当前位置: 仪器信息网 > 行业主题 > >

氨基己酰胺

仪器信息网氨基己酰胺专题为您提供2024年最新氨基己酰胺价格报价、厂家品牌的相关信息, 包括氨基己酰胺参数、型号等,不管是国产,还是进口品牌的氨基己酰胺您都可以在这里找到。 除此之外,仪器信息网还免费为您整合氨基己酰胺相关的耗材配件、试剂标物,还有氨基己酰胺相关的最新资讯、资料,以及氨基己酰胺相关的解决方案。

氨基己酰胺相关的论坛

  • 【求助】请问伯胺和酰胺基的问题

    【求助】请问伯胺和酰胺基的问题

    间苯二甲胺 和 己二酸反应生成 酰胺基胺,可是红外光谱上只能看见仲酰胺基的特征吸收峰,为什么看不到伯胺的峰?3000.41和2915.37处是不是伯胺吸收峰?是不是往后挪了?[img]http://ng1.17img.cn/bbsfiles/images/2009/06/200906080958_154498_1608859_3.jpg[/img][img]http://ng1.17img.cn/bbsfiles/images/2009/06/200906080958_154497_1608859_3.jpg[/img]

  • 【求助】对氨基苯磺酰胺与对氨基苯磺酸

    如题:对氨基苯磺酰胺与对氨基苯磺酸在亚硝酸盐的测定中有区别吗?为什么水中亚硝酸盐的测定GB/T5750。5-2006中用到的是对氨基苯磺酰胺;而食品GB/T5009.34-2008中用到的却要求是对氨基苯磺酸.我们检测水的时候也是用对氨基苯磺酸,你们说对检测结果会有影响吗

