当前位置: 仪器信息网 > 行业主题 > >

膦酰基己酸

仪器信息网膦酰基己酸专题为您提供2024年最新膦酰基己酸价格报价、厂家品牌的相关信息, 包括膦酰基己酸参数、型号等,不管是国产,还是进口品牌的膦酰基己酸您都可以在这里找到。 除此之外,仪器信息网还免费为您整合膦酰基己酸相关的耗材配件、试剂标物,还有膦酰基己酸相关的最新资讯、资料,以及膦酰基己酸相关的解决方案。

膦酰基己酸相关的资讯

  • 西安光机所计算光学显微成像研究获进展
    使用光学显微镜进行病理切片检查是癌症诊断的“金标准”。传统的数字病理学常使用高倍物镜和扫描拼接的方法以获得大视场、高分辨率图像,但高精密电动位移台、高倍物镜、脉冲光源等组件价格昂贵,提高了仪器设备的成本,且大量的机械运动也会减缓成像的时间效率。同时,高倍物镜带来的景深狭小和机械扫描拼接带来的伪影、重影、失败问题等也降低了成像质量。2013年,科研人员发明傅里叶叠层显微术(Fourier ptychographic microscopy,FPM)。该技术使用低倍物镜获得天然的大视场,通过多角度扫描方式采集一组低分辨率图像,在频域中迭代重构高分辨率的结果,无需机械扫描就能获得高分辨率、大视场图像,有效地解决了传统扫描成像的质量问题,突破了传统显微成像中分辨率与视场之间的矛盾关系,使得在数字病理学中实现高通量成像成为可能。   全彩色FPM成像对于分析标记的组织切片至关重要。传统扫描拼接依托彩色相机速度很快,尽管FPM技术在单通道下有高通量优势,但彩色化下使用传统的RGB序列照明合成则会缩小3倍通量,因此如何在保持精度的同时提高彩色化效率、保持高通量的优势、突破精度与效率的矛盾关系是主要的科学问题。2021年,中国科学院西安光学精密机械研究所潘安、马彩文、姚保利团队提出了颜色迁移傅里叶叠层显微术(CFPM)的方法,以几乎无精度损失的情况下将效率提高了3倍(Science China Physics, Mechanics & Astronomy,封面文章)。由于缺乏对颜色传递过程中空域信息约束,该方法无法恢复多色染料染色的复杂样品,且依赖GPU的并行计算。鉴于此,科研团队提出了改进的FPM全彩色成像算法,称为颜色迁移滤波傅里叶叠层显微术(CFFPM)。该方法将交叠分块、三边滤波与全彩色FPM迁移学习模型相结合。前者降低了解空间的搜寻范围,后者引入了空域的先验信息,有效地匹配了最合适的颜色传递像素和滤除了杂色,进一步通过迭代在两个色彩空间的颜色精炼,从而克服了CFPM的重要缺陷。实验对比26个样本统计结果显示:在精度方面,CFPM、CFFPM与RGB序列照明方法相比均方误差分别高4.76%和1.26%;在视觉效果方面,CFFPM可有效分辨多色染料染色的复杂样本,与RGB序列照明方法难以分出差别;在时间效率方面,与RGB序列照明方法相比,CFPM和CFFPM均具有更高的效率/与在CPU上运行的CFPM相比,CFFPM方法的运行时间从几小时减少到几分钟;在临床应用方面,颜色精度对于病理判断至关重要,而简单地加快成像速度导致彩色成像的精度损失。CFFPM在两者之间做到了较好的取舍,在快速成像的同时保持了高精度彩色成像的优势,使得结果能够被病理学家可用可接受,特别是对时间敏感的术中病理颇具应用前景。此外,CFFPM无需GPU加速,由于其低成本硬件要求,可广泛推广到实际应用中,为计算光学成像在数字病理学中的临床应用提供了新思路。   该工作将先验的空域信息和颜色空间迭代精炼思想引入到快速全彩色FPM研究中,对于促进FPM在数字病理学中的发展具有重要意义。9月30日,相关研究成果以Rapid full-color Fourier ptychographic microscopy via spatially filtered color transfer为题,在线发表在Photonics Research上。研究工作得到国家自然科学基金等的支持。
  • 《计算机化系统》让国产仪器面临严峻挑战
    p   2015年5月26日,CFDA曾发布“《药品生产质量管理规范(2010年修订)》计算机化系统和确认与验证两个附录的公告(2015年第54号)”,其两个附录分别为“计算机化系统”和“确认与验证”。公告自2015年12月1日起实施。 /p p   简单来说,法规要求制药企业所有用于放行产品、产生数据的仪器,都必须具备“审计追踪”功能,以保证 a title=" " style=" color: rgb(255, 0, 0) text-decoration: underline " href=" http://www.instrument.com.cn/application/industry-S22.html" target=" _self" span style=" color: rgb(255, 0, 0) " strong 数据完整性 /strong /span /a 必须对系统访问及操作进行记录,以显示“何时由谁因何原因做出了什么动作”。 /p p   新颁布的《计算机化系统》法规附录是国内法规与国际接轨的重要一步,将填补国内对于计算机化系统要求的法规空白,是实现与国际法规监管机构之间相互认可的前提条件之一。 /p p   从制药企业自身来说,历经2015年全年CFDA频繁的飞行检查,不断有企业GMP证书被取消,国内GMP的监管力度显著提高,无论从保证产品质量,还是从应对检查的角度来讲,企业都必须符合《计算机化系统》法规的要求。 /p p   法规还提出对电子数据安全性的要求。电子数据安全性一般分为逻辑安全性和物理安全性。逻辑安全性即是通过软件自身的权限控制对数据的访问、录入、修改和删除等操作,确保不被人为误操作或有意的篡改行为而影响数据安全。而物理安全性,即是对数据存储的介质(如硬盘、光盘、服务器等)进行保护,确保系统本身不会因为物理介质的损坏或故障造成数据丢失。 /p p   另外,还单独列出了“数据备份要求”,这将提高制药企业对数据备份的重视,不论是以电子数据作为主数据,还是纸质打印件作为主数据。 /p p   通过“审计追踪”功能,可追踪对数据的访问的更改,是维护系统安全的关键。 /p p   《计算机化系统》附录明确认可电子数据和电子签名,这意味着原始数据可以不用像以往那样打印出来再签名,直接对电子数据进行签名是合规的。在不久的将来,制药企业或将由传统的纯纸质记录逐渐转向更为灵活的电子数据和信息环境。 /p p   根据《计算机化系统》附录的要求,除了色谱类(LC和GC)数据,实验室也要确保非色谱类数据的安全性和合规性,比如质谱、红外、核磁等仪器,至少要保证试验时间无法修改。 /p p   如今,距公告开始实施已近两个月,虽然因经济原因部分企业可以延期施行,但这已经是大势所趋,未来所有企业都必须符合新版GMP要求才可进行生产。目前进口仪器的相关计算机化系统功能都比较完备,但价格不菲。举例来说,十万分之一的分析天平,其微电脑控制面板可确保操作能够被记录,但价格均在十万元人民币以上,对于药厂来说,一台分析天平显然不可能满足日常生产检验的需求,可想而知,符合新法规的药物分析仪器如果都采用进口仪器,花费必然可观 国产仪器虽然物美价廉,但是在计算机化系统上,却仍为短板,为符合GMP计算机化系统要求,国产仪器厂商将面临严峻挑战。 /p p br/ /p
  • X射线计算机层析成像技术解析
    X射线三维成像可以实现物体内部的无损检测。但是对于大尺寸的板状样品的三维成像一直是业界的难题,层析成像技术是目前解决这一难题的最佳方法。一、 什么是层析成像?目前比较被大众熟知的Computed Tomography(CT)通常被翻译为计算机断层成像。最早的实验室CT扫描机由英国Godfrey Hounsfield于1967年建成,第一台可供临床应用的CT设备于1971年安装在医院。CT自发明以来,经历了多代发展,这里就不再赘述。简单理解,CT就是求解一个线性方程组,最终得到的结果就是CT图像。CT扫描就是构造方程组的过程,每一条被探测器接收的射线就代表了一个方程。对二维断层成像而言,要想得到好的求解结果,需要平面内任意方向的射线。这也是要求射线源-探测器组合相对于成像目标旋转360度的原因(出于严谨考虑,这里声明不考虑短扫描等情形)。层析成像技术,早在1921年就已经出现。这个时期的层析成像可以称之为传统层析成像。由于信息交流的不便,多个国家的研究者分别独立提出了层析成像的方法,并且给予了不同的命名。目前流传下来比较被大家接受的是Tomosynthesis和Laminography。现在用于乳腺癌筛查的钼靶成像(只是用了钼靶射线源而已),严格讲应该叫作数字乳腺层析成像(Digital Breast Tomosynthesis,简称为DBT)。而工业上比较习惯于用Laminography,我们延续了这种用法。在进行中文翻译的时候为了跟计算机断层成像区分,我们将Tomosynthesis和Laminography都翻译为层析成像。CL全称即Computed Laminography。二、 传统层析成像 CL与CT到底有什么区别?在前面我们已经提到CT成像一般需要射线绕物体一周。而在有些时候这是无法实现的。比如,现场条件受限或者物体在某些角度太长,射线无法穿透。比如大尺寸的板状物体。对于下图接近一米长的PCB,如果采用显微CT扫描,只能采用先切割的破坏性方法。如果非得用一个简单粗暴的标准区分CT和CL:画一个过物体的平面,如果射线源和探测器的运动轨迹不跨越这个平面,就可以认为这是CL。可以通过下图了解传统层析成像的原理。通过采集不同角度的投影数据(那时还只有胶片),将胶片简单叠加在一起,其中一层的数据会被增强(这一层称为焦平面)。下图中Plane 2的数据(以圆形代表其细节)就被增强了。传统层析成像,每次只能增强一个焦平面内的结构,而其它层的图像仍然是模糊的。三、 现代层析成像我们所说的层析成像一般都是指现代层析成像。这里的现代是相对于上面的传统而言的。现代层析成像是指采用了数字探测器和图像重建算法的层析成像。其成像结果中每一层都得到增强。虽然与CT相比,由于其数据缺失,会造成层间混叠(后面我们会着重介绍)。但在很多应用场景,这是能得到的最好的结果。下图是几种常见的层析成像结构。如果将有限角CT也称作CL的话,可以认为是第5种结构。这里我们对各种成像结构的成像能力进行简单的分析。(I)结构简单,但数据缺失过于严重(扫描的角度等于射线的张角);(II)仅能扫描中心区域;(III)(IV)相似,可以扫描任意区域,但在探测器的运动细节上有差异。其机械实现和数据处理上的差异过于专业,我们在这里就不再展开讨论。四、 层间混叠这是CL避免不了的问题。首先通过下图来了解一下层间混叠是什么样子。其表现就是横向的边缘被弱化了。为什么会出现这个问题呢?这得从傅里叶中心切片定理讲起,还是算了吧,简单点理解就是缺少了横向穿过物体的射线。为什么会缺少?因为这个方向射线穿不透啊,回忆一下前面一米长的PCB。如果你对上面的图像不满意,不如换个方向看看。是不是感觉好了很多。有没有办法彻底解决这个问题?针对特定的扫描对象,使用复杂的模型,效果会有所提高,但离实用还有很长的距离。 五、 CL的优点 谈完缺点再来聊聊优点。首先,就像前面提到的,这是现有条件下能得到的最好的结果。CL可以对大尺寸的板状物体得到非常高的分辨率。目前,射线源的焦点尺寸可以小到几百纳米。要想实现高分辨成像,需要射线源尽可能靠近物体,而CL这种扫描方式可以很容易的实现这一点。采用光学放大透镜的探测器的显微CT,样品可以不靠近射线源,但是由于射线的利用率底,扫描的时间会很长,难以满足快速检测的需求,且同样无法解决射线在有些角度下无法穿透的问题。下面再来聊聊CL另外一个优点。CT和CL图像最终表示的是物质对射线的线衰减系数(与射线能量、物质原子序数、物质密度等有关系)。一般趋势,线衰减系数随射线能量的增加而减小,简单点理解就是能量越高的射线越不容易被物质吸收。不同材料衰减系数的差异也随射线能量的增加而减小。由于CL始终沿着容易穿透的方向照射物体,可以使用较低能量的射线,因此能够获得较高的密度分辨能力。六、 国内CL研究进展与国外相比,国内对于CL技术的研究起步较晚。北京航空航天大学、中国科学院高能物理研究所等单位是国内最早开展CL成像研究的机构。在科技部重大科学仪器设备开发项目支持下,2015年,由中国科学院高能物理研究所和古脊椎动物与古人类研究所共同成功研发专用于“板状化石”的显微CL仪器,并在2016年中安装到中科院脊椎动物演化与人类起源重点实验室高精度CT中心,该仪器同时服务其他科研院所,中国科学院南京地质古生物研究所、中国地质科学院地质研究所、北京自然博物馆、安徽博物院、广西自然博物馆、北京大学,云南大学、西北大学、首都师范大学等,累计检测化石750余件。为板状化石的三维无损检测提供了全新工具,起到了不可替代的作用。该仪器的实验结果,助力研究人员在《Nature》、《Science》等期刊上发表论文20余篇,其中五项成果分别入选并领衔2018年、2019年、2020年和2021年中国古生物学十大进展。专用于“板状化石”的显微CL设备及其应用集成电路和电力电子领域也存在大量的板状产品。随着封装集成度和密度不断提高,对其内部结构缺陷检测要求空间分辨率达到微米甚至亚微米级。2019年,在科技部重大科学仪器设备开发项目支持下,中国科学院高能物理研究所针对电子器件封装检测需求,研制了具有亚微米级缺陷检测能力的X射线三维分层成像仪,关键指标达到国际先进水平。为了更好的进行X射线精密检测设备的推广,中国科学院高能物理研究所在2021年成立了锐影检测科技(济南)有限公司。X射线三维分层成像仪及其应用2021年,锐影检测科技(济南)有限公司成功研发了用于绝缘栅双极型晶体管(IGBT)焊接缺陷检测的专用CL设备。彻底解决了超声法和X射线DR成像无法检测带散热柱的IGBT模块的问题。设备实现了大视野快速成像,可以自动定位DBC焊接区域,自动进行气孔缺陷的识别,计算气孔率、最大气孔率、最大气孔尺寸,适用于在线检测。技术指标达到国际领先水平。IGBT焊接缺陷检测专用CLCL与DR方法对于IGBT基板焊料层气孔检测效果的比较总结随着科研及制造业的升级,对CL检测设备的精度、检测速度和智能化水平提出了更高的要求。新型CL设备的研发将是科研机构及X射线无损检测公司面临的挑战和历史机遇。 参考文献:【1】 Jiang Hsieh, Computed Tomography Principles, Design, Artifacts, and Recent Advances 3rd edition, SPIE PRESS.【2】 Buzug, Thorsten M. Computed tomography: from photon statistics to modern cone-beam CT. Springer, 2008.【3】 Zenghui Wei, Lulu Yuan, Baodong Liu, Cunfeng Wei, Cuili Sun, Pengfei Yin, and Long Wei, A micro-CL system and its applications. Review of Scientific Instruments, 88, 115107, 2017.【4】 Zuber M, Laaß M, Hamann E, Kretschmer S, Hauschke N, van de Kamp T, Baumbach T, Koenig T. Augmented laminography, a correlative 3D imaging method for revealing the inner structure of compressed fossils. Sci Rep. 2017 Jan 27 7:41413. doi: 10.1038/srep41413. PMID: 28128302 PMCID: PMC5269749.【5】 https://mp.weixin.qq.com/s/_SyUUlHpJNXrLxHFKYwydw本文作者:锐影检测科技(济南)有限公司
  • 超导量子计算用mK级国产稀释制冷机实现商用量产
    近日,安徽省量子信息工程技术研究中心及科大国盾量子技术股份有限公司联合发布消息,国产稀释制冷机“ez-Q Fridge”在交付客户后完成性能测试,实际运行指标达到同类产品国际主流水平,成为国内首款可商用可量产的超导量子计算机用稀释制冷机。据媒体报道,2023年下半年,国盾量子向两家科研单位交付了国产稀释制冷机产品,经客户多月测试,设备长时间连续稳定运行,能够结合主动减震系统以及磁屏蔽等,为量子芯片提供低至10mK级别的极低温低噪声环境,制冷功率达到450uW@100mK。在容纳78根低温测控同轴线缆的超导量子计算低温支撑系统中,分别对56比特和24比特超导量子芯片进行测试,稀释制冷机运转效果良好,达到了国际先进水平。实际上近年来,量子科技已引起国内外的广泛关注。而发展先进的量子科技离不开极低温制冷技术,这主要是由于量子本身是微观的效应,很容易受到干扰,而超低温可以将噪音降得很低。比如,对量子比特来讲,它最怕的就是温度,因为温度产生热耦合噪音,低温之后噪音就可以被极大的限制,使它成为孤立系统,这时它的退相干时间就会大大延长,量子比特才会成功,否则包括存储、读取、叠加等都需要时间。目前达到低温的手段主要有吸附制冷、绝热去磁制冷和稀释制冷。稀释制冷技术于 1950 年代首次提出,并在 60 年代建成了第一个完整的稀释制冷系统,随后便成功商业化。稀释制冷技术最低温度可以低至数个mK(10K),具有制冷过程连续不间断及制冷功率较大等优点,随着低温物理研究需求的不断增加,其已经成为目前最为流行的制冷方法。水有普通的水和重水,它们混合到一块是分不开的,但是氦三氦四不一样,液态的氦三和氦四在低温下在大约八九百mK的时候就会自动分开,自动分开的现象过程中会有所谓的制冷效应,其实这就是因为这两者复合在一起就会产生稀释效应,就会有降温效应,连续的补充和打破平衡,就使得混合液一直处于相分离状态,就实现了所谓的稀释制冷,这就是稀释制冷机的原理。随着量子计算等技术的不断发展,对mK级的稀释制冷机提出了更高的要求,当前国内有数家单位和企业在投入精力开发。中科院物理所2021年,中国科学院物理研究所自主研发的无液氦稀释制冷机6月下旬实现近10mK(比绝对零度-273.15摄氏度高0.01度)极低温,标志着中国在高端极低温仪器研制上取得突破性进展,具备了为量子计算等前沿研究提供极低温条件保障的能力。2023年3月28日,中国科学院物理研究所承担的北京市科技计划课题“400微瓦无液氦稀释制冷机研制”顺利通过了第三方技术测试。测试专家组认真听取了项目工作报告,审查了技术测试方案,查验了测试仪器和受试设备,通过现场测试和读取测试数据,一致认为该无液氦稀释制冷机长时间连续稳定运行最低温度已达到7.6mK,制冷功率达到450μW@100mK,两项指标均达到了国外主流中型商业稀释制冷机的水平。合肥知冷低温科技有限公司2023年6月13日,“量子计算用国产极低温稀释制冷机项目”在合肥高新区正式签约,并入驻量子信息未来产业科技园。“量子计算用极低温稀释制冷机”由安徽大学物质科学与信息技术研究院单磊教授、王绍良研究员团队自主研发。安徽大学研究员、合肥知冷低温科技有限公司董事长王绍良表示,项目是合肥“以投带引”的成功案例,在合肥市科技创新集团的支持下,项目公司将拿到第一笔种子基金,打通落地转化的最初一公里。本源量子2023年10月,由本源量子计算科技(合肥)股份有限公司完全自主研发的本源SL400国产稀释制冷机成功下线,这是国内科创企业的研发团队首次成功突破量子计算极低温制冷这一关键核心技术。省量子计算工程研究中心相关负责人张俊峰说:“该稀释制冷机可提供12mK以下的极低温环境及不低于400μW@100mK的制冷量,降温时间在40小时内,升温时间在24小时内,可满足超导量子计算的极低温运行环境和快速回温的要求,达到国际主流产品的水平。”此外,中船重工、飞斯科等国产厂商目前也在投入相关设备研发。中船重工鹏力(南京)超低温技术有限公司市场总监巢伟向仪器信息网透露,当前国内能用的最基础版本的是400-500μW,而国外主流厂商的1mW设备已经成熟了,甚至开展了10mW的研究,比如IBM的10mW的设备已经用起来了。林德等企业已开发了百瓦级、甚至数百瓦级别4K制冷量来预冷的稀释制冷机。当前中船低温已实现4K制冷机每年一千多套的量产。上世纪70年代物理所冉启泽老先生曾研制出湿式稀释制冷机,但后来无人从事相关研究,相当长一段时间内国内处于技术断层和研究空白,目前国内所用到的稀释制冷机均从欧美购买,比如Oxford Instruments ,Cryomagnetics,Janis Research Company,Bluefors Oy NanoMagnetics Instruments, ICE Oxford Ltd,Quantum Design, Inc.,Leiden Cryogenics Entropy等。2019年12月,美国商务部的一份内部文件提出,未来将限制向中国等美国在量子计算上的竞争对手出口稀释制冷机。一旦被限,中国的量子计算研究将面临重大挑战。据了解,国际主流稀释制冷机售价400万元至600万元,稀释制冷机的国产化,在一定程度上扭转了量子计算关键核心技术受限的局面,加快了量子计算领域自立自强步伐,增强我国在量子计算领域完全自主可控能力。
  • 金刚石量子计算教学机助阵华东师范大学,课还能这样上?!
