当前位置: 仪器信息网 > 行业主题 > >

硅烷偶联剂

仪器信息网硅烷偶联剂专题为您提供2024年最新硅烷偶联剂价格报价、厂家品牌的相关信息, 包括硅烷偶联剂参数、型号等,不管是国产,还是进口品牌的硅烷偶联剂您都可以在这里找到。 除此之外,仪器信息网还免费为您整合硅烷偶联剂相关的耗材配件、试剂标物,还有硅烷偶联剂相关的最新资讯、资料,以及硅烷偶联剂相关的解决方案。

硅烷偶联剂相关的资讯

  • 西南大学唐超课题组MME:硅烷偶联剂接枝hBN对绝缘纸纤维素的热性能和力学性能的提升
    摘要:西南大学工程技术学院唐超课题组通过使用不同硅烷偶联剂接枝纳米氮化硼掺杂绝缘纸纤维素,发现KH550接枝氮化硼能显著提升绝缘纸纤维素的散热性、热稳定性和材料的力学特性(热导率提升了114%,延展性和抗形变能力提升了50%以上),为提升变压器内部绝缘材料的使用寿命和抗热老化性能提供了理论指导。关键词:硅烷偶联剂,氮化硼,变压器绝缘纸纤维素,热力学性能图1 KH550接枝hBN原理图。图2 不同改性的纤维素模型,(a)纯纤维素,(b)hBN/纤维素,(c)KH550 hBN/纤维,(d)KH560-hBN/纤维素和(e)KH570-hBN/纤维素。电力设备运行寿命的提升,与其内部绝缘材料性能的提升有着重要关联。以变压器为例,利用新兴的纳米技术来修饰纤维素绝缘纸能较为高效、显著地提升材料的性能。然而,现有的纤维素绝缘纸的纳米改性研究,往往局限在纤维素力学性能的分析上,较少关注其热性能的改进。因此,利用一种新型的纳米颗粒对纯纤维素进行改性,以同时提高纤维素绝缘纸的力学性能和热性能成为大家关注的热点。针对这一问题,西南大学工程技术学院唐超教授课题组采用了分子模拟的方法,将三种不同硅烷偶联剂接枝到氮化硼表面,并与纤维素混合,得到了具有相对较高热稳定性和力学特性的改性绝缘纸纤维素(KH550 hBN/纤维),相关结果发表在Macromolecular Materials and Engineering上。氮化硼具有较高的固有导热性和良好的介电性能,是一种常用的导热填料。由于其结构与石墨烯相似,氮化硼也具有较高的机械强度和优良的润滑性,可以显著提高聚合物的热稳定性。然而,氮化硼在纤维素内部容易发生团聚,这使得它无法直接用于改善聚合物的性能。因此,本研究将硅烷偶联剂与氮化硼接枝,对传统绝缘纸纤维素进行改性。通过分析比较得出,硅烷偶联剂氮化硼对纤维素的改性使得纤维素链间的空隙得到填充,纤维素与硅烷偶联剂间形成了更多的氢键,连接更为紧密,从而在聚合物内部形成了导热网络,改性纤维素的导热性能显著提高,热稳定性显著增强。同时,硅烷偶联剂的增加使得纤维素材料的韧性、抗形变能力、延展性增加,便于其在高温高压条件下有更长的使用寿命。图3 (a)CED、(b)力学性能、(c)热导率图4 均方位移图5 玻璃转变温度论文信息:Enhancement on thermal and mechanical properties of insulating paper cellulose modified by silane coupling agent grafted hBNXiao Peng, Jinshan Qin, Dong huang, Zhenglin Zeng, Chao Tang*Macromolecular Materials and EngineeringDOI: 10.1002/mame.202200424
  • 中科院在SERS光纤探针研究方面取得进展
    近期,中国科学院合肥物质科学研究院固体物理研究所四室研究员孟国文课题组与安徽光学精密机械研究所研究员毛庆和课题组合作,在具有表面增强拉曼散射(SERS)活性的光纤探针研究方面取得新进展。基于静电吸附原理,研究团队发展了一种普适的组装方法,将多种具有等离激元特性的带电金属纳米结构组装到锥形光纤探针表面。该结构可用作SERS光纤探针,对污染物的远程、便携式在线检测具有重要意义。相关结果发表在ACS Appl. Mater. Interfaces 2015, 7, 17247?17254上。  光纤通信技术的发展,为污染物的高通量、远程实时SERS检测开辟了新途径,其核心思想是将高SERS活性纳米结构耦合到光纤探针表面,并集成到便携式光纤拉曼光谱仪上,通过采集并检测污染物的SERS信号,实现污染物便携快速检测。为了实现此目的,研究人员发展了涂拉法、光化学沉积或物理气相沉积等方法,将贵金属纳米结构沉积到光纤探针上。然而,这些研究方法制备的SERS光纤探针在功能上具有一定的局限性。例如,对于涂拉法,SERS活性纳米结构在光纤表面的附着力较弱,在液体样品中容易扩散,进而影响到检测信号的稳定性 对于物理气相沉积和激光诱导的光化学沉积法,由于受限于制备过程,难以精确调控纳米结构的形貌和尺寸,无法优化其局域电磁场增强及表面等离子体共振特性,不能保证SERS检测污染物的灵敏度。  针对上述问题,孟国文课题组和毛庆和课题组合作,采用静电组装法(如下图),将带有正/负电性的贵金属纳米结构组装到硅烷偶联剂修饰的锥形光纤表面,构筑了一种高效的SERS光纤探针。首先,在基于液相法构筑形貌可控的纳米结构的过程中,使用的表面活性剂可以使纳米结构呈现出可控的表面物理化学特性,如带有正/负电、亲/疏水性等。其次,光纤主要成分是氧化硅、表面有大量羟基,易于与硅烷偶联剂通过形成Si-O-Si键耦合 同时硅烷偶联剂末端具有一个官能团,使光纤整体富有特定的功能性。因此,对于带负电的纳米结构(如柠檬酸根保护的金纳米球),选取带氨基的硅烷偶联剂修饰光纤 反之,对于带正电的纳米结构(如CTAB保护的金纳米棒),采用带羧基的硅烷偶联剂修饰光纤,可实现贵金属纳米结构在光纤表面的有效组装。比如,可将多种不同形貌及光学特性的SERS活性纳米结构(金纳米球、金纳米棒、金@银核壳纳米棒和立方银)可控组装到光纤表面。这种SERS光纤探针具有稳定性高(相对信号偏差低于3%)、面向光纤种类多(适用于单模、多模、D型和微纳光纤等)及灵敏度高等优势,对农残甲基对硫磷的敏感度达到10纳摩尔。相关成果已申请国家发明专利并发表在ACS Appl. Mater. Interfaces杂志上。  上述研究得到国家科技部“973”计划和国家自然科学基金等项目的资助。  左:带电纳米结构组装到锥形光纤探针上的示意图。中:纳米立方银组装到光纤前后的光学照片及扫描电镜照片。右:SERS光纤探针在分析物溶液中及空气中的SERS信号。
  • 抗体-药物偶联物自上而下质谱分析新进展
    大家好,本周为大家分享一篇文章,Added Value of Internal Fragments for Top-Down Mass Spectrometry of Intact Monoclonal Antibodies and Antibody−Drug Conjugates [1],文章的通讯作者是加州大学洛杉矶分校化学与生物化学系的Joseph A. Loo教授。  抗体-药物偶联物(Antibody - drug conjugates, ADC)是一种很有前景的治疗药物,它通过linker为抗体提供高效的细胞毒性有效载荷,以提高其抗肿瘤功效。将linker和有效载荷偶联到抗体上,给ADC带来了额外的异质性,增加了对其全面表征的挑战。自上而下的质谱(TD-MS)技术近年来在单克隆抗体的表征中得到了广泛的应用,与自下而上质谱(BU-MS)和中下质谱(MD-MS)相比,TD-MS具有最简单的样品制备流程和保留单克隆抗体内源性修饰的优势。然而,对于抗体大小的蛋白质和具有显著二硫键组成的蛋白质,TD-MS的断裂效率较低,获得的序列和药物偶联位点信息有限。  为了增加TD-MS的序列信息含量,一种策略是将不包含蛋白质序列N端和C端的内部片段纳入数据分析工作流程中,这种方法已被证明有助于二硫化完整蛋白的TD-MS表征。在这篇文章中,作者发现在TD-MS中分配内部片段将mAb序列覆盖率提高到75%以上,并允许确定链内二硫键连接和各种N-糖基化类型。对于治疗性非特异性赖氨酸连接ADC,几乎60%的假定药物偶联位点被识别。  内部片段可以在不破坏二硫键的情况下进入结构紧密、碎片化效率高度受限的区域,因此有可能大大增强完整单克隆抗体的序列信息。作者对完整的NIST单抗的5个最丰富的电荷态采用了ECD和HCD两种碎片化方法,并将每个电荷态的两种碎片化方法的TD-MS结果结合分析。内部片段的纳入提高了二硫键约束区域的序列覆盖,例如,轻链Cys133和Cys193之间的二硫约束序列几乎完全由内部片段覆盖(图2A),重链的Cys147-Cys203和Cys264-Cys324序列区也是如此(图2B),而这些区域是末端片段难以触及的。CDR的覆盖率从53%增加到60%,这表明纳入内部片段可以更深入地了解这一关键区域。总体来说,轻链的序列覆盖率从54%提高到83%,重链从28%提高到72%,合并后整个NIST单抗的序列覆盖率从36%增加到76%(图1)。重链比轻链的覆盖率提高更为显著,这表明随着蛋白质分子量增大,分配内部片段变得更有价值。  图1. 考虑(A)轻链、(B)重链和(C)全单抗内部片段前后不同序列区域的序列覆盖率,包括非二硫约束序列(Free)、二硫约束序列(SS-constrained)、全序列(Full)和CDR序列(CDR)  图2. (A)轻链和(B)重链的NIST mAb序列覆盖图谱。蛋白质骨架上的蓝色、红色和绿色切割分别代表b/y、c/z和by/cz片段。序列上方的实线表示末端片段序列覆盖率,序列下方的实线表示内部片段序列覆盖率。紫色虚线表示链内二硫键,浅灰色表示受二硫键约束的序列区域,橙色表示互补决定区域(cdr)。  HCD能够在不破坏二硫键的同时仅碎裂蛋白质主干,因此作者在完整的NIST单抗上应用HCD来生成含有完整二硫键的片段,以确定二硫键连接。在每个形成链内二硫键的半胱氨酸上应用-1H的修饰,以表明它们的完整性。对于轻链,52个末端片段和12个内部片段穿过S - S键I, 17个末端片段穿过S - S键II, 6个末端片段穿过两个二硫键,清楚地显示了这两个二硫键的连接模式(图3A)。靠近重链两端的两个二硫键,S - S键I和S - S键IV,被89个末端片段和9个内部片段穿过 而中间的两个二硫键,S−S键II和S−S键III,只有24个内部片段穿过,没有末端片段穿过(图3B,C)。这些结果证明了NIST单抗重链的链内S - S连通性,重要的是,中间的两个S - S键模式只能由内部片段确定。除了确定链内S - S连通性外,分配内部片段也有助于鉴定N糖基化。当纳入内部片段时,额外分配了25个含有G0F的片段,42个含有G1F的片段和34个含有G2F的片段,这表明分析内部片段对N-糖基化鉴定的能力。  图3. (A)轻链、(B)重链、(C)仅含完整NIST单抗内部片段的重链,在每个形成链内二硫键的半胱氨酸上施加一个氢损失后,通过HCD TD-MS生成片段位置图。  内部片段可以确定赖氨酸连接ADC的药物偶联位点。作者采用了类似的方法,将ECD和HCD应用于先前已充分表征的非特异性赖氨酸连接ADC。ADC的TDMS在轻链上仅产生8个与DM1结合的末端片段(图4A)。分配内部片段显著提高了DM1偶联位点的测定。ADC的TD-MS在轻链上产生61个1- dm1结合和15个2 - dm1结合的内部片段,定位了3个偶联位点(K106, K114, K133),并将鉴定的两个偶联位点缩小到4个赖氨酸残基(K153, K160, K170, K175)(图4A)。对于重链也观察到类似的结果。综上所述,对于完整的ADC,仅用末端片段确认了16个偶联位点,而在包含内部片段后,这一数字增加到52个,覆盖了约58%的抗体所有假定的偶联位点。  图4. 由ECD和HCD TDMS生成的完整IgG1-DM1 ADC (A)轻链和(B)重链片段位置图。黑色垂直虚线表示赖氨酸的位置。  在这项工作中,作者首次报道了在完整的NIST单抗和异质赖氨酸连接ADC的TD-MS表征中分析内部片段的好处。内部片段的包含末端片段难以达到的二硫键约束区域,显著增加了完整单克隆抗体的序列覆盖率。重要的PTM信息,包括二硫键模式和N糖基化,可以通过包含内部片段获得。最重要的是,内部片段可以帮助确定高度异质赖氨酸连接ADC的药物偶联位点。  撰稿:夏淑君  编辑:李惠琳  文章引用:Added Value of Internal Fragments for Top-Down Mass Spectrometry of Intact Monoclonal Antibodies and Antibody-Drug Conjugates
  • 2024第三届生物偶联药全球创新峰会9月无锡召开!近百位国际生命科学大咖齐聚无锡,探索偶联药的无限可能!
    由药明合联WuXi XDC和佰傲谷BioValley共同主办的2024第三届生物偶联药全球创新峰会(Global XDC 2024),将于9月10-12日在无锡重磅回归。大会涵盖2个主论坛+4个分论坛,预计参会企业300+家,参会专家100+位,参会观众1000+人。大会以“探索偶联药的无限可能”为主题,将聚焦于新靶点发现与验证、ADC和新型偶联药物创新技术、载荷-连接子新技术,以及CMC挑战和商业化策略等内容,探索前沿技术进步、分享国际优秀生物科技公司的创新经验、引领ADC和XDC的新未来!本届峰会邀请了众多生物偶联药领域的国际专家与会,共同探讨创新合作,碰撞思想,助力生物偶联药行业蓬勃发展。1.国际嘉宾阵容来袭,聆听偶联药的世界声音2.精选热门议题一览,探索偶联药的无限可能Keynote Speech&bull Rina-S-the missing link(er) &bull Protein homeostasis by dual-precision targeted protein degradation and stabilization &bull A novel dual-payload ADC platform to overcome payload resistance and maximize therapeutic promise of ADCs &bull MYTX-011: a cMET-targeting ADC engineered for anti-tumor activity against a broader spectrum of cMET expression&bull NTX1105: development of a best-in-class ADC targeting Nectin-4 &bull Collaborating within the global life science ecosystem to advance breakthrough science论坛一:Next generation ADCs: Novel targets, payloads, payload-linkers, and conjugation technologies&bull Next generation ADCs: novel targets, payloads, linkers and conjugation technologies&bull Nexatecan&trade : OHPAS-able Topo1 inhibitor for ADC&bull Introduction to PINOT-ADC platform: novel Top1 inhibitor payload, tandem cleavable and super-hydrophilic linker, and dual payload system&bull Versatile drug bundle-based ADC platform: achieving site-specific conjugation, DAR of 8 or 12, and dual payloads&bull CS5001, a potential best-in-class ROR1 ADC&bull Discovery of AT65474, a highly selective anti-CLDN6 ADC with a proprietary payload&bull Polysorbates in biopharmaceuticals-approaches to mitigate risk论坛二:Bioconjugates development beyond ADCs&bull RDC-the exploration of new drug modality in unmet clinical need&bull Intra-cellular mutant epitopes-novel targets for ADC and bispecific antibodies?&bull GBB’s AI-enabled ecosystem elevating biological drug development&bull Developing radiopharmaceuticals targeting CLDN 18.2 with nanobodies&bull Fully human common light chain technology for novel ADCs论坛三:Innovative bioconjugate discovery: from target selection to PreClinical Candidate (PCC)&bull Harnessing AbClick Pro® for AT-211: leading CLDN 18.2 ADCs with superior therapeutic index&bull An overview on the new topoisomerases inhibitors technologies&bull Next generation ADCs:novel targets, payloads, linkers and conjugation technologies&bull Challenges and solutions for clinical PK bioanalysis of antibody drug conjugates (ADCs)论坛四:CMC challenges and commercialization strategies&bull CMC scale-up challenges and COGs for site specific ADCs&bull Innovative bioassays: translate clinical effects into a rigorous system of XDC product assessment&bull The integrated analytical platform enables accelerated CMC development of XDCs&bull QbD considerations for ADC process&bull How WuXiBio’s Microbial Platform facilitates rapid and cost-effective ADC development and manufacturing&bull Non-clinical strategies for ADC drugs3.欢迎更多XDC研发企业加入我们主办单位:药明合联WuXi XDC、佰傲谷BioValley大会时间:2024年9月10-12日(周二/周三/周四)大会地点:中国无锡君来洲际酒店参会报名:扫码下方二维码报名【标准通票:200元/人】联系我们:定制参展/商务合作请联系:Stephen Sun 15966587556(微信同号)参会报名/媒体合作请联系:Abby Jiang 18217659261(微信同号)4.特别感谢以下单位的支持
  • 生物药岛津说-应对抗体偶联药物(ADC)分析方案
    抗体偶联药物是指将具有高度靶向性的单克隆抗体,通过特定的一段连接片段,实现同具有细胞毒性抗肿瘤药物的偶联,从而将抗体的高度选择性与药物的抗肿瘤活性合二为一。2021年8月8日,荣昌生物与Seagen(SeagenInc. 纳斯达克:SGEN)达成一项全球独家许可协议,以开发和商业化其抗体偶联药物(ADC)维迪西妥单抗,9月22日,国家药品监督管理局(NMPA)药品审评中心(CDE)官网显示,荣昌生物(09995.HK)靶向Claudin18.2的抗体偶联药物(ADC)RC118获得临床试验默示许可,适应症为Claudin18.2表达阳性的局部晚期不可切除或转移性恶性实体瘤。国内研发实力增强,中国ADC药物研究大有可为,期待为患者造福。 目前在研的ADC药物见下表:ADC结构主要由靶向抗体,连接子linker以及高效价小分子细胞毒性药物。药物研究过程涉及到重要关键质量属性,包括药物/抗体比率DAR(drug-to-antibody ratio),药物荷载分布,未偶联抗体,残留药物,大小异质性以及电荷异质性,以关键的DAR研究为例,DAR表示与抗体偶联细胞毒性药物的平均数量,是ADC药物重要质量属性。现在研厂家的pepline DAR值有不同设计的缘由,低药物荷载时,ADC效力可能会降低或达不到要求,高药物荷载,可能会影响毒性以及代谢问题。表.ADC药物重要关键质量属性 对于ADC药物DAR值分析,推荐使用液相以及液相串联质谱方法分析。根据该指南要求,岛津推荐:Nexera生物惰性液相以及Nexera LC40液相 Nexera Bio生物兼容液相系统 岛津生物兼容液相Nexera Bio系统流路采用生物惰性材料,不仅耐腐蚀,而且能减少生物大分子的吸附,保证生物大分子的完整性,有效保障分析重复性和仪器耐用性。 Nexera Bio生物兼容液相系统特点:● 泵头、混合器、进样针、样品环和接头配件等均采用生物惰性材料,耐腐蚀、抗吸附;● 耐高压不锈钢包覆的Peek管路,提升系统耐压至66MPa;● 标配输液泵柱塞清洗蠕动泵,有效降低盐析,实现良好的送液稳定性,并防止泵头腐蚀。 Nexera LC-40 系列 Nexera系列HPLC与人工智能和物联网结合,实现智能化和自动化。融合“AI”和“loT”技术,轻松应对RNA类物质分析液相色谱仪。 ADC样品DAR值分析案例通过岛津液相以及HIC色谱柱可自动化分析得到DAR值计算报告。 更多内容了解或仪器配置应用了解,请联系岛津工作人员! 参考文献:[1] Wagh A , Song H , Zeng M , et al. Challenges and new frontiers in analytical characterization of antibody-drug conjugates[J]. mAbs, 2018:0-0. 岛生物药, 津心为您
  • 【赛纳斯】对氨基苯甲酸在纳米结构金电极表面的等离激元光电化学偶联反应研究
    我司亲密的合作伙伴厦大田中群院士团队吴德印教授、周剑章副教授在等离激元介导光电化学反应的研究中取得重要进展,相关结果“Plasmonic Photoelectrochemical Coupling Reactions of para-Aminobenzoic Acid on Nanostructured Gold Electrodes”发表于《美国化学会志》 (J. Am. Chem. Soc. 2022, 144, 3821-3832. DOI: 10.1021/jacs.1c10447)。纳米金电极的表面等离激元,通过将入射光汇聚至纳米尺度、激发高能载流子的方式,增强拉曼散射效应并催化化学反应。针对“等离激元介导光电化学反应的机理和选择性”这一关键科学问题,该工作以对氨基苯甲酸(PABA)为研究对象,通过电化学原位表面增强拉曼光谱(EC-SERS)等方法,结合多尺度理论化学模型,阐明了PABA在纳米结构金电极表面的等离激元光电化学氧化偶联反应过程。在光照激发和氧化电位下,PABA首先与光生热空穴作用生成阳离子自由基,后续反应则与溶剂和pH等因素有关。在水电解质溶液中,氧化偶联产物为头-头偶联产物,p, p’-偶氮二苯甲酸盐(ADBA),和头-尾偶联产物,4-[(4-亚胺-2,5-环己二烯-2-亚基)氨基]苯甲酸(ICBA)。在pH值低的酸性条件下,反应主要产物为ADBA,而在pH值高的碱性条件下,反应主要产物为ICBA。在非水有机溶剂中,观测到PABA发生脱羧偶联反应,生成氧化态联苯胺(BZOX)。为深入阐释反应机理,研究组结合密度泛函理论(DFT)计算和循环伏安法、质谱、EC-SERS、电化学原位紫外-可见光谱等多种实验方法,确定了金纳米结构电极表面反应产物及其相关中间体,并结合电极过程反应动力学模型,数值拟合循环伏安图,确定重要动力学参数;对等离激元催化条件下的偶氮键、碳氮键及碳碳键等化学键的形成过程,给出了更清晰的认识,为调控等离激元光电催化反应的选择性提供了新的思路。该研究在田中群教授、吴德印教授和周剑章副教授指导下完成,主要的实验和理论工作由厦大化工学院博士后Rajkumar Devasenathipathy、2018级博士生王家正和2021级博士生肖远辉同学完成,Karuppasamy Kohila Rani、林建德、张益妙、战超等参与了论文的研究工作。该研究工作得到国家自然科学基金的资助。赛纳斯SHINS推出的全新科研型电化学拉曼系统“EC Raman光谱仪系统”。由恒电位仪、便携式拉曼光谱仪、显微成像系统组成。它具备超高的谱图分辨率,与大型台式拉曼系统相当。并且它的尺寸更小,方便携带。可在任何地方提供科研级的性能。强大的功能和独特的设计,为你的研究提供更多的可能性。智能的自研软件助您轻松应对各种测试,是您实验数据的强有力保障。全新EC-RAMAN电化学拉曼系统EC-RAMAN 产品优势:◆ 785nm制冷型拉曼光谱,可拥有更加优异的信噪比◆ 配合独创壳层隔绝表面增强技术,信号放大至百万倍级别◆ 外观简单,轻松便携:适应于实验室,现场等多种场合◆ 宽光谱范围:光谱范围最高可覆盖至3350cmˉ◆ 光纤耦合,采样更方便◆ 建模简单:只需按照软件的提示逐步操作即可使用我司电化学拉曼光谱系统取得代表性科研成果:●Nature,2021,600,81●Nature Energy,2019,4,60●Nature Mater. 2019,18,697●Angew. Chem. Int. Ed,2021,60,9●J. Am. Chem. Soc. 2019,141,12192●Angew.Chem. Int. Ed. 2021,60,5708●Angew. Chem. Int. Ed. 2022,61, e202112749EC-RAMAN 技术参数:
  • 安捷伦携手迈百瑞共建前沿生物药研究暨抗体药物偶联物分析联合实验室
    安捷伦携手迈百瑞共建前沿生物药研究暨抗体药物偶联物分析联合实验室 2015年6月18日,北京——安捷伦科技公司(纽约证交所:A)今日宣布,与烟台迈百瑞国际生物医药有限公司携手共建“迈百瑞国际生物医药—安捷伦科技前沿生物药研究暨抗体药物偶联物分析联合实验室”(以下简称“联合实验室”)。烟台迈百瑞国际生物医药有限公司常务副总裁梁其斌先生、烟台迈百瑞国际生物医药有限公司质量副总裁阮懋荣博士以及安捷伦科技大中华区生命科学事业部业务总监赵影女士等出席了揭牌仪式,共同见证双方为积极促进中国新药领域研究的里程碑时刻。烟台迈百瑞国际生物医药有限公司质量副总裁阮懋荣博士与安捷伦科技大中华区生命科学事业部业务总监赵影女士签署共建联合实验室框架协议 抗体偶联药物(Antibody Drug Conjugates,ADC)因其良好的靶向性及抗癌活性,已成为目前抗肿瘤抗体药物研发的新热点和重要趋势,并受到越来越多的关注。其开发涉及四个方面,包括药物靶点的筛选、重组抗体的制备、“连接物”技术开发以及高细胞毒性化合物的优化,其中任何一个环节出现问题,都会影响到ADC药物的安全性和有效性。目前,ADC药物开发的技术能力仍依赖于少数几个技术提供商。 该联合实验室是安捷伦科技在中国的第一间ADC分析领域前沿合作实验室,旨在以国际化视角和全球先进技术,建设先进生物药物分析测试平台,在完善工艺流程研究、ADC药物开发、提升科研质量的同时,紧跟国内外行业进展及客户需求,提供整体化解决方案,从而促进我国生物医药产业的可持续性发展。烟台迈百瑞国际生物医药有限公司质量副总裁阮懋荣博士与安捷伦科技大中华区生命科学事业部业务总监赵影女士共同为联合实验室揭牌 目前进驻联合实验室的安捷伦设备包括1290 Infinity 超高效液相色谱、6530 四极杆-飞行时 间串联质谱仪(Q-TOF)、1260 Infinity 液相色谱、1260 infinity 生物惰性液相系统、7890A GC 和低热容(LTM)柱温箱以及安捷伦毛细管电泳解决方案。其中,Agilent 1290 Infinity LC具有创新的设计,能够在确保极高准确度和精密度的同时,提供极高的灵活性和分析效率,满足用户从常规液相色谱,到超高效液相色谱各种不同分析要求。Agilent四极杆-飞行时间串联质谱仪(Q-TOF)集成了安捷伦三大核心创新技术——高精度飞行时间质谱技术、安捷伦喷射流离子聚焦技术以及强大的MassHunter工作站软件,是轮廓分析、结构表征和定量分析的理想平台。 烟台迈百瑞国际生物医药有限公司质量副总裁阮懋荣博士表示:“我们非常高兴能有机会与安捷伦这样全球领先的公司展开合作。迈百瑞一直致力于提供高质量的生物药物研发和GMP生产一站式外包服务,满足客户研发和GMP生产需求,加快生物药物的研发速度。此次与安捷伦合作成立的联合实验室,将为迈百瑞在国际ADC药物研发/生产舞台竞争中取得领先地位奠定坚实的基础。” 安捷伦科技大中华区生命科学事业部业务总监赵影女士表示:“安捷伦致力于为制药/生物制药行业客户提供创新高效的解决方案和技术支持。在ADC这一生物制药前沿的领域,安捷伦凭借其优异的仪器性能和完善的技术支持服务赢得了制药/生物制药客户的认可。在本次与迈百瑞的合作中,安捷伦不仅提供客户理化分析、结构表征相关的仪器平台,更是与客户紧密沟通,应对客户需求和行业动态快速响应,积极开发相应的整体解决方案。” 作为全球生命科学市场的领导者以及领先的实验室合作伙伴,安捷伦近年来一直致力于针对生物制药市场和客户需求,提供高通量、准确、耐用的仪器平台、分析方法和解决方案。随着“十三五”重大新药创制中提出重点支持生物药开发创新,生物制药市场发展势头强劲,安捷伦也会继续在生物药物质量控制领域继续提供仪器平台和售后支持,协助广大制药用户以更快的速度、更低的成本将高质量的药物带入市场。关于迈百瑞 烟台迈百瑞国际生物医药有限公司成立于2013年6月25日,是一家面向全球生物制药公司、生物技术公司提供符合欧美标准的临床样品及生物药品的研发、生产合作服务的生物医药公司。了解关于迈百瑞的详细信息,请访问http://www.mabplex.com/index。 关于安捷伦科技 安捷伦科技公司(纽约证交所:A)是全球生命科学、诊断和应用市场的领导者,同时也是领先的实验室合作伙伴,致力于与客户共同缔造美好世界。安捷伦为全球100多个国家的客户提供先进的仪器、软件、服务和耗材,产品覆盖整个实验室的工作流程。2014财年,安捷伦的收入达到40亿美元。公司在全球拥有12,000 名员工。今年是安捷伦进军分析仪器领域的50周年纪念。了解关于安捷伦的详细信息,请访问www.agilent.com.cn。 编者注:更多有关安捷伦科技公司的技术、企业社会责任和行政新闻,请访问安捷伦新闻网站:www.agilent.com.cn/go/news。
