伴侣蛋白质结合而不是通过其金属中心反应来发挥其作用。然而,目前关于血红素结合蛋白的注释还不够完整。因此,本文采用化学蛋白质组学的方法去揭示人体中与高铁血红素发生互作的蛋白质谱。化学蛋白质组学是揭示蛋白质功能和发现药物靶标的重要工具。其中,最常用的是基于活性的蛋白质分析(Activity-based protein profiling,ABPP),通过结合活性分子探针标记及串联质谱分析,实现对靶标蛋白的鉴定。如图1b,本文设计了一个“全功能”活性分子探针(HPAP),共包含3个部分:1. Hemin母核,用于与靶蛋白非共价结合;2.光活化基团-双吖丙啶,可在UV光照下生成卡宾,促使分子探针与蛋白发生共价交联;3. 炔基,可在铜催化下与含有叠氮的试剂(荧光标签,生物素)发生点击化学反应,后两者组成FF-control。具体实验流程如下图1a所示,用HPAP处理不同细胞(In Situ)或不同细胞来源的蛋白质组(In vitro),HPAP中的hemin母核可与靶蛋白发生非共价结合,经UV光照,HPAP-蛋白间形成共价交联,再利用点击化学可将HPAP-蛋白与荧光素(TAMRA)或者生物素标签相连,用于后续的荧光成像(In-gel fluorescence)或者链霉亲和素纯化、LC-MS鉴别定量(MS-based I.D. and quantitation)。 图1. (a)使用基于高铁血红素的光亲和探针(HPAP)识别血红素结合蛋白的流程示意图。(b) HPAP、hemin和FF-control的结构;(c) HEK293T裂解物中与HPAP结合的蛋白的荧光成像;(d) hemin加入对HPAP与蛋白结合的影响。作者首先使用了SDS-PAGE去评估了HPAP标记蛋白的能力。如图1c所示,随着HPAP浓度的提高,胶图上条带颜色也逐渐加深,说明HEK293T细胞裂解液中与HPAP结合的蛋白在逐渐增加。如图1d所示,在10 μM HPAP的条件下,逐渐加入hemin,可以看到胶图上条带颜色逐渐变浅,说明hemin与HPAP之间发生了竞争,HPAP模拟了hemin与蛋白的结合过程。随后,作者又使用已知的hemin结合蛋白来确认HPAP捕获目标蛋白的能力。如图2所示,这些已知蛋白被HPAP成功的标记上,但由于hemin的加入,条带的颜色在逐渐变浅(TAMRA)。Western blot的结果显示,蛋白的总量并无太大变化,但hemin的竞争结合,导致与HPAP结合的蛋白量在下降。以上实验均说明,HPAP具有较好的选择性标记能力,能够模拟hemin与靶蛋白的结合,并以共价交联的方式标记在蛋白上。 图2. 用已知的高铁血红素结合蛋白确认HPAP捕获目标蛋白的能力。验证了方法的可行性后,作者将HPAP与定量蛋白质组学结合用于绘制高铁血红素-蛋白质互作谱。考察了多种细胞系,包括:人胚胎肾细胞(HEK293T)、人慢性髓系白血病细胞(K562)以及人原代外周血单个核细胞(PBMCs)。每种细胞系设置了两种实验形式:1)特异性结合实验(Enrichment):通过将HPAP识别出蛋白与FF-Control识别出的蛋白进行对比,排除非特异结合的干扰(图1b),如果同一蛋白通过HPAP富集到的量是FF-control富集到的量4倍以上,则认为该蛋白是HPAP特异性结合蛋白。2)竞争性结合实验(Competition):观察HPAP富集的蛋白在hemin和HPAP同时存在时富集到的量的变化,变化大于3倍且具有显著性差异(p<0.05)的蛋白被认为是HPAP与hemin竞争性结合的蛋白。最终确定的高铁血红素结合蛋白应满足以上两种实验的筛选标准(图3a)。如图3b-d所示,总共鉴定出378个的高铁血红素结合蛋白,其中214个来自HEK293T, 182个来自K562, 107个来自PBMC。尽管三种细胞类型之间的结合蛋白有一些重叠,但大多数靶点蛋白只存在于一种或两种细胞类型中(图3b),这暗示血红素在不同细胞中可能发挥不同的功能。其中,19个靶点蛋白是在UniProt上已经注释为高铁血红素的结合蛋白,剩余都是未揭示的结合蛋白。这些结合蛋白按照功能可划分为:转运蛋白,转录因子,支架蛋白和酶(图3c),根据代谢通路又可进一步划分(图3d)。作者最后对几个新发现的结合蛋白进行了验证,并选择IRKA1进行进一步的作用机制研究。IRKA1在调节炎症信号通路中起着关键作用,IRAK1被IRAK4磷酸化,然后自磷酸化,产生NFkB介导的炎症反应。经实验确认(图4),hemin是IRKA1的一种变构活化配体,可增强其酶活性,促进IRAK1的自磷酸化。 图3. 基于蛋白质组学的HPAP-蛋白互作分析。 图4. Hemin对IRKA1的调节作用。总之,本文设计开发了一种基于高铁血红素的光亲和探针,它可以与化学蛋白质组工作流程结合,以识别不同蛋白质组中的高铁血红素结合蛋白。利用该方法也可拓展至其他分子配体靶标蛋白的识别。 撰稿:刘蕊洁编辑:李惠琳原文:A Chemical Proteomic Map of Heme-Protein Interactions参考文献1. Homan, R. A., Jadhav, A. M., Conway, L. P., & Parker, C. G. (2022). A Chemical Proteomic Map of Heme-Protein Interactions. Journal of the American Chemical Society, 144(33), 15013–15019.
  • 超越韩春雨?新一代基因编辑技术南京大学问世
    2016年9月15日,《Genome Biology》报道了一种基于SGN的基因编辑新技术,以结构引导的内切酶(SGN,Structure-guided nuclease)实现体内外DNA任意序列的靶向和切割。论文一作为Shu Xu,论文通信作者为南京大学医学院附属金陵医院的周国华(Guohua Zhou)研究员、南京大学模式动物研究所的赵庆顺(Qingshun Zhao)教授和朱敏生(Minsheng Zhu)教授。做为基因编辑领域的从业者,读后很有感触,应BioArt主编之邀请,以半学术的方式、以随笔的形式写出,与各位分享,不严谨之处请大家各自消毒。  感触之一:构思巧妙,略有瑕疵,瑕不掩瑜。  论文中,作者巧妙地融合FEN1(Flap endonuclease-1,是一种可以特异性识别flap结构的核酸内切酶,参与DNA的复制,修复和重组过程 除此之外它还具有双链DNA特异的5‘-3’的核酸外切酶活性)和已经被成功用于ZFN和TALEN的DNA剪切结构域Fok I,结合标准化的linker(GS repeats),设计了一个chimeric protein,实现了可编程的基因编辑系统,具有以下特点:短链ssDNA导向的基因组特定位置 编辑结果是产生大片段的deletion(可以大于2.6kb) 可以在斑马鱼胚胎中成功编辑内源基因。这个构思,看得出包含ZNF以及TALEN的影子,其实这三者设计思路是一致的,其创新点在于靶向元件的选择十分巧妙,切割元件直接me too。令人惊喜的是,这种原创性工作出自我们中国科学家团队,略有遗憾的是,论文中体内靶点做的偏少,也没有以CRISPR或者TALEN为对照,导致尚不能够评估其相对低的编辑效率是来自位点特异性障碍还是来自技术本身(znf703基因编辑效率1/96≅ 1% cyp26b1基因编辑效率是3/29≅ 10%、这个位点还真不低)。另外一点,如果SGN系统编辑结果是产生大片段的deletion,那么后期的同源重组做起来要相对困难(冒昧的揣测一下:FEN-1外切酶活性是否可以dead?貌似大片段的deletion应该是5' -3' 的核酸外切酶活性引起的)。  感触之二:表述质朴谦逊,留下很大的优化空间。  通篇论文读下来,科学之外,还感觉到一种相对质朴的文风,措辞之间充盈着谦逊。这么讲,可能超出了学术范畴,所以称之为随笔,既然自己给自己开了这么一个后门,所以,干脆就谈出来,好在笔者与南京大学与作者没有关联,也就没有了套磁之嫌疑。例如,在基本术语上作者没有跟风:“SGN”而不是“ssDNA guided Nuclease”,“DNA editing”而不是“genome editing”,这些细节都能够体现出一种“独立性”。基因编辑技术的效率是极其重要的,目前看在这篇论文中,作者没有更多地报道相关的条件优化工作,例如效率瓶颈是存在于guide DNA与靶向区域的结合效率?还是存在于SGN的识别效率?整个生物学场景之中,目标区域的DNA melting究竟有多重要?是转录相关事件还是复制相关事件?(冒昧的揣测一下:是不是质粒编辑实验中采用可诱导启动子即可帮助判断?)当然,不应该要求一篇论文解决和回答这么多的科学或技术问题,但是可以预计,这个新工具可能还有较大优化空间,期待着他们更多的进一步报道。  感触之三:就是要挑战CRISPR,尽管它似乎难以逾越!  