当前位置: 仪器信息网 > 行业主题 > >

间氟苯乙醚

仪器信息网间氟苯乙醚专题为您提供2024年最新间氟苯乙醚价格报价、厂家品牌的相关信息, 包括间氟苯乙醚参数、型号等,不管是国产,还是进口品牌的间氟苯乙醚您都可以在这里找到。 除此之外,仪器信息网还免费为您整合间氟苯乙醚相关的耗材配件、试剂标物,还有间氟苯乙醚相关的最新资讯、资料,以及间氟苯乙醚相关的解决方案。

间氟苯乙醚相关的资讯

  • 聚苯乙烯磁性微球正式上架
    产品特点:功能化聚苯乙烯磁性微球是指通过化学修饰结合不同的官能团及具有特异性的抗体、核酸和蛋白,应用于核酸纯化、细胞筛选、免疫分析等多个领域。其表面可以修饰不同的功能基团,如氨基、羧基、羟基等,用于结合不同的生物分子,实现靶向检测和诊断等应用。此外,聚苯乙烯磁性微球还具有以下三大特点:1、单分散性好:粒径均一,可制备出单分散性良好的磁性微球。比表面积大,吸附性好:高比表面积有利于提高与生物分子结合的密度和效率。2、稳定性好:不易发生聚集和沉淀,可长时间保持稳定。材料亲和性好、生物相容性好:具有良好的生物相容性和生物安全性,可应用于生物医学和药物制剂等领域。3、磁响应性强:在外加磁场的作用下,可以方便地实现磁分离和定向操控。应用背景:氨基、羧基化聚苯乙烯磁性微球的应用背景主要基于其独特的物理和化学性质。通过氨基和羧基化修饰,这种材料可以在表面引入多种功能基团,从而实现对生物分子的特异性结合。由于其具有粒径均一、稳定性好、磁响应性强等特点,氨基、羧基化聚苯乙烯磁性微球在生物医学、化学、材料科学等领域具有广泛的应用前景。在生物医学领域,氨基、羧基化聚苯乙烯磁性微球可以用于药物载体、靶向药物、免疫分析、生物传感器等领域。通过其表面的氨基和羧基功能化,这种材料可以与生物分子(如蛋白质、酶和DNA等)相互作用,实现生物分子的分离、纯化和检测。此外,氨基、羧基化聚苯乙烯磁性微球还可以用于制备组织工程支架、细胞培养基质等领域,为组织再生和细胞培养提供良好的微环境。在化学和材料科学领域,氨基、羧基化聚苯乙烯磁性微球可以用于制备高分子复合材料、催化剂载体、过滤材料等。由于其大孔容积和高比表面积等特点,这种材料可以作为添加剂改善材料的性能和特性。此外,氨基、羧基化聚苯乙烯磁性微球还可以用于色谱填料和分离技术领域,实现高纯度、高回收率和高分离效率的分离效果。海岸鸿蒙颗粒标准物质的研发已经达到国内领先、国际前沿水平,其中PM2.5、可见异物等百余种标准物质的研制成功填补了国内的空白,被国家市场监督管理总局批准为国家一级、二级标准物质。其颗粒产品包括颗粒标准物质和功能微粒两大类,共有3000多种产品,涵盖颗粒尺寸从30纳米到2000微米,涉及聚苯乙烯、金属、二氧化硅、胶体金和多元琼脂糖等不同材质以及彩色微粒、荧光微粒、磁性微粒等不同功能的微粒产品。此外,海岸鸿蒙还可根据用户需可根据客户需求,提供多种材质,不同粒径,不同功能,单分散、窄分布,近乎于标准球体的微粒定制服务。产品特点: match 产品特点:产品特 啊啊特点:啊大
  • 全自动粘度测量仪测聚苯乙烯的特性粘度及分子量
    聚苯乙烯(Polystyrene,缩写PS)是指由苯乙烯单体经自由基加聚反应合成的聚合物。苯乙烯侧基的苯环加强了分子的刚性,也使聚苯乙烯相较于其他聚合物拥有更优良的性能和更广泛的用途,是四大通用塑料之一。聚苯乙烯(PS)在外观上呈无色透明状,可以自由着色,并具有优良的绝热和绝缘性能。它的玻璃态转变温度高于100℃,因此经常被用来制作各种需要承受开水的温度的一次性容器,以及一次性泡沫饭盒等。鉴于聚苯乙烯(PS)材料优良的性能和使用的广泛性,选用合理精准的产品质量检测手段就显得十分重要。乌氏粘度法是一种操作简便、精准度高且应用广泛的高分子材料检测方法,在聚苯乙烯(PS)材料研发和质量控制中用黏均分子量来表征相关数据准确性。以杭州卓祥科技有限公司的IV6000系列全自动乌氏粘度仪、MSB系列多位溶样块、 ZPQ智能配液器一整套黏度测试设备为例。 实验流程:1. 称取所需克数的样品,并使用ZPQ智能配液器进行智能配液,点击配液按键,直接输入需求浓度和样品称取质量即可完成配液。也可以连接天平直接获取样品质量,智能计算出所需移取溶剂的目标体积,减少样品精确称量的繁琐步骤,移液精度可达0.1%。ZPQ智能配液器还具有密度计算功能,移取液体体积后,输入质量(可与天平通讯,直接获取),即可自动计算出密度值。2. 将移取好的溶液放入MSB系列多位溶样块之中。MSB多位溶样块采用金属浴的方式进行加热并具有自动搅拌功能,最多同时可溶解15个样品,转速、温度、溶样时间可在屏幕上自行设置,溶样温度最高可达180℃3. 测试过程IV6000系列乌氏粘度仪可实现自动连续测量,全程无需人员看管。并且采用的智能红外光电传感器,保证测量时间可精确到毫秒级,可有效确保实验数据的精度,避免人工实验导致误差。4. 测试结果:IV6000系列全自动粘度仪连接电脑端,得出结果可在计算机上直接显示,并有数据储存、多样化粘度分析报表和外推分析等多种功能。5. 粘度管清洗干燥过程:仪器自动排废液、清洗并干燥粘度管,粘度管无需从浴槽中取出,粘度管不易损坏,减少耗材成本支出。清洗模式可多种选择,同时具有废液分类收集功能,减少废液回收成本及避免因多种废液混合导致的风险。IV6000系列乌氏粘度仪可实现自动测试、自动排废液、自动清洗及干燥过程的自动化,告别粘度管是耗材的时代。
  • 国门提示:出口欧盟儿童用品应谨防苯乙酮超标
    出口欧盟儿童用品应谨防苯乙酮超标   日前,意大利在一周内连续通报6起玩具苯乙酮(英文名:acetophenon)超标。其中5起为EVA拼图地垫,1起为自组装玩具桌。欧盟非食品类产品快速预警系统(RAPEX)已多次因苯乙酮超标通报EVA拼图地垫及EVA童鞋。而此次意大利一周内通报了6起苯乙酮超标玩具,检验检疫部门提醒企业需引起高度重视。   苯乙酮是一种最简单的芳香酮,可用于配制香料、制作香皂和香烟,也可用做纤维素醚、纤维素酯和树脂等的溶剂以及塑料的增塑剂。根据欧盟危险物质的分类、包装、标示指令67/548/EEC的2008年12月修订版相关规定,苯乙酮的急性毒性等级为4级,属于弱毒性物质,吸入、摄入或经皮肤吸收后对身体有害,可引起喉、支气管炎症、痉挛、肺水肿等,因此被禁止使用在玩具等儿童用品上。   检验检疫部门提醒广大企业,EVA和用作填充料的再生橡胶可能含有苯乙酮。因此在出口玩具、大型游乐设施、童鞋等儿童用品中使用EVA和再生橡胶的企业,产品如果出口欧盟尤其是德国、荷兰、意大利的,必须和原材料供应商确认所使用的材料中不含苯乙酮。如果企业无法确认出口欧盟产品是否含苯乙酮,则可以到检测机构进行检测,以消除因苯乙酮超标而被通报的风险。
  • ECHA关于苯乙烯的意见声明
    原标题:欧洲化学品管理局修订风险评估委员会关于苯乙烯的意见声明   2012年12月20日消息,欧洲化学品管理局(ECHA)发布了一份关于12月7日公布的近期风险评估委员会(RAC)会议结果的勘误。RAC同意将苯乙烯(styrene)归类为通过吸入而长期或反复暴露将损坏听力器官的物质,以及涉嫌对胎儿造成伤害的物质(生殖毒性类别2)。   更新的声明表明RAC的意见有别于原来丹麦提出的建议。原建议将苯乙烯划为通过吸入而长期或反复暴露使神经系统致损的物质,以及可能对胎儿产生伤害的物质(生殖毒性类别1B)。在先前公布的声明中,RAC表示同意丹麦的建议。   此次,ECHA还修订了有关RAC对苯甲酸(benzoic acid)意见的信息。
  • 苯乙烯、甲醛等8种化学物质上美国“致癌清单”
    美国卫生部11日晨发布最新报告显示,政府正式将苯乙烯和其他七种化学物质列入可能导致人体患癌的物质名单。而苯乙烯广泛运用于塑料包装、一次性纸杯、食物容器和建筑材料中。   由于遭到制造商的强烈游说,美国政府数年来迟迟未将这些有害物质列入“致癌清单”,直到11日晨才最终发布报告正式提出警告。   在此次列入的名单中还有甲醛。报告进一步强调了甲醛的危害性,报告称甲醛是被公认的能够导致某种类型白血病的致癌物质。在胶合板、纸板,甚至一些头发护理产品中存在。   报告指出,此次对所列致癌物质发出的警告来自于工业环境中工作人员的研究报告。大部分工作人员在工作中均接触到这些物质。   纽约西奈山医学院全球卫生院院长菲利普 • 兰德里根建议人们,特别是怀孕的妇女和儿童,应该避免使用聚苯乙烯容器,以及使用苯乙烯的其他产品。   此次发出的警告是基于美国国家毒理学和部分国家卫生院关于致癌物的报告得出。此次已经是12次发布报告,而上次发布报告的时间为2005年。   此消息一出,制造商表示,企业将联合起来向公布致癌物名单的美国卫生部提起上诉。美国复合材料制造商协会发言人汤姆• 多宾斯指出,此报告可以说是在"吓唬"工人,对工厂附近的居民和企业开发新产品将产生不利的影响。而很多涉及的企业均是中小企业,将影响人们的就业和当地的经济。
  • 上海安谱科学仪器有限公司倾情推出苯乙醇胺A参考品
    瘦肉精事件自今年3月份的源头事件后就消息不断,农业部表态称违法瘦肉精现象仍未禁绝。近期又爆出了一种新型的瘦肉精:苯乙醇胺A。 苯乙醇胺A又称克伦巴胺,是一种人工合成的化学物质。 英文名:2-(4-(nitrophenyl)butan-2-ylamino)-1-(4-methoxyphenyl)ethanol, 化学命名:2-[4-(4-硝基苯基)丁基-2-基氨基]-1-(4-甲氧基苯基)乙醇, 分子式:C19H24N2O4 分子量:344.17 结构式: 苯乙醇胺A最早是在四川省检测出来的。2010年9月四川省广安市广安区枣山镇畜牧兽医站对某养猪场例行违禁药物监测中,用莱克多巴胺测试卡分别检测母猪、仔猪和育肥猪尿液,发现该场育肥猪尿检呈阳性,之后确认是新型添加物苯乙醇胺A。 苯乙醇胺A是福莫特罗的同分异构体,是美国礼来公司合成莱克多巴胺的副产物,具有同瘦肉精和莱克多巴胺相同的作用和效果,属于&beta -肾上腺素受体激动剂,具有营养再分配作用。2010年11月农业部发布第1486号公告-1-2010《饲料中苯乙醇胺A的测定高效液相色谱-串联质谱法》,2010年12月农业部第1519号,禁止了苯乙醇胺A在饲料和动物饮水中的使用。 现为应广大客户的需求,上海安谱科学仪器有限公司推出苯乙醇胺A参考品 适用于农业部1486号公告-1-2010《饲料中苯乙醇胺A的测定高效液相色谱-串联质谱法》 货号:CDBO-1100726 中文名:苯乙醇胺A(克伦巴胺)参考品 规格:10mg/L于甲醇,纯度99%,1mL 价格请询。 欲了解更多信息,请与我司业务员联系。电话:021-54890099。 上海安谱科学仪器有限公司 地址:上海市斜土路2897弄50号海文商务楼5层 [200030] 电话:86-21-54890099 传真:86-21-54248311 网址:www.anpel.com.cn 联系方式:shanpel@anpel.com.cn 技术支持:techservice@anpel.com.cn
  • 【瑞士步琦】使用SFC分离手性反式-1,2-二苯乙烯氧化物
    使用SFC分离手性反式-1,2-二苯乙烯氧化物SFC 应用”本应用描述了以反式二苯乙烯氧化物为手性分子的手性柱筛选和连续的制备方法,并用叠层进样方法进行制备分离。1简介手性分子是一种有机化合物,它具有一种独特的性质,即互为不可重叠的镜像。这意味着它们以两种形式存在,称为对映体,除了原子的三维排列外,它们在各方面都是相同的。虽然这些对映体具有相同的化学性质,但它们可能具有不同的生物活性和药理作用[1,2]。因此,手性分子在制药工业中变得越来越重要,它们被用于开发药物和其他治疗方法,因此分离对映体十分重要。超临界流体色谱法(SFC)在手性分子的分离纯化中,具有其他分离技术无法比拟的优点。SFC 使用超临界二氧化碳作为流动相,这是一种清洁和绿色的溶剂,很容易从最终产品中去除。此外,SFC 提供了高分辨率和快速的分离。预测哪种固定相能够有效分离 SFC 中特定的一组对映异构体,即使在现在看来也是十分困难,这使得我们需要选择合适的手性固定相来不断试错[2]。手性 SFC 多采用与手性高效液相色谱(HPLC)相同的色谱柱,其中最常用的是多糖手性固定相(CSPs),由于可以选择不同改性的多糖,因此具有很强的通用性[3]。多糖 CSPs 具有高负载能力,这使得它们在制备规模应用中非常有用。许多商业多糖手性固定相是可用的,主要是基于直链淀粉或纤维素和改性的卤化或非卤化芳香基团。改性后的多糖可以包被或固定在二氧化硅载体上,以增强其对强溶剂的抵抗力[3]。还有其他 CSPs 通常用于手性 SFC 应用,例如,Pirkle 型手性固定相[3]。本文介绍了使用 Sepmatix 8x SFC 对反式二苯乙烯氧化物(TSO)进行平行柱筛选,随后通过方法优化转移到制备的 Sepiatec SFC-50。▲反式 - 二苯乙烯氧化物 两种手性结构2设备Sepiatec SFC-50Sepmatix 8x SFCPrepPure cCDMPC, 5um, 250 x 4.6mmPrepPure cADMPC, 5um, 250 x 4.6mmPrepPure iADMPC, 5um, 250 x 4.6mmPrepPure iCDMPC, 5um, 250 x 4.6mmPrepPure iCDCPC, 5um, 250 x 4.6mmPrepPure iBT, 8um, 250 x 4.6mmPrepPure iBT, 8um, 250 x 10mm3试剂和耗材二氧化碳(99.9%)甲醇(≥99%)乙醇(99%)异丙醇(99%)乙腈(99%)反式二苯乙烯氧化物(99%)(为了安全操作,请注意所有相应的MSDS)4实验过程样品制备:在筛选和方法优化时,将 0.075g 反式二苯乙烯氧化物溶解在 5.0mL 甲醇中;在堆叠注射时,将 0.1909g 反式二苯乙烯氧化物溶解于 6.0mL 甲醇中。使用 Sepmatix 8x SFC 进行筛选:流动相A = 二氧化碳;B = 甲醇流速3 mL/min (每根色谱柱)流动相条件0 - 0.5min5% B0.5 - 8.0min5 - 50% B8.0 - 9.4min50% B9.4 - 9.5min50 - 5% B9.5 - 10min5% B检测200nm – 600nm 紫外扫描筛选完全是全自动运行,采用流量控制单元,将每通道内的流量设置为 3mL/min,并将流量平衡。样品自动进样(每根色谱柱 5μL),启动平行筛选(运行时长=10分钟)。背压调节器设置为 150bar,柱温箱设置为32℃。使用 Sepiatec SFC-50 进行制备:流动相A = 二氧化碳;B = 甲醇流动相条件等度运行检测229nm 紫外检测PrepPure iBT 色谱柱在设定的流速下预热 4 分钟,样品通过定量环自动进样并运行。背压调节器设置为 150bar,柱温箱设置为 40℃。5实验结果色谱柱筛选:为了确定手性化合物 TSO 的最佳分离条件,进行了不同手性色谱柱的筛选,使用 Sepmatix 8x SFC 允许同时进行 8 根不同色谱柱的平行筛选。