  • 多肽药物/生物制剂表征会场预告:含双抗/多肽偶联物,拉曼光谱/光散射技术应用等内容
    为促进我国生物医药产业持续快速发展,仪器信息网将于2023年3月29日-2023年3月31日举办第四届“生物制药研发及质量控制” 网络大会,内容覆盖抗体/蛋白药物、细胞与基因治疗、多肽药物、核酸药物/mRNA疫苗,涉及生物药开发、质量控制、制剂的分析表征以及自动化等创新技术在生物制药领域的应用。多肽药物是现代医药研究的前沿方向,具有重要的社会价值和经济价值。然而,由于多肽属于蛋白质结构的组成部分,作为药物,其质量控制则更需要注意。本次生物制药大会特别设置多肽药物会场,4位嘉宾将从多肽药物发现、多肽二硫键的结构确证、多肽偶联物研究进展及拉曼光谱技术相关应用等角度进行讲解。点击图片免费报名报告嘉宾详情如下:多肽药物会场王珠银 董事长 深圳肽盛生物科技有限公司报告:突破多肽创新药发现的瓶颈:多肽创新药发现平台报名占位王珠银教授博士学士和硕士毕业于兰州大学化学系,博士毕业于美国Rutgers大学,博士后在纽约哥伦比亚大学做研究,现为兰州大学功能有机分子国家重点实验室教授。王教授主要研究方向为合成生物学,多肽和蛋白质生物医药,高通量药物筛选等。过去多年发表论文50余篇,申请美国和中国专利50多项,其中已获得11项美国发明专利授权,7项中国专利授权,1项欧盟专利授权,1项澳大利亚专利授权。王教授成功研发了多肽信息压缩技术,并基于此技术构建了大型多肽全库,加速多肽新药研发。梁远军 总经理 北京普诺旺康医药科技有限公司报告:化学合成多肽二硫键的结构确证报名占位梁远军,博士,毕业于军事医学科学院,在军事医学科学院从事活性多肽研究工作近20年,负责多项国家新药创制重大专项、新药创制多肽关键技术、863等课题,申请40多项新化合物专利。2017年任北京药物化学专业委员会委员,2018年聘为中国生化制药工业协会专家委员、多肽分会专家理事,2022年评为大兴“新国门”领军人才。2016年创立北京普诺旺康医药科技有限公司,专业从事多肽药物研发,公司逐步成长为国家高新技术企业,获得北京市“专精特新”企业、中关村“金种子”企业、瞪羚企业等称号。王颖 副研究员 中国药科大学报告:多肽偶联物的研究现状及展望报名占位中国药科大学副研究员,海洋药学硕士生导师。中国药科大学微生物与生化药学专业,获博士学位。长期从事多肽新药的一线研发工作,获得新药临床批件2件。致力于探讨非编码RNA及其来源的新型微肽在疾病发生发展中的功能机制,发现人体内源性微肽并对其进行优化提高成药性,开发成FIC多肽药物,为这些疾病的诊断和治疗提供了新思路。曾在Signal Transduct Target Ther(IF:38.104)、J Am Chem Soc(IF:15.419)、Acta Pharm Sin B(14.903)、Cell Death Dis(IF:6.304)、Oncogene(IF:7.519)和Mol Ther Nucleic Acids(IF:7.032)等杂志发表多篇论文,第一作者累计影响因子为105分,参与文章影响因子120分以上;申请发明专利两项;获中国产学研合作创新成果奖二等奖、第六届江苏医药科技进步奖二等奖;获得两件药物临床试验批件(批件号2013L01914,2018L02321)。王睿 产品经理 瑞士万通中国有限公司报告:拉曼光谱技术在药物质量控制中的应用报名占位瑞士万通中国有限公司拉曼产品线产品经理,硕士研究生学历。从事分子光谱技术的产品开发,仪器销售和应用推广工作十余年。在农业,食品,化工,高分子等行业有丰富的产品应用开发和实测经验。从2014年入职瑞士万通中国有限公司,负责近红外光谱和拉曼光谱产品的推广工作至今。生物制药分析表征会场生物药物结构上的细微差别可以显著影响其安全性和有效性,对此类药物的准确表征就需要精密的分析表征手段。本次生物制药大会特别设置生物制剂表征会场,邀请到杭州奕安济世、上海晟国医药、北京市科学技术研究院分析测试研究所的多位专家从不同角度对生物制剂的表征内容进行阐述。高原 高级工程师 北京市科学技术研究院分析测试研究所(北京市理化分析测试中心)报告:生物制剂检测中的关键表征技术 报名占位现任中国颗粒学会测试专业委员会副秘书长,北京粉体技术协会副秘书长。主要研究粉体材料的物理性能表征方法及应用。主持及参与了与纳微米粉体表征技术相关的省部级项目4项。目前是国际标准化组织(ISO)的粒度分析工作组和孔径分析工作组成员人。同时作为全国颗粒表征与分检及筛网标准化技术委员会及微泡技术委员会委员,主持、参与制修订并颁布实施粉体物理性能相关国家标准9项,团体标准1项,合作研制国际实物标准1项、主持研制国家二级标准物质3项。获得中国分析测试协会(CAIA)奖一等奖,中国颗粒学会科技进步奖二等奖等奖项。杨泗兴 总监 上海晟国医药发展有限公司报告:双抗制剂表征 报名占位杨泗兴 博士,上海晟国医药CDMO业务制剂开发和生产负责人。杨博士毕业于上海交通大学,在生物制药领域从事制剂技术研究及CMC工艺、质量等相关工作超过15年,成功申报过20个以上生物药IND及BLA,覆盖重组蛋白、单抗/双抗/ADC、融合蛋白、酶、疫苗等。在生物药缓控释微球/微针等制剂技术、抗体高浓度注射液、双抗制剂、冻干制剂等领域具有丰富的经验。胡裕迪 制剂工艺开发/高级主管研究员 杭州奕安济世生物药业有限公司报告:商业化生产和BLA申报中的生物药制剂工艺表征和验证的研究 报名占位 硕士毕业于中国医药工业研究总院的药剂专业;本科毕业于中国药科大学药物化学专业。拥有超过5年的生物制剂开发经验,以制剂或CMC负责人参与“高浓度抗体、双抗、ADC冻干、siRNA、后期工艺表征”等研发项目超过15个,获得“制备一种抗Claudine18.2抗体制剂的方法”等5篇专利。目前专注于抗体药物的理化表征,成药性,制剂处方和工艺开发,制剂工艺表征,工艺转移等多个领域研究。宁辉 产品总监 丹东百特仪器有限公司报告:光散射技术在生物制剂中的应用报名占位 宁辉博士,全国专业标准化技术委员会委员,《分析仪器》第十一届编委会委员,现任丹东百特仪器有限公司产品总监兼任研发中心副主任。 2004年至2007年从事胶体物理领域研究,并于2007年取得荷兰屯特大学物理学博士学位。2007年至2008年在德国于利希研究中心从事博士后研究,关注胶体的热扩散行为及其表征手段。 宁辉工作和研究经历过程中,在Langmuir, J. Chem. Phys.等等期刊发表超过10篇学术论文。 宁辉于2008年入职于国外某知名粒度仪生产商,担任产品经理,并于2019年离开工作11年的外企,于2020年加入中国著名的粒度表征设备制造商,辽宁省A级高新技术企业,丹东百特仪器公司。在丹东百特仪器有限公司的工作过程中,宁辉先后参与了多项与光散射相关的设备的研发和产品推广工作。点击报名:https://www.instrument.com.cn/webinar/meetings/biopharma2023/扫码进入会议交流群
  • 安捷伦-迈百瑞共建抗体药物偶联物(ADC)分析联合实验室
    2015年6月18日上午,安捷伦科技公司与烟台迈百瑞国际生物医药有限公司在山东烟台迈百瑞公司厂区举行了&ldquo 迈百瑞国际生物医药&mdash 安捷伦科技前沿生物药研究暨抗体药物偶联物分析联合实验室&rdquo 揭牌仪式。烟台迈百瑞国际生物医药有限公司常务副总裁梁其斌、烟台迈百瑞国际生物医药有限公司质量副总裁阮懋荣、安捷伦科技大中华区生命科学事业部业务总监赵影、安捷伦科技大中华区液相与液质联用技术应用技术支持经理安蓉等出席了揭牌仪式。仪器信息网等多家媒体与双方共同见证了促进中国新药领域研究的激动时刻。 烟台迈百瑞质量副总裁阮懋荣致辞   烟台迈百瑞国际生物医药有限公司质量副总裁阮懋荣为仪式致辞,并介绍了抗体偶联药物(Antibody Drug Conjugates,ADC)的特点和研发概况。ADC具有良好的靶向性及抗癌活性,已成为目前抗肿瘤抗体药物研发的新热点和重要趋势,并受到越来越多的关注。其开发涉及四个方面,包括药物靶点的筛选、重组抗体的制备、&ldquo 连接物&rdquo 技术开发以及高细胞毒性化合物的优化,其中任何一个环节出现问题,都会影响到ADC药物的安全性和有效性。目前,ADC药物开发的技术能力仍依赖于少数几个技术提供商。阮懋荣说:&ldquo 我们非常高兴能有机会与安捷伦这样全球领先的公司展开合作。迈百瑞一直致力于提供高质量的生物药物研发和GMP生产一站式外包服务,满足客户研发和GMP生产需求,加快生物药物的研发速度。此次与安捷伦合作成立的联合实验室,将为迈百瑞在国际ADC药物研发/生产舞台竞争中取得领先地位奠定坚实的基础。&rdquo 阮懋荣还说,迈百瑞的ADC产能是亚洲之冠,在全球也是屈指可数。除此之外,迈百瑞的客户是中国申请ADC新药的首例。   该联合实验室是安捷伦科技在中国的第一间ADC分析领域前沿合作实验室,旨在以国际化视角和全球先进技术,建设先进生物药物分析测试平台,在完善工艺流程研究、ADC药物开发、提升科研质量的同时,紧跟国内外行业进展及客户需求,提供整体化解决方案,从而促进我国生物医药产业的可持续性发展。 安捷伦科技大中华区生命科学事业部业务总监赵影致辞   安捷伦科技大中华区生命科学事业部业务总监赵影女士在揭幕前致辞。赵影表示:&ldquo 安捷伦致力于为制药/生物制药行业客户提供创新高效的解决方案和技术支持。在ADC这一生物制药前沿的领域,安捷伦凭借其优异的仪器性能和完善的技术支持服务赢得了制药/生物制药客户的认可。在本次与迈百瑞的合作中,安捷伦不仅提供客户理化分析、结构表征相关的仪器平台,更是与客户紧密沟通,应对客户需求和行业动态快速响应,积极开发相应的整体解决方案。&rdquo 赵影还提到,安捷伦科技在全球已经有12000余名员工,近几年非常注重生命科学领域的发展。目前,中国的技术支持和售后服务工程师有500多位,为用户提供7天24小时无假期全天候的服务,得到了广大用户的认可。随着&ldquo 十三五&rdquo 重大新药创制中提出重点支持生物药开发创新,生物制药市场发展势头强劲,安捷伦也会继续在生物药物质量控制领域继续提供仪器平台和售后支持,协助广大制药用户以更快的速度、更低的成本将高质量的药物带入市场。 烟台迈百瑞质量副总裁阮懋荣与安捷伦科技大中华区生命科学事业部业务总监赵影签署共建联合实验室框架协议 联合实验室揭牌 参观共建实验室及迈百瑞生产线   安捷伦科技安蓉及迈百瑞姚雪静带领大家参观了共建实验室,并介绍了安捷伦的仪器应用。迈百瑞常务副总裁梁其斌带领大家参观了迈百瑞设施完备的无菌药物生产线,使大家对药物生产特别是ADC的生产流程增进了认识。   烟台迈百瑞厂区坐落于在烟台海岸线旁边,紧邻大海,环境优雅。整个厂区使用的供暖等循环水都是打井地下水循环使用,也是响应环保的典范。 双方答记者问   在媒体采访环节,安捷伦科技和烟台迈百瑞回答了记者就双方合作实验室建成的有关问题。   Instrument: 请问安老师,安捷伦科技的哪些产品已经用于联合实验室,将来会有那些产品逐步入驻?这些仪器将分别应用在药物研究的哪些层面?   安捷伦科技安蓉:目前已经用在联合实验室的安捷伦设备包括1290 Infinity 2D超高效液相色谱、6530 四极杆-飞行时间串联质谱仪(Q-TOF)、1260 Infinity 液相色谱、1260 infinity 生物惰性液相系统、低热容(LTM)柱温箱以及毛细管电泳仪。接下来,安捷伦的气质联用仪和气相色谱会很快入驻,ICP-MS等仪器也会陆续应用于合作实验室。LC-MS和GC-MS以及ICP-MS等将会用于制剂包材药物相容性控制,LC和毛细管电泳等将用于QC层面表征等。   Instrument: 请问赵总,这次与迈百瑞的合作应该是安捷伦科技六大战略领域中与诊断制药相关的一项,那么在其他几个领域是否也将与其他机构合作建立共建实验室?   安捷伦科技赵影:安捷伦一直在寻找战略伙伴,前期已与上海交大药学院、中国药科大学等实验室有合作。现在和迈百瑞的合作,也是在寻求行业中的窗口。不仅在生物医疗方面,在其他战略领域也是如此。安捷伦要给客户提供真正意义上的整体解决方案,不仅针对仪器,也针对客户的应用需求,目的是为客户提供整体、特定的解决方案。与行业前沿的具体公司和实验室的合作,是对安捷伦的一种特殊技术补充。   Instrument: 请问黄总,安捷伦和迈百瑞的合作将带来怎样的成果和收效?   烟台迈百瑞药物研发中心副总裁黄长江:迈百瑞致力于研发药物分析手段,满足新的药物生产需求,是中国生物制药ADC研发生产的先驱。而安捷伦在生命科学仪器方面是佼佼者。安捷伦与迈百瑞的合作是一种一加一大于二的强强联手,即优秀的团队利用新的分析仪器研发新的检测方法。更新更好的药物分析方法将在我们的合作实验室中产生。 编辑:郭浩楠
  • 大连化物所开发单原子合金材料促进电催化CO2还原的C-C偶联
    近日,中国科学院大连化学物理研究所太阳能研究部太阳能制储氢材料与催化研究组研究员章福祥团队设计合成了一种单原子铋修饰铜合金催化剂,用于电催化CO2还原。该催化剂展现出优异的C-C偶联功能,显著提高了多碳(C2+)产物的法拉第效率。太阳能光催化技术是实现太阳能至化学能转化的重要方式之一,而高效助催化剂的开发是实现高效光化学转化的重要一环。近期,章福祥团队致力于通过电催化剂的优化设计,开发高效光催化助催化剂,在电催化水氧化、电催化析氢和电催化氧还原等催化剂设计合成方面取得系列进展。 电催化还原CO2(CO2RR)制备燃料或化学品,不仅可实现CO2的资源化利用而且可用于绿色氢能的液态储存,可为太阳能光催化制储氢一体化技术奠定基础。该领域的文献调研发现,单原子合金(SAA)作为一种具有特殊电子结构的单原子催化剂,虽已被用于CO2RR制备C1产物,但尚未有实验结果证明其可用于高效制备C2+产物。 本工作设计合成了一种单原子铋修饰铜合金催化剂(BiCu-SAA)。研究发现,该催化剂具有显著的C-C耦合促进作用。与纯铜催化剂相比,BiCu-SAA催化剂显著提高了C2+产物选择性以及FE(C2+)/FE(C1)比率。一系列原位红外、XAS等表征和理论计算结果表明,单原子铋修饰可有效调节铜的电子结构,促进CO2活化和C-C偶联步骤,解释了获得较高C2+产物选择性的原因。 相关研究成果以Single Atom Bi Decorated Copper Alloy Enables C-C Coupling for Electrocatalytic Reduction of CO2 into C2+ Products为题,发表在《德国应用化学》上。研究工作得到国家重点研发计划、国家自然科学基金、中科院战略性先导科技专项(A类)“变革性洁净能源关键技术与示范”以及北京光源机时等的支持。南开大学和中国科学技术大学的研究人员参与研究。大连化物所开发单原子合金材料促进电催化CO2还原的C-C偶联
  • 上海希美代理Randox-lifescience公司药物残留抗体及偶联蛋白
    英国Randox-lifescience公司生产药物残留检测单克隆和多克隆抗体,ELISA试剂盒,以及偶联BSA/BTG蛋白抗原,主要产品有: 抗生素(磺胺喹恶啉、磺胺嘧啶、磺胺二甲嘧啶、氯霉素、喹诺酮类药物),呋喃唑酮代谢物(AOZ、AMOZ、SEM、AHD),&beta -兴奋剂类(克伦特罗、莱克多巴胺),雌激素(玉米赤霉烯醇、沙丁胺醇)等。
  • 基于“借氢机制(氢转移)”,通过胺与醇的C-N偶联合成有机胺
    1. 文章信息标题:Single Pd-Sx Sites In Situ Coordinated on CdS Surface as Efficient Hydrogen Autotransfer Shuttles for Highly Selective Visible-Light-Driven C-N Coupling页码:4481-4490(2022),DOI:https://doi.org/10.1021/acscatal.2c004332. 文章链接Single Pd-Sx Sites In Situ Coordinated on CdS Surface as Efficient Hydrogen Autotransfer Shuttles for Highly Selective Visible-Light-Driven C-N Coupling3. 期刊信息期刊名:ACS CatalysisISSN:2155-54352021年影响因子:13.084分区信息:中科院1区Top;JCR分区(Q1)涉及研究方向:光催化4. 作者信息: 首要作者是香港中文大学(深圳)理工学院博士后钮峰。通讯作者为香港中文大学(深圳)理工学院涂文广教授、周勇教授和邹志刚院士。文章简介: 随着工业的发展与进步,有机胺广泛应用于农业、医药、家居、军工等领域,其合成在工业生产中有着越来越明显的重要性。基于“借氢机制(氢转移)”,通过胺与醇的C-N偶联被认为是一种较为绿色的合成有机胺的理想路径。这一过程主要包含醇的脱氢、亚胺的生成以及亚胺的加氢这三个主要步骤。其中醇的脱氢是整个反应的决速步骤。然而,基于这一机制,在热催化合成有机胺的过程中存在一些缺点:(1)醇的脱氢决速步骤需要较苛刻的条件(高温高压);(2)易发生过度偶联,使得产物分布广,不利于分离;(3)反应中使用的催化剂多为高负载量的负载型贵金属催化剂(如Ru/Al2O3、Pd/Al2O3、Rh/Al2O3等),成本较高。因此,开发出高效低成本的催化剂具有一定的挑战性。近年来,利用光氧化还原技术实现常温常压条件下有机胺的合成引起了广泛的关注。研究者们通常采用一些贵金属有机配合物分子进行均相催化反应,但反应后催化剂难以进行分离,在实际工业生产中难以大规模应用。而采用传统的半导体光催化剂进行多相催化反应,则可以有效解决这一难题。然而仅仅依靠半导体本身的催化能力,很难达到较高的催化活性,实际应用过程中往往需要通过负载一些助催化剂或表面修饰来提高催化性能。近些年,单原子催化被认为是较有前景的领域。单原子催化剂由于其独特的电子结构和较高的原子利用效率而表现出优异的催化活性,被广泛应用于光催化水分解制氢、二氧化碳还原、固氮和有机物降解等领域。因此,我们课题组设计开发了一种单原子光催化剂CdS-Pd,该催化剂可以有效地用于可光催化苯甲醇和苯胺的C-N偶联反应,获得具有工业应用价值的二级胺。同时反应过程中释放出清洁能源氢气。这一工作将为温和条件下实现C-N偶联反应提供一种新的途径。文章DOI : https://doi.org/10.1021/acscatal.2c00433原文链接:Single Pd-Sx Sites In Situ Coordinated on CdS Surface as Efficient Hydrogen Autotransfer Shuttles for Highly Selective Visible-Light-Driven C-N Coupling
  • 2014年度国家科技奖化学化工类项目解读
    本年度获奖项目涵盖了油气开采、现代煤化工、化工新材料、农用化学品等领域。其中,能源、资源领域仍然是创新成果高产区,超深水半潜式钻井平台研发与应用项目荣获科技进步特等奖。初次登场亮相的煤化工一鸣惊人,甲醇制取低碳烯烃(DMTO)技术获得技术发明一等奖。元坝超深层生物礁大气田高效勘探及关键技术、超深井超稠油高效化学降粘技术研发与工业应用均获得科技进步一等奖。此外,学科交叉融合创新也是本次获奖项目的一大亮点。获奖成果大都顺应了新常态下石化行业转型升级对自主创新技术的迫切需求,为今后加快行业转型升级提供了源动力。   煤化工首次亮相即折桂   现代煤化工产业的蓬勃兴起是近年来石油和化工行业的一大热点和亮点,其中煤制烯烃更是作为现代煤化工产业的代表而备受关注。此次,煤化工项目初次亮相国家科技奖就一举折桂,荣获技术发明一等奖。这是我国煤化工产业拥有强大原始创新能力的一个缩影,同时也肯定了我国在全球甲醇制烯烃领域的领跑地位。   甲醇制取低碳烯烃包括主产混合烯烃技术(MTO)和主产丙烯技术(MTP),是煤基烯烃技术路线的关键所在。20 多年来,随着石油价格的多次波动, 国际上仅有美国、德国的两三家企业还在坚持该领域的研究, 中国以大连化物所DMTO 技术为代表的研发成果一直居于世界前列。业内专家表示,大连物化所DMTO 技术率先实现了核心技术工业应用从无到有的突破, 完成了世界首次甲醇制烯烃工业性试验和工业化生产, 取得了一系列原始性创新和技术发明。   据了解,DMTO 专用催化剂已于2008 年实现工业化生产 目前,DMTO 已经许可建设20 套工业化装置, 对应烯烃年产能1126 万吨。其中,第一套为世界首套煤制烯烃项目,年产60 万吨烯烃装置于2010 年8 月投产,已经运行3 年以上 第二套装置于2013 年2 月投产。   乙烯和丙烯是重要的基本有机原料,发展煤制烯烃技术,关系到我国经济长期稳定发展和能源安全,DMTO 作为煤化工产业的关键核心技术不仅促进了我国烯烃原料多元化和石油替代战略的实施, 还带动了甲醇制烯烃新兴战略产业的快速发展。   中国石油和化学工业联合会的有关专家表示, 原始创新一直是石化行业的短板, 但它在各种创新模式中处于核心地位, 是其他创新的源泉。本次DMTO 技术折桂可谓是实至名归, 它不仅可以激发石化行业原始创新的活力, 还将提升行业在国际科技创新领域的实力与水平。   助力行业转型升级   《&ldquo 十二五&rdquo 产业技术创新规划》指出,要引导和加强重点产业的技术创新工作,着力提升自主创新能力, 促进工业转型与升级,不断增强我国工业核心竞争力和可持续发展能力。目前我国石油和化学工业已进入以结构调整、转型升级和市场化改革为主要特征的发展新阶段。产能过剩严重,产品附加值低, 同质化竞争严重等问题, 迫切需要行业转型升级。在此过程中,技术无疑是多数企业转型升级的抓手,同时也是难点。   中国石油和化学工业联合会科技部有关专家表示, 科技创新引领转型升级是石化企业蓬勃发展的不竭动力。本次获奖的化学化工类项目中, 很大一部分将解决企业在节能减排、&ldquo 三废&rdquo 利用等方面的难题, 从而提升整个石化产业的技术水平, 助力行业的转型升级。   荣获技术发明二等奖的黄磷尾气催化净化技术与应用项目就是技术创新助力行业转型升级的一个例证。黄磷生产过程中伴生的大量尾气,CO 含量高达85%-95%,是净化难度最大的复杂有毒   有害工业废气之一,已困扰世界黄磷行业一百多年。该项目团队历经15 年持续系统研发, 在复杂有毒有害工业废气净化关键技术和设备研发上取得突破。项目实现了强还原性废气中多形态磷、硫、砷、氰等杂质的深度氧化净化,使黄磷尾气中CO 和磷、硫高效资源化利用成为可能。在此基础上,项目团队还实现了尾气中共存有机硫和HCN 两类难氧化杂质的精脱除, 从而获得了高品质CO 原料气。   目前国内采用该项目成果已建成黄磷尾气净化与利用装置33 套,在煤化工等行业建成净化装置14 套。按黄磷产能计,已占有净化市场21.5%的份额,覆盖全国黄磷产能的40.6%以上,累计净化黄磷尾气39.4 亿立方米, 折合节约标煤168.4 万吨, 减排CO2113 万吨,累计新增产值23.9 亿元。   再如, 获得技术发明二等奖的有机废物生物强化腐殖化及腐植酸高效提取循环利用技术,首次提出了有机废物限制矿化、高效定向腐殖化的新思路, 创建了规模聚集下的有机废物有机质高效利用的新模式。该成果解决了传统堆肥三大技术难题: 腐殖化效率低、产品质量差和二次污染控制难, 改变了传统有机肥难以标准化、无法进入国家主流通路的状况, 让古老的农耕文明插上了科技的翅膀,焕发新生。截至目前, 应用该技术已在国家餐厨废弃物资源化利用试点城市中建设了14 个处理厂。   此外, 高酸重质原油全额高效加工的技术创新及工业应用等绿色环保、节能减排的创新成果, 都有助于提高能源资源的利用效率,加大污染物的处理力度,从而加快推进行业的转型升级。   学科交叉大放异彩   中国科协一位专家在接受媒体采访时曾表示, 科技发展的关键在于学科交叉融合。我国在科技创新方面落后于人, 很大程度上是因为学科不能交叉, 或者交叉得不够。在此次的获奖项目中, 中国化工报记者发现, 石化行业的学科融合项目正在逐渐增加, 并碰撞出多项创新火花。   在化学工程与材料交叉技术领域, 获得技术发明二等奖的新型功能化超顺磁性颗粒的制备及在分离技术中的应用, 发明了多种超顺磁性颗粒制造方法和表面功能化等新技术, 创制了相关应用装置,率先实现了大规模制备, 并在蛋白质分离等方面得到应用。而此前,虽然德国和美国等发达国家开展了长期的研发工作, 但迄今国际上仍鲜见大规模应用的报道。   目前, 该项目已获授权发明专利20 项。所发明的氨基硅烷偶联剂修饰超顺磁性SiO2 纳米颗粒的方法已成为国际同行广泛采用的经典方法。业内专家表示,该应用基础研究在学科建设上推动了我国材料化学工程研究的发展,也为其他化学、材料、生物和化工过程结合的过程设计和实施提供科学方法和借鉴。   纵观我国近些年来的科技发展不难看出, 许多重大科技新突破均源自学科之间的交叉融合。可以预见, 不同学科的交叉融合将对石化产业的基础研究工作产生积极的推进作用, 这将是孕育行业技术革命的沃土。   创新之锤打破垄断   打破多项国外技术垄断,实现行业内稀缺产品国产化, 也是本年度获奖项目的一大特点。获得科技进步二等奖的新一代高性能苯乙烯类热塑性弹性体(SEBS)成套技术,在聚合物微观结构控制、茂金属加氢技术和关键设备工程化等方面取得了重大突破, 实现了我国SEBS 制备技术及产品从无到有、从有到精、从精到强的跨越式发展,打造了中国新一代SEBS 的技术体系和产业平台,开发的技术和产品达到国际先进水平,增强了我国在高端合成橡胶领域的核心竞争力。   据了解,SEBS 在业界有橡胶黄金之称, 鉴于前驱体结构的多样性、合成工艺的复杂性,其生产技术长期被美国和日本公司垄断, 导致SEBS 进口价格高达5 万-8 万元/吨, 严重影响了中国SEBS 下游产业的竞争力。国内曾有多家单位进行过SEBS 小试研究, 但在聚合物微观结构设计控制和加氢技术方面未能取得突破。   万吨级SEBS 成套技术的开发及产业化, 满足了国家重大战略需求,提高了我国医用、消费类电子、日用品等与国计民生密切相关产业的核心竞争力。目前,项目产品国内市场占有率近60%, 市场价格与产业化前相比下降约50%, 打破了国外产品及技术垄断。
  • BSTFA+1%TMCS硅烷化试剂促销 售完为止
    CYCQ-270123 BSTFA:TMCS=99:1, BSTFA+1%TMCS硅烷化试剂(干燥保存) 批号 46815 有效期至 09/2013 2瓶 批号 47187 有效期至 10/2013 3瓶 促销价:180元/瓶 上海安谱科学仪器有限公司 地址:上海市斜土路2897弄50号海文商务楼5层 [200030] 电话:86-21-54890099 传真:86-21-54248311 网址:www.anpel.com.cn 联系方式:shanpel@anpel.com.cn 技术支持:techservice@anpel.com.cn
  • 红外多光子解离用于Top-Down表征膜蛋白复合物和G蛋白偶联受体