众所周知,今年5月2日《Nature Biotechnology》在线发表河北科技大学韩春雨博士“一鸣惊人”的论文,报告了一种NgAgo-gDNA基因编辑新工具,尽管因不可重复而使韩春雨“一波三折”地陷入学术诚信危机,但是,此文也算是高调地揭开了挑战CRISPR暗中竞赛的盖子。尽管CRISPR如日中天,甚至有“long live CRISPR”之类的戏言,但是,CRISPR并不完美,这种“不完美”不仅仅来自Off-target、PAM的限制性、难以实现单碱基精确编辑之类的技术瑕疵,更是来自人类对新技术的“天然贪婪”,来自根深蒂固的奥林匹克精神“更快、更高、更远”,来自我们骨子里的征服欲。正如哈佛大学医学院遗传学教授George Church所言:新技术都是脆弱的,随时可能被取代 加州大学圣迭戈分校的Prashant Mali 说的更直白“我们需要的不止这些”。所以,从技术使用者的角度看,CRISPR是大自然和几位先锋科学家送来的珍贵礼物,在欣然拥抱它的同时、当然也期待着更好的技术出现 从技术开发者的角度看,大红大紫般火热的CRISPR又是新的竞赛标杆,它令人嫉妒地、高傲地立在那里,挑逗和激发着人们超越它的冲动。  感触之四:源自天然、超越天然,从基因编辑技术演化史看“工程化”在技术工具开发中的重要性。  有人把基因编辑技术做了“断代工程”,给技术划代,很形象、也利于普及,但是有时候也比较困难。一般地,理论上可以在哺乳动物细胞中近乎任意位点切割并引发编辑的ZFN、TALEN以及CRISPR,它们在时间节点上依次出现、而且效率和便利性也越来越好,所以被称为第一代、第二代、第三代基因编辑技术(1G、2G、3G)。笔者愿意把他们称之为大众基因编辑工具,因为对应着的还有一些小众工具,鉴于其自身的技术局限和缺陷,并没有被大家普遍接受。今天,先聊一聊大众工具,随后加一些小花边,再聊聊那些正在被淘汰和被遗忘的小众工具,补充这些小众工具的演化史,可以更加清晰地看出技术发展脉络,或许从中获得另外的灵感和启发。  从大众工具看,“工程化”贯穿始终。现代中文语境中,一直有一种混淆科学与技术的“语义学”困境。科学与技术相关但不相同,有人形象地这样区分科学与技术:know what,know why是科学,know how是技术。基因编辑总体上是一种技术,其相关工具的开发,起步于科学发现,但是不止步于科学发现。例如,从现有公开文献看,CRISPR最重要的科学发现节点是2011年卡彭蒂艾(Emmanuelle Charpentier)对tracrRNA的生物学功能的阐明。但是,有时候,造物主很懒,他开辟了这个世界之随后可能置之不理了。所以,大自然留给我们的礼物,有时候配不上我们征服的野心,因此,就人类目标而言,我们从来都不吝啬和迟疑于改进和再造。果然,随后的2012年,卡彭蒂艾就会同詹妮弗刀娜(Jennifer A. Doudna)联合发表了划时代论文,把tracrRNA和guide RNA合二为一,做成了工程化的“chimeric single guide”,sgRNA由此诞生。而在CRISPR-Cas工程化、模块化方面贡献最大的,应该首推华人科学家张锋教授。除CRISPRi、 CRISPRa之外,早在2013年的综述中,张锋教授就展望了包括把Cas设计为光控模式在内的各类工程化方案。而就是在本月,又推出了两项以遥控sgRNA的方式对CRISPR实施即时控制的技术方案。哈佛和神户大学的团队先后发表了利用“工程化”措施将AID与dCas9做成chimeric protein实现了不依赖于同源重组的单碱基编辑。就在本月初,MIT的团队创建了光敏感的sgRNA技术 几乎与此同时,深圳的科学家团队报告了“化学控制”的sgRNA的控制技术。  让我们把视野再回望到ZFN和TALEN,更是工程化的杰出案例,直至今天讨论的SGN,其“动作模块”甚至“毫不动摇”地使用FokⅠ,所变换进化的是“GPS定位模块”。这堪称技术演化之中还留下了历史痕迹,好似“保守序列”一样,让人惊叹“自然进化”与“人工进化”异曲同工之奇妙。  所以,基因编辑工具开发工程化的基本方程式是:GPS定位模块+执行模块。话分两头说。  先聊“执行模块”。FokⅠ屡战屡胜,但是,一定还有其它选择,毕竟,造物主应该是慷慨的,地球生命演化了四十亿年,留下的自然遗产极为丰富。  再聊聊GPS定位模块。这个模块工作效率及操作便利性如何,是基因编辑工具“好不好使”的关键。ZFN和TALEN的主要特点是:以蛋白质特定结构域来完成靶向定位,其主要缺陷是:定位模块体外准备麻烦,工作量大成本高 相比之下,CRISPR-Cas却方便的多,所以在总体竞争中胜出。但是CRISPR-Cas还是或多或少存在Off-target的弊端,为了解决这个问题、进一步强化定位精准性,已有报道以dcas9为定位器,融合上FokⅠ,实现正义链和反义链双向定位、并形成FokⅠ二聚体造成DNA双链断裂(DSB)、引发编辑。本次讨论的南京大学的这篇文章,再一次创新了GPS定位模块,首次采用FEN-1(flap endonuclease-1)来执行定位功能,将定位指令转化为方便人工编程的guide-ssDNA,做的很巧妙。  聊到这里,下一个创新近似于呼之欲出:尽管NgAgo似乎失败了,但是它工程化改造的前景呢?pAgo做为基因组“GPS定位模块”的可能性,怎能不令工具开发者怦然心动,就连我那个简陋的实验室,都已经于几个月前就开始努力了,万一大牛们漏掉了某些创意呢?  总之,GPS定位模块+执行模块=基因编辑工具,两个模块的重点是定位模块。设计灵感源自天然存在的自然遗产、但不止步于天然存在。自然界留给我们很多的提示和启发,例如:位点特异重组酶(site specific recombinase)如何?整合酶(integrases)如何?转座酶(transpotase)如何?其它未知的recombinase如何?这个领域的干法和湿法挖掘竞赛应该一直在进行。张锋曾说到:“通过对多种酶进行探索,我们可以得到一个更强的基因组编辑工具箱。我们必须继续探索未知。”  最后的花边:从G0谈起,回顾一下“沦落”为小众的基因编辑工具。  上世纪七十年代末,利用限制性内切酶实现了质粒体外重组,标志着第一代基因工程的诞生。随后,基于同源重组的体内染色体水平的基因工程成为现实,但是由于重组率极低,必须使用抗生素抗性或营养缺陷等标记加以筛选,做不到无痕编辑。之后,尽管发展了反向筛选标记、cre位点预埋及抗性回收等技术措施,但是,还是繁琐和低效。业界对无标记的无痕基因编辑技术是十分期待的,无标记无痕的关键在于编辑效率,只要效率达到百分之一以上的数量级别,就有希望。这里让我们一起回顾一下两个小众工具,作为“绿叶”来衬托一下广为人知的大众工具。  其一,G0代的重组工程(Recombineering)。上世纪90年代末,基于λ 噬菌体的Red重组酶的重组工程(Recombineering)出现了,这个领域中,中国科学家于代冠(Daiguan Yu)跟随NIH的Donald L . Curt,做出了不少贡献,于代冠博士后来回到了中科院广州生物医药与健康研究院。基于Red系统,哈佛大学George Church于2008年在《Nature Biotechnology》上发表了改进版的MAGE,可以自动化地在数天内引发十亿计的突变 至2013年,Church又把基于ss-oligo的的重组工程从大肠杆菌扩展到酿酒酵母,这个过程还与rad51/rad54相关,被Church发展成YOGE技术,之所以特别强调Church,是因为这位伟大的科学家也是早期CRISPR的推进者之一,他采用Cas9编辑高等细胞基因组的论文,与张锋“同框”于2013年1月的Science。但是,重组工程最终没有能够再扩展到其它物种,特别是没有实现哺乳动物细胞的基因编辑。大肠杆菌的Red/ET系统,也是重组工程的重要实现工具,也是目前仍在普遍使用的分子生物学基本操作工具,这个系统源自中国科学家张友明在欧洲留学工作期间做出的开创性工作,张友明博士后来回到山东大学工作。总体上,基于寡核苷酸入侵的重组工程可扩展性不够好(局限于原核的细菌、真核最多跨到酿酒酵母),效率相对低下(在千分之一到百分之一之间),难以大幅度优化。  其二,G2.5代的Targetron。这个来自原核微生物防御机制的Targetron技术,笔者更愿意把它称之为2.5代技术,不是因为它的效率,而是因为它的GPS定位模块的工作方式,其方式是结合了“个别DNA位点的蛋白质识别”和“其它位点的RNA识别”,而且识别序列是可编辑的、可以“reprogrammable”的。这个编辑工具的大本营首推德克萨斯大学奥斯汀分校,他们有对外开放的设计软件及一些技术服务,但是,它编辑复杂、使用困难、物种可扩展性不高,梭状芽孢杆菌是可以用的,中科院微生物所李寅组和上海的杨晟组都有相关工作。总之,仍然是一个小众工具。  SGN将会如何?是小众工具还是能够发展成大众工具呢?pAgo能不能进一步W为NgAgo“正名”?能不能正名之后再发展成大众工具呢?前提是solid、可重复,并且用户友好。让我们拭目以待吧!  源于天然而超越天然,正道也!再次祝贺南京大学科学家在基因编辑领域的这项重大突破!