本实验一共使用了 6 根不同色谱柱:Chiral iADMPC, Chiral iCDMPC, Chiral iCDCPC, Chiral iBT, Chiral cADMPC 和 Chiral cCDMPC。图1 为色谱柱筛选结果,其中 Chiral iADMPC 色谱柱不能很好地分离对应异构体 TSO(可见表1),而 Chiral iCDMPC,Chiral iCDCPC,Chiral iBT,Chiral cADMPC 和 Chiral cCDMPC 色谱柱可以分离 TSO。▲ 图1. Sepmatix 8x SFC 筛选结果。从左上至右下依次是Chiral iADMPC,Chiral iCDMPC和Chiral iCDCPC;Chiral iBT,Chiral cADMPC 和 Chiral cCDMPC。运行时长 =10min,紫外检测波段 =229nm在处理复杂的混合物时,分辨率 R 是一个特别重要的参数,因为它衡量了每一次分离的程度,并且可以被准确识别和量化。例如分辨率 R=1 表明了不理想的分离效果,两个峰本质上并没有分离,更高的分辨率数值代表了更好的分离效果。在实际运行过程中,分辨率 R 至少达到 1.5 才会被认为是分离的。表1 显示了不同色谱柱分离 TSO 时的分辨率 R。在转移至 SFC-50 制备时,选择 iBT 色谱柱,因为它有最佳的分离效果,最容易实现转移,进样量可大大提高。表1. 使用 Sepmatix 8x SFC 筛选时不同色谱柱的分辨率色谱柱RiADMPC1.23iCDMPC1.74iCDCPC4.68iBT14.47cADMPC6.20cCDMPC4.22使用 SFC-50 进行结果优化为了确定改性剂对 TSO 的影响,下列每一种改性剂都在等度条件下使用:PrepPure iBT, 8um, 250 x 10mm 色谱柱;甲醇,乙醇,异丙醇,乙腈 (见图2)。▲ 图2. 左上-甲醇,右上-乙醇,左下-异丙醇,右下-乙腈。流速 =20mL/min,改性剂含量 =25%,温度 =40℃,背压调节器 =150bar,进样量 =150μL甲醇(偶极矩参数= 5[4])在对映体有足够的峰距的情况下,仅在 3 分钟内分离 TSO。乙醇(偶极矩参数= 4[4])作为极性稍小的改性剂,分离所需时间略大于 3 min。异丙醇(偶极矩参数= 2.5[4])在不到 3.5 分钟的时间内分离 TSO,这是由于异丙醇的极性较小。乙腈(偶极矩参数= 8[4])在 2.25 分钟内最有效地分离 TSO。然而,甲醇被用作进一步实验的改性剂,因为它的窄峰宽和对称峰有望带来高进样量。此外,它比乙腈毒性更小,价格也更便宜。由于流动相中改性剂的含量会因极性变化而对分离产生影响,所以采用了不同的甲醇含量(见图3)。▲ 图3. 左上 20% 甲醇,右上 25% 甲醇,左下 30% 甲醇,右下 35% 甲醇。流速 = 20mL/min,,温度 =40℃,背压调节器 =150bar,进样量 =150μL流动相甲醇含量由 20% 连续增加到 35%,运行时间逐渐缩短。当改性剂含量为 35% 时,运行时间可以从大约 3.5 分钟缩短至约 2.5 分钟。不过分辨率有所降低,对映体的峰宽也降低了。因此,在进一步的实验中,改性剂的浓度被设定为 35%。每根色谱柱都有可达到最大效率或理论塔板数的固有最佳流速。如果流量减小或增大,则用非最佳分离塔板数进行分离。与液相色谱法相比,SFC 可以使用更高的流速,而分离塔板数不会大幅减少[5]。因此,图4显示了流速对分离效率的影响。▲ 图4. 左 20mL/min,右 30mL/min,改性剂 % = 35%,温度 = 40℃,背压调节器 =150bar,进样量 =150μL随着流量的增加,运行时间和峰宽进一步减小。运行时间从大约 2.5 分钟缩短至 2 分钟以内。根据样品的不同,温度和压力对组分的分离和保留的选择性有影响。因此,在 100 bar 和 150 bar 以及 40℃ 和 50℃ 范围内进行了 4 次实验(见图5)。可以看出,温度和压力的变化对各自的分离没有明显的影响。因此,叠层进样时,温度控制在 40℃,背压调节器控制在 150 bar。▲ 图5.左上 100bar 和 40℃,右上 150bar 和 40℃,左下100bar 和 50℃,右下 150bar 和 50℃。流速 = 30 mL/min,改进剂 %=35%,进样量 =150μL为了提高分离效率,增加 TSO 的浓度和进样量(150μL ~ 250 μL)(见图6左上)。在这些条件下,基线分离仍然是可行的。图6(右上和下)显示了在与单次进样图 6 左上相同的实验条件下,叠层进样时间为 0.97min,即每 0.97 分钟进样一次。在这种情况下,每次额外注入都节省了平衡时间,提高了产能。最终采用基于时间的方法收集馏分。每次进样的紫外信号都表明了该方法具有良好的再现性(图6右上)。垂直线表示收集相应馏分的时间窗口。▲ 图6. 左上 250μL (0.1909 g TSO 的 6mL 甲醇溶液),右上叠层进样 TSO 的紫外信号,下最后的色谱图。流速 = 30 mL/min,改进剂 %=35%,温度 =40℃,背压调节器=150bar,进样量 = 250μL,进样次数 = 10次6结论在文中,使用 Sepmatix 8x SFC 仪器进行以 TSO 为分析物的手性柱筛选,将最合适的手性色谱柱,转移到 Sepiatec SFC-50 仪器进行制备。每根手性柱对手性物质的反应都不同,这就是为什么在纯化过程之前必须进行筛选的原因,作为标准物质的 TSO 可以在许多不同的手性柱上分离。随后在 SFC-50 上放大,并利用制备柱对等度纯化的方法进行优化。结果表明,改性剂的选择、改性剂在流动相中的比例和流量对分离效果有较大影响。在这些特定条件下,温度和压力的变化对分离效果的影响不大。在一般情况下,这两个参数也可以改变以优化分离条件。7参考文献https://doi.org/10.1038/s41570-023-00476-zSUPERCRITICAL FLUID CHROMATOGRAPHY, Terry A. Berger, Agilent Technologies, Inc., 2015PRACTICAL APPLICATION OF SUPERCRITICAL FLUID CHROMATOGRAPHY FOR PHARMACEUTICAL RESEARCH AND DEVELOPMENT, Vol. 14, M. Hicks and P. Ferguson, 2022 Elsevier Inc.Laboratory Chromatography Guide, ISBN 3-033-00339-7, by Büchi Labortechnik AG (Switzerland)http://dx.doi.org/10.1016/j.chroma.2012.10.005
  • 赛默飞世尔收购BD聚苯乙烯滚瓶生产线
    2011年3月1日,赛默飞世尔今天宣布,公司已经签署了一项协议,收购BD(碧迪)公司聚苯乙烯滚瓶生产线。BD(碧迪)公司是开发、制造和销售医疗设备、仪器及试剂的全球性公司。该交易预计将在2011年第二季度完成。   滚瓶是赛默飞世尔细胞培养平台产品之一,其他产品还包括Hyclone一次性使用的生物反应器和孔培养板细胞工厂系统,而这些系统是疫苗、单克隆抗体、重组蛋白和细胞疗法生产的关键。   赛默飞世尔最近宣布在上海建立一个新的制造工厂。上海新工厂以及此次收购表明了赛默飞世尔承诺于投资创新产品平台,并成为同行业中最全面生化产品供应商的决心。   “我们很高兴地宣布这项补充我们实验室产品线的收购,”赛默飞世而副总裁兼总经理Verner Andersen说, “我们将确保我们为客户提供的滚瓶是在已验证的工艺下生产出来的。此项收购使得赛默飞世而可以提供细胞培养的全系列产品。”
  • 麦克仪器给力科学研究-用于脂化生物柴油合成中游离酸的超高交联聚苯乙烯磺酸催化剂
    随着美国麦克仪器的市场份额的逐步壮大,美国麦克仪器已经成为行业科学研究必备仪器,日前英国哈德斯菲尔德大学教授发表了一篇题为&ldquo 用于脂化生物柴油合成中游离脂肪酸的超高交联聚苯乙烯磺酸催化剂 &rdquo 学术文章,已经被Applied Catalysis B: Environmental(115&ndash 116 (2012) 261&ndash 268)收录,在该项研究中,美国麦克仪器ASAP 2020与DVS Advantage仪器成为表征催化剂最强有力的工具,为其研究提供了最具可信度的分析结果。以下列举该文章的摘要以及链接供参考: 链接:http://www.sciencedirect.com/science/article/pii/S0926337311006102 标题:Hypercrosslinked polystyrene sulphonic acid catalysts for the esterification of free fatty acids in biodiesel synthesis 摘要: New sulphonic acid catalysts supported on hypercrosslinked polystyrene have been studied in the esterification of oleic acid with methanol and in the rearrangement of &alpha -pinene to camphene and limonenes. The catalysts have been characterised in terms of specific surface areas and porosities, affinities for water and for cylcohexane vapours, and both concentrations and strengths of acid sites. They have been compared with conventional macroporous polystyrene sulphonic acids (Amberlysts 15 and 35) and SAC-13, a composite between Nafion and silica. The results show that the hypercrosslinked polystyrene sulphonic acids, despite exhibiting relatively low concentrations of acid sites and acid site strengths below those of Amberlysts 15 and 35, are very much more catalytically active than conventional resins in reactions such as the esterification in which high acid site strengths are not required. It is thought that this is due to the highly accessible acid sites throughout the catalyst particles. Reusability studies are reported and it appears that the temperature at which the catalyst is used is important in controlling and minimising catalyst deactivation. 美国麦克仪器公司是世界上第一家将自动表面积分析仪、压汞仪以及沉降式粒度分析仪投放市场的公司。公司主营产品为研究级全自动比表面积与孔隙度分析仪、多站比表面积与孔隙度分析仪、快速比表面积与孔隙度分析仪、流动气体法比表面分析仪、程序升温化学吸附仪、化学吸附仪、压汞仪、高压吸附气体吸附仪、蒸汽吸附仪、密度测量、颗粒技术和颗粒形态分析仪等各种材料表征仪器。 美国麦克仪器产品在1979年进入中国市场,成为中美建交后最早进入中国市场的分析仪器。在为中国用户服务30多年后,于2011年3月在上海成立了麦克默瑞提克(上海)仪器有限公司,专业为中国市场提供美国麦克仪器公司的产品。公司总部设在上海,并在北京、广州、西安分别设有办公室,并设有应用实验室提供各类仪器的演示与操作培训并提供对外做样服务,为广大用户提供完整的实验室解决方案与疑难样品的分析。
  • 中国兽医药品监察所就《动物性食品中二苯乙烯类药物残留量的测定 液相色谱-串联质谱法》等7项食品安全国家标准公开征求意见
    各相关单位:  根据《中华人民共和国食品安全法》和《中华人民共和国农产品质量安全法》有关要求,我办组织起草了《动物性食品中二苯乙烯类药物残留量的测定 液相色谱-串联质谱法》等7项食品安全国家标准。现公开征求意见,如有修改意见,请于2022年7月10日前反馈至全国兽药残留专家委员会办公室。  联系人:张玉洁  联系电话:010-62103930  E-mail:syclyny@163.com  地址:北京中关村南大街8号科技楼206  邮编:1000811. 动物性食品中二苯乙烯类药物残留量的测定 液相色谱-串联质谱法   本标准规定了猪、牛、羊、鸡组织(肌肉、肝脏、肾脏和脂肪)、鸡蛋、牛奶中己烯雌酚、己烷雌酚和己二烯雌酚残留量检测的制样和液相色谱-串联质谱测定方法。方法原理为:试样中残留的药物经酶解后用乙腈提取(脂肪样品先经乙腈提取,吹干复溶后再酶解),加入正己烷和乙酸乙酯后进行液-液-液三相体系净化,取中间层氮吹复溶后通过碳酸钠溶液液液萃取和硅胶柱固相萃取进行净化,液相色谱-串联质谱仪测定,基质匹配内标法定量。   2.牛可食性组织中盐霉素残留量的测定 液相色谱-串联质谱法   本标准规定了牛可食性组织中盐霉素残留量检测的制样和液相色谱-串联质谱测定方法,适用于牛肌肉、肝脏、肾脏和脂肪组织中盐霉素残留量的测定。方法原理为:试样中的药物残留用乙腈提取,提取液过滤膜后用液相色谱-串联质谱仪测定,基质匹配外标法定量。   3. 动物性食品中碘醚柳胺残留量的测定 高效液相色谱法   本标准规定了动物性食品中碘醚柳胺的制样和高效液相色谱测定方法。适用于牛、羊的肌肉、肝脏、肾脏和脂肪组织中碘醚柳胺残留量的测定。方法原理为:试样中残留的碘醚柳胺,经乙腈-丙酮溶液提取,混合型阴离子交换固相萃取柱净化,高效液相色谱-荧光法测定,外标法定量。   4. 禽蛋中β内酰胺类药物残留量的测定 液相色谱-串联质谱法   本标准规定了禽蛋中青霉素V、青霉素G、氨苄西林、氯唑西林、阿莫西林、头孢氨苄、头孢喹肟残留量检测的制样和液相色谱-串联质谱测定方法。方法原理为:试样中残留的青霉素 V、青霉素 G、氨苄西林、氯唑西林、阿莫西林、头孢氨苄、头孢喹肟,经 80%乙腈水溶液提取,固相萃取柱净化浓缩,液相色谱-串联质谱测定,基质匹配标准溶液内标法定量。   5. 禽蛋中头孢噻呋残留量的测定 液相色谱-串联质谱法   本标准规定了禽蛋中头孢噻呋代谢物去呋喃甲酰基头孢噻呋残留量检测的制样和液相色谱-串联质谱测定方法。方法原理为:试样中残留的头孢噻呋及代谢物,加入 0.4%二硫赤藓醇溶液混匀,用 14%碘乙酰胺溶液衍生化,生成稳定的乙酰胺衍生物,水饱和正己烷除脂,固相萃取柱净化浓缩,液相色谱-串联质谱测定,内标法定量。   6. 禽蛋中卡巴氧和喹乙醇的代谢物残留量的测定 液相色谱-串联质谱法   本标准规定了禽蛋中卡巴氧代谢物喹噁啉-2-羧酸(QCA)和喹乙醇代谢物 3-甲基喹噁啉-2-羧酸(MQCA)残留量检测的制样和液相色谱-串联质谱测定方法。方法原理为:试料中QCA和MQCA残留经偏磷酸溶液水解提取,叔丁基甲醚萃取后,用磷酸盐缓冲液反萃取,混合型强阴离子交换柱净化,酸性甲醇洗脱,液相色谱-串联质谱法测定,内标法定量。   7. 水产品中邻苯二甲酸酯类物质的测定 液相色谱-串联质谱法   本标准规定了水产品中邻苯二甲酸二甲酯、邻苯二甲酸二乙酯、邻苯二甲酸二烯丙酯等21种邻苯二甲酸酯(PAEs)含量检测的制样和液相色谱-串联质谱测定方法。方法原理为:水产品中的邻苯二甲酸酯经乙腈提取,分散固相萃取净化,反相液相色谱柱分离,以甲醇和0.1%甲酸水溶液为流动相进行洗脱,应用高效液相色谱-串联质谱法测定和确证,基质匹配外标法定量。