    大家好,本周为大家分享一篇来自Angewandte Chemie - International Edition的文章:Infrared Multiphoton Dissociation Enables Top-Down Characterization of Membrane Protein Complexes and G ProteinCoupled Receptors[1],文章的通讯作者是牛津大学化学系的Carol V. Robinson教授。  非变性质谱(Native MS)是结构生物学中一个成熟的工具。在电喷雾电离过程中使用非变性缓冲液可以保存多组分蛋白质复合物之间的非共价相互作用,以及它们的配体、辅因子或其他结合蛋白。它可以用于探究蛋白质复合物的相互作用和功能,因为结合事件导致质量变化,可以在质谱仪中跟踪和剖析。然而,由于膜蛋白的疏水性,使得它们在传统的非变性质谱缓冲液中不溶且容易聚集,因此在非变性质谱中呈现出独特的挑战。目前采用的方法是将蛋白质复合物溶解到膜类似物中,例如:去垢剂、纳米脂质盘、两性聚合物等,再将这些膜类似物通过碰撞激活去除。其中去垢剂是应用的最广泛的一种。然而由于碰撞激活的能量在应用中受到限制,该方法并不能在质量分析前很好地去除去垢剂。此外,在非变性质谱条件下,键的断裂也受到非共价相互作用强度的影响(例如蛋白质-蛋白质、蛋白质-去垢剂剂以及去垢剂胶束内的相互作用)。  基于光子的方法,如紫外光解离(UVPD)和红外多光子解离(IRMPD)已被证明有利于可溶性蛋白质及其复合物的Top-Down质谱分析。与此同时,基于光子的膜蛋白Top-Down模式的应用正在兴起。原理上,激光束路径中的离子被连续地驱动到振动激发态。因此,在基于光子的方法中,能量储蓄通常与前体离子的电荷状态和分子量无关。然而,电荷状态和分子量仍然会影响肽键解离需要的输入能量。先前报道的通过UVPD对79 kDa的五聚体的大电导机械敏感通道(MscL)Top-Down的断裂得到了令人印象深刻的54%的序列覆盖。然而,对于氨通道(AmtB)一个127 kDa的同源三聚体,通过碰撞激活和UVPD两种不同的方式破碎,仅实现了20%的序列覆盖率。事实上,相对较低的序列覆盖率是由于大分子量以及三聚体中增加的非共价相互作用影响的结果。尽管这些工具能够在非变性状态下实现Top-Down质谱分析,但其在膜蛋白表征中的应用仍不广泛。这就要求建立一种能使低电荷密度的高分子量蛋白质稳定地产生蛋白质序列离子的方法,而膜蛋白嵌入异质膜或膜类似物则使这一问题更加复杂。虽然IRMPD之前被用于从去垢剂中释放膜蛋白,但使用IRMPD对非变性的膜蛋白进行测序的研究相对较少。  图1. (A)改进的Orbitrap Eclipse Tribrid的原理图,其中包括一个红外激光器直接进入四极线性离子阱(QLIT)的高压细胞。离子化的蛋白质胶束被转移到高压QLIT中,在那里整个离子群受到红外光子的照射,然后被转移到Orbitrap进行质量分析。通过调节激光输出功率(W)和照射时间(ms),可以使膜蛋白从去垢剂胶束中完全解放出来。(B)三聚氨通道(AmtB)在3.0 W输出功率和200ms辐照时间下的非变性质谱。(C)在3.3 W输出功率和200ms辐照时间下AmtB的非变性质谱。  因此,作者利用改进的Orbitrap Eclipse Tribrid质谱仪,与连续波远红外(IR) CO2激光器连接,使光束聚焦到双四极杆线性离子阱(QLIT)的高压池中(图1A)。红外激活可以有效地去除蛋白质复合物中的去垢剂胶束,随后通过IRMPD使得膜蛋白碎片化。在这种安排下,由纳米电喷雾电离产生的蛋白质复合物被转移到高压池中。在转移到Orbitrap进行检测或m/z分离和随后的碎片化之前,整个离子群将受到943cm-1红外光子的照射。利用红外的方法去除去垢剂胶束,红外激光有两个可调控参数:激光输出功率(高达60瓦)和照射时间(毫秒到秒)。因此,可以更好地控制从蛋白质胶束中释放膜蛋白,确保非变性复合物的保存,同时完全去除包裹复合物中的去垢剂。通过对激光输出功率和照射时间的优化,作者发现红外激活的参数是高度可调的,不同的激光功率和照射时间的组合也可以产生分辨率相当的谱图。其中例如在3.3 W下照射200 ms时,可以得到多个电荷态的三聚体峰(~6500 m/z),也可以观察到三聚体与脂质结合的峰,而且对于图谱中的单体也能观察到与脂质结合的峰(图1C)。作者还对不同的去垢剂产生分辨率较高的图谱所需要红外参数进行了评估,从而评价了这几种去垢剂得到高分辨率图谱的难易程度(图2)。  图2. 红外辐射去除膜蛋白离子中的去垢剂是高度可调的。增加激光输出功率对三种常用的MS兼容去垢剂(C8E4,G1和DDM) AmtB三聚体峰外观的影响。辐照时间固定为200 ms,激光输出功率分别为2.1、2.4、3.0和3.6 W。去垢剂在真空中按易去除的顺序显示,这是由完全释放膜蛋白复合物所需的激光输出功率决定的,从而在m/z光谱中产生良好分辨的电荷状态峰。为了探究IRMPD分离蛋白质和去垢剂胶束的机制,作者对三种不同的去垢剂:四聚乙二醇单辛醚(C8E4)、树突状低聚甘油(G1)和十二烷基-β-D-麦芽糖苷(DDM)的溶液相和气相红外光谱进行了表征,并利用密度泛函理论(DFT)计算得到了C8E4头部基团的红外谐波光谱,用来验证所得到的红外吸收光谱会受到振动耦合的影响,对于质子化的去垢剂离子,氢键和富氧去垢剂内的质子共享可以改变观察到的振动频率。结果表明C8E4胶束的溶液相吸收光谱包含一个与预期激光波数943cm-1重叠的显著带,这就解释了为何较低的激光能量可以将去垢剂胶束和蛋白质复合物分离。而在谐波光谱中在预期的激光波数处的确产生了峰,并推测该峰来自于O-H伸缩、C-C伸缩,C-H弯曲和C-O伸缩振动的耦合。而G1和DDM的最大吸收则偏离了943cm-1的预期波数,作者认为这是不同去垢剂氢键作用的结果。而蛋白质在真空中的红外吸收能力较弱,由此推测在IRMPD的过程中,去垢剂是主要的吸收对象。所以仅需要较低的能量就可以使蛋白质从复合物中剥离而不至于破坏蛋白质的非共价作用。完整的蛋白质离子还支持串联质谱的实验,为了得到蛋白质的序列信息,作者分离了m/z在6674处(电荷态为+19)的AmtB三聚体蛋白,并将其置于高激光输出功率(9 W)下照射5 ms,在m/z 1750~4000之间产生密集的多电荷态离子片段,并得到了26%的序列覆盖,这优于之前基于碰撞激活的方法(  图3. 三聚体AmtB的IRMPD。(A)在m/z 6674处分离19+电荷态离子阱后,IRMPD后观察到的碎片离子MS2谱。多重带电碎片被高亮显示 来自相同地点的重复片段用虚线分组。为了清楚起见,许多指定的离子没有注释 (B)片段丰度相对于裂解原点(残基数)的条形图,其中丰度表示来自每个位点的片段归化一强度之和。条形图的颜色强度表示每个片段的加权平均电荷。将AmtB的拓扑域叠加在条形图上 α-螺旋跨膜区域用黄色方框表示,编号为1到11。跨膜区由质周环和细胞质环连接,用灰色线表示。(C)主干裂解位点覆盖在AmtB (PDB: 1U7G)的结构上。蓝色和红色阴影区域分别代表b型和y型离子。颜色强度对应于所分配片段的丰度。从气相分子动力学模拟中得到的高温(500 K)下的跨膜螺旋快照用虚线圈标出。为了验证这一个推测,作者又对另外两种GPCR蛋白:β -1-肾上腺素能受体(β1AR)和腺苷A2A受体(A2AR)用IRMPD进行了MS2图谱的测定,结果也观察到了片段离子相似的二级结构定位,在跨膜结构区域有着高丰度的片段,但是在二硫键相连的螺旋中并没有观察到丰富的离子片段。并再次利用分子动力学模拟研究了两种GPCR的结构对断裂的影响。在500 K下的最终结构中显示,两种GPCR中都保留了α-螺旋特征,并与观察到的裂解位点密切相关。此外,还对这两种蛋白进行了HCD和IRMPD的比较分析。对于β1AR, IRMPD产生的片段离子平均分子量为8866 Da,高于HCD产生的5843 Da。IRMPD产生的片段离子也保留了更高的平均电荷(4.7 + vs 3.6+ z)。最终,IRMPD的碎片化导致β1AR的序列覆盖率更高,为28%,而HCD为17%。在A2AR中也观察到类似的趋势,IRMPD的覆盖率为19%,而HCD为9%。  总的来说,作者证明了可以在改进的Orbitrap Eclipse质谱仪的高压QLIT下,通过红外照射可以完全释放一系列去垢剂胶束中的膜蛋白。然后,通过增加激光输出功率,获得直接从膜蛋白及其复合物中释放的序列信息片段离子,证明红外光去除去垢剂是通用的和高度可控的,为保存和鉴定膜蛋白和配体之间脆弱的非共价相互作用构建了一个可靠的方法。而且还对片段离子的产生机制做了阐述,即质子可以通过沿蛋白质骨架迁移来稳定和诱导连续的肽键裂解。  撰稿:李孟效  编辑:李惠琳  文章引用:Infrared Multiphoton Dissociation Enables Top-Down Characterization of Membrane Protein Complexes and G ProteinCoupled Receptors  参考文献  Lutomski, C.A., El-Baba, T.J., Hinkle, J.D., et al. Infrared multiphoton dissociation enables top-down characterization of membrane protein complexes and g protein-coupled receptors[J]. Angewandte Chemie-International Edition,2023.
  • 用上稀土元素钆 核辐射防护材料有望迎来无铅化时代
    科研人员设计了一种高性能无铅的表面改性氧化钆/碳化硼/高密度聚乙烯复合屏蔽材料,其防护性能甚至优于我国大科学装置——全超导托卡马克科学实验装置中原有的掺硼聚乙烯准直屏蔽体。  通常在人们的印象里,核辐射防护材料往往离不开厚重的铅。例如,医院X射线检查室所用的防护门就是由铅材料制造的。然而铅的生物学毒性对环境不友好,使其应用范围受到限制。  日前,中国科学院合肥研究院等离子体物理研究所科研团队取得了一项新进展,有望改变人们对核辐射防护材料的传统认知。该团队研制了一类高性能、无铅化的中子及伽马射线复合屏蔽材料,并围绕材料的屏蔽性能与机制展开了实验研究和模拟计算验证,相关成果发表在核科学技术期刊《核材料与能源》上,并申请了发明专利。  传统屏蔽材料难以满足现代社会辐射防护需求  中子是电中性粒子,不受库仑力作用,穿透性极强,且在碰撞过程中会产生次级伽马射线,是现代核辐射防护的研究重点。而科学高效的中子屏蔽方案,会在选用高原子序数(原子序数是指元素在周期表中的序号)材料和低原子序数材料的同时,还选用中子吸收材料,以进行复合屏蔽。例如常用的由铅、硼、聚乙烯组合而成的铅硼聚乙烯板,就是这种复合屏蔽材料。  铅硼聚乙烯是一种传统的屏蔽材料,其中聚乙烯具有较高的含氢量,氢原子对快中子具有良好的慢化作用;硼原子能吸收热中子;铅原子除了对具有一定能量的快中子有屏蔽作用外,对伽马射线的屏蔽也特别有效。相比其他核屏蔽材料,铅硼聚乙烯除了具有高效的核屏蔽性能外,还具有质量轻、体积小的特点,已广泛用于核电、核动力、军工、航空、医疗等领域中的核防护。  但随着原子能工业的发展,人们必须采取严密的防护措施来保障涉核人员的身体健康和环境安全。而铅硼聚乙烯等传统材料屏蔽功能单一、屏蔽性能有限,有的热力学性能不佳,难以满足现代社会对核辐射防护的要求,并且这些含铅的防护材料,往往使用几年就会失去防护效果,淘汰后流入环境中,会对周围环境造成污染。  新防护材料具有优异的综合屏蔽性能  而稀土元素钆在自然界中通常以无毒的氧化钆形式存在,且其平均热中子吸收截面非常高,不但耐高温,还具有良好的伽马射线屏蔽性能。科研人员根据其材料特性,设计了一种高性能无铅的表面改性氧化钆/碳化硼/高密度聚乙烯复合屏蔽方案。  首先,研究人员采用偶联剂对氧化钆进行表面改性处理,提高了其在基体内部的界面相容性和弥散性,使辐射粒子更充分地与材料内部的功能组元相互作用从而迅速衰减。其次,研究人员设计的复合材料,采用了钆—氢—硼体系对中子进行慢化和吸收,利用轻、重核与中子的相互作用特性以及钆和硼的高热中子吸收截面特性,使高能入射中子与钆产生非弹性碰撞,与氢、碳、氧发生弹性碰撞直至成为热中子,最后被钆和硼吸收。其中钆作为重核元素还兼具吸收伽马射线的功能。  科研人员通过进一步研究发现,改性纳米氧化钆对复合材料的性能提升明显优于改性微米氧化钆及未改性的纳米和微米氧化钆,并且在6厘米以下较薄的材料厚度时,氧化钆的改性处理对复合材料辐射屏蔽性能的提升尤为明显。  而后,科研人员将他们研制的新型无铅核辐射防护材料送往北京市射线应用研究中心,进行样品屏蔽实际测试。测试的结果令人满意:在锎-252中子源辐照环境下,该复合材料在厚度为15厘米时达到了98%的中子屏蔽率;在铯-137和钴-60伽马源辐照环境下,复合材料在厚度为15厘米时分别达到了72%和60%的伽马屏蔽率。  值得一提的是,这种新型无铅核辐射防护材料综合屏蔽性能,甚至优于我国大科学装置——全超导托卡马克科学实验装置中原有的掺硼聚乙烯准直屏蔽体。说明这种新型无铅核辐射防护材料可作为改进型替代材料,也可作为其他中子—伽马混合场的防护材料,在受控核聚变的科学攻关当中,提供更好的核辐射防护手段。
  • 武汉大学2022年度获批24项国家重点研发计划项目
    新闻网讯(通讯员刘郝弦、乔进、李振)近日,2022年度国家重点研发计划项目评审立项工作接近尾声,武汉大学牵头承担的24个国家重点研发计划项目获批立项。此外,本年度学校还有59个主持的课题和68个一般参与的课题获批。牵头项目、主持课题和一般参与课题共计获批国拨总经费5.77亿元。24个国家重点研发计划项目覆盖了自然科学4个学部的16个学院或独立科研机构,其中“地球观测与导航”重点专项获批4个项目,“生物大分子与微生物组”“催化科学”两个重点专项分别获批3个项目,再次巩固了学校在上述学科领域的优势地位。水利水电学院、土木建筑工程学院、电气与自动化学院和动力与机械学院自十三五以来,实现了牵头项目“0”的突破。高等研究院、计算机学院、公共卫生学院等也首次斩获牵头项目,进一步优化了牵头项目的学科领域分布,增强了武汉大学聚焦世界科技前沿和服务国家重大需求的信心和能力。在“地球观测与导航”重点专项中,测绘遥感信息工程国家重点实验室杨必胜教授获批“复杂空间场景数字孪生关键技术与应用”项目、张良培教授获批“多模态遥感大数据智能融合分析与精准推测”项目、王密教授获批“面向集群/巨型星座应用的卫星平台技术”项目,卫星导航定位技术研究中心耿江辉教授获批“组件化弹性集成导航与控制关键技术及应用验证”项目。在“生物大分子与微生物组”重点专项中,泰康医学院(基础医学院)章晓联教授获批“结核杆菌感染和宿主抗感染免疫过程中的关键生物大分子鉴定、调控机制和应用研究”项目,中南医院李姝教授获批“蛋白质翻译后修饰调控免疫应答信号跨膜传递的分子机制”项目,化学与分子科学学院向立民教授获批“细胞外囊泡纳米尺度空间组学分析与实时动态监测技术的研发”项目。在“催化科学”重点专项中,动力与机械学院定明月教授获批“面向重排放工业减排增效的热分解耦合催化还原”项目,高等研究院沈晓教授获批“基于自由基中间体精准合成β-氟烷基硅氧烷类偶联剂的催化新原理和新方法”项目、易红研究员获批“工况条件下电催化活泼中间体检测与反应性研究”项目。在“国家质量基础设施体系”重点专项中,电气与自动化学院范建斌教授获批“新型电力系统关键技术国际标准研制与体系构建”项目,电子信息学院徐逢秋副研究员获批“基于数字孪生的磁浮精密工作台虚拟测量与智能评价”项目。在“重大自然灾害防控与公共安全”重点专项中,水利水电学院周伟教授获批“中小流域堤坝群致灾的数字孪生模型与防控”项目,土木建筑工程学院郑烨炜教授获批“海底沉管隧道地震灾变机理及防控技术研究”项目。在“长江黄河等重点流域水资源与水环境综合治理”重点专项中,水利水电学院刘攀教授获批“大型水库群汛期运行水位动态控制与洪水资源化关键技术研究与示范”项目;在“工业软件”重点专项中,计算机学院应时教授获批“订单驱动的制造产业链完整性评估和风险预警理论”项目;在“高端功能与智能材料”重点专项中,电子信息学院李仲阳教授获批“基于拓扑超构表面的多自由度大容量全息加密存储技术研究”项目;在“数学和应用研究”重点专项中,数学与统计学院敖微微教授获批“几类几何,物理偏微分方程中的非线性问题”项目;在“网络空间安全治理”重点专项中,国家网络安全学院彭聪副教授获批“数字身份密码协议的安全设计与分析理论”项目。在“发育编程及其代谢调节”重点专项中,公共卫生学院缪小平教授获批“主要环境污染物对个体发育和代谢的影响及关键机制研究”项目;在“合成生物学”重点专项中,中南医院王连荣教授获批“抗噬菌体工程菌的合成生物学设计、构建与应用示范”项目;在“主动健康和人口老龄化科技应对”重点专项中,中南医院曾宪涛副教授获批“前列腺增龄健康状态量化评估技术体系构建”项目。在“政府间国际科技创新合作”重点专项中,土木建筑工程学院胡衡教授获批“中-摩薄壁复合结构力学实验室”项目。在“科技创新2030-脑科学与类脑研究”重大项目中,生命科学学院刘凯研究员获批“神经元局部微环境对蛋白质质量控制和凝聚态转化的调控在阿尔茨海默症发病中的作用”项目。据悉,国家重点研发计划作为国家科技计划五大类中的一项重要计划类别,聚焦国家重大战略任务、解决重大科学问题、突破共性关键技术,对学校学科建设、科学研究和人才培养具有至关重要的作用。近年来,武汉大学坚持以服务国家战略需求为己任、瞄准世界科技发展前沿,立足原始创新,不断践行有组织科研,在国家层面彰显武大使命担当。在今年国家重点研发计划项目申报过程中,学校主动谋划、提前布局、加强宣传、全面动员,并不断优化各项服务,全年一共组织牵头申报项目89项,通过预申报评审进入正式申报阶段的项目63项,最终成功立项24项。学校今年获批牵头项目数量和经费均创新高,实现了项目数量、获批经费的跨越式增长。
  • 塑料工业少不了钛白粉 粒度分布影响关键指标
    p style=" text-indent: 2em " 近几年,塑料工业与钛白粉可谓焦不离孟。在世界范围内超过500家的钛白粉牌号中,专属于塑料用的就超过50个,而高达6%的年均增长率,也让塑料工业成为使用钛白粉增速最快的领域,并“荣膺”钛白粉的第二大用户。有材料应用的地方自然就有相配套的指标、参数考衡,粒径粒度分布和颗粒形状就显著影响着塑料用钛白粉的关键指标。而塑料用钛白粉的粒径恰好处于激光粒度仪大展身手的范围内,因此对于钛白粉在塑料工业中的应用,业内人士不妨给予更多的瞩目。 /p p style=" text-indent: 2em text-align: center " img src=" http://img1.17img.cn/17img/images/201805/insimg/5a1cc424-4105-479d-975f-1e95fbaa5764.jpg" title=" 激光粒度仪 钛白粉.jpg" / /p p style=" text-indent: 2em " 众所周知,钛白粉的学名是二氧化钛,具备优良的白色性能,高遮盖力和高消色力,被广泛应用油墨、造纸、涂料、油漆等行业,享有“白色之王”的美誉,这正是钛白粉在塑料制品中得以应用的重要原因,即钛白粉可以决定浅色或白色塑料制品的外观。当然钛白粉于塑料还有很多其他好处,比如提高塑料制品的耐热、耐光、耐候性能,使塑料制品免受UV光的侵袭,改善塑料制品的机械性能和电性能等。几乎所有热固性和热塑性的塑料中都会使用钛白粉,它们既可以与树脂干粉混合,也可以与含增塑剂的液体相混合,用量一般在3-5%左右,聚烯烃类(主要是低密度的聚乙烯)、聚苯乙烯、ABS、聚氯乙烯等莫不如是。 /p p style=" text-indent: 2em " 在塑料工业中衡量钛白粉的质量主要有四大指标——遮盖力、分散性、耐候性和白度。钛白的遮盖力越好,生产出的塑料制品就越轻薄;分散性则影响塑料制品生产成本,钛白粉的分散性越好,塑料制品的光滑度和光亮度就会越高;具备良好耐候性的钛白粉,则对室外使用的塑料制品以及塑料门窗是必不可少的。 /p p style=" text-indent: 2em " 最后一大指标就是白度了,所谓白度是指距离理想白色的程度。影响钛白粉白度因素主要有以下几点。第一点是杂质,在钛白粉工艺中,尤其是硫酸法钛白粉工艺,大部分的作业是为了除去产品中的杂质,因为杂质严重影响钛白粉的应用性能,特别是白度。显色金属氧化物杂质在极低的含量下就能影响白度,这些元素有铁、锰、铬、铜等,这些杂质本身就带有颜色,在白色的钛白粉中极易显色。 /p p style=" text-indent: 2em " 第二点就是粒径和粒度的分布了,他们主要是通过钛白粉颗粒对光的反射、散射等现象影响其白度的。钛白粉的粒径越小,白度值越高,这主要是由于钛白粉粒径越小,表面积增大,光的反射、漫反射增强。根据光波的特性,当颜料粒子的粒径小于光波的一半时可以获得对该波长的色光的最大散射,经分析,对波长蓝色光散射最好的粒径在0.2μm左右,波长较长的红色光散射最大的粒径在0.35μm左右,因此,小粒径的钛白粉的散射光呈蓝相,而透过光则为蓝色的补色红黄相,反之,大粒径的钛白粉散射光为红相,透过光为蓝相。通常涂料用钛白粉的粒径为0.2~0.4μm,而大多数塑料用钛白粉粒径都较细,粒径为0.15~0.3μm,因为这样可以获得兰色底相,对大多数带黄相的树脂或易泛黄的树脂有遮蔽作用。 /p p style=" text-indent: 2em " 此外,颗粒形状、钛含量、包膜剂对钛白粉的白度都有一定影响。其中,粒形对白度的影响比较小,一般来说,层状钛白粉的白度略低,球状和杆状的白度略高。而二氧化钛含量的升高,钛白粉白度值也升高,铝、硅、锆等包膜剂含量升高,钛白粉白度值下降。 /p p style=" text-indent: 2em " 值得一提的是,在塑料色母粒的生产工艺中,钛白粉的白度也是一项重要质量指标,塑料色母粒是一种高浓缩、高效能的颜色配置品,即颜料以超常浓度均匀分布在载体树脂中,并形成一定粒径的颗粒。它主要由核心层(颜料)、偶联层(偶联剂或表面活性剂)、分散层(润滑剂或分散剂)、增混层(载体树脂)等组成,在塑料中作为染色剂使用,广泛用于吹膜、注塑、热压、注塑等塑料制品的生产,色母粒着色效果优越,使用方便,节约能源,使用时无粉尘和污水,因此备受用户的青睐。色母粒是作为工业原料,性能优劣通常是在后续产品应用中表现出来(如吹膜或注塑),因此,钛白在色目粒中的性能也主要体现在色母粒的应用过程中。钛白的着色能力、分散性、加工性能、白度都会对色母粒的应用产生重大影响,顺理成章地,也少不了对钛白粉粒度分布的检测。 /p p style=" text-indent: 2em " strong 结语: /strong 激光粒度仪作为目前最流行的粒度测量仪器,已在粉体工艺中发挥着越来越重要的作用,随着米氏散射理论在各品牌激光粒度仪中的应用越来越广泛,已经对亚微米级的塑料用钛白粉有充足的适配性。随着钛白粉在塑料工业中的需求越来越大,对这一市场大蛋糕的进一步经营和开拓,或许值得激光粒度仪的厂商们好好思考。 /p
  • 军工的传承 国家的栋梁——第三届“阿达玛斯”学术论文奖优秀课题组专题报道
    引言:阿达玛斯学术论文奖——中国科学精英励志计划,从第一届到第三届,越来越多的科研精英们加入到这个计划中来,鼓励创新,给科研精英科研团队更多的展示机会,促进跨学科交流互助,这是我们坚持活动的初衷。 第三届“阿达玛斯学术论文奖”落下帷幕,优秀课题组专题报道正式开篇。今天我们要介绍的是本届论文奖新设奖项“人气团队奖”得主——中国科学技术大学化学系傅尧教授课题组。在正式介绍之前,我们先来回顾下,在网络评选时,网友是怎么发声的: ......看来已经是一方名人,并且群众感情基础着实深厚呢!团队介绍 生物质洁净能源重点实验室依托中国科学技术大学。中国科技大学自九十年代开始进行生物质能源研究,2001年在校内跨学科成立了生物质洁净能源实验室,由朱清时院士任实验室主任。 安徽省生物质洁净能源重点实验室自成立以来,本着围绕国家和地方“加强生物质能源开发”的战略目标、瞄准生物质能源的科学前沿的建所宗旨,以中国科技大学为依托,整合了校内化学、化工、生物、能源和材料等相关学科的科研力量,联合了省内外其它高校、科研院所和相关企业的研发资源,形成了以生物能源基础理论与应用技术研究为主的完整的科研体系,开展了一系列关于生物质的结构、生物质的热化学气化、生物质的微生物转化、生物质的产品化、生物质催化转化为甲醇等液体燃料、和生物质固态燃料电池等的基础理论与应用技术研究。研究成果 傅尧教授及其团队在生物质基平台分子例如烯烃的转化方面开展了较为系统和深入的研究工作。 烯烃是有机合成化学中极为重要的一类合成分子,也是重要的生物质基平台分子。烯烃的来源非常广泛,价格低廉,容易获得,并且品类丰富。简单烯烃既是石油化工行业的原料也是产品。例如,最为简单的却也最为大宗的乙烯气体,来源于蒸汽裂解。乙烯气体在石化行业,转化成为更高级的烯烃、聚乙烯材料以及多种多样的化学品。从另一个角度考量,烯基官能团也广泛存在于天然产物中,往往这些天然产物也富含大量的其他官能团以及复杂的结构。烯烃能够吸引有机化学家的,不光是他丰富广泛的来源。烯烃的化学性质也着实让有机化学工作者着迷,烯烃有着大量的合成转化途径或方式。一些特殊的过渡金属催化剂或催化体系可以活化烯烃的双键,从而发展了诸多优秀且实用的反应。著名的例子包括wacker氧化反应,烯烃复分解反应,烯烃的氢甲酰化反应,以及heck反应等,这些反应为实验室或工业中合成复杂的有机分子提供了有效的手段和途径。一. 镍催化烯烃与烷基或芳基亲电试剂的还原偶联反应 傅尧教授及其团队实现了镍催化烯烃与烷基或芳基碳亲电试剂的还原偶联反应。该工作展示了烯烃氢碳化反应及其在复杂分子修饰方面的应用,所提出的“以烯烃替代传统有机金属试剂”的概念为金属催化交叉偶联反应开拓了新的思路,为烯烃的直接利用提供了新的途径。在硅烷的参与下,烯烃扮演了烷基金属试剂等价物的角色,参与碳碳键成键反应。以廉价、易得、相对稳定的烯烃,替代传统有机金属试剂,不仅是新颖的概念,更是实用的方法:克服了金属试剂来源、储存以及操作方面的困难。同时,该反应具有出色的官能团兼容性,能够用于复杂天然产物的修饰:诸如,维生素d2的高化学选择性修饰和奎宁的果糖侧链修饰等。这一研究成果发表在《nature communications》上。 原文链接:http://www.nature.com/ncomms/2016/160401/ncomms11129/full/ncomms11129.html二. 配体调控的铜催化区域选择性可控的烯烃硼化烷基化反应 傅尧教授及其团队发展了一例铜催化配体调节的区域选择性可控的烯烃硼化烷基化反应,研究成果发表在德国应用化学杂志(angew .chem. int. ed., 2015, doi: 10.1002/anie.201506713),并在同行评审中被评为vip(very important paper)论文。 从简单易得的原料出发快速高效地构建复杂分子和对多组分反应体系中复杂的选择性进行有效调控一直以来都是有机合成化学中的重要挑战。该方法在铜催化的条件下,实现了从商业可得的烯烃、频哪醇联硼酯和烷基卤素出发一步合成具有复杂结构的烷基硼酯的反应(图1)。在该反应中,通过对配体结构的微调,可以实现对反应区域选择性的高度控制(两种选择性可分别高达23:1和1:13)。此外,该工作还通过设计利用烯烃分子的螯合作用促进烯烃硼化加成的策略,有效地解决了三组分反应中复杂的化学选择性问题。 图1 配体调节的区域选择性可控的烯烃硼化烷基化反应 碳碳键作为生物界最基本的结构单元,其构建方法始终是有机化学家的重要研究方向。该工作提出的通过烯烃的加成-偶联反应构建c(sp3)-c(sp3)键的策略相对于传统的交叉偶联反应(如kumada反应),既避免了大量敏感的烷基金属试剂的使用,又在构建碳碳键的同时引入烷基硼。而烷基硼作为有机合成中重要的合成中间体,可以高效地转化为醇、胺、氟、芳杂环等重要官能团。由此可见,该工作为构建c(sp3)-c(sp3)键提供了一种新的绿色高效的方法。此外,作者证明了其使用的区域选择性可控的“配体对”(xantphos & cy-xantphos)对烯烃的硼氘化反应和硼胺化反应同样适用,这为区域选择性可控的烯烃硼化双官能化反应提供了一对通用的配体。 该论文的共同第一作者为中国科学技术大学化学与材料科学学院博士生苏伟和博士后龚天军。这项研究得到国家973计划(2012cb215306)和国家自然科学基金 (21325208, 21172209, 21361140372)等项目资助。原文链接:http://onlinelibrary.wiley.com/doi/10.1002/anie.201506713/abstract团队/实验室风采团队黄山行 中试生产线双相固体酸连续催化脱水装置制备5-羟甲基糠醛空气氧化装置制备呋喃二甲酸酯化装置制备呋喃二甲酸二甲酯二酯精华装置制备高纯制备呋喃二甲酸二甲酯期望合作领域生物质平台分子转化利用:1)羧酸脱羧及相应偶联反应研究2)烯烃的转化利用3)多元醇的转化利用如有深度交流或合作意向,敬请联系我们:marketing@titansci.com不忘初心,只因感动!