  • CISILE 2015专访:访亚速旺(上海)商贸有限公司佐藤道
    仪器信息网讯 2015年4月23日,由中国仪器仪表行业协会主办的&ldquo 第十三届中国国际科学仪器及实验室装备展览会(CISILE 2015)&rdquo 在中国国际展览中心开幕。   很多仪器厂商都参加了此次展会并展出了公司的新产品,部分企业负责人接受了仪器信息网编辑的采访,并介绍了新产品的创新点、应用领域等内容。   亚速旺(上海)商贸有限公司上海营业部营业主管佐藤道接受了仪器信息网编辑的采访。1933年,亚速旺公司在日本成立,至今已经拥有80年的历史。据佐藤道先生介绍,亚速旺公司来到中国已经有8年的时间,公司来中国发展的初衷是想为中国的科技发展提供高端的仪器产品。目前,在北京、大连、苏州、广东、天津等地都设有分公司,产品种类丰富,目前产品目录更新到第七册,产品数量达18000个。
  • 973计划首席科学家赵宇亮担任国际学术期刊编辑
    最近,973计划首席科学家,国家纳米中心赵宇亮研究员接到英国《纳米医学》(Nanomedicine)主编的邀请,提名他为该刊物的编辑。赵宇亮已回函接受了邀请。   《纳米医学》是英国的重要学术期刊之一,主要刊登例如纳米药物基础研究、纳米医学发展等学术文章,影响因子5.44。赵宇亮研究员是973计划重大项目“人造纳米材料的生物安全性研究及解决方案探索”首席科学家,该项目主要围绕纳米颗粒的负面影响、纳米表面化学修饰及其性质、纳米生物效应及其对健康的安全性等开展研究,包括对纳米颗粒进入身体的生物反应研究,通过表面化学修饰——改变纳米颗粒表面的性能,即通过改变纳米表面性质来控制纳米药物的性能、减少纳米颗粒的毒性研究等。这些研究对于开发未来的人体纳米药物、纳米生物效应与纳米安全性研究,化学和毒理学分析等有重要意义。赵宇亮同时还担任了美国SCI杂志《纳米技术》(Nanotechnology)的副主编。   近几年来,已经有一批973计划首席科学家和研究骨干担任了在国际上有重要影响的学术期刊编辑、编委、主审等重要职务,这说明我国的基础研究工作得到国际学术界特别是欧美学术界的广泛认可。
  • 哈佛学者宣布进行精子基因编辑,10月曾来华寻求胚胎项目合作
    p style=" text-indent: 2em " 据《麻省理工科技评论》11 月 29 日的报道,来自美国哈佛大学的科学家 Werner Neuhausser 对基因编辑技术的科研应用提出了他自己的研究意向,并计划于几周内开展实验。他曾在今年 10 月到访中国,探索在中国研究胚胎的可能性。 br/ /p p   Werner Neuhausser 希望,通过 CRISPR 技术对人类精子进行编辑,修改精子的 ApoE 基因,进而减少新生试管婴儿患有阿尔茨海默症的风险。Neuhausser 及他的团队暂未与中国任何组织或个人达成项目合作。同时,他强调在自己目前的计划中,并不包括婴儿出生这一目标选项。这位来自奥地利的不孕不育专家仍旧对生殖细胞的基因编辑持乐观和开放态度。 /p p   他预测,在不久的将来,人们会在怀孕前对胚胎进行深入的分析、筛选,甚至使用 CRISPR 技术进行编辑。未来,人们可以在诊所完成基因组检测,并获得最健康的孩子。“很可能整个体外受精领域的重心将从生育转向疾病预防。” /p p   对于 CRISPR 断开 DNA 双链进行基因编辑所可能带来的不确定性,该研究团队选择了“基因魔剪”的升级版——碱基编辑。该技术由同样来自哈佛大学的 David Liu (刘如谦)教授开发,这种编辑方法并不需要剪断双链,而是直接对单个碱基进行更改,进而将可能引入的编辑错误风险降到最低。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201812/uepic/357f7695-dd80-4442-b527-d3057e773316.jpg" title=" 1.png" alt=" 1.png" / /p p style=" text-align: center " span style=" color: rgb(127, 127, 127) " Werner Neuhausser (来源:麻省理工科技评论) /span /p p   可就在 Neuhausser 及他的团队即将开始实验之际,12 月初,美国生命科学界收到一则消息:特朗普政府要求受雇于国立卫生研究院(NIH)的科学家停止获取新的人类胎儿组织用于实验。NIH 官员表示,禁令直接影响到 NIH 的两个实验室,并且其中一项关于艾滋病病毒最初如何在人体组织中“定位”的研究更是直接被中断。 /p p   这一禁令的催化剂显然是最近公布的基因编辑婴儿事件。基因编辑婴儿的诞生迫使整个学术共同体直面胚胎编辑问题。在 11 月 29 日于香港举办的第二届人类基因组编辑国际峰会上,多名学者一致表示,现在正是为胚胎基因编辑临床试验制定严格、负责任的转化途径的关键时刻。 /p p style=" text-align: center " span style=" color: rgb(0, 0, 0) " strong 有所为,有所不为 /strong /span /p p   随着人类将基因与性状联系起来,越来越多的疾病开始被认定为基因遗传疾病。目前已经确定的单基因遗传疾病超过 6600 种,并以每年数十种的速度递增。在人群中,大约每 10 个人就有一个人携带了至少一种单基因遗传疾病的致病基因。 /p p   但携带不等同于致病,对于一些常染色体隐形遗传疾病来说,当父母双方均携带有致病基因,孩子就有可能患病。这种巧合是不幸的,人们希望用科学的工具进行“纠错”,改写生命,而 CRISPR/Cas9 就是这样一种可以对基因进行编辑的强力工具。 /p p   识别目标序列,进行 DNA 双链切割,凭借精准的切割和低廉的成本,近年来 CRISPR 成为基因编辑技术的主流,几乎席卷整个生物界,被应用于农业、医疗、临床等方方面面的前沿研究中。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201812/uepic/3741ae0e-4195-49af-95e0-8d064b96cff8.jpg" title=" 2.png" alt=" 2.png" / /p p style=" text-align: center " span style=" color: rgb(127, 127, 127) " (来源:Genetic Literacy Project) /span /p p   但 CRISPR 并不完美。精准的识别和切割并不意味着完美无瑕,脱靶效应使这个过程变成了一个“黑箱”,在 CRISPR 的“作业”过程中,会发生什么,编辑效率会是多少,谁也不知道。 /p p   不仅如此,人类虽然在不断的认识自我,但从未做到认清自我。我们远比自己想象的更复杂,绝大多数情况下,基因与性状并不是一一对应的关系。这就意味着任何一个基因的增或缺都可能有着意料之外的影响,牵一发而动全身,因而在有万全的把握之前,没有人愿意、也不敢拿人“赌一把”。 /p p   即使是顾虑重重、饱受争议,但基因编辑这项技术却是真实且具有价值的。更不可否认的是,这项技术最终会被应用于人类。 /p p   事实上,人类已经开展了体细胞编辑的临床试验,2017 年 11 月,美国完成了首例人类活体基因编辑实验,目标是治疗一种叫做“亨特综合征”(Hunter syndrome)的代谢性疾病,这是一种由于基因突变导致的遗传性疾病。而就在 一周前,美国 FDA 又通过了另外一项关于先天性黑朦病患者基因编辑的临床试验。 /p p   与在体细胞基因编辑方面形成开放的共识不同,生殖细胞一直是一个颇具争议的话题。对生殖细胞进行基因编辑,意味着这种修改将会随遗传信息传递给下一代。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201812/uepic/a89e2418-7dde-4c91-8dec-d61df13a1d02.jpg" title=" 3.png" alt=" 3.png" / /p p style=" text-align: center " span style=" color: rgb(127, 127, 127) " (图源:Genetic Literacy Project) /span /p p   Werner Neuhausser 和他的团队希望通过 CRISPR 技术对精子中的 ApoE 基因进行编辑的研究实验计划正是在此时一片批判声中进行着准备工作,预计将会在几周后展开实验将用到来自波士顿 IVF(这是一个大型的国家生育诊所网络)的精子, strong span style=" color: rgb(12, 12, 12) " 该项目最终将不会有胚胎或是婴儿产生 /span /strong 。这项实验的目标是基于之前的研究发现,ApoE 基因与与阿尔茨海默症的患病风险高度相关,遗传了两个高危拷贝的人,最终患有阿尔茨海默症的风险高达 60%。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201812/uepic/1bad067f-b16d-47fa-b62a-6fdd3ab711f7.jpg" title=" 4.png" alt=" 4.png" / /p p style=" text-align: center " span style=" color: rgb(127, 127, 127) " (来源:QUARTZ) /span /p p style=" text-align: center " strong 造物?or 救世? /strong /p p   相比于技术上的不完善,道德伦理、社会公平等问题则显得更为棘手,甚至面对这些问题,没有人能够给出确切的答案。 /p p   在技术成熟之后,我们面临的第一个问题将是:一部分掌握技术的人是否有资格代表全人类做出选择,修改人类基因库?没有人可以预见这种基因修改在演化的漫漫长河中意味着什么,况且即便可以预测,也没有个人或团体能够承担这份风险。 /p p   目前,基因编辑根据目的可以划分为治疗和增强两类,通俗的讲,可以将其比喻为“救世”和“造物”。对于罕见的严重遗传缺陷,如果不对患者基因进行遗传修正,新生儿面对的很可能就只有死亡这条路,这是一类目的为治疗或避免疾病发生所进行的基因编辑。而另外一类被称为增强的方法则是对性状的升级,让下一代跑得更快、身体更健康、智力更高,可以说是用科技制造一个 Superman。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201812/uepic/7d4fe0d8-63cf-4618-8ddc-fae71f62353f.jpg" title=" 5.png" alt=" 5.png" / /p p style=" text-align: center " span style=" color: rgb(127, 127, 127) " (图源: VERDICT) /span /p p   对于前者,学界的态度是谨慎但值得考虑的,但对后者就没有那么宽容。对于这种严厉的态度,人群中不禁发出这样的疑问:如果基因编辑可以使人生“更完美”,那为什么不可以做? /p p   针对这一疑问,回答却是另一个问句:谁会先用到这种“完美”的工具?换句话说,目前持激进和支持态度的人,会是可能享受到这种科技“福利”的人群么? /p p   对后代进行基因编辑,考量的实际上是孩子背后父母的财力与权力,如果这一问题不加以限定,未来很可能形成“富人靠科技,穷人靠变异”的滑稽局面,如果基因多样性带来的幸存者偏差最终也被消磨掉,社会公平与平等将会有新的定义。 /p p   父母总想给孩子最好的,但孩子会认同这种“好”么?与可以被赋予特定性状的物件、游戏、甚至设定都不同,婴儿同样是或者也将会成为一个具有独立人格的思考者。那么他人是否可以为他做决定,更何况是一个将会伴随一生、决定了整个游戏规则的决定? /p p style=" text-align: center " strong 争论的价值 /strong /p p   当然,技术的发展就是为了应用,换句话说,在基因编辑技术出现之初,基因编辑婴儿的出现就已经可以预见,不过是早晚的事情。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201812/uepic/444c33c5-47b6-448a-93f0-14adc67b05b0.jpg" title=" 6.png" alt=" 6.png" width=" 466" height=" 412" style=" width: 466px height: 412px " / /p p style=" text-align: center " span style=" color: rgb(127, 127, 127) " (图源:Genetic Literacy Project) /span /p p   但恰恰这个时机的问题,包含了对技术的完善、伦理的讨论等方方面面的考量,其中决定“可以做而不去做”的重要一点,就是对规则的认同。 /p p   锋利的刀刃既能救人也能伤人,而手持科学这把利刃的勇士则需要有更坚定和完整的心智。在科幻故事中,科学怪人甚至可以将致命病毒与流感病毒编辑在一起完成自己的疯狂目标,现实中这将是难以想象的灾难。而目前人类之所以得以安宁,正是因为科学家们坚守心中的底线。 /p p   而此次基因编辑婴儿事件的发生,必将会给整个生命科学界带来一股强力的冲击。短期内人们对于基因编辑的态度可能会变得更为严格甚至抵触,社会上也可能引发相关的争论。也许某一天,此时的某些观点最终被证明是错误的,但这个辩证的认知过程是永不应该被否定的。 /p p    strong span style=" color: rgb(0, 0, 0) " 参考资料 /span /strong /p p   Despite CRISPR baby controversy, Harvard University will begin gene-editing sperm Despite CRISPR baby controversy, Harvard University will begin gene-editing sperm /p
  • 《自然-生物技术》首声明否定韩春雨基因编辑,明年1月完成调查
    北京时间11月29日日凌晨, 在围绕河北科技大学韩春雨NgAgo实验的可重复性问题上争论达半年之久后, 发表该论文的《自然—生物技术》(NBT)终于发布声明称,其于今日发表的Toni Cathomen及同事(编注:美德韩三国的研究团队)的通信文章,可能会否定韩春雨原论文所称的有效编辑内源性基因的这一主要发现。如果一篇论文在发表后遭到批评,NBT会对各种批评进行审慎和全面的评估,其将在2017年1月底之前完成对韩春雨NgAgo实验的调查。以下是“声明”全文。  关于韩春雨及同事发表于《自然-生物技术》的“DNA-guided genome editing using the Natronobacterium gregoryi Argonaute”(利用NgAgo进行DNA引导的基因组编辑)一文的声明  《自然-生物技术》今天就此前发表的韩春雨及同事所著论文“利用NgAgo进行DNA引导的基因组编辑”发表了“编辑部关注”,并发表Toni Cathomen及同事的通信文章,题为“利用Natronobacterium gregoryi Argonaute(NgAgo)未能检测到DNA引导的基因组编辑”。  《自然-生物技术》已审慎考虑过所有关于韩春雨及同事原著论文的评论。在任何情况下,如果一篇论文在发表后遭到批评,我们都会对各种批评进行审慎和全面的评估,此次也不例外。今天,我们不仅发表了Toni Cathomen及同事的通信文章,这可能会否定原论文所称的有效编辑内源性基因的这一主要发现 而且我们还连同原论文一起发表了“编辑部关注”,以确保读者知晓Cathomen及同事的论文,以及另外一篇在别处发表的论文(doi:10.1007/s13238-016-0343-9)所提出的担忧。目前,原论文的作者中有两位,即韩春雨和沈啸,已同意我们的发表这一“编辑部关注”,而高峰、姜峰和Yongqiang Wu则认为这并不合适。  《自然-生物技术》认为,让原作者在能力所及的情况下对上述通信文章所提出的担忧展开调查,并补充信息和证据来给原论文提供依据是非常重要的。因此,我们将继续与原论文的作者保持联系,并为他们提供机会,以在2017年1月底之前完成其调查。届时,我们会向公众公布最新进展。  编辑部关注:利用NgAgo进行DNA引导的基因组编辑  《自然-生物技术》的编辑就上述论文发表“编辑部关注”,以提醒读者人们对原论文结果的可重复性存有担忧。此次,我们发表三个团队的实验结果(http://dx.doi.org/10.1038/nbt.3753),他们都设法去重复韩春雨及同事发表在原论文中图4的结果,这一关键图表展示了对哺乳动物细胞内源性基因位点的编辑。这些团队无一能在任何位点,或在任何高于检测方法敏感度的条件下观察到NgAgo所诱发的变异。另外一组作者在《蛋白质与细胞》期刊也报告了类似结果(doi:10.1007/s13238-016-0343-9)。  我们和论文作者进行了沟通,他们正在调查造成可重复性缺乏的潜在原因。我们向其告知了这一声明。尽管调查仍在进行中,但韩春雨和沈啸同意我们的发布这一编辑部关注,高峰、姜峰和Yongqiang Wu则认为目前并不合适。这些调查一旦完成,我们会向读者提供最新信息。  以下为英文原文  Statement regarding“DNA-guided genome editing using the Natronobacterium gregoryi Argonaute” by Han Chunyu and colleagues, published in Nature Biotechnology  Nature Biotechnology is today publishing an Editorial Expression of Concern, alongside a Correspondence entitled “Failure to detect DNA-guided genome editing using Natronobacterium gregoryi Argonaute” by Toni Cathomen and colleagues, in relation to a previously published paper “DNA-guided genome editing using the Natronobacterium gregoryi Argonaute” by Chunyu Han and colleagues.  Nature Biotechnology has carefully considered all comments relating to the original paper by Han and colleagues. As in all cases where apaper encounters criticisms after publication, we have undertaken a careful and thorough evaluation of these criticisms. Today, we are publishing not only a Correspondence by Cathomen and colleagues that may refute the main finding of efficient editing of an endogenous gene claimed in the original paper, but alsoan Editorial Expression of Concern alongside the original paper to ensure that readers are aware of the concerns raised by the paper by Cathomen and colleagues and a report published elsewhere in the literature(doi:10.1007/s13238-016-0343-9). At this time, two authors of the original paper, Chunyu Han and Xiao Shen, agree with this Editorial Expression of Concern, whereas Feng Gao, Feng Jiang and Yongqiang Wu do not feel that it is appropriate.  Nature Biotechnology believes that it is important for authors to be able to investigate the concerns raised by the Correspondence and to provide additional information andevidence to support their paper if they are able to do so. Thus, we will continue to liaise with the authors of the original paper to provide them with the opportunity to do that by January 2017. An update will be provided to the community at that time.  Editorial Expression of Concern: DNA-guided genome editing using the Natronobacterium gregoryi Argonaute  The editors of Nature Biotechnology are issuing an editorial expression of concern regarding this article to alert our readers to concerns regarding the reproducibility of the original results. At this time, we are publishing the results of three groups (http://dx.doi.org/10.1038/nbt.3753) that have tried to reproduce the results in the critical Figure 4 in the original paper by Han and colleagues, which demonstrates editing of endogenous genomic loci in mammalian cells. None of the groups observed any induction of mutations by NgAgo at any of the loci or underany of the conditions tested above the sensitivity of the assays used. Similar results have been recently reported by a different group of authors in Protein& Cell(doi:10.1007/s13238-016-0343-9).  