  • 上海市塑料工程技术学会发布《塑料 无卤阻燃抗冲击聚苯乙烯(PS-I)专用料》征求意见稿
    各会员单位、业界单位及专家:由上海市塑料工程技术学会立项,福建新安科技有限责任公司、云南云天化股份有限公司、金发科技股份有限公司等企业起草的团体标准《塑料 无卤阻燃抗冲击聚苯乙烯(PS-I)专用料》已完成征求意见稿的编制(附件1)。现向社会公开征求意见,有关单位和个人可通过以下途径和方式提出意见和建议,填写团体标准征求意见回函表(附件2),征集意见截止日期为2023年4月30日。上海市塑料工程技术学会联系方式联系人:陈佳 13795212029邮箱:504812632@qq.com附件1:塑料无卤阻燃抗冲击聚苯乙烯(PS-I)专用料-征求意见稿.pdf附件2:意见反馈表.pdf上海市塑料工程技术学会关于《塑料 无卤阻燃抗冲击聚苯乙烯(PS-I)专用料》团体标准征求意见的通知.pdf
  • “一米新真空太阳望远镜多层共轭自适应光学系统”投入使用
    在国家自然科学基金的支持下,中国科学院光电技术研究所联合云南天文台成功研制国家重大科研仪器“一米新真空太阳望远镜多层共轭自适应光学系统”并投入使用,实现了大视场自适应光学技术从原理方法创新到实际仪器应用的跨越。   2月2日至3日,该仪器技术指标现场测试会在云南天文台抚仙湖太阳观测基地召开。测试专家组经现场技术指标测试后认为,该仪器各项技术指标达到了资助项目计划书的要求,可以对太阳目标长时间稳定闭环工作,在大气相干长度r0优于10cm@500nm情况下,可见光波段成像分辨力优于0.2″,校正视场大于1′。   “一米新真空太阳望远镜多层共轭自适应光学系统”是光电所联合云南天文台申请的国家自然科学基金国家重大科研仪器研制项目(自由申请)。该项目瞄准空间天气预报重大需求和太阳物理科学前沿研究,针对云南天文台一米新真空太阳望远镜(New Vacuum Solar Telescope,NVST)研制一套多层共轭自适应光学(Multi-Conjugate Adaptive Optics, MCAO)系统,对太阳大气进行大视场、高分辨成像和光谱观测。   该仪器基于研究提出的新型MCAO架构,采用3块变形镜、2个大视场多视线波前传感器以及2套波前实时处理机,实现了在角分量级视场内对大气湍流波前像差的有效补偿。目前,该仪器已与NVST后端科学仪器对接进行常规观测,为太阳风暴的预警预报和太阳物理科学研究持续提供高质量的光谱和成像数据。
  • 《动物毛发中克仑特罗、莱克多巴胺、沙丁胺醇和苯乙醇胺A残留量的测定 液相色谱-串联质谱法》
    各相关单位: 根据《中华人民共和国食品安全法》和《中华人民共和国农产品质量安全法》有关要求,我办组织起草了食品安全国家标准《动物毛发中克仑特罗、莱克多巴胺、沙丁胺醇和苯乙醇胺A残留量的测定 液相色谱-串联质谱法》。现公开征求意见,如有修改意见,请于2022年5月1日前反馈至全国兽药残留专家委员会办公室。 联系人:张玉洁 联系电话:010-62103930 E-mail:syclyny@163.com地址:北京中关村南大街8号科技楼206邮编:100081     附件: 1. 动物毛发中克仑特罗、莱克多巴胺、沙丁胺醇和苯乙醇胺A残留量的测定 液相色谱-串联质谱法(征求意见稿) 2. 食品安全国家标准征求意见表 全国兽药残留专家委员会办公室2022年4月1日
  • HORIBA前沿用户报道 | 了解低聚聚苯乙烯侧链分布排列对全聚合物太阳能电池性能的影响
    转自 | 材料人引 言近年来,共轭聚合物给体材料和受体材料的显著发展促使着研究人员在不断地开发更高性能的全聚合物太阳能电池器件。聚合物太阳能电池为有机太阳能电池中的一种,其光敏层主要由共轭聚合物和富勒烯及衍生物组成,而全聚合物太阳能电池则是将聚合物太阳能电池中的富勒烯材料换成聚合物材料,也就是说在光敏层中全部使用的是聚合物材料,这也使得全聚合物太阳能电池具有制造工艺简单,成本低,太阳能光谱覆盖良好,化学性质和形态稳定等诸多优点。许多全聚合物太阳能电池都具有较低的短路电流(JSC)和填充因子(FF),这是由聚合物的低载流子迁移率所引起的。因此,研究人员一直寻求在有机场效应晶体管器件测量下具有高电荷载流子迁移率的给体-受体(D-A)型共轭聚合物。成果简介近日,来自斯坦福大学的鲍哲南教授(通讯作者)团队在Advanced Eenergy Materials上发表了一篇题为“Understanding the Impact of Oligomeric Polystyrene Side Chain Arrangement on the All-Polymer Solar Cell Performance”的文章,文中报道了该研究团队有关光敏层中聚合物的分子形态对全聚合物太阳能电池性能影响的新研究成果。在该文中,低聚聚苯乙烯(PS)侧链引入共轭主链被证明可以增强半导体聚合物的加工性和电子性能。研究者制备两种具有不同摩尔百分比的PS侧链的给体和受体聚合物,以研究阐明它们的取代分布排列对于全聚合物太阳能电池性能的影响。当PS侧链在给体聚合物上被取代时,观察到的电池器件性能较低,当PS侧链在受体聚合物上被取代时,观察到的电池器件性能较高。研究表明,将PS侧链引入受体聚合物有助于共混聚合物膜中相分离畴尺寸的降低,然而减小的畴尺寸仍然比典型的激子扩散长度大一个数量级。详细的分子形态学研究以及原始PS、给体和受体聚合物的溶解度参数的估计显示,每个组分的溶解度的相对值主要对相分离结构域的纯度有正向作用,这强烈影响了光电流的的数量和太阳能电池的整体性能。图文导读图1D-PSX和A-PSX的合成路线合成D-PSX时,Pd(PPh3)4为催化剂;合成A-PSX时,Pd2(dba)3CHCl3为催化剂。图2电池性能表征(a)D-PSX/A-PSX全聚合物太阳能电池效率 (b)D-PSX/A-PSX全聚合物太阳能电池短路电流密度JSC(c)D-PSX/A-PSX全聚合物太阳能电池开路电压VOC(d)D-PSX/A-PSX全聚合物太阳能电池填充因子图3共混膜的RSoXS数据(a-c)PS侧链在受体聚合物中的数量分别为0%、5%和10%;(d-f)在给体聚合物中具有固定量的PS侧链的散射曲线。所有RSoXS数据是在287 eV下测试获得的,其中不同聚合物之间的散射对比度与不同量的PS侧链附着相似。图4共混膜的荧光猝灭行为(a-c)PS侧链在受体聚合物中的数量分别为0%、5%和10%;(d-f)不同PS侧链数量的给体聚合物的PL猝灭行为。补充内容图4共混膜荧光猝灭行为的表征是使用的HORIBA Fluorolog系列荧光光谱仪,具有超高灵敏度,特别适用于荧光强度逐渐降低的猝灭实验。利用荧光猝灭方法,可以有效确认相态分离结构与复合行为的关系。其中,通过测试共混膜的荧光猝灭谱,发现当PS侧链在给体聚合物上被取代时,发生更多复合;当PS侧链在受体聚合物上被取代时,发生更高效的激子解离。从而可以得到结论,共混膜中相分离结构域的纯度和粒径影响了光电流的的数量和太阳能电池的整体性能。 图5相互作用和溶解度参数确定D-PSX/A-PSX共混膜中相分离行为的示意图和各聚合物溶解度参数的假设顺序。小结在本文研究中,研究者使用活性阴离子聚合和缩合的组合制备了一系列具有不同数量的PS侧链的给体和受体聚合物。标准表征显示PS侧链对给体和受体聚合物的光吸收和能级特征的影响可以忽略不计。从全聚合物太阳能电池性能可以看出,在给体聚合物上引入PS侧链能导致JSC值和PEC的降低,而在受体聚合物上引入PS侧链可以增强电池性能。文献链接Understanding the Impact of Oligomeric Polystyrene Side Chain Arrangement on the All-Polymer Solar Cell Performance (Adv. Energy Mater, 2017, DOI: 10.1002/aenm.201701552)免责说明HORIBA Scientific公众号所发布内容(含图片)来源于文章原创作者提供或互联网转载。文章版权、数据及所述观点归原作者原出处所有,HORIBA Scientific 发布及转载目的在于传递更多信息及用于网络分享,供读者自行参考及评述。如果您认为本文存在侵权之处,请与我们取得联系,我们会及进行处理。HORIBA Scientific 力求数据严谨准确,如有任何失误失实,敬请读者不吝赐教批评指正。我们也热忱欢迎您投稿并发表您的观点和见解。HORIBA科学仪器事业部结合旗下具有近 200 多年发展历史的 Jobin Yvon 光学光谱技术,HORIBA Scientific 致力于为科研及工业用户提供先进的检测和分析工具及解决方案。如:光学光谱、分子光谱、元素分析、材料表征及表面分析等先进检测技术。今天HORIBA 的高品质科学仪器已经成为全球科研、各行业研发及质量控制的首选。
  • 加拿大发布十溴联苯醚和六溴环十二烷限制提案
    据CHEMICAL WATCH网站消息,近日,加拿大环境部公布了一份对多溴联苯醚(PBDEs)的限制提案。该提案认为十溴联苯醚可在有机体内大量累积,并可能转化成生物蓄积毒性或潜在生物蓄积毒性物质,对有机体高度有害。但溴化阻燃剂行业协会(BSEF)对此结论并不认同,特别是在十溴联苯醚的脱溴相关问题上,两者分歧十分严重。   加拿大政府于今年3月公布的多溴联苯醚风险管理修正策略在经过60天的公众评议后,现在做出最终决策论断:   按照加拿大环境保护法(CEPA)要求,需立即正式禁止制造、使用、销售和进口产品中的四溴、五溴、六溴二苯醚及所有多溴联苯醚。使用、销售和进口领域的禁令扩大到七溴、八溴、九溴和十溴联苯醚同类及所有树脂类或含有这些物质的聚合物。   禁止使用、销售和进口含四溴到十溴联苯醚超过0.1%的所有新产品。   加强联邦环境质量手册对多溴联苯醚的检测。   对包括含有多溴联苯醚及相关成分的堆填区、焚化炉和回收设施制定风险管理战略措施。   检测加拿大民众对于多溴联苯醚的暴露情况和空气中的多溴联苯醚浓度。   此外,加拿大环境部还针对六溴环十二烷(HBCD)发布了一份评估筛选报告草案和一份风险管理范围文件,两份文件的公众评议日期皆为60天,截至日期为10月27日。   BSEF协会还补充说,加拿大现在发布的六溴环十二烷筛选评估和风险控制范围报告即表示支持聚苯乙烯保温泡沫在联合国和欧盟整体过渡阶段授权使用六溴环十二烷。
  • 智能型卡尔费休库仑微量水分测定仪KF106隆重上市
    高精度智能化库仑法微量测定仪由于技术上问题,一直由国外产品掌控国内微量水分测定仪的市场,由于其价格相对于其它常用的水分测定仪,价格一直居高不下,从而限制其产品广泛使用。 针对国内产品对微量水分测定仪的测试精度和智能化程度越来越高,经过多年水分测定仪的销售和生产的经验,通过我公司技术人员共同努力,研发出最新智能型卡尔费休库仑微量水分测定仪KF106,其精度和相对误差均与国外同类产品相媲美,其销售价格则为同类进口产品的一半。同时根据国内的用户的操作习惯,研发最新的操模式,其操作的便利性和智能性完全满足日常的微量水分测定的要求,受到广大用户的欢迎。 KF106型微量水分测定仪采用经典理论&mdash &mdash 卡尔&bull 菲休微库仑电量法;依据电解定律反应的水分子数同电荷数成正比,仪器检测参加反应电荷数(库仑)自动换算成对应的水分子数,因此此方法测试精度极高,测试成本极低,具有其他测试方法不可替代的优势;能可靠的对液体、气体、固体样品进行微量水分的测定。该仪器以棒图形式显示测量电极信号,直观指示电解液的含水量,实时描绘电解速度对时间的变化曲线。具有高灵敏度、高精度、高再现性,低功耗节能设计等特点,可内置蓄电池用于便携测量,广泛适用于石油、化工、电力、制药、商检、科研、环保等领域。 可检测物质种类包括: 1.汽油,水压油、绝缘油、变压器油、透平油、抗燃油。 2. 戊烷、己烷、二甲基丁烷、辛烷、十二烷、二十碳烷、二十八烷、环十二烷、癸基环己烷、甲基丁二烯、苯、甲苯、二甲苯、乙基甲苯、二甲基苯乙烯、十四烯、石油醚、环己胺、甲基环己胺、环庚 烷、乙烯环己胺、二环戊二烯、二甲基萘、三甲基苯乙烯、苯、二氢苊、芴、亚甲基菲、异甲基异丙基苯等。 3.酚类 苯酚、甲酚、氟苯酚、氯酚、二氯苯酚、硝基酚等。 4.醚类 二乙醚、二甘醇单甲醚、二甘醇二乙醚、聚乙二醚、苯甲醚、氟苯甲醚、碘苯甲醚、二癸醚、二庚醚。 5.全部醇类、全部卤代烃类、全部脂类等。 仪器特点 320× 240点阵图形液晶显示屏,触摸屏操作; 实时描绘电解速度对时间的变化曲线; 以棒图形式显示测量电极信号,直观指示电解液的含水量; 使用空白电流补偿、平衡点漂移补偿来修正测量结果; 独创开关恒流电解技术,降低整机功耗; 带时间标记的历史记录,最多存储255个; 具有电极开路、短路自检报警功能; 内置高速热敏式微型打印机,打印美观、快捷,具有脱机打印功能; 内置蓄电池(选配),充满电后,可连续使用6小时以上; 配有标准RC232接口,可与计算机连接,便于处理试验数据; 具有屏幕保护功能,延长液晶使用寿命; 技术参数 测量范围:1ug~100mg 精 度:测试水量在3ug~1000ug之间误差小于± 2ug 测试水量大于1000ug误差小于± 0.2% 分 辨 率:0.1ug 电解电流:0~400mA 待机功耗:6W 最大功耗:35W 电源电压:AC220V± 20% 50HZ± 10% 适用环境温度: 5℃~40℃ 适用环境湿度: &le 85% RH 外形尺寸:350× 260× 180(mm)