  • 国内抗体类药物八大研发热点
    相比于低水平重复,高水平重复对企业的影响往往更为严重,因为创新药投入更大,研发周期更长。  还记得去年南方所年会上关于“新药高水平重复现象也已经呈现交错的态势”的观点。与业内广泛认同的“低水平重复”不同,“高水平重复”还未得到部分企业的重视,在某些领域(如替尼类)创新药的研发已经出现了扎堆情况。  在一系列利好因素的作用下,国内生物药研发非常活跃,尤以抗体类药物最受关注。相比于替尼类等,国内抗体类药物过热态势还不明显,但我们也看到不少国内优秀企业也开始或准备涉水抗体类药物研发。从靶点上看,国内抗体类药物研发依然集中在TNF-α 、CD20、HER2、VEGF等热门靶点,而对于一些国外研发比较活跃的新靶点,国内还比较滞后。  据笔者统计,截至2016年10月,国内已上市或在研的抗体类药物(不含融合蛋白类药物,排除鼠源单抗)总数达到180个(数据来源于CDE公开数据,在研品种仅包括至少申报临床的品种,不含前期研发品种)。其中,国内企业开发的品种为128个,占71.1% 跨国企业开发的品种为52个。  180个品种中,创新抗体药有85个,其中国内企业开发的品种为35个,占41.2% 生物类似药共95个,除了2个是国外企业的品种,其余均是国产品种。虽然从分布来看,国内单抗类药物仍以生物类似药为主,但创新药的数量已经大幅增长。同时,一定数量生物类似药的开发无疑也是非常节约研发资源的方式,可以降低开发风险。  相比于化药品种,抗体类药物的研发投入巨大,难度也更高。不少国内企业对于抗体类药物开发难度并没有清醒的认识,看到类似凯美纳、朗沐、泰欣生和艾坦这样的品种上市后获益颇丰,就简单认为抗体类药物一旦获批就能轻松获得数亿元的销售额。  比如网上就有大量类似的提法:“某某公司的某产品是全球某畅销品种的相似品种,一旦上市该药销售额有望超过**亿元”。殊不知,这些销售成绩都需要大量的市场推广才有可能实现,加之国内如赫赛汀、美罗华、安维汀和修美乐等品种普遍已有超过10家以上的类似药申请。部分靶点的生物仿制药已经明显过热,一堆产品蜂拥而至,仅在研究阶段的临床基地筛选,病例入组就将让不少企业苦不堪言。  此外,尽管在小试及中试阶段,生物药的开发已经难度不大,但如何在质量和成本可控的情况实现产业化,这一步依然非常漫长。即便是顺利上市,单抗类药物同样会面临激烈的竞争,尤其对于某些目标人群本就有限的品种。  因此,对于抗体类药物的研发,国内企业还需冷静思考,切莫跟风。本文梳理出国内抗体类药物的8个研发热门靶点,对各靶点市场情况和趋势进行精辟分析,为国内抗体类药物研发提供参考和建议。  NO.1 TNF-α 靶点  [已上市/在研品种] 28种  [生物类似药热点] 阿达木单抗(17种)  TNF-α 靶点是单抗取得最为成功业绩的靶点。即便排除TNF-α 融合蛋白药物依那西普,仅抗TNF-α 单抗就有4个重磅炸弹级品种:首个获批的英夫利西单抗,“药王”阿达木单抗,以及新获批的戈利木单抗和赛妥珠单抗。这4个品种2015年全球销售额合计达266亿美元。  不过,相比于TNF-α 单抗在全球大放异彩,其在国内的表现却相当惨淡。根据样本医院销售数据,尽管类克(英夫利西单抗)及修美乐(阿达木单抗)已在国内上市,但两个产品样本医院销售合计仅为1.33亿元,且连续两年销量止步不前。这也提示,短期内国内类风湿关节炎生物制剂还难以获得市场认可。  虽然国内销售不佳,却也无碍TNF-α 单抗成为国内最受关注的单抗研发类别,已上市及在研的单抗达到28个。其中英夫利西单抗、阿达木单抗及各自的生物类似药共有22个。  尤其是英夫利西单抗生物类似药,作为人鼠嵌合单抗,在阿达木单抗上市多年的情况下,国内研发依然活跃。进度最快的上海百迈博制药已经申报生产,值得期待 还在申报临床的几个厂家,则建议进一步评估继续开发的价值。  阿达木单抗类似药仅仅已申报品种就达到17个,更值得注意的是还有不少准备申报临床的企业。目前申报进度最快的是百奥泰生物和信达生物,均已进入Ⅲ期临床 此外,北京绿竹生物、嘉和生物、江苏众合、复宏汉霖和浙江海正都已获得临床批件。  在TNF-α 创新药方面,全人源、抗体小型化以及长效是TNF-α 单抗的主要发展方向。因此,与英夫利西单抗和阿达木单抗相比,杨森长效全人源的戈利木单抗和UCB的长效抗体片段赛妥珠单抗有一些优势,这两个品种在国内研发分别进展到申报生产和Ⅲ期临床。  国内自主创新的一类TNF-α 药物中,目前主要有丽珠的注射用重组人源化TNF-α 单抗,以及三生的人源化抗人TNF-α 单抗注射液(CHO细胞),两个品种目前都在进行临床研究。  NO.2 VEGF靶点  [已上市/在研品种] 26种  [生物类似药热点] 贝伐珠单抗(19种)  与TNF-α 一样,VEGF也是药物获得巨大成功的靶点,贝伐珠单抗的上市及其肿瘤饥饿疗法的提出在当时的影响力不亚于PD-1及其肿瘤免疫疗法。  VEGF单抗除了在肿瘤领域取得巨大成功,也广泛用于眼底新生血管疾病的治疗。包括贝伐珠单抗、雷珠单抗,以及2个VEGF融合蛋白类药物(阿柏西普和康柏西普),都广泛用于包括年龄相关性黄斑病变在内的多种新生血管疾病。VEGF单抗药物治疗眼底疾病的地位甚至高于其治疗肿瘤的地位。2015年,贝伐珠单抗(安维汀)和雷珠单抗(诺适得)的全球销售额分别达70亿美元和36亿美元。    在国内,目前已上市和在研的VEGF单抗达26种。其中,贝伐珠单抗的类似药达19种,信达生物进度最快,已进入Ⅲ期临床,此外还有多个厂家已经获批临床。雷珠单抗由于上市较晚,目前国内类似药获批临床的仅有齐鲁1个品种。  VEGF单抗创新药中,礼来最新在FDA获批的Ramucirumab也已在中国进入Ⅰ期临床,该药在国外已获得包括非小细胞肺癌和胃癌在内的多个适应症。先声的Sevacizumab是其联合开发的VEGF单抗,也在中国开展Ⅰ期临床。  此外,泰康生物正在开展Ⅰ期临床的重组抗VEGF人源化单抗注射液,应该是一个针对眼底疾病的VEGF单抗,该药作为为数不多的针对眼底疾病的创新药,更值得期待。  NO.3 CD20靶点  [已上市/在研品种] 19种  [生物类似药热点] 利妥昔单抗(15种)  CD20靶点单抗主要用于非霍奇金淋巴瘤和淋巴细胞白血病的治疗。全球首个获批的CD20类单抗罗氏的利妥昔单抗(美罗华),2015年全球销售额高达73亿美元。在国内市场,美罗华也是最畅销的抗肿瘤单抗药物,根据PDB样本医院数据,2015年样本医院销售额达到7.93亿元。    在美罗华的刺激下,国内CD20类抗体药物的研发一直非常活跃,目前已上市和在研的CD20单抗共有19个,其中利妥昔单抗及其类似药共有16个。  在利妥昔单抗类似药的研发竞争中,三生国健的速度最快,已经完成临床研究,正在申报上市。此外,复宏汉霖、神州细胞和信达生物已进入Ⅲ期临床,浙江海正已进入Ⅱ期临床,还有6家企业已获得临床批件。  CD20创新药方面,目前国内有3个在研品种。考虑到利妥昔单抗是人鼠嵌合单抗,故降低其免疫原性是一个发展方向。  罗氏的Obinutuzumab是第一个被FDA认定为“突破性治疗”的单抗,与利妥昔单抗一样靶向CD20单抗,但其属于人源化单抗,且通过糖基化修饰其Fc片段增加其对Fcγ 受体的亲和力。GSK的奥法木单抗(Ofatumumab)是全人源的CD20单抗,该药用于CLL同样获得了突破性治疗认定。目前Obinutuzumab和Ofatumumab都在中国开展Ⅲ期临床研究,有望分享美罗华的市场份额。  国内CD20创新药也有了先行者,北京天广实生物的重组人源化单抗MIL62注射液是人源化CD20单抗,该药目前正在申报临床。  NO.4 EGF靶点  [已上市/在研品种] 19种  [生物类似药热点] 西妥昔单抗(11 种)  EGF类单抗主要用于结直肠癌的治疗。第一个获批的EGF类单抗是Imclone的西妥昔单抗(爱必妥),该药2015年全球销售额超过14亿美元。  在国内,除了爱必妥,百泰生物联合开发的尼妥珠单抗(泰欣生)也获批上市,两个品种上市早期都经历了快速增长,不过目前增速有所放缓,2015年两个品种样本医院销售合计达3.4亿元。    爱必妥的成功和泰欣生的上市促进了国内EGF类抗体的研发,目前已上市和在研的EGF类单抗一共有19个,其中西妥昔单抗及其类似药共有12个。在西妥昔单抗类似药研发竞争中,张江生物的速度最快,目前正在Ⅲ期临床阶段,其余大部分处于Ⅰ期临床或获批临床批件阶段。  西妥昔单抗的最大问题同样是免疫原性,该药属于人鼠嵌合单抗,因此EGF类单抗研发也着眼于解决免疫原性问题。帕尼单抗(帕妥木单抗)是安进研发的全人源EGF单抗,单药一度被认为有望替代西妥昔单抗,不过上市后大规模临床研究并未支持其在疗效或安全性上优于西妥昔单抗。目前帕尼单抗国内由贝达安进开发,正在开展Ⅲ期临床研究。除了针对西妥昔单抗的类似药,目前国内还有多个针对其他EGF单抗的类似药。齐鲁和上海津曼特生物的EGF单抗类似药都已获批临床,其中前者可能是帕尼单抗的类似药。  创新药方面,目前国内有4个自主研发品种。神州细胞的重组全人源抗人表皮生长因子受体单抗注射液目前已经进入Ⅰ期临床,而上海赛伦生物和重庆智翔金泰生物各自的重组全人源抗EGFR单抗注射液均已经获得了临床批件,这些品种可能都是采用不同的方式使西妥昔单抗实现全人源。  NO.5 HER2靶点  [已上市/在研品种] 19种  [生物类似药热点] 曲妥珠单抗(10种)  HER2靶点单抗主要用于乳腺癌等HER2高表达的癌症治疗。第一个获批的HER2类单抗是罗氏的曲妥珠单抗(赫赛汀),该药2015年全球销售额达到68亿美元,在国内该药销量同样增速迅猛,样本医院2015年赫赛汀销售额达6.66亿元。对于HER2高表达的乳腺癌、胃癌等疾病,曲妥珠单抗的疗效优越,并已经被国内外指南一致推荐为HER2阳性的乳腺癌等疾病的一线用药。  中国是乳腺癌的高发国,患者众多,故HER2单抗市场巨大。目前已上市和在研的HER2类单抗一共有19个,其中曲妥珠单抗及其类似药共有11个。在曲妥珠单抗类似药研发竞争中,复宏汉霖和嘉和生物的速度最快,目前正在Ⅲ期临床阶段,安徽安科和齐鲁则进入Ⅰ期临床。  尽管曲妥珠单抗已经得到临床认同,但业内还是希望能在HER2药物中有新的突破。帕妥珠单抗是罗氏新获批的HER2单抗,该药尽管同属HER2单抗,但作用靶点与曲妥珠有所区别。  临床研究发现曲妥珠单抗联合帕妥珠单抗的疗效较单用曲妥珠单抗大幅提升。目前帕妥珠单抗正在国内开展Ⅲ期临床。对于帕妥珠单抗,国内不少企业也跃跃欲试,其中齐鲁的帕妥珠单抗类似药获批进入临床,丽珠的重组抗HER2结构域Ⅱ人源化单抗注射液同样定位于HER2的结构域Ⅱ,作为创新药该药已经获批临床。  抗体偶联技术在HER2单抗使用最多,罗氏的Trastuzumab Emtansine(Kadcyla)是第一个在HER2领域获得成功的抗体偶联物,该药利用曲妥珠单抗和微管蛋白类药物DM1,偶联物较曲妥珠单抗的疗效显著提升,该药目前正在国内开展Ⅲ期临床研究。  国内针对HER2的抗体偶联物研发活跃,目前已经有百奥泰生物的注射用重组人源化抗HER2单克隆抗体-美登素偶联物和烟台荣昌的注射用重组人源化抗HER2单抗-MMAE偶联剂获批开展临床研究。  在HER2领域还有一个值得大书特书的国产创新药:武汉友芝友这样一个名不见经传的创新企业正在开发注射用重组抗HER2和CD3人源化双特异性抗体,该药是国内自主研发的首个申报临床的双特异性抗体,从理论上该药可以同时靶向HER2和T细胞,实现靶向免疫。  NO.6 PD-1/PD-L1靶点  [已上市/在研品种] 7种  抗肿瘤无疑是抗体类药物最为关注的领域,而在抗肿瘤领域,以PD-1、PD-L1为代表的抗肿瘤免疫治疗又是其中最闪亮的类别。2014年《Forbes》破例将两个肿瘤免疫药物分别是Opdivo(Nivolumab)和Keytruda(Pembrolizumab)列为该年度最重要的创新药,各大专业医药数据分析公司也纷纷预测两个产品全球销售额将轻松突破50亿美元大关,甚至有望挑战修美乐的药王地位。除了这两个品种,罗氏的Atezolizumab也获批上市,该药是全球首个获批的PD-L1药物。三个药物目前都已进入中国,正在开展Ⅲ期临床研究,都有可能成为首个中国上市的PD-1/PD-L1药物。此外,默克雪兰诺的PD-L1药物Avelumab正在申请临床研究。  PD-1/PD-L1类药物是国内抗体类药物创新的热点,国内在研的自主研发PD-1/PD-L1药物达7个,其中君实生物的重组人源化抗PD-1单抗注射液已经进入了Ⅰ期临床,此外百济神州的PD-1类药物BGB-A317、恒瑞的PD-1类药物SHR-1210和信达生物的PD-1类药物IBI308均获批临床。而基石药业、誉衡和嘉和生物各有1个PD-1/PD-L1类药物申报临床。  NO.7 IL-6靶点  [已上市/在研品种] 7种  IL-6类单抗主要用于类风关等自身免疫疾病。类风关的生物制剂治疗一度被TNF-α 抑制剂垄断,但欧美最新指南普遍将各类生物制剂放到了等同地位,这使得包括IL-6类在内的各种非TNF类药物获得了巨大的市场机会。  IL-6类药物目前最畅销的是罗氏的托珠单抗,该药2015年全球销售额达到15亿美元。在国内,IL-6治疗类风关的理念还有待推广,目前仅有静脉注射也阻碍了托珠单抗的推广。尽管不属于国内抗体类药物研究热点,但目前已上市和在研的IL-6类单抗依然达到7个,其中托珠单抗及其类似药共有4个。  创新药方面,杨森的Sirukumab和Siltuximab(司妥昔单抗)都已申请在中国开展临床研究,其中全人源IL-6单抗Sirukumab已获得临床批件,在免疫原性方面有一定优势。国内IL-6创新药领域目前仅有药明康德的重组全人抗白介素-6单克隆抗体注射液,该药是药明康德和阿斯利康旗下的MedImmune共同研发的产品。  NO.8 RANK靶点  [已上市/在研品种] 6种  核因子-κ B受体活化因子(RANK)及其配体RANKL与破骨细胞的成熟等一系列骨代谢相关信号通路有关。对RANK及其配体RANKL的抑制,可在某些情况下改善骨代谢,减少骨质疏松和骨折等疾病风险。  根据该机制,安进成功开发了针对RANKL的狄诺塞单抗,该药已获批用于恶性肿瘤骨转移(SREs)和骨质增生等4种有巨大市场容量疾病的治疗。狄诺塞单抗尽管上市时间不长,但市场表现优异,2015年其全球年销售额已达30亿美元。  国内RANK单抗均属于狄诺塞单抗及其类似药。安进的原研药目前已经在中国进入Ⅲ期临床。5个类似药中,齐鲁进度最快,已获得临床批件 其他厂家则还处于申报临床阶段。
  • 【CEM】Fmoc-His(Boc)-OH在基于Fmoc的固相肽合成中的应用
    一、组氨酸的差向异构化对映体纯度极大地影响肽的生物活性;因此,避免D-异构体含量的增加至关重要。1在固相肽合成(SPPS)的偶联过程激活阶段,组氨酸特别容易发生差向异构化。组氨酸倾向于差向异构化(图1)是一种分子内的副反应,这是由于咪唑Nπ上的孤对电子与酸性α碳氢的接近性所导致。当氨基酸被激活时,1号位的孤对电子具有足够的碱性以进行去质子化,从而形成一个无立体选择性的酯烯醇盐22。此时,转化为L-或D-异构体3并没有热力学上的优先途径。当反应位点聚集,且组氨酸在激活状态保持较长时间的期间,差向异构化的可能性增加。图1:Fmoc-His(PG)-OH在激活过程中高差向异构化水平的机制解释二、组氨酸侧链保护对咪唑环的保护(图2)通常采用在Nτ位置使用三苯甲基(Trt)基团的方式实现4。Trt基团因其体积大和具有吸电子性,能够有效抑制诸如环上N-酰化等副反应,然而在控制差向异构化方面效果有限。其他侧链保护基团,尤其是那些提供Nπ保护的,例如Fmoc-His(π-Mbom)-OH(5),通过阻断α-氢的接触途径来减少差向异构化。但这些衍生物的缺点在于它们本身的高成本和因多步骤合成策略导致的低批量供应,这种策略需要在连接Mbom基团时对Nα位置进行互斥保护。3,4,5,6此外,在肽切割过程中还需添加额外的清除剂,以防止新暴露的氨基功能团上发生羟甲基化。 本文中,Fmoc-His(Boc)-OH(6)被证实是Fmoc SPPS中组氨酸并入的宝贵替代物,因为它在高温下对差向异构化具有较高的稳定性,成本低,且比其他任何市场上可购买的衍生物具有更好的批量供应能力。 图2:Fmoc-SPPS用的组氨酸衍生物:Fmoc-His(Trt)-OH(4),Fmoc-His(π-Mbom)-OH(5)和Fmoc-His(Boc)-OH(6)三、Fmoc-His(Boc)-OH的优势Fmoc-His(Boc)-OH 能够以游离酸和环己胺(CHA)盐的形式大量购买。对于盐形式,需要通过提取过程来移除CHA基团。鉴于这一过程相对繁琐,我们的研究便专注于游离酸的应用。根据先前的报告,与His(Trt) 相比,His(Boc)在差向异构化方面的倾向性更低。7这一现象可以归因于氨基甲酸酯基团较强的吸电子效应,它有效地从π子中抽取电子云密度,从而降低了其碱性。四、讨论一项采用利拉鲁肽和1-42Beta淀粉样蛋白的可行性研究评估了-Boc基团在微波(MW)辅助固相肽合成(SPPS)过程中对差向异构化的抑制效果及侧链的稳定性。肽段是在HE-SPPS条件下制备的,具体操作包括1分钟90°C的去保护和2分钟90°C使用DIC和Oxyma Pure进行的偶联。8与基于尿嘧啶的激活策略相比,DIC/Oxyma Pure激活在偶联效率和抑制差向异构化方面提供了更优的结果。后者的表现归因于碳二亚胺活化所固有的酸性环境。9,10在室温或稍高的条件(例如50°C)下并入组氨酸能进一步降低D-异构体的形成,但这样的条件对于His(Trt)仍然不够理想。我们比较了His(Trt)和His(Boc)在使用两种常见协议时的偶联条件:(1)10分钟50°C和(2)2分钟90°C。最后,我们研究了溶液中的稳定性,以确定其在Liberty BlueTM HT12上的高通量自动化应用的可行性。利拉鲁肽的合成利拉鲁肽具有一个N端的组氨酸,这在与肽链的偶联中存在一定难度,因此,通过微波加热来增强酰化作用是有益的。使用三苯甲基保护在50°C下偶联组氨酸10分钟,结果显示D-异构体的形成增加到了6.8%(如表1所示)。在相同条件下,Fmoc-His(Boc)-OH显著减少了差向异构化,仅为0.18%。 Fmoc-His(Boc)-OH在90°C时的表现也相当出色,观察到的差向异构化水平为0.81%,相比之下His(Trt)则大于16%。Fmoc-His(Trt)-OH和Fmoc-His(Boc)-OH都以相当的粗纯度获得了目标肽(图3)。Fmoc-His(π-Mbom)-OH在纯度和D-His方面提供了与Fmoc-His(Boc)-OH相似的结果。 图3:使用(a) Fmoc-His(Trt)-OH或(b) Fmoc-His(Boc)-OH的利拉鲁肽UPLC色谱图。组氨酸偶联条件 = 50°C,10分钟。总合成时间 = 2小时55分钟 表1:利拉鲁肽中组氨酸在不同偶联条件下的D-异构体形成情况1-42Beta淀粉样的合成之前的研究表明,在长时间的哌啶处理过程中,Nτ-Boc侧链基团显示出不稳定性。11为了测试高温去保护过程中–Boc的稳定性,我们合成了包含三个组氨酸残基的1-42Beta淀粉样蛋白。1-42Beta淀粉样蛋白的合成序列是出了名的困难,需要使用特殊的偶联试剂,即使在严苛条件下,产物纯度通常也过低,无法进行分析和纯化。12与常规合成方法不同,HE-SPPS即便在未优化的条件下也能获得木及高的粗纯度。我们比较了His(Trt)和His(Boc)在50°C下偶联10分钟以及90°C下偶联2分钟的情况。His(Boc)将总合成时间从4小时24分钟缩短到3小时58分钟,并且将差向异构化的比例从2.88%降低至1.29% D-异构体(表2)。UPLC分析表明,这两种合成方法得到的目标产物在粗纯度上具有可比性(图4)。 表2:BA中His(Trt)和His(Boc)的差向异构化情况图4:使用(a) His(Trt)和(b) His(Boc)的1-42 Beta淀粉样蛋白的UPLC色谱图溶液中的稳定性在自动化高通量SPPS应用中,要求底物能在溶液中保持溶解状态长达10天。通常,像组氨酸这样的反应物由于保护基团的降解/丢失而导致变色和沉淀,其溶液寿命仅限于5天。在这项研究中,我们测试了组氨酸溶液(DMF,0.2 M)在大气条件下存放10天的稳定性(图5)。所有样品都迅速溶解,得到无色溶液。Fmoc-His(Trt)-OH的变色在短短24小时内就开始出现,并在10天的时间里加剧。10天后,Fmoc-His(π-Mbom)-OH溶液略呈黄色,而Fmoc-His(Boc)-OH溶液在研究期间保持无色。UPLC分析表明,Fmoc-His(Boc)-OH和Fmoc-His(π-Mbom)-OH保持了99%的纯度。基于强烈的变色,预计在10天的研究期间Fmoc-His(Trt)-OH样品中形成了几种杂质(图6)。然而,使用质谱对这些杂质进行定性未能成功。 图5:不同组氨酸衍生物溶液中的稳定性颜色测试 图6. 10天后DMF中组氨酸衍生物(0.2 M)的UPLC分析;(a) = Fmoc-His(Trt)-OH (b) = Fmoc-His(π-Mbom)-OH (c) = Fmoc-His(Boc)-OH五、结论上述数据表明,His(Boc)是一种强大的组氨酸衍生物,可以在90°C下高效偶联,提供优良的粗纯度,同时缩短偶联时间并显著降低差向异构化。与其他抑制差向异构化的N保护衍生物相比,Fmoc-His(Boc)-OH更易获得,同时保持相当的合成性能。总之,Fmoc-His(Boc)-OH的核心优势包括: &bull 商业批量可用性强,价格相对于Fmoc-His(Trt)-OH更具竞争力&bull 在高温下具有低水平的差向异构化;50°C及以下的偶联温度使得Fmoc-His(Boc)-OH适用于活性药物成分的合成,无需复杂的偶联试剂和条件13 &bull 优异的溶液稳定性;与Fmoc-His(π-Mbom)-OH相当,且优于Fmoc-His(Trt)-OH六、材料与方法试剂以下Fmoc氨基酸和树脂购自位于Matthews,NC的CEM公司,包含所示的侧链保护基团:Ala, Arg(Pbf), Asn(Trt), Asp(OMpe), Gln(Trt), Gly, His(Boc), His(Trt), Ile, Leu, Lys(Boc), Lys(palmitoyl-Glu-OtBu), Phe, Pro, Ser(tBu), Tyr(tBu), Val。Rink Amide ProTideTM LL, Cl-MPA ProTideTM LL, 以及Fmoc-Gly Wang PS LL树脂也购自CEM公司。二异丙基碳二亚胺(DIC),哌啶,三氟乙酉夋(TFA),3,6-二氧杂-1,8-辛二硫醇(DODT)和三异丙基硅烷(TIS)购自Sigma-Aldrich(St. Louis, MO)。二氯甲烷(DCM),N,N-二甲基甲酰胺(DMF),无水二乙酉迷(Et2O),乙酸,高效液相色谱级水,以及乙腈购自VWR(West Chester, PA)。液相色谱-质谱级水(H2O)和液相色谱-质谱级乙腈(MeCN)购自Fisher Scientific(Waltham, MA)。D-异构体通过手性GC-MS(C.A.T. GmbH)进行测定。肽合成:利拉鲁肽在CEM Liberty Blue自动化微波肽合成器上,以0.10 mmol的规模合成了该肽。使用了0.313克Fmoc Gly Wang PS LL树脂(0.32 meq/g置换)。去保护作用采用20%哌啶和0.1 M Oxyma Pure在DMF中执行。偶联反应使用5倍过量的0.2 M Fmoc-AA、1.0 M DIC和1.0 M Oxyma Pure在DMF(CarboMAX)中进行。切割则应用CEM Razor&trade 高通量肽切割系统,配比为92.5:2.5:2.5 TFA/H2O/TIS/DODT。切割后,肽通过Et2O沉淀并过夜冻干。肽合成:1-42Beta淀粉样蛋白采用CEM Liberty Blue自动化微波肽合成器,以0.10 mmol的规模在0.512g Cl-MPA ProTide树脂(0.19 meq/g置换)上合成了该肽。去保护作用使用20%哌啶和0.1 M Oxyma Pure在DMF中进行。偶联反应用5倍过量的0.2 M Fmoc-AA、1.0 M DIC和1.0 M Oxyma Pure在DMF(CarboMAX)中进行。切割采用CEM Razor&trade 高通量肽切割系统,配比为92.5:2.5:2.5 TFA/H2O/TIS/DODT。切割后,肽通过Et2O沉淀并过夜冻干。稳定性研究在50毫升离心管中,制备了0.2摩尔浓度的组氨酸溶液(总共5毫升DMF),并对管进行了密封。这些溶液在实验室环境下保持在室温,持续10天。为了准备用于超高效液相色谱-质谱分析的样品,将10微升的组氨酸溶液稀释到5毫升的50/50(体积比)乙腈和水的混合溶剂中。调整进样量,直至吸光度达到35 – 55单位。七、参考文献(1) Kusumoto, S. Matsukura, M. Shiba, T. Biopolymers, 1981, 20,1869 --1875.(2) Kates, S. A. Albericio, F. Solid-Phase Synthesis – A Practical Approach Kates, S. A Albericio, F. Eds. Marcel Dekker Inc: New York, New York, 2000 Chapter 4. Van Den Nest, W. Yuval, S. Albericio, F. J. Pept. Sci. 2001, 7, 115.(3) Colombo, R. Colombo, F. J. Chem. Soc., Chem. Commun. 1984, 0, 292 – 293. Mergler, M. Dick, F. Sax, B. Schwindling, J. Vorherr, Th. J. Pept. Sci. 2001, 7, 502 – 510.(4) Okada, Y. Wang, J. Yamatot, T. Mu, Y. Yokoi, T. J. Chem. Soc., Perkin Trans. 1 1996, 17, 2139 – 2143.(5) Hibino, H. Nishiuchi, Y. Tetrahedron Lett. 2011, 52, 4947 – 4949.Hibino, H. Miki, Y. Nishiuchi, Y. J. Pept Sci. 2012, 18, 763 – 769.(6) Suppliers: EMD/Sigma-Aldrich = $1338 per 5g bottle Peptide Institute = $400.5 per 5gbottle.(7) Clouet. A Darbre, T. Reymond, J. L. Biopolymers, 2006, 84, 114.(8) Collins, J. M. Porter, K. A. Singh, S. K. Vanier, G. S. Org. Lett. 2014, 16, 940 – 943.(9) Patent: US20160176918(10) CEM Application Note (AP0124). “CarboMAX – Enhanced Peptide Coupling at Elevated Temperature.”(11) Sieber, P. Riniker, B. Tetrehedron Lett. 1987, 28, 6031 –6034.(12) Tickler, A. K Clippingdale, A. B Wade, J. D. Protein Peptide Lett. 2004, 11, 377 – 384.(13) Bacem Application Note. Mergler, M. Dick, F. Vorherr, Th. Methods for Fmoc-His(Trt)-OH Resulting in Minimal Racemization.(14) CEM Technical Note (P/N: 600837) - “Cl-MPA ProTide and Cl-TCP(Cl) ProTide Resin Loading and Protected Cleavage Procedures.