We are in contact with the authors, who are investigating potential causes for the lack of reproducibility. The authors have been informed of this statement. While the investigations are ongoing, Chunyu Han and Xiao Shen agree with this editorial expression of concern. Feng Gao, Feng Jiang and Yongqiang Wu do not feel that it is appropriate at this time. We will update our readers once these investigations are complete.    三国科学家表示使用NgAgo无法检测到基因组编辑效果  《自然-生物技术》发表的韩国首尔大学、德国弗莱堡大学和美国梅奥研究生院的10位学者的来信显示,三个独立的实验小组利用NgAgo未能发现基因组编辑的迹象。  “三个小组都合成了5’磷酸化的gDNA序列,使用高峰等人在Addgege提供的NgAgo质粒去转染相同的细胞系,并分析了基因组DNA寻找基因编辑的迹象。”  “尽管在报道的三种细胞系中做优化NgAgo介导的基因组编辑的不同尝试,但未能检测到成功编辑靶向序列的证据。”这十位科学家在来信中说。  “我们认为,在设计用于复制Gao等人的条件下,同时转染编码NgAgo的质粒DNA和单独的5'磷酸化单链gDNA不足以诱导在原始研究中报道的培养的人细胞中的indel,实现基因编辑。”  10位署名作者名单  Seung Hwan Lee,韩国基础科学研究院基因组工程中心   Giandomenico Turchiano,德国弗莱堡大学医学中心细胞与基因治疗研究所、慢性免疫缺陷中心   Hirotaka Ata,美国明尼苏达州梅奥研究生院   Somaira Nowsheen,美国明尼苏达州梅奥研究生院   Marianna Romito,德国弗莱堡大学医学中心细胞与基因治疗研究所、慢性免疫缺陷中心,德国弗莱堡大学生物研究院   Zhenkun Lou,美国明尼苏达州梅奥诊所肿瘤研究部   Seuk-Min Ryu,韩国基础科学研究院基因组工程中心,国立首尔大学化学系   Stephen C Ekker,美国明尼苏达州梅奥诊所生物化学和分子生物部   Toni Cathomen,德国弗莱堡大学医学中心细胞与基因治疗研究所、慢性免疫缺陷中心,德国弗莱堡大学医学部   Jin-Soo Kim,韩国基础科学研究院基因组工程中心,国立首尔大学化学系。
  • GOTI技术可灵敏检测基因编辑是否脱靶
    p style=" text-indent: 2em text-align: justify " 基因编辑的“子弹”如果没有命中目标,就会产生脱靶效应,可能会导致诸如癌症等不良的基因变异。这种风险让人们对这种新的技术手段望而却步。近日,中国科学院神经科学研究所与国内外研究机构的研究者们合作开发了一种被命名为GOTI的技术,能够准确、灵敏地检测到基因编辑方法是否会产生脱靶效应,使基因编辑技术向安全地带迈进了一步。 /p p style=" text-indent: 2em text-align: justify " 此前,人们推出过多种检测脱靶的方案。但小鼠或者人类个体间基因存在很大差异,基因编辑所产生的脱靶效应会被淹没在这些差异之中。以往的检测方法很难从这些差异中分辨出哪些是基因编辑所造成的脱靶,哪些是个体本身的差异,因此无法有效判别基因编辑工具的安全性。 /p p style=" text-indent: 2em text-align: justify " GOTI颠覆了原有的脱靶检测手段。实验的精妙之处是利用小鼠胚胎做实验。在受精卵分裂成两个时,基因编辑其中的一个,并用红色荧光蛋白进行标记。编辑之后,让两个细胞继续分裂,等小鼠胚胎发育到14.5天时,基于红色荧光蛋白筛选出基因编辑细胞和没有基因编辑的对照细胞。 /p p style=" text-indent: 2em text-align: justify " 由于这两组细胞基因背景完全一致,且无需基因组体外扩增,避免了遗传背景的干扰,同时还可以清楚地展现单个碱基的突变,GOTI因此展现出强大的灵敏性,对数量极少的基因编辑脱靶也可感知。 /p p style=" text-indent: 2em text-align: justify " 此外,研究人员使用GOTI技术发现BE3单碱基编辑会产生大量脱靶突变。这一发现使人们重新审视原本认为“特别安全、几乎不会有脱靶”的单碱基突变技术,并为基因编辑工具的安全性评估带来了突破性的新技术,有望成为新的行业检测标准。相关研究结果于3月1日发表在《科学》上。 /p p br style=" text-indent: 2em text-align: left " / /p
  • 食品添加剂6-苄基腺嘌呤等检测国标通过评审
    近日,江门检验检疫局承担制定的“进出口食品添加剂6-苄基腺嘌呤的检测方法”和“进出口食品添加剂蔗糖聚丙烯醚的检测方法”两项国家标准顺利通过了国家认监委、国家标准委和中国检科院等部门的专家评审。   由于此前国内外均无相关标准,江门检验检疫局这两项国家标准的顺利通过评审为今后我国对进出口食品添加剂6-苄基腺嘌呤、蔗糖聚丙烯醚的检测提供了保证。这也是江门局首次承担国家标准的制定,填补了该局国家标准制修订工作的空白,为继续参与国家标准的制修订打下了良好的基础,标志着该局的科研能力迈上了一个新的台阶。
  • 农业用基因编辑植物评审细则(试行)
    各有关单位:   为更好指导农业用基因编辑植物安全评审工作,扎实做好安全管理,我办制定了《农业用基因编辑植物评审细则(试行)》,现予印发。   农业用基因编辑植物评审细则(试行)   一、分子特征   (一)靶基因编辑情况。提供覆盖编辑位点的PCR扩增测序或全基因组测序等资料,对于采用全基因组测序的,还应提供在编辑位点的覆盖度分析资料。相关数据应能够说明基因编辑植物中靶基因编辑情况。   (二)载体序列残留情况。提供全基因组测序及其在转化载体上的覆盖度分析等资料。相关数据应能够说明基因编辑植物中载体序列残留情况。   (三)脱靶情况。提供预期脱靶位点的PCR扩增测序或全基因组测序等资料,应采用生物信息学等方法分析预期脱靶位点,对于采用全基因组测序的,还应提供在预期脱靶位点的覆盖度分析资料。相关数据应能够说明基因编辑植物的脱靶情况。   二、环境安全   (一)可能直接改变物种关系的基因编辑植物,如抗病虫、耐除草剂性状。应提供以下资料:   1.目标性状和功能效率评价。   2.生存竞争能力,包括株高、覆盖率、繁育系数、落粒性以及种子数量、重量和发芽率等。   3.对生态系统群落结构和有害生物地位演化的影响。   4.抗病虫基因编辑植物还应提供对可能影响的非靶标生物的室内生物测定。   5.耐除草剂基因编辑植物还应提供对至少3种其他常用(非目标)除草剂耐受性的测定。   (二)其他基因编辑植物,如抗逆(抗旱、耐盐碱、抗冻、抗高温等)、品质改良、生理性状改良(养分高效利用、生育期改变、高产等)。应提供以下资料:   1.目标性状和功能效率评价。   2.生存竞争能力,包括株高、覆盖率、繁育系数、落粒性以及种子数量、重量和发芽率等。   三、食用安全   (一)可能改变关键成分的基因编辑植物,如品质改良、高产等。应提供以下资料:   1.关键成分分析(包括营养素、功能成分、抗营养因子、内源毒素、内源过敏原等)。   2.最大可能摄入水平对人群膳食模式影响评估。   3.基因编辑导致某种蛋白质表达量显著增加的,还应提供该蛋白质的表达量及其与已知毒蛋白质、抗营养因子和致敏原氨基酸序列相似性比较。   4.基因编辑导致产生新蛋白质的,还应提供:(1)新蛋白质的表达量;(2)新蛋白质与已知毒蛋白、抗营养因子和致敏原氨基酸序列相似性比较;(3)新蛋白质体外模拟胃液蛋白消化稳定性、热稳定性试验;(4)新蛋白质毒理学试验。   5.若上述数据资料(1—4项)表明目标性状可能增加食用安全风险,还需提供大鼠90天喂养试验。   (二)不改变关键成分的基因编辑植物,如抗病虫、耐除草剂、抗逆(抗旱、耐盐碱、抗冻、抗高温等)、生理性状改良(生育期改变、养分高效利用等)。应提供以下资料:   1.关键成分分析(包括营养素、功能成分、抗营养因子、内源毒素、内源过敏原等)。   2.基因编辑导致某种蛋白质表达量显著增加的,还应提供该蛋白质与已知毒蛋白质、抗营养因子和致敏原氨基酸序列相似性比较。   3.基因编辑导致产生新蛋白质的,还应提供:(1)新蛋白质与已知毒蛋白、抗营养因子和致敏原氨基酸序列相似性比较;(2)新蛋白质体外模拟胃液蛋白消化稳定性、热稳定性试验;(3)新蛋白质毒理学试验。   4.若上述数据资料(1—3项)表明目标性状可能增加食用安全风险,还需提供大鼠90天喂养试验。   四、评审程序   上述分子特征、环境安全和食用安全评价都可在中间试验阶段进行,若中间试验阶段获得的数据资料表明目标性状不增加环境安全风险,经评价合格后可直接申请安全证书。   若中间试验阶段获得的数据资料表明目标性状可能增加环境安全风险,需开展环境释放或生产性试验,经安全评价合格后方可申请安全证书。环境释放或生产性试验应在试验植物的主要适宜生态区进行。申请生产应用安全证书,应在每个主要适宜生态区至少设一个试验点。 农业用基因编辑植物评审细则(试行).pdf
  • 中科院PLOS发表RNA编辑新成果