  • 【实验】有机实验之磺胺药物对氨基苯磺酰胺的合成

    磺胺药物对氨基苯磺酰胺的合成目的原理Ar-NHCOCH3 + 2HOSO2Cl → p-ClO2S-Ar-NHCOCH3+ HClp-ClO2S-Ar-NHCOCH3 + NH3 → p-CH3CONH-Ar-SO2NH2 + HClp-CH3CONH-Ar-SO2NH2 + H2O → p-H2N-Ar-SO2NH2 + CH2CO2H仪器药品乙酰苯胺(自制) 5g(0.037mol);氯磺酸(d=1.77) 22.5g(12.5ml,0.19mol);浓氨水(28%,d=0.9) 35ml 浓盐酸,碳酸钠。过程步骤(1)对乙酰氨基苯碘酰氯在100ml干燥的锥形瓶中,加入5g干燥的乙酰苯胺,在石棉网上用小火加热熔化。瓶壁上若有少量水气凝结,应用干净的滤纸吸去。冷却使熔化物凝结成块。将锥形瓶置于冰浴中冷却后,迅速倒入12.5ml氯磺酸,立即塞上带有氯化氢导气管的塞子。反应很快发生,若反应过于激烈,可用冰水浴冷却。待反应缓和后,旋摇锥形瓶使固体全溶,然后再在温水浴中加热10~15min使反应完全。将反应瓶在冷水中充分冷却后,于通风中在充分搅拌下,将反应液慢慢倒入盛75g碎冰的烧杯,用少量冷水洗涤反应瓶,洗涤液倒入烧杯中。搅拌数分钟,并尽量将大块固体粉碎,使成颗粒小而均匀的白色固体。抽滤收集,用少量冷水洗涤,压干,立即进行下一步反应。(2)对乙酰氨基苯磺酰胺将上述粗产物移入烧杯中,在不断搅拌中慢慢加入17.5ml浓氨水(在通风橱内),立即发生放热反应并产生白色糊状物。加完后,继续搅拌15min,使反应完全。然后加入19ml水,在石棉网上用小火加热10~15min,并不断搅拌,以除去多余的氨,得到的混合物可直接用于下一步合成。(3)对氨基苯磺酰胺(磺胺)将上述反应物放入圆底烧瓶中,加入3.5ml浓盐酸,在石棉网上用小火加热回流0.5h。冷却后,应得一几乎澄清的溶液,若有固体析出,应继续加热,使反应完全。如溶液呈黄色,并有极少量固体存在时,需加入少量活性炭煮沸10min,过滤。将滤液转入大烧杯中,在搅拌下小心加入粉状碳酸钠至恰呈碱性(约4g)。在冰水浴中冷却,抽滤收集固体,用少量冰水洗涤,压干。粗产物用水重结晶(每克产物约须12ml水),产量3~4g。熔点161~162℃。纯品对氨基苯磺酰胺为白色针状结晶,熔点163~164℃。注意事项1.氯磺酸对皮肤和衣服有强烈的腐蚀性,暴露在空气中会冒出大量氯化氢气体,遇水会发生猛烈的放热反应,甚至爆炸,故取用时需加小心。反应中所用仪器及药品皆需十分干燥,含有氯磺酸的废液不可倒入水槽,而应倒入废液缸中。工业氯磺酸常呈棕黑色,使用前宜用磨口仪器蒸馏纯化,收集148~150℃的馏分。2.酰磺酸于乙酰苯胺的反应非常剧烈,将乙酰苯胺凝结成快状,可使反应缓和进行,当反应过于激烈时,应适当冷却。3.在氯磺化过程中,将有大量氯化氢气体放出。为避免污染室内空气,装置应严密,导气管的末端要与接受器内的水面接近,但不能插入水中,否则可能倒吸而引严重事故!4.加入速度必须缓慢,必须充分搅拌,以免局部过热而使对乙酰胺基苯磺酰胺水解。这是实验成功的关键。5.尽量洗去固体所夹杂和吸附的盐酸,否则产物在酸性介质中放置过久,会很快水解,因此在洗涤后,应尽量压干,且在1~2h内将它转变为磺胺类化合物。6.粗制的对氨基苯磺酰氯久置容易分解,甚至干燥后也不可避免。若要得到纯品,可将粗产物溶于温热的氯仿中,然后迅速转移到事先温热的分液漏斗中,分出氯仿层,在冰水浴中冷却后即可析出晶体。纯品对氨基苯磺酰氯的熔点为149℃。7.为了节省时间,这一步的粗产物可不必分出。若要得到产品,可在冰水浴中冷却,抽滤,用冰水洗涤,干燥即可。粗品用水重结晶,纯品熔点为219~220℃。8.对乙酰胺基苯磺酰胺在稀酸中水解成磺胺,后者又与过量的盐酸形成水溶性的盐酸盐,所以水解完成后,反应液冷却时应无晶体析出。由于水解前溶液中氨的含量不同,加3.5ml盐酸有时不够,因此,在回流至固体全部消失前,应测一下溶液的酸碱性,若酸性不够,应补加盐酸回流一段时间。9.用碳酸钠中和滤液中的盐酸时,有二氧化碳产生,故应控制加热速度并不断搅拌使其逸出。磺胺是一两性化合物,在过量的碱溶液中也易变成盐类而溶解。故中和操作必须仔细进行,以免降低产量。分析思考 1.为什么在氯磺化反应完成以后处理反应混合物时,必须移到通风橱中,且在充分搅拌下缓缓倒入碎冰中?若在未倒完前冰就化完了,是否应补加冰块?为什么?2.为什么苯胺要乙酰化后在氯磺化?直接氯磺化行吗?3 .如何理解对氨基苯磺酰氨是两性物质?试用反应式表示磺胺与稀酸和稀碱的作用。

  • 对氨基苯磺酰胺溶液为什么会出现结晶现象?

    称取5克对氨基苯磺酰胺,于1比7盐酸溶液中,稀释至500M。这溶液时间用长了,瓶底有一层白色结晶,这是什么问题,刚配时是全部融化,看不到什么结晶,为什么时间长就会出现这个问题,结晶是什么?请各位高手指教,谢谢。