  • 通过微波增强的多肽固相合成自动合成首尾相连的环肽
    摘要使用 Liberty Blue&trade 和 Liberty PRIME&trade 多肽合成仪可以快速、高纯度进行头尾环化肽的全自动合成。微波增强的多肽固相合成(SPPS)不仅有利于线性组装,而且有利于随后的环化步骤,在各种困难的生物学重要肽上实现了极高的纯度合成。Liberty PRIME 上使用的一锅法 Fmoc SPPS 循环进一步改善合成时间、减少浪费。表1 :全自动合成首尾相连的环化肽表2:Liberty Blue 和 Liberty PRIME 合成 Cyclorasin A1引言环肽能够桥接小分子和抗体之间的化学空间间隙,允许设计具有高结合亲和力、显着选择性、低毒性和进入细胞内靶点的能力的分子2。因此,大环肽作为靶向传统上无法成药的生物靶点的治疗剂具有相当大的前景3。截至 2017 年,超过 40 种环肽用于临床4。环肽作为候选药物开发的这一令人鼓舞的趋势,为发展更稳健的制备方法提供了动力。SPPS 可以通过使用 Fmoc-Glu-ODmab 作为 C 端氨基酸 (图 1) 制备首尾相连环化肽。在合成线性肽骨架后,可以使用稀肼溶液选择性地去保护 Dmab 基团。之后,可以使用微波增强偶联实现首尾环化。将微波能量应用于首尾环化肽的合成可以实现更有效的偶联,从而加快合成时间和提高纯度 (CarboMAX&trade )5。 图 1:Fmoc-Glu-ODmab ( 左 ) Fmoc-Glu(Wang resin LL)- ODmab (右)材料与方法试剂以下含有指定的侧链保护基团 Fmoc 氨基酸购自 CEM Corporation (Matthews, NC) 并:Ala、Arg (Pbf)、Gly、His (Boc)、Ile、Leu、Lys (Boc)、Thr (tBu) )、Trp (Boc)、Tyr (tBu) 和 Val。Rink Amide ProTideTM LL 树脂也购自 CEM Corporation。Fmoc-Glu-ODmab、Fmoc-Glu(Wang)-ODmab LL 树脂、FmocD-Ala- OH 和 Fmoc-4-氟-L-苯丙氨酸购自 EMD Millipore (Burlington, MA)。Fmoc-D-2-Nal-OH、FmocD-Nle-OH 和 Fmoc-N-甲基-L-苯丙 氨酸购自 Bachem (T orrance, CA)。Fmoc-N-甲基-异亮氨酸-OH 购自 Advanced ChemTech (Louisville, KY)。FmocN-甲基-亮氨酸-OH 购自 Alfa Aesar (Haverhill, MA)。水合肼、N,N-二异丙基乙胺(DIEA)、Fmoc-N-甲基-甘氨酸-OH、N,N' -二异丙基碳二亚胺 (DIC)、哌啶、吡咯烷、三氟乙酸 (TFA)、3,6-dioxa-1、 8 辛二硫醇(DODT) 和三异丙基硅烷 (TIS) 购自 Sigma-Aldrich (St. Louis, MO)。N,N-二甲基甲酰胺 (DMF)、无水乙醚 (Et2O) 和乙酸购自 VWR (Radnor, PA)。LC-MS 级水 (H2O) 和 LC-MS 级乙腈 (MeCN) 购自 Fisher Scientific (Hampton, NH) 。多肽合成:CEM 7-mer, cyclo-[GVYLHIE] 使用 CEM Liberty Blue 自动微波多肽合成仪,在 Fmoc- Glu(Wang)- ODmab 树脂(离子交换容量:0.025 meq/g)上,以 0.10 mmol 的规模合成(Dmab 脱保护以0.05 mmol 规模进行,首尾环化以 0.025 mmol的规模进行)。使用 DMF 中的哌啶进行脱保护。偶联反应在5倍量的Fmoc氨基酸,DIC和Oxyma Pure(CarboMAX)5 中进行。使用肼的 DMF 溶液进行 ODmab 基团的脱保护。首尾环化反应使用 DMF 中的 DIC/HOBt 进行。在 CEM RazorTM 高通量多肽切割系统中使用 TFA/H2O/TIS/DODT 进行切割。裂解后无水乙醚沉淀肽并过夜冻干。图2:CEM 7-mer多肽合成:Cyclorasin A, cyclo-[WTaRRR-nal-R-Fpa-nle-Q] (Liberty Blue)使 用 CEM Liberty Blue 自 动 微 波 多 肽 合 成 仪 , 在 Rink Amide ProTide LL 树脂(离子交换容量:0.19 meq/g )上,以 0.05 mmol 的规模合成(Dmab脱保护以 0.05 mmol 的规模进行,首尾环化以 0.025 mmol 的规模进行)。使用 DMF 中的哌啶进行脱保护。偶联反应在5倍Fmoc氨基酸、DIC和Oxyma Pure(CarboMAX)5中进行。Fmoc-Glu-ODmab 用做第一个氨基酸(Q)。使用肼的 DMF 溶液进行 ODmab 基团的脱保护。首尾环化反应使用 DMF 中的 DIC/HOBt 进行。在 CEM RazorTM 高通量多肽切割系统中使用 TFA/H2O/TIS/DODT 进行切割。裂解后用无水乙醚沉淀肽并过夜冻干。多肽合成:Cyclorasin A, cyclo-[WTaRRR-nal-R-Fpa-nle-Q](Liberty PRIME)使用 CEM Liberty PRIME 自动微波多肽合成仪,在 Rink Amide ProTide LL 树脂(离子交换容量:0.19 meq/g)上,以 0.05 mmol 规模合成(Dmab脱保护以 0.05 mmol 的规模进行,首尾环化以 0.025 mmol 的规模进行)。使用 DMF 中的吡咯烷进行脱保护。偶联反应在5倍 Fmoc 氨基酸、DIC和Oxyma Pure(CarboMAX)5中进行。Fmoc-Glu-ODmab 用做第一个氨基酸(Q)。使用肼的 DMF 溶液进行 ODmab 基团的脱保护。使用肼的 DMF 溶液进行 ODmab 基团的脱保护。首尾环化反应使用 DMF 中的 DIC/HOBt 进行。在 CEM RazorTM 高通量多肽切割系统中使用 TFA/H2O/TIS/ DODT 进行切割。裂解后用无水乙醚沉淀肽并冻干过夜。图3:Cyclorasin A多肽合成:N-MethylCyclorasinAnalog, cyclo-[WTaR-NMeGly- NMePhe-nal-NMeGly-Fpa-nle-E]使用 CEM Liberty PRIME 自动微波肽合成仪在 Fmoc-Glu (Wang ) -ODmab 树脂(离子交换容量:0.25 meq/g )上以 0.05 mmol 的 规模合成(Dmab 脱保护以 0.05 mmol 规模进行,首尾环化以 0.025 mmol 的规模进行)。使用 DMF 中的吡咯烷进行脱保护。偶联反应在5倍 Fmoc 氨基酸、DIC和Oxyma Pure(CarboMAX)5中进行。使用肼的 DMF 溶液进行 ODmab 基团的脱保护。首尾环化反应使用 DMF 中的 DIC/HOBt 进行。在CEM RazorTM高通量多肽切割系统中使用 TFA/H2O/TIS/DODT 进行切割。裂解后用无水乙醚沉淀肽 并冻干过夜。图4:N-Methyl Cyclorain Analog多肽合成:Poly N-Methyl Peptide, cyclo-[KA-NMeIle-NMeGly-NMeLeu-A-NMeGly-NMeGly-E]使 用 CEM Liberty PRIME 自 动 微 波 肽 合 成 仪 在 Fmoc-Glu (Wang )-ODmab 树脂(离子交换容量:0.25 meq/g )上以 0.1 mmol 的规模合成(Dmab 脱保护以 0.05 mmol 规模进行,首尾环化以 0.025 mmol 的规模进行)。使用 DMF 中的吡咯烷进行脱保护 。偶 联 反 应 在 5 倍 Fmoc 氨 基 酸 、 DIC和Oxyma Pure(CarboMAX)5中进行。使用肼的 DMF 溶液进行 ODmab 基团的脱保护。首尾环化反应使用 DMF 中的 DIC/HOBt 进行。在 CEM RazorTM 高通量多肽切割系统中使用 TFA/H2O/TIS/DODT 进行切割。裂解后用无水乙醚沉淀肽并冻干过夜。图5: Poly N-Methyl Peptide多肽分析在配备有 PDA 检测器的 Waters Acquity UPLC 系统上分析肽, 该 检 测 器 配 备 Acquity UPLC BEH C8 柱 (1.7 mm 和 2.1 x 100 mm)。UPLC 系统连接到 Waters 3100 Single Quad MS 用于结构测定。在 Waters MassLynx 软件上进行峰分析。使用 (i) H2O 和 (ii) MeCN 中的 0.05% TFA 梯度洗脱进行分离。 结果在 Liberty Blue 自动微波肽合成仪上 CEM 7-mer 的微波增强固相合成产生了纯度为 78% 的目标肽(图 6)。图6:CEM 7-mer 的UPLC色谱图在 LibertyBlue 自动微波肽合成仪上的 Cyclorasin A的微波增强。图7:Cyclorasin A (Liberty Blue)的UPLC的色谱图Liberty PRIME 自动微波肽合成仪上的 Cyclorasin A 微波增强。图8:Cyclorasin A (Liberty PRIME)的UPLC色谱图Liberty PRIME 自动微波肽合成仪上的 Poly N-Methyl Peptide。图9:多聚N-甲基Peptide 的UPLC色谱图Liberty PRIME 自 动 微 波 肽 合 成 仪 上 的 N-Methyl Cyclorasin Analog 的微波增强固相合成产生了纯度为 66% 的目标肽(图10)。图10:N-甲基 CyclorasinAnalog的UPLC色谱图 结论使用自动微波增 SPPS 可以快速有效地合成首尾环肽。此外,易于使用的 Liberty Blue 和 Liberty PRIME 软件允许对肽序列进行快速直接的编程。使用 Liberty Blue 肽合成仪在 2 小时 13 分钟内合成了纯度为 78% 的 7 聚体环肽。在 Liberty Blue 上在 3 小时 1 分钟内以高纯度 (75%) 合成了 Cyclorasin A 环肽。在 Liberty PRIME 上仅用了 2 小时就合成了相同的肽,纯度很高 (75%),浪费大约 100 mL。在 Liberty PRIME 上,微波增强的 SPPS 可在 2 小时 5 分钟内以 66% 的纯度合成了具有综合挑战性的 N-methyl cyclorasin analog 环肽。最后,在 Liberty PRIME 上以 73% 的纯度在 2 小时 12 分钟内制备出多聚 N-甲 基化 11 聚体肽。 参考文献[1] Upadhyaya, P. Qian, Z. Selner, N. G. Clippinger, S. R. Wu, Z. Briesewitz, R. Pei, D. Angew. Chem. Int. Ed. Engl. 2015, 54 (26), 7602&ndash 7606. [2] White, A. M. Craik, D. J. Expert Opin. Drug Discov. 2016, 11 (12), 1151&ndash 1163.[3] Hurtley, S. M. Science. 2018, 361 (6407), 1084.4-1085. (4) Zorzi, A. Deyle, K. Heinis, C. Curr. Opin. Chem. Biol. 2017, 38, 24&ndash 29. (5) CEM Application Note (AP0124) - &ldquo CarboMAX - Enhanced Peptide Coupling at Elevated Temperature.&rdquo
  • 生物活性分子在种植体骨结合中的研究进展!
    生物活性分子在种植体骨结合中的研究进展!百欧博伟生物 良好的骨结合是人工种植体成功的关键,钛或钛合金人工种植体由于其较为理想的生物相容性和机械性能植入体内后与骨组织形成良好的骨结合而成为目前临床上应用最广的人工种植体。但钛类材料表面生物惰性的缺点不利于种植体骨结合的进一步提高,尤其对一些伴有系统性疾病如骨质疏松、糖尿病的缺牙患者,这些全身代谢性疾病使种植体周骨愈合能力下降,使种植体骨结合产生时间上的延迟或质量上的下降,导致种植体骨结合率下降。 因此,提高种植体骨结合率和初期稳定性进而提高种植体长期成功率仍是需要进一步研究的课题。其中种植体表面生物化学改性提高种植体骨结合率成为该领域近年来的研究的重要方向,方法是将生物活性分子如具有生物活性的蛋白、小分子多肽等采用一定的方式固定于种植体表面,通过其成骨诱导作用促进种植体周骨形成,提高种植体骨结合。本文就近年来应用于钛类人工种植体表面的生物化学改性方法以及几类主要生物活性分子对种植体骨结合作用及其机理的研究进展进行综述。 一、生物化学改性方法 1、物理吸附 物理吸附是在对种植体表面进行一定的粗糙处理后,将种植体浸入生物活性物质与磷酸缓冲盐溶液混合后的溶液中一段时间,使生物活性物质吸附在种植体表面。此法操作简单,对设备要求较低,但是吸附形成的作用力为静电力、范德华力或氢键,较难牢固结合在种植体表面,并且较难控制生物活性物质在种植体表面的均匀分布。 2、共价结合 生物活性物质可通过接枝分子共价结合在种植材料表面,接枝分子在种植材料表面形成自组装单分子层再与生物活性物质的某些基团共价连接,使生物活性物质稳定连接在种植材料表面。常见的接枝分子包括聚乙二醇、硅烷偶联剂、聚多巴胺、磷酸自组装单分子层等。此外,近些年人们通过噬菌体展示技术发现一些可以直接与金属钛共价结合的短肽(ATWVSPY、RKLPDAPGMHTW等)可以将某些生物活性物质(如层粘连蛋白衍生肽)连接在金属钛表面,从而对钛种植体进行表面改性。共价结合可以将生物活性分子稳定的结合在种植体表面,避免了初始爆发释放,但生物活性分子可能在共价结合的过程中发生构象的改变。 3、聚电解质多层 聚电解质多层由层层自组装技术将带相反电荷的聚电解质顺序吸附到带电表面制备而成。这种方法的特点是改变电解质沉积数量可以调控聚电解质多层的厚度,逐层组件可以将生长因子、蛋白质、遗传物质、抗体等直接集成到层中,或者可以用聚电解质预先络合各组分,然后组装成复合物。分子量大于10kDa的生物活性物质可以永久固定在聚电解质层中,随着聚电解质逐层的降解实现药物的逐渐释放。 二、钛种植体表面生物化学改性主要生物活性蛋白 1、胶原蛋白 胶原蛋白是骨组织细胞外基质中的主要成分,也是骨组织的钙化中心,可促进间充质干细胞中成骨相关基因的表达,进而诱导间充质干细胞向成骨方向分化,同时可以提高成骨细胞对骨基质的黏附。在钛片表面沉积磷酸钙和Ⅰ型胶原制备的矿化胶原涂层利于细胞伸展以及伪足的生长,可以有效促进成骨细胞的黏附及增殖。 此外,吸附有Ⅰ型胶原的钛片也更有利于促进小鼠前成骨细胞株MC3T3-E1黏附斑蛋白与护骨素基因的表达。将Ⅰ型胶原修饰的钛种植体植入SD大鼠胫骨内,HE染色发现4周后种植体周围形成的新生骨的密度要优于对照组。Ⅰ型胶原还可以参与携带药物,从而调控种植体骨结合过程。Li等通过层层自主装技术将Ⅰ型胶原和透明质酸修饰在钛纳米管表面,使管内的依诺沙星缓慢释放,抑制破骨细胞活性的同时还促进了种植体表面新生骨的形成。 2、非胶原蛋白 结合在胶原表面特定位点的非胶原蛋白,包括纤连蛋白(fibronectin)和层粘连蛋白(laminin)等在启动羟基磷灰石晶体成核、生长及调控无机相相变的过程以及促进细胞黏附、迁移和分化等过程中都发挥了至关重要的作用。越来越多的研究显示,将非胶原蛋白结合在种植体表面能够有效提高骨结合的效果。纤连蛋白能够增强对成骨细胞的粘附,进一步提升种植体表面微槽对细胞的粘附作用,加快成骨细胞的成熟,使种植体表面接触的间充质干细胞细胞呈现出成骨细胞自然成熟的多边形态。 Chang等将纤连蛋白吸附在钛种植体表面,发现其在诱导成骨细胞分化、增加骨形成量以及提升种植体初期稳定性方面较无纤连蛋白组有一定的提高。纤连蛋白上存在增强细胞活性的精氨酸-甘氨酸-天冬氨酸(arginine-glycine-asparticacid,RGD)序列和RGD协同序列(PHSRN)以及其中间一段有20个氨基酸的序列F20(PHSRNSITGTNLTPGYTITVYAVTGRGD)。 有学者推测是纤连蛋白中间的这一段活性序列在发挥促进骨结合的作用。将F20和纤连蛋白分别吸附到钛片上,发现二者对基质细胞系ST2粘附、增殖和分化能力的提升效果相似,此外还发现F20对成骨作用的促进可能与Erk信号通路有关。层粘连蛋白作为细胞与基质黏着的介质,参与调节细胞的黏附、生长和分化。 Bougas等将层粘连蛋白浸泡吸附在钛种植体表面后植入兔的股骨中,4周后发现种植体周围的骨结合程度得到明显提高。在一项层粘连蛋白对种植体骨结合作用的回顾性研究中,91%的研究都表明层粘连蛋白可以促进相关成骨相关标记物的表达和(或)种植体周围新骨形成。 3、生长因子 骨形态发生蛋白(Bone morphogenic proteins,BMP)是一组信号分子,是转化生长因子(transforming growth factor,TGF)-β超家族的成员,可以促进间充质干细胞向成骨细胞分化,促进骨缺损区新骨的形成。BMP-2修饰的脱蛋白牛无机骨块在犬牙槽嵴进行垂直覆盖提升术并同期植入种植体的第3个月时比未使用BMP-2的骨块显示出更高的骨矿化水平和更多的新骨形成量。 BMP-2缓慢均匀释放似乎有利于促进骨结合。Seo等发现在水凝胶环境中BMP-2的持续释放显著促进了钛种植体周围垂直骨的再生。Yang等利用肝素连接BMP-2与生长分化因子5(growth and differentiation factor-5,GDF-5)结合在钛片形成Ti-BMP-2-GDF-5涂层,肝素延长了BMP-2和GDF-5的半衰期,并且使其持续均匀释放30天,将MC3T3-E1细胞放置含有该涂层的表面,细胞增殖和碱性磷酸酶(alkaline phosphatase,ALP)活性显著增加,骨钙素(osteocalcin,OCN)、Ⅰ型胶原蛋白的表达也明显升高。兔体内实验显示植入兔股骨内的表面修饰有BMP-2和GDF-5的钛棒也表现出骨与种植体界面处新骨形成明显的增加。 但种植体表面的BMP-2剂量对种植体骨结合有一定的影响,高剂量的BMP-2会导致局部、暂时的骨损伤。在一项高剂量BMP-2(150μg/mL)治疗大鼠的临界大小的股骨缺损实验中,2周后观察到炎症和异常骨形成。Guillot等也发现当大剂量BMP-2(9.3μg)附着于种植体表面时,第4和第8周BMP-2修饰的种植体骨结合率都低于无BMP-2组。 TGF-β2和TGF-β3是TGF-β超家族的两个亚型,调节细胞的增殖和分化以及参与骨改建过程。在新西兰兔拔牙窝内即刻植入种植体,种植体周围增加TGF-β2以及牙髓干细胞,术后第4、8周骨涎蛋白、骨钙蛋白、Ⅰ型胶原表达水平明显提高,种植体骨结合率以及种植体周围骨小梁宽度明显增加。Kim等通过电喷涂技术将聚乳酸丙交酯(PLGA)/重组人类TGFβ2颗粒喷涂在阳极氧化钛种植体表面,种植体植入兔的胫骨第3周骨形态计量学分析发现实验组的种植体骨接触率(Bone-To-Implant Contact,BIC)和骨面积百分比明显高于未喷涂重组人TGFβ2的对照组。 血管内皮生长因子(Vascularendothelial growth factor,VEGF)可诱导成骨细胞和内皮细胞增殖,促进局部血管生成并且增加ALP的活性。Guang等将大鼠重组VEGF吸附于钛片表面,发现其可以明显促进大鼠成骨细胞的增殖,将大鼠重组VEGF修饰的钛种植体植入大鼠膝内,在第2周和第4周免疫组织化学检测发现CD31阳性和骨钙素阳性细胞的比例明显增多。 VEGF对放疗患者种植体骨结合也有一定的促进作用。将钛种植体植入经过15Gy射线辐射的兔胫骨中,在种植体中心的孔隙注射高表达BMP-2/VEGF165的慢病毒载体,第2周和第8周通过PCR分析发现Runt相关转录因子2(Runt-related transcription factor2,Runx2)、骨钙素、ALP和CD31表达水平增加,Micro-CT显示新骨形成量明显增加。 神经生长因子(nerve growth factor,NGF)是神经营养因子家族的成员,对交感和感觉神经元以及神经元嵴细胞有很强的促进作用。近年来研究发现,NGF还参与骨改建过程,对骨再生有一定的促进。将含NGF的明胶海绵应用于犬前磨牙缺损模型可以有效刺激骨的形成。在小鼠腿骨植入钛种植体区局部注射外源性NGF,可以促进小鼠股骨钛种植体植入早期的骨再生,加速早期骨胶原以及骨小梁的成熟,缩短种植体骨结合时间。但由于NGF半衰期较短,NGF多被用于种植体局部注射,用于种植体表面改性的研究还较少。 骨的改建由多种生长因子共同参与,BMP、VEGF、TGF、NGF等在促进骨生成方面有积极作用,控制生长因子在种植体表面的缓慢持续释放,增加其作用时间可以进一步促进成骨,并且多种生长因子的联合使用似乎可以取到更好的促进效果。 三、生物活性肽 生物活性蛋白因其固有的生物活性为种植体表面的生物功能化提供了选择,但是蛋白质分子存在免疫原性且缺乏良好稳定性,动物提取的蛋白也具有病原体传播和变异的风险。相比较而言,仅包含细胞结合序列的短肽可以发挥生物活性作用并能规避这些风险,具有良好应用潜能。它们易合成、纯化和存储消毒,与大分子蛋白相比具有成本效益,并且其活性不依赖于其三级结构。 下面着重于介绍4种具有促进细胞粘附、增殖和分化功能多肽或寡肽,如RGD,P-15,成骨生长肽(osteogenic growth peptide,OGP)以及胰岛素样生长因子(insulin-like growth factors-1,IGF-1)。RGD序列存在于纤连蛋白的细胞结合域,是细胞粘附所需要的最小序列,可以促进细胞的扩散粘附和增殖。 贻贝来源蛋白(mussel derived peptide,MP)是一种包含L-3,4二羟基苯丙氨酸(DOPA)结构的蛋白,可以作为接枝分子把RGD和肝素结合蛋白(heparin binding protein,HBP)固定在钛片上。Pagel等将人类骨肉瘤细胞(sarcomaosteogenic,SaOS-2)置于附着MP-RGD的钛片上培养,发现其可以促进SaOS-2黏附、生存和增殖,MP-RGD-HBP的促进作用则进一步增强。 将抗菌肽和RGD肽共同结合在钛种植体表面,不仅可以促进SaOS-2细胞的附着和扩散,同时阻止了细菌的生长。此外肽的结构也对骨结合过程也有一定影响,研究发现环状RGD相比线性RGD会引起垂直方向骨量的更明显增加,并且发现环状RGD可能是通过激活成骨细胞的黏着斑激酶(FAK),上调MARK信号通路c-fos转录阈值水平,进而促进成骨细胞的增殖。 P-15是模拟Ⅰ型胶原蛋白结合域合成的短肽(GTPGPQGIAGAGQRGVV),具有促进成骨细胞分化、增强细胞黏附、迁移和存活的功能。Fu等通过表面引发的原子转移自由基聚合(surface-initiated atom transfer radical polymerization,SI-ATRP)原位生长含酮聚合物,并通过肟化反应将P-15共价连接在钛表面。结果显示聚合物接枝P-15的实验组相比未含P-15的对照组在第6h展现出更高的细胞存活率,细胞核染色法检测24h细胞数显示共价接枝P-15的钛片吸附有更多细胞,21d茜素红S染色也显示P-15的存在增加了钙沉积。 Lutz等将P-15吸附修饰在钛棒表面并植入猪股骨中,组织形态计量学分析发现30d时相比未修饰的种植体展现出更高的BIC值。同样,将磷酸钙和P-15沉积吸附修饰的钛种植体植入成年比格犬的双侧胫骨中,1周时也呈现出比其它对照组更高的BIC值,提示P-15能够有效诱导种植体周围的骨形成。然而植入部位以及个体异质性对生物活性物质的作用可能会有一定的影响。Schmitt等对植入比格犬颌骨内的种植体中部、顶部以及顶部两侧进行骨形态计量学分析后,发现在第2d和7d,P-15修饰的钛种植体与对照组种植体周围的BIC无统计学差异,因此P-15以及其它生物活性物质在人体内对骨结合的促进作用仍需进一步验证。 成骨生长肽是由14个氨基酸组成的多肽(ALKRQGRTLYGFGG),能增强ALP活性,加速基质矿化、促进骨再生。沉淀吸附有成骨生长肽的钛片可以促进大鼠间充质干细胞的附着、增殖和成骨分化。当纤连蛋白与成骨生长肽共同附着于钛片时,成骨分化作用进一步加强。Lai等通过聚多巴胺将成骨生长肽共价连接在有钛纳米管的钛片上,在其上接种大鼠颅骨成骨细胞,相比未修饰成骨生长肽的钛片,ALP的水平明显提高,成骨相关基因表达增加。 IGF-1是一种与胰岛素结构相似的小分子肽,可作为骨骼生长的调节剂,具有促进细胞粘附的作用。Xing等将大鼠骨髓间充质干细胞接种在加载有IGF-1的明胶/壳聚糖聚电解质多层的钛种植体表面,检测发现ALP、Runx2、Ⅰ型胶原和骨钙素的mRNA的表达水平提高,细胞增殖以及基质矿化水平增加。 将IGF-1修饰的种植体植入骨质疏松模型大鼠股骨中,8周后通过亚甲蓝/品红和micro-CT观察,相比对照组,实验组新骨厚度和连续性明显增加,当IGF-1为100ng/mL时促进作用最强,为骨质疏松症患者的种植修复提供了新的策略。肽类生物活性物质克服了生物活性蛋白的诸多缺陷,降低了在体内被内源性酶降解的风险,在促进细胞的粘附,增殖和分化以及促进新骨形成增加种植体初期稳定性方面具有良好的效果,在种植体表面改性方面具有良好的应用潜力。但这些肽类生物活性物质发挥促进骨结合效果最恰当的浓度还有待进一步确定,如何使肽类活性物质在种植体表面更稳定的释放也有待进一步研究。 四、小结 生物活性分子在种植体表面的应用有助于提高种植体骨结合。这通过其促进成骨相关标记物表达,促进间充质干细胞向成骨细胞分化,增加细胞的粘附和增殖等方式证实,而且动物体内研究也表明种植体表面的生物活性分子增加了种植体周围新骨的形成,促进种植体骨结合,展示了良好的临床应用前景。目前聚电解质多层、水凝胶、纳米粒子以及微球等缓释系统的研究为生物活性物质更加稳定持久释放提供了更广阔的前景,但缓释系统在种植表面对生物活性物质的缓释效果仍需在进一步验证。 目前研究大多数都是体外或动物体内实验,由于体内影响因素较多,缺乏对其确切效果的临床证据,尚未转化为可供临床应用的产品。而且,这些生物活性分子用于种植体表面的制备方法、对种植体储存和消毒带来的难题以及体内吸收、降解等对骨形成的影响体等一系列问题尚需更多、更深入的研究来解决,尤其是大量的、严谨科学设计的体内研究有助于揭示其临床应用价值。欢迎访问微生物菌种查询网,本站隶属于北京百欧博伟生物技术有限公司,单位现提供微生物菌种及其细胞等相关产品查询、咨询、订购、售后服务!与国内外多家研制单位,生物医药,第三方检测机构,科研院所有着良好稳定的长期合作关系!欢迎广大客户来询!