    2021年3月,新学期伊始,一堂特殊的实验绪论课上,国仪量子陈明博士给华东师范大学2018级全体同学带来了前沿研究专题报告——量子计算。近年来,量子科技发展突飞猛进,成为新一轮科技革命和产业变革的前沿领域,加快发展量子科技,对促进高质量发展、保障国家安全具有非常重要的作用。华东师范大学物理实验教学中心的物理实验课程与时俱进,不断培优,在国仪量子的大力支持下,给同学们提供最新的量子科技相关实验项目。讲座由物理实验教学中心副主任尹亚玲老师主持与致辞,国仪量子陈明博士主讲。陈明博士从量子技术的发展历史讲起,介绍了第一次第二次量子革命对社会发展的影响,世界及我国目前的量子技术布局,量子计算在生物医疗、分子模拟、交通物流、金融等领域的重要应用,量子计算体系等内容,着重介绍了如何制造一台量子计算机,目前的研究阶段、面临的困难和发展方向等。华东师范大学近代物理实验教学团队积极创新授课形式,将前沿技术引入课程,邀请一线的科研人员,讲学生听得懂的前沿科普,将最近的研究领域和技术发展介绍给学生。基于金刚石量子计算教学机,国仪量子可以提供包括实验室建设、教学讲义、教学视频、教学课件、示范课培训等量子计算教学相关的整体配套解决方案定制服务,让学校和老师们更轻松地开设相关实验课程。类似的尝试最早始于菁英班物理实验五的绪论课,邀请超高真空技术领域的工程师为菁英班的同学们作报告。本学期的量子计算机讲座,经团队教师积极协调课程时间,将受益面扩大到所有大三下的学生。当天讲座中,约150名师生聆听报告,现场同学对量子技术研究的表现出极大兴趣。不少同学在讲座后主动留下来观看量子计算机实验演示,并与专家进行面对面的交流,还有同学表达了自己希望从事量子研究的意向。本次绪论讲座收获了同学们的好评,有效利用课堂时间,优化课程内容,“听得懂的前沿”为同学们拓展视野,更激发了同学们的学习兴趣。同时也帮助同学们近距离接触一线科研人员,拓宽同学们未来发展的选择范围,是一次很好的课程改革创新。下面隆重介绍一下本次实验教学的好助手——国仪量子金刚石量子计算教学机!金刚石量子计算教学机是国仪量子为了更好地促进量子力学和量子计算相关的教学,推出的全球首款、面向大众的基于金刚石中NV色心,以自旋磁共振为原理的设备,通过控制光、电、磁等基本物理量,实现对NV色心发光缺陷的自旋进行量子操控和读出,从而实现量子计算等功能的教学仪器。该仪器可以在室温大气下运行,无需低温真空环境,使得设备有着几乎为零的运行成本,桌面型的设计让它能适应各种不同的教学环境,无论是课堂还是实验室,都能轻松进行量子力学和量子计算实验教学。不仅如此,金刚石量子计算教学机丰富的硬件模块支持学生动手搭建和调试,多功能的软件支持自定义脉冲序列编写。金刚石量子计算教学机可以帮助和促进高校、科研机构在开设、优化大学物理实验课、近代物理实验课、量子信息科学专业课程的相关工作,方便教师展示教学,激发学生的兴趣和想象力,提高学科水平和教学质量。延伸阅读 了解更多赞!天津大学量子计算实验课圆满收官!金刚石量子计算教学机,助力高校推进量子信息学科建设
  • 南科大科学家获固态量子计算突破,实现单原子直写的量子计算芯片
    如今,量子计算研究已成为全球科技发展的一大热点,各主要国家高度关注量子计算的发展,启动国家级量子战略行动计划,大幅增加研发投入,同时开展顶层规划以及研究应用布局。同时,国际产业界也纷纷投资量子计算,如谷歌、IBM、英特尔、微软等巨头企业更是积极推动量子计算产业的发展,其中以谷歌公司在 2019 年首次实现量子霸权,为产业界在量子计算方面发展的标志。据波士顿咨询公司(Boston Consulting Group)预测,量子计算机将很快开始解决许多今天的计算机无法解决的工业问题。那么量子计算机离我们还有多远呢?从当前硬件、算法和计算机架构上来说,量子计算机还不是很成熟。在 20 多年前,澳大利亚的量子计算机专家 Bruce Kane 在《自然》上发表了名为“A silicon-based nuclear spin quantum computer”论述了搭建硅基量子计算机的问题,并指出之中的关键是要将量子比特放置在间距 10—20nm 时所能够实现的一种两比特门。众所周知,我们的电脑是由很多具有特定功能的复杂电路组成,其中就有很多逻辑门电路。这些逻辑门电路及其有序组合就是电脑中形形色色的功能的基础,进而成就了人类数字社会的今天,而逻辑门操作的稳定性和开关特性决定了电脑的很多关键性能,例如计算速度等。这种特殊的两比特门就像是我们通向通用硅基单原子量子计算机的最后一道门一样,来自南方科技大学的贺煜副研究员也许就是开启这扇通向单原子级别硅基量子计算大门的开门人。他和团队成员一起,利用高精度微纳加工方式,将两个磷原子构成的量子点分别放置在相距 13nm(也就是130)的位置上,实现了第一个适用于量子计算机的高速两比特门。图 | 《麻省理工科技评论》中国区“35 岁以下科技创新 35 人”榜单入选者贺煜贺煜现在是南方科技大学量子科学与工程研究院的副研究员、独立 PI、硅量子器件和量子计算方向团队带头人。多年来,他在量子计算和量子网络方面取得了系列开创性成果,利用前沿量子技术操纵单个原子、电子和光子,在微观世界构建未来信息技术。突破关键量子门,推进量子计算机构建从硬件的角度来说,如果能基于硅制作量子计算机无疑是最方便的,因为从材料上来说,硅在地球上的含量是十分富足的。再者,如今的半导体工艺大都基于硅材料,那么与传统半导体工艺的兼容性也能使得量子计算机的构建变得更加方便。在 2019 年,贺煜带领团队证明了硅基磷原子体系第一个两比特门,是满足通用量子计算判据的最后一条,也正是 Bruce Kane 提出的量子计算方案中关键的一环。来自南方科技大学的俞大鹏院士以此推荐贺煜博士入选“35 岁以下科技创新 35 人”榜单,并表示:“这个工作为大规模量子计算芯片奠定了坚实基础,是一个里程碑式的工作。”该成果以封面文章发表在《自然》上,贺煜为第一作者,且该工作被列为“2019 年量子计算实验十大进展”。图 | 贺煜发表在《自然》的论文贺煜创造性地采用扫描隧道显微镜技术(STM)实现纳米尺度芯片加工,成功地以单原子级别的精度将两个磷原子构成的量子点放置在 13 纳米间距上,在硅基量子芯片上实现了第一个高速两比特门——800 皮秒的根号交换门,并实现了利用全统计计数方法对比特读出保真度的优化、参与构建比特读出保真度分析的理论工作等。这是一种高精度的微纳加工方式,可用于制备单原子、单电子量子器件以及人工量子材料,并能够实现单原子尺度的量子计算,为大规模可扩展的硅基量子计算奠定了坚实基础。师从潘建伟院士和陆朝阳教授多年来,贺煜在量子计算和量子网络方面取得了系列开创性成果,用前沿量子技术操纵单个原子、电子和光子,在微观世界构建未来量子信息技术平台。回顾他的求学之路,用“根正苗红”来形容再合适不过。自本科起,贺煜就在中科大这片量子的土壤中成长,并以优异的成绩保送本校硕博连读。期间在导师潘建伟院士和陆朝阳教授的指导下,贺煜主要研究砷化镓自组装量子点,核心成果包括一系列单光子源方面开创性工作,以及首次观察到自发辐射谱线擦除效应——实现量子光学的实验突破,以及单光子向单电子自旋的量子传态等。谈及选择量子技术作为研究方向的原因,他告诉 DeepTech:“之所以一直选择量子物理、量子计算的方向,首先是兴趣爱好,是自己对于微观世界的好奇心和对量子世界的喜爱所驱动,其次是因为量子计算是一个将改变人类未来的前沿科技,尤其是硅量子计算芯片具有很大的产业潜力,希望通过自己的耕耘为社会贡献一份力量,为科学发展做一份努力。”图 | 贺煜发表在《自然-光子学》的论文2015 年以后,贺煜继续在陆朝阳教授团队做了半年的博后研究,结合博士期间的工作,实现了当时世界最高光子数玻色抽样——证明了量子计算机对于第一台电子管计算机 ENIAC 的超越和第一台晶体管计算机 TRADIC 的超越,研究成果以论文形式发表于 2017 年的《自然-光子学》上,并入选“2017 年中国十大科技进展新闻”。论文指出,为完成高性能玻色抽样实验,研究团队克服的技术难点有两个:一是基于砷化镓量子点,研究团队设计了稳定的高亮度单光子源;二是设计并使用了性能卓越的多光子干涉仪(multiphoton interferometers),其传输效率高达 99%。研究团队完成并实现了 3 光子、4 光子以及 5 光子玻色抽样实验,采样率分别为 4.96kHz、151Hz 和 4Hz,都达到之前实验的 24000 倍以上。图 | 贺煜团队开发的高性能玻色抽样实验平台这是一项十分惊人的突破,是首次量子计算机超越传统计算机的案例。火车刚刚出现时比马车还慢,飞机刚刚问世时只能在空中短暂停留,如今都是改变生活的重要科技成果。量子计算机从理论上来说,会比传统计算机快很多,是基于量子比特运行的计算机。通过量子物理学中的两个奇异的原理——“纠缠(entanglement)”和“叠加(superposition)”,量子计算机能以指数形式扩展计算机的处理速度。着眼未来,布局固态量子网络从根本上来说,量子计算机目前仍处在产业发展的初期阶段,但军工、金融、石油化工、材料科学、生物医疗、航空航天、汽车交通等行业都已注意到其巨大的发展潜力。随着时间的推移,预计 2050 年左右将达到每年 3000 亿美元的营业收入,将成为改变世界的下一代技术革命关键领域之一。回顾计算机的发展历史,世界上的第一台计算机是 ENIAC,它生于第二次世界大战,主要任务是计算弹道,是一台军用计算机。而计算机的全面普及其实与商业计算机的出现和网络的构建息息相关。那么量子计算机会不会也沿着这一条“老路”发展呢?这也是一个值得思考的问题。贺煜认为,量子计算机要走向应用,量子网络和通信是十分关键的技术,必须做以突破。如今他任教于南方科技大学,除了量子计算之外,主要研究方向还有量子网络。2017 年,他和团队实现了单光子到单电子的量子传态,开发了一整套全新的单光子频率比特控制和测量方案,验证了单个光子和电子之间的纠缠,并且把光子的量子信息传递到 5 米远的电子自旋上去,为固态量子网络研究的重要突破。图 | 贺煜及研究团队完成的“单光子-单电子”量子传态而谈及接下来的研究方向,贺煜表示:“根据硅量子计算的发展趋势,在南方科技大学量子科学与工程研究院,我将带领硅量子计算团队,研究硅基量子计算芯片和量子计算,从根本问题入手,解决目前的一些技术瓶颈:进行硅基单原子量子器件的基本物理研究;研究新型的硅基原子比特和研究比特耦合技术;利用低温扫描隧道显微镜直写技术构建新型芯片等。并将研发的新工艺和半导体芯片产业化进行对接,为将来的广阔商业前景奠定基础。”
  • 上海大学依托国仪量子教学机开启量子计算实验课程
    2020年8月26日,上海大学理学院量子人工智能科学技术研究中心(Quantum Artificial Intelligence for Science and Technology, QuArtist)依托国仪量子金刚石量子计算教学机开启第一堂量子计算实验课。1. 量子技术发展背景&现状2014年,英国《自然》杂志吹响“第二次量子革命”的号角。以量子信息技术为代表的量子调控,是量子力学的最新发展,其带来了“第二次量子革命”。人类对量子世界的探索已从单纯“探测时代”走向主动“调控时代”,成为解决人类对能源、环境、信息等需求的重要新手段、新技术。2018年9月,美国发布了量子信息发展国家战略书,特别强调了量子技术和量子科技在国家战略中的重要性。欧盟从2018年开始,投入10亿欧元实施“量子旗舰”计划。英国早在2014年就发布了量子科技发展蓝图并在牛津大学等高校建立量子研究中心,投入约2.5亿美元培养人才。2016年,我国发布了《“十三五”国家科技创新规划》,其中强调了量子技术发展的重要性,量子通信与量子计算被列为“十三五”科技规划100项重大技术与工程项目的前三位。谷歌量子技术团队2019年10月谷歌公司发布论文宣称已成功演示“量子霸权”,引来中外媒体纷纷报道,其研发的量子系统只用了约200秒就完成了经典计算机大约需要1万年才能完成的计算任务,这一划时代的技术进展是量子计算研究也是量子技术应用的一个重要里程碑。IBM亦成功研制50多比特的量子计算机原型,虽然技术离真正付诸实用尚需时日,但美国已经在考虑对量子计算等技术领域设置出口禁令,我们不禁要问中国如何在未来的量子技术应用领域不被外国“卡脖子”并实现领先?2. 量子教育量子技术应用广泛现阶段,与量子技术快速发展不相适应的是,我国量子技术从业人员严重缺乏,工程技术人员对量子技术的理解不够深入、实操能力不足,这些已严重限制该技术发展和应用。人才的匮乏源于教育的缺失,更源于教育方式的桎梏,虽然目前很多高校开设了量子力学相关课程,但是现有的课程和教材从思维模式和体系结构上,大多侧重讲述物理原理和基础方案的验证性实验,缺乏类似工科专业教学的案例、教材和实验资源。“物理定律不能单靠“思维”来获得,还应致力于观察和实验。—— 普朗克”量子力学的教育,离不开量子理论和实验的紧密结合。推进量子力学学科建设,完善和创新学科教学内容、教学方法、教学手段,不仅符合我国建设量子技术科技强国的国家需求,还能解决高校量子技术相关应用型人才培养的实际问题。3. 上海大学理学院QuArtist中心教学机开课上海大学理学院量子人工智能科学技术研究中心(Quantum Artificial Intelligence for Science and Technology, QuArtist)于2019年5月31日正式挂牌成立。QuArtist中心由国际著名物理学家Enrique Solano担任中心主任。上海大学QuArtist中心QuArtist中心致力于量子计算和人工智能的基础和应用的前沿研究,将以21世纪“量子二次革命”为契机,融合量子计算与人工智能,建设量子软件和量子硬件的世界级中心作为发展的核心目标。QuArtist中心的愿景是为颠覆性量子技术创造一个极具影响力和占主导地位的生态系统,将艺术,科学,技术和企业家精神相融合,最大限度地提高创造力和生产力。QuArtist中心将结合高端人才、辛勤工作和原始创新三大要素,为科创中心的建设贡献力量。自从了解到国仪量子的金刚石量子计算教学机设备以来,QuArtist中心积极与我们联系并就量子计算相关课程开设和量子教育发展进行沟通交流。8月26日,国仪量子应用工程师应邀至QuArtis中心的老师及研究生同学开启了第一堂“量子计算实验课”,现场演示了金刚石量子计算教学机进行量子计算基础实验的相关原理和功能。我们详细专业的理论讲解及生动有趣的现场展示受到了QuArtis中心师生一致好评。课后,上海大学理学院陈院长评价道:金刚石量子计算教学机在QuArtist中心现场进行了调试,培训,让平日里退相干,Rabi振荡,Dynamical Decoupling这些理论概念通过量子计算教学机让同学们都有了感性的认识。整合资源,将企业生动教育教学资源引入第一、第二课堂,不断提升学生的学习能力,不仅是为未来服务国家和社会蓄能,更是为攻克国家科技创新和企业发展“卡脖子”技术贡献上大智慧。QuArtis中心开课现场此外,上海大学计划将基于国仪量子金刚石量子计算教学机给研究生及理学院的本科生开设量子计算课程,新学期开学后就会启动开课筹备相关工作,其中包括课程内容选择,课程方案设计等。国仪量子也将依据专业技能和经验积极配合上海大学做好课程开设相关工作,基于其课程定位提供定制服务,一起为我国量子教育发展及量子技术人才培养贡献力量。4. 金刚石量子计算教学机简述金刚石量子计算教学机是国仪量子为了更好地促进量子力学和量子计算相关的教学,推出的全球首款、面向大众的基于金刚石中NV色心,以自旋磁共振为原理的设备,通过控制光、电、磁等基本物理量,实现对NV色心发光缺陷的自旋进行量子操控和读出,从而实现量子计算等功能的教学仪器。该仪器可以在室温大气下运行,无需低温真空环境,使得设备有着几乎为零的运行成本,桌面型的设计让它能适应各种不同的教学环境,无论是课堂还是实验室,都能轻松进行量子力学和量子计算实验教学。不仅如此,金刚石量子计算教学机丰富的硬件模块支持学生动手搭建和调试,多功能的软件支持支持自定义脉冲序列编写。国仪量子金刚石量子计算教学机金刚石量子计算教学机可以帮助和促进高校、科研机构在开设、优化大学物理实验课、近代物理实验课、量子信息科学专业课程的相关工作,方便教师展示教学,激发学生的兴趣和想象力,提高学科水平和教学质量。基于金刚石量子计算教学机,国仪量子可以提供包括实验室建设、教学讲义、教学视频、教学课件、示范课培训等量子计算教学相关的整体配套解决方案定制服务,让学校和老师们更轻松的开设相关实验课程。QuArtist中心量子计算实验课堂的顺利开启对上海大学在量子教育的发展创新有着重要的意义,未来国仪量子也将与包括上海大学在内的国内各大高校院所共同努力、砥砺前行,为量子教育事业的发展、为量子技术人才的培养、为中国高科技的发展与创新、为量子技术科学强国做出更多贡献!