  • 甲酰胺的用途介绍

    甲酰胺具有活泼的反应性和特殊的溶解能力,可用作有机合成原料,纸张处理剂,纤维工业的柔软剂,动物胶的软化剂,还用作测定大米中氨基酸含量的分析试剂。在有机合成中,医药方面的用途居多,在农药、染料、颜料、香料、助剂方面也有很多用途。  用作中间体,合成咪唑、嘧啶、1,3,5-三嗪、咖啡碱、茶叶碱、可可碱。用作染料、香料、颜料、粘合剂、纺织助剂、纸张处理剂等的原料。生产甲酸、二甲基甲酰胺的原料等。  也是优良的有机溶剂,主要用于丙烯腈共聚物的纺丝和离子交换树脂中,以及塑料制品的防静电涂饰或导电涂饰等。此外,还用于分离氯硅烷、提纯油脂等。甲酰胺可发生多种反应,除了由三个氢参与反应外,还可以进行脱水,脱CO,引入氨基,引入酰基和环合等反应。

  • 【原创】测益母草中盐酸水苏碱?来看丙基酰胺键合硅胶柱

    【原创】测益母草中盐酸水苏碱?来看丙基酰胺键合硅胶柱

    2010年版药典(一部)中,对益母草中盐酸水苏碱的测定有如下描述(以丙基酰胺键合硅胶为填充剂):http://ng1.17img.cn/bbsfiles/images/2011/01/201101080907_272670_801_3.jpg那么为什么要用丙基酰胺柱来测盐酸水苏碱呢?丙基酰胺硅胶基质的柱子是什么柱子呢? 首先我们要了解盐酸水苏碱的特性,盐酸水苏碱的极性极大,普通的反相色谱对它的保留分离能力较弱,通常在死时间里流出而无法得到分离,而亲水作用色谱HILIC能为极强性的化合物提供良好的保留,在此类化合物上应用广泛。 目前已有多种商品化的HILIC色谱柱,多为硅胶基质,键合不同极性基团,如丙基酰胺基,酰胺基,聚琥珀亚酰胺等极性基团,氨基键合硅胶柱由于使用寿命较短,键合相容易流失,造成保留 丙基酰胺键合硅胶克服了传统正相色谱柱在水相条件下不稳定的缺点,其常使用流动相是和反相色谱相同的水相缓冲液( 40%)及有机溶剂,但是其梯度条件通常是初始为高比例有机相,逐步加大水相含量;极性丙基酰胺键合硅胶的HILIC色谱柱在反相条件下,可以有效的保留极性化合物,是一种崭新的极性化合物HPLC分离解决方式.博纳艾杰尔推出的Venusil HILIC (丙基酰胺键合硅胶),就是一样一款非常适合于益母草中盐酸水苏碱测定的柱子,测定方法及谱图如下:色谱柱:Venusil HILIC (丙基酰胺键合硅胶),4.6×250mm,5µm,100Å(订货号:VH952505-0)流动相:乙腈-0.2%冰醋酸(80:20)流速:0.5mL/min柱温:25℃进样体积:20μL检测器:ELSD蒸发光散射检测器http://ng1.17img.cn/bbsfiles/images/2010/11/201011291710_262707_801_3.jpg益母草供试品含量测定色谱图(主峰保留时间:22.697min)

  • 偶氮甲酰胺检测的注意事项

    偶氮甲酰胺检测的注意事项一案例背景及具体问题描述  据媒体报道,市场上不少面粉中,都发现了偶氮甲酰胺的成分,而添加这种成分,主要是为了让面制品口感更加筋道。偶氮甲酰胺是欧盟明令禁止的添加剂,主要是由于偶氮甲酰胺水解后产生可能致癌的氨基脲。欧盟很早就已经禁止作为面粉处理剂使用偶氮甲酰胺,2005年开始禁止偶氮甲酰胺作为发泡剂在食品包装中使用,“致癌”二字让公众毛骨悚然,一定程度上造成了社会恐慌。  事实上,偶氮甲酰胺在美国和加拿大是合法的食品添加剂,在各种食品中广泛存在。在国内最新修订版的GB 2760-2014《食品安全国家标准 食品添加剂使用标准》里,偶氮甲酰胺标注的功能是面粉处理剂,使用范围是小麦粉,最大使用量为0.045g/kg。这说明,偶氮甲酰胺作为一种食品添加剂,在一定范围内对人体无害,在规定的剂量下添加符合我国相关规定。  对于食品中偶氮甲酰胺的检测,目前国内还没有制定相关标准,本实验室建立了一种科学高效、准确方便的检测方法,在此提出与大家探讨。