  • 我国将制定23项石油化工产品检验新国标
    仪器信息网讯 日前,国家标准委发布了2014年第一批国家标准制修订计划的通知。其中中国石油和化学工业联合会和国家标准化管理委员会将主管制定23项石油化工产品检验新国标,涉及原油、肥料、染料、颜料、涂料、橡胶、胶黏剂、化学试剂、化学化工原料等产品的检测。另外还将修订4项石油化工产品检测标准。 2014年第一批国家标准制修订计划之石油化工产品检验标准   《化学试剂 离子色谱测定通则》   化学试剂是科研条件的重要组成部分,是开展科研开发和现代工业所必须的重要支撑条件,是工业的&ldquo 味精&rdquo 、科学的&ldquo 眼睛&rdquo 和质量的&ldquo 标尺&rdquo 。因此本次离子色谱通则制定将做到最大限度地与国外相关标准相一致,以达到离子色谙分析方法与国外要求的一致性。   主要用于化学试剂中氯化物、硫酸盐、磷酸盐、硝酸盐、亚硝酸盐、溴酸盐、铬酸盐等阴离子,钾、钠、钙、镁、锂、铵等阳离子,糖类以及有机酸的质量评估,本标准规定了离子色谱定义、方法原理、试剂和材料、仪器、样品处理和测试方法。   《原油残炭的测定 第2部分:微量法》   本标准修改采用JIS K 2270-2-2009《原油及石油产品残炭含量测定 第二部分 康氏法》,微量法操作简易、样品量少、精密度好等特点,体现了技术进步,而且与康氏法的测定区间和结果等效,因此将&ldquo 原油残炭的测定 微量法&rdquo 纳入到国家标准中,是对原油残炭标准的一个有益的补充和完善,有较为积极的意义。   《中间馏分油中总污染物含量测定法》   总污染物含量是反映中间馏分油清洁度程度的重要指标。柴油中污染物一般包括尘土、水、微生物、碎屑、蜡等。柴油的清洁程度对发动机过滤系统非常重要,污染物的存在会影响燃料的快速过滤,严重时造成滤网堵塞,供油不畅,使发动机不能正常工作。柴油中污染物含量在国外产品标准中有严格限制,受到国际相关部门的重点关注,但目前我国柴油污染物检测方法很少,相关研究也很少。 本标准规定了中间馏分油中总污染物的检测方法。   《肥料中邻苯二甲酸酯含量的测定 气相色谱-质谱法》   邻苯二甲酸酯(PAEs)是环境中的一类常见有机污染物,具有内分泌干扰毒性和生物累积性。本标准针对含有PAEs的肥料施入土壤后存在着被农作物吸收而污染农产品的极大风险,通过对国内外PAEs相关分析方法的查询和研究,以美国EPA确定的6种PAEs优控污染物为对象,研究一种适合定性、定量检测肥料中PAEs的气相色谱-质谱法(GC-MS),为保障食用农产品质量安全提供技术支撑。   《光学功能薄膜 三醋酸纤维素酯(TAC)薄膜 相延迟测试方法》   工业化生产的光学薄膜在不同光学轴方向可能存在各相异性,光线通过时会产生相延迟。普通光学环境中薄膜的存在相延迟通常没有什么影响。光学性能可只测量透过率、雾度。随着液晶显示器(LCD)的应用,偏光系统的中存在相延迟就不可忽视了。在彩色显示领域可能引起较明显的颜色变化。为此,LCD中使用的TAC薄膜需要控制相延迟。尤其是沿显示器光轴方向(Z轴),为此需建立此标准。   《光学功能薄膜 涂层密着性的测定方法》   光学功能偏光片是目前业界投资最为热门的行业之一,偏光片的制造技术一直被日本、韩国、中国台湾等国家和地区所垄断,大陆企业生产TFT 型偏光片在技术上非常困难,因而发展偏光片项目对完善我国液晶上游产业链,降低产品成本,提高市场竞争力有着重要意义。在提高偏光片产品质量,改善和提高偏光片光学性能方面,膜材的涂层起到重要作用。涂层的密着性是对涂层评估的一个重要方面,它影响到偏光片的光学性能与质量。   此标准的制定将统一规范液晶显示器用偏光片及其相关的光学薄膜之涂层密着性的测试方法要求,提高偏光片的质量及光学性能。   《胶乳制品中重金属含量的测定 电感耦合等离子体原子发射光谱法》   胶乳制品广泛应用于人们的日常生活中,目前在胶乳制品中重金属检测国内没有试验方法标准。 本标准将规定用电感耦合等离子体原子发射光谱仪测定胶乳制品中重金属铅(Pb)、镉(Cd)、铬(Cr)、铜(Cu)、锰(Mn)、锌(Zn)、铁(Fe)、砷(As)、汞(Hg)、铝(Al)10种元素的总量方法。本标准适用于胶乳材料及其制品。   《胶鞋 苯乙酮含量试验方法》   苯乙酮对眼和皮肤有刺激作用,可引起皮肤局部灼伤和角膜损伤。德国等欧盟发达国家已注意到这类溶剂对人体健康的影响,它们国内的采购商也已开始要求全球各地的供应商检测材料中苯乙酮的含量,超过限量的产品将被拒绝进入他们国内的高端市场。因此,建立胶鞋中苯乙酮标准检测方法,对保障人体健康安全、提升产品质量破除贸易技术壁垒具有重要意义及紧迫性。本标准的制定填补了胶鞋中苯乙酮检测方法的空白,为控制、分析胶鞋所含的对人体有害的溶剂及限量提供了依据。   《胶鞋 烷基酚含量试验方法》   烷基酚为一种仿雌激素,也是已知的内分泌干扰素。具有持久性以及生物蓄积,在胶鞋生产中广泛应用, 极易残留在材料中。也就是说,它一旦被排入的环境中,它会在环境中存在很长时间,而且它可以进入食物链,并且通过食物链逐级放大。同时,它还具有模拟雌激素的作用,因此它一旦进入生物体内之后,就会影响生物体正常的生殖和发育。本标准的制定填补了胶鞋中烷基酚检测方法的空白,为控制、分析胶鞋所含的对人体有害的酚类及限量提供了依据。   《胶印版材用高聚物中乙二醇单乙醚不溶物含量的测定 过滤法》   胶印版材用高聚物中的不溶物,主要来源于聚合物在制备过程中产生的&ldquo 超高分子量聚合物&ldquo 、或者是反应过程中发生了交联、氧化等,甚至是在处理过程中(析出、干燥等)不慎引入的其它不溶性物质。这些不溶物的量的多少,会影响高聚物的使用。由于目前几乎所有胶印版材涂布液使用的主要溶剂成分都是乙二醇单乙醚,因此以乙二醇单乙醚不溶物来确定高聚物不溶物的指标是非常合适的。 本标准规定了用过滤法来测定胶印版材用高聚物中乙二醇单乙醚不溶物的含量。   《胶粘带动态剪切强度的试验方法》   胶粘带动态剪切强度用于表征在动态拉伸过程中胶粘带所能承受的最大剪切力。该性能对于胶粘带在剪切作用下的粘接效果的测试与判定具有重要意义。目前一般用持粘性来表征胶粘带的静态剪切力。 本方法表征在动态拉伸过程中胶粘带所能承受的最大剪切力,是对胶粘带剪切性能的完善和补充。   《硫化染料产品中硫化钠含量的测定》   硫化染料是我国染料行业很重要的一染料类别,在出口染料中也占有很大的比例。由芳胺类、酚类或硝基物与硫磺或多硫化钠硫化反应而生成。硫化钠是腐蚀性物质,与皮肤和粘膜接触有强烈的刺激性和腐蚀性,与酸类反应,产生剧毒和易燃的硫化氢。国内外用户对硫化染料中硫化钠的含量都有提出限制的要求,尤其是产品出口到发达的国家和地区要求格外严格。而国内目前还没有硫化染料中硫化钠含量测定的统一标准。因此,为填补标准上的空白,丰富我国染料行业方法标准体系,制定本方法标准是十分必要。   《车用汽油中总硅含量的测定 电感耦合等离子体发射光谱法》   车用汽油中硅含量过高会导致汽油火花塞堵塞、三元催化转化器中催化剂中毒等现象发生,对汽车本身性能造成较大的损害。例如2010年5月岳阳中石化&ldquo 问题汽油&ldquo 致上千辆汽油火花塞堵塞事件,事故原因分析即可能与硅含量异常有关。对车用汽油中总硅含量的检验鉴定技术研究,开发快速准确的检验方法,制定相关的检验标准,将一方面有利于对我国成品油市场进行有效的质量监管,减少和避免因成品油质量问题引发的群体性质量事故而造成消费者的人身安全事故和经济损失,具有较为显著的经济效益和社会效益。   《硫化橡胶 恒定形变压缩永久变形的测定方法》   本标准规定了将硫化橡胶试样压缩到规定高度下,经一定温度和时间,或经介质浸润后,测定试样压缩永久变形率的方法。本试验方法是橡胶物理性能试验中最常用的方法,试验设计简单易行,可直观的反应橡胶的硫化程度,因此得到国内外众多试验室普遍采用。本标准的前身是GB/T 1683《硫化橡胶恒定形变压缩永久变形的测定方法》,于1981年修订至今得到广泛使用。但是在国标清理整顿时,该标准在国家标准目录库中丢失,因此现急需补充制定。   《硫化橡胶或热塑性橡胶 耐臭氧龟裂 测定试验箱中臭氧浓度的试验方法》   臭氧是橡胶老化失效的重要因素之一,考察橡胶耐臭氧老化的性能时,臭氧浓度是影响臭氧老化试验结果的重要影响因素。目前国内尚无专门测量臭氧浓度的方法标准,导致国内橡胶耐臭氧相关试验方法标准测试结果没有可比性,因此亟需制订相应的国家标准。 本次国家标准制定建议等同采用ISO 1431-3:2000。   《氯化聚氯乙烯树脂 残留氯含量的测定 电位滴定法》   氯化聚氯乙烯树脂(CPVC)是由聚氯乙烯经氯化而制得的改性高分子化合物,是一种新型工程塑料原料,其耐热性及耐酸碱、盐、氧化剂腐蚀的性能十分优异,综合性能远高于聚氯乙烯树脂。残余氯含量是评判CPVC质量优劣的一项重要技术指标。本标准作为试验方法标准,拟在氯化聚氯乙烯树脂产品标准中被引用。   《毛用反应染料 色光和强度的测定》   毛用反应染料是近年来快速发展的一类产品,相比传统的羊毛用酸性等染料,因反应染料与纤维产生共价键结合而具有无法比拟的优异色牢度和应用性能,在行业内备受推崇。随着毛用反应染料的不断开发成功和面市,其生产企业越来越多,应用也越来越据活跃,商品化产品在国内外贸易也越来越频繁,而考核这类染料染色性能和质量要求的最重要指标(色光和强度)的测定还没有有一个统一的测试方法标准。为完善我国染料领域的标准体系建设,提高反应染料产品质量、规范生产,保证产品国内外贸易的顺利进行,制定本标准是十分必要的。   《木材胶粘剂拉伸剪切强度的试验方法》   木材粘接的使用条件各不相同。粘接后性能的表征可按受力方向的不同,分为拉伸剪切和压缩剪切。本标准提供了在给定环境条件下,利用标准试件进行拉伸载荷,测定木材与木材粘接剪切强度的方法。本标准完善了木材用胶粘剂剪切强度的试验方法,完整地反映了胶粘剂在木材上的粘接性能。   《色漆和清漆 电导率和电阻的测定》   虽然目前有许多涂料品种需求了解其电导率或电阻参数,但国内仅有产品标准HG/T 3952-2007 《阴极电泳涂料》涉及了涂料产品的电导率的测定方法,但该产品标准中对测试仪器和装置无规定,试验步骤比较简单,因此试验误差较大。对于涂料的电阻测定则无相关方法,国内一些企业各自建立了试验方法,但由于对试验仪器、操作步骤规定不科学和过于简单,造成较大的结果偏差,且不同企业之间产品难以相互比较。因此,制定准确测定涂料的电导率和电阻的标准对于涂料配方设计、指导施工、性能检测都具有十分重要意义。   《涂料中石棉的测定》   涂料是一类与人们生活息息相关的产品,为改善其性能有时需加入一些天然矿物(常会掺杂有石棉纤维的伴生物)或石棉物质。 石棉纤维对人体健康有不良影响,进入人体内的石棉纤维具有致病可能。国际癌症研究组织(IARC)已经宣布石棉是A类致癌物。随着各类石棉控制或禁用法规的实施,涂料就成为无法规避的被检材料。目前国内外关于涂料中石棉的检测还没有统一的标准 ,制定涂料中石棉的检测方法标准势在必行。   《颜料和体质颜料 灼烧损失和灼烧残余物的测定》   颜料和体质颜料是涂料、油墨等生产的重要原材料之一,灼烧损失和灼烧残余物的测定是许多颜料生产厂及用户很重视的项目之一,其测定方法应用频率较高。灼烧损失和灼烧残余物的测定结果对于颜料和体质颜料样品分析有着重要的意义,可用于了解和判定样品成分组成等信息。目前国内、国际尚没有颜料和体质颜料灼烧损失和灼烧残余物测定的试验方法标准,仅在相关产品标准中作具体描述。因此尽快制定统一的颜料和体质颜料灼烧损失和灼烧残余物测定的试验方法标准十分必要。   《液体酸性染料 色光和强度的测定》   液体酸性染料作为色素最基本的应用性能指标就是其色光和强度,由于其下游应用的特殊性,其色光和强度的测定不同于传统的粉剂染料的测定,目前还没有形成统一的测定方法标准,不利于国内外产品贸易和产品技术进步。为促进产业结构调整,推动清洁生产工艺技术深入,为保证产品下游应用的顺利开展,制定该方法标准是非常必要的。   《异丁烯-异戊二烯橡胶(IIR)不饱和度的测定 第1部分:碘量法》   自1999年国内第一套丁基橡胶生产装置开车以来,丁基橡胶的生产工艺和质量水平都有了较大的提高,2012年完成丁基橡胶产品国家标准的制定。不饱和度是产品标准中一项重要检测项目,直接影响橡胶的加工和应用性能,有必要单独针对其制定方法标准。目前国际标准中也没有不饱和度方法标准,本项目将填补此项空白。本次制定丁基橡胶不饱和度的测定方法,分为两个部分:第1部分 碘量法 第2部分 核磁共振氢谱法,保证了方法的配套性,同时满足不同用户的需要。
  • 专家解读|GB/T 39560.12-2024 电子电气产品中某些物质的测定 第12部分:气相色谱-质谱法同时测定聚合物中的多溴联苯、多溴二苯醚和邻苯二甲酸酯