  • 入库!立项!同济大学《金刚石NV色心量子计算实验》入选教育部《课程思政案例库》
    近日,教育部高等学校大学物理课程教学指导委员会课程思政工作委员对2022年高等学校“大学物理”和“大学物理实验”课程思政案例立项情况进行了公示,同济大学《金刚石NV色心量子计算实验》课程作为优秀案例被纳入教指委的《课程思政案例库》,并予以立项。该课程基于国仪量子研发的金刚石量子计算教学机实验课程解决方案打造。国仪量子携手同济大学,推进量子信息学科发展作为一项极具发展潜力的学科,量子信息科学的全球竞争日趋激烈,人才培养刻不容缓。2021年6月,同济大学基于国仪量子研发的金刚石量子计算教学机实验课程解决方案,推出了《金刚石NV色心量子计算实验》课程,将量子理论与实验紧密结合,为量子信息学科本科阶段的人才培养打造了示范案例。该实验课程由同济大学老师关佳主持,张志华、方恺、倪晨参与。同济大学基于国仪量子的金刚石量子计算教学机开展的金刚石NV色心量子计算实验2022年11月,在第八届全国大学生物理实验竞赛(创新)决赛中,同济大学师生凭借“量子计算实验”作品,以扎实的理论基础和实验技能,荣获讲课类一等奖。金刚石量子计算教学机国仪量子的金刚石量子计算教学机是基于金刚石中NV色心和自旋磁共振为原理,通过控制激光、微波、磁场等物理量,对NV色心的自旋进行量子操控和读出,从而实现量子计算功能的教学仪器。该仪器在室温大气条件下运行,无需低温真空环境,使得设备有着较低的运行成本,桌面型的设计让它能适应各种不同的教学环境,无论是课堂还是实验室,都能轻松进行量子力学与量子计算实验教学。金刚石量子计算教学机2022年8月,金刚石量子计算教学机荣获第十一届全国高等学校物理实验教学研讨会教学仪器评比一等奖。获奖证书与现场评比情况公示原文各有关高校:为推动“大学物理”和“大学物理实验”课程的课程思政建设,提高课程思政案例的建设水平,教育部高等学校大学物理课程教学指导委员会课程思政工作委员会在教育部高等学校大学物理课程教学指导委员会的指导下,于2022年10月启动了“大学物理”和“大学物理实验”课程思政案例遴选工作。经过课程思政工作委员会专家的评审,从188个案例中遴选出了62个优秀案例。在大学物理课程教学指导委员会的委员指导下,对62个案例进行了专门指导,经过反复打磨后,经教指委全体委员投票后,遴选出来46个案例,将纳入教指委的《课程思政案例库》,并予以立项,具体名单见附件。项目联系人:方爱平联系方式:apfang@xjtu.edu.cn教育部高等学校大学物理课程教学指导委员会课程思政工作委员会西安交通大学(代章)2023年6月1日图片来源:“物理与工程”微信公众号参考资料:https://mp.weixin.qq.com/s/szfSflxWdoRLmbQGEfoxHghttps://m.thepaper.cn/newsDetail_forward_21064110
  • 青年才俊上演计算蛋白质组学头脑风暴——记CNCP 2016新技术
    记第四届中国计算蛋白质组学研讨会(CNCP-2016)新技术  仪器信息网讯 2016年8月10日-11日,第四届中国计算蛋白质组学研讨会(CNCP-2016)在中国科学院大连化学物理研究所盛大召开。(相关新闻:第四届中国计算蛋白质组学研讨会(CNCP-2016)在大连开幕)。本届研讨会邀请了26个大会报告,报告嘉宾是来自国内外的计算蛋白组学领域专家和奋战在第一线的青年科研工作者,嘉宾中的绝大多数是首次登上CNCP讲坛。报名参加本届会议的人员首次超过了200人。CNCP2016C参会代表合影张丽华研究员为研讨会致开幕辞  本届会议的开幕式只有简短的5分钟,没有领导讲话,没有任何仪式,充分体现了会议的简洁办会特色。开幕式由中国科学院大连化学物理研究所的张丽华研究员致欢迎词,她提到:“中国计算蛋白质组学研讨会在业界享有很高盛誉。每次会议的演讲嘉宾都是由会议发起者和主办方——中国科学院计算技术研究所贺思敏研究员、北京蛋白质组研究中心徐平研究员、北京生命科学研究所董梦秋研究员等资深学者以及往届会议报告人鼎力推荐的。本次研讨会的26个报告将由来自国内外相关领域的顶级专家和奋战在科研第一线的青年才俊精彩呈现。相信在这两天的会议中,大家不仅能够收获知识,也能收获友谊。”研讨现场  CNCP-2016会议邀请的26个报告多数都是最近一两年的研究成果,部分还没有发表,新技术频繁现身,特别是在交联质谱技术与蛋白质复合体,蛋白质相互作用、翻译后修饰技术、蛋白质鉴定数据处理、定量蛋白质组技术等领域报告较多,下面对这26个报告的内容逐一进行简介总结。  UCI(美国加利福尼亚大学尔湾分校)黄岚博士 报告题目《Developing Cross-Linking Mass Spectrometry (XL-MS) Strategies to Define Interaction and Structural Dynamics of Protein Complexes》  了解蛋白质复合物的相互作用和结构动力学对于揭示病理的分子学细节非常有帮助。交联质谱(XL-MS) 是目前研究大量多亚基蛋白复合物PPIs的重要技术,而精确的肽段鉴别是XL-MS分析一直以来面临的挑战。为了促进这方面的研究,黄岚博士研究组研发了DSSO 及一系列含亚砜(sulfoxide-containing)可分裂质谱交联剂以揭示蛋白质复合物表面相互作用机理。研究者通过这些(MS-cleavable reagents)质谱可分裂试剂在多级串联质谱上建立了实用的XL-MS工作流,快速、准确的鉴别交联肽段去研究体内和体外的PPIs。同时,研究者也研发了新的定量XL-MS途径,用以分析多种生理条件下蛋白质间的相互作用和蛋白质复合体的结构动态变化。据介绍,该课题组最近研发了新的羧基交联剂DHSO主要用来与酸性氨基酸反应,反应中需要DMTMM共同作用。 这样可以得到更广的蛋白相互作用信息。北京生命科学研究所 谭丹博士 报告题目《Trifunctional Cross-Linker for Mapping Protein-Protein Interaction Networks and Comparing Protein Conformational States》  该研究组最近有一项研究工作围绕一种含生物素标签的赖氨酸富集交剂Leiker,谭丹博士在报告中详细展示了课题组的相关研究,研究表明Leiker能够有效改进蛋白质化学交联质谱技术(CXMS)。研究组将以Leiker为交联剂的CXMS用于E.coli全细胞裂解液的分析,发现了3656种相互作用,是之前已有研究方法的10倍。Leiker CXMS比BS3得到的信息要立体很多,能得到更全面的蛋白质相互作用网络。研究者还将Leiker为基础的CXMS用于RNA结合位点鉴定与定量,该方法能够深入揭示蛋白质构象变化。在将Leiker CXMS用于大肠杆菌和秀丽线虫裂解液中的研究中,分别鉴定出3130和893个互补赖氨酸对,并各自发现了677和121种PPIs。Utrecht University (荷兰乌德勒支大学) 刘凡博士 报告题目《Charting the Cellular Interactome by Proteome-Wide Cross-Linking Mass Spectrometry》  据刘凡博士介绍,针对交联数据分析的n-square和交联肽段低效裂解这两大难题,该研究组建立了一种新XL-MS工作流-质谱可分裂交联剂法。该法是一种混合MS2-MS3裂解途径与专用的交联搜索数据库结合的方法。研究者将质谱裂解交联剂DSSO应用于测定每个交联肽段的前体质量,解决了n-square问题。交联裂解前体离子可通过质量差异确定数据的MS3采集方向,这些工作都可以在Oribitrap Fusion 和 Lumos Tribrid质谱上完成。这种采集途径提高了MS3实验的成功率,能够解决低效裂解问题和显著改善数据质量。与先前方法相比,报告中介绍的新方法包含以下三个优势。1)能够完成整体蛋白组数据库的交联鉴别 2)包括多种翻译后修饰的交联鉴别 3)在MS2和 MS3水平都有高质量范围。该研究组将此新XL-MS方法用于多种复杂样本,包括大肠杆菌裂解物、HeLa裂解物、排阻色谱分馏的HeLa细胞核提取物与细胞器。采用这种方法能够从每种样本得到成千上万个交联点。中国科学院计算技术研究所 刘超博士 报告题目《Development of the Cross-Linked Peptides Identificationin Large Scales》  由于检索空间过于庞大,蛋白组范围内交联肽段(双肽)的鉴定一直都是一项挑战。刘超博士和其团队考察了用于大范围交联肽段鉴定的普通搜索工具的应用效果,并开发了一种新的计算软件技术pLink 2.0。此技术比先前技术有三方面的改进:1)提高了双肽中单同位素鉴定的精度 2)由肽段索引升级为离子索引 3)引入机器学习(SVM在线训练)。该团队研究表明,通过使用离子索引pLink2.0检索人类数据库,在一小时以内可以完成5000张谱图的检索。干湿结合方法在人库检索1万张二级谱图仅用时不到2分钟。将pLink 2.0与美国西雅图研究人员研发的Kojak相比较,pLink2.0的分析速度约为Kojak的6倍,在精度方面也有一定优势。pLink2.0支持可碎裂交联,可减少可搜索空间和减少谱图数目。华中师范大学 万翠红博士 报告题目《Mapping Conserved Metazoan Protein Complexes with Biochemical Fractionationand LC/MS/MS》  对多蛋白复合物的了解对于生理进程探索非常重要。然而,对多蛋白复合物种类的分布特别是大规模网状图的发现比较困难。万翠红博士研究组通过高分辨生化分离与定量质谱直接分析了可溶性多蛋白复合物的组成,分析C.elegans、D.melanogaster、M.musculus、S.purpuratus和人类的可溶性细胞提取物。研究组采用以人类为中心的综合计算分析,鉴别出2153种蛋白,并新鉴定出7699种成对相互作用和981种共复合作用。这些相互作用能够反映后生动物生理过程相关的核心生理基础。重建的生理作用网有助于深入了解特殊的分子生物机理以及动物细胞的进化。国家蛋白质科学中心 郑勇博士 报告题目《Scaffold Protein-Mediated Dynamic Assembly of Protein Complexes in Normal and Cancer Cells》  很多细胞表面受体通过催化多组分蛋白复合物的形成开始信号传导过程。这个过程通过与受体结合的scaffold蛋白来传导。然而,目前这种scaffold的生物学基本原理仍不明晰。针对这个问题,郑勇博士研究组通过以IP-MRM为基础的方法,根据Shc1复合信号跟踪其空间和实时变化。研究人员进一步将这种方法与生化和基因技术结合,研究组发现Shc1以特殊的方式对EGF有即时的反应,包括明显的磷酸化和蛋白质相互作用。研究人员成功发现Shc1与一种抑制蛋白产生相互作用,是一种快速绑定蛋白基团能够激活促有丝分裂/存活通路,蛋白复合物围绕Shc1的装配变化在细胞间非常显著。对EGFR/Shc1复合物蛋白组分析能为以pTyr为基础的致肿瘤信号导致的乳腺癌提供诊断依据。暨南大学 张弓博士 报告题目《High-Throughput De Novo Proteome Identification Aided by Translatome Sequencing》  De novo肽段序列鉴定能够避免依赖数据库的检索法的缺点,但由于由于没有背景库,无法评估FDR,且极易受到干扰信号误导,因此长期以来无法应用于复杂样品的大规模鉴定。张弓教授介绍了研究团队研发的利用翻译组测序数据作为蛋白质de novo鉴定质量控制新方法,使肽段de novo鉴定能首次应用在蛋白质组复杂样品的实用化鉴定。研究人员在HCD质谱上应用此方法检测三种肝癌细胞(Hep3B, MHCC97H, MHCCLM3),单次实验鉴定出12000-13000种蛋白质,其灵敏度几乎达到了翻译组测序的水平 而用6种搜库软件鉴定到的真阳性蛋白并集也才7000-8000种。只能用新策略鉴定的4000余蛋白中随机挑选几十个进行MRM验证,几乎都能验证成功。这证明翻译组指导的de novo鉴定效能很高,能鉴定到大量搜索库法无法鉴定到的肽段和蛋白。De novo鉴定的大规模化可引致一系列新的蛋白质组应用。上海生命科学院 李辰博士 报告题目《De Novo Identification and Quantification of Single Amino-Acid Variants in Human Hepatocellular Carcinoma Tissues》  肿瘤蛋白质组-基因组学研究非常关注变异的发现。单核苷酸的多变性(SNPs) 数据库能够给单个氨基酸变体(SAVs)的检测提供依据。李辰博士在报告中介绍了一种在蛋白组水平发现SAVs的新方法。该法基于de novo算法,肽段的可能候选者可被鉴别并与理论蛋白数据库比较。在人类肝癌(HCC)组织中,研究者成功的应用此方法鉴别和定量已知和新的突变蛋白。在肝组织当中,在细胞核内的突变比较低,突变在内质网和线粒体的富集比例较高。这种新方法为病人提供了高通量的定制检测途径,可能为潜在临床生物标志物发现和机理研究提供帮助。中山大学 肖传乐博士 报告题目《Improving Peptide Identification for Tandem Mass Spectrometry by Incorporating Translatomics Informatio》  目前很多数据库检索方法是利用谱学数据而忽略能用于肽段鉴定的生物系统的其他信息。最近,转录物组RNA-seq的界面信息能提高肽段鉴别的灵敏度已经证实。与转录物组信息相比,翻译物组体现出与蛋白质的关系更为紧密,所以其可能对肽段鉴别更有效。在此报告中,肖传乐博士介绍了该研究组设计的高灵敏度肽段鉴定手段IPomics,其以翻译组学信息为主要蛋白鉴定参考。方法得到的推荐蛋白质优先性整合进了新的评分功能。与Mascot和pFind相比,IPomics方法蛋白质鉴定准确度更高,并能够增加整体肽段的鉴定率、谱学信息利用率,并已经利用LC-MS/MS数据集在人类和小鼠蛋白鉴定取得了显著效果。华大基因(BGI-Shenzhen) 闻博 报告题目《Protein Identification and Quantification based on Multiple Search Engines》  闻博在报告中介绍了团队有关以多搜索引擎为基础的蛋白鉴定和定量软件的研究进展。目前,串联质谱技术产生的质谱数据解析率往往不高,不同蛋白质鉴定软件由于谱图预处理、打分算法不同等原因导致对同一个数据的解析结果往往存在一定的互补性。虽然有一些开源的软件可以通过精巧的运算将多个鉴定引擎的鉴定结果整合起来取得与单引擎相比更好的鉴定效果,但由于操作往往较为复杂、下游软件比较缺乏等原因,故没有在蛋白鉴定与定量中推广开来。为了促进多引擎整合方法在蛋白鉴定和定量中的应用,该研究组研发了一种多引擎综合鉴定的开源软件IPeak和同重同位素(如iTRAQ、TMT)标记定量软件IQuant,并将IQuant升级到IQuant2。IQuant2采用精妙的算法和mzIdentML标准,整合多引擎搜索结果进行蛋白质定量。在分析水稻蛋白样品(用Q-Exactive分析)和人细胞系蛋白(用TripleTOF 5600分析)样本时,与单个引擎定量结果相比,IQuant2定量的蛋白能提高28.8%,检测的差异蛋白数量能提高多大40%。多引擎搜索不但能够提高蛋白鉴定效果,也能提高蛋白定量效果。中国科学院水生生物研究所 葛峰博士 报告题目《GAPP: a Proteogenomic Software for Genome Annotation and Global Profiling of Posttranslational Modifications in Prokaryotes》  葛峰博士在前期蓝细菌的蛋白基因组学研究工作的基础上,开发了一种用于原核生物的基因组注释和翻译后修饰全局发现的蛋白基因组分析软件GAPP。该软件最大的特点就是简单高效,具备初步生物信息学知识的研究者就能应用该软件进行原核生物的蛋白基因组数据的深度分析,利用该软件可以高效完成原核生物的全蛋白质组解析和翻译后修饰的全局发现的工作,该软件的开发和应用将有助于原核生物的基因组的精准鉴定,并有望成为原核生物基因组注释的一项标准流程。今后研究组还将根据用户的要求和体验继续对该软件进一步升级。复旦大学 周峰博士 报告题目《Genome-Wide Quantitative Proteomic and Transcriptomic Analysis Reveals Post-Transcriptional Regulation of Mitochondrial Biogenesis in Human Hematopoiesis》  蛋白质组学样品分析需要高分辨分离平台,周峰博士研究组搭建了一种长色谱柱三维蛋白组学定量分析平台(GWPQ), 整套系统完全在线和实现操作自动化。研究者将在此平台建立的蛋白质组学方法与Ribosome profiling相比较,水平相当,在分析模型样品时有80%的重叠。研究者还用此方法开展了人体造血相关细胞的研究,二代测序与应用该平台的蛋白质组方法重叠率达到92%。研究团队利用此方法比较了人体最重要的造血干细胞和红细胞发育中14502个基因蛋白表达变化和17127个基因mRNA表达变化。mTORC1信号极大的促进了红细胞进化中线粒体蛋白的翻译,线粒体和mTORC1的遗传和药理学干扰削弱了体内和体外的红细胞生成。该研究支持了线粒体理论机理,可能与线粒体疾病和老化相关的血液缺陷有关。研究者用模式生物小鼠实验验证了线粒体在血红细胞发育中起到关键作用,找到了全新控制血红细胞发育的通路。Johns Hopkins University(美国约翰霍普金斯大学) 张会博士 报告题目《Comprehensive Analyses of Glycoproteins》  已有不少实验证明,糖蛋白的变化与很多疾病相关。张会博士介绍了糖蛋白的生物合成、结构和功能以及分析糖蛋白的最新方法。糖蛋白的分析是蛋白质分析中最复杂的一种。研究者常把糖和蛋白分开分析,如已有的SPEG(固相提取糖基位点肽)法。该研究组建立了N-糖蛋白数据库,该库可用于检索已鉴定蛋白、通过精确质量数检索候选肽段、鉴定糖蛋白源等。该研究组最近还建立了分析N-linked糖链,糖基化位点,糖基化位点特异糖链,及O-linked糖链分析方法和软件,并探索了用糖基化酶推测多糖的方法。中国科学院大连化学物理研究所 于龙博士 报告题目《Isolation and Structural Analysisof N-Linked Glycansby Using Two-dimensional Chromatography, Mass Spectrometry and Nuclear Magnetic Resonance Spectroscopy》  糖蛋白糖链的纯化合物对糖链的结构分析、精准检测以及功能研究都具有十分重要的意义。然而,目前糖链纯化合物仍处于严重匮乏的状态。来自大连化物所的于龙博士介绍了该团队根据自身优势,采用纯化制备方法来获取N-糖链纯化合物并对其结构进行解析的相关研究进展。研究者首先介绍了糖链的结构特点并对其分离分析中存在的难点问题进行了阐述。针对这些难点问题,研究者结合课题组的材料优势,构建了以二维亲水作用色谱分离体系为核心的糖链纯化制备流程,该流程包括糖蛋白糖链的释放、富集、二维分离、质谱表征以及核磁结构分析等技术单元。在二维色谱分离体系中,第一维度主要根据糖链的羟基数量而实现不同聚合度糖链的分离,第二维度主要用于同分异构体的分离。由于串联质谱技术并不能得到糖链准确的结构信息,因此,研究者目前正在探索核磁共振技术进行准确结构的分析。以现有的糖链纯化合物为基础,研究者接下来将分别在功能、结构和定量三方面开展相关研究以拓展糖链样品库的应用。青岛大学 李磊博士 报告题目《Ultra-Deep Tyrosine Phosphoproteomics Enabled by a Phosphotyrosine Superbinder》  酪氨酸磷酸化网络应用在蛋白组学中不容忽视,如何找到pY尤为重要,但之前方法需要大量抗体才能富集pY。为解决业内这一问题,李磊博士研究组做了不少相关研究,团队研发的Superbinder(超亲体)易于制备,能够有效减轻实验室经济负担。研究者合成了pTyr1和pTyr2两个肽段,比较了SH2 superbinder法与其他几种方法的效果,又增加了Ti4+IMAX的去噪功能,证明其能有效富集pY。与抗体相比,src和grb2超亲体都能有效发现更多pTyr位点。研究者还应用superbinder富集方法进行了Tyr 磷酸化蛋白组学研究。如探索人细胞磷酸化蛋白不同功能分类和Tyrosine kinase (TK)的生物活性等。该项研究是与中科院大连化学物理研究所邹汉法团队、加拿大西安大略大学李顺成团队多方合作完成的。University of Minnesota (美国明尼苏达大学) 陈悦博士 报告题目《Discovery and Characterization of Short-chain Lysine Acylations with Mass Spectrometry and Quantitative Proteomics》  赖氨酸是细胞内蛋白质翻译后修饰的重要靶点。最近,除了赖氨酸乙酰化以外还有一些短链酰基化修饰逐渐被发现。在陈悦博士的早期研究工作中,他从细致的质谱分析中发现了组蛋白赖氨酸丙酰化和丁酰化,两种新的短链酰基化修饰。进一步的研究表明,这两类短链酰基化修饰都是广泛存在的,并可以被特定的酶所调控。最近最新的研究表明赖氨酸丁酰化在Bromo domain识别和精子发育过程中起到重要的调控作用。为了进一步探索质谱信息中隐藏的其他新的修饰,研究者设计了PTMap软件,用来分析非限定性搜索,得到了一些可靠的新蛋白质修饰鉴定,包括琥珀酰化,巴豆酰化,羟基丁酰化等。在定量研究方面,该团队比较关心蛋白质修饰丰度,因为普遍使用的相对定量的分析方法对解释蛋白质修饰的生物学意义有一定的局限性,但是质谱分析得到的离子峰强度并不能直接比较来计算蛋白质修饰的丰度。研究者针对此问题开发了稳定同位素标记为主的新的蛋白质修饰丰度定量方法,可以直接比较离子峰强度,通缩计算得到每个位点上赖氨酸位点丰度,准确性和重现性都很好。中国科学院昆明动物研究所 赖仞博士 报告题目《Mite Allergen Diversity Identification by Proteomics Coupling with Pharmacological Testing》  螨虫、马蜂、牛虻和蟑螂等带有很多种过敏原,一些过敏甚至会导致死亡。过敏的标准治疗方式就是利用过敏原进行脱敏治疗,现在很多机构希望把过敏原纯化出来进行过敏治疗,因此对过敏原发现和提取纯化都有更多要求。屋尘螨(HDM) 是最常见的室内过敏原。赖仞博士希望结合蛋白质组学、药理和病理学手段来进行过敏原的多样性研究。过敏原蛋白组学研究一般是将分离提取出的过敏原与病人血清进行IgE反应。赖仞研究组将蛋白组学技术和二维免疫印迹法结合,从粉尘螨提取物中鉴定出分属于12个组群的17种过敏原,由Edman降解、质谱分析和cDNA克隆等技术鉴定出其一级结构。通过酶联免疫吸附试验抑制测试、免疫印迹、粒细胞活化试验、皮肤点刺试验测定,该研究组发现了8种新的尘螨过敏原。中国医学科学院基础医学研究所 邵晨博士 报告题目《Opportunities and Challenges for Urinary Biomarker Discovery Using Proteomic Approaches》  邵晨博士对业内目前围绕尿蛋白质组生物标志物的发现研究进展进行了综述。据介绍,现在很多科研和医疗开始倾向于做尿液,因其具有易得性和稳定性,且含有丰富蛋白信息。邵晨博士研究组曾通过二维液相与串联质谱鉴定做了一些尿中蛋白质组的研究,尿液蛋白质组可以包括其他体液70%的蛋白质。研究组也通过3DLC-MS/MS鉴定出尿液中的6400多种蛋白,并发现与尿蛋白重合率最高的是脑组织中的高表达蛋白。尿蛋白能够反映很多远端的变化,如帕金森症和脑肿瘤等脑部疾病。在肾脏病中,肾小球损伤病人的肾小球会失去过滤功能而造成尿蛋白显著上升。目前很多研究发现尿蛋白中的生物标记物与一些疾病相关,主要集中在泌尿系统疾病的发现,如膀胱癌和急性肾损伤的标志物已获FDA批准,也有在消化系统疾病、肿瘤等疾病中的相关发现。其中,肺癌的研究比较成熟且已进入临床阶段。
  • 金刚石量子计算教学机,助力未来技术学院建设!
