当前位置: 仪器信息网 > 行业主题 > >

对羟基苯海因

仪器信息网对羟基苯海因专题为您提供2024年最新对羟基苯海因价格报价、厂家品牌的相关信息, 包括对羟基苯海因参数、型号等,不管是国产,还是进口品牌的对羟基苯海因您都可以在这里找到。 除此之外,仪器信息网还免费为您整合对羟基苯海因相关的耗材配件、试剂标物,还有对羟基苯海因相关的最新资讯、资料,以及对羟基苯海因相关的解决方案。

对羟基苯海因相关的资讯

  • 欧盟科学委员或将对羟基苯甲酸酯修改意见
    2012年11月1日消息,欧盟消费者安全科学委员会(Scientific Committee for Consumer Safety ,SCCS)被要求就潜在的内分泌干扰物羟基苯甲酸丙酯(propylparaben)和羟苯丁酯(butylparaben)提供建议,这两种物质作为防腐剂被用于个人护理产品中。   2011年3月,SCCS认为一种产品中羟苯丁酯和对羟基苯甲酸丙酯的单独的浓度总量不超过0.19%,那么这两种物质都是安全的。与此同时,丹麦通知委员会,该国已禁止在三岁以下儿童用化妆品中使用对羟基苯甲酸丙酯和羟苯丁酯。2011年10月,SCCS在其之前的意见上添加了一项说明,结论为六个月以下婴幼儿尿布中的“风险不能排除”。   SCCA被要求考虑其对羟基苯甲酸的意见是否需要更新。
  • 欧盟限制化妆品中对羟基苯甲酸酯类的使用
    4月10日,欧盟委员会发布官方公报(EU) No 358/2014,修订了欧洲化妆品法规No 1223/2009附件Ⅱ,限制物质清单新增尼泊金异丙酯、羟苯异丁酯、羟苯苄酯、4-羟基苯甲酸苯酯、戊烷基对羟苯甲酸酯5种对羟基苯甲酸酯类物质。   此外,修订案还规定二氯苯氧氯酚在漱口水中使用最大浓度为0.2%,在其他化妆品如牙膏、手皂、扑面粉中使用最大浓度为0.3%。羟基苯甲酸及其盐和酯类作为单酯中的酸用于制作配制品中的最大浓度为0.4%,作为混合酯中的酸最大允许浓度为0.8%。2014年10月30日前,不符合新规的化妆品仍可在市场上正常销售,2015年6月30日起,所有市场上流通的化妆品必须符合新规。   对此,检验检疫部门提醒相关企业:一是密切关注欧盟化妆品修订案,及时掌握法规变化动态 二是强化同进口商的沟通,做好过渡期期间的合同评审,避免因法规认识偏差导致的退运风险 三是加强产品质量管控,通过优化升级生产工艺、第三方检测,确保降低对羟基苯甲酸酯类限制物质含量,确保平稳过渡。
  • 新品上市 | 液态发酵食醋中对羟基苯甲酸酯类色谱检测预处理方法包
    对羟基苯甲酸酯类作为食品防腐剂被广泛应用在各类食品中,其中对羟基苯甲酸甲酯(MP)、对羟基苯甲酸乙酯(EP)、对羟基苯甲酸丙酯(PP)和对羟基苯甲酸丁酯(BP)一直是国家食品安全检测抽查的重点项目,并且MP和EP在酱油和醋中的zui大添加限量(以对羟基苯甲酸计)均为250mg/kg。月旭科技之前已推出了酿造酱油和固态发酵食醋中对羟基苯甲酸酯色谱检测预处理方法包,此次针对液态发酵食醋,新研发推出了液态发酵食醋(如白醋、米醋等液态发酵工艺的食醋)中对羟基苯甲酸酯类色谱检测样品预处理方法包,其操作步骤相较前两种食品的方法包更为简单,但净化效果依旧很好,可实现从食醋样品中同时提取、分离、净化这4种对羟基苯甲酸酯类(对羟基苯甲酸甲酯、对羟基苯甲酸乙酯、对羟基苯甲酸丙酯和对羟基苯甲酸丁酯),以用于气相色谱和液相色谱技术对这些防腐剂的检测。