  • 偶氮甲酰胺介绍

    偶氮甲酰胺(又称偶氮二甲酰胺),英文名称Azodiacarbonamide(简称ADA)。在我国的食品安全国家标准中,规定其在小麦粉中的最大用量是每千克0.045g。所以一般来说,不超过限量标准都是可以的。ADA 其实本身危害不大,反倒是它的分解产物危害很大。它在一定温度(大概180度)和湿度条件下,会分解为联二脲,进而转变为氨基脲。而氨基脲是明确的致癌物质。还是那句,在国标限量范围内,还是比较安全的。但是现实是,很多面粉、面包等面制品中都超标了。特别是一些小作坊,ADA 的含量是限量标准的2倍以上……所以,还是注意一点好

  • 丙烯酰胺三个主要来源途径,食品安全法规中规定了吗?

    1、直接从氨基酸生成丙烯酰胺。比如,天门冬酰胺(Asn)在受热之后,脱掉一个CO2和一个NH3,即可转化为丙烯酰胺。凡是富含天门冬酰胺的食物,都非常容易产生丙烯酰胺。比如土豆、麦类、玉米等都是富含天门冬酰胺的食品。 2、氨基酸和淀粉类食物中的微量小分子糖在加热条件下发生美拉德反应,生成丙烯酰胺。在食品中,只要是含淀粉的食品,一般都会同时含有一些蛋白质,比如所有的主食、所有的薯类、所有的淀粉豆类。不过,各种氨基酸合成丙烯酰胺的“能力”有所不同。其中还是以天门冬酰胺独占鳌头,其次是谷氨酰胺(Gln),再次是蛋氨酸(Met)和丙氨酸(Ala)等。淀粉倒是不产生丙烯酰胺,但淀粉分解产生的糖会产生丙烯酰胺,葡萄糖最有效,后面依次是果糖、乳糖和蔗糖。  3、脂肪和糖降解形成丙烯醛,然后和氨基酸分解产生的氨结合,形成丙烯酰胺。凡是油炸的食品,都会发生油脂热氧化反应,而反应产物之一就是丙烯醛,它是一种挥发性小分子物质和油烟的味道有密切关系。油炸食品特别容易产生丙烯酰胺,这是理由之一。此外,蛋白质氨基酸分解也能产生少量的醛类,其中包括丙烯醛。

  • 赛百味、星巴克等爆出的偶氮二甲酰胺问题,大家怎么看?

    赛百味、星巴克等爆出的偶氮二甲酰胺问题,大家怎么看?

    http://ng1.17img.cn/bbsfiles/images/2014/02/201402111749_489929_2650278_3.jpg 近日传出美国快餐巨头赛百味、麦当劳、星巴克等面包中含有化学添加剂偶氮二甲酰胺(Azodicarbonamide,又名偶氮甲酰胺),受到广泛关注。再一次的,涉及的企业如赛百味声称“国外有事,中国没事”。但是真的如此吗?大家怎么看?有没有检测过偶氮二甲酰胺(偶氮甲酰胺)?相关新闻: 国际食品包装协会常务副会长兼秘书长董金狮在接受媒体采访时指出,赛百味(中国)的声明值得注意,中国面制品特别是面包糕点类产品滥用添加剂的问题也很严重,且相关食品监管也存在真空。 近年来有研究表明,尽管偶氮二甲酰胺本身并不致癌,但其在高温分解过程中,可能会产生致癌物氨基脲,而其本身食用过量也会出现气喘和过敏等不良反应。欧盟很早就已经禁止使用偶氮甲酰胺作为面粉处理剂。在研究人员发现婴儿牛奶和婴儿食品存有潜在高风险,可能迁入偶氮二甲酰胺的代谢致癌物氨基脲后,2005年,欧盟禁止在食品包装中使用偶氮甲酰胺作为发泡剂。此外,因为担心这一化学制剂诱发癌症,英国、新加坡、澳大利亚、日本等国都已禁用。  “企业的实际添加量很难控制,监管起来有一定困难。”董金狮认为,监管不力就无法营造良好的行业环境,甚至可能对守法企业造成伤害。“正规企业按照国家标准执行,但那些小企业、不法企业因为缺少监管,擅自超量添加偶氮甲酰胺。这样一来,不法企业所生产的面包等食品就会比守法企业的产品看起来好很多。这对守法企业会造成了较大伤害。”  此前,北京粮食集团(京粮集团)古船食品有限公司品研部经理李巍也曾在媒体公开表示,希望国家能严格控制偶氮甲酰胺的使用,但是一定要有严格的监管。“很多不正规的小企业、小作坊,他们如何使用无人监管。现在最重要的是没有检测方法。他们使用了,我们不用,他们的产品口感、外观上都会比我们好,这样就会导致我们的市场竞争力降低。”  董金狮指出,尽管《食品添加剂使用标准》对偶氮甲酰胺使用作出了限制,但目前仍没有相关部门对食品中偶氮甲酰胺的含量进行相应检测。另一方面,由于偶氮甲酰胺本身并不致癌,因此,即便生产中偶氮甲酰胺的添加含量符合规定,也无法检测其在食品中产生了多少致癌物氨基脲。