    多溴联苯、多溴二苯醚是一种新型持久性有机污染物,在环境及生物体内普遍存在且污染呈增长趋势,并对动物及人类健康造成潜在的危害,已对其进行严格管控。而邻苯二甲酸酯作为塑料产品中的增塑剂,被广泛应用于玩具、食品包装材料、医用血袋和胶管、乙烯地板和壁纸、清洁剂、润滑油、个人护理用品等产品中,因其给环境和健康带来严重危害同样已被社会广泛关注,并加以限制。电子电气产品作为人们日常生活必不可少的一部分,产品中所含有害物质对环境和人体健康的影响备受关注,国内外均出台了相关政策对其加以管控,比较典型的就是欧盟RoHS法规,其2.0版本中对多溴联苯、多溴二苯醚以及四种邻苯二甲酸酯物质进行了规定,要求出口到欧盟地区的电子电气产品均应执行法规要求。此外,为贯彻落实我国《“十四五”工业绿色发展规划》中有关推动生产过程清洁化转型,减少有害物质源头使用的重要工作,2024年6月29日GB/T 26572-2011《电子电气产品中限用物质的限量要求》国家标准第1号修改单正式发布,其规定的有害物质限量要求与欧盟RoHS法规管控物质完成一致,这也标志着中国RoHS正式与国际接轨。该修改单中明确规定,电子电气产品有害物质检测方法标准全部更新为GB/T 39560系列,而本标准作为GB/T 39560系列标准的第12部分,同样适用,并将于2024年10月1日开始实施,以此确保我国RoHS检测技术及结果与国际一致。GB_T 39560_12-2024 《电子电气产品中某些物质的测定第12部分_气相色谱-质谱法同时测定聚合物中的多溴联苯、多溴二苯醚和邻苯二甲酸酯》.pdf一、制定背景 电子电气产品生产和销售企业,为应对欧盟RoHS法规以及我国《电器电子产品有害物质限制使用管理办法》要求,对产品中的限用物质进行检测,以确保符合性。由于法规要求不断更新,且所测试的有机类化合物相对复杂,导致目前所用的检测方法较多,出现同一样品按照不同项目多次处理和测定的情况,花费大量的检测时间和成本。根据有机物萃取和GC-MS检测技术原理,将不同类型的有机化合物通过方法优化,取得同时萃取和检测的方法,从而减少检测时间和技术成本,在确保满足法规要求的同时,为企业及第三方检测机构提供一套更科学、可靠的技术方法,对于保障电子电气产品的安全性和环保性具有重要意义。二、制定过程本标准等同采用IEC62321-12的标准,该国际标准同样为工业和信息化部电子第五研究所牵头制订,本标准在采纳该标准的同时,依托行业发展的战略背景,集合了国内电子电气行业一批权威的科研院所、检测平台、仪器生产厂家以及生产企业代表等22家单位,积极投身标准的制定当中。编制组历时3年对标准技术内容进行了充分而详实的论证,解决了多个技术难点,最终确保标准的实用性,并在相关领域得到推广应用。三、主要内容本标准详细规定了电子电气产品聚合物中PBB、PBDE以及四种邻苯的测试方法,包括适用范围、测定原理、样品制备、仪器参数、校准、质量控制以及附录参考文件等。1. 适用范围:本标准适用于电子电气产品聚合物中多溴联苯(PBB)、多溴二苯醚(PBDE)和四种邻苯二甲酸酯(邻苯二甲酸二异丁酯(DIBP)、邻苯二甲酸二正丁酯(DBP)、邻苯二甲酸丁基苄酯(BBP)、邻苯二甲酸二(2-乙基己基)酯(DEHP))的测定。并已经通过测试聚丙烯(PP)、聚氯乙烯(PVC)、丙烯腈-丁二烯-苯乙烯(ABS)、丙烯酸橡胶(ACM)、聚苯乙烯(PS)、聚氨酯(PU)和聚乙烯(PE)等材料的评估。测定范围为25 mg/kg至2000 mg/kg。2. 测定原理本标准采用超声波辅助萃取方法,将聚合物样品中的PBB、PBDE和邻苯二甲酸酯萃取出来,然后采用GC-MS进行定性和定量分析。GC-MS可以同时进行多种化合物的分析,灵敏度高,准确性好,是测定PBB、PBDE和邻苯二甲酸酯的理想方法。3. 样品制备本标准在储备溶液准备中,给出了建议使用的标记物、内标物、储备液浓度以及储存条件等信息。在分析的一般说明中将可能影响分析过程的空白值以及外界环境影响因素等进行了阐述说明。样品制备是分析过程中至关重要的一步。本标准规定了样品的研磨、筛分和萃取等步骤。样品应研磨并通过500μm的筛子,或者切成小于1x1 mm的碎片。样品制备的粒径对于萃取效果影响较大,因此标准中对于样品的粒径大小进行了限值,以确保达到最佳的萃取效果。称取100 mg ± 10 mg样品,用预先清洗过的滤纸包裹后置于离心管中,用4mL丙酮/正己烷浸没样品,加入25μL标记物(1000μg/mL),使用超声波辅助萃取方法,将PBB、PBDE和邻苯二甲酸酯从样品中萃取出来。萃取完成的样品进行离心,转移上清液于25mL容量瓶中,重复两次以上萃取步骤,最终将三次萃取离心的上清液全部转移至25mL容量瓶中,定容至标记处,加入内标物后完成样品制备。标记物主要用于指示样品回收率效果,因此在样品制备的前端就应加入,伴随样品处理的全过程,以此进行监控。标准中同样规定了超声的萃取时间以及水浴温度等条件,试剂的选取以及萃取时间和温度的设置对于样品提取效果极为重要,能以最短的时间达到最佳的效果。需要注意的是,萃取过程中,超声浴中的水位应高于管内的萃取液位,并且由于有机溶剂在密封管中的挥发,水浴温度过高可能会造成危险。在操作过程中应关注温度变化,确保试验安全。4. 仪器参数GC-MS的仪器参数对分析结果的准确性和可靠性至关重要。本标准给出了GC-MS的仪器的推荐参数,包括色谱柱类型、进样方式、载气流速、柱温箱温度、传输线温度、离子源温度、电离方法和驻留时间等。这些参数可以根据不同的仪器和分析要求进行调整,同时给出对应目标物的定性与定量离子参考。5. 校准校准是定量分析的基础。本标准规定了使用标准物质溶液进行校准的方法。通过绘制校准曲线,可以建立分析物浓度和仪器响应之间的关系,从而进行定量分析。本标准对校准曲线的具体绘制方法以及推荐选择的浓度点进行了规定,包括标记物以及内标物溶液的配制方法,同时给出校准曲线的线性回归方程以及各参数的意义。需要注意,样品和标准溶液使用的溶剂应该相同,以避免任何潜在的溶剂影响。所有校准溶液在使用前应储存在低于-10℃的温度下。每个校准曲线的线性回归拟合的相对标准偏差(RSD)应小于或等于线性校准函数的 15%。校准曲线绘制过程中应尽可能采用线性回归校准。在不能达到线性回归符合的要求(小于或等于15%的相对标准偏差(RSD)),如果其它统计处理方式(例如相关系数或曲线达到 0.995 或更好)证明可接受,也可使用多项式拟合。此外,在建立十溴二苯醚的校准曲线时,标准中给出校准范围的建议调整要求。6. 计算根据拟合的线性方程进行样品浓度计算,当使用线性回归不能满足曲线的相对标准偏差要求时,可以使用多项式(例如二次)回归,但要满足所有的质量控制要求。如果样品中每种同系物的浓度超出各自的曲线线性范围,需对样品进行稀释,应尽量使其浓度在校准范围的中间部分。样品中的多溴二苯醚总量和多溴联苯总量不仅局限于校准溶液中的标准物质,除此之外的其他可经过确证的多溴二苯醚和多溴联苯物质也应算入总量。7. 质量控制本标准规定了严格的质量控制措施,通过分辨率对仪器进行监控,通过空白试验、基体加标、分析连续校准核查标准物(CCC)、标记物回收率、检出限以及定量限等指标对整个分析方法的过程进行质量监控,并详细阐述了实施过程,当上述所述质控内容不能满足标准中规定的要求时,所得的结果是不可信的,需要对各个环节进行逐一排查确认后,重新进行测试,从而确保分析结果的可靠性和准确性。8. 附录附录中对不同萃取剂的萃取效率实例、不同循环次数的萃取效率实例、气相色谱质谱图、各目标化合物的质谱图、国际实验室间比对12(IIS12)的统计结果进行了展示,对过程操作给予指导。以上为本标准的所有解读内容,通过本次标准解读,对标准的内涵和实施要求有了更深入的了解。这一标准的实施将极大提高检测技术的准确性和可靠性,促进相关行业的持续发展。本标准的制定和实施不仅符合国内市场的需求,更是我们接轨国际标准、参与国际竞争的重要步骤。其有助于提升我国产品在国际市场上的信誉度和竞争力,促进国际贸易的便利化。(作者:工业和信息化部电子第五研究所环境与绿色发展中心环境技术部部长/高级工程师 丑天姝)丑天姝,高级工程师,现任工业和信息化部电子第五研究所环境与绿色发展中心环境技术部部长。主要从事毒害物质检测、绿色供应链管理、环境地球化学、环境分析等相关研究。主要承担工信部高质量发展专项“高效液相色谱-高分辨离子淌度质谱联用仪”项目、“第二次全国污染源普查工业污染源产排污系数核算项目”、肇庆市科技项目“典型工业污泥低温干化关键技术研发与应用示范”、增城区科技项目“田螺废弃物中芳香基硫酸酯酶的提取及其应用研究”以及“增城市基本农田(菜地)土壤环境质量调查研究”等各类课题项目14项,参与制修订国际标准2项、国家及行业标准8项;发表论文6篇,获得专利3件;出版著作1部。
  • 使用表面增强拉曼光谱检测瓶装水中的聚对苯二甲酸乙二醇酯纳米塑料
    近日,挪威科技大学与南开大学合作在Environmental Science & Technology上发表了题为“Identification of Poly(ethylene terephthalate) Nanoplastics in Commercially Bottled Drinking Water Using Surface-Enhanced Raman Spectroscopy”的研究论文。研究合成了一种新型的表面拉曼增强光谱(SERS)衬底,该衬底可增强纳米颗粒的拉曼光谱信号,通过对不同粒径的聚苯乙烯(PS)纳米颗粒测试发现,粒径越小拉曼光谱信号增强因子越高。使用该SERS衬底,对经100 纳米滤膜过滤后瓶装水进行了检测,通过与标准谱图比对,发现瓶装水中的纳米塑料为聚对苯二甲酸乙二醇酯,浓度高达108 个/毫升。全文速览微纳塑料作为新型污染物,引起了全球范围的广泛关注。而作为微纳塑料研究的基石,检测分析方法一直是该领域的重点和难点,尤其是粒径更小的纳米塑料。本研究合成了一种新型三角孔隙阵列SERS衬底,该衬底可增强纳米塑料的拉曼信号。通过对不同粒径(50,200,500,1000 nm)的PS纳米塑料测试,发现粒径越小,拉曼光谱信号的增强因子越高。对于50 nm的PS纳米塑料检测限为0.001%,约为1.5×1011 个/毫升。使用该衬底,检测了市售的瓶装水,瓶装水经100 nm滤膜过滤后,滴加在衬底上,可直接检测到拉曼光谱信号,经过与标准谱图的比对,发现为聚对苯二甲酸乙二醇酯,该塑料主要为瓶身材质,浓度约为108 个/毫升。该研究提供了一种快速且灵敏的纳米塑料检测方法。引言微纳塑料由于其独特物化性质,分析检测一直是微纳塑料研究领域的重点和难点。拉曼增强由于其可对小分子有机化合物以及纳米颗粒的拉曼光谱信号进行增强,近年来也逐渐应用于纳米塑料的检测。但目前关于SERS测试纳米塑料多集中于实验室内的加标样品,对于实际样品的检测的研究仍然很少。本研究通过合成一种新型的三角孔隙阵列衬底,测试了其对PS纳米塑料的增强效果,并检测分析了市售瓶装水中纳米塑料的赋存。图文导读阵列合成Figure 1. A schematic illustration of fabrication process for the triangular cavity arrays (TCAs). First, close-packed polystyrene (PS) nanospheres are self-assembled on a silicon substrate (i). A thin silver (Ag) film is deposited over the nanospheres (ii), which are then tape stripped away, leaving Ag nanotriangle arrays (iii). A gold (Au) film is then deposited over the entire substrate (iv). An adhesive epoxy is applied on the top of Au and then peeled off, transferring two metals Ag and Au sitting in a complementary arrangement side-by-side on epoxy (v). Simply removing of the Ag parts using chemically etching, revealed gold triangular cavity arrays as shown in (vi).图1展示了该拉曼衬底的合成示意图,首先将一层500 nm的PS纳米微球平铺在硅胶板上,然后在表面添加一层Ag,去除掉纳米微球后,形成了Ag纳米三角阵列,再添加一层150 nm的Au薄膜,之后添加一层粘合剂环氧树脂,在紫外线照射下固化后剥离掉带着两层金属的环氧树脂,再去除孔隙中的Ag后,形成最终的三角阵列衬底。阵列表征Figure 2. Scanning electron micrographs (SEMs) of the corresponding processing steps in Figure 1 to fabricate gold TCAs substrate: (a) Close-packed PS nanospheres that corresponds to step i in Figure 1 (b) Ag triangle arrays after removing of PS nanospheres that corresponds to step iii in Figure 1 (c) Top-view of morphology after depositing Au layer that corresponds to step iv in Figure 1 (d) Au TCAs arrays after removing of Ag parts that corresponds to step vi in Figure 1. Scale bar in a-d: 250 nm. (e) Patterned gold TCAs over large area, scale bar in e: 1 µm.图2为经过图1合成的衬底的扫描电镜图,分别表示了衬底在不同合成阶段的扫描电镜图。从图中可清楚的表明于实际合成的衬底与图1中的示意图完全吻合。PS纳米颗粒测试Figure 3. (a) Raman spectra of PS nanoplastics with different sizes on Au TCAs substrates at concentration of 1%. (b) Enhancement factor (EF) as a function of PS size. (c) Raman spectra of 50 nm PS nanoplastics with concentrations varying from 1% to 0.001% on TCAs substrates and on plain glass substrate at the concentration of 1% (control line). (d-g) Raman mapping images of 50 nm PS nanoplastics on Au TCAs substrates with different concentrations from 1% to 0.001%. Scale bar in d-g: 200 nm.图3展示了不同粒径的PS纳米微球的增强测试,在50、200、500和1000 nm四个粒径中,50 nm的PS微球增强因子最高,随着粒径增加,增强因子变低。此外,还对50 nm的PS微球的不同浓度做了分析测试,发现在0.001%仍可检测到清晰的信号,特征峰1003 cm-1的信噪比为88。瓶装水前处理Figure 4. (a) Schematic of sample preparation from commercially bottled drinking water. (b-d) SEM images of an extracted sample that drop-casted on a silicon wafer after drying under ambient conditions. Scale bar: (b) 300 µm (c) 5 µm (d) 200 nm.图4为瓶装水的处理过程和SEM结果。在采购瓶装水后,取100 mL过100 nm的滤膜,对过滤后的水样进行SEM检测,从图中可看出,在扫描电镜下,存在大量的颗粒物,经过不同倍数的放大,粒径小的可低至几十纳米。同时,采用去离子水做了过程空白对照,在扫描电镜下,无颗粒物检出,排除了实验过程中外部的污染。瓶装水检测Figure 5. (a)Schematic of sample preparation from bottled drinking water. (b) Raman mapping image of sample extracted from bottled drinking water on TCAs substrate. Scale bar: 500 nm. (c) Raman spectra of sample extracted from bottled drinking water on TCAs substrate (red line) and plain glass substrate (brown line), and PET film (purple line). (d) Finite track length adjustment (FTLA) concentration/size image for NTA of sample extracted from bottled drinking water on TCAs substrate: indicating mean size of nanoplastics is ca. 130.8 ± 58.0 nm.图5为瓶装水的拉曼检测结果,将过滤后的瓶装水直接滴加在衬底上,经过拉曼检测后,可鉴别出1620和1760 cm-1两个峰,与PET纳米塑料标准品和PET膜进行对比,可知瓶装水中的颗粒物为PET,在检测空白和过程空白中均无信号。此外,水样还进行了NTA测试,平均粒径约为88.2 nm(三个平行样品的平均值),浓度为1.66×108 个/毫升。小结通过合成新的SERS衬底,可实现对纳米塑料的拉曼信号的增强,纳米塑料的粒径越小增强因子越高,且该衬底的灵敏度高,可对过滤后的水样直接检测,同时还可重复使用。瓶装水的检测结果表明塑料瓶身是水样中纳米塑料的主要来源。