样品稀释液:将食醋样品溶解稀释以备上样;净化专用SPE柱:吸附食醋中的杂质;SPE淋洗液:将被SPE柱吸附的杂质淋洗出来;SPE洗脱液:将被SPE柱吸附的目标物洗脱下来;洗脱净化管:进一步吸附残留杂质并除水;萃取液:将洗脱收集液中的目标物萃取出来。1)食醋样品称量:准确称取5g食醋样品;2)稀释溶解:使用“样品稀释液”,稀释溶解食醋样品;3)净化:使用“净化专用SPE柱”,用“SPE淋洗液”和“SPE洗脱液”进行SPE操作,洗脱液收集在“洗脱净化管”内,然后氮吹浓缩;4)萃取:使用“萃取液”,类似于QuEChERS的操作,上清液收集后旋蒸蒸干;5)残留样品用溶剂复溶,过滤后上色谱检测。1) 气相色谱柱分析柱:WM-5色谱柱,柱长30m,内径0.32mm,膜厚0.25μm,月旭科技(货号:03902-32001);2)进样口:温度260℃,分流比1:10,进样量1μL;3)升温程序:4)检测器:氢火焰离子化检测器(FID),温度:280℃;5)载气:氮气,纯度≥99.999%,流速2.0mL/min;6)检测色谱图:1) 液相色谱柱分析柱:Ultimate® XB-C18色谱柱,4.6mm×250mm,5μm,月旭科技(货号:00201-31043);保护柱:Ultimate® XB-C18,4.6mm×10mm,5μm,月旭科技(货号:00808-04001)(配不锈钢保护柱柱套,月旭科技,货号:00808-01101);2)流动相:A相:含1%乙酸的40%乙腈水溶液;B相:含1%乙酸的乙腈;3)梯度洗脱程序:4) 流速:1.0mL/min;5) 检测波长:260nm;6) 柱温:35℃;7) 进样体积:1~20μL(视目标物浓度而定)。8) 检测色谱图:
  • 新品上市 | 固态发酵食醋中对羟基苯甲酸酯类色谱检测预处理方法包
    对羟基苯甲酸酯类作为食品防腐剂被广泛应用在各类食品中,其中对羟基苯甲酸甲酯(MP)、对羟基苯甲酸乙酯(EP)、对羟基苯甲酸丙酯(PP)和对羟基苯甲酸丁酯(BP)一直是国家食品安全检测抽查的重点项目,并且MP和EP在酱油和醋中的zui大添加限量(以对羟基苯甲酸计)均为250mg/kg。国标中预处理技术存在的问题现行的《食品安全国家标准 食品中对羟基苯甲酸酯类的测定》(GB 5009.31-2016)中,针对气相色谱法检测的样品预处理技术主要是多次液液萃取+液液洗涤的技术,该方法操作繁琐、检测耗时长、有机溶剂消耗量大(其中包括消耗大量的易制毒化学试剂),且回收率较低、稳定性差,另外净化效果也不佳,往往存在着干扰检测的杂质成分。月旭科技针对固态发酵食醋这种复杂基质食品,开发出了固态发酵食醋中对羟基苯甲酸酯类色谱检测预处理专用方法包,这个方法包所采用的双柱SPE法可实现高效、稳定可靠地从各种复杂基质的固态发酵食醋中提取、分离和净化4种对羟基苯甲酸酯类(对羟基苯甲酸甲酯、乙酯、丙酯和丁酯),大幅度减少对色谱柱及色谱管路污染、甚至堵塞情况,可以很好地保护色谱系统。提取液:从食醋样品中提取对羟基苯甲酸酯类;提取吸附剂:吸附食醋样品中的大颗粒杂质;萃取液:使对羟基苯甲酸酯类提取液中的杂质沉淀分离;萃取管:管中的吸附剂可吸附萃取时沉淀的杂质;净化专用SPE柱(双柱):吸附食醋中不同种类的色素;SPE淋洗液:将被SPE柱吸附的杂质淋洗出来;SPE洗脱液:将被SPE柱吸附的目标物洗脱下来。