  • 牛津仪器X-Pulse获奖访谈:不断追逐高场核磁的台式核磁技术
    p style=" text-indent: 2em " span style=" text-indent: 2em " 2020年5月20日,2019年度科学仪器“优秀新品奖”首次云端揭晓。共有22台新品仪器获此殊荣。科技部高技术研究发展中心研究员刘进长为盛典致开幕辞。国家生物医学分析中心医学工程室主任赵晓光公布了化学分析仪器类获奖榜单,其中,牛津仪器宽带多核台式核磁共振谱仪X-Pulse在列。 /span /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 600px height: 193px " src=" https://img1.17img.cn/17img/images/202006/uepic/b908625e-89e6-4928-8c64-3e9c07f6e6cb.jpg" title=" " alt=" " width=" 600" height=" 193" border=" 0" vspace=" 0" / /p p style=" text-indent: 2em " 奖项揭晓后,仪器信息网第一时间采访了牛津仪器NMR中国区大区经理储岳森、牛津仪器NMR应用专家文祎,请两位分享了本次获奖X-Pulse的研发背景,牛津仪器为何选择切入台式核磁市场,以及相比高场核磁共振产品技术,台式核磁共振产品技术的市场优势、技术发展趋势与市场前景。 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 450px height: 300px " src=" https://img1.17img.cn/17img/images/202006/uepic/b1b2a463-c3b8-4902-899c-dc85cb6f7e2f.jpg" title=" " alt=" " width=" 450" height=" 300" border=" 0" vspace=" 0" / /p p style=" text-indent: 0em text-align: center " a href=" https://www.instrument.com.cn/netshow/C368934.htm" target=" _blank" style=" color: rgb(0, 176, 240) text-decoration: underline " span style=" color: rgb(0, 176, 240) " 宽带多核台式核磁共振谱仪X-Pulse /span /a /p p style=" text-indent: 2em " span style=" color: rgb(0, 112, 192) " “科学仪器优秀新品”评审委员会创新点评 /span :与以往产品相比有显著改进,进步表现在:用户可根据需要轻松调整核(从29Si-31P),适用于摄氏20度-60度之间的变温流动化学研究,以了解反应历程和反应动力学。总之,它既能为科研机构探索发现官能团、分子链和分子中原子核的化学环境等独特的结构信息提供支持,也可以满足高校老师现场教学的需求。 /p p style=" text-indent: 2em " strong span style=" background-color: rgb(112, 48, 160) color: rgb(255, 255, 255) " 牛津仪器核磁共振业务近50年传承 /span /strong /p p style=" text-indent: 2em " 早在20世纪七十年代,牛津仪器就已经是台式磁共振(NMR)开发的先驱,并在全球安装了上千台第一代连续波(CW)技术的磁共振仪器,许多这些早期的仪器至今仍然在用于巧克力的脂肪测量、油籽中含油检测以及航空燃料中的含氢检测等。 /p p style=" text-indent: 2em " 随着脉冲核磁共振技术替代连续波磁共振技术上的进步,牛津仪器相应推出QP20、QP20+和MQA系列仪器始终走在行业发展的前列;随后结合实验室仪器不同用户需求,推出更高共振频率23MHz永磁体的MQC和多种不同规格的样品探头,新一代MQC+样品仓尺寸高达直径26mm;2013年,在英国推出台式磁共振波谱仪PulsarTM,将高端智能化核磁共振波谱技术带进常规实验室中。 /p p style=" text-indent: 2em " 秉承近50年在台式磁共振行业的经验,本次获奖的X-Pulse则是在PulsarTM的基础上实现全面升级,真正在一台仪器上实现多核检测功能,同时具有流动在线、变温、常规数据库及毒品数据库等多种选择满足不同的用户需求。 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 600px height: 160px " src=" https://img1.17img.cn/17img/images/202006/uepic/40383fee-c5d5-47cf-bed8-84346359388d.jpg" title=" 牛津仪器核磁产品系列.png" alt=" 牛津仪器核磁产品系列.png" width=" 600" height=" 160" border=" 0" vspace=" 0" / /p p style=" text-indent: 2em " 截至目前,牛津仪器核磁共振业务产品组合包括:X-Pulse台式宽带核磁共振系统,食品、农业、聚合物和化工领域广泛使用的QC测量用MQC+系列台式分析仪,以及用于石油勘探领域样品检测的GeoSpec岩芯分析仪。 /p p style=" text-indent: 2em " span style=" background-color: rgb(112, 48, 160) color: rgb(255, 255, 255) " strong 牛津仪器为何切入台式核磁共振? /strong /span /p p style=" text-indent: 2em " 牛津仪器之所以选择切入台式核磁市场,主要有两方面原因: /p p style=" text-indent: 2em " 一方面,从用户采购、安装和使用成本来讲,高场核磁成本更高,也需要专门的安装场地及低温的维护等。而台式核磁也有许多应用领域,这些领域不需要很高的分辨率,更适合于成本更低的永磁型这种不需要低温超导技术的台式核磁。这些领域主要为工业质量控制等,而本次获奖产品X-Pulse则可以同时兼顾一些科研及教学领域。 /p p style=" text-indent: 2em " 另一方面,台式核磁虽然不能替代高场超导核磁,但却是高场超导核磁一个很好的补充。比如,做一些流动在线检测,在高场超导核磁上是非常困难的,而台式核磁因为体积小巧,可以放在桌面上,实时在线监测化学反应。另外,高场核磁由于设备昂贵,高校院所等平台测试需要预约排队,而对于分辨率要求没那么高的实验及课题组,则可以方便的采购台式核磁,放在自己的反应器旁边,现场就可以完成对绝大多数化合物分子的快速检测。台式核磁可以作为高场超导核磁的一个补充,两者并不冲突。 /p p style=" text-indent: 2em " strong span style=" background-color: rgb(112, 48, 160) color: rgb(255, 255, 255) " X-Pulse研发背景:弥补高场核磁昂贵背景下广泛需求 /span /strong /p p style=" text-indent: 2em " 台式核磁并不是一个很新的技术,该技术始于60余年前,实际上第一台商业核磁共振波谱仪就是采用永磁体,不过该技术后来被逐渐淘汰。主要是因为超导磁体技术的出现,可以提供更高的磁场强度,获得更高的分辨率。 /p p style=" text-indent: 2em " 此后,核磁共振这项技术便一直朝着更高的磁场、更高的共振频率发展。就如同牛津仪器另一个低温超导业务部门,他们追求与技术竞争方向都是一直希望有一个更高的磁场强度,从而获得更高的共振频率。 /p p style=" text-indent: 2em " 从上个世纪50年代,有了第一台的商业化的磁共振产品以后,相关技术就一直是朝着超导这个方向发展,这也就导致在有机四大谱分析仪器中,核磁共振仪的普及率是最低的。因为磁场强度越高,设备的成本随之增高,然后越少用户能够用得起。 /p p style=" text-indent: 2em " 在此背景下,2008年,牛津仪器在高校院所用户中进行了系列调研,发现一直以来,核磁共振技术并没有被普及到本科生层面,甚至研究生也很少能够接触到核磁共振或直接的操作机会,可能整个学校只能配置一到两台高档的核磁共振仪。这种情况下,广大用户就急需一类成本没那么高、学生和广大的科研工作者都可以有机会接触的核磁共振波谱技术和产品。于是,牛津仪器便想到开发这种没有低温超导的、永磁型的台式核磁共振仪。 /p p style=" text-indent: 2em " span style=" background-color: rgb(112, 48, 160) color: rgb(255, 255, 255) " strong X-Pulse产品创新点解读 /strong /span /p p style=" text-indent: 2em " X-Pulse在前一代产品PulsarTM的基础上,增加了许多创新功能,也解锁了一些高场核磁共振的功能,如梯度、形状脉冲等,从而可以做一些比较复杂的实验,比如压制水峰和溶剂峰,选择性激发,以及多线编辑的反相实验等。归结而言,X-Pulse的创新点主要包括四方面:多核、变温流动化学、高分辨率、高稳定性。 /p p style=" text-indent: 2em " strong 宽带多核 /strong ——X-Pulse是一款带有宽带功能的台式核磁共振仪,即一台仪器就可以做不同原子核的各种核磁共振实验。这一特性大大拓展了台式核磁的应用领域。比如在浸润剂领域,,一些用户研究偶联剂时,需要同时观测H、C、Si谱,以往仪器上,只能做到H和C ,用户需要在一些高场核磁平台上做Si的测试。而X-Pulse则可以检测从Si到P的所有原子核,这对于偶联剂性能的评估、配方成分开发等都十分便利。 /p script src=" https://p.bokecc.com/player?vid=BDA5850AE3630AE09C33DC5901307461& siteid=D9180EE599D5BD46& autoStart=false& width=600& height=350& playerid=621F7722C6B7BD4E& playertype=1" type=" text/javascript" /script p style=" text-indent: 2em " 再如,在锂电池行业,液态电解质通常包含锂盐以及有机溶剂。X-Pulse可以同时检测Li、P、F、B等,可用于电解质的配方分析和质量控制。利用X-Pulse,用户可以测定Li离子的扩散系数,识别并定量降解产物,分析电解质的浓度和纯度等,在一台仪器上即可实现对所有成分的表征。 /p p style=" text-indent: 2em " strong 变温流动化学 /strong ——独特的流动池和变温探头,可在20° C到60° C之间连续监测动态化学反应,帮助用户详细了解反应过程和动力学。尤其是在有机合成方面,可以帮助用户优化温度、浓度等条件参数,以达到更短时间获得更高的反应转化率。 /p script src=" https://p.bokecc.com/player?vid=9890E8C5BEF3D0269C33DC5901307461& siteid=D9180EE599D5BD46& autoStart=false& width=600& height=350& playerid=621F7722C6B7BD4E& playertype=1" type=" text/javascript" /script p style=" text-indent: 2em " 以往的仪器需要多次取样,多次检测,而X-Pulse只需要一个流动池,让这个反应在进行过程中不断的进入到我们这个仪器里面,实时检测,提高效率。 /p p style=" text-indent: 2em " strong 高分辨率 /strong ——前一代产品分辨率是半峰宽0.5Hz,底部线形是20Hz。这款新品的分辨率有了显著提升,半峰宽小于0.35Hz,底部线形小于10 Hz。那么它意义在哪里?比如说一些化合物的分子量大一些、复杂一些,那么它的谱峰重叠的可能性就会比较大,这对表征结构会带来困难。当分辨率提升以后,谱峰更窄,裂分更清楚,将更有利于识别这些谱图。 /p p style=" text-indent: 2em " strong 高稳定性 /strong ——X-Pulse采用了经典的磁体设计,具有高热容量的磁体,无论是检测静态还是流动的样品,对温度变化都不敏感,从而消除了样品温度假峰。 /p p style=" text-indent: 2em " & nbsp 想要获得高质量的核磁谱图,对磁场稳定性要求是比较高的。如果磁场保持均一稳定的状态,谱峰信号会很尖锐,裂分峰型也会很漂亮。如果仪器稳定性不好,磁场漂移厉害,那么可能本来能看到的分裂峰,最后变成一个包,这样也会给用户带来一些误导信息。 /p p style=" text-indent: 2em " strong span style=" background-color: rgb(112, 48, 160) color: rgb(255, 255, 255) " 台式核磁技术的一个发展趋势:追赶高场核磁的分辨率和灵敏度 /span /strong /p p style=" text-indent: 2em " 与高场核磁一样,台式核磁技术的发展方向也是发展更高的磁场强度,以达到更高的分辨率和灵敏度。 /p p style=" text-indent: 2em " 目前台式核磁共振而言,X-Pulse磁场强度是1.4Tesla,对应的氢共振频率是60M,即便与一般所讲高场核磁最低的200M相比,无论是分辨率还是灵敏度,都还有一定的差距,从这个角度讲,台式核磁的一个永远的发展方向就是追赶高场核磁的分辨率和灵敏度。 /p p style=" text-indent: 2em " 磁场强度方面,台式核磁共振不能像高场核磁共振那样,通过低温超导磁体来不断提高磁场强度。而台式核磁对应永磁体提高磁场强度是有极限的,因为随着磁场强度提高会导致永磁体越来越重,而且到了一定程度也存在极限。 /p p style=" text-indent: 2em " 分辨率方面,比如PulsarTM刚发布时分辨率是1.5Hz,随后提高到1.3Hz,后来又提高到1.0 Hz、0.7 Hz,然后是0.5 Hz,目前这款获奖新品X-Pulse的分辨率是0.35 Hz。虽然磁场强度一样,牛津仪器一直在通过其他技术手段来实现台式核磁的分辨率的不断提高。 /p p style=" text-indent: 2em " 灵敏度方面,牛津仪器主要是在通过探头上下功夫,通过改进的探头技术和一些电子设计,能够把灵敏度不断提高。牛津仪器最早期产品,灵敏度只有大概20:1,后来提高到40:1,然后是100:1,目前可以做到120:1,单氢探头超过180:1。 /p p style=" text-indent: 2em " 总之,在磁场方面牛津仪器将尽可能提高台式核磁共振的磁场强度,当然最终的目的还是提高分辨率和灵敏度,牛津仪器也将在今后不断实施开发和改进的计划。 /p
  • 《青海省工业领域碳达峰实施方案》印发
    为深入贯彻落实党中央、国务院和省委、省政府关于碳达峰碳中和的重大战略决策和总体部署,扎实推进青海省工业领域碳达峰工作,根据《工业和信息化部 国家发展改革委 生态环境部关于印发工业领域碳达峰实施方案的通知》和《青海省人民政府关于印发青海省碳达峰实施方案的通知》,结合我省实际情况,制定本实施方案。一、总体要求(一)指导思想坚持以习近平新时代中国特色社会主义思想为指导,全面贯彻党的二十大精神,深入贯彻落实习近平生态文明思想和习近平总书记考察青海重要讲话精神,立足新发展阶段、全面贯彻新发展理念、构建新发展格局,紧扣“三个最大”省情定位,围绕产业“四地”建设重大要求,把推进工业领域碳达峰工作作为落实全省工业绿色发展和生态文明建设的硬任务。以实施重点行业节能降碳为抓手,优化产业结构布局,提高资源能源利用效率,积极实施清洁生产改造,推行绿色制造,推动数字化智能化绿色化融合,加快工业绿色低碳转型和高质量发展,构建绿色、低碳、循环的现代工业体系。(二)基本原则——总体部署、统筹推进。将碳达峰碳中和目标愿景贯穿于工业生产全过程,进一步强化顶层设计,全面统筹工业经济增长和低碳转型、绿色生产和绿色消费的关系,积极稳妥推进碳达峰各项任务,统筹推动全省工业绿色低碳发展。——生态优先、转型提质。坚持生态保护优先,注重资源深度开发与高效利用相统一、工业发展与生态保护相协调,严守生态保护红线、环境质量底线、资源利用上线,立足资源禀赋、产业基础推进能源资源科学配置、高效利用。——创新驱动、数字赋能。坚持科技创新第一驱动力地位,推进节能低碳技术工艺装备的研发应用,完善低碳科技创新体系,培育壮大工业绿色发展新动能。推动数字化智能化赋能绿色化,以信息技术驱动工业低碳转型。——政策引领、市场主导。发挥政府在规划引导、政策支持中的作用,健全以碳减排为导向的激励约束机制。发挥市场配置资源的决定性作用,调动企业积极主动性,激发市场主体低碳转型发展的内生动力。(三)总体目标“十四五”期间,全省工业产业结构、用能结构优化取得显著成效,低碳产业规模持续增长,化工、有色金属、钢铁、水泥、玻璃等重点行业能效水平全部达到行业基准水平,产业“四地”建设取得阶段性成效,建成一批绿色工厂和绿色工业园区,绿色低碳技术研发和推广应用取得新进展。到2025年,全省规模以上工业单位增加值能耗较2020年下降12.5%,力争下降14.5%。单位工业增加值二氧化碳排放下降幅度大于全社会下降幅度,重点行业二氧化碳排放强度明显下降。“十五五”期间,全省工业产业结构、用能结构进一步优化,重点耗能行业能源利用效率达到国际先进水平,产业“四地”建设迈入新阶段,重大低碳技术工艺装备创新取得新突破,基本建立具有青藏高原特色的绿色低碳循环发展现代工业体系。规模以上工业单位增加值能耗和二氧化碳排放量持续下降,力争工业领域二氧化碳排放2030年前达峰,鼓励有条件的重点行业率先达峰。二、重点任务(四)深度调整产业结构1.做大做强绿色工业产业立足现有产业基础,实施重点产业引领、招大引强突破、重大项目促进、企业梯度培育、园区提档升级、技术创新提升“六大工程”,带动全省工业经济转型提质。以绿色低碳为导向,大力推进工作体系完善行动、重点项目促进行动、平台载体提升行动、招商方式创新行动、招商能力强基行动、营商环境优化行动等招商引资“六大行动”,促进经济社会发展全面绿色转型。加快构建以绿色低碳为导向的“3+3+4+10”现代产业体系,推动有色、能源化工、特色轻工等传统产业智能化绿色化,壮大新能源、新材料、生物医药等战略性新兴产业,培育发展生态经济和数字经济。优化区域产业链布局,引导产业错位发展,发挥各地优势积极推进产业“四地”建设,支持西宁市发展光伏、锂电、复合纤维材料等产业,海西州发展盐湖资源综合利用、有色冶金、新能源等产业,海南州发展大数据、新能源等产业。2.坚决遏制“两高一低”项目盲目发展以烧碱、纯碱、电石、水泥熟料、铁合金、电解铝、铜铅锌冶炼等行业为重点,建立在建、拟建和存量高耗能高排放低水平项目管理台账,对“两高一低”项目实行清单管理、分类处置、动态监控。严把项目准入关口,加强固定资产投资项目节能审查、环境影响评价,新上高耗能项目必须符合国家产业政策且能效达到行业先进水平。强化“两高”项目对本地区能耗双控目标任务完成影响评估和用能指标来源审查。全面梳理排查在建项目,对能效水平低于本行业能耗限额准入值的,按照有关规定停工整改,推动提升能效水平,力争达到标杆水平。深入挖潜存量项目,引导企业有序开展节能降碳技术改造,提高生产运行能效。提高高耗电项目的绿电使用比例,依据高耗能行业重点领域能效要求,实施“两高一低”项目能效认定。加强节能环保监管工作,巩固常态化工作机制。3.优化重点行业产能规模严控有色金属、化工、钢铁、水泥、玻璃等高耗能行业新增产能,提高增量项目准入门槛。严格执行《产业结构调整指导目录》等有关标准、政策规定,坚决淘汰落后生产工艺、技术、设备,严防落后产能死灰复燃。开展重点用能单位深度节能诊断,加强节能形势分析预警,对高预警地区加强工作指导。对于不能按期改造完毕的项目进行淘汰,淘汰时限一般不超过3年,关停、退出、淘汰的项目应制定相应工作计划,稳妥实施。加大闲置产能、僵尸产能处置力度。4.推动产业低碳协同示范发挥全省资源优势,推进产业链跨区域合理布局,引导工业企业向园区集聚,探索减污降碳协同增效有效模式,减少中间产品物流量。强化能源、钢铁、石化化工、建材、有色金属等行业耦合发展,推动产业循环链接,促进资源、产品循环利用和产业融合。聚焦盐湖资源综合利用、新能源、新材料等重点产业,培育和引进一批强链补链延链重大项目,鼓励龙头企业联合上下游企业、行业间企业开展协同降碳行动,构建企业首尾相连、互为供需、互联互通的产业链。(五)深入推进重点行业节能降碳1.调整优化工业用能结构在保障能源安全的前提下,对标《煤炭清洁高效利用重点领域标杆水平和基准水平(2022年版)》,严格合理控制煤炭消费增长,推进煤炭清洁高效利用。鼓励黑色金属行业降低铁钢比率、提高精细加工产品比例,减少高炉和炼焦用煤。推动各行业各领域优先使用清洁能源,支持有条件的企业、园区依法依规开展“光伏+储能”建设,鼓励负荷侧电化学新型储能设施建设,对新建用电容量5万千伏安以上负荷项目,按照用电负荷5%-10%配套储能设施,推进钢铁、铁合金、铝冶炼、化工、水泥等既有产业清洁用能替代工程。加快氢能多元利用,积极布局绿氢产业化应用示范,推进氢能制储输运销用全链条发展。2.推动工业用能电气化加快提升终端用能低碳化电气化水平,在铸造、玻璃等行业因地制宜推广电锅炉、电窑炉等电能替代设备,开展高温热泵、大功率电热储能锅炉等电能替代,扩大电气化终端用能设备使用比例。重点对工业生产过程1000℃以下中低温热源进行电气化改造。加强电力需求侧管理,开展工业领域电力需求侧管理示范企业和园区创建,优化电力资源配置,全面提升工业领域用能效率和需求响应能力。到2025年,电力占终端能源消费比例提高到34%。3.开展节能降碳改造升级全面落实《青海省严格能效约束推动重点领域节能降碳技术改造实施方案(2021—2025年)》,建立全省重点节能项目库。按照“整体推进、一企一策”原则,重点推动有色金属、化工、黑色金属、玻璃、水泥、煤电等行业的存量产能在符合行业发展规划、产业布局和产业政策等要求的基础上开展节能技术改造。完善差别电价、峰谷电价、惩罚性电价和阶梯电价机制,鼓励重点行业企业对标基准水平和标杆水平,加快节能技术创新与推广应用。全面推动变压器、电机、泵、压缩机、风机、锅炉等重点用能设备能效提升,加强余热余压利用、能量系统优化、公辅设施节能改造,系统提升能效水平。4.强化用能监督管理加大节能监察工作力度,制定年度节能监察计划,聚焦重点企业、重点用能设备,强化能源利用情况监测和能耗限额标准执行情况监督检查,统筹推进企业合理用能。健全省、市(州)、县三级节能监察机构,开展节能、生态环境、安全等多部门联合执法、区域间交叉检查,实现重点用能行业企业、重点用能设备节能监察全覆盖。完善能源消耗总量和强度调控,组织开展工业用能预算化管理,强化监测预警。全面实施重点用能单位能源审计,加强节能诊断及成果运用,鼓励企业采用合同能源管理、能源托管等模式实施改造。发挥重点领域省属国有企业引领作用,带头开展节能自愿承诺。(六)深入实施绿色制造工程1.夯实绿色低碳制造基础加快推进绿色制造体系建设,遴选发布省级绿色制造名单,争创一批绿色示范标杆,全面提升绿色发展基础能力。培育具备用地集约化、生产洁净化、废物资源化、能源低碳化等特点的绿色工厂,鼓励绿色工厂编制绿色低碳发展报告,分享绿色发展经验。以甘河工业园、格尔木工业园等园区为重点,打造具备布局集约化、结构绿色化、链接生态化等特点的绿色工业园区。突出全省清洁能源优势,依托大数据、新能源等领域项目布局零碳产业园区,在河湟新区率先打造国家级零碳技术集聚区和先行示范区。支持重点行业龙头企业构建将绿色低碳理念贯穿于产品设计、原料采购、生产、运输、储存、使用、回收处理全过程的绿色供应链。加大绿色低碳产品开发,加强全生命周期绿色管理,创建工业产品绿色设计示范企业。2.促进中小企业绿色低碳发展引导中小企业主动适应低碳发展要求,将绿色低碳理念融入企业文化,提升资源节约意识,自觉履行绿色低碳发展义务。探索开展绿色低碳发展评价,挖掘中小企业节能减排潜力,开展中小企业节能诊断服务,鼓励中小企业应用节能节水新技术、新装备、新产品,加大可再生能源利用,推动实施绿色化改造。实施中小企业绿色发展促进工程,在低碳产品开发、低碳技术创新等领域培育专精特新“小巨人”。3.全面提升清洁生产水平依法依规实施强制性清洁生产审核,深入推进有色冶金、盐湖化工、建材、纺织、生物加工等行业企业开展清洁生产改造,鼓励其他行业自愿开展清洁生产审核。引导企业采取自我声明或自愿认证的方式,实施产品绿色设计、材料优化管理及生产全过程控制,持续推动节能、节水、节材、减污、降碳等系统性清洁生产改造。实施工业园区绿色工艺技术改造工程,推动重点行业完成限制类产能装备的升级改造。推广余热余压回收、水循环利用、重金属污染减量化、废渣资源化、脱硫脱硝除尘等新工艺、新技术。加强企业清洁生产培训,提升企业清洁生产意识。(七)实施循环经济助力降碳行动1.强化盐湖资源综合利用以青海省盐湖资源优势为依托,在稳定钾和铝双轮驱动的基础上充分发挥企业技术创新主体地位,通过延链补链强链探索形成循环经济新模式。加强钾资源可持续性保障,合理有序开发系列产品,提高资源转化率和生产回收率,建设世界级钾产业基地。发展镁系资源下游产业,拓宽镁系材料应用范围,建设世界级镁产业基地。提高锂资源生产工艺水平,释放锂资源产能,打造世界级锂电新能源与轻金属材料产业基地。发展金属钠下游轻金属合金及精细无机盐化工产品,实现钠资源深度开发,建设世界级钠产业基地。发展硼回收利用技术,适度扩大硼酸产能,拓展下游精细化学品、新材料,打造硼产业基地。开展盐湖卤水提铷研究,开发溴、铷、铯为主的稀散元素提取和深加工,不断提升盐湖资源综合利用水平。推动盐湖产业与煤化工、油气化工相互融合,解决盐湖资源综合利用过程中伴生的氯平衡关键问题。2.推进产业升级和融合发展发挥全省清洁能源优势,完善“装备制造—清洁能源生产—绿电输送—消纳”循环产业链条。