  • 新类型合成毒品原料快速检测的利器
    新类型合成毒品原料快速检测的利器 上海舜宇恒平科学仪器有限公司   近年来,甲基苯丙胺、氯胺酮等新类型合成毒品在涉案毒品中的比重逐年上升,新类型合成毒品不断增长的趋势对有效打击毒品犯罪提出了更高的要求。   上海舜宇恒平科学仪器有限公司推出的AD04-03易制毒化学品检测仪是针对新类型毒品合成原料检测的专用仪器,能够对目前国家管制的17种易挥发性易制毒化学品进行有效分析,非常适合车载和现场检测。该仪器通过一次进样,双柱双温、双检测器并联,双通道采集及数据分析,即可完成全部目标化合物的检测。整个分析过程兼顾了低沸点及高沸点化合物的分离检测,分析时间小于5min。仪器专用软件自动获取数据,与样品库中标准数据进行对比,如发现易制毒化学品即自动报警,是从源头上打击合成类毒品的有力工具。 AD04-03易制毒化学品检测仪 检测目标化合物:乙醚、丙酮、氯仿、丁酮、甲苯、醋酸酐、黄樟脑、胡椒醛、麻黄碱、苯乙酸、邻氨基苯甲酸、N-乙酰邻氨基苯甲酸等易制毒化学品及咖啡因、氯胺酮等毒品。主要特点: 可靠性高,便于携带,功耗较低 针对17种易制毒化学品进行快速检测,分析时间小于5分钟 全自动分析-报警软件,做到一次进样,分离、分析数据的全自动处理 集工业控制计算机、分离系统、数据采集于一体 中文操作系统,触摸屏操作,全图形界面,方便操作 仪器扩展性好,可以方便的增加或改变标准库中的样品种类 可现场打印检测报告,满足车载及现场快速检测的要求 联系方式:上海舜宇恒平科学仪器有限公司 地址:上海市虹漕路456号8号楼5~6楼 电话:021-64959872 E-mail:info@hengping.com http://www.hengping.com
  • 冷杉精密仪器发布 冷杉 3100-05H 非甲烷总烃/苯系物 在线气相色谱仪新品
    n行业背景为改善环境空气质量,降低 PM2.5 污染浓度,大幅减少 PM2.5 前驱体—— VOCs 排放量,应采用先进的治理技术,较大限度降低 VOCs 排放总浓度,即污染物负荷。国家“十三五”规划将 VOCs 排放纳入总量控制指标,并提出在重点区域、重点行业推进 VOCs 控排和减排,确保到 2020 年全国 VOCs 排放总量下降 10% 以上。“十三五”规划则提出,到 2020 年重点行业VOCs排放应削减 30% 以上。VOCs种类较多,单独监测每种VOCs现有技术成本较高。因此《大气污染物综合排放标准》(GB16297-1996)中规定标准中使用“非甲烷总烃(NMHC)”作为挥发性有机物排放的综合控制指标。除此之外,还规定了苯、甲苯、二甲苯控制指标。苯系物作为活性较强的VOCs,是重点控制污染物。它不仅是臭氧的前体物,也是PM2.5的前体物,同时也是恶臭类的污染物(苯乙烯)。《大气污染物综合排放标准》规定了苯、甲苯、二甲苯的排放限值。而在《中华人民共和国环保税法》列出了部分苯系物,包括苯、甲苯、二甲苯、苯乙烯等。n产品概述冷杉 3100-05H 非甲烷总烃/苯系物在线气相色谱仪,采用无氮气场景设计,采三阀、四柱、双 FID 配置,且全程高温伴热,样品经定量环定量、三阀进样、四柱分离后,氢火焰离子化检测器(FID)检测,前FID测定样品样品中的总烃(THC)和甲烷(CH4)浓度,非甲烷总烃(NMHC)的浓度由差减法计算,后 FID 测定样品中苯系物各组分的浓度。适用于污染源中非甲烷总烃和苯、甲苯、乙苯、二甲苯、三甲苯等的含量监测。n产品特点?无氮气场景设计,真正意义的在线气相色谱仪,无需更换气源?运行稳定安全,实现无人值守,运维成本低 l自我保护功能,气源供应不足时,火焰自动熄灭,且关闭氢气和空气流量,防止泄露 l自动点火,开机、气源供应恢复或意外断电恢复后,自动点火并运行 l支持远程报警与远程诊断功能?仪器定性定量重复性好(≤1%),检出限低 lFID检测限低至 1.8×10-12 g/s l高稳定性温度控制系统:0.01 ℃ l高精度电子压力控制单元EPC(0.001psi),实现温度和压力补偿 ?软件操作简单,维护方便,支持定制服务n应用场景 固定污染源VOCs 监测;VOCs 处理设备;VOCs 监控点监测;其他 VOCs监测等场景n技术参数量程甲烷 0.01~10000 ppm;总烃 0.01~10000 ppm;非甲烷总烃 0.05~10000 ppm;苯 0.1~1000 ppm(可选)功率电源500 W;220 VAC 50 Hz分析周期2 min~20 min(可选)工作环境温度:5~35 ℃;湿度 20~95%RH检出限甲烷 50 ppb;总烃 50 ppb;非甲烷总烃 50 ppb;苯 50 ppb样气要求样气温度:环境温度 ~180 ℃;流速不低于 0.5 L/min 或压力不低于 0.1Mpa重复性2.0%F.S.(24h)仪器尺寸19 英寸标准机箱,高度 6U,633 mm×430 mm×266.7 mm (L*W*H)创新点:无氮气场景设计,真正意义的在线气相色谱仪,无需更换气源。 运行稳定安全,实现无人值守,运维成本低 自我保护功能,气源供应不足时,火焰自动熄灭,且关闭氢气和空气流量,防止泄露 自动点火,开机、气源供应恢复或意外断电恢复后,自动点火并运行 支持远程报警与远程诊断功能 仪器定性定量重复性好(≤ 1%),检出限低 FID检测限低至 1.8× 10-12 g/s。 高稳定性温度控制系统:0.01 ℃。 高精度电子压力控制单元EPC(0.001psi),实现温度和压力补偿 软件操作简单,维护方便,支持定制服务 冷杉 3100-05H 非甲烷总烃/苯系物 在线气相色谱仪
  • 应对水质监测新标准,赛默飞苯胺类和硝基酚类液质分析
    应对水质监测新标准,赛默飞苯胺类和硝基酚类液质分析方法“交钥匙”啦关注我们,更多干货和惊喜好礼水质监测珍惜水资源,保护水环境。水质监测是保护水资源的基本手段之一,是水资源保护科学研究的基础,对水污染控制和维护水环境健康十分重要。苯胺类和硝基酚类化合物是水体中优先控制污染物,生态环境部发布的国家环境标准《水质 苯胺类化合物测定》(HJ1048-2019)和《水质 4种硝基酚类化合物测定》(HJ1049-2019)于2020年4月24日正式实施。标准监测范围包括地表水,地下水,生活污水及各种各样的工业废水。 苯胺和硝基酚类化合物都是重要且常用的化工原料,作为原材料或中间体被广泛应用。在生产和使用过程中,会随工业废水的排放对环境造成污染,使地表水等受到污染。苯胺类物质具特殊的气味,一般难溶于水,而易溶于有机试剂,易挥发,结构稳定,对人体的危害高,少量苯胺就能引起急性中毒,其中一些苯胺类化合物可以快速透过皮肤或呼吸道系统进入体内,造成溶血性贫血,损害肝脏引起中毒性肝炎,对肾功能造成损害等。硝基酚类化合物为淡黄色或黄色晶体,微溶于水,可溶于乙醇,乙醚,氯仿等有机溶剂。硝基酚对人和哺乳动物都有毒性,在生物体内易被酶转化为亚硝基和羟胺基衍生物,这些衍生物可生成正铁血红蛋白或亚硝基胺,前者能与氧结合,后者是致癌物。因此,2019年10月,生态环境部发布了水质17种苯胺类化合物和水质4种硝基酚类化合物测定液相色谱-三重四极杆质谱法的两个检测标准。 赛默飞全新一代三重四极杆液质联用仪Thermo Scientific™ TSQ系列应对国家环境保护标准水质监测,建立的方法灵敏度高、专属性强、稳定性好,为水质中苯胺类和硝基酚类化合物风险监控提供有效的支持。赛默飞针对苯胺类和硝基酚类化合物的水质检测解决方案01 建立了基于Thermo Scientific™ TSQ Quantis™ 三重四极杆串联质谱仪分析17种苯胺类物质的检测方法 表1 17种苯胺类化合物信息(点击查看大图) 方法选用C8柱(Thermo Scientific™ Hypersil GOLD™ 150x3mm, 3μm),以0.02%甲酸水溶液为流动相水相,以0.02%甲酸甲醇为流动相有机相,流速为0.4 mL/min,柱温为35℃。采用ESI源正离子模式进行 SRM扫描。 1、邻苯二胺;2、苯胺;3、对甲苯胺;4、联苯胺;5、邻甲氧基苯胺;6、邻甲苯胺;7、2,4-二甲基苯胺;8、4-氯苯胺;9、4-硝基苯胺;10、2,6-二甲基苯胺;11、2-萘胺;12、3-氯苯胺;13、2-硝基苯胺;14、2-甲基-6乙基苯胺;15、2,6-二乙基苯胺;16、3,3-二氯联苯胺;17、3-硝基苯胺。图1 17种苯胺类物质提取离子流图(点击查看大图) 实验进行了详细的方法学验证,基于Thermo Scientific™ TSQ Quantis™ 建立的水质中苯胺类化合物检测方法不仅具有优异的灵敏度和线性范围,同时专属性高,具备良好的重现性。 02 建立了基于Thermo Scientific™ TSQ Fortis™ 三重四极杆串联质谱仪分析4种硝基酚类物质的检测方法 表2 4种硝基酚化合物信息(点击查看大图) 方法选用C18柱(Thermo Scientific™ Hypersil GOLD™ 100x2.1mm, 1.9μ),0.01%乙酸水溶液和甲醇为流动相梯度洗脱,流速0.3 mL/min,柱温35℃。采用ESI源负离子模式SRM扫描方式检测。 图2 4种硝基酚类化合物和内标色谱图(点击查看大图) 实验进行了详细的方法学验证,四种硝基酚化合物定量限优于标准的检测要求,重现性和线性关系优异。并且本方法专属性强,适用于水质中硝基酚类污染物的检测。 结语预防水污染,保护水资源,赛默飞全新一代三重四极杆液质联用仪以其优异的性能有效应对环境检测相关法规。更多环境解决方案,请继续关注赛默飞官方微信平台。 如需合作转载本文,请文末留言。扫描下方二维码即可获取赛默飞全行业解决方案,或关注“赛默飞色谱与质谱中国”公众号,了解更多资讯+了解更多的产品及应用资讯,可至赛默飞色谱与质谱展台+网址https://www.instrument.com.cn/netshow/sh100244/
  • 饲料中苯乙醇胺A的测定——色谱耗材选购指南
    上海安谱科学仪器有限公司 地址:上海市斜土路2897弄50号海文商务楼5层 [200030] 电话:86-21-54890099 传真:86-21-54248311 网址:www.anpel.com.cn 联系方式:shanpel@anpel.com.cn 技术支持:techservice@anpel.com.cn
  • 欧盟拟修订关于化妆品指令
    欧盟委员会2009年10月23日发布了G/TBT/N/EEC/301号通报,标题为:欧盟委员会指令草案,为适应技术进步修订关于化妆品的理事会指令76/768/EEC附件II和III,涉及化妆品。   该指令草案有以下措施:(1)禁止马鞭草纯物质以外的马鞭草精油(马鞭草油)及其衍生产品(2)马鞭草纯物质(马鞭草油)的使用限制为在最终化妆品中浓度低于0.2%。(3)限制在化妆品中使用烯丙基苯乙醚,丙烯醇自由基的水平应低于0.1%(4)删除理事会指令76/768/EEC第1部分附录III第130号引用中的商品名称“sinpine”。   该指令草案拟批准日期:在欧盟官方公报上公布:2010年初。拟生效日期:在欧盟官方公报上公布后第20天。生效后12个月适用。
  • 欧盟更新用于食品塑料接触材料的添加剂清单
    欧盟委员会近期发布了一份用于食品塑料接触材料及物品的添加剂临时清单更新版本(请见:http://ec.europa.eu/food/food/chemicalsafety/foodcontact/docs/080410_provisional_list_7_211009.pdf)。本次用于食品塑料接触材料及物品的添加剂临时清单包含2006年12月31日有效申请中涉及的添加剂。这些添加剂尚未得到欧共体授权。   自2010年1月1日起,2002/72/EC指令规定用于食品塑料接触材料及物品的添加剂清单将明确排除其他一切非清单列出的添加剂。这份临时清单上的物质可根据各国立法在2010年1月1日以后继续使用,直到临时清单做出其他扩充或缩减的更改决定。   该清单包括动物及蔬菜油脂和脂肪中的酸性物质、油脂(C8-C22),直链类,单羟基、初级的饱和脂肪族醇(C3-C22),(丙烯酸丁酯、甲基丙烯酸甲酯、甲基丙烯酸丁酯)共聚物,银含量低于0.5%的含银玻璃(银-镁-铝-钠-磷酸盐-硅酸盐-硼酸盐)等物质。指令对过渡期做出指示:2010年11月1日前含2,4,4’-三氯-2’ 联羟基联苯乙醚的塑料材料及物品生产制造和市场投放,可按各国立法持续到2011年11月1日。   清单上的物质并非必须经由EFSA评估。有关安全评估状态的详细信息,请查询EFSA官方网站www.efsa.europa.eu。这些添加剂皆由各成员国规定。有关添加剂的合法验证信息,请咨询各成员国主管机构。相关评议意见请见:http://www.efsa.europa.eu/EFSA/efsa_locale-1178620753812_ScientificDocuments.htm
  • 科晓推荐三聚氰胺检测方法包