    近日,教育部发布《未来技术学院建设指南(试行)》,聚焦未来革命性、颠覆性技术人才需求,推动整体实力强、专业学科综合优势明显的高校,建设一批未来技术学院。《指南》中在建设任务部分特别指出了,要重视学生的全面成长,强化阅读量和阅读能力考查,丰富学生知识领域;强化现代信息技术与教育教学深度融合,探索混合现实、量子计算等新技术、新工具、新标准在教学中的深度应用。谷歌量子计算技术团队(图1)2020年多个发达国家纷纷发布量子技术发展战略,将量子科学人才培养作为重点发展方向。例如,2020年3月美国白宫开始启动中小学量子教育计划;日本今年也推出了量子技术研发战略,其用于量子技术研发的政府预算较去年翻了一番,还召集了国内多领域专家就确保和培养相关人才制定时间表,同时还编制了相关教材和教学计划。 金刚石量子计算教学机(图2)国仪量子于2019年发布的金刚石量子计算教学机可以为我国量子技术人才培育以及未来技术学院建设提供助力。该款教学产品是基于金刚石中NV色心,以自旋磁共振为原理的仪器,通过控制光、电、磁等基本物理量,实现对NV色心发光缺陷的自旋进行量子操控和读出,从而实现量子计算等功能的全球首款面向大众的量子计算教学仪器。实验操作现场(图3)金刚石量子计算教学机是一款能够在室温大气条件下运行的真实可感知的量子计算教学机,无需低温真空环境使得设备有着几乎为零的运行成本,桌面型的设计让它能适应各种不同的教学环境,无论是课堂还是实验室,都能轻松进行量子力学与量子计算的实验教学。实验软件界面(图4)该产品具备可用于通用量子计算的两比特,可以进行量子比特演示、量子逻辑门操作、量子叠加态演化和经典量子算法演示。学生可以操作体验量子操控、量子算法,可以通过改变参数,观察量子系统的反应,从而直观形象的了解量子系统。基于该产品,国仪量子还设计并推出了“量子计算实验课堂整体解决方案”,整体解决方案中包括实验室建设方案、讲义、视频、课件和师资培训等。协助学校探索人才培养模式,帮助教师们构建完整全面的教学体系,提供全方位、全过程的辅助教学。深圳大学实验课程现场(图5) 目前该款产品已成功交付至多个国内高校,其中2019年10月和11月在深圳大学和南京大学已经分别成功开设基于金刚石量子计算教学机的量子计算实验课程。学生们普遍反馈通过这款教学机生动形象的实验课程学习,让他们更加深入理解了量子力学和量子计算的相关基础知识,课程的开设得到了学校师生的一致好评。依照新政策要求,这些基于金刚石量子计算教学机开设量子计算实验课程的高校已然在未来技术学院建设上领先一步。未来,国仪量子也将与包括南京大学、深圳大学等在内的国内各大高校院所共同努力、砥砺前行,为量子技术人才的培养与教育、为中国高科技的发展与创新、为量子技术科学强国做出更多贡献!注:部分信息及图片来源于网络,图2、3为2020年换代更新后的金刚石量子计算教学机
  • 全球首款金刚石量子计算教学机发布
    p style=" text-align: justify text-indent: 2em margin-top: 15px " 4月16日,全球首款金刚石量子计算教学机在无锡发布。这是由我国自主开发出的面向大众的量子计算装置,颠覆性地突破了现有量子计算教育方式,可有效促进量子工程师和交叉应用型人才的培养。 /p p style=" text-align: justify text-indent: 2em margin-top: 15px " 记者了解到,量子计算机是根据量子物理学来构建的计算机,能够完成当前的经典计算机无法解决的信息处理和存储任务。当前,国内外都在布局量子产业,也急需培养量子人才。然而,现有的量子计算机需要低温,且体积大,走向大众还有较远的距离,应用也受限制。 /p p style=" text-align: justify text-indent: 2em margin-top: 15px " 由国仪量子(合肥)技术有限公司开发的首款金刚石量子计算教学机,外形方正,可以在常温大气下运行。 /p p style=" text-align: justify text-indent: 2em margin-top: 15px " 无锡量子感知研究所相关专家介绍,金刚石量子计算教学机研发以基于NV色心的自旋磁共振为原理,通过控制光、电、磁等基本物理量,实现对钻石中氮-空位(NV色心)发光缺陷的自旋进行量子操控和读出,从而进行量子算法等量子计算基本功能的教学,可配合物理、电子工程、精密仪器等开设教学实验课程,可以进行量子比特演示、量子逻辑门操作、量子叠加态演化和经典量子算法演示。 /p p style=" text-align: justify text-indent: 2em margin-top: 15px " 值得一提的是,基于该产品,研制团队还设计了“量子计算实验课堂整体解决方案”,包含实验室建设方案等,能够协助学校探索人才培养模式,帮助老师们构建完整全面的教学体系,提供讲义、视频、课件,进行师资培训等,提供全方位、全过程的辅助教学。 /p p br/ /p
  • 先临天远FreeScan Trio,首款“真”不贴点激光手持三维扫描仪
    近日,先临三维旗下品牌先临天远(专注于工业计量),重磅发布了一款集三目视觉、132线蓝色激光于一体的计量级3D扫描仪——FreeScan Trio三目激光手持三维扫描仪。新品采用自主研发的智能自定位技术,助力激光扫描正式进入无需粘贴标志点的全新时代。 FreeScan Trio提供98+26+7+1激光线组合,并配置3个500万像素高分辨率高性能工业相机。三目视觉与密集激光阵列两大硬件的升级,配合优化的软件算法,共同支撑起智能自定位技术。这让FreeScan Trio在高效模式下,无需借助外部定位装置,无需粘贴标志点,即可实现激光扫描,从而带来突破性的工作效率提升。 先临三维计量级产品技术主管俞百春表示,FreeScan Trio在高效模式下无需借助外部定位装置,不仅省去了繁琐的标志点粘贴步骤,还不需要光学跟踪、反向定位等系统的辅助。这一优势在处理大型工件时尤为明显。例如,对于整车车身的扫描而言,当传统的激光扫描仪还未完成标志点粘贴的预处理工作时,FreeScan Trio已经完整获取了车身数据。 值得一提的是,FreeScan Trio以其独特的三目视角结构为亮点,在行业中独树一帜。设备采用三个500万像素的工业相机进行摄影测量,无需编码点,即可轻松准确地确定三维空间位置。此外,三目视角的排列组合带来了更小的镜头夹角,大幅减少在扫描深孔和狭窄区域时可能出现的视觉盲区,从而提升了数据获取的完整性。 与此同时,FreeScan Trio作为FreeScan系列的旗舰产品,延续了该系列一贯“精益求精和突破创新”的产品基因,共打造“高效扫描/标准扫描/精细扫描/深孔扫描/摄影测量”五种测量模式,进一步拓宽了产品的适用范围。 就精度而言,FreeScan Trio保持了高精准度和高精密度(重复性精度稳定)的卓越性能。标准模式下,最高精度可达0.02mm,而在精细模式下更进一步提升至0.01mm。 作为一款突破性新品,先临天远FreeScan Trio注定成为工业制造新一轮生产力加速的助推器,通过精准测量助力精密制造,以高效率三维测量持续推动航空航天、汽车工业、重工机械、电子电器等行业高质量发展。 多年来,先临三维在高精度3D视觉领域持续深耕、不断创新。未来,先临三维将继续向集成化、模块化、智能化、无线传输、云端计算等方向持续技术创新,不断突破高精度3D视觉技术的应用边界,为更多领域的转型升级提速。
  • 基因测序的云计算平台可能带来的变革与进步
    p   自二代测序的技术问世以来,就一直是研究和临床领域关注的重点。随着整个行业的技术发展,二代测序也带动了整个基因研究的产业链。在二代测序的产业链中,上游做检测,中游做分析,下游做应用。在测序价格持续下降的情况下,中游测序数据的生物信息学分析成为了提高效率最大的瓶颈。 /p p   传统的测序数据分析依赖于本地服务器的性能。而可以预见的是不断下降的测序价格将会带来更多海量测序数据的产生,而巨大数量的测序数据无疑会延长获得测序分析结果的时间。目前可能较好的解决方法是通过云计算的方式去做,云计算的优势在于能够通过分布式计算对大数据进行处理,从而极大提升运算效率以及降低成本。 /p p   目前国外的云计算平台Seven Bridge已经做的比较成熟,对二代测序数据也能够进行快速分析。缺点是作为典型的pipeline式分析,对用户的要求比较高,对于国内用户群体的使用会有一些障碍。而在国内的云计算平台中,GCBI将于2016年2月底发布新的全基因组测序分析平台,虽然还没有公布具体的信息,但是希望能够体现基本功能的高效率和高可用性。 /p p   接下来我们看看在不同的领域,测序的云计算平台可能带来的变革与进步。 /p p    strong 科研领域 /strong /p p   科研研究者一直是测序的重要使用群体,由于测序成本的持续降低及更多的测序服务供应商选择,可以预见的是测序数据的产量与规模大幅度提升。而这部分数据是必然需要分析的,在没有大规模数据分析平台之前,分析的效率受限于本地服务器的规模,数据量越大,分析的时间也越久。而测序的云计算平台将有望突破这个瓶颈,100个样本,1000个样本,分析的时间都仅跟1个样本的分析时间类似,这将极大降低用户的时间成本。预计随着数据分析平台化的出现,科研研究的周期将大大缩短。 /p p    strong 临床应用领域 /strong /p p   在传统的诊疗模式下,临床医生需要各种检查数据以及查体来对病人进行诊断。一旦分子层面的检测在临床进行开展,云计算平台可以通过对同一种疾病临床数据及分子检测数据的收集和快速分析,对特定的病人给出相应的辅助诊断参考,甚至给予相应的用药方案。临床医生在合理应用的情况下,整个诊断的过程将会变得更快速以及更准确。如果未来疾病的发展演变成依据分子水平的变化进行分类,那么诸如GCBI等云计算平台对临床的帮助会更大。 /p p    strong 个人健康 /strong /p p   随着测序技术在医疗领域的应用,市面上已经有不少针对个人健康的检测业务了,检测方法包括个人全基因组测序、定制化基因芯片等等。而这些数据的分析与解读也会随着检测成本的下降变得越来越普遍。当每个人都会去做这样的检测时,云计算平台将有望对这部分数据的快速解读提供可行的解决方案。个人用户将更快速地获取自己的结果报告。 /p p    strong 合作模式 /strong /p p   鉴于生物信息云计算平台的强大功能,有望在平台与科研单位、临床研究者甚至企业之间搭建各种各样的合作模式。科研单位与云平台的合作能加快科研成果的输出,云平台可以帮助科研单位进行成果的转化与应用 临床研究者可以借助云平台进行辅助诊断,云平台通过临床数据的输入不断使诊断模型优化 企业通过云平台可以推广自有产品,云平台也可以给用户提供更多样的供应商选择。 /p p   可以预见的是,生物信息云计算平台的强大能力不仅仅会体现在其计算能力上,临床应用,合作转化等方面都可以展现其潜力。就让我们拭目以待看看云计算平台的发展吧。 /p
  • 金刚石量子计算教学机,助力高校推进量子信息学科建设
    全国两会,既是中国政治生活中的一件大事,又连接着万千百姓的小日子。3月5日,备受瞩目的政府工作报告出炉,“量子信息”这一关键词被放在极其重要的位置。十三届全国人大四次会议在京开幕报告指出,过去五年,创新型国家建设成果丰硕,在载人航天、探月工程、深海工程、超级计算、量子信息等领域取得一批重大科技成果。这是“量子信息”首次出现在国务院政府工作报告中,奏响“科技自立自强”的最强音。而在近日教育部公布的2020年度普通高等学校本科专业备案和审批结果的新增专业目录中,“量子信息科学”正式被列为本科专业。量子信息科学未来发展的重要性不言而喻!量子科技教育,离不开量子理论和实验的紧密结合。多年来,国仪量子面向全国高等院校提供实验课程解决方案,默默耕耘,形成金刚石量子计算教学机、量子计算云平台、量子光学实验平台等量子教育解决方案,助力高校推进量子信息学科建设,完善和创新学科教学内容、教学方法、教学手段。金刚石量子计算教学机金刚石量子计算教学机是国仪量子为了更好地促进量子力学和量子计算相关的教学,推出的全球首款、面向大众的基于金刚石中NV色心,以自旋磁共振为原理的设备,通过控制光、电、磁等基本物理量,实现对NV色心发光缺陷的自旋进行量子操控和读出,从而实现量子计算等功能的教学仪器。该仪器可以在室温大气下运行,无需低温真空环境,使得设备有着几乎为零的运行成本,桌面型的设计让它能适应各种不同的教学环境,无论是课堂还是实验室,都能轻松进行量子力学和量子计算实验教学。不仅如此,金刚石量子计算教学机丰富的硬件模块支持学生动手搭建和调试,多功能的软件支持自定义脉冲序列编写。金刚石量子计算教学机可以帮助和促进高校、科研机构在开设、优化大学物理实验课、近代物理实验课、量子信息科学专业课程的相关工作,方便教师展示教学,激发学生的兴趣和想象力,提高学科水平和教学质量。基于金刚石量子计算教学机,国仪量子可以提供包括实验室建设、教学讲义、教学视频、教学课件、示范课培训等量子计算教学相关的整体配套解决方案定制服务,让学校和老师们更轻松地开设相关实验课程。目前,国仪量子金刚石量子计算教学机已成功交付至多个国内高校,中国科学技术大学、南京大学、深圳大学、华中师范大学、上海大学、天津大学等几十所高校已开设实验课程并得到良好效果。量子计算云平台量子计算是一种基于叠加性、纠缠性、量子隧穿等量子力学效应的新型计算模式。与传统的数字计算相比,可以极大的减少计算时间和能量消耗,未来将在人工智能、网络安全、云计算、金融服务、化学模拟、生物制药等领域产生深度乃至颠覆性影响。国仪量子计算云平台是以量子计算为核心的云服务产品,能够提供适用于高校和科研院所的量子计算在线云服务。配套金刚石量子计算教学机使用,可以提供一套完整的量子计算实验课程方案。主要功能包括:(1)量子算法原理教学 包括量子克隆算法、Grover 搜索算法、 量子相位估计算法、Shor 算法等。(2)作业管理和课程考核 量子计算云平台提供实验课作业提交系统,方便作业管理和课程考核。(3)线上和网课教学 配套金刚石量子计算教学机,延伸量子计算实验课程。(4)算法编辑与结果展示 量子线路图编辑简单,算法运行结果以概率柱状图直观展示。量子光学实验平台量子光学是现代物理学中最重要的基础学科之一,也是当前发展极为迅速的学科,已被应用于许多重要的高新技术领域。量子光学实验平台是采用BBO参量下转换、单光子探测等技术,用于开展量子纠缠源制备与验证、量子随机数产生等基础物理实验,同时可支持单光子源产生探测等拓展研究实验的一体化平台。量子光学实验系统可以帮助和促进高校、科研机构在开设、优化大学物理实验课,近代物理实验课,量子光学科学专业课程的相关工作,方便教师展示教学,激发学生的兴趣和想象力,提高学科水平和教学质量。《政府工作报告》掷地有声地指出,以“十年磨一剑”精神在关键核心领域实现重大突破。为了适应国家发展战略和区域经济社会发展需要,促进中国高等院校“双一流”建设,国仪量子将持续优化量子信息实验课程解决方案,助力“量子信息科学”专业等学科建设,为“第二次量子革命”培养更多生力军!延伸阅读 了解更多赞!天津大学量子计算实验课第一学期圆满收官
  • 国仪量子发布金刚石量子计算教学机新品
    NV色心凭借其优良的量子相干时间和稳定的化学性质,成为量子计算机、量子传感器的理想载体,也是近年来国际上的研究热点,众多实验研究组利用NV色心发表了重要的研究成果。金刚石量子计算教学机就是一台基于 NV 色心的以自旋磁共振为原理的量子计算教学设备。该设备是一款能够在室温大气条件下运行的真实量子计算机,无需低温真空环境使得设备有着几乎为零的运行成本,桌面型的设计让它能适应各种不同的教学环境,无论是课堂还是实验室,搭配课程讲义、教学视频与教学PPT等全套教学服务,都能轻松进行量子力学与量子计算等实验教学。教学机由微波模块、光学模块、数采模块、脉冲控制模块、磁铁模块等组成,丰富的硬件让教学机能具备支持如量子精密测量、光探测磁共振等更多教学内容的拓展开发。教学机源自于众多优秀的科研成果,这让它同时也是一款培养学生科学素养和科研基础的教学设备。面向大众面向教学的金刚石量子计算教学机Diamond I, 是一台针对教学设计的高性价比教学仪器,可配合物理、电子工程、精密仪器等相关专业开设教学实验课程,搭建先进教学示范平台。产品功能:量子计算教学l 量子比特l 量子逻辑门操作l 量子算法量子力学基本概念教学l 量子态l 量子态演化l 电子自旋更多功能l 磁共振教学等欢迎下载样本了解更多产品详情。创新点:金刚石量子计算教学机,是国仪量子响应国家建设量子科技强国战略,满足高等院校对量子计算前沿实验教学的需求,自主研发的全球首台面向大众用于量子计算的实验教学仪器。教学机基于金刚石中NV色心和自旋磁共振为原理,通过控制激光、微波、磁场等物理量,对NV色心的自旋进行量子操控和读出,从而实现量子计算功能。仪器实验内容涵盖了量子比特、量子逻辑门、量子退相干、量子算法等一系列量子计算基本知识,可配合高等院校大学物理、近代物理、量子信息科学等专业开设教学实验课程,搭建先进教学示范平台。 金刚石量子计算教学机
  • 朱敏院士团队eLife新成果:原始胴甲鱼揭秘有颌脊椎动物祖先的鳞列格局