坚持区域资源整体开发、产业协同联动发展,着力打造资源综合开发、深度加工、副产物资源化再利用循环型产业链,推动构建盐湖化工、油气化工、新材料、新能源等各产业间纵向延伸、横向融合,资源、产品多层联动发展循环型产业新格局。鼓励盐湖资源开发企业优先使用光伏、风能等清洁能源,提升盐湖产业绿色发展水平。鼓励电解铝、晶硅、锂、钢铁、铁合金等行业加强负荷调节能力,提高清洁用能占比,加大储能设施建设力度,积极应用和推广新技术、新工艺、新装备,提升能源利用效率,形成以新能源为驱动的多元循环经济体系。3.开展产业园区循环化改造按照“横向耦合、纵向延伸、循环链接”原则,建设和引进关键项目,推动产业循环式组合、企业循环式生产,促进项目间、企业间、产业间物料闭路循环、综合利用,优化煤化工、石化化工、生物资源开发利用循环经济产业链,切实提高能源资源产出率。积极推动余热余压、热电联产、分布式能源及光伏储能一体化系统应用,提升能源利用率。加强水资源高效利用、循环利用,加快园区废水资源化和处理设施建设,推进实施污水集中处置系统,推动中水回用。加快生物科技产业园区、南川工业园、大通北川工业园、乐都工业园、海东河湟新区、民和工业园、互助绿色产业园、海北州生物园区、热水煤炭产业园区9个园区循环化改造实施进度。到2025年,符合条件的省级及以上重点产业园区全部实施循环化改造。4.健全资源循环利用体系组织开展废旧产品设备回收处置供需对接,推动产品设备生产、使用单位与规范化资源循环利用企业加强信息共享和业务合作。支持发展废旧产品设备回收、运输、拆解、利用一体化模式,减少中间环节。鼓励各级公共资源交易平台开设专栏、开辟绿色通道,畅通废旧产品设备资产交易。强化再生资源先进加工利用技术装备推广应用,支持现有加工利用项目提质改造,提高机械化、信息化和智能化水平。完善再生资源回收体系,加强回收网点、分拣加工中心、集散交易市场“三级网络”体系建设。支持废钢铁、废旧动力电池、废旧电子电器、报废汽车、废塑料、废纸、废旧轮胎等废旧物资规模化、清洁化利用。研究退役光伏组件、废弃风电叶片等资源化利用的技术路线和实施路径,推动新能源汽车动力电池回收利用。进一步拓宽粉煤灰、煤矸石、冶金渣、工业副产石膏、建筑垃圾等大宗固废综合利用渠道,扩大在生态修复、冶金、建材、基础设施建设等领域的利用规模。到2025年,一般工业固体废物综合利用率达到60%。(八)加强节能降碳领域科技创新1. 推动绿色低碳技术重大突破部署工业低碳前沿技术研究,实施低碳零碳工业流程再造工程,研究实施氢冶金行动计划。布局“减碳去碳”基础零部件、基础工艺、关键基础材料、低碳颠覆性技术研究,突破推广一批高效储能、能源电子、氢能、碳捕集利用封存、温和条件二氧化碳资源化利用等关键核心技术。推动构建以企业为主体,产学研协作、上下游协同的低碳零碳负碳技术创新体系。2.开展绿色低碳技术应用示范开展工业节能低碳新技术、新装备、新产品、新材料推广,鼓励各地区、各领域多种形式开展推介对接活动,加快企业节能低碳装备革新和先进适用技术应用。支持企业加强节能降碳先进适用工艺技术装备研发,加大技术攻关集成和成果转化示范。积极跟进节能降碳关键共性技术、前沿引领技术、颠覆性技术研发进展,鼓励企业适时采用氢还原、惰性阳极、碳捕捉等工艺技术实施改造。鼓励组建第三方能效评估机构,研究节能技术和产品认证服务机制。3.探索氢能工业领域应用场景依托海东市氢装上阵(海东)碳中和物联产业园项目、海西州、海南州千万千瓦级新能源基地,加速可再生电解水制氢示范项目建设。在西宁市、海东市、海西州、海南州推动四大绿氢生产示范区建设,实施一批可再生能源电解水制氢示范项目。重点推广化工领域氢能应用、有序推进工业领域氢能应用。依托我省化工产业基础,充分发挥可再生能源、盐湖等优势资源,重点推动海东市氢装上阵(海东)碳中和物联产业园项目,推进“光电氢储用”,以可再生能源绿氢动力带动氢能产业链集群,实施氢能科技,绿色物流,推动产业向清洁化、无碳化发展。打造成国内外知名氢能产业基地、示范应用特色区域和氢能输出基地,推进国家清洁能源产业高地建设。推动海西州德令哈、格尔木工业园绿氢化工产业发展,推进一批合成氨、甲醇乙二醇、碳酸二甲酯(DMC)及下游终端化工产品示范项目落地。探索氢能在冶金、建材、晶硅行业的应用,降低碳排放。(九)数字经济赋能工业低碳转型1.大力推进工业数字转型加快推进工业企业数字化转型,开展两化融合管理体系贯标活动,支持新建工业企业采用过程控制(PCS)、制造企业生产过程执行(MES)、企业资源计划(ERP)等系统软件,提高企业生产经营自动化水平。支持绿色清洁能源、有色金属精深加工和高端装备制造等重点行业大型企业开展制造生产线智能化、绿色化改造,推动低成本、模块数字化设备和系统的部署应用,推进数字化车间、智能生产线、智能工厂建设。支持两化融合基础好、数字基础设施完备的工业园区率先开展智慧园区建设试点示范。2. 推进“工业互联网+绿色低碳”鼓励电信企业、信息服务企业和工业企业加强合作,利用工业互联网、大数据等技术,统筹共享低碳信息基础数据和工业大数据资源,为生产流程再造、跨行业耦合、跨区域协同、跨领域配给等提供数据支撑。优先鼓励绿色清洁能源龙头企业搭建行业互联网平台,提升企业数据管理、应用、共享水平,加快工业软件普及应用,推动工业应用程序(工业APP)的研发应用,实现现场生产过程完善、低碳运营管理决策提升、社会资源优化配置与协同、产品全生命周期碳足迹管理,推动传统工业实现智能化生产、网络化协同、个性化定制和服务化延伸。3.推动数据中心(平台)建设提升节能降碳工作数字化、信息化程度,充分应用云计算、物联网、大数据等信息化技术,依托青海省能源大数据中心平台,建立以数据为支撑,联接重点用能单位的全省重点用能单位能耗在线监测系统,推动建成涵盖全省六大高耗能行业的能源(双碳)大数据中心,分阶段、分行业有序扩展覆盖范围,掌握重点用能单位能源使用情况,分析能源利用效率,能耗异常预警。强化企业能耗—碳排数据监测、数据质量管理、“能碳”双控辅助服务、碳排放峰值预测和碳中和路径规划等支撑功能,构建青海碳交易辅助服务体系,支撑政府碳交易管理,提升重点用能单位参与碳市场能力。鼓励企业建设能碳管理中心,开展重点企业碳资产管理,构建覆盖从能源生产、传输、转化、消费全环节的青海省“能碳”数字支撑体系,实现全过程、全覆盖、预算式闭环管理。三、重点行业碳达峰行动(十)石化行业优化石化产业结构,鼓励石化行业企业升级优化现有技术装备,加强炼化副产物高效利用。推进石化行业高效催化、过程强化、高效精馏等工艺技术改造,以及废盐焚烧精制、废硫酸高温裂解、高级氧化、微反应、煤气化等装备改造,提高原料利用率,降低碳排放。鼓励以电力、天然气作为煤炭替代燃料,增强天然气、乙烷、丙烷等原料供应能力,提高低碳原料比重。合理控制煤制油气产能规模。力争到2030年,合成气一步法制烯烃、乙醇等短流程合成技术实现规模化应用,单位产品能耗力争达到国内先进水平。(十一)化工行业依托青海省盐湖化工产业基础和丰富的新能源资源,重点发展高端镁化合物系列优质耐火材料、高端无卤阻燃材料、绿色环保型镁建材、熔盐相变储能材料、聚苯硫醚纤维和氯化聚氯乙烯耗氯工程塑料材料等新能源和盐湖化工衍生产业链,进一步提升化工新材料和精细化工产品所占比重。加快推进碳纤维复合材料项目,着力突破碳纤维低成本制备和碳纤维复合材料制备关键技术。提升硅橡胶、硅油、硅树脂和硅烷偶联剂等成熟产品的精深加工能力,在航天、电子、化工、医药、日用消费品等领域不断拓展应用,在传统有机硅产品的基础上向特种有机硅方向迈进。积极开展化工行业制酸领域低温热回收、精馏分离系统节能优化,利用低温精馏原理,采用以系统能量耦合为核心的工艺包、高效的精馏塔和换热器系统、高效的分子筛脱除和加热系统、高效传动设备等,实现空分设备的低能耗、安全稳定运行,联碱工业煅烧余热回收应用于结晶冷却高效节能技术及装置。以纯碱、烧碱企业、电石企业为重点,通过淘汰能耗高的机泵等通用设备,在满足工艺装备要求及不增加额外能耗的前提下推广余热余压资源回收利用,实现全过程能源精细化管控,强化现有工艺和设备运行维护。优化原料结构,加大流程工艺系统、控制系统、循环系统开发应用等措施实施技术改造。改造升级后上述化工行业企业能效全部达到行业基准水平,30%的企业达到标杆水平。(十二)有色行业依托青海省有色金属资源禀赋,优化产业供能结构,推进有色金属深加工及衍生高性能新产品深度开发。提高加工过程硫平衡能力,推进有色冶金产业与盐湖化工、氟化工融合发展,实现副产硫酸的高值化利用。升级改造电解铝工艺,提升青海省电解铝及铝锭、铝板带箔等领域的清洁生产水平。推动钛、钠等金属资源深加工,拓宽产业链条推动产业低碳发展。加快有色金属再生产业发展,完善废弃有色金属资源回收、分选和加工网络。以铅锌铜冶炼、电解铝企业为重点,通过淘汰能耗高的机泵等通用设备,研发应用铜冶炼多金属回收及能源高效利用、铅冶炼能源系统优化、锌湿法冶金多金属回收、冶炼渣资源化利用、石墨化阴极、阳极开槽技术等节能新技术,开展铜阳极纯氧燃烧、液态高铅渣直接还原、高效湿法锌冶炼、锌精矿大型化焙烧、多孔介质燃烧、还原熔炼粉煤浸没喷吹、高质量阳极、电解槽综合能源优化、短流程冶炼等技术改造,建立企业能源系统优化控制中心。改造升级后全省有色金属冶炼行业企业能效全部达到基准水平,30%的电解铝企业、50%的铜铅锌冶炼企业达到标杆水平。(十三)钢铁行业深化钢铁行业供给侧结构性改革,全面推进西宁特钢搬迁与技术升级改造工作,在搬迁新建过程中,注重清洁能源替代,加强超低排放改造和节能技术改造,深挖节能降碳潜力。重视冶炼尾渣、高炉煤气等副产资源的综合利用,提升废钢资源回收利用水平,推行全废钢电炉工艺,鼓励基于工业互联网的智慧能源管控、低品位余能深度利用、转炉烟气热回收成套技术开发与应用、基于热泵技术的低温余废热综合利用技术、高炉热风炉燃烧控制模型适用于高炉热风炉燃烧系统优化、流程型智能制造节能减排支撑平台技术、循环氨水余热回收系统、球形蒸汽蓄能器等节能技术和产品的推广应用。开展铁合金行业自动化系统技术升级,促进钢铁行业清洁能源替代,深入开展钢铁行业节能降碳技术改造,探索氢气替代焦炭作为还原剂的技术路径,支持重点钢铁企业发展氢钢产业,建设绿色精品钢材生产基地。提升钢铁、铁合金行业整体能效水平,降低碳排放强度。优化产品结构,提高高强高韧、耐蚀耐候、节材节能等低碳产品应用比例。支持重点钢铁企业发展氢钢产业,建设绿色精品钢材生产基地。重点发展航空发动机高温合金、高品质特殊钢、高性能海洋工程用钢、高端装备用特种合金钢、核心基础零部件用钢等“特、精、高”钢。强化产业协同,构建清洁能源与钢铁产业共同体,推动钢铁及下游行业数字化、绿色化转型升级。以西宁特殊钢集团有限责任公司及铁合金企业为重点,淘汰能耗高的机泵等通用设备,鼓励采用炉料预处理、原料精料入炉、无功补偿、电压优化、变频调速等先进适用技术,持续开展余热余能技术改造、推动炉窑富氧低氮燃烧等节能技术和燃气、蒸汽综合利用增建高温高压双超锅炉及配套的高效发电机项目等。配套建设余热余压利用设施。建立企业能源系统优化控制中心等措施实施技术改造,以网络数字化逐步替代人工采集、统计、分析和管理。改造升级后全省钢铁企业能效全部达到基准水平,30%的企业达到标杆水平。(十四)建材行业加强绿色低碳建材生产技术、工艺研发和推广应用工作,支持企业打造绿色工厂和绿色供应链。发挥有关专项资金的引领带动作用,支持建设绿色建材产业示范基地和绿色建材应用试点示范,提升绿色建材产品质量,扩大绿色建材产品供给,促进我省建材工业绿色化转型升级。协同推进绿色建材产品认证推广应用工作,逐步提高绿色建材应用比例。严格落实新增水泥、玻璃项目产能置换要求,引导建材行业向轻型化、集约化
  • 固定化酶技术在中药酶抑制剂筛选中的研究现状
    中药资源丰富,历史悠久,在预防与治疗疾病中扮演着重要的角色。然而,中药的化学成分多种多样,作用机制更是复杂多样,如何从中药中筛选疾病相关药效物质是当前亟待解决的关键问题。大量研究表明,人体许多疾病过程都与体内生物酶调节作用相关,如痛风[1]、阿尔茨海默症[2]、糖尿病[3-5]等。而且,中药在治疗各种疾病中也扮演着重要角色,如白芷提取物能促进新生血管形成与成熟,从而提高自发2型糖尿病小鼠创面愈合速率和质量[6];绞股蓝叶水提物能够降低链脲佐菌素诱导的糖尿病大鼠的血糖,其作用机制可能与增加骨骼肌肌膜葡萄糖转运体4蛋白表达和抑制骨骼肌炎症有关[7]。因此,基于酶在疾病发生发展的重要性,以酶为靶点从中药中筛选新药是一有力途径,而且开发一种快速、高效的酶抑制剂筛选方法是当前首要任务。固定化酶技术是20世纪60年代发展起来的,该技术利用物理或化学方法将游离酶固定在相应的载体上用于筛选酶抑制剂。固定化酶技术可以有效提高酶的催化性能和操作稳定性,并降低成本,是目前广泛使用的技术[8]。此外,相比于游离酶,固定酶更有利于酶-配合物的分离纯化,在pH耐受性,底物选择性,热稳定性和可回收性等方面表现出优越的性能[9-10]。不同的酶发挥催化作用的活性部位不同,将酶进行固定时,要使载体材料与酶的非活性部位结合,才可以保留酶的活性,因此载体材料的选择是固定化酶技术发挥作用的关键。本文以固定载体材料(表1)为分类综述了近10年固定化酶技术在中药酶抑制剂[α-葡萄糖苷酶(α-glucosidase,α-Glu)、脂肪酶等] 筛选中的研究现状,希望可以为后续的相关研究提供一定的参考依据。1 磁性载体磁性载体材料是利用铁、锰、钴及其氧化物等化合物制备的一类具有磁性的材料[11],通过改变磁力大小和外部磁场的方向来改变粒子的运动轨迹,从而使酶与载体的结合与分离可以在可控条件下完成,便于固定化酶的分离和收集,并用于酶抑制剂的筛选[12]。以磁性载体为材料的固定化酶技术的最大优点在于利用磁力吸引可使固定化酶快速从反应体系中分离,且固定化方法简单,能有效减少筛选时间及实验试剂的消耗。因此,通过不同方法对磁性载体材料进行功能化修饰,在充分发挥磁性材料优势的基础上改善其表面性质,提高对不同类型目标物的特异性,从而在各类复杂样品的前处理过程中有着良好的应用潜力[13]。目前,磁珠是近年来发展起来的一种常用的磁性载体材料,也叫做磁性纳米粒子,包括氧化铁(Fe3O4和γFe2O3)、合金(CoPt3和FePt)等。其中,Fe3O4纳米粒子具有生物相容性和无毒性等优点,被广泛应用于酶的固定化。中药酶抑制剂筛选中的常用磁珠其磁核以Fe3O4纳米粒子为主,壳层为二氧化硅、琼脂糖、葡聚糖等,是具有超顺磁性的小球形磁性粒子[14-15],可借助外部磁场从生物催化体系中分离酶抑制剂。该方法机械稳定性高、孔隙率低,利于降低反应中的传质阻力,提高了固定化酶的重复使用性。由于其具有操作稳定性高、磁响应强、磁分离速度快等优点,在生物和药物研究中得到了广泛的应用[16]。在进行酶抑制剂筛选时,磁珠的修饰位置不同,所固定的位点也不同。因此,在实验中,往往要根据靶蛋白的分子结构选择合适的磁珠或将某一磁珠进行修饰后作为固定载体。将酶固定在合适的磁珠上会增强酶与待筛选酶抑制剂的亲和力,利用磁力将固定化酶及其抑制剂从提取液中分离,然后洗去与酶不相互作用的化合物,随后可得到酶固定化磁珠配体配合物,最后通过洗脱溶剂使配体释放进而通过质谱表征[17]。在这种方法中,潜在的配体与酶相互作用,生成酶配体配合物,这有利于利用磁性[18-23]从复杂混合物中分离活性化合物。在酶抑制剂的筛选中,磁性载体材料是最常用的固定化载体材料[24-30]。1.1 无机载体材料二氧化硅是磁性纳米粒子表面修饰最常用的无机材料[23,31-34],此外还有二氧化钛[35]、介孔二氧化硅[16]等。Li等[23]首先将Fe3O4分散在水中加入聚乙烯吡咯烷酮(polyvinylpyrrolidone,PVP)室温搅拌得到产物。然后在超声作用下将产物分散在含有异丙醇和氨水的混合溶剂中,室温搅拌下缓慢加入正硅酸乙酯(tetraethylorthosilicate,TEOS)溶液得到SiO2@Fe3O4磁性微球,并加入3-氨丙基三甲氧基硅烷(3-aminopropyltrimethoxysilane,ATPES)对其表面进行改性。最后将α-淀粉酶固定在表面改性的SiO2@Fe3O4磁性微球上。将制得的酶固定化磁性微球用于黄花草中α-淀粉酶抑制剂的筛选,最终得到3种黄酮类化合物对α-淀粉酶具有较好抑制作用。Liu等[35]采用溶剂热法(也称水热法或水热合成法)制备了Fe3O4@TiO2纳米粒子,并通过静电相互作用固定脂肪酶。采用透射电镜、傅里叶变换红外光谱和X射线衍射等方法对磁性纳米粒子进行表征,以确定脂肪酶是否已经被固定。研究中应用脂肪酶固定化Fe3O4@TiO2纳米粒子从6种具有脂肪酶抑制活性的藏药中筛选出脂肪酶抑制剂,获得5种具有与临床常用减肥药物奥利司他活性类似的化合物,其中1种化合物(山柰酚)的抑制活性优于奥利司他。Yi等[16]将谷胱甘肽S-转移酶固定在介孔二氧化硅磁性微球表面筛选紫苏中的酶抑制剂,利用高效液相色谱和四极飞行时间质谱法进行鉴定,筛选出6种具有谷胱甘肽S-转移酶抑制作用的物质,其中,迷迭香酸、(−)表没食子儿茶素-3-没食子酸酯和 (−)-表儿茶素-3-没食子酸酯具有较好的抑制活性。最后利用分子对接技术确定潜在抑制剂与谷胱甘肽S-转移酶的结合方式。首先,用FeCl3与柠檬酸三钠和乙酸钠合成Fe3O4,然后将其分散在含有乙醇、去离子水和氨水的混合溶液中,搅拌均匀后加入TEOS制得SiO2@Fe3O4磁性微球。为进一步合成介孔二氧化硅磁性微球(mSiO2@SiO2@Fe3O4),将SiO2@Fe3O4磁性微球分散在十六烷基三甲基氯化铵、去离子水和三乙醇胺中并滴加TEOS,产物用磁铁分离并清洗除杂后得mSiO2@SiO2@Fe3O4磁性微球。最后用PDA对mSiO2@SiO2@Fe3O4磁性微球进行表面改性并将谷胱甘肽S-转移酶固定在其表面。1.2 有机载体材料在酶抑制剂的筛选中,有机载体材料相比于无机载体材料应用较少。目前,用于磁性纳米粒子表面修饰的有机载体材料有聚酰胺(polyamidoamine,PAMAM)[36]、共轭-有机骨架[37]和金属-有机骨架[38]等。Jiang等[36]以PAMAM包覆磁性微球为基础,建立了一种筛选和鉴定赤芍提取物中α-Glu抑制剂的方法。首先,采用微修饰法合成了Fe3O4-COOH微球。然后,通过Fe3O4-COOH微球表面羧基与PAMAM氨基的偶联反应,制备了Fe3O4@PAMAM微球。最后,通过GA的交联,成功地将α-Glu连接到其表面。结果表明,没食子酸和(+)-儿茶素对α-Glu均具有较好抑制作用。Zhao等[37]将乙酰胆碱酯酶(acetylcholinesterase,AchE)固定在适配体功能化磁性纳米颗粒共轭有机骨架上构建固定化酶反应器,并将该方法用于酒石酸、(−)-石杉碱A、多奈哌齐和小檗碱4种AchE抑制剂抑制活性的测定,发现酒石酸的IC50与已报道的结果相当,证明了该固定化酶反应器的可行性。Wu等[38]将α-Glu固定在磁性纳米材料Fe3O4@ZIF-67上,构建了快速筛选α-Glu抑制剂的生物微反应器。然后,将酶生物微反应器通过外加磁场固定在连接高效液相色谱仪(high performance liquid chromatography,HPLC)和微注射泵2端的管中,形成一个磁性在线筛选系统。以信阳毛尖粗茶提取物为实验对象,对该在线筛选方法进行验证,利用该在线筛选系统筛选出3种抑制剂(儿茶素、表没食子儿茶素没食子酸酯和表没食子酸酯)。与传统方法相比,该方法可将筛选、洗脱和分析结合起来,可以简单、高效、直接地从天然来源筛选和鉴定潜在的α-Glu抑制剂。磁珠分散性好,磁分离速度快,酶结合量大,酶活性高,是固定化酶的理想载体,现已广泛应用于酶抑制剂的筛选中。将酶固定在特定的磁珠上,可实现酶抑制剂的分离。此方法操作较稳定,非特异性结合率低。因此,酶固定化磁珠技术因其快速的生物分析、导向性分离和从复杂混合物中直接捕获配体而受到越来越多的关注。2 非磁性载体2.1 无机载体材料2.1.1 石英毛细管 毛细管电泳(capillary electrophoresis
  • 美国化学会C&EN评选出2016年顶级科研成果
    过程化学:冰箱大小的药物生产机器  提到药物制造,很多人都会想起洁净宽阔的厂房、精密运转的大型机器和众多全副武装的技术人员。的确,目前制药公司通常在大型工厂中批量生产药物,生产过程往往漫长而复杂,不同的步骤甚至有可能在不同的地方完成。不过,制药业也在出现一种新趋势,即通过使用小型连续流系统(continuous-flow system)根据需要定制药物,以降低基础设施的成本。  今年,麻省理工学院(MIT)的Timothy F. Jamison、Klavs F. Jensen、Allan S. Myerson和同事设计了一个冰箱大小的连续流系统设备,作为“迷你工厂”以最终制剂的形式来生产临床上直接可用的药物(点击阅读详细)。该系统将药物生产体系上游的化学反应器单元与下游的沉淀、过滤、重结晶和制剂等单元组合在一起,还具有用于质量控制和过程评估的化学分析和计算模块。这种“迷你工厂”比传统的设备小得多,而且更便宜,可以在大约两个小时内按需要制备数百或甚至数千份剂量的药物,特别适合用于制备保质期较短的药物,病人群体很小的“孤儿药”,或者受突发公共卫生事件影响的少部分患者群体的药物。此外,它将会减少对药物运输和存储的需求,让药物生产更加灵活和有针对性,会更受小公司或发展中国家青睐。连续流系统药物生产机器。图片来源:MIT  目前,该系统已经可以生产苯海拉明、盐酸利多卡因、地西泮、盐酸氟西汀的口服和外用液体制剂。下一步,MIT的科学家们希望将系统体积再缩小40%,增加合成更复杂药品的能力,并且将这种专利技术商业化。  On-demand continuous-flow production of pharmaceuticals in a compact, reconfigurable system  Science, 2016, 352, 61-67, DOI: 10.1126 /science.aaf1337  高分子:首个“吃”PET塑料的细菌  聚对苯二甲酸乙酯(polyethylene terephthalate,PET)是最常见的塑料之一,和其他塑料一样,在给人类生活带来很大便利的同时,也会给环境带来很大的压力。全世界的PET塑料年产量超过4500万吨,被生产成矿泉水瓶、色拉盒、花生酱罐以及其它各式各样的产品。PET在美国已经是回收最多的塑料,但是仍有超过一半的PET塑料最终只能进入垃圾填满场,而这种聚合物中的酯键很强,很难自然降解。  日本京都工艺纤维大学的小田康平(Kohei Oda)和庆应义塾大学的宫本贤治(Kenji Miyamoto)等人今年报道了一种利用细菌来帮助降解PET的新方法,这是迄今发现的第一种可以“吃掉”PET塑料的细菌,它将PET作为其主要的碳源和能量来源(点击阅读详细)。他们的研究小组筛选了来自一个塑料回收厂的样本,包括沉积物、土壤、废水和活性污泥,经过微生物筛选发现一种细菌能够在PET薄膜上成长。这种首个被发现能“吃掉”PET的细菌被命名为Ideonella sakaiensis。在两种酶的帮助下,能“吃”PET的细菌。图片来源:Science  PET可通过化学水解方法得到单体进行回收,但该方法需要高温和高压。而这种细菌在温和的30 ℃温度条件下就能够“切割”PET聚合物,得到单体对苯二甲酸和乙二醇。研究人员发现,有两种酶对于这种细菌的PET降解能力十分关键:一种被称为PETase,将PET降解为中间产物单(2-羟乙基)对苯二甲酸(MHET) 另一种被称为MHETase,将MHET水解成单体对苯二甲酸和乙二醇。  不过,这种细菌目前还是个“挑食的吃货”,更喜欢无定形PET,而不是大多数产品中使用的结晶态PET。另外,两种关键酶的作用也太慢,目前也不太适于在工业上。不过没关系,随着科学家进一步优化和改进,纯生物手段的PET高效率无污染回收,或许不用等待太久。  A bacterium that degrades and assimilates poly(ethylene terephthalate)  Science, 2016, 351, 1196-1199, DOI: 10.1126/science.aad6359  材料学:液态金属的新应用  看到“液态金属”这四个字,除了水银,很多读者脑海里可能都会冒出电影《终结者2》中液态金属终结者机器人T-1000的身影。在科幻电影之外,液态金属也是科学家们长期以来很感兴趣的课题。今年,液态金属的一些新应用再次引起了人们的关注。  镓及其一些合金是一种液态金属,当暴露于空气中时,会自发形成薄的氧化物外皮,从而稳定液滴形态以及研究人员创造的其他任意图案。如果这种材料被挤压,氧化物外皮破裂,金属会恢复流动,直到重新生成氧化物外皮。液态镓基合金形成的图案。图片来源:Michael Dickey/NCSU  北卡罗来纳州立大学(NCSU)Michael D. Dickey领导的团队利用镓(Ga)基合金的这种特性,制造了最小可到10 μ m的聚合物包覆的eGaIn线,eGaIn是镓和铟的共晶混合物,熔点15.5 ° C,在室温下是液体。与普通的电线不同,由eGaIn制成的线可以很容易地被拉伸、弯曲和成形,同时还能保持导电性。  Drawing liquid metal wires at room temperature  Extreme Mech. Lett., 2016, 7, 55-63, DOI: 10.1016/j.eml.2016.03.010  在今年的另一项研究中,瑞士洛桑联邦理工学院(EPFL)的Stéphanie P. Lacour和同事们设计了一种两相材料,包含固体AuGa2簇和散布其中的液体镓微液滴。他们使用这种材料通过喷墨打印,在手套上制造包含LED和传感器堆叠层的可拉伸装置,能够追踪手指的细微运动(如下图)。  图片来源:Adv. Mater.  Intrinsically Stretchable Biphasic (Solid–Liquid) Thin Metal Films  Adv. Mater., 2016, 28, 4507-4512, DOI: 10.1002/adma.201506234  爱荷华州立大学的Martin Thuo团队利用铋-铟-锡和相关合金自发形成的氧化物外皮,从而使液态金属微液滴即使在低于其熔点的温度下也不会凝固。对液滴施加温和的力就能破坏氧化物外皮,使得金属在外皮重新形成之前可以短暂地流动。研究人员利用这种特殊的性能可以在室温下将金属部件结合在一起,也就是说,可以在没有电或加热的情况下进行焊接。Bi-In-Sn合金微液滴。图片来源:Sci. Rep.  Mechanical Fracturing of Core-Shell Undercooled Metal Particles for Heat-Free Soldering  Sci. Rep., 2016, 6, 21864, DOI: 10.1038/srep21864  C-H键活化:亚甲基活化的新高度  美国斯克里普斯研究所(The Scripps Research Institute,TSRI)余金权(Jin-Quan Yu)教授和加州大学洛杉矶分校(UCLA)K. N. Houk教授等化学家今年实现了一个长久以来都未曾实现的目标:选择性活化有机化合物中最常见的基团之一——亚甲基(CH2)中特定的碳氢键并将其转化为手性中心。