主要操作流程1)食醋样品称量:准确称取5g食醋样品;2)分离提取:使用“提取液”和“提取吸附剂”,振荡分离提取;3)萃取:取试样提取上清液进行萃取,使用“萃取管”和“萃取液”,类似于QuEChERS的操作;4)净化:使用双柱串联的“净化专用SPE柱”,上样用“SPE淋洗液”和“SPE洗脱液”进行SPE操作,洗脱液收集后旋蒸蒸干;5)残留样品用溶剂复溶,过滤后上色谱检测。1) 气相色谱柱分析柱:WM-5色谱柱,柱长30m,内径0.32mm,膜厚0.25μm,月旭科技(货号:03902-32001);2)进样口:温度260℃,分流比1:10,进样量1μL;3)升温程序:4)检测器:氢火焰离子化检测器(FID),温度:280 ℃;5)载气:氮气,纯度≥99.999 %,流速2.0mL/min;6)检测色谱图:1) 液相色谱柱分析柱:Ultimate® XB-C18色谱柱,4.6mm×250mm,5μm,月旭科技(货号:00201-31043);保护柱:Ultimate® XB-C18,4.6mm×10mm,5μm,月旭科技(货号:00808-04001)(配不锈钢保护柱柱套,月旭科技,货号:00808-01101);2)流动相:A相:含1%乙酸的40%乙腈水溶液;B相:含1%乙酸的乙腈;3)梯度洗脱程序:4) 流速:1.0mL/min;5) 检测波长:260nm;6) 柱温:35℃;7) 进样体积:1~20μL(视目标物浓度而定)。8) 检测色谱图:
  • 基于三维电子衍射技术解析含有序硅羟基纯硅分子筛结构
    近日,大连化物所低碳催化与工程研究部(DNL12)郭鹏研究员、刘中民院士团队与南京工业大学王磊副教授团队合作,在分子筛结构解析研究中取得新进展,利用先进的三维电子衍射技术(cRED)直接解析出含有序硅羟基的纯硅分子筛结构。分子筛是石油化工和煤化工领域重要的催化剂及吸附剂,分子筛的性能与其晶体结构密切相关。分子筛通常为亚微米甚至纳米晶体,传统的X-射线单晶衍射法无法对其结构进行表征。在前期工作中,郭鹏和刘中民团队聚焦先进的电子晶体学(包括三维电子衍射和高分辨成像技术)和X-射线粉末晶体学方法,对工业催化剂等多孔材料进行结构解析,并且在原子层面深入理解构—效关系,为高性能的工业催化剂/吸附剂的设计及合成提供理论依据。团队开展了一系列研究工作,包括针对定向合成SAPO分子筛方法的开发(J. Mater. Chem. A,2018;Small,2019)、酸性位点分布的研究(Chinese J. Catal.,2020;Chinese J. Catal.,2021)、吸附位点的确定(Chem. Sci.,2021)、利用三维电子衍射结合iDPC成像技术解析分子筛结构并观测局部缺陷(Angew. Chem. Int. Ed.,2021)等。本工作中,研究人员利用先进的三维电子衍射技术,从原子层面直接解析出一种含有序硅羟基排布的新型纯硅沸石分子筛的晶体结构,其规则分布的硅羟基与独特的椭圆形八元环孔口结构息息相关。研究人员通过调变焙烧条件,在有效去除有机结构导向剂的同时保留了分子筛中有序硅羟基结构,实现了丙烷/丙烯高效分离,并从结构角度揭示了有序硅羟基和独特的椭圆形八元环孔口对丙烷/丙烯的分离作用机制。