    鱼类最显著的特征之一就是体表覆盖的鳞片,这些鳞片承担了防御、进攻、摄食、过滤、感觉、保护躯体免受磨损和防止寄生虫等功能,此外鳞片表面的纹饰和腹侧的结构可以接收并引导水流,减少阻力。鳞片按照一定的生长模式整齐地排成鳞列,此即为成语“鳞次栉比”的出处。鱼类的鳞片是骨质的,属于外骨骼或膜质骨的一部分。鳞片和鳞列形态是对化石鱼类进行分类、推测身体结构、生活方式和彼此亲缘关系的重要证据。 盾皮鱼类是最原始的有颌脊椎动物,因此,学者们很关注它们鳞片和鳞列的形态。完整的盾皮鱼鳞列比硬骨鱼类和软骨鱼类的鳞列更为罕见。云南曲靖下泥盆统洛赫考夫阶西屯组(大约4.1亿年前)是著名的早期鱼类化石产地,其中保存有十分丰富的盾皮鱼类鳞片微体化石。但由于缺乏完整的鳞列,导致这些大量零散保存的盾皮鱼鳞片难以得到分类鉴定,提供的信息十分有限。 胴甲鱼类是盾皮鱼类最原始的分支,处于有颌脊椎动物演化的根部,是一类外形非常奇特的鱼类。它们两眼和鼻子挤在头顶的一个“天窗”内,躯体前半部分被箱形膜质骨甲所覆盖,特别是一对胸鳍也被坚硬的骨片包裹,比起鱼鳍,看上去更像节肢动物的附肢。 胴甲鱼类是最早为科学界所知的古生物类群之一,但早期研究主要集中在中、晚泥盆世较为特化的属种上。上世纪下半叶开始,我国发现的云南鱼类等原始胴甲鱼类掀起了胴甲鱼类研究新的热潮,但直到90年代才发现了保存完整的云南鱼类标本——西屯副云南鱼(Parayunnanolepis xitunensis),至今副云南鱼仍然是云南鱼类中保存最完好的属种。因其原始地位和完整性,副云南鱼成为揭示早期有颌脊椎动物性状演化序列的关键一环。研究团队使用高精度计算机断层扫描(MicroCT)技术,对西屯副云南鱼正模保存的鳞列进行了详细重建,获得迄今最完整的胴甲鱼高清鳞列及鳞片三维形态。 副云南鱼化石扫描结果展示了最原始有颌脊椎动物的完整鳞列。它的背鳍和尾鳍都被厚重的膜质鳞片完全覆盖。扫描显示,副云南鱼鳞片形态具有相当大的分异度,以及复杂的区域分化。同一个体的鳞片在轮廓、膜质骨表面纹饰、冠部比例、覆压方式、大小等形态特征上展现出极大的多样性。此外,沿着身体纵轴向后,鳞片在不同区域展现出不同的梯度特征,特别是侧鳞沿着身体纵轴向后鳞片逐渐变大,这与绝大多数硬骨鱼相反,并且鳞片由彼此强烈覆压(硬骨鱼鳞片普遍特征)逐渐转变为不覆压(软骨鱼普遍特征)。有意思的是,上述鳞列的分化情况在胴甲鱼类进步类群化石中发生了简化,只有在胴甲鱼类的原始类群中才能观察到这些现象。已知鳞片分区的简化也分别独立地发生在软骨鱼支系、硬骨鱼中的肉鳍鱼和辐鳍鱼支系中。因此,副云南鱼就成为了解有颌脊椎动物祖先鳞列格局最重要的一扇“窗口”。 副云南鱼完整鳞列还为鳞片微体化石研究提供了重要资料。研究团队以副云南鱼鳞列为参考,在副云南鱼同一采样点和层位处理、挑样并鉴定出了一批云南鱼类鳞片微体化石。组织学研究表明大多数云南鱼类鳞片不具有发达的中间疏松层(由带血管的骨质构成),这可能代表了有颌脊椎动物鳞片的原始特征。 该研究成果以“Squamation and Scale Morphology at the Root of Jawed Vertebrates”(有颌脊椎动物根部的鳞列与鳞片形态学)为题于2022年6月8日在Nature-index刊物《eLife》上发表,并被遴选为“eLife digest”特别报道。南京大学生物演化与环境科教融合中心博士研究生王雅婧为论文的第一作者,中国科学院古脊椎动物与古人类研究所研究员朱敏院士为论文的通讯作者,该研究得到了国家自然科学基金和中国科学院战略性先导科技专项的资助。 原文链接:https://doi.org/10.7554/eLife.76661 图1 西屯副云南鱼生态复原图。(杨定华绘)图2 西屯副云南鱼化石照片。(王雅婧供图)A)背视图;B) 右侧视图;C) 左侧视图图3 西屯副云南鱼鳞列三维重建,基于高精度CT。(王雅婧供图)A) 右侧视图;B) 左侧视图;C) 前视图;D) 背视图;E) 分区模式 图4 早期有颌类鳞片演化。(王雅婧供图)
  • 中国化学会计算(机)化学专业委员会完成换届,邵学广任新一届主任
    根据中国化学会《关于分支机构换届的通知》(化会字〔2022〕16号),各学科/专业委员会换届工作陆续完成。中国化学会计算(机)化学专业委员会按照换届要求完成换届,新届期将自2022年至2026年。新一届委员会委员信息如下:主任:邵学广 副主任:侯廷军、蒲雪梅、王任小、杨胜勇 秘书长:侯廷军、朱峰委员:委员姓名工作单位白芳上海科技大学生命科学与技术学院卞希慧天津工业大学化学工程与技术学院曹东升中南大学药学院陈增萍湖南大学化学化工学院程龙玖安徽大学化学化工学院邓光辉上海鹰谷信息科技有限公司杜一平华东理工大学分析测试中心付海燕中南民族大学药学院何晓华东师范大学化学与分子工程学院侯廷军浙江大学药学院胡文兵南京大学化学化工学院黄晶西湖大学生命科学学院纪志梁厦门大学生命科学学院蒋华良中国科学院上海药物研究所焦龙西安石油大学化学化工学院金钟中国科学院计算机网络信息中心李国菠四川大学华西药学院李洪林华东理工大学药学院李有勇苏州大学功能纳米与软物质研究院刘轶上海大学材料基因组工程研究院刘英哲西安近代化学研究所刘振明北京大学药学院卢红梅中南大学化学化工学院罗海彬海南大学药学院裴剑锋北京大学前沿交叉学科研究院彭谦南开大学化学学院蒲雪梅四川大学化学学院商城复旦大学化学系邵学广南开大学化学学院唐贇华东理工大学药学院万坚华中师范大学化学学院王任小复旦大学药学院巫瑞波中山大学药学院吴海龙湖南大学化学生物传感与计量学国家重点实验室谢昌谕浙江大学药学院徐志建中科院上海药物研究所阳怀宇华东师范大学生命科学院杨胜勇四川大学华西医院生物治疗国家重点实验室杨跃东中山大学数据科学与计算机学院姚小军澳门科技大学中药质量研究国家重点实验室张健上海交通大学医学院赵一雷上海交通大学生命科学技术学院郑明月中国科学院上海药物研究所郑清川吉林大学理论化学研究所朱峰浙江大学药学院
  • 量子计算用极低温稀释制冷机打破两项纪录
    作者:吴长锋 来源:科技日报3月26日,安徽大学物质科学与信息技术研究院单磊教授、王绍良研究员团队自主研发的“量子计算用国产极低温稀释制冷机”项目,顺利通过鉴定委员会鉴定。专家认为,研制的极低温稀释制冷机满足量子计算需求,连续稳定运行的最低温度为8.5mK,项目创造了已公开报道的连续运行最低温度和制冷量两项国内纪录。安徽大学供图“量子计算用国产极低温稀释制冷机”是一种能够提供接近绝对零度低温环境的高端科研仪器,是现代量子科学研究与量子技术发展的关键核心设备之一。由领域内知名专家组成的鉴定委员会听取了项目工作汇报,审阅了技术报告和相关技术资料,考察了实验现场,查看了系统运行状况;经质询、答疑和讨论,一致认为:针对无液氦、极低温、大冷量、大空间、高稳定性等量子计算需求,单磊教授、王绍良研究员团队成功研制出无液氦型量子计算用极低温稀释制冷机,连续循环运行最低温度达到8.5mK。相关成果增强了我国相关基础科学和技术领域的原始创新能力,进一步解决了大摩尔流量条件下极低温流体热交换效率低的技术难题,研发出具有超大比表面积的极低温高效换热部件,同时实现了相关核心部件的完全自主研发,扭转核心技术“卡脖子”的被动局面。据悉,去年12月31日,这台机器已经获得在100毫K具有435微瓦和120毫K具有671微瓦的制冷量,达到国际主流产品的水平,满足量子计算的温度和冷量需求。
  • GMP法规附录《计算机化系统》那些事儿
    2015年5月26日,CFDA正式发布了2010版GMP法规的新附录之一《计算机化系统》,引起了国内制药行业的广泛讨论和高度关注。其实许多制药企业对它的内容并不陌生,因为这则法规于2013年作为征求意见稿已经添加到新版GMP法规附录中。而现在,它将作为正式的法规于2015年12月1日起执行。这则法规附录将给国内制药企业带来什么新的挑战?从近两年来CFDA的一系列举措(频繁的飞行检查,2014年至今已取消近100家药企的GMP证书)来看,国内GMP的监管力度是显著增强的。所以届时如果企业不能满足《计算机化系统》法规的要求,将可能面临十分严重的后果。 CFDA为何要发布这则法规? 国内外GMP法规有许多差异,而对计算机化系统的要求差异尤为明显。CFDA所执行的2010版GMP法规内容与国际上其他法规机构的cGMP法规是对等的,如FDA 21 CFR Part 211。但美国的制药企业除了执行 21 CFR Part 211以外,同时还要遵守21 CFR Part 11法规;欧盟国家的制药企业除了执行欧盟GMP以外,还要遵循Annex 11法规。FDA的21 CFR Part 11与欧盟的Annex 11的内容是类似的,都是针对于制药企业使用计算机化系统的法规要求。新颁布的《计算机化系统》法规附录是国内法规与国际接轨的重要一步,将填补国内对于计算机化系统要求的法规空白,是实现与国际法规监管机构之间相互认可的前提条件之一。 法规到底讲了些什么? 《计算机化系统》法规附录究竟讲了哪些内容?其实,我们发现内容并不多,全文共24条要求、6页,共计2500字。我们尝试对这些法规条文作了初步的解读,把所理解的核心内容概括如下: 1.CFDA明确提出进行计算机化系统验证的要求 以往,法规对于仪器的确认是一直有要求的,但对计算机软件验证的要求不明确。因而,大部分的制药企业不对计算机系统进行验证,或仅进行最简单的确认。真正按照GAMP5指南基于风险评估进行完整验证的企业不多,仅某些企业有国外业务、需要通过FDA或欧盟审计时才会考虑。而这则法规发布以后,明确对所有的国内制药企业提出进行计算机化系统验证的要求,为计算机化系统验证提供了法规依据。这里尤其值得注意的是,法规附录里要求进行基于风险评估的计算机化系统验证,实际上就是指遵循GAMP5的验证方法学,即计算机化系统验证的形式应该是验证(Validation),通常所说的确认(Qualification,IQ/OQ/PQ)是不足够的。 2.数据合规性要求 法规明确了对数据输入的准确性和数据处理过程的正确性要求,以保证数据的合规性。概括来说,对计算机系统合规性的功能要求可以总结为:访问控制、权限分配、审计追踪和电子签名。 访问控制:只有经许可的人员才能进入和使用系统。 权限分配:应当对进入和使用系统制订授权、取消和授权变更的操作规程。 审计追踪:用于记录数据的输入和修改以及系统的使用和变更。 电子签名:明确了直接对电子数据进行电子签名是合规的,但电子签名需要符合相应法规。 其中,电子签名是“可以有”,而不是“必须”,这取决于企业对于主数据的定义是电子数据还是纸质数据。这与21 CFR Part 11和Annex 11是一致的。对于审计追踪记录的要求,是“根据风险评估的结果,考虑在计算机化系统中建立数据审计跟踪系统”,这可能是考虑到很多软件自身功能设计上无法实现的情况。然而,对于色谱数据系统这样的关键原始数据系统来说,审计追踪肯定是必然的要求。 3.电子数据安全性要求 电子数据安全性一般分为逻辑安全性和物理安全性。逻辑安全性即是通过软件自身的权限控制对数据的访问、录入、修改和删除等操作,确保不被人为误操作或有意的篡改行为而影响数据安全。而物理安全性,即是对数据存储的介质(如硬盘、光盘、服务器等)进行保护,确保系统本身不会因为物理介质的损坏或故障造成数据丢失。 4.数据备份要求 关于电子数据的备份要求不算是新的法规要求,GMP法规也一直要求数据备份以保证原始数据的安全性。国内制药企业通常也都制定了数据备份策略,但我们发现通常只是一个月甚至半年才做一次数据备份,真正发生故障时原始数据还是会严重丢失。这样的数据备份归档,其形式意义大过于实际意义;而即使是这样的一个备份频率,企业都已经觉得数据备份的工作任务很重。其根本原因是缺乏良好的解决方案。《计算机化系统》单独列出这条要求,将提高制药企业对数据备份的重视,进而采纳更先进的解决方案。 那么这些新的要求将对国内制药企业带来什么影响?会为实验室工作带来哪些变化? 预期影响一:单机版色谱软件被网络版软件取代的步伐将加快 目前,国内有些制药企业采用单机版色谱工作站来处理色谱数据,尤其是在规模较小的实验室(少于5套色谱系统),在仪器数量较少时,单机版软件初始成本较低,能满足实验室日常操作需求。当仪器数量超过5台以上,企业就需要考虑单机版和网络版软件的平均成本了。而《计算机化系统》附录对计算机化系统明确提出了验证的要求,如果按照这一要求来做,网络版软件在合规性和成本上的优势将越发显著。 1.成本有效降低 按照以往的认知,网络版软件价格是贵于单套单机版软件的,通常在实验室规模化了之后,企业才会考虑。而现在,《计算机化系统》附录明确要求对每套计算机化系统进行验证,这将大大增加单机版色谱系统的验证成本。比如,如果一家企业的实验室有10套色谱系统,就意味着需要做10次验证,每一台仪器都需要作为独立系统逐一进行计算机系统验证。而一套网络版软件可接入多套仪器,只在第一次部署的时候产生验证成本。未来再接入新仪器时,都只需对仪器硬件进行确认即可,无需再对软件进行全面的重新验证。这样下来,单机版和网络版的验证成本可能相差数十倍。 这种情况下,网络版软件无疑将成为制药企业满足验证要求的同时降低成本的有效途径。沃特世Empower 3网络版软件可控制包括安捷伦、PE、岛津、Thermo等在内的多家色谱系统,最大程度上将实验室的计算机化系统数量和类型减至最低,帮助制药企业摆脱单机版高昂的验证成本,一劳永逸地解决色谱系统的计算机化系统验证问题。 2.数据的合规性与安全性 《计算机化系统》附录明确表示电子数据是可以接受的。其实电子数据相比纸质数据,可以更完整地反应数据的状态,包括:报告、仪器方法、积分方法、样品序列、审计追踪报告等。当电子数据变得越来越重要,它的合规性和安全性需要得到足够的保障。 单机版软件都会面临一个物理安全性的问题,那就是数据都存储于本地电脑,而电脑处于实验室环境中,存在客观的物理损坏、易被获取等风险。普通的电脑硬盘也有一定的工作寿命,一旦硬盘损坏,数据将会丢失。而网络版软件采用服务器将原始数据存储于更为安全的IT机房,并采用服务器的硬件镜像技术,确保了数据的物理安全性。此外,通过服务器可以实现数据的自动备份,并且可以将备份周期从原来的一个月或半年提高到每天,显著提高了便利性和效率。 除了确保电子数据的物理安全性,数据的逻辑安全性也要得到保障。所谓的逻辑安全性,即是通过软件自身的权限控制对数据的访问、录入、修改和删除等操作,确保不被人为误操作或有意的篡改行为而影响数据安全。Empower 3网络版软件基于Oracle数据库而开发,具有严谨详细的权限控制功能,通过权限控制使用户无法对仪器方法、积分方法和原始数据等进行篡改或删除,确保了数据的逻辑安全性。 图1. 通过Empower 3软件指导,管理员可确保该系统配置符合GxP和21 CFR Part 11的规定。 预期影响二:计算机化系统验证需求显著增长 计算机化系统验证比较耗时且操作复杂,需要多领域的专家花费大量时间去完成。沃特世从欧洲ISPE制药工程协会聘请了资深的验证咨询顾问(GAMP5指南的编辑之一),为国内企业提供全套专业的合规性和验证(Computer System Validation, CSV)服务,可协助广大用户顺利完成验证工作,使系统尽快投入运行,并满足法规要求。 非色谱类数据管理 前面提到Empower 3网络版软件可以解决色谱数据的安全性、合规性和备份问题。那么,对于非色谱类仪器,如何解决它们的数据管理问题? 根据《计算机化系统》附录的要求,除了色谱类(LC和GC)数据,实验室也要确保非色谱类数据的安全性和合规性,比如质谱、红外、核磁等仪器。对于这些无法通过Empower网络版软件控制的系统,沃特世提供另一种数据管理解决方案——NuGenesis SDMS科学数据管理系统,它可以自动采集、编目原始数据和报告数据,将来自任何仪器的原始数据归档至安全、可靠的Oracle数据库中,符合电子记录和电子签名的规定等,最终帮助企业满足法规要求。 1.数据备份、归档 CFDA的《计算机化系统》法规附录里强调了电子数据的备份和归档的重要性,不论是以电子数据作为主数据,还是纸质打印件作为主数据。而FDA也认为,完整、准确的数据副本非常重要,因为纸质打印件已不再适合代替电子数据。NuGenesis SDMS以Oracle作为底层数据库,可以自动、准确地采集原始数据和报告数据,并归档到数据库中;可对数据的变化进行追踪,并将每一次变化保存到数据库,保护其不被篡改。相比其他备份软件采用的固定备份周期,如:每天一次或每周一次,NuGenesis SDMS对数据进行实时备份,显著降低了故障发生时的数据丢失率。 2.审计追踪 通过“审计追踪”功能,可追踪对数据的访问的更改,是维护系统安全的关键。审计追踪不完整或缺失会影响数据的完整性,甚至影响产品质量。从过去的审查案例中可以看到,通过审计追踪可以有效发现是否有数据操纵行为发生。而当在审查过程中发现数据偏差时,审计追踪显得尤为重要。 NuGenesis科学数据管理系统(SDMS)审计追踪自动生成,能够为所有非色谱类系统提供: –采集所有历史信息(人员、时间、内容),包括任何数据的插入、对元数据的修改、记录副本及删除等动作。 –不允许更改数据本身 –追溯用户权限的修改 –识别无效或已修改的记录 –能够对所有原始数据和报告数据进行校验确认,保护系统内的数据免遭修改。 这些功能大大降低了信息丢失或修改的风险,保持记录的完整性。当面临审计要求、要提供客观证据时,可以从在线NuGenesis SDMS数据库中快速、方便地找到证明文档,而无需人工翻查纸质打印报告,显著提高了效率。 3.电子审批 《计算机化系统》附录明确认可电子数据和电子签名,这意味着原始数据可以不用像以往那样打印出来再签名,直接对电子数据进行签名是合规的。在不久的将来,制药企业或将由传统的纯纸质记录逐渐转向更为灵活的电子数据和信息环境。如果企业决定采用电子审批,那么同样的,Empower网络版软件可以快速、方便地解决色谱类仪器的电子签名;而对于实验室中的非色谱类仪器,同样可以交给NuGenesis SDMS去解决它们的电子审批过程。 虽然《计算机化系统》附录并没有明确电子签名的相应法规,但从NuGenesis SDMS在满足21 CFR Part 11对电子签名的要求中可以看出,它可以提供一系列功能,满足Part 11对电子签名的要求。 –签名的显示——NuGenesis SDMS中的电子签名可显示:1)签名者的完整印刷体姓名;2)执行签名的日期和时间;3)签名的含义(复核、审批、授权、职责)。在签署记录时,这些都是必需要素。此外,NuGenesis SDMS可防止电子签名被重新分配和使用,不允许在应用电子记录后删除该电子记录中的签名信息,确保了电子签名的唯一性。 –签名/记录链接——NuGenesis SDMS能够在电子签名和原始电子记录间建立无法破坏的链接,确保签名无法被删除、复制或转移。 以上仅列出了NuGenesis SDMS的几项关键功能,帮助制药企业轻松、可靠地管理非色谱类仪器数据,满足合规性要求。 如您对法规、软件、验证等有任何问题,欢迎发送邮件至yong_jin@waters.com,沃特世信息学专家将为您解答,感谢您的关注。