  • 如何定量检测N,O-双(三甲基硅基)乙酰胺中乙酰胺

    有什么比较好的[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相[/color][/url]方法定量检测N,O-双(三甲基硅基)乙酰胺中乙酰胺。用什么试剂做溶剂能够溶解乙酰胺同时又不与N,O-双(三甲基硅基)乙酰胺反应呢?

  • 谷氨酰胺转氨酶(TG酶)的功效特点和使用方法

    [font=SimSun, STSong, &]谷氨酰胺转氨酶(TG酶)的功效特点和使用方法[/font][font=SimSun, STSong, &]一、TG酶简介[/font][font=SimSun, STSong, &]谷氨酰胺转胺酶(Transglutaminase,简称TGase或TG),又称转谷氨酰胺酶,是一种由331个氨基组成的分子量约38000的具有活性中心的单体蛋白质酰基转移酶。[/font][font=SimSun, STSong, &]这种酶广泛存在于人体、高级动物、植物和微生物中。该酶可通过分子插入、交联反应、脱氨作用,使蛋白质分子之间或之内的交联、蛋白质和氨基酸之间的连接以及蛋白质分子内谷氨酰胺残基的水解。通过这些反应,使蛋白质分子结构发生变化,可使蛋白质分子由小变大,从而改善蛋白质的结构和功能,如提高蛋白质的发泡性、粘接性、乳化性、凝胶性、增稠性和乳化稳定特性等,进而改善富含蛋白质食品的外观、风味、口感和质构等,改善各种蛋白质的功能性质,如营养价值、质地结构、口感和贮存期等。经TG改性后,蛋白质的胶凝性、塑性、持水性、水溶性、稳定性等均会得到改善。[/font][font=SimSun, STSong, &]二、TG酶的特点[/font][font=SimSun, STSong, &]1、粘合力极强:[/font][font=SimSun, STSong, &]TG催化蛋白质之间形成的共价键在一般的非酶催化条件下很难断裂,所以用该酶处理食品组分粘合力极强。用该酶处理碎肉成形后,经冷冻、切片、烹饪处理均不会散开。[/font][font=SimSun, STSong, &]2、PH值稳定性好:[/font][font=SimSun, STSong, &]TG粗酶的最适作用pH为6-7,但在pH5.0~8.0的范围内都有较高的活性。当pH低于5时,酶活迅速降低,当pH高于8小于9时,酶活缓慢下降。这与一般蛋白质食品体系的pH值是一致的,有利于在食品生产中应用。[/font][font=SimSun, STSong, &]3、热稳定性强:[/font][font=SimSun, STSong, &]经研究发现TG粗酶的最适温度在52℃左右,在42~57℃范围内都有较高的活性。特别是在蛋白质食品体系中,该酶的热稳定性会显著提高,这一特性使其在一般的食品加工过程中,不会因为热处理而迅速失活。[/font][font=SimSun, STSong, &]4、使用安全:[/font][font=SimSun, STSong, &]由于TG广泛存在于动物组织中,人们一直食用含有TG催化形成的赖氨酸异肽键的食物,因此TG用TG生产的新型食品不仅对人体是安全的,还有利于人体的健康。[/font][font=SimSun, STSong, &]三、功效与用途[/font][font=SimSun, STSong, &]TG的主要功能因子是谷氨酰胺转胺酶,用于生产新型蛋白食品。广泛应用于肉制品、乳制品、鱼制品、豆制品和面制品中。[/font][font=SimSun, STSong, &]1、改善食品质构。[/font][font=SimSun, STSong, &]它可以通过催化蛋白质分子之间发生的交联,改善蛋白质的许多重要性能。