相关研究成果以“Pure Silica with Ordered Silanols for Propylene/Propane Adsorptive Separation Unraveled by Three-Dimensional Electron Diffraction”为题,于近日发表在《美国化学会志》(Journal of the American Chemical Society)上。该工作的第一作者是我所DNL1210组博士后王静,该工作得到了国家自然科学基金、中科院前沿科学重点研究等项目的资助。
  • 欧盟拟放宽番茄中8-羟基喹啉的最大残留限量
    近日,欧洲食品安全局就放宽番茄中8-羟基喹啉(8-hydroxyquinoline)的最大残留限量发布意见。   依据欧盟委员会(EC)No396/2005法规第6章的规定,西班牙收到一家公司要求修订番茄中8-羟基喹啉的最大残留限量的申请。为协调8-羟基喹啉的最大残留限量(MRL),西班牙建议对其残留限量进行修订。   依据欧盟委员会(EC)No396/2005法规第8章的规定,西班牙起草了一份评估报告,并提交至欧委会,之后转至欧洲食品安全局。   欧洲食品安全局对评估报告进行评审后,做出如下决定:建议将番茄(商品代码:0231010)中8-羟基喹啉的最大残留限量放宽至0.1mg/kg(现行标准是:0.01mg/kg)。
  • 新型毒饮料伪装上市,“合法”“非法”仅在“氨基”“羟基”一字之差
    这两天,一条关于某种“新毒品”在各大酒吧流行的“预警”信息,在记者朋友圈掀起了一阵转发热潮。相关信息称,这种“新毒品”是一款含有“γ-氨基丁酸”成分的饮料——咔哇,多地有人喝了这个东西可以连续嗨三个晚上,据说之前吸k粉的人很多都嗨这种东西了。 据了解,咔哇是生长在南太平洋岛国、海拔500-1000英尺地区的一种植物,系胡椒科多年生灌木。当地民间医生广泛应用咔哇改善睡眠、缓解焦虑、战胜抑郁、松弛肌肉、消除疲劳。咔哇可榨制一种饮料,即咔哇酒。2015年,国内一旅途探秘综艺真人秀节目中,节目嘉宾率领的旅行达人,曾在瓦努阿图制作饮用所谓“最幸福的饮料”——咔哇酒,从而引起国内关注,并在年轻人、时尚人士中流行。 但是仔细阅读配料表后我们发现,我国出现的这种含有“γ-氨基丁酸”成分的饮料,并非来自太平洋岛国的“最幸福的饮料——咔哇”。在太平洋岛国流行的咔哇饮料,是由卡瓦胡椒制成的,卡瓦胡椒当中含有的卡瓦内脂和二氢醉椒素,是“γ-氨基丁酸”的激动剂,能够调节人体内“γ-氨基丁酸”的传输,所以能够起到安神、镇定的作用。 饮料中标示的“γ-氨基丁酸”(gamma aminobutyric acid, gaba),是一种天然存在的功能性氨基酸,广泛分布于动植物体内,如豆属、参属、中草药等的种子、根茎和组织液中都含有,2009年9月27日由卫生部批准使用γ-氨基丁酸为新食品原料,并不是毒品。参见卫生部网站http://www.moh.gov.cn/mohbgt/s9513/200910/43090.shtml 这批咔哇饮料之所以引起关注,是因为经公安机关毒品实验室对其进行检验和分析,发现其中含该饮料含有 γ-羟基丁酸(我国一类精神药品)和 γ-丁内酯( γ-羟基丁酸的前体),并不是商品介绍的γ-氨基丁酸,这两种物质虽然只有一字之差,却有天壤之别。 