  • 硅量子计算机保真度获重大突破
    英国《自然》杂志19日连发三篇论文,来自三个团队的科学家们在开发容错量子计算机方面取得重要突破。他们验证了硅双量子位门保真度,超越了容错计算机的阈值(99%)。研究结果证实,硅材料中强大、可靠的量子计算正在成为现实。研究还表明,硅量子计算机与超导和离子阱一样,是实现大规模量子计算机研发的有前途的候选者。  澳大利亚新南威尔士大学研究团队在磷供体形成的两个核自旋之间创建了双量子位通用量子逻辑运算,通过行业标准的离子注入方法将其引入硅中。他们使用一种被称为“量子门集层析成像(GST)”的方法,对其量子处理器的性能进行了验证,实现了高达99.95%的单量子位保真度和99.37%的双量子位保真度。此外,根据研究结果,电子自旋本身就是一个量子位,可和两个原子核纠缠在一起,形成一个三量子位的量子纠缠态,这一保真度达到了92.5%。这为大型硅基量子处理器在现实世界中的制造和应用铺平了道路。  荷兰代尔夫特理工大学研究团队使用由硅和硅锗合金堆栈形成的材料创造了一个双量子位系统,其中量子信息被编码在限制于量子点的电子自旋中,最终实现99.87%的单量子位保真度和99.65%的双量子位保真度。  日本理化学研究所的研究团队采取了类似的路线,使用代尔夫特团队生产的相同材料堆栈,创建了双电子量子位,实现了99.8%的单量子位保真度和99.5%的双量子位保真度。研究结果首次使自旋量子位在通用量子控制性能方面与超导电路和离子陷阱相抗衡。  来自荷兰和日本的研究团队在合作实验过程中发现,一种名为拉比频率的属性是量子计算机系统性能的关键。他们还发现了一个频率范围,其中单量子位门保真度为99.8%,双量子位门保真度为99.5%,达到了所需的阈值。  研究人员证明了他们可实现通用运算,这意味着构成量子运算的所有基本运算,包括单量子位运算和双量子位运算,都可在高于纠错阈值的门保真度下执行。  为了测试新系统的性能,研究人员还采用了双量子位的Deutsch-Jozsa算法和Grover搜索算法。这两种算法都能以96%—97%的高保真度输出正确的结果,表明硅量子计算机可进行高精度的量子计算。
  • “生物计算”:比超级计算机更聪明、高效、紧凑
    上图 真菌可能与标准电子设备相连。图片来源:安德鲁阿达马茨基下图 实验室培养的脑细胞可用于计算。图片来源:托马斯哈滕/约翰斯霍普金斯大学细菌和超级计算机有什么区别?区别是细菌更“高级”,因为它有更多的回路和更强的处理能力。所有生命都在“计算”。从响应化学信号的单个细胞,到在特定环境中航行的复杂生物体,信息处理是生命系统的核心。经过数十年的尝试,科学家终于开始收集细胞、分子甚至整个生物体,来为人类自己的目的执行计算任务。从本质上讲,计算机也只是信息处理器,而且人们越来越认识到大自然拥有丰富的这种能力。最明显的例子是复杂生物体的神经系统,它能处理来自环境的大量数据并对各种复杂的行为“下指令”。但即使是最小的细胞,也充满了复杂的生物分子通路,这些通路响应输入信号,打开和关闭基因、产生化学物质或进行自我组织。最终,生命中所有令人难以置信的壮举,都依赖于DNA存储、复制和传递遗传指令的能力。如何构建一台生物计算机?生物系统有自身的独特优势:更紧凑、能源效率更高、可自我维持和自我修复,而且特别擅长处理来自自然界的信号。在过去的20年里,强大的细胞和分子工程工具让人们终于能在构建生物计算机领域迈出一步。美国麻省理工学院生物合成学家克里斯托弗沃伊特说,该方法的核心是“生物电路”,类似于计算机中的电子电路。这些电路涉及各种生物分子相互作用以获取输入,并对其进行处理以产生不同的输出,就像它们的硅对应物一样。通过编辑支撑这些过程的遗传指令,人们现在可以重新连接这些电路以执行自然界从未计划的功能。2019年,瑞士联邦理工学院利用CRISPR技术,构建了相当于计算机中央处理器(CPU)的生物等效物。这个CPU被插入一个细胞,在那里它调节不同基因的活动以响应专门设计的RNA序列,使细胞实现了类似于硅计算机中的逻辑门。印度萨哈核物理研究所在2021年更进一步,诱使一群大肠杆菌计算简单迷宫的解决方案。该电路分布在几个大肠杆菌菌株之间,每个菌株都被设计用来解决部分问题。通过共享信息,该电路成功地实现了如何在多个迷宫中导航。大多数生物系统并不同于经典计算机的二进制逻辑,它们也不会像计算机芯片那样一步步解决问题。它们充满了重复、奇怪的反馈循环和以不同速度并排运行的截然不同的过程。更怪异的是,生物的计算能力还能完全脱离其自然环境。瑞典隆德大学科学家正在试验一种完全不同的生物计算方法,使用由分子马达驱动的微小蛋白质丝围绕迷宫推进。迷宫的结构经过精心设计,而细丝能同时探索所有路线。这意味着解决更大的问题不需要更多的时间,只需要更多的细丝。重新设计生物系统会带来什么?但美国马萨诸塞州塔夫茨大学的迈克尔莱文认为,生命系统已经在生物学的各个层面展示了令人惊叹的计算壮举,人们应该将重点从尝试重新设计生物系统,转移到寻找与现有系统交互的方法。莱文实验室已经证明,他们可以操纵细胞之间的电通信,帮助它们决定如何以及在哪里生长。举个恐怖的例子,这可能让蝌蚪的内脏上长出眼睛,或让青蛙长出额外的腿。它并不等同于计算,但团队认为它代表了如何将自然界预先存在的电路折射为一个“新目标”。类似的方法可用来解决广泛的计算任务。此外,真菌计算的深奥领域也正在显示其应用潜力。英国布里斯托尔西英格兰大学研究显示,真菌在感知pH值、化学物质、光线、重力和机械应力等方面具有的能力令人印象深刻。它们似乎使用电活动的尖峰进行交流,这开辟了将它们与传统电子设备连接的前景。类器官智能有多智能?要探寻生物计算,离不开人们迄今已知的最强大计算设备:大脑。当前组织工程学的进步意味着,科学家们可从干细胞中培育出相当于微型大脑的复杂神经元簇,也就是“大脑类器官”。与此同时,能将信号传输到脑细胞并能解码它们的反应,意味着人们已经开始试验类器官的记忆和学习能力。今年早些时候,美国约翰斯霍普金斯大学团队概述了“类器官智能”这一新领域的愿景。目标与人工智能相反:他们不会让计算机更像大脑,而是试图让脑细胞更像计算机。初创公司Cortical已可训练在硅芯片上培养的人类脑细胞来玩电子乒乓游戏Pong。而在它们的新软件中,任何具有基本编码技能的人都能为“培养皿大脑”编程。不过,所有这些生物计算方法目前都远未成为主流。与设计和制造硅芯片的能力相比,人们操纵生物学的能力仍处于初级阶段。但生物计算的巨大潜力和投入生物技术的数十亿美元,将在未来几年为这个领域带来快速进步。
  • 从基础研究到应用拓展 太赫兹产业发展迎来 “临界点”——访上海理工大学光电信息与计算机工程学院院长庄松林院士、上海理工大学朱亦鸣教授
    作为一个新兴的科学技术领域,太赫兹被称为电磁波的最后一个处女地。由于频率高、脉冲短、穿透性强,且能量很小,对物质与人体的破坏较小,与X射线相比,太赫兹成像技术和波谱技术更具优势,在空间探测、医学成像、安全检查、宽带通信等方面具有广阔的前景,也曾被评为“改变未来世界的十大技术”之一!那么太赫兹目前的技术进展如何?我国的太赫兹产业处于什么样的水平?当前亟待解决的问题有哪些?日前,仪器信息网编辑就以上问题特别采访了上海理工大学光电信息与计算机工程学院院长庄松林院士和上海理工大学朱亦鸣教授。从高校科研到企业应用,太赫兹产业加速发展上世纪90年代,美国人首先提出太赫兹的概念。20多年的发展历史中,最初主要专注于器件、原理等基础研究,近10年才开始真正走向系统和应用研究。庄松林院士曾经打过一个比方,他说,太赫兹好像一架飞机,开始10年都在跑道上慢慢滑行,最近10年按下加速键,接下去的3-5年可能就要起飞了。朱亦鸣教授在采访中介绍说,太赫兹目前发展到了一个“临界点”,正处于由高校科研转向企业应用的过程中,并且在多个方面都开始有所突破。从应用角度来说,太赫兹技术在生物检测、材料检测,包括半导体器件检测的应用方面走出了一大步,科研工作者做出了不少的试点工作;不仅如此,很多新兴的领域也开始发展起来了,比如太赫兹的通讯业应用,包括局域网通讯、军队保密通讯、太赫兹成像等。我国太赫兹产业已位居世界“第一梯队”相较于美国而言,中国太赫兹产业布局晚了十年左右。不过,在国家大力支持下,近年来发展势头迅猛。朱亦鸣教授说,“虽然受制于很多因素的影响,我国很多器件落后于美国。但近年来在科技部、基金委、军科委等的大力支持下,我切身感受了明显提升,我们的器件指标和性能已经飞速和国外接近,甚至有些器件已经超过了国外。”“我一直认为,目前,中国太赫兹的研究和应用绝对算得上国际前沿水平,至少是第一梯队的。”朱亦鸣教授还强调说,“从经费投入到优秀SCI论文,到太赫兹仪器公司,再到产品和应用,我国在太赫兹产业方面的布局和进展有些地方已经超越了美国,有些地方和美国在并跑,有些地方可能还略微落后美国一点,但总体来说我们太赫兹产业的发展比美国要快,也许再过10年我国的太赫兹产业就是全球最好的了!”太赫兹产业发展要“顶天立地”对于太赫兹产业未来的展望,庄松林院士说,“我们的工作要‘顶天立地’。‘顶天’方面是指太赫兹是介于光子学和电子学的过渡阶段,要建立太赫兹自身的理论体系,需要大家在基础理论层面不断努力;而‘立地’的层面,就是要把太赫兹的研究成果变成产品,为生物、材料等领域的应用服务,为括国家安全、经济建设服务!”据悉,庄松林院士团队研发了太赫兹人参皂苷检测仪,能快速、精准地检测三七中的有效成分。而设立在文山州的院士工作站,就正在开展文山州三七检测的方法研究和应用推广工作。庄松林院士介绍说,与液相色谱相比,太赫兹技术在检测成本、检测时间和在线程度方面相比液相色谱有非常大的优势。只是,现在太赫兹技术方法还没有成为标准,在一定程度上阻碍了行业的接受进程。庄松林院士特别指出,标准是一个学科、一类产品进入市场的重要前提,对太赫兹技术而言,标准是亟待解决的关键事项。而为了推进相关技术方法的实际应用,庄松林院士团队和文山州检测院等正在推进相关标准制定的进程。
  • 刘先林:让先进测绘仪器国产化
    1962年,刘先林从武汉测绘学院毕业。46年来,他在中国测绘科学研究院执著创新,取得了一系列重大科研成果,改变了我国先进测绘仪器依赖进口的历史,为我国测绘事业的发展作出了巨大贡献。   自从1994年当选中国工程院首批院士以来,刘先林一直不习惯“刘院士”这个称呼。别人一叫刘院士,他就连忙摆手:“叫我老刘好了。”有人比喻说,如果说袁隆平是院士中的农民,老刘就是院士中的工人。   国外产品其实没什么了不起   过去很长一段时间,直到上世纪80年代中期,我国测绘事业发展面临着极大的挑战。一方面,国家经济建设飞速发展,对测绘工作提出了更高、更迫切的要求 同时,测绘仪器装备落后,精密航测仪器完全依赖进口,国外产品占据了90%的国内市场。由于国内研制不出这种仪器,外商漫天要价,一台测绘仪器要价几百万元人民币,甚至把一些零部件拼凑在一起高价出售。更重要的是,真正的尖端技术是不可能买来的。测绘技术和装备的落后,严重制约了国民经济的发展。   “我们曾经进口一批记录仪,每台6万美元,实际上是快要淘汰的产品,有的不能用、有的经常坏,维修一次又要上万美元。过去外汇稀缺,国家还要花那么多钱去购买这些所谓的高技术产品。”老刘说。   有一次在德国,一位外国专家演示他设计的示波器,打出复杂的波形给老刘看,不屑一顾地说:“这种复杂的光机电综合仪器你们搞不了,还是研制单纯光机型吧。”老刘当即把他要演示的下一幕提前道出来,刚才还自我感觉良好的外国专家只好尴尬地收起了仪器。   “对进口仪器的高度依赖、外国人的轻视与傲慢,一次次震撼着我的灵魂,我痛心、惋惜、窝火!中华民族是一个伟大的民族,为什么就不能研制出自己的精密仪器?研制中国人自己的测绘仪器,把国外产品挤出去,是我们科研工作者义不容辞的责任!”不达目的,誓不罢休,成为老刘重要的人生信念。   “我仔细研究国外的产品,其实没什么了不起,我们完全做得了。有一次,国家组团出国考察谈判,准备引进5台解析测图仪。团长问:‘什么是最需要引进的关键技术?’我说:‘除了油漆,我们都搞得了!’中国人并不比外国人笨,一定要有勇气赶超世界先进水平。目前,国货已经覆盖国内市场90%以上,并成功走向国际市场。”老刘说。   老刘凭着超强的自主创新意识,每隔几年就拿出一项能够解决测绘生产瓶颈问题的成果——第一个发明了写入我国航测规范的作业方法,第一次将计算机技术引入航测生产领域,第一次成功研制正射投影仪、数控测图仪、解析测图仪、全数字摄影测量工作站、数字航摄仪等一系列具有自主知识产权的产品。   测绘仪器的更新换代非常快。解析测图仪是老刘1988年的科研成果,后来获得国家科技进步奖一等奖。当时,所有人都为之雀跃:它结束了国外精密测绘仪器长期一统中国市场的局面。到1998年,这类解析测图仪几乎同时进了博物馆。“我们必须不停地推出新产品,才能在世界上站稳脚跟。让人感到欣慰的是,我国航测技术每10年一次的飞跃,基本上都采用了自主创新的产品。”   出国只有一种理由   上世纪80年代曾涌动出国潮。“我在美国、日本、德国的老同学、老朋友多次邀请我去国外,我都谢绝了。有人说,你这样的人在国外,成为千万富翁不是难事。但我从来没有想过要成为千万富翁,我不能为了个人待遇去为洋人打工。我是一个中国人,要为中国人争气。我不但要证明中国人不比外国人差,而且要证明中国人在国内干一样能够成功!有一次随团访欧,我在给哥哥的信中自豪地说,我只出一种国:讲学、培训外国人、推销我的成果。我后来赴美国、加拿大是宣传介绍我们的设备,赴日本是安装设备、培训日方人员,赴俄国是转让技术,赴芬兰是去培训,赴巴基斯坦、澳大利亚是装设备。”老刘说。   老刘的成果从根本上改变了我国测绘工作的落后面貌,极大地提高了测绘生产力水平。过去,测绘地图需要做大量的野外工作,测绘工作者跋山涉水,风餐露宿,非常艰苦,有时甚至要冒生命危险。现在,利用他主持研制的全数字摄影测量工作站,航空照片、卫星照片上普普通通的高山、河流、房屋,由平面变得立体了。以前大量艰辛的野外测绘工作,现在坐在电脑前就能完成了。过去测绘一幅1∶1万比例尺地形图需要一年多时间,现在不到一个月就可以完成,地图更新速度大大加快。仅此一项,就为国家节约资金约2亿元。   老刘的成果彻底打破了国外产品在中国测绘市场上的垄断。仅以全数字摄影测量工作站为例,价格只有国外同类产品的1/10,不仅占领了60%的国内市场,而且批量出口到美国、日本等国家和地区。   科研就像在地狱里爬行   “我大学毕业分配到国家测绘总局测绘科学研究所(现在的中国测绘科学研究院),老所长语重心长地说:‘祖国需要什么,一线需要什么,我们就要研究什么。要到生产第一线去,解决生产一线的问题,这是研究所的责任,也是研究人员的责任。祖国的希望寄托在你们身上。’用自己的科研成果武装测绘生产、提高生产力,是我一直坚持的人生追求。”   回忆当年,老刘说自己研制航测仪器,一无现成图纸,二无参考资料,三无资金支持。每走一步都要付出更大的代价。   “1985年,根据航空测量仪器的发展趋势,我们结合实际提出了研制解析测图仪的总体方案与设计思路。这个课题不仅难度大,包括了光、机、电、航测、电脑技术在内的多种学科,而且时间紧,要在两年四个月内完成总体设计和光、机、电部件加工以及上百个程序的编制、总体调试等工作。课题组每位同志都以忘我的热切情怀,夜以继日地工作。研制过程中,我们采取结合生产分阶段研制的办法,经过1000多个日日夜夜的艰苦鏖战,1987年成功研制出JX-3解析测图仪,并很快在国内得到大规模应用,一举夺回解析测图仪国内市场。德国一家公司的香港销售公司一再降价仍难挽回市场,只得关张大吉。”老刘说。   “JX-3解析测图仪开始用的计算机是单板机,没有操作系统。为了能够推广应用,必须及时把单板机提升到系统机上面去。这是非常重要的一环。那段时间我带着笔记本电脑,把原来单板机上面的驱动软件,一个个移植到系统机里面去。春节期间,助手们回家探亲,就剩下我,时间不等人,工作不能停!我拉着10岁的儿子帮忙,爷儿俩整个春节期间在实验室连续苦干,一共焊接了几百个焊点,累得几乎直不起腰来。就在这一年,JX-3解析测图仪实现了批量生产,并出口国际市场。”   除了条件简陋之外,从事测绘研究还面临许多挑战。老刘说:“科研工作就像在地狱里爬行,而且背上还压着一口锅,一不小心很可能会被扣在地狱里。谁最能吃苦,谁最能坚持,谁就能最后爬出去!否则,没有顽强拼搏的意志和坚忍不拔的毅力,就会前功尽弃、一事无成!”他牵头搞的几个重大项目,从开始到成功每次都历时10年左右,经过上百次的失败、无数次的起起落落。但他从不气馁,从未放弃。   老刘说:“早在1968年,我们在四川编制空中三角测量程序,为了解决一个难点问题,我三天三夜在机房度过,连续上机时间最长的一次达8个小时。1980年国庆节,为了调试等高线拟合程序,3天假期我从始至终待在计算机房,每天连续工作10多个小时。”   产业化最成功的科学家之一   如果说矢志报国是老刘科研的动力,那么结合生产搞科研就是他的准则。他不赞成从纸面到纸面的科研工作,也不单纯追求填补空白。“搞科研要向两种人学习,在创新方面要向作曲家学习,永远拿出新东西 在产业化方面要向厨师学习,你做的每顿饭都能被吃掉。科研成果如果缺少创新的成分,没有自己独到的东西,就不会有人应用,怎么谈得上产业化?创新从何而来?只能是生产实际。”   “刚参加工作时,国家测绘局从经济建设需要出发,从1∶5万比例尺地形测图转向1∶1万大比例尺地形测图。原来的那种方法精度比较低,不能用于1∶1万比例尺测图。我深入生产单位与作业员一起作业,对测绘生产有了充分的了解。通过潜心研究,不到一年时间就发明了坐标法解析辐射三角测量,解决了精度低的问题,为航空测量内业平面加密开创了新途径。用这种方法,精度提高了一倍以上,而且省去了大量野外作业,满足了测制1∶1万比例尺地形图的需要。”老刘说。   JX-3解析测图仪的实用性来源于实践。老刘在研制仪器时,特意邀请生产单位的作业员来参与,生产作业需要什么功能,就在仪器上设置什么功能,想用户所想,急用户所急。用户感慨说:“这仪器太好用了,真不知道刘先生是怎么知道测图中那么多细微环节的!”   长期以来,许多用户对国产设备信心不足,甚至认为基本不能用,于是老刘把大量精力用在搞好产品服务上——经常带领课题组同事走进测绘仪器工厂,深入用户单位,上门服务,传送经验,免费解决各种问题。