    7月28日,来自中科院上海生命科学研究院植物生理生态研究所李轩研究组、上海巴斯德研究所郝沛研究组以及密歇根州立大学王红兵教授,在国际著名遗传学期刊《PLOS Genetics》发表一项合作研究,题为“The Landscape of A-to-I RNA Editome Is Shaped by Both Positive and Purifying Selection”。这项研究通过对多生物物种RNA编辑事件的系统发现和分析,首次揭示了RNA编辑表观遗传学位点的系统进化规律,以及其在动物神经功能和神经发育中发挥的主要作用。 自从20年前第一次被发现以来,RNA编辑已经成为多种生命形式的遗传编码变异的重要来源。RNA编辑的一个突出机制是,前体mRNA分子中腺苷的去氨基。脱氨基的事件,即A-to-I编辑,将特殊的腺苷(A)转换为肌苷(I)。在翻译中,肌苷被解码为鸟苷(G),从而导致密码子的变化,往往会引起蛋白质产物中的氨基酸替换。除了遗传再编码,A-to-I编辑已知也影响可变剪接,修改microRNA,和改变microRNA靶位点。A-to-I RNA编辑机械的主要组成部分,是作用于RNA(ADAR)家族酶的所谓的腺苷脱氨酶,ADAR酶作用于底物分子内的双链RNA(dsRNA)。关于底物靶向和编辑活性调节的细节,还是较少的;但是,有证据表明A-to-I编辑是共转录的,并且ADAR靶位点倾向于某些非随机的序列模式,并且很大程度上依赖于双链RNA的三级结构。 A-to-I RNA编辑生成的遗传变异,可扩展转录组的多样性和复杂性,它作为一个重要的机制可帮助支持关键的生物学功能。由于ADAR突变而缺乏A-to-I RNA编辑的动物模型,可导致小鼠胚胎或出生后致死,或在果蝇中显示神经缺陷。以前的研究在人类、小鼠、猴和果蝇中记录了许多A-to-I编辑靶基因。报道的编辑靶标情况,包括神经受体、离子转运蛋白和免疫反应受体。虽然多年来,科学家们都知道某些关键基因上A-to-I RNA编辑的例子,但是从进化的角度看,A-to-I编辑如何使转录组和蛋白质组多样化,以及到了何种程度,还是完全没有表征的。我们对于RNA编辑本身在进化中如何受到选择性力量的限制,还知之甚少。关于A-to-I RNA编辑提供的适应潜能,有各种不同的观点。 新一代测序技术和Model Organism ENCyclopedia Of DNA Elements (modENCODE)项目,成为模式生物的一种前所未有的资源,像果蝇和秀丽隐杆线虫,使得我们能够进行多基因组规模分析,以比较进化中的RNA编辑模式。 为了探讨RNA编辑的全景以及表征进化过程中施加在A-to-I编辑上的选择性限制,该研究小组基于modENCODE资源构建了一项研究,涉及这七种果蝇,它们有相应的参考基因组和转录组测序数据可用。该研究还补充了来自其他资源的数据,包括NCBI Sequence Read Archive (SRA)、NCBI Gene Expression Omnibus (GEO)、FlyBase和FlySNPdb数据库。 利用果蝇属作为一个模型系统——其代表了大约4500万年的进化时间,研究人员共确定了9281个A-to-I RNA编辑事件。通过与前人的研究成果,以及来自果蝇组织/发育样本或ADAR突变体的数据进行比较,并进行大规模阵列为基础的验证性实验,研究人员验证了这些事件。 通过系统发育分析,研究人员基于编辑位点的保守性,将A-to-I RNA编辑事件归类为三种不同类型。第一类位点发生在单基因家族基因上 第二类发生在多基因家族基因上,但位点不保守 第三类发生在多基因家族基因上,且位点保守。对这三类位点及其基因进行选择分析发现,第一和第二类位点均受到纯化选择(负选择)影响,而只有第三类位点受到正选择压力。重要的是,发现第三类位点高度富集于神经系统的元件和功能中。通过对这三类编辑位点进行不同组织、不同发育时期以及动物变态发育过程中的分布及变化分析,第一次发现了A-to-I RNA编辑在动物发育、交配(mating)等生理过程中动态变化的证据,进一步支持了三类不同编辑位点的重要功能。这些结果都指向神经系统功能,说明了RNA编辑表观遗传作用的适应性主要通过神经系统功能实现。神经系统功能是检验有益RNA编辑位点主要标准。以上发现,揭示了由RNA编辑表观遗传机制引入的编码可塑性,而产生一类新的二分变异。在二倍体有性生殖系统中,它是维持基因表达杂合性的一个重要机制,对克服等位杂合子分离有不可替代的优势。
  • 如何投稿英文期刊,来自编辑的十条建议
    对于母语并非英语的我们,在写论文投稿英文期刊时,总是会遇到这样那样的问题。最近,BioTechniques杂志的编辑们介绍了一系列英文写作技巧,希望能够帮大家把稿件写得更好。这里向大家介绍的是,如何处理好关键一步&mdash &mdash 投稿。   本文基于投稿中的常见问题,以编辑视角给出了十条宝贵的建议。以下这些窍门虽然不能保证你的稿件一定被采用,但至少能让你的投稿对编辑和审稿人更有吸引力。   1. 了解想要投稿的刊物   每一份杂志都有自己的宗旨和覆盖领域,这样的信息在它们的网站上都有介绍。近年来,新刊物如雨后春笋一般冒出来,电子投稿又逐渐成为主流,作者们很容易忽视不同杂志的投稿指南,不进行有针对性的修改。说实话,再没什么比这样的事更令编辑心烦了,了解杂志是投稿之前的必修课。   2. 了解投稿程序和格式要求   所有杂志对稿件都有一些特殊的要求,比如稿件应采取什么格式,投稿需要提供什么材料等等。有些杂志甚至对不同类型的稿件会提出不同的要求,BioTechniques杂志就是这样。如果你忽视这些要求,编辑们可能就不会认真对待你的来稿。   3. 使用主动语态   听起来很简单是不是?实际上,使用主动语态是一种表达技巧。主动语态对于投稿而言是不是真的这么重要呢?让我们来举两个例子:   例1:被动语态   &ldquo Here we have demonstrated through a variety of experiments that when three additional amplification cycles are added to the existing protocol, the final product yield can often times be increased.&rdquo   例2:主动语态   &ldquo Here we show through a variety of experiments that adding three additional amplification cycles to the existing protocol often increases the final product yield. &rdquo   看到了吧,使用主动语态的句子要容易理解得多,这样的表述还提升了语句的影响力。   4. 避免冗长的表述   我们可以将上面的句子作进一步的修改,去掉含义模糊的表述(例如&ldquo a variety of experiments&rdquo )让句子说服力更强。   例3:浓缩   &ldquo Here we show that adding three amplification cycles increases final product yield. &rdquo   我们可以看到,句子越简练就越容易引起读者的注意。   5. 进行仔细的核查   每个人都免不了犯错误,你的论文稿也不会那么容易就毁在几个错别字上。不过,语法和格式漏洞百出的论文,很难博得编辑和审稿人的好感。我们在投稿前应该仔细检查整篇文章,甚至请&ldquo 外援&rdquo 来帮忙校对。因为对文章越熟悉的人,越容易忽略掉其中的问题。在使用特殊术语或缩写时,检查用词的准确性和一致性也很重要,尤其是论文不同部分由不同作者完成的时候。   6. 好好写投稿信   写投稿信是投稿的一个关键步骤,这封信往往是杂志编辑对你的第一印象。投稿信应当用1-2句话直截了当地概括你的研究和关键发现。这句话最好不要直接从摘要中复制,应该写的更简短但不那么正式。此外你还应当说明,这篇文章符合这个杂志的宗旨和范畴。   7. 全面了解参考资料   当编辑给你的研究定位时,简介部分用到的参考资料是非常重要的。前文已经说过,现在的期刊比十年前多得多,因此彻底的文献检索和适当的引用很有必要,只有这样读者才能正确理解这项研究在整个领域中的地位。此外,彻底的文献检索也能增强你对相关领域现状的理解,有助于写出更有影响力的投稿信。   8. 注意图片和说明的格式   对于图片和说明,所有杂志都有自己的特殊规定。然而这样的规定很容易被作者们忽视,尤其是我们被拒稿后再投给另一份杂志时。这样的疏忽只会毫无疑义地拖长整个审稿过程,而你的论文会因为格式问题被打回来。   9. 别怕向编辑提问   编辑和审稿人并不总是正确的,他们有时也会犯错误,在回信时给出不清晰的修改意见。这时你不必埋头苦想修改要求到底是什么意思,有没有必要进行额外的实验。更简单的解决方法是,直接联系编辑问一问他需要些什么,以及他提出修改意见的原因。编辑们是非常乐意进行解释的,这往往是缩短审稿时间提高效率的最好办法。   10. 如何有效地进行反驳   在收到拒稿或者修改建议之后,我们可能需要对此进行反驳,这时应当采取恭敬有礼的态度。一般来说,这样的回复都是两三个编辑和几个审稿人经过深思熟虑做出的决定。因此,email里简单说一句&ldquo 你们错了,重新考虑下&rdquo ,是不能让编辑们改变决定的。成功的反驳,需要解决编辑或审稿人所担心的问题。这一阶段不要发送修改后的论文稿,如果编辑们提出的主要问题没有解决,他们可能根本就不会去看。此外,就算你成功反驳了编辑们的意见,他们通常还是会要求你做出特定修改然后再提交稿件。   原文检索:   Special Series: Manuscript Tips
  • 眼见为实:视频级原子力显微镜显示实时CRISPR基因编辑
    自2012年以来,研究人员常用一种叫做CRISPR的强大“基因组编辑”技术对生物的DNA序列进行修剪、切断、替换或添加。CRISPR来自微生物的免疫系统,这种工程编辑系统利用一种酶,能把一段作为引导工具的小RNA切入DNA,就能在此处切断或做其他改变。CRISPR已经成为生命科学领域受关注的基因编辑技术,其效果得到大家一致认可。虽然科学家可通过RT-PCR、WB等方法间接证明CRISPR的功能,但仍未有直接的证据来证实。究其原因:一是生物分子间的相互作用速率快,需要高速的成像手段才能捕捉到;二是生物分子比较小,通常为纳米,普通显微镜由于受光学衍射限所限不能分辨。近,日本Kanazawa University的科学家利用 视频原子力显微镜HS-AFM 成功观察到了实时CRISPR基因编辑,为CRISPR技术的有效性提供了直接的证据。HS-AFM视频结果直观显示构象差异HS-AFM视频结果显示apo-Cas9为柔性构象(flexible conformations),而Cas9–RNA则为稳定的双叶型构象(stable bilobed architecture)。 Cas9-RNA介导的PAM依赖性DNA识别Cas9-RNA靶向定位到目的DNA,形成Cas9–RNA–DNA复合体。Cas9-RNA对目的DNA进行剪切 在Mg2+存在的条件下,Cas9-RNA对目的DNA进行特异性剪切。 原文连接:https://www.nature.com/articles/s41467-017-01466-8 这项工作的完成主要借助了日本RIBM公司研发的超高速视频原子力显微镜HS-AFM,HS-AFM突破了传统原子力显微镜“扫描成像速慢”的限制,能够实现在液体环境下超快速动态成像,分辨率为纳米水平。待测样品无需特殊固定,不影响生物分子的活性,尤其适用于生物大分子互作动态观测。推出至今,全球已有80多位用户,发表SCI论文200余篇,其中包括Science, Nature, Cell 等杂志。 新品推荐——HS-AFM来到中国为了更好地服务国内客户,Quantum Design中国子公司将这款超高速视频原子力显微镜引进中国,如果您有科研上的需要,欢迎致电 010-85120280 联系我们!相关产品链接 超高速视频原子力显微镜:http://www.instrument.com.cn/netshow/SH100980/C280994.htm超分辨单分子动力分析仪(荧光光镊):http://www.instrument.com.cn/netshow/SH100980/C268358.htm高通量分子操控分析仪(声镊):http://www.instrument.com.cn/netshow/SH100980/C268360.htm超高分辨率双光镊:http://www.instrument.com.cn/netshow/SH100980/C280362.htm 层流微流控系统:http://www.instrument.com.cn/netshow/SH100980/C280385.htm 新一代超分辨荧光显微镜:http://www.instrument.com.cn/netshow/SH100980/C273664.htm双光子荧光显微镜:http://www.instrument.com.cn/netshow/SH100980/C132637.htm光片照明显微镜:http://www.instrument.com.cn/netshow/SH100980/C132856.htm