    由于&ldquo 三鹿奶粉事件&rdquo 导致三聚氰胺这个词一夜间成为了街头巷尾相传的流行。而对于它的检测手段在分析仪器色谱行业内的诸多厂商与科研人员也随之推出了一系列的检测方法,科晓在关注这一事件的同时通过对各种方法的比较验证,推荐来自爱杰尔的方法,为三聚氰胺检测提供一定的参考价值。 三聚氰胺分析方法包组件清单 包括: 1 VenusilASB-C8色谱柱(4.6*250mm,5&mu m,150Å )1支 2混合型的阳离子交换柱(Cleanert PCX 60mg/3mL)50支 3三聚氰胺标准品1瓶(500mg,&ge 99.5%) (可选) 4三聚氰胺分析方法手册1份 5庚烷磺酸钠(25g/瓶) (可选) 6 固相萃取装置(12位)一套 (可选) 理化性质 三聚氰胺:英文名&ldquo melamine&rdquo ,简称三胺, 学名三氨三嗪, 别名蜜胺、氰尿酰胺、三聚酰胺。分 子 式:C3N6H6、 C3N3(NH2)3 ;分 子 量:126.12 物理性能:白色结晶粉末,无毒,无味;相对密度:1570kg/m³ ;熔点:在常压下,354℃分解;升华温度:300℃;溶 解 性:能溶于甲醇、甲醛、乙酸、热乙二醇、甘油、吡啶;微溶于水、乙醇;不溶于乙醚、苯和四氯化碳,水溶液呈弱碱性 化学性能:三聚氰胺是一种重要的氮杂环有机化工原料,显弱碱性,能够与各种酸反应生成三聚氰胺盐;在强酸或强碱液中,三聚氰胺发生水解,胺基逐步被羟基取代,生成三聚氰酸二酰胺、三聚氰酸一酰胺和三聚氰酸;三聚氰胺与醛类反应生成加成化合物;三聚氰胺与甲醛反应制成树脂,三聚氰胺树脂是一种多种用途的材料,防火耐热且有很高的稳定性,用于生产塑料、地板砖,厨房用具,防火纤维,商业滤膜,胶水和阻燃剂。 固相萃取(SPE)方法 1 固相萃取(SPE)柱的选择: 三聚氰胺呈弱碱性(弱阳离子化合物),净化过程一般选择阳离子交换柱。混合型的阳离子交换柱(PCX)通过将磺酸基团(-SO3H)键合在极性高聚物聚苯乙烯/二乙烯苯(PEP)吸附剂上,具有阳离子和反相两种吸附机理,并具有以下优点: 1) 可通过两种不同溶液的洗涤(水/一定pH值的缓冲溶液和有机溶剂),使样品更干净,提高检测的灵敏度。 2) 批次重复性好。 3) 回收率高,重现性好,即使小柱跑干也可以得到较高回收率。 图1 PCX结构式 2 样品前处理步骤: 2.1标准样品配制: 取50mg三聚氰胺标准品,以20%甲醇溶解定容至50mL得到1000ppm的标准溶液,使用时,以提取液(1%三氯乙酸)稀释至所要的浓度。 2.2提取: 称取饲料/奶粉样品5g (或牛奶10ml),加入50ml 1%三氯乙酸提取液,充分混匀,加入2mL 2%乙酸铅溶液,超声20min。然后取部分溶液转移至10mL离心管中,8000rpm/min离心10min,取上清液3mL过混合型阳离子交换小柱(PCX)。 2.3净化(PCX小柱,60mg/3mL) : 1) 活化及平衡:3mL甲醇,3mL水 2) 上样:加入提取液3mL 3) 淋洗:3mL水;3mL 甲醇;弃去淋洗液并将小柱抽干。 4) 洗脱:5mL 5%氨化甲醇(v/v)洗脱。(5%氨化甲醇的配制:5mL氨水+95mL甲醇)。 5) 浓缩:50℃,氮气吹干,20%甲醇/水定容至2mL。 2.4检测: 用HPLC-UV中国农业部颁标准检测方法分析,测得PCX柱的回收率结果如下: 添加水平 回收率 空白 0.01 116% 0.1 108% 0.5 92% 2 96% 由上表可以看出:用PCX柱净化样品,可以得到满意的回收率。 HPLC-UV检测方法 三聚氰胺在传统的C18柱上保留很差,需要用离子对试剂色谱方法才能有良好的保留与分离,按照美国食品药品监督管理局(FDA)的三聚氰胺检测方法和中国农业部颁部的三聚氰胺检测方法,采用艾杰尔(Agela) Venusil ASB系列亲水色谱柱,均能得到良好的结果,分析色谱图如下: 1、 三聚氰胺的FDA检测方法 色谱柱:Venusil ASB C8 4.6× 250mm 缓冲液:10mM柠檬酸,10mM辛烷磺酸钠,调pH为3.0。 流动相:缓冲液:乙腈=85:15 进样量:样品用缓冲液溶解成约0.1mg/mL,进10uL 流 速:1.0mL/min 柱 温:40 oC 波 长:240nm 2、三聚氰胺的中国农业部颁标准检测方法 色谱柱:Venusil ASB-C18 4.6× 250mm 缓冲液:10mM柠檬酸, 10mM庚烷磺酸钠 流动相:缓冲溶液:乙腈=85:15 进样量:样品用缓冲液溶解成约0.1mg/mL,进10uL 流 速:1.0mL/min 柱 温:40℃ 波 长:240nm LC-MS参考方法 由于HPLC-UV方法中,流动相添加了离子对试剂,限制了液质联用方法的使用;但不用离子对试剂色谱方法,三聚氰胺在传统的C18柱上保留很差,没有良好的保留与分离。 源于此问题,艾杰尔科技公司自主开发了新的方法,采用艾杰尔(Agela) Venusil ASB系列亲水色谱柱,不用离子对试剂也能得到有效的保留与分离,参考方法如下: 缓冲液:10mM NH4AC 流动相:缓冲液:ACN=95:5 流 速:1.0mL/min 进样量:先用70%ACN溶解成约1mg/mL,用ACN稀释成0.1mg/mL,进10uL 柱 温:40℃ 波 长:240nm ASB-C8 4.6× 250mm (Rt=3.839min TF(5%)=1.00 ASB-C18 4.6× 250mm (Rt=3.651min TF(5%)=1.05 备注:色谱柱可选择我公司经营的C8(250*4.6/5um) 作为色谱仪器的专家,科晓将始终为顾客提供最优质的产品与最全面的服务
  • 6月份有188项仪器及检测相关标准将实施 ——质谱检测类仪器领衔
    6月份有188项仪器及检测相关标准将实施——质谱检测类仪器领衔我们通过国家标准信息平台查询到,在2022年6月份将有188项仪器及检测行业的国家标准与行业标准将实施。农林牧渔食品类标准占1/4;化工塑料与医疗卫生紧随其后,分别有19%和15%。除此之外轻工、电子电器、环境等也有新标准将实施。6月份将要实施标准类别图我们简单整理了涉及分析检测仪器的相关标准,在这些标准中使用到质谱仪器检测的标准有29条,液质联用和气质联用仪器几乎平分秋色;使用光谱仪器、色谱仪器、PCR检测的标准也分别都有9条。标准中使用到的仪器类别其他的标准如下:需要相关标准的,点击链接即可下载收藏↓农林牧渔食品标准(47个)GB/T 40998-2021 变性淀粉中羟丙基含量的测定 分光光度法 GB/T 40956-2021 食品冷链物流交接规范 GB/T 40963-2021 冻虾仁 GB/T 40962-2021 干鲍鱼 GB/T 40964-2021 桃冷链流通技术操作规程 GB/T 40960-2021 苹果冷链流通技术规程 GB/T 40944-2021 饲料粒度测定 几何平均粒度法 GB/T 13082-2021 饲料中镉的测定 GB/T 40945-2021 畜禽肉质量分级规程 GB/T 40942-2021 畜禽饲料安全评价 肉鸡饲养试验技术规程 GB/T 40943-2021 梅花鹿茸分等质量 GB/T 40941-2021 马鹿茸分等质量 GB/T 40851-2021 食用调和油 GB/T 20980-2021 饼干质量通则 GB/T 10781.8-2021 白酒质量要求 第8部分:浓酱兼香型白酒 GB/T 20981-2021 面包质量通则 GB/T 17204-2021 饮料酒术语和分类 GB/T 15109-2021 白酒工业术语 SN/T 5406-2021 进口食用植物油中转基因成分检测方法 SN/T 5364.8-2021 出口食品中致病菌检测方法 微滴式数字PCR法 第8部分:克罗诺杆菌属(阪崎肠杆菌) SN/T 5364.7-2021 出口食品中致病菌检测方法 微滴式数字PCR法 第7部分:产志贺毒素大肠埃希氏菌 SN/T 5364.6-2021 出口食品中致病菌检测方法 微滴式数字PCR法 第6部分:单核细胞增生李斯特氏菌 SN/T 5364.5-2021 出口食品中致病菌检测方法 微滴式数字PCR法 第5部分:金黄色葡萄球菌 SN/T5364.4-2021 出口食品中致病菌检测方法 微滴式数字PCR法 第4部分:创伤弧菌 SN/T 5364.3-2021 出口食品中致病菌检测方法 微滴式数字PCR法 第3部分:溶藻弧菌 SN/T 5364.2-2021 出口食品中致病菌检测方法 微滴式数字PCR法 第2部分:霍乱弧菌 SN/T 5364.1-2021 出口食品中致病菌检测方法 微滴式数字PCR法 第1部分:副溶血性弧菌 SN/T 5362-2021 出口食品中氟啶虫胺腈残留量的测定 SN/T 5361-2021 出口食品中阪崎克罗诺杆菌检测方法 fusA基因测序法 SN/T 5360-2021 出口动物源食品中万古霉素和去甲万古霉素残留量的测定 液相色谱-质谱/质谱法 SN/T 5359-2021 出口动物源食品中阿奇霉素残留量的测定 液相色谱-质谱/质谱法 SN/T 5358-2021 出口茶叶中氯噻啉残留量的测定 液相色谱-质谱/质谱法 SN/T 5357-2021 出口保健食品中多类非法添加物的测定 液相色谱-质谱/质谱法 SN/T 5323-2021 食品接触材料 高分子材料 塑料中对羟基苯甲酸酯类物质迁移量的测定 液相色谱串联质谱法 SN/T 5320-2021 食品接触材料 高分子材料 食品模拟物中偏苯三甲酸、间苯二甲酸、对苯二甲酸及邻苯二甲酸的测定 高效液相色谱法 SN/T 5309-2021 食品接触材料 高分子材料 食品模拟物中壬基酚和辛基酚的测定 液相色谱-串联质谱法 SN/T 5308-2021 食品级润滑油中苯、甲苯、氯苯、对二甲苯和邻二甲苯的测定 顶空气相色谱-质谱联用法 SN/T 5407-2021 进境水果预检规程 SN/T 5208-2021 短体线虫(非中国种)检疫鉴定方法 SN/T 4675.32-2021 出口葡萄酒中氮稳定同位素比值测定方法 SN/T 4233-2021 进境牛羊指定隔离检疫场建设规范 SN/T 2523-2021 进境水生动物指定隔离检疫场建设规范 SN/T 2231-2021 出口食品中呋虫胺及其代谢物残留量的测定 液相色谱-质谱/质谱法 SN/T 2210-2021 出口食品中六价铬的测定 SN/T 2203-2021 食品接触材料 木制品类 食品模拟物中多环芳烃的测定 SN/T 0494-2021 出口粮谷中克瘟散检验方法 SN/T 2032-2021 进境种猪指定隔离检疫场建设规范 冶金标准(8个)SN/T 5402-2021 进出口合金钢初级产品检验规程 SN/T 5401-2021 进出口不锈钢初级产品检验规程 SN/T 5400-2021 进出口铁及非合金钢初级产品检验规程 SN/T 5399-2021 进出口生铁检验规程 SN/T 5351-2021 铝和铝合金中氢的测定 惰性气体熔融-红外吸收法 SN/T 5347.2-2021 铬矿石中铅、锌、磷、钛和镍含量的测定 电感耦合等离子体发射光谱法 SN/T 5347.1-2021 铬矿石中碳和硫含量的测定 高频红外吸收法 GB/T 40883-2021 微合金钢锻件 通用技术条件 环境标准(10个)HJ 653-2021 环境空气颗粒物(PM10和PM2.5)连续自动监测系统技术要求及检测方法 HJ 1210—2021土壤和沉积物 13 种苯胺类和 2 种联苯胺类化合物的测定 液相色谱-三重四极杆质谱法 HJ 1214-2021水质 可吸附有机卤素(AOX)的测定 微库仑法 HJ 1215-2021水质 浮游植物的测定 滤膜-显微镜计数法 HJ 1216-2021水质 浮游植物的测定 0.1 ml计数框-显微镜计数法 HJ 1219-2021环境空气和废气 吡啶的测定 气相色谱法 HJ 1220-2021环境空气 6种挥发性羧酸类化合物的测定 气相色谱-质谱法 HJ 1221-2021环境空气 降尘的测定 重量法 HJ 1222-2021固体废物 水分和干物质含量的测定 重量法 HJ 1240-2021固定污染源废气 气态污染物(SO2、NO、NO2、CO、CO2)的测定 便携式傅 立叶变换红外光谱法 医疗卫生生物标准(28个)WS/T 798—2022 消毒剂消毒效果定性试验标准 应用稀释法 WS/T 797-2022 现场消毒评价标准 WS/T 796—2022 围手术期患者血液管理指南 WS/T 795—2022 儿科输血指南 WS/T 794-2022 输血相容性检测标准 WS/T 793-2022 妇幼保健机构医用设备配备标准 GB/T 22576.4-2021 医学实验室 质量和能力的要求 第4部分:临床化学检验领域的要求 GB/T 22576.7-2021 医学实验室 质量和能力的要求 第7部分:输血医学领域的要求 GB/T 22576.6-2021 医学实验室 质量和能力的要求 第6部分:临床微生物学检验领域的要求 GB/T 22576.5-2021 医学实验室 质量和能力的要求 第5部分:临床免疫学检验领域的要求 GB/T 22576.3-2021 医学实验室 质量和能力的要求 第3部分:尿液检验领域的要求 GB/T 22576.2-2021 医学实验室 质量和能力的要求 第2部分:临床血液学检验领域的要求 GB/T 39367.1-2020 体外诊断检验系统 病原微生物检测和鉴定用核酸定性体外检验程序 第1部分:通用要求、术语和定义 GB 8369.2-2020 一次性使用输血器 第2部分:压力输血设备用 GB/T 41008-2021 生物降解饮用吸管 GB/T 41010-2021 生物降解塑料与制品降解性能及标识要求 GB/T 40980-2021 生化制品中还原糖的测定 柱前衍生高效液相色谱法 GB/T 40974-2021 核酸样本质量评价方法 GB/T 28842-2021 药品冷链物流运作规范 GB/T 40939-2021 低温医用冷库通用技术要求 GB/Z 12414-2021 药用玻璃管 YY/T 1733-2020 医疗器械辐射灭菌 辐照装置剂量分布测试指南 YY/T 1713-2020 胶体金免疫层析法检测试剂盒 YY 0341.2—2020 无源外科植入物 骨接合与脊柱植入物 第2部分:脊柱植入物特殊要求 YY 0341.1—2020 无源外科植入物 骨接合与脊柱植入物 第1部分:骨接合植入物特殊要求 YY 1727-2020 口腔黏膜渗出液人类免疫缺陷病毒抗体检测试剂盒(胶体金免疫层析法 )YY/T 1711-2020 放射治疗用门控接口 YY 0899—2020 医用微波设备附件的通用要求 化工橡胶塑料标准(36个)GB/T 40934-2021 滚塑成型 粉末流动性的试验方法 GB/T 41000-2021 聚碳酸酯(PC)饮水罐质量通则 GB/T 41001-2021 密胺塑料餐饮具 GB/T 40640.3-2021 化学品管理信息化 第3部分:电子标签应用 GB/T 40970-2021 化妆品中氨含量的测定 滴定法 GB/T 40955-2021 化妆品中八甲基环四硅氧烷(D4)和十甲基环五硅氧烷(D5)的测定 气相色谱法 