如用该酶生产重组肉时,它不仅可将碎肉粘结在一起,还可以将各种非肉蛋白交联到肉蛋白上,明显改善肉制品的口感、风味、组织结构和营养。[/font][font=SimSun, STSong, &]2、提高蛋白质的营养价值。[/font][font=SimSun, STSong, &]它可将某些人体必需氨基酸(如赖氨酸)共价交联到蛋白质上,以防止美拉德反应对氨基酸的破坏,从而提高蛋白质的营养价值。谷氨酰胺转胺酶还可以向氨基酸组成不理想的蛋白质中引入所缺乏的氨基酸,发展中国家的人们对这一点特别感兴趣。[/font][font=SimSun, STSong, &]3、形成耐热、耐水性的膜。[/font][font=SimSun, STSong, &]经该酶交联过的酪蛋白脱水后便可得到不溶于水的薄膜,这种薄膜能够被胰凝乳蛋白酶分解,因而是一种可食用的膜,能够用作食品包装材料。用于包埋脂类或脂溶性物质。提高食品的弹性和持水能力[/font][font=SimSun, STSong, &]4、TG还具有一些独特的性质,它可以通过赖氨酸分子交联到蛋白质大分子上,保护食品中的赖氨酸免受各种加工过程的破坏;TG可用于包埋脂类和脂溶性物质,可使蛋白质形成耐热性、耐水性的膜;采用TG处理后,在蛋白质形成凝胶过程中不需要热处理。[/font][font=SimSun, STSong, &]四、TG酶的使用[/font][font=SimSun, STSong, &]1.TG的最适pH为6~7,所以使用时应尽量使TG使用的环境在pH6~7之间,最好不要超过5~8的范围。[/font][font=SimSun, STSong, &]2.TG的活性在40℃保持稳定,在超过40℃之后逐渐减弱,对于反应时间10分钟的最适温度是50~55℃,随着反应时间的延长,最适反应温度也会降低,而温度高时由于食品尤其是鱼、肉、乳制品等食品容易发生变质,所以反应温度的确定,是所有因素中最为关键也最难确定的因素,在保证产品品质的前提下,它直接影响到TG的添加量及其催化反应所需时间长短,一般地,对于鱼肉等低油易变质的产品所选反应温度都较低(1~10℃),而相应反应时间较长(2~12小时以上),一般来说,反应温度不高于40℃。[/font][font=SimSun, STSong, &]3.作用对象。首先TG的作用对象是蛋白质,催化的是其中“可反应”的谷氨酰胺残基发生反应,所以蛋白质的含量及其中“可反应”的谷氨酰胺残基含量对TG的作用效果都有很大影响,也就是说并不是所有的蛋白质或含蛋白质的食品都是TG的良好底物。[/font][font=SimSun, STSong, &]其次,要发生反应还需有赖氨酸残基的存在(否则TG的作用只能是改变蛋白质的溶解性及与之相关的性质),即“可反应”的赖氨酸残基的含量对TG的交联反应也有很大影响。[/font][font=SimSun, STSong, &]4、常见的TG的良好底物有牛奶中的酪蛋白及其钠盐,肉中的明胶及肌球蛋白、大豆蛋白中的11s球蛋白及7s球蛋白,所以为了取得很好的交联效果,可在作用对象中适当加入TG的良好底物,其中最常用的酪蛋白酸钠及明胶以及廉价的大豆蛋白,这里需要特别提出的是:[/font][font=SimSun, STSong, &](1)有些蛋白质可通过采取适当的方法乳酶解加热变形却是本身含谷氨酰残基和/或赖氨酸残基比较多,只是由于空间结构等关系,它们不能被TG所催化反应,通过酶解或加热变性后这些残基就会暴露出来,变成“可反应”的残基,如小麦中的面盘蛋白、乳清蛋白等。[/font][font=SimSun, STSong, &](2)可由选择地加富含可反应的谷氨酰残基或赖氨酰残基的蛋白质残多肽,如谷氨酰或赖氨肽,以补充作用对象中相关氨基酸残基的不足。[/font]