  • 北大药学院案例分享 | MST技术助力新型RNA编辑系统开发
    Part 1研究背景RNA的A-to-I编辑是一种普遍发生于细胞中的转录后修饰。在RNA上,依赖腺苷脱氨酶(ADAR)介导的腺苷脱氨作用可以通过引导RNA和外源性ADAR酶实现对RNA特定位点的A-to-I编辑,从而通过纠正突变的RNA来实现疾病治疗。然而,外源性ADAR融合蛋白的异位表达会增加脱靶编辑的风险,故利用内源性ADAR蛋白的A-to-I的编辑策略更有发展前景。Part 2研究内容2023年北京大学药学院汤新景教授开发出一种新颖且便捷的光触发位点特异性RNA编辑系统,并将研究成果发表在Cell Chemical Biology上。为了开发内源性ADAR蛋白的A-to-I可控的编辑策略,作者设计了一种末端有胆固醇修饰的反义寡核苷酸(3’-笼式arASO):由一段2’-OMe修饰的可编程反义域、用于与靶mRNA杂交的硫代磷酸修饰的3’端和位于5’端的用于招募ADAR蛋白的工程化GluR2 R/G基序组成,这种设计能通过招募内源性的ADAR蛋白来实现位点特异性的RNA A-to-I编辑。并且,作者通过2D细胞和3D肿瘤球的实验验证了3’-笼式arASO在的光触发A-to-I编辑能力。图1:3’-笼式arASO编辑UAG终止密码子,启动EGFP表达Part 3MST技术应用为了研究3’-笼式arASO抑制位点特异性的机制,作者使用MST技术检测了3’-笼式arASO与蛋白和核酸的互作:ADAR1-p150是主要的RNA单碱基编辑器。MST技术确定了3’-笼式arASO与ADAR1-p150的结合亲和力与arASO与ADAR1-p150蛋白的亲和力接近,表明胆固醇修饰并不会对其在5’端的ADAR-招募结构域造成明显影响。图2:MST技术检测ADAR1-p150与3’-笼式arASO/arASO亲和力MST技术检测3’-笼式arASO与不配对的腺苷的单链靶RNA(ssRNA)的结合亲和力检测结果表明,3’-笼式arASO在没有光刺激的情况下与ssRNA(AC错配)的结合亲和力比其阳性对照的结合亲和力低17.4倍,但在给予光照后,其亲和力恢复到与阳性对照组相当的水平(左图)。这表明,在3’-笼式arASO的反义结合域3’端的胆固醇修饰阻断了其与ssRNA(AC错配)的结合。而胆固醇修饰对arASO与完全配对的ssRNA的结合亲和力没有影响(右图)。图3:MST技术检测结果说明胆固醇修饰阻断了3’-笼式arASO与靶RNA的结合从而抑制其位点特异性编辑。https://doi.org/10.1016/j.chembiol.2023.05.006IF: 8.6 Q1Part 4技术优势MST技术可应用于不同样品类型的亲和力检测,不论是蛋白和核酸,还是核酸和核酸。此外,亲和力检测时无需固定,即使核酸的极性较强,也不会出现黏附等问题。MST亲和力检测时间短,只需要10min即可完成,无需担心核酸降解。
  • “沉睡”古菌随基因组编辑技术“重现江湖”
    “最近,这种菌都脱销了,订单有两厘米厚。”中国普通微生物菌种保藏管理中心(CGMCC)高级工程师辛玉华近日在接受《中国科学报》记者采访时说。她所说的菌叫作格氏嗜盐碱杆菌。自河北科技大学副教授韩春雨因利用该菌实现基因组编辑技术NgAgo-gDNA而出名之后,这种在保藏室里睡了20年“大觉”的古菌也跟着火了。  据透露,该菌种是1996年由中科院微生物所老所长周培瑾从苏格兰交换到中国的,其最先分离自肯尼亚马加迪湖。这种菌只是CGMCC保藏的数千种微生物中的一员。通常,它们或是通过真空冷冻干燥法,或是通过-190℃左右的液氮超低温冻结法处于休眠状态,其中一些甚至已在冷藏室中睡了半个多世纪。然而,一旦有需求,它们就会被唤醒并投入工作。  “CGMCC就像一个‘生物银行’,通过整合大家的力量,汇集研究中获得的各种微生物菌种,并将其功能转变为生物技术服务于社会。”微生物所副所长东秀珠对《中国科学报》记者说。  生命的“银行”  据悉,目前CGMCC保存的各类微生物资源超5700种,5万多株。它们按保藏形式可分为公开、非公开以及专利程序保藏等。“若从专利微生物保藏数量来看,我们的保藏量已超过1万株,在全球位居第2位。”辛玉华说。  与其他知识产权专利不同,微生物是唯一一种可通过专利保护的生命形式。过去几年来,我国专利微生物年保藏量增长速度一直位居世界第一。若加上武汉大学典型培养物保藏中心(CCTCC)的相关数据,我国在78个《国际承认用于专利程序的微生物保存布达佩斯条约》签约国中,保藏量已仅次于美国。  “CGMCC是公益性机构,一株菌只有500~1000元,不仅价格不贵,而且质量有保证。”东秀珠说。否则,如果科研人员自己分离菌种,在国际上得不到承认就会造成麻烦 同时,新微生物物种也需要经过权威鉴定、保藏才能在国际期刊生效发表,而CGMCC就具有这样的权威性。  该中心可保证微生物不会死、不被污染、避免退化。以放线菌为例,东秀珠介绍说,临床所用抗生素药物的70%来自微生物中的放线菌,而这类细菌在生产中最怕传代,因为反复传代就会退化。而该中心已经保藏了7000余株状态良好的放线菌。  战略性宝藏  关于菌种保藏的意义,东秀珠给记者讲了一个故事。聚合酶链式反应(PCR)就像“DNA复印机”一样,能实现体外DNA扩增,对分子生物学具有划时代的意义,美国生化学家凯利?穆利斯也因发明该技术获得了诺奖。但穆利斯一开始使用的大肠杆菌DNA聚合酶不耐高温,每次循环都要重新加入,非常麻烦。后来,他从美国生物保藏中心找到产生耐高温Taq酶的嗜热微生物,才使PCR广泛应用。  目前,CGMCC已经汇集了我国(除高致病菌外)80%的微生物物种。随着知识的积累,很多微生物正在被“唤醒”,并在各个领域一展身手。  例如,抗癌药物紫杉醇来源于生长速度缓慢的红豆杉,但若将其基因放在微生物中生产该蛋白并合成药物,就能大批量快速生产 生产汽车轮胎需要大量橡胶树,微生物所研究人员已在CGMCC找到了相应的微生物前体 该所研究人员还筛选制备了可用于多种青草的青储饲料菌剂,促进了西部数省畜牧业的发展。  此外,CGMCC还打造了一支以博士牵头的技术团队。“他们一半时间做管理,一半时间做科研,不断提高保藏技术并满足日益提升的科研需要。”东秀珠说。正因如此,很多国家级微生物项目直接落到了该中心的头上。比如,环保部指定CGMCC为进口环保菌剂的鉴定部门。国家质检总局、中国海关等也在技术层面与中心合作,建立检疫性真菌检测的国家标准。  支撑未来发展  今年5月,美国宣布启动“国家微生物组计划”,这是继2012~2014年美国在微生物学研究领域投资9.22亿美元之后的又一重大举措。目前,在微生物所科学家的倡导下,我国正在推进微生物组研究计划,竞争国际微生物领域战略高地。东秀珠认为,CGMCC必将发挥更大的支撑作用。“微生物资源是生物技术创新的重要源泉。未来,微生物资源保藏一定要保证,这个要是丢了,几代人都积攒不起来。”她严肃地说。  “至今为止,地球上99%的微生物我们还不知道如何培养。”东秀珠说,“只有经过培养,才知道它们适宜什么样的环境,能够做什么,也才能实现利用,所以未来发展空间很大。”  好消息是,当前我国专利微生物菌种年保藏量每年都达到4位数。不仅如此,2011年,世界微生物数据中心(WDCM)作为我国生命科学领域的第一个世界数据中心从日本落户中国,也体现了我国在微生物研究领域的竞争实力。  然而,我国生物保藏仪器设备研发却依旧存在短板。作为全国最先进的微生物资源服务中心,CGMCC有着全世界一流的实验设备,然而记者在实验室里看到,诸如氨基酸分析仪、紫外可见分光光度计、变性高效液相色谱仪等必备高端设备均产自德国、美国、日本,而国产的仅有普通冰箱、电磁炉、色谱仪等低端设备。“我们的工业制造确实需要提升,否则怎么竞争?”辛玉华说,当前我国在科研设备方面尤其需要自主创新。
  • 从电影《毒液》到基因编辑婴儿
    p style=" text-indent: 2em text-align: justify " 漫威系列电影《毒液:致命守护者》(Venom)最近在热映。按照网上公开的剧情简介,剧中德雷克博士的生物公司从外星带回了4个外星液态生物样本,这些外星液态生物必须寄宿在人或动物身体形成“共生体”才能维持它们的生命,并使其宿主具有超强的能力。就像人类以往发现某个新的物质一样,德雷克博士迫切地想知道这种外星液态生物与人结合后会怎样。于是,他弄来了许多街头流浪汉进行这项试验,并称之为“志愿者”。而后男主与该业态外星生物阴差阳错结合在一起,并展开了相应剧情。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201811/uepic/335bfad2-7866-4e82-90f7-b1a44eecc560.jpg" title=" 微信图片_20181127094010.jpg" alt=" 微信图片_20181127094010.jpg" width=" 299" height=" 448" style=" width: 299px height: 448px " / /p p style=" text-align: center " span style=" color: rgb(165, 165, 165) font-size: 16px " 《毒液:致命守护者》电影预告海报 /span /p p style=" text-align: justify text-indent: 2em " 结合《毒液》里号称“最恶心”超级英雄的遭遇,今天就想跟大家聊一下与临床试验和志愿者有关的那些事。 /p p style=" text-align: justify text-indent: 2em " 根据我国现行的《药物临床试验质量管理规范》或《医疗器械临床试验质量管理规范》,临床试验应当遵循《世界医学大会赫尔辛基宣言》确定的伦理准则;伦理审查与知情同意是保障受试者权益的主要措施;知情同意是指向受试者告知临床试验的各方面情况后,受试者确认自愿参加该项临床试验的过程,应当以签名和注明日期的知情同意书作为证明文件;受试者参加试验应当是自愿的,且在试验的任何阶段有权退出而不会受到歧视或者报复,其医疗待遇与权益不受影响;如发生与试验相关的伤害,受试者可以获得治疗和经济补偿;受试者在试验期间可以获得免费诊疗项目和其他相关补助。总的来说,临床试验可能有收益,也可能有风险,但必须对风险进行管控。这些都将在受试者签署的《知情同意书》等一系列文件中得到体现。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201811/uepic/7c80fd43-d73d-4bf2-8c0c-6fe5659748dd.jpg" title=" 1.jpg" alt=" 1.jpg" / /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201811/uepic/7411316e-9737-48c6-9ace-72ffb99e2f20.jpg" title=" 2.jpg" alt=" 2.jpg" / /p p style=" text-align: center " span style=" text-align: justify color: rgb(165, 165, 165) " 图片来源:国家食品药品监督管理总局 /span /p p style=" text-indent: 2em " span style=" text-align: justify " 对于身患绝症的病人,能参加国内外新药的临床试验更像是抓住了一根救命稻草,也许他们获得的生命延长收益远大于其承受的药物副作用。