不仅完善了产品,而且感动了用户。JX-4销售至今,每年都销售150套左右,覆盖了整个国内市场。三四年前就有人预测市场已经饱和了,但JX-4的销售势头一直旺盛不衰。   老刘最近研制成功的数字航空摄影相机,从设计研制、生产到试验,始终以用户需求为第一目标,并针对进口产品的不足加以改进。因此,这一仪器在多个方面性能超过国外同类产品,引起瑞士、美国、日本、巴基斯坦等国技术同行的高度关注。  从事科研工作40多年来,老刘发表的论文加起来不超过20篇,而他所有的科研成果没有一个变成保险柜中的常驻图纸,也没有变成无人问津的“铁疙瘩”,每个项目都在实际中应用,转化为现实生产力。科技部高新技术发展及产业化司一位负责同志曾说:“刘院士的成果,做出一个应用一个,他是产业化最成功的科学家之一。”   老刘的成果产生了极大的经济效益和社会效益。他研制的全数字摄影测量工作站已在测绘、水电、铁道、地质、冶金、煤炭、农林、城建、环保等行业大面积推广应用。第三代解析测图仪刚刚研制出来时,四川测绘局买了3台,用这些仪器3个月就完成了宝成铁路复线测图任务,比采用传统方法提高工效5倍,创造产值上百万元。   秘诀是锲而不舍地学习   谈到自主创新的秘诀,他说就是锲而不舍地学习。“自主创新本身就是各种知识、各种技术综合集成的结果,要求我们必须瞄准科技前沿。每一次研制新的测绘仪器,都需要大量的光、机、电、航测、电脑、外语在内的多种学科。我不是搞计算机出身,通过学习,也照样能掌握软硬件 下干校前从未搞过仪器,几年后通过钻研,也成了光机电方面的行家。”老刘说。   1980年,我国测绘界参加一次国际会议,老刘的论文被选中大会发言,因为他学的是俄语,不懂英文,只好请人代为宣读。随后,测绘局派他到外语学院脱产学习英语一年。“我很不自信,坐在教室最后一排的角落。一次,老师让我念26个字母,我竟然念不全,引得同学发笑。于是,我主动要求调到第一排,发奋用功,学习结束时成绩是全班第二。”   2003年,老刘牵头研制“SWDC数字航空摄影仪”,很多人认为他肯定搞不成。“我就是不服输!我挤出尽可能多的时间学习这方面的基础知识和发展前沿,心中有了底之后,便开始深入调研,到处请教。在四川,一个老航飞员介绍,现在航摄仪最常用的焦距150毫米偏长,88毫米偏短,120毫米最好。我牢记在心,现在SWDC-4的焦距就是等效于120毫米。在总参测绘局,一位同志介绍,要取得理想的测图效果,数字航测仪的旁向视角必须达到90度以上,而进口产品的旁向视场角不到70度。据此,SWDC-4数字航测仪的旁向视场角超过了90度。经过深入研究,我们的这一成果不仅成功出炉,而且高程精度要比国外产品高好几倍,由于精度的突破,摄影测量的应用领域大大拓宽,过去不能做的现在也变成可能。”老刘说。   科研工作者不能昧着良心说话   老刘当了院士以后,请他出席的会议多如牛毛。他就一个原则:与测绘有关的去,与测绘无关又不得不去的,去了也只讲测绘。有个上市公司是老刘公司的客户,请了几位院士去开会,宣传他们的新概念,希望院士们认可他们的发展规划。老刘一听,所谓的新概念都是虚的。其他院士都签了字,一向秉承“客户至上”的老刘就是不签这个字。尽管得罪了客户,老刘说科研工作者不能昧着良心说话。   老刘为我国测绘事业的发展作出了重大贡献,但从不躺在功劳簿上居功自傲,始终严格要求自己,从没有要求组织给他解决过个人的问题。他爱人身体不好,两个儿子都已成家,家里成了“空巢家庭”。为了不让夫人感到孤独,他有时出差也带着夫人,但他公私分得很清楚,夫人的路费一定要自己出。刘先林家离单位远,照顾爱人很不方便,院里想在单位大院里给他补一套单元房,他坚决不同意,说院里房子本来就紧张,不能再要了。前几年,为了刘先林工作方便,院里专门给了他一套里外间的办公室,可他把里间让给同事搞研究、做实验,自己办公的地方挤了又挤。院里还提出为他配备汽车和司机,也被他一一谢绝。   老刘的椅子也很有意思,还是1973年国家测绘局恢复后的胶合板凳,没有扶手,上面的油漆早已脱落了。有人张罗给他换个舒服的椅子,他振振有词:换了那种摇椅似的椅子固然很舒服,可是人坐在上面摇啊摇,容易睡着了。所以不能太舒服,太舒服就不能出科研成果。他还劝下面的年轻人,你们也都坐木椅子吧。
  • 看计算机专业“门外汉”如何变身化学分析“顶级专家”
    “要做就做到最好”——记国家电网江苏电科院技能专家朱洪斌  电力油气化验,在庞大的电力系统中是个附属小专业,看上去很不起眼。但朱洪斌却在这个小专业里实现了大作为。  身为国网江苏省电力公司电力科学研究院(以下简称江苏电科院)状态评价中心物资检测室油气化验组组长的他,参加工作28年来,在电力油气化验领域刻苦钻研,成果丰硕。由他主持研发的“绝缘油中溶解气体组分含量量值保证体系的创建及应用”项目成果,获第4届全国职工优秀技术创新成果二等奖,近3年在江苏电网已产生直接经济效益2.5亿多元。  由门外汉到顶级专家  1988年秋,经过江苏省自学考试,取得计算机应用专业大专毕业证书的朱洪斌被江苏省电力试验研究所(江苏电科院前身)录取。但没想到的是,他被分配到了完全陌生的化学室。“后来才知道,化学室仪器有大量的数据需要分析,这也是安排我去的原因。”朱洪斌说。  然而,朱洪斌对化学专业一窍不通,工作压力很大,但他心中始终坚持“要做就做到最好”的工作信条。朱洪斌一头扎进工作中,开始潜心钻研。白天,他钻进实验室,分析油品、检测成分,一干就是几个小时。为了验证数据,他在现场和实验室之间奔波,一遍遍采样、比对、分析。夜里用电设备少,对仪器杂波干扰小,是测试仪器控制性能和参数的最佳时机,他便一直坚守到深夜,在试验设备前查看运行情况,分析、记录试验数据。只要一有空,他就“啃”化学专业书。很快,他由“门外汉”变成行家里手,晋升为技师、高级技师,成了一个优秀的化验师。  但朱洪斌有着更高的追求。他将进一步提升油气试验能力确定为攻关方向,日复一日地试验、钻研,在他的主持下,江苏电科院油气试验技术和设备不断完善,到2009年,实现了电力用油、气常规分析项目的全覆盖,其中首次申报的19个检测项目全部获得中国合格评定国家认可委员会认可,由他主持研发的科技项目已获18项国家专利,还有15项国家专利正在申请中。  在持续不断的创新攻关中,朱洪斌获得了“江苏省企业首席技师”“国家电网公司技能专家”、全国五一劳动奖章获得者等荣誉,同时完成了从优秀化验师到全国顶级专家的跨跃:成为连续两届全国电气化学标准化技术委员会委员,且是两届委员中唯一非化学专业出身的委员 没有真正上过大学的他,成了江苏计量科学研究院博士后出站论文答辩的5名评审专家之一。  由偷点懒到乐在其中  “我创新的初衷,其实是想在工作中偷点懒。”朱洪斌风趣地说,过去做油色谱分析必须到现场取油样,再拿到实验室检测,来回折腾不仅十分辛苦,而且工作效率很低。于是,围绕解决这两大问题,他开始了油中水分、油中气体等在线测量装置等的研发。  然而,创新之路十分艰辛。爱好摄影、闲暇时常为家人做上一桌美食的朱洪斌,为了攻克专业上的难关,放弃了一个个爱好,全身心地投入一项项创新,并追求“做得最好”。  在油色谱分析标准油的配制研发中,制作满足要求的气囊是核心,气囊材料的选择是关键。朱洪斌找来大量橡胶材料的特性数据,详加分析后共选择6种橡胶反复做试验,历时达3个月,最终选定了一种军工用橡胶,获得了满意效果。该项目将标准油的量值稳定期由4天提升至了180天!而该领域国际知名的美国摩根谢弗公司在其官网上公布,由其生产并由国际大电网会议和国际电工委员会用来提高检测精度的世界上唯一的商品化标准油,产品保存期限也只有30天。  朱洪斌创新的步伐始终不会停下。2014年,针对江苏电网发展快速、六氟化硫设备日益增多的情况,他主持研发了“六氟化硫气体质量现场快速评价系统”,不仅实现了六氟化硫气体质量验收的现场检测,而且将单一检测样品的全分析时间由18小时缩短至了40分钟。2015年国家新出标准增加两项检测内容后,传统方法的全分析时间需增至20小时,朱洪斌及时改进其评价系统全分析时间仍只需40分钟。该项成果大大提升了检测效率,更杜绝了气体由现场运回实验室过程中的安全风险。  由“病后诊治”到“治未病”  2015年7月1日,国家能源局发布年度第4号公告,公布了133项行业标准。其中,编号为DL/T1463-2015标准《变压器油中溶解气体组分含量分析用工作标准油的配制》由江苏电科院负责制定,其主起草人就是朱洪斌。  这一标准是该院“绝缘油中溶解气体组分含量量值保证体系的创建及应用”项目成果的组成部分之一。同年8月29日,中国电机工程学会鉴定委员会对该项目成果进行了技术鉴定,认为其大大提高了变压器早期故障的诊断水平,整体技术国际领先。  早在2002年,朱洪斌和同事们发现,采用传统的油色谱分析法对变压器实施故障诊断,需要从现场取油样后拿回化学室检测,不仅误差大,而且费时费力。怎样提升油气化验检测质量和效率,减轻工作强度?朱洪斌开始走上了电力油气化验设备及技术的创新之路。  从2005年起,朱洪斌先后主持完成了“油中水分在线测量装置的开发”“变压器油中溶解气体在线测量装置评价校验系统的开发”及“变压器油色谱分析网络校准比对系统的开发”等项目,并于2011年集成前期创新成果,主持完成了“变压器油中溶解气体组分含量量值保证体系的研究开发及应用”项目,实现了对变压器油色谱分析全过程的现场实时监控,并且将数据分析误差降至传统方法的1/6。  “对电力系统中最重要、最昂贵设备之一的变压器而言,项目的完成实现了由‘病后诊治’到‘治未病’的转变,将变压器故障消除在了萌芽状态。”江苏电科院科技部主任陈久林说。  据统计,近3年,江苏电网利用该成果共筛查出220千伏及以上变压器早期缺陷68起,经过前期及时处理,合计降本增效超过2.5亿元。自2011年2月该成果在江苏电网全面应用以来,因缩短检修时间、减少设备故障及非计划停电,累计间接增加供电量达56.1亿千瓦时。如今,该成果已经在山东、福建、新疆、广东等省级电网推广应用,产生了巨大的经济和社会效益。
  • 快1.8亿倍!九章光量子计算原型机成功求解图论问题
    8日,记者从中国科学技术大学获悉,该校由潘建伟、陆朝阳、刘乃乐等组成的研究团队,基于“九章”光量子计算原型机完成了对“稠密子图”和“Max-Haf”两类图论问题的求解,通过实验和理论研究了“九章”处理这两类图论问题为搜索算法带来的加速,以及该加速对于问题规模和实验噪声的依赖关系。该研究成果系首次在具有量子计算优越性的光量子计算原型机上开展的面向具有应用价值问题的实验研究。相关论文日前以“编辑推荐”的形式发表在国际学术期刊《物理评论快报》上,并被物理网站专题报道。国际学术界对量子计算的实验发展制定了三步走的路线图,其中第一步是实现“量子计算优越性”,即通过高精度地操纵近百个物理比特,高效求解超级计算机无法在合理时间内解决的特定的高复杂度数学问题。这一步的意义在于首次从实验上确凿地证明量子计算加速,并挑战“扩展的丘奇—图灵论题”。因此,国际学术界下一阶段的一个重要科研目标是探索利用量子计算原型机演示具有实用价值的问题的求解。近期,潘建伟团队在继续发展更高质量和更强拓展性的光量子计算原型机的同时,开展了将“九章”所执行的高斯玻色采样任务应用于图论问题的研究探索。图论起源于著名的“哥尼斯堡七桥问题”,被广泛用于描述事物之间的关系,例如社交网络、分子结构和计算机科学中的许多问题均可对应到图论问题。高斯玻色采样与图论问题具有紧密的数学联系,通过将高斯玻色采样设备的每个输出端口映射到图的顶点,将每个探测到的光子映射到子图的顶点,研究人员可以利用实验得到的样本加速搜索算法寻找具有更大密度或Hafnian的子图的过程,从而帮助这两类图论问题的求解。这两类图论问题在数据挖掘、生物信息、网络分析和某些化学模型研究等领域具有重要应用。此次研究中,研究人员首次利用“九章”执行的高斯玻色采样来加速随机搜索算法和模拟退火算法对图论问题的求解。研究人员在实验中使用了超过20万个80光子符合计数样本,相比全球最快超级计算机使用当前最优经典算法精确模拟该实验的速度快约1.8亿倍。
  • 行业重磅 深度解析 | 南京大学依托国仪量子教学机开设量子计算实验课程
    南京大学物理学院依托于国仪量子研发的金刚石量子计算教学机实验课程10月17日正式开课1教学机开课南大校徽为了推进量子力学学科建设,完善和创新学科教学内容、教学方法、教学手段,实现量子力学的基础教学以及量子技术人才的教育与培养,南京大学本学期正式开设了与量子理论教育紧密结合的依托于金刚石量子计算教学机的实验课程。实验课程现场该实验课程内容丰富,涵盖了众多量子力学的基础理论与经典实验,课程内容包括有:连续波实验、拉比振荡实验、T2实验、回波实验、DJ算法实验以及自由实验等。近十多年来量子信息处理成为快速发展的新兴研究领域,如何为量子计算的未来储备人才,引起物理界和教育界的特别关注,与此同时各国政府也在积极推出政策支持量子技术的研究与教育。2第二次量子革命2014年,英国《自然》杂志吹响“第二次量子革命”的号角。以量子信息技术为代表的量子调控,是量子力学的最新发展,其带来了“第二次量子革命”。人类对量子世界的探索已从单纯“探测时代”走向主动“调控时代”,成为解决人类对能源、环境、信息等需求的重要新手段、新技术。2018年9月,美国发布了量子信息发展国家战略书,特别强调了量子技术和量子科技在国家战略中的重要性。欧盟从2018年开始,投入10亿欧元实施“量子旗舰”计划。牛津大学英国早在2014年就发布了量子科技发展蓝图并在牛津大学等高校建立量子研究中心,投入约2.5亿美元培养人才。我国也在《“十三五”国家科技创新规划》中强调了量子技术发展的重要性,量子通信与量子计算被列为“十三五”科技规划100项重大技术与工程项目的前三位。3国内外现状谷歌量子技术团队近日中外媒体纷纷报道,谷歌公司在一篇论文中宣称已成功演示“量子霸权”,其研发的量子系统只用了约200秒就完成了经典计算机大约需要1万年才能完成的计算任务,这一划时代的技术进展是量子计算研究也是量子技术应用的一个重要里程碑。谷歌已率先宣称实现“量子霸权”,IBM亦成功研制50多比特的量子计算机原型,虽然技术离真正付诸实用都还尚需时日,但美国已经在考虑对量子计算等技术领域设置出口禁令,我们不禁要问中国如何在未来的量子技术应用领域不被外国“卡脖子”并实现领先?各大公司布局量子技术近年来,一方面国内各大高校、科研院所不断加大科研投入,华为、腾讯、阿里巴巴等公司也在布局量子技术应用相关平台,另一方面随着量子科研的不断深入,各大高校的量子教育也在加大投入与创新,这其中,有百年历史的南京大学物理学院是国内最早依托金刚石量子计算教学机对量子力学和量子计算进行创新实验教学和探索的高等院校之一。4量子教育现阶段,与量子技术快速发展不相适应的是,我国量子技术从业人员严重缺乏,工程技术人员对量子技术的理解不够深入、实操能力不足,这些已成为限制该技术发展和应用的严重瓶颈。量子力学大师普朗克物理定律不能单靠“思维”来获得,还应致力于观察和实验。——普朗克人才的匮乏源于教育的缺失,更源于教育方式的桎梏,虽然目前很多高校开设了量子力学相关课程,但是现有的课程和教材从思维模式和体系结构上,大多侧重讲述物理原理和基础方案的验证性实验,缺乏类似工科专业教学的案例、教材和实验资源。量子力学的教育,离不开量子理论和实验的紧密结合。推进量子力学学科建设,完善和创新学科教学内容、教学方法、教学手段,不仅符合我国建设量子技术强国的国家需求,还能解决高校量子技术相关应用型人才培养的实际问题。作为我国高等院校中创立最早的物理学科之一的南京大学走在了这方面国内的最前沿,2019年10月17日依托于国仪量子金刚石量子计算教学机的实验课程在南京大学物理学院正式开课。5南京大学物理学院南京大学物理学院是国家物理学基础学科人才培养基地,大学物理教学实验中心是国家物理学基础学科人才培养基地和国家物理实验教学示范中心。物理学院的“物理学”博士后流动站是全国最优秀博士后流动站之一。百年南大南京大学物理学科创立于1915年的南京高等师范学校(物理学系建立于1920年),是我国高等院校中创立最早的物理学科之一。百年来,南京大学物理学院追求卓越,名家辈出,为我国物理学发展作出了重要贡献,成为我国最有影响的物理学科之一。在南京大学学习和工作过的老一辈物理学家有吴有训、严济慈、赵忠尧、施汝为、陆学善、余瑞璜、吴健雄、朱光亚、程开甲、杨澄中、魏荣爵、汤定元、冯康等数十位中科院和工程院院士。6单电子固态量子计算实验南京大学物理学院的金刚石量子计算教学机实验课程命名为《单电子固态量子计算实验》,由黄璞老师和孔煕老师授课,课程自10月17号正式开课,每周四周五下午和晚上上课。一周共4批次课程,每次4个课时,一人上两次共8课时完成实验课程。实验课程本学期一经推出就受到学生的热情关注,共有120多人成功选修该课程。实验课程剪影物理学院的同学普遍表示通过教学机生动形象的实验课程学习,让他们更加深入理解了量子力学的相关知识,课程的开设得到了学校师生的一致好评。7金刚石量子计算教学机金刚石量子计算教学机是国仪量子为了更好地促进量子力学和量子计算相关的教学,推出的全球首款、面向大众的基于金刚石中NV色心,以自旋磁共振为原理的设备,通过控制光、电、磁等基本物理量,实现对NV色心发光缺陷的自旋进行量子操控和读出,从而实现量子计算等功能的教学仪器。教学机功能丰富金刚石量子计算教学机可以帮助和促进高校、科研机构在开设、优化大学物理实验课、近代物理实验课、量子信息科学专业课程的相关工作,方便教师展示教学,激发学生的兴趣和想象力,提高学科水平和教学质量。基于金刚石量子计算教学机,国仪量子可以提供包括实验室建设、教学讲义、教学视频、教学课件、示范课培训等量子计算教学相关的整体配套解决方案,让学校和老师们更轻松的开设相关实验课程。在近日谷歌宣称实现“量子霸权”的背景下,南京大学金刚石量子计算教学机实验课程的顺利开课对我国探索量子技术发展与应用具有十分积极的影响,对国仪量子在量子领域的深入研发、对南京大学在量子教育的发展创新也都有重要的意义,未来,国仪量子也将与包括南京大学在内的国内各大高校院所共同努力、砥砺前行,为量子技术人才的培养与教育、为中国高科技的发展与创新、为量子技术科学强国做出更多贡献!