余金权教授(左)和K. N. Houk教授。图片来源:TSRI/UCLA  具体来说,这篇论文中化学家们通过使用乙酰基保护的胺乙基喹啉配体,实现了单一亚甲基碳中心上前手性碳氢键的不对称钯插入,他们还把这些钯复合物用于了脂肪族酰胺的β -位碳氢键不对称官能团化,使用双齿配体来加速碳氢键的活化对于避免底物诱导的环钯化背景反应是至关重要的,从而可以保证高的对映选择性。作者还将这一配体促进的碳氢键活化反应用于了简单羧酸底物的β -位碳氢键芳基化,而不需要再引入导向基。亚甲基C-H键选择性活化。图片来源:Science  瑞士苏黎世联邦理工学院(ETH Zurich)不对称合成专家Erick M. Carreira评论说:“余的团队把之前认为不可能的事情变成了现实。”  这篇论文的背后,是余金权教授14年的努力和坚持。对映选择性的活化β -亚甲基“是我第一个独立工作的项目,那还是在2002年,我还在剑桥大学,”余金权在接受采访时说,“花了14年才终于完成目标。”  论文刊登之后,余金权教授和他的同事们还在进一步扩展他们的方法,例如在其他官能团(如烷基胺)附近创建手性中心。与余教授课题组有合作的百时美施贵宝(BMS)的化学家,已经在用这个反应合成药物候选分子,“但还需要优化以提高复杂底物反应的收率,”余教授说,“我们可能会将这项技术授权给一家化学品开发公司,目前正在谈判。”  Ligand-accelerated enantioselective methylene C(sp3)–H bond activation  Science, 2016, 353, 1023-1027, DOI: 10.1126/science.aaf4434  诊断学:今年流行可穿戴传感器  智能手环、智能手表以及有些手机App可以让人们记录他们的心率、血压以及跑了多远,一些研究人员希望更进一步,开发能够分析人的汗水或环境中化学物质的设备,以监测健康状态、锻炼效果甚至化学品暴露风险。  韩国首尔大学Dae-Hyeong Kim教授领导的研究团队报告了基于石墨烯的可穿戴设备在糖尿病治疗领域的新用途(点击阅读详细)。糖尿病人需要长期监控血糖水平并服用药物,目前的常见的测血糖方法大都需要抽取血液,麻烦且有健康风险。Kim等人发明的这种可穿戴贴片(如下图),贴在皮肤上,通过涉及酶葡萄糖氧化酶的电化学反应测量人体汗水中的葡萄糖含量来检测血糖水平,不会造成任何创伤。另外,与微针阵列相结合,这种可穿戴设备还能够通过皮肤输送治疗糖尿病的药物。图片来源:Nat. Nanotechnol.  A graphene-based electrochemical device with thermoresponsive microneedles for diabetes monitoring and therapy  Nat. Nanotechnol., 2016, 11, 566-572, DOI: 10.1038/nnano.2016.38  加州大学伯克利分校Ali Javey领导的研究小组开发了一种可穿戴设备,包括柔性PET片上的电路板和传感器阵列,可以检测使用者汗液中的盐水平、乳酸盐和葡萄糖。这样,使用者就有可能在出现健康问题之前接收到警报,例如脱水、肌肉痉挛甚至糖尿病。Javey认为,该设备将来的生产成本有可能控制在10美元左右。图片来源:Nature  Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis  Nature, 2016, 529, 509-514, DOI: 10.1038/nature16521  麻省理工学院Timothy M. Swager领导的化学家们设计了一种无线徽章,以检测类似化学武器(如神经毒剂)的分子,灵敏度达十亿分之一。该装置基于浸没在离子液体中的碳纳米管,如果有亲电靶分子存在,它们的电阻会发生改变。图片来源:Joseph Azzarelli/MIT  Wireless Hazard Badges to Detect Nerve-Agent Simulants  Angew. Chem. Int. Ed., 2016, 55, 9662-9666, DOI: 10.1002/anie.201604431  药物发现:加强抗生素的“军火库”  传染性病菌和人类之间的战斗持续了成千上万年,而今年人类有可能稍稍占据优势,这是因为有两组科学家设法升级了我们的抗菌“军火库”——一组制造了新的大环内酯类化合物,另一组则是在我们的鼻子里寻找新抗生素。  哈佛大学Andrew G. Myers研究小组的化学家想出了如何用全合成的方法来增加大环内酯类药物的数量(点击阅读详细)。大环内酯类抗生素是含有14至16个碳原子的大环,包括红霉素和阿奇霉素,Myers等人的“积木式”策略使得他们能够制备之前难以获得的大环内酯类化合物。Myers已经成立了一家名为Macrolide Pharmaceuticals的公司,到目前为止,使用该策略全合成了近1,000种大环内酯类化合物。其中许多对革兰氏阴性病原体具有前所未见的活性,包括对目前使用的几种抗生素耐药的大肠杆菌和克雷伯菌。“积木式”大环内酯全合成策略。图片来源:Nature  A platform for the discovery of new macrolide antibiotics  Nature, 2016, 533, 338-345, DOI: 10.1038/nature17967  德国蒂宾根大学微生物学家Andreas Peschel和Bernhard Krismer领导的团队通过人类鼻孔中的细菌筛选,发现了一种能杀死耐甲氧西林金黄色葡萄球菌(MRSA)的化合物(点击阅读详细)。该分子是一种新的含有噻唑烷的环状肽,称为路邓素(lugdunin),由人类鼻子里面的一种细菌——路邓葡萄球菌Staphylococcus lugdunensis分泌,而这种菌落在约70%的人鼻子中都存在。路邓素代表着一种新的抗菌剂种类,是第一个来自主要生活于人体内的细菌的抗生素。这个发现可能刺激科学家在我们身体的其他地方寻找新的武器,以抗击细菌侵入者。鼻子里的强力抗生素。图片来源:C&EN  Human commensals producing a novel antibiotic impair pathogen colonization  Nature, 2016, 535, 511-516, DOI: 10.1038/nature18634  生物催化:酶法构建C-Si键  硅是地球上位列氧之后第二丰富的元素,但C-Si键在自然界却从未出现过,无论是生物有机硅化合物,还是生成它们的生物合成途径。加州理工学院(Caltech)的研究人员今年发现,如果提供一些合适的起始材料,一些血红素蛋白可以立体特异性地形成C-Si键。  “因为我们提供了合适的前体,自然的铁血红素化学就实现了这一转化,”领导此项工作的Frances H. Arnold说,“这是一个令人印象深刻的例证,大自然可以很容易的进行创新。”  先前,Arnold实验室以及其他地方的工作已经表明,血红素蛋白可以通过插入N-H和S-H键催化非天然卡宾转移反应。在新的实验中,加州理工学院的研究人员筛选了一系列血红素蛋白,以找到那些能够催化2-重氮基丙酸乙酯插入二甲基(苯基)硅烷Si-H键反应的蛋白。  来自于在冰岛海底温泉中发现的细菌Rhodothermus marinus的细胞色素c催化反应的对映选择性达到97% ee,但转换数较低。不过,细胞色素c蛋白通常不催化化学反应,它们通常在细胞中的生物分子之间转移电子。细胞色素c中的血红素蛋白可催化C-Si键形成。图片来源:Science  通过定向进化,加州理工学院团队发现R. marinus细胞色素c的三个突变可以将新酶的对映选择性提高到大于99% ee,并将其转换数提高约15倍。  “这一发现或许可以用于促进工业相关的反应,例如烯烃的氢硅烷化。”柏林工业大学的Hendrik F. T. Klare和Martin Oestreich在同期发表的观点文章的评论道。  Directed evolution of cytochrome c for carbon–silicon bond formation: Bringing silicon to life  Science, 2016, 354, 1048-1051, DOI: 10.1126/science.aah6219  催化:单原子催化剂  金属氧化物或其它固体载体上负载的催化材料(通常是贵金属,例如铂)对工业规模化学过程非常重要,例如将原油转化为汽油。与常规的多原子催化剂相比,采用单原子分散的金属进行催化反应的单原子催化剂的利用率非常高(理论上达100%),大大降低昂贵和稀缺的贵金属的消耗。此外,原子尺度均匀性使不需要的反应和副产物最小化,并使得研究人员能更简单地推断反应机理,这对改善催化剂至关重要。  在今年的一项研究中,新墨西哥大学的Abhaya K. Datye及同事们发现,将铂纳米颗粒暴露于热氧化条件可导致铂形成挥发性PtO2,可从纳米颗粒解吸附(点击阅读详细)。研究人员指出,在高温处理时Pt以PtO2的形式气化,又因与邻近CeO2表面的强相互作用而被CeO2捕获,并以高度分散的形式负载在CeO2载体表面,得到了原子级分散的Pt催化剂,在高温下保持稳定而不团聚,并表现出了一定的CO氧化活性。CeO2捕获气化的Pt氧化物物种示意图。图片来源:University of New Mexico  Thermally stable single-atom platinum-on-ceria catalysts via atom trapping  Science, 2016, 353, 150-154, DOI: 10.1126/science.aaf8800  另一项单原子催化剂研究中,由中国科学院大连化学物理研究所所长张涛院士领导的小组开发了一种制备单原子钴催化剂的湿化学方法。这种催化剂避免了贵金属的使用,可催化氢化和其他反应。但在此之前,关于这类催化剂中活性位点的详细知识难以捉摸,这也阻碍了它们的发展。张涛院士课题组确定了催化剂的活性位点结构,钴原子与石墨层中的四个吡啶氮原子配位,并由两个弱吸附的O2分子封端。该催化剂负载量高达3.6 wt.%,可高活性、高选择性地催化硝基苯加氢偶联制备偶氮苯的反应。钴单原子催化剂和催化的反应。图片来源:Chem. Sci.  Single-atom dispersed Co–N–C catalyst: structure identification and performance for hydrogenative coupling of nitroarenes  Chem. Sci., 2016, 7, 5758-5764, DOI: 10.1039/c6sc02105k  结构生物学:三个生物大分子的结构  结构生物学家通过冷冻电子显微镜、X射线晶体学和其他技术来解析生物大分子的结构,这里列出了C&EN选择的今年三个“明星”生物大分子结构。  DNA酶(DNAzyme)的结构在今年以前一直是个谜,因为研究人员无法结晶这种类型的生物催化剂。德国马克斯普朗克生物物理化学研究所的ClaudiaH?bartner和Vladimir Pena领导的团队解决了这个问题,他们报告了DNAzyme 9DB1的结构,该酶可以连接RNA链(Nature, 2016, DOI: 10.1038/nature16471)。图片来源:Claudia H?bartner  核孔复合物非常巨大,对细胞核也很重要,它负责着数千种蛋白质、RNA分子和营养物质的进出。两个独立的团队,一个由欧洲分子生物学实验室的Martin Beck领导,另一个由加州理工学院的André Hoelz领导,分别解析了这个包括30种核孔蛋白的超大型细胞机器(Science, 2016, DOI: 10.1126/science.aaf0643 DOI: 10.1126/science.aaf1015)。图片来源:Science  组蛋白脱乙酰酶6(HDAC6)的原子分辨率结构对药物开发非常重要,这个蛋白是癌症化疗的“热点靶标”。两个独立的研究小组,一个由宾夕法尼亚大学的David W. Christianson领导,另一个由弗雷德里希?米歇尔生物医学研究所的Patrick Matthias领导,分别解析了HDAC6的结构(Nat. Chem. Biol., 2016, DOI: 10.1038/nchembio.2140 DOI: 10.1038/nchembio.2134)。图片来源:Nat. Chem. Biol.
  • 新型铜催化剂助力二氧化碳变燃料
    中国科学技术大学教授高敏锐课题组合成一系列暴露不同铜(100)和铜(111)晶面比例的铜催化剂,发现铜(100)/铜(111)的界面位点相比于单一的晶面展现了显著增强催化碳—碳电化学耦联的性能,对于利用二氧化碳制备多碳燃料具有重要意义。相关成果日前发表于《美国化学会志》。  电催化二氧化碳还原制备高附加值化学品,是二氧化碳资源化利用的有效手段。近年来,科学界通过电催化二氧化碳制备能量密度高、应用前景广阔的多碳燃料取得很大进展,但其选择性和转化效率仍不尽人意。这主要由于二氧化碳转化为多碳燃料需经历动力学缓慢的碳—碳耦联过程。因此,设计并创制能高效促进碳—碳电化学耦联的催化剂至关重要。  研究人员利用电化学测试表明,与其他铜催化剂相比,这种新型铜催化剂在电流密度为每平方厘米100毫安至400毫安时,均有利于催化二氧化碳到多碳产物的转化。多碳产物的选择性与铜(100)/铜(111)界面的长度呈现线性相关,证明该界面为催化碳—碳耦联的活性位点。原位拉曼和红外实验证明,在铜(100)/铜(111)界面处,能更好吸附中间体,展现更强的碳—碳耦联能力。理论计算进一步表明,铜(100)/铜(111)界面处电子结构被优化,促进了碳—碳耦联动力学。  该项研究发现了铜原子排列变化形成的特定界面结构能更高效地催化碳—碳耦联,降低多碳产物形成过程中的关键步骤能垒,这一成果对于二氧化碳制备多碳燃料的电化学升级利用具有重要意义。  相关论文信息:https://doi.org/10.1021/jacs.1c09508
  • 模拟光合作用的光动力催化剂问世
    美国麻省理工学院研究人员通过模拟光合作用,即植物用来生产糖分的光驱动过程,设计了一种可以吸收光并用光来驱动各种化学反应的新型光催化剂。该研究成果15日发表在《化学》杂志上。  这种新型催化剂被称为生物混合光催化剂,其含有一种采光蛋白,可吸收光并将能量转移到含金属的催化剂上。然后,这种催化剂利用能量进行反应,这些反应可用于合成药物或将废物转化为生物燃料及其他有用的化合物。  研究资深作者、麻省理工学院化学副教授加布里埃拉施劳-科恩表示,光催化可使药物、农用化学品和燃料合成更加高效和环保。研究表明,新型光催化剂可显著提高他们尝试的化学反应的产量,且与现有的光催化剂不同,新催化剂可吸收所有波长的光。  在之前进行的关于光催化剂的工作中,研究人员使用一种分子来进行光吸收和催化。该方法有局限性,因为大多数使用的催化剂只能吸收某些波长的光。为了创建新催化剂,研究人员模拟光合作用并将两种不同的元素结合起来:一种用于采集光,另一种用于催化化学反应。对于光采集部分,他们使用了一种在红藻中发现的被称为R-植物红素的蛋白质。他们将这种蛋白质连接到含钌催化剂上,该催化剂以前曾被单独用于光催化。  联合展开研究的普林斯顿大学团队测试了催化剂在两种不同类型的化学反应中的性能。一种是硫醇—烯偶联,将硫醇和烯烃连接起来形成硫醚,另一种是肽偶联后用甲基取代剩余的硫醇基团。  普林斯顿团队的研究表明,与单独的钌光催化剂相比,新的生物混合催化剂可将这些反应产量提高十倍。他们还发现,这些反应可在红光照射下发生,这是现有光催化剂难以实现的,其对组织的破坏更小,因此有可能用于生物系统。  研究人员说,这种改进的光催化剂可被纳入上述两种反应的化学过程中。硫醇—烯偶联可用于创建蛋白质成像、传感、药物输送和生物分子稳定性所需的化合物。例如,它可用于合成脂肽,使新设计的抗原疫苗更容易被吸收。研究人员测试的另一种反应是西苯脱硫,它在肽合成中有许多应用,包括可用于生产艾滋病治疗药物恩夫韦地。  这种类型的光催化剂还可用于驱动一种被称为木质素解聚的反应,有助于从木材或其他难以分解的植物材料中产生生物燃料。
  • 高性能制造技术与重大装备等18个重点专项2021申报指南征求意见
    2月1日,科技部发布关于对“十四五”国家重点研发计划“氢能技术”、“先进结构与复合材料”、“高性能制造技术与重大装备”等18个重点专项2021年度项目申报指南征求意见的通知。本次征求意见重点针对指南方向提出的目标指标和相关内容的合理性、科学性、先进性等方面听取各方意见和建议。科技部将会同有关部门、专业机构和专家,认真研究收到的意见和建议,修改完善相关重点专项的项目申报指南。征集到的意见和建议,将不再反馈和回复。征求意见时间为2021年2月1日至2021年2月21日,修改意见请于2月21日24点之前发至电子邮箱。 联系方式:重点专项名称邮箱地址氢能技术gxs_njc@most.cn储能与智能电网技术新能源汽车交通基础设施高性能计算gxs_xxc@most.cn信息光子技术多模态网络与通信区块链网络空间安全治理gxs_zdhc@most.cn智能传感器工业软件高性能制造技术与重大装备先进结构与复合材料gxs_clc@most.cn高端功能与智能材料新型显示与战略性电子材料稀土新材料地球观测与导航gxs_fwyc@most.cn文化科技与现代服务业 附件:1.“十四五”国家重点研发计划“氢能技术”重点专项2021年度项目申报指南(征求意见稿).pdf2.“十四五”国家重点研发计划“储能与智能电网技术”重点专项2021年度项目申报指南(征求意见稿).pdf3.“十四五”国家重点研发计划“新能源汽车”重点专项2021年度项目申报指南(征求意见稿).pdf4.“十四五”国家重点研发计划“交通基础设施”重点专项2021年度项目申报指南(征求意见稿).pdf5.“十四五”国家重点研发计划“高性能计算”重点专项2021年度项目申报指南(征求意见稿).pdf6.“十四五”国家重点研发计划“信息光子技术”重点专项2021年度项目申报指南(征求意见稿).pdf7.“十四五”国家重点研发计划“多模态网络与通信”重点专项2021年度项目申报指南(征求意见稿).pdf8.“十四五”国家重点研发计划“区块链”重点专项2021年度项目申报指南(征求意见稿).pdf9.“十四五”国家重点研发计划“网络空间安全治理”重点专项2021年度项目申报指南(征求意见稿).pdf10.“十四五”国家重点研发计划“智能传感器”重点专项2021年度项目申报指南(征求意见稿).pdf11.“十四五”国家重点研发计划“工业软件”重点专项2021年度项目申报指南(征求意见稿).pdf12.“十四五”国家重点研发计划“高性能制造技术与重大装备”重点专项2021年度项目申报指南(征求意见稿).pdf13.“十四五”国家重点研发计划“先进结构与复合材料”重点专项2021年度项目申报指南(征求意见稿).pdf14.“十四五”国家重点研发计划“高端功能与智能材料”重点专项2021年度项目申报指南(征求意见稿).pdf15.“十四五”国家重点研发计划“新型显示与战略性电子材料”重点专项2021年度项目申报指南(征求意见稿).pdf16.“十四五”国家重点研发计划“稀土新材料”重点专项2021年度项目申报指南(征求意见稿).pdf17.“十四五”国家重点研发计划“地球观测与导航”重点专项2021年度项目申报指南(征求意见稿).pdf18.“十四五”国家重点研发计划“文化科技与现代服务业”重点专项2021年度项目申报指南(征求意见稿).pdf关于“高性能制造技术与重大装备”重点专项2021年度项目申报指南(征求意见稿)稿中提到,本重点专项的总体目标是:围绕国家战略产业高端产品及重大工程关键装备在复杂环境、复杂工况下高性能可靠服役需求,突破高性能制造前沿基础理论和共性关键技术,研制具有高精度、高可靠、高效率、智能化、绿色化等高性能特征的基础件、基础制造工艺及装备等,实施重大装备的集成示范应用,推动制造技术向材料-结构-功能一体化的高性能设计制造转变,实现高性能制造技术和重大装备的自主可控,增强我国战略性高端产品和重大工程关键装备的核心竞争力。2021年度指南部署坚持“需求牵引、整机带动、 分步实施、重点突出”的原则,拟围绕高性能制造的基础前沿技术、共性关键技术、重大装备应用示范3个技术方向, 启动18个指南任务。1. 基础前沿技术1.1 重大装备设计基础前沿研究内容:研究性能/功能驱动的复杂装备机-电-液-智耦合设计理论与方法、材料-结构-组织-表界面一体化的高性能构件设计模型与方法、极端环境和复杂工况服役关键特性参数的表征与评价等重大装备及关键构件的设计新原理、新方法。1.2 高性能基础件基础前沿研究内容:面向轴承、齿轮、液压元件等基础件高性能服役需求,研究极端工况下接触界面动力学理论及服役性能调控方法、材料-结构-功能一体化的设计制造理论和方法、极端条件下的服役性能先进测试理论与方法等,为新型高性能基础件研发提供支持。1.3 高性能制造工艺基础前沿研究内容:研究高性能制造过程中的加工、成形、表面改性、焊接、装配等新原理与技术,重点突破难加工材料构件的高效精密加工、复杂结构形性协同成形、大差异异质材料高可靠连接/高强度焊接等新工艺。2. 共性关键技术2.1 耐高温抗腐蚀传动系统轴承研究内容:研究轴承高温、腐蚀环境适配性设计方法; 突破轴承自润滑与供油润滑技术、轴承高功率密度适应性技术、轴承高精度及长寿命关键技术、轴承性能及寿命试验验证技术等;研发耐高温、抗腐蚀环境传动系统轴承,建设基于工业性验证平台的轴承性能试验平台。2.2 深海高可靠耐腐蚀齿轮箱研究内容:突破深海装备齿轮箱可靠性及减振降噪设计、关键构件形性可控制造、基于深海环境的齿轮箱温压差等多物理场耦合、开放环境下防腐与密封、智能故障诊断及健康监测等关键技术,搭建深海装备齿轮箱模拟环境试验平台,研制深海装备齿轮箱。2.3 内曲线低速大扭矩液压马达研究内容:研究内曲线马达低速重载摩擦副的油膜承载特性、界面轮廓形貌设计方法、马达低速稳定性机理等,突破高效率配油系统设计、摩擦副材料及表面功能改性、内凸轮曲线轮廓精密加工等关键技术,开发界面参数评价与测试设备,研制内曲线低速大扭矩液压马达。2.4 航空液压系统高性能密封件研究内容:研究航空液压系统高性能密封件材料与性能评价技术与标准;突破高性能密封-主机系统协同设计、密封件高形状精度与高质量表面加工、可靠性评价等关键技术;搭建极端工况拟实基础试验平台;研发密封件生产过程典型工艺绿色化技术及装备;研制航空作动器、起落架等液压系统高性能密封件。2.5 高速列车传动系统综合试验平台研究内容:突破高速列车轮轨关系模拟、牵引动力能量回馈、实车线路运行工况全参数模拟等技术,研发高速列车传动系统拟实综合试验平台;研究转向架用轴箱轴承、齿轮箱轴承、牵引电机轴承等高铁轴承综合试验方法及评价体系。突破高铁轴承试验大样本数据采集、分析与故障诊断、基于大数据的高铁轴承建模与优化设计等关键技术,模拟实车线路运行工况开展高铁轴承耐久性试验。2.6 高强极薄铜箔制造成套技术研究内容:研究高性能铜箔微纳组织结构与性能关联关系及其调控机理;突破极薄铜箔电沉积、高抗拉高挠曲纳米孪晶组织极薄生箔制备、铜箔超低轮廓高剥离微粗化、硅烷偶联化表面处理、镀液成分监控、铜箔性能检测评价等全流程精准控制关键技术,研制极薄铜箔制造装备,制备极薄高性能铜箔。2.7 大型薄壁铝合金整体构件精确成形技术研究内容:研究大型网格筋薄壁整体构件复合成形原理,突破多级网格筋成形几何连续性、成形精度控制、跨尺度组织性能均匀调控等关键技术,研制测量-规划-成形一体化制造技术与成套装备。2.8 超大规格H型钢高性能热轧成形技术研究内容:构建超大规格H型钢的异形坯连铸、冷却控制、轧制规程、孔型设计等全流程生产工艺模型;突破温度场-应力场-应变场耦合作用的形性一体化调控技术;研制超大规格H型钢的连铸、轧制及精整成套装备。2.9 大尺寸钛合金结构高强韧焊接技术研究内容:研究低熔蚀钛合金焊料原位合成机理,突破大尺寸钛合金结构焊接界面强韧化调控、界面温度自适应调控技术,研制大尺寸钛合金结构高可靠高效焊接装备。2.10 冷冻砂型绿色铸造技术研究内容:研究水基冷冻砂型复合成形机理及宏微尺度精准控制机制、水粘接剂低温喷射渗透和沉积固化多参数耦合机理;突破冷冻砂型浇冒口及浇道优化设计、冷冻砂型加工精度闭环控制及补偿、高温熔体和冷冻砂型界面瞬态热流传导、大温度梯度下凝固组织转变和多尺度协调控制等关键技术;研制数字化冷冻砂型绿色成形装备。2.11 Micro-LED用新型MOCVD技术研究内容:研究新型MOCVD设备的腔体设计、流场结构和外延生长机理,突破加热器温场均匀性提升以及实时调控、LED外延片表面低颗粒度的硬件结构设计等关键技术,开发新型基于模型的温度控制系统、片盒到片盒传输的自动化取放片系统,研制大尺寸衬底上Micro-LED量产的高可靠性MOCVD外延设备。3. 重大装备应用示范3.1 深远海船舶大推力全回转推进器设计制造关键技术与装备研究内容:研究深远海船舶大推力全回转推进器服役性能演变规律与设计方法;突破大推力全回转推进器高精度电液控制、变截面厚壁导流管多能场复合焊接控形控性、大型桨叶加工高表面完整性调控、伞齿轮高性能加工等关键技术;研发大推力全回转推进器高质高效大型导流管焊接、桨叶加工工艺与装备;自主研制大推力全回转推进器。3.2 深水海底钻井系统关键技术与装备研究内容:研究深水海底钻井系统集成设计与布局优化方法,开展深水海底钻井系统总体方案、永磁电动钻具结构创新设计;突破钻井系统海底模块快速安装、下放回收、精准定位、紧急脱离等关键技术;研发深水海底钻井系统集成控制软件,研制深水海底钻井系统装备。3.3 千米竖井硬岩全断面掘进机关键技术与装备研究内容:研究深部地层岩体原位精细化探测与岩性识别方法、大体积硬岩高效机械破碎机理;突破竖井岩石-泥浆 -压缩空气多相流垂直排渣、高效掘进与支护协同等关键技术;开发集中控制的撑靴与悬吊系统、新型破岩刀具与刀盘; 研制千米竖井硬岩全断面掘进机装备。3.4 第三代半导体高性能碳化硅单晶制备和外延工艺及成套装备研究内容:建立大尺寸反应室热力学和动力学模型,突破高温真空低漏率、耐高温耐腐蚀材料及老化特性、中频热场精确控制和扩径生长、膜厚及表面形貌的高精度实时监控等关键技术,研制反应室及加热、大尺寸高效能碳化硅单晶生长、碳化硅高性能外延生长等关键装备,实现6英寸碳化硅单晶生长和外延装备的国产化和批量应用,推动第三代半导体产业发展。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制