GB/T 40950-2021 化妆品中烷基(C12~C22)三甲基铵盐的测定 高效液相色谱串联质谱法 GB/T 40891-2021 化妆品中新铃兰醛的测定 气相色谱-质谱法 GB/T 40899-2021 化妆品中禁用物质溴米索伐、卡溴脲和卡立普多的测定 高效液相色谱法 GB/T 40901-2021 化妆品中11种禁用唑类抗真菌药物的测定 液相色谱-串联质谱法 GB/T 40900-2021 化妆品中荧光增白剂367和荧光增白剂393的测定 液相色谱-串联质谱法 GB/T 40896-2021 化妆品中二乙二醇单乙醚的测定 气相色谱-质谱法 GB/T 40897-2021 化妆品中碱金属硫化物和碱土金属硫化物的测定 亚甲基蓝分光光度法GB/T 40898-2021 化妆品中禁用物质贝美格及其盐类的测定 高效液相色谱法 GB/T 40894-2021 化妆品中禁用物质甲巯咪唑的测定 高效液相色谱法 GB/T 40895-2021 化妆品中禁用物质丁卡因及其盐类的测定 离子色谱法 GB/T 40935-2021 青贮牧草膜 GB/T 40937-2021 塑料管道系统 塑料复合管材和管件长期强度的测定方法 GB/T 40933-2021 塑料制品 薄膜和薄片 热塑性塑料薄膜试验指南 GB/T 40919-2021 管道系统用聚乙烯材料 与慢速裂纹增长相关的应变硬化模量的测定 GB/T 40921-2021 发泡聚丙烯(PP-E)珠粒 GB/T 40918-2021 聚苯乙烯户外仿木板材通用技术要求 GB/T 40911.2-2021 塑料制品 聚甲基丙烯酸甲酯板材 类型、尺寸和特性 第2部分:挤出板材 GB/T 40916-2021液化气储运用高强度聚氨酯泡沫塑料 GB/T 40911.3-2021 塑料制品 聚甲基丙烯酸甲酯板材 类型、尺寸和特性 第3部分:连续浇铸板材 GB/T 1037-2021 塑料薄膜与薄片水蒸气透过性能测定 杯式增重与减重法 GB/T 14455.1-2021 精油 命名原则 SN/T 5403-2021 进口烟花检验规程 SN/T 5350.2-2021 硫磺 砷含量的测定 原子荧光光谱法 SN/T 5350.1-2021 硫磺 酸度的测定 自动电位滴定法 SN/T 5349-2021 硅胶耐热材料中硅氧烷类化合物的测定 气相色谱-质谱/质谱法 SN/T 5348-2021 工业壬醇含量的测定 气相色谱法 SN/T 5346-2021 粉末涂料 挥发性有机化合物(VOC)的测定 SN/T 5345-2021 PET塑料中间苯二甲基异氰酸酯含量的测定 气相色谱-质谱法 SN/T 5322-2021 再生皮革的鉴别方法 SN/T 5310-2021 涂料中4-叔戊基苯酚和对特辛基苯酚含量的测定 气相色谱法 石油地质矿产标准(5个)GB 41022-2021 煤矿瓦斯抽采基本指标 GB/T 40961-2021 岩石三轴试验仪校验方法 SN/T 5311-2021 原油及燃油中硫化氢的测定 快速液相萃取法 SN/T 4763.2-2021 煤中汞含量的测定 氧弹燃烧-原子荧光光谱法 SN/T 3125-2021 液态烃燃料燃烧热的测定 弹式量热计法 玻璃陶瓷建材标准(5个)SN/T 5356-2021 卫生洁具表面耐磨性能试验方法SN/T 5355-2021 陶瓷地砖防滑性能测试方法 动摩擦系数法SN/T 5354.2-2021 地面材料防滑性能测试方法 第2部分:倾斜平台法SN/T 5354.1-2021 地面材料防滑性能测试方法 第1部分:摆锤法SN/T 5315-2021 光催化自洁陶瓷性能测试方法 荧光探针法 轻工标准(19个)GB/T 40969-2021 纸和纸板 颜色的测定(D50/2°漫反射法) SN/T 5352-2021 纸制耐热材料中全氟和多氟化合物的测定 GB/T 40968-2021乐器产品中多环芳烃的测试方法
  • 威立雅称兰州自来水苯检出纯属意外
    4月14日下午,在兰州市政府召开的新闻发布会上,兰州威立雅水务集团公司表示此次发现自来水苯超标具有偶然性。    13日,兰州市政府发布消息称,自来水苯超标系此前两次事故产生的含油污水所致。油污化学成分很多,但闫晓涛表示,检测结果只显示苯超标,而甲苯、乙苯、苯酚等检测均没有问题。    闫晓涛说,按国家标准,对水质106项检测半年做一次。3月初检测结束后,下一次检测应是半年后的9月份。    之所以4月10日又进行检测,闫晓涛表示,威立雅的实验室要给周边区县自来水做106项检查,而这检查无论多少样本都会耗费同样的实验耗材。于是,兰州威立雅也对自己的管网自来水取样检测,结果检测出了苯含量超标。    目前,有很多市民质疑,苯超标事件之后,兰州市开始对水质实施两小时一检测,这样快速的检测是否忽略了甲苯、乙苯、苯酚等其他有毒物质,这些是否依然超标?    闫晓涛表示,按照常规的监测,检测结果的确需要较长一段时间才能出来,但此次由于发生苯超标事故,供水企业启动了应急预案,技术人员24小时加班加点监测,所以监测结果能够快速出来。目前,供水企业不但在监测苯指标,其他指标也在监测范围之内。通过这多日的检测,自来水其他指标完全符合国家标准,并不存在网络上传言的其他甲苯乙苯等指标超标现象。目前,为了保证水质安全,兰州市供水企业已经启动紧急预案。对现有的两条供水管线24小时警戒,并安排单位内部的安保人员进行巡逻。同时,为了使检测数据更加客观可信,目前,供水企业已经和卫生部门加强合作,在卫生部门的监督下提取水样,并且送到西宁的检测站进行检测化验,接受第三方的监督。    闫晓涛说,苯无色,有芳香气味,如果没有及时检测出来,兰州市民就是喝了半年也不知道,说不定还会说水有一种香味。此次检测出苯超标是否具有运气成分?闫晓涛表示,也不能这么说,除了检测之外还有其他发现水质异常的辅助手段。但具体是什么手段,闫晓涛未予回复。    闫晓涛还表示,兰州威立雅水务集团公司是否应该承担责任,应该承担怎样的责任,事后政府会对相关责任人进行调查,对各方责任进行界定后,会给大家一个说明。    另一方面,3月6日,就有兰州市民发现自来水有异味,兰州威立雅水务集团有限公司副总经理严晓涛表示,根据中科院生态环境研究所检测数据显示,今年3月初兰州自来水的异味,与此次自来水苯含量超标无关,其异味原因确定系冰雪融化导致草根、树根、藻类发酵的化学物质引起。    闫晓涛补充说,当时发现自来水有异味后,兰州威立雅于3月7日左右按照《生活饮用水卫生标准》检测了106项指标,但检测结果符合国家标准。“水质异味确实存在,因为水里的物质千千万,我们不一定能全部检测到位,不能确定异味来源。”    当日,兰州市民李先生向兰州市西固区人民法院提起民事诉讼,要求兰州威立雅水务公司提供其近一年来水质检测的真实数据,并进行民事赔偿和公开道歉。法院立案庭工作人员已经收下李先生的起诉材料,但暂未做出是否立案的决定。    尽管到目前为止,经甘肃省、兰州市环境监测站和兰州市疾控中心监测,截止到2014年4月15日3时,兰州市自来水抽样检测数据显示:威立雅水务集团自来水厂1号泵房取样点,2号泵房取样点,苯含量均未检出。但在此次事件中,威立雅的自我推卸责任的辩解,无疑需要我们警惕。    《人民日报》评论指出,谈到为何不第一时间公布自来水苯含量超标时,兰州威立雅水务集团相关负责人这样辩解:“不能一发现有问题,就关水,必须确定污染源性质。”如此言辞似是而非。确定污染源固然重要,宣告水被污染更重要,唯有早日宣布,市民才能及早应对。事实上,确定污染源与宣告水污染并不冲突,如果延宕宣布,仍然供水,被蒙在鼓里的市民就可能仍然饮用苯含量超标的自来水,并可能造成身体伤害。
  • 7项新规严控涂料质量,蓝天白云指日可待!
    导读 2020年3月4日,国家市场监督管理总局、国家标准化管理委员会联合发布《中华人民共和国国家标准公布(2020年第2号)》,批准公布了7项国家强制性标准:GB 18581-2020《木器涂料中有毒物质限量》、GB 18582-2020《建筑用墙面涂料中有害物质限量》、GB 24409-2020《车辆涂料中有害物质限量》、GB 30981-2020《工业防护涂料中有害物质限量》、GB 33372-2020《胶粘剂挥发性有机物限量》、GB 38507-2020《油墨中可挥发性有机物(VOCs)含量的限值》、GB 38508-2020《清洗剂挥发性有机物含量限值》。这些标准的发布,以制定产品质量标准的角度综合考虑环境保护,开辟了大气污染源头防控的路径,进一步明确了《大气污染防控治法》及《打赢蓝天保卫战三年行动计划》关于低挥发性有机物含量的胶粘剂、涂料、油墨、清洗剂的定义,这7项标准中除GB 38507-2020于2021年4月1日实施外,其余6个标准均将于2020年12月1日正式实施。 7项新发布国家标准中,VOCs的指标比之前的法规更为严格,重金属的指标整体变化不大,个别指标提高,同时增加了一些SVOCs的项目和指标,如多环芳烃、邻苯二甲酸酯、乙二醇醚及醚酯类化合物等。这一系列的措施反映了国家严抓涂料的质量的坚定决心。“为了人类和地球的健康”,岛津也在行动,在国家标准正式实施前推出了《涂料中有毒有害物质检测解决方案》,供涂料相关检测工作者参考,一起来看看我们的方案吧! 挥发性有机物分析 涂料在生产及使用过程中会释放出各种各样的挥发性有机物(VOCs)。目前岛津用于涂料中VOCs分析的仪器主要有GC和GCMS,外围附件有顶空进样器和热脱附仪。 GC-2010 ProNexis GC-2030 典型案例1:GC法测定车辆涂料中苯、甲苯、乙苯和二甲苯含量1、叔丁基甲醚(内标) 2、苯 3、甲苯 4、乙苯 5、间/对-二甲苯 6、邻-二甲苯 典型案例2:顶空-GCMS法测定水性涂料中23种挥发性有机物含量1、1,1-二氯乙烯 2、二氯甲烷 3、反-1,2-二氯乙烯 4、氯丁二烯 5、顺-1,2-二氯乙烯 6、三氯甲烷7、四氯化碳 8、苯 9、1,2-二氯乙烷 10、三氯乙烯 11、环氧氯丙烷 12、甲苯 13、四氯乙烯14、氯苯 15、乙苯 16、邻二甲苯 17、对二甲苯 18、苯乙烯 19、三溴甲烷 20、异丙苯21、1,4-二氯苯 22、1,2-二氯苯 23、六氯丁二烯 典型案例3:热脱附-GCMS法测定涂料中挥发性有机物含量1、异丁醇 2、苯 3、三乙胺 4、正丁醇 5、甲苯 6、1,2-丙二醇 7、乙苯 8、间/对-二甲苯9、邻二甲苯 10、1,3-丙二醇 11、乙二醇单丁醚 12、二乙二醇 13、二乙二醇乙醚醋酸酯14、二乙二醇单丁醚 15、2,2,4-三甲基-1,3-戊二醇 16、二乙二醇丁醚醋酸酯 半挥发性有机物分析 涂料中在生产及使用过程中也会释放出各种各样的半挥发性有机物(SVOCs)。 SVOCs GCMS-QP2020 NXGCMS-QP2020 NX 典型案例:GCMS法检测涂料中16种多环芳烃含量 1、萘 2、苊烯 3、苊 4、芴 5、菲 6、蒽 7、荧蒽 8、芘 9、苯并[a]蒽 10、屈 11、苯并[b]荧蒽12、苯并[k]荧蒽 13、苯并[a]芘 14、茚并[1,2,3-cd]芘 15、二苯并[a,h]蒽 16、苯并[g,h,i]苝 重金属分析 涂料中重金属的来源主要是其采用的颜料,颜料起着色与遮盖作用。目前岛津用于涂料中重金属分析的仪器主要有AA-6880/7000、ICPE-9820、ICPMS-2030等。 ICPE-9820ICPMS-2030 典型案例:ICP-AES法测定涂料中17种重金属元素含量 小结 2020年是我国打赢蓝天保卫战三年行动计划的收官之年,严格控制VOCs,把好涂料质量关,岛津已经为您做好了准备,您准备好了吗?让我们为了未来持续的蓝天白云一起努力!想了解更多涂料中有毒有害物质的检测,请关注岛津《涂料中有毒有害物质检测解决方案》。 识别二维码下载解决方案
  • 夏芮智能 | 禁毒小课堂:易制毒化学品
    标题:夏芮智能 | 禁毒小课堂:易制毒化学品易制毒化学品的概念易制毒化学品是指国家规定管制的可用于制造毒/品的化学品。易制毒化学品可分为前体和配剂,所谓前体是指该类化学原料在制毒过程中其成为制成毒/品的主要成分;配剂是指在制毒过程中参与反应或不参与反应,其成分不构成毒/品最终产品成分。易制毒化学品分类目录《中国易制毒化学品的分类和品种目录》(公安部最后更新于2021年)将易制毒化学品分为3类共40种。第一类是可以用于制毒的主要原料,第二类、第三类是可以用于制毒的化学配剂。易制毒化学品的双面性易制毒化学品既广泛应用于工农业生产和群众日常生活,流入非法渠道又可用于制造毒/品。无论是大麻、可卡因等植物天然毒/品,还是冰/毒、摇头丸等合成化学毒/品的加工都离不开易制毒化学品,从某种意义上说,没有易制毒化学品就没有毒/品。制毒过程中常用化学品但同时,易制毒化学品融入到了各行各业的日常生产加工中。例如:第一类中1-苯基-2-丙酮是医药和农药的中间体,特别是杀鼠剂敌鼠、氯鼠酮等产品合成的重要中间体;胡椒醛可用于香水、香料等的调味剂。第二类中苯乙酸可用于青霉素等药物生产;三氯甲烷和乙醚可用于医学中作麻醉剂。第三类中甲苯常被用于油漆、各种涂料的添加剂以及各种胶粘剂、防水材料中;丙酮可作为良好溶剂,用于涂料、黏结剂等,也用作清洗剂等。易制毒化学品相关许可证的申办及备案流程2008年3月开始施行的《禁毒法》第21条规定,国家对易制毒化学品的生产、经营、购买、运输实行许可制度。易制毒化学品的查缉方案可依托拉曼光谱技术,利用易制毒化学品不同物质在拉曼光谱中具有独特的特征峰,使用夏芮智能DT-RA0700 手持式拉曼毒/品检测仪,直接对固体、液体、粉末等未知物质的成分进行快速鉴定,设备搭载10000+超大型数据库,建立了涵盖我国管制毒/品目录、易制毒化学品等危险物质的比对数据,领先我国同类产品。在功能上,设备特殊的光路设计,具备透过包装、延迟启动和远距离采集功能,无需接触,一键式操作几秒即可得到结果。不论是现场办案、活动保障、边防缉毒还是海关边检等应用场景,都适用于现场快速取证分析。易制毒化学品违法犯罪的后果对于易制毒化学品相关违法犯罪行为所进行的处罚可以分为2种,分别是行政处罚和刑事处罚。行政处罚:根据《易制毒化学品管理条例》和《易制毒化学品购销和运输管理办法》规定:①违反规定走私易制毒化学品的,由海关没收走私的易制毒化学品;有违法所得的,没收违法所得,并依照海关法律、行政法规予以行政处罚;构成犯罪的,依法追究法律责任。②未经许可、备案擅自购买或使用他人、伪造、变造、失效的许可证或备案证明购买易制毒化学品的,对购买方处以非法购买易制毒化学品货值十倍以上二十倍以下的罚款,货值二十倍不足一万元的,按一万元罚款;构成犯罪的,依法追究刑事责任。刑事处罚:根据《关于办理制毒物品犯罪案件适用法律若干问题的意见》规定:违反国家规定,非法买卖或走私制毒物品,达到或者超过最高数量标准的,认定为刑法第三百五十一条第一款规定的“数量大的”,处三年以上十年以下有期徒刑,并处罚金。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制