但别忘了,临床试验也会招募健康志愿者,还在念书的大学生、研究生们是受青睐的优质招募对象。所以在这里要强调,请打算自己或家人参加临床试验的同学 span style=" text-align: justify color: rgb(255, 0, 0) " strong 务必逐字逐句,逐字逐句,逐字逐句仔细阅读《知情同意书》 /strong /span 再决定要不要签字。千万不要随便签字! span style=" text-align: justify color: rgb(0, 0, 0) background-color: rgb(255, 255, 255) " strong 法规要求知情同意书应当采用受试者或者监护人能够理解的语言和文字。知情同意书不应当含有会引起受试者放弃合法权益以及免除临床试验机构和研究者、申办者或者其代理人应当负责任的内容。 /strong /span 不要只看见免费体检以及那几百块的补贴而忽视试验风险。务必了解清楚自己将要接受的干预因素是哪些。入组后如果发现干预因素影响了自己的健康,一定及时要求治疗,必要时可以直接退组。 /span br/ /p p style=" text-indent: 2em " span style=" text-align: justify " 要说以身试药的科学家,那在中外屡见不鲜。尤其在早年临床试验条件不够发达时期许多研究人员奋不顾身以身试药,他们的精神值得我们敬佩,比如我国诺奖得主屠呦呦教授就曾亲自试药。今时不同往日,医学飞速发展,制度日趋完善。请大家为医药事业发展贡献力量的同时一定要合规合法。为什么这么说呢?其实临床试验也是一个非常庞大的产业链,也有灰色地带,曾有不止一家媒体深度报道了“职业试药人”。感兴趣的朋友可以自行检索,本君就不再展开。 /span br/ /p p style=" text-indent: 2em " span style=" text-align: justify " 再说回电影《毒液》,意外被附体的男主似乎获得了更多的收益,那些无知的流浪汉有没有充分了解试验内容和风险?显然没有。在受试者被外星生物附体后生命垂危之时有没有人道主义的急救措施?显然没有。没有人性的博士是邪恶的,而最终德雷克博士也被邪恶的外星生命附体,真是没有最邪恶,只有更邪恶,等待这对邪恶共生体的结局也只能是灰飞烟灭。不知道当初作者创作这些情节的时候有没有翻过美国公共卫生部的黑历史。该机构从1932年到1972年在黑人身上进行梅毒试验,并且被试者全部不知情(欲了解详情,请自行搜索“塔斯基吉梅毒试验”或者“Tuskegee syphilis experiment”)。还有美国在1946-1948年间进行的抗生素治疗梅毒的试验(欲了解详情,请自行搜索“危地马拉梅毒试验”或者“Guatemala syphilis experiment”)。对此,本君想说,真的是“艺术来源于生活”啊。 /span /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201811/uepic/a803dbc4-eb75-4ceb-8b2c-d5446afeeab0.jpg" title=" 3.jpg" alt=" 3.jpg" / /p p style=" text-align: center " span style=" color: rgb(165, 165, 165) " 塔斯基吉梅毒试验中医生从受试者身上抽取血液。图片来源于网络 /span br/ /p p style=" text-align: justify text-indent: 2em " 临床试验不单单要考虑医学问题,还必须要提前考虑伦理问题。 /p p style=" text-align: justify text-indent: 2em " “医学伦理”这个词,想必通过持续发酵的“免疫艾滋病的基因编辑婴儿”事件,各位同学都不再陌生。从项目领导者贺建奎博士高调在Youtube上发布视频宣布这一“惊人”的成果,到贺博士号称正在开会不方便接受采访,到各级机构纷纷撇清关系;从某些主流媒体以“厉害了我的国”模式进行高调报道,到科技媒体纷纷质疑,到《人民日报》官方微信的综合报道??说实在的,本君也被搞得云里雾里,真相如何难以分辨。但贺博士视频里言之凿凿、充满自信与骄傲的基因编辑婴儿“露露”和“娜娜”应该已是既成事实。本君能找到关于药品、医疗器械甚至人类干细胞的临床试验规范文件,但到成文时为止,还没有找到基因编辑技术用于人类胚胎及人类生育的研究规范文件。法无禁止则可行?对人类受精卵进行基因编辑这种重大的医学实验,像网上流传的那样,区区一家私立医院的伦理委员会是不是有资格批准?在有医学方案阻断HIV从父亲传播到胎儿的前提下,采用激进的基因编辑手段只是为了预防婴儿未来的HIV感染是否合乎科学逻辑?受试者有没有了解CRISPR/Cas9基因编辑技术的所有益处和风险,包括饱受争议的CRISPR/Cas9脱靶效应?这些问题不知道未来有没有答案。本君能做的就是再次告诫大家,无论是以科研为目的,还是以治疗为目的,一旦大家参与了相关临床研究,务必核实清楚主办方资质,逐条仔细阅读知情同意书内容,甚至要搞清楚伦理审批部门的资质。不是说主办方告诉你哪哪儿批准了就可以的,举个可能不太恰当的例子,就好比你家没有权力批准邻居老李家的孩子可不可以在你家挨揍。 /p p style=" text-indent: 2em " span style=" text-align: justify " 科学研究真的是把双刃剑,能诛魔,亦能助人成魔。我们需要的是人与自然和谐相处的科学进步,如果所谓“全球首个”、“诺奖级”科技进展需要践踏生命、违背人伦,本君觉得不要也罢。 /span br/ /p p style=" text-indent: 2em " span style=" text-align: justify color: rgb(0, 0, 0) " strong 衷心希望无辜的受试者“露露”和“娜娜”能不受影响,这两个小生命能像其他普通婴儿一样健康快乐成长。 /strong /span /p p span style=" color: rgb(165, 165, 165) font-size: 14px " 相关资料: /span /p p style=" text-align: justify " span style=" color: rgb(165, 165, 165) font-size: 14px " 1. 《药物临床试验质量管理规范》(局令第3号)网址:http://samr.cfda.gov.cn/WS01/CL0053/24473.html /span /p p style=" text-align: justify " span style=" color: rgb(165, 165, 165) font-size: 14px " 2. 《医疗器械临床试验质量管理规范》(国家食品药品监督管理总局 中华人民共和国国家卫生和计划生育委员会令第25号)网址:http://samr.cfda.gov.cn/WS01/CL1101/148101.html /span /p p style=" text-align: justify " span style=" color: rgb(165, 165, 165) font-size: 14px " 3. “赛先生”微信号关于“免疫艾滋病的基因编辑婴儿”的报道——激烈反弹:基因改变婴儿导致生物医学界普遍批评 /span /p p style=" text-align: justify " span style=" color: rgb(165, 165, 165) font-size: 14px " 4. 澎湃视频,贺博士对项目的4分半钟介绍。 /span /p p style=" text-align: justify " span style=" color: rgb(165, 165, 165) font-size: 14px " https://www.thepaper.cn/newsDetail_forward_2671728 /span /p p style=" text-align: justify " span style=" color: rgb(165, 165, 165) font-size: 14px " 5. 《人民日报》官方微信对于事件的综合报道——最新!“基因编辑婴儿”事件震惊社会,官方启动伦理调查 /span /p p style=" text-align: right " span style=" font-size: 14px color: rgb(0, 0, 0) " (本文由 strong 乐只君子 /strong 供稿) /span /p
  • 复旦王永明团队开发出高精准CRISPR基因编辑工具酶 多场景可取代SpCas9
    CRISPR/Cas9被誉为“基因魔剪”,是基因编辑的利器,在基础研究、农业育种和基因治疗等领域得到了广泛应用。但是CRISPR/Cas9工具还存在很多局限,常用的SpCas9编辑范围广,活性高,但是其基因较大,给病毒载体递送带来困难。常用的SaCas9基因小,但是编辑范围小。其他Cas9活性低,应用较少。为了找到理想的Cas9工具酶,复旦大学王永明课题组建立了大规模筛选Cas9的平台,对自然界中数百种Cas9进行系统性筛查。2020年该课题组筛选到了SauriCas9,具备活性高、编辑范围广、基因小等优点,但是精准性不理想,介于SpCas9和SaCas9之间。2021年3月15号,王永明课题组联合王红艳和李继喜课题组,在 Nucleic Acids Research 杂志发表了题为:Discovery and engineering of small SlugCas9 with broad targeting range and high specificity and activity 的研究论文。研究团队经过鉴定和改造,开发出了SlugCas9-HF工具酶,性能突出,它识别简单的NNGG PAM,具备活性高、精准性高、编辑范围广、基因小等优点。研究团队同时还开发出ShaCas9、SlutrCas9、Sa-SlugCas9等工具。为了方便研究人员选择合适的工具酶使用,作者对本团队开发的7种工具酶和SaCas9的活性和精准性进行了比较。综合看,SlugCas9-HF在编辑活性、精准性和编辑范围都具有优势。在12个内源位点对8个工具酶活性进行比较该研究的第一作者胡子英博士兴奋地说:“我们后继工作对SlugCas9-HF和SpCas9的活性进行了比较,它们活性没有差异。也就是说SlugCas9-HF兼具了SpCas9和SaCas9的优点。这是我们一直寻找的理想工具酶,它在很多场景都可以取代SpCas9和SaCas9。我们还找到很多有优点的工具酶,将陆续与同行分享。”利用GFP报告基因对8个工具酶在脱靶位点的编辑效率进行比较。在脱靶位点编辑效率越低精准性越高。胡子英博士和张成东博士是论文的共同第一作者,王永明教授、王红艳教授和李继喜教授是论文的共同通讯作者。跟着我们涨知识!由仪器信息网举办的第五届PCR技术网络会议将于4.14日-4.16日举行,我们特别邀请到王永明老师给我们讲诉这把神奇的基因魔剪,大家千万不要错过噢~点击此处即可报名听会!
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制