  • 【第三届原创参赛】C18与丙基酰胺硅胶柱对肌肽分离能力比较

    维权声明:本文为huomeng520原创作品,本作者与仪器信息网是该作品合法使用者,该作品暂不对外授权转载。其他任何网站、组织、单位或个人等将该作品在本站以外的任何媒体任何形式出现均属侵权违法行为,我们将追究法律责任。本实验建立了一种以牛肉中肌肽为代表,反相分离测定亲水性物质的方法。该方法选用丙基酰胺键合硅胶亲水作用色谱柱,反相分析测定牛肉中亲水性成分—肌肽的含量。该方法操作简单,样品无需衍生处理。通过该法结合 H P L C—M S联用技术确定了保留时间为10.276~10.609min的色谱峰就是肌肽峰。将该色谱柱与常规C18色谱柱进行对比后发现,该色谱柱对L-肌肽的保留能力和分离能力均优于C18柱。此法精密度实验显示其相对标准偏差(RSD%)为1.06%,最低检测限为4.59×10-2mg/L。最后实验结果表明:亲水性色谱柱反相使用时,完全适用强极性物质含量的测定,通过实际样品分析检测,每克牛肉的肌肽含量为0.011克。引言L-肌肽(L-carnosine)是一种水溶性二肽,在1900年由Gulewitsch和Amiradzhibi在牛肉提取物中发现。L-肌肽天然存在于多种脊椎动物的骨骼肌以及新陈代谢旺盛的脑中。它具有广泛的生物活性,如抗氧化、保护膜的完整性、抗糖基化、质子缓冲、调节巨噬细胞活性等,是维持机体正常状态的一种含量很低的物质。L-肌肽的结构为β-丙氨酰—L-组氨酸。L-肌肽的结构如图1所示。从化学结构上看,肌肽由于含有较多的极性基团(-OH、-NH2、-COOH),水溶性特别强。肌肽的正辛醇—水分散系数为-2,远远小于0,理论上说明了L-肌肽的强极性,不溶于任何有机溶剂,属于亲水性成分。近年来,L-肌肽的研究一直受到人们关注。其含量测定方法一直在探索中。目前已报道的L-肌肽的分析方法主要以高效液相色谱法为主,且多采用柱前衍生化法,这种方法试剂成本高,样品预处理繁琐,且分析时间长,不利于对样品的快速检测。也曾有报道将离子色谱和毛细管电泳色谱应用于L-肌肽的测定,但两种方法较为复杂,且仪器操作较为繁琐。将氨基柱应用于反相高效液相色谱,能实现对样品中L-肌肽快速、准确地检测,但氨基柱不耐水解,长时间在反相条件下使用,会缩短氨基柱的使用寿命。所以应选择一款既耐水解,柱效又高的色谱柱对牛肉中L-肌肽进行分析。色谱柱填料通常是以硅胶为载体,在硅胶表面进行修饰。C18色谱填料是在硅胶表面键合非极性的十八烷基碳,属于非极性色谱填料。根据“相似相亲原则”,应选用极性较强的色谱柱分析极性物质,普通的C18反相色谱柱属于非极性色谱柱,对亲水性成分没有保留能力,因此不能满足对此类物质的分析要求。实验中选用丙基酰胺键合硅胶柱,该色谱柱填料以硅胶为载体,表面键合丙基酰胺基团,极性强,耐水解,适用于对极性物质的分离。马婧玮采用此柱,实现了对亲水性井冈霉素A快速准确的定量分析。本次实验从L-肌肽的性质出发,结合色谱柱的性质,将丙烯酰胺键合硅胶色谱柱与常规C18柱进行对比,并借鉴田颖刚等人已发表的L-肌肽质谱分析条件,选择分离效果最好的色谱柱与电喷雾质谱串联使用,对牛肉中肌肽进行了分析鉴定。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制