  • 量子计算机的“心脏”长啥样? 揭秘量子计算机核心部件--离子阱
    量子计算机前段时间着实在朋友圈火了一把,这主要得益于中国科学技术大学陆朝阳教授和潘建伟教授领导的科学团队研发出10个比特的超导量子计算机的重要成果。经过各大新闻的争相播报,它现在不仅是“人尽皆知”,更让我国在量子领域步入国际行列。那么,量子计算机究竟是什么样的呢? 简单来说量子计算机是一个计算速度非常快的计算机,如果将现代的计算机比做自行车,那量子计算机就是飞机。但是对于它的长相,我们现在无法想象,就好比处在晶体管和电子管时代的人不能想象出超大规模集成电路的计算机长什么样。谁曾想过智能手机芯片已经“完爆”了占地上千平方米的初期计算机呢! 话不多说,今天就带你看看现在的量子计算机长啥样。目前初阶段的量子计算机还真说不上高颜值,跟早期计算机一样,它的“身躯”遍布在实验室的各处。但是谈到关键部分,也就是量子计算机的“心脏”,那可就是“高大上”了。与现在计算机的cpu不同,量子计算机的核心部分是参与运算的量子比特,通常来说是相干光子或离子。产生这些相干光子或离子的方法通常有超导环和离子阱两种方法。其中超导环在多量子比特拓展方面还有一些困难,从而离子阱成为目前较为优势的手段。而无论是超导环还是离子阱,这些器件的稳定运行都需要端苛刻的外界条件,那就是超高真空和低温,也就是说他们要冻在抽真空的“冰箱”里...... advanced microfabricated ion traps. left: high-optical access (hoa) trap from sandia national laboratories (image courtesy of duke university). right: ball-grid array (bga) trap from gtri/honeywell (image courtesy of honeywell). 上图中的器件就是典型的芯片式离子阱,用于产生量子比特的原子就在该芯片的中心位置被激发并被电磁场和库伦相互作用所束缚。而下图是为芯片提供超高真空和超低温环境的montana超精细光学恒温器。该恒温器具有超低温(3k)、超高真空的特点,并且提供多路自由光学通道和光线通道以及多可达100根电学引线,是量子计算机的“心脏”所在。(做为离子阱的标准装置,图片来源于christopher monroe发表在《nature》旗下《量子信息》杂志上的综述文章)。说完“心脏”的外观,那这个心脏的能力如何呢?采用传统离子阱式的量子计算机方案能做到多少比特呢?预计是50个!不要小看这个数字哦,如果能够完全利用它们的相干性,那就是250个数据量,并且信息处理速度可以达到ghz。经过改进的新型离子阱预计可以达到1000个量子比特甚至更多,计算能力和信息量也会大大增加,这会给以后的计算机带来天翻地覆的变化。 compact cryogenic uhv enclosure for trapped ions. (a) on-package vacuum enclosure, sealed in a uhv environment, that contains the ion trap, getter pumps and the atomic source. (b) upon installation and cooling in a compact cryostat, the uhv environment is established. (c) the optical components can be arranged in a compact volume around the cryostat to support the ion trap operation. 后再次祝贺quantum design的用户陆朝阳教授和潘建伟教授在量子计算机领域取得的惊人成就,希望祖国科研再上新台阶。相关参考文献:co-designing a scalable quantum computer with trapped atomic ions. npj quantum information (2016) 2, 16034相关产品链接:美国montana无液氦超低振动低温光学恒温器 http://www.instrument.com.cn/netshow/c122418.htm无液氦低温强磁场共聚焦显微镜 http://www.instrument.com.cn/netshow/c159541.htm低温纳米位移台-attocube http://www.instrument.com.cn/netshow/c80795.htm
  • 能效更高的新型超导二极管面世,有望提升量子计算机和AI性能
    美国明尼苏达大学双城分校科学家开发出一种新型超导二极管,该器件更节能,可一次处理多个电信号,还包含一系列控制能量流动的门,而此前的超导二极管不具备这一功能。新型超导二极管有助扩大量子计算机的规模,提高人工智能(AI)系统的性能。相关论文发表于最新一期《自然通讯》杂志。新型超导二极管。图片来源:明尼苏达大学双城分校论文资深作者、物理与天文学院副教授弗拉德普瑞比格指出,科学家希望使计算机变得更强大,但目前的材料和制造方法很快会出现一些硬件上的瓶颈,因此需要新方法来开发计算机,目前提高计算能力的最大挑战之一是其耗能太高。二极管通常由半导体制成,但科学家一直希望用超导体制造二极管,因为超导体能在不损失能量的情况下工作。在最新研究中,普瑞比格团队使用3个约瑟夫逊结制造出了新超导二极管。这些约瑟夫逊结通过将非超导材料夹在超导体之间制成,随后他们让超导体与半导体层相连,这一独特设计使他们能用电压控制设备的行为。结果显示,该设备能够处理多个信号输入,而典型的二极管只能处理一个输入和一个输出。这一功能可应用于神经形态计算,这种计算通过模仿神经元在大脑中的功能来提高AI系统的性能。研究团队表示,该设备接近有史以来最高能效,而且他们首次证明了可添加门并施加电场来获得这些特性。新设计不仅所用材料更适合工业生产制造,还提供了新功能,原则上适用于任何类型的超导体,并有助于促进量子计算机的开发。
  • 预算900万!重庆大学招标采购1套MicroCT(X射线微型计算机断层扫描系统)
    近日,重庆大学发布公开招标公告,预算900万元采购1套MicroCT(X射线微型计算机断层扫描系统),允许进口产品。招标项目详情如下:项目编号:CQU-SS-HW-2024-048项目名称:重庆大学MicroCT(X射线微型计算机断层扫描系统)采购预算金额:900.000000 万元(人民币)最高限价(如有):900.000000 万元(人民币)采购需求:购置MicroCT(X射线微型计算机断层扫描系统)1套技术要求:1.分辨率※1.1空间分辨率(spatial resolution)≤500nm,最小可实现的体素(voxel) ≤40nm;▲1.2在原位加载情况下可实现体素分辨率(voxel size)≤1.5μm的清晰扫描三维成像,原位加载装置的直径不小于145mm(投标时需提供实际样品的测试结果);▲1.3 设备须配备闪烁体和光学物镜耦合技术,系统必须采用几何+光学两级放大的架构,以满足采购人对大样品进行局部高分辨率的成像需求。2.X射线源▲2.1封闭式透射型X射线源,最高工作电压≥160kV,最大功率≥10W;2.2封闭式射线源可以移动,移动范围(X射线方向)≥190mm;2.3配备手动X射线滤片转换支架,并包含12个以上滤光片;2.4 X射线源关闭12小时以上重新激活时间小于5分钟;2.5可进行长时间扫描,单次稳定扫描时间需≥24小时。3.探测器※3.1同时具备以下两种探测器:CCD探测器(像素数量≥2048×2048,像素尺寸≤15μm)和光电耦合物镜探测器(4个倍率的物镜探测器中必须包含0.4x,4x,20x和40x的物镜);3.2物镜探测器可以移动,探测器系统移动范围≥280mm;▲3.3需要在0.4x物镜下能实现宽视场模式实现≥2048×2048像素成像和三维重构,增大横向断层扫描体积;▲3.4 0.4x物镜的三维视野:≥50mm。4.样品台4.1全电动控制4轴样品台;4.2 X轴运动范围:≥50mm;Y轴运动范围:≥100mm;Z轴运动范围:≥50mm;R轴:n×360°;4.3最大可测样品重量≥25kg;4.4最大可测样品直径≥300mm(X射线能穿透的情况下)。5.X射线防护系统※5.1为最大程度上防护,安全屏蔽室采用铅钢全封闭,不留有可视透明窗口,设备内部样品和工作情况通过机台内部可见光相机清晰观察;▲5.2 系统应具备硬件+软件的自动防撞机制,可通过可见光扫描快速获取样品形状和实际轮廓,根据样品形状和轮廓,自动对源、探测器位置进行限位,以保证硬件和样品安全。6.系统控制和功能▲6.1具有数据采集软件,三维断层扫描图像重构软件,3D视图软件;▲6.2可进行高级三维重构后视图展示与三维高级数据处理与分析,包括定量分析与统计分布、切片配准与图像滤波、三维图像数据分割与特征提取、多模态融合与分析、三维模型生成与导出,几何特征计算等(如可以实现三维数据处理,对样品三维数据结果进行相分割,孔隙率计算,裂纹及孔的尺寸统计与空间分布),并且可与其它三维软件兼容;▲6.3支持横向的宽场模式拼接功能(0.4x物镜下可以实现);6.4支持定位放大扫描、导航式扫描功能;▲6.5配置一体化的人体工学摇臂操作台。※7.整体要求:设备主机总重量必须≤2600kg,满足现有场地最大承重安全要求。※(二)配置清单(不同厂家产品的配置名称与下表所列名称存在偏差时,满足功能需求即可)序号名称数量单位1X射线显微镜 主机台12160KV封闭式透射型X射线源套13高分辨CCD数字成像组件套14物镜探测器(包含0.4x,4x,20x,40x物镜)套154轴断层扫描马达样品台套16花岗岩工作台套17四门式辐射安全屏蔽罩套18机箱内部可见光相机套1924”LCD显示器套110人体工学用户操控台套111系统软件(包含数据采集、三维扫描、图像重构、3D视图)套112高速工作站套113对综合分辨率测试标样套114X射线过滤器(12个)套115样品座套116操作手册(印刷版和电子版)套117系统控制和图像采集工作站套1备注:“※”标注的技术需求为符合性审查中的实质性要求,投标文件若不满足按无效投标处理。“▲”标注的技术需求为重要技术需求,投标文件若不满足将按照评标因素中相关规定处理。未标注的技术需求为一般技术需求,投标文件若不满足将按照评标因素中相关规定处理。潜在投标人需于2024年03月08日至2024年03月15日(每天上午00:00至12:00,下午12:00至23:59)在“中国政府采购网(www.ccgp.gov.cn)”、“重庆大学政府采购与招投标管理中心(http://ztbzx.cqu.edu.cn)”获取招标文件,并于2024年03月29日10点00分(北京时间)前递交投标文件。 附件:重庆大学MicroCT(X射线微型计算机断层扫描系统)采购招标文件.doc
  • 宁波材料所在AI 材料计算模拟领域取得系列进展
    基于量子力学的原子层级模拟计算是材料学中一种直观有效且常用的研究方法,它可以研究材料的空间原子结构、电子结构,以及由此带来的各种宏观物理、化学性质。长期以来,材料计算模拟的发展受到计算尺度的严重制约,例如描述理想周期结构、完美晶格的密度泛函理论仅可求解百原子量级的体系。   然而真实的材料体系是不完美并且非常复杂的,材料中存在缺陷、晶畴界、表界面、非晶无序等结构特征,处于非平衡态的材料体系同时具有动力学演化行为,这些复杂体系的特征行为体现在更大的时间和空间尺度,因此需要大尺度的模拟计算才能描述。基于传统物理“规则驱动”的计算技术已难以从理论框架突破尺度限制。   针对这一问题,中国科学院宁波材料技术与工程研究所柔性磁电功能材料与器件团队利用并发展了AI+材料计算模拟方法。基于“数据驱动”的AI是从数据和观测值出发,寻找数据之间的特征和关系,从而发现一些定理和规律。AI与科学的结合带来了新的科研范式,给材料计算模拟带来全新的思路和视角。Deep-Potential(DP)是一种具有代表性的AI技术,它运用深度神经网络技术,采用大量小原胞(数十个原子)的密度泛函理论计算数据作为训练集,训练完成的网络可以高效准确地预测出大原胞(最高可计算百万个原子)的总能以及原子受力,从而实现大时间空间尺度(微米/纳秒)的动力学模拟。   钟志诚研究员带领研究小组近期开展了一系列DP相关的研究:1)通过研究SrTiO3的结构相变,发现了DP模型具有超高精度,与密度泛函理论计算得到的能量误差可达到meV/atom以内[Phys. Rev. B 105,064104(2022)];结合DP势函数和位错解析理论,在大尺度下准确描述Cu的位错芯结构以及位错间的长程弹性相互作用[Comput. Mater. Sci. 218,111941 (2023)]。上述两个工作证实了DP在大尺度下的高精度以及描述位错等复杂结构的有效性。2)利用DP,解释了ZrW2O8的负热膨胀现象以及压力诱导的非晶现象[Phys. Rev. B 106, 174101 (2022)],该工作表明DP势函数能够有效描述复杂动力学行为以及非晶无序结构。3)晶格量子效应对热力学等性质的求解至关重要,而却往往因为其较高的计算成本在模拟计算中往往被忽略。团队以SrTiO3的量子顺电现象为例,提出了结合DP+QTB高效地研究材料中的晶格量子效应方案[Phys. Rev. B 106, 224102 (2022)]。   以上工作为未来材料计算模拟研究提供了全新范式,为复杂材料体系的高精度大尺度模拟提供了具体思路。此外,结合AI+材料计算模拟进行大尺度及复杂效应的计算,有望解决一系列复杂材料体系中的微观机制、宏观性能等问题。例如多元体系中的高熵合金、固液界面;机制复杂的摩擦、张力、非晶、表面重构;化学反应的表面吸附、催化、燃烧等问题。   以上工作参与者包括中科院宁波材料所博士后何日、邓凤麟,博士研究生吴宏宇,合作者包括南京大学物理学院卢毅教授,西湖大学理学院刘仕教授,深势科技首席科学家张林峰博士。以上工作得到了国家重点研发计划(2021YFA0718900和2022YFA1403000)、国家自然科学基金(11974365和12204496)、中国科学院前沿科学重点研究计划(ZDBS-LY-SLH008)以及王宽诚教育基金(GJTD-2020-11)的支持。图1 (a) 通过密度泛函理论所计算的大量空间构型(约百原子级别)的能量和力;(b)DP训练所得的深度神经网络;(c)和(d)训练好的深度神经网络能应用于预测超胞(约百万原子级别)的能量和受力,其精度和密度泛函理论一致图2 课题组近期各工作。左上:DP势函数的精度展示;右上:DP方法描述位错间对数形式的长程弹性相互作用;左下:ZrW2O8的压力诱导非晶现象;右下:DP+QTB预测的SrTiO3结构相变
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制