γ-羟基丁酸(gamma hydroxybutyrate, ghb),是属于中枢神经抑制剂,它曾被用来当做全身麻醉剂,后由于有报导其可导致癫痫发作或昏迷使得使用率降低。滥用“γ-羟基丁酸”会造成暂时性记忆丧失、恶心、呕吐、头痛、反射作用丧失,甚至很快失去意识、昏迷及死亡,与酒精并用更会加剧其危险性。在过去的十几年,美国、东南亚国家以及中国港台地区γ-羟基丁酸的滥用呈快速增长趋势,ghb及其相关物质γ-丁内酯(gamma-butyrolactone, gbl)和1,4-丁二醇(1,4-butanediol, 1,4-bd)常被用作迷奸药,因此,2005年我国就将“γ-羟基丁酸”列入二类精神药物予以管制,并于2007年变更为一类。 据了解,目前夜场各种打着咔哇旗号的所谓潮饮数不胜数,不排除部分饮料“挂羊头卖狗肉”,打着合法成分的旗号使用违禁药物。文中提到的“毒饮料”已被勒令全面下架,但是我们仍要保持警惕,尤其在酒吧、ktv这样的地方,建议青少年朋友不要因为好奇去尝试一些“小众”“特色”的饮品。相关检测标准品
  • 透过红外光谱法,洞察石英玻璃羟基含量的秘密
    玻璃中的羟基会严重影响玻璃的性能,即使羟基重量含量低于1%,它也会明显地影响玻璃的粘度、密度、折射率和热膨胀系数。同时,由于玻璃中羟基的存在,它将对某种波长的红外光波形成强烈的吸收,这对于光纤通讯中光学材料的选择是一个十分重要的问题。在电光源行业中,玻璃中羟基含量的高低是直接影响气体放电灯的质量。因此,需要严格监控玻璃中的羟基含量。此外,为了研究羟基含量与玻璃性能之间的关系,以便为设计与制造具有一定特性的玻璃提供必要的数据,这也需要定量地测定玻璃中羟基的含量。你知道吗?利用红外光谱仪可以快速、准确地检测石英玻璃中的羟基含量!这是怎么做到的呢?让我们一起来揭开这个谜底。红外光谱仪是一种神奇的科学仪器,它能够通过测量样品对红外光的吸收情况,分析出样品的化学成分和结构信息。测定玻璃中羟基含量的方法有两类:一、水的热除气法 二、光谱法。比较这两类方法,光谱法更具有其优越性,该法在测试过程中,玻璃内所有羟基都将被探测,但该法需要已知羟基含量的校准标准。对于石英玻璃来说,其中的羟基会在特定的红外波长范围内产生吸收峰。通过检测这些吸收峰的强度和位置,我们就能分析出石英玻璃中羟基的含量。在水晶或者石英玻璃行业做相关分析的老师如何需要了解具体方案可以联系能谱科技,我们将给您一套完整的解决方案!
  • 拉曼光谱分析法在古陶瓷真伪的应用-羟基无损科学检测(二)
    文物是文化的产物,是人类社会发展过程中的珍贵历史遗存物。它从不同的领域和侧面反映出历史上人们改造世界的状况,是研究人类社会历史的实物资料。我国古陶瓷源远流长,不仅种类繁多、风格各异,而且工艺精湛,文化、科技内涵丰富。由于不法者在仿制过程中借用高科技手段,使一些高仿赝品几乎达到了乱真的程度。  拉曼光谱技术是一种分析技术,由于它能够获得物质的分子信息而被应用于文物的鉴定分析中。  我们主要依据是否在陶瓷釉面发现“羟基”这种化学分子结构去判断陶瓷是不是老的,因为“羟基”是天然生成, 而且生长速度非常缓慢,大概在100年左右的时间,如果在陶瓷釉面发现“羟基”,说明是古董,最起码是清未、民国早期的瓷器。“羟基”和年代成正比,“羟基”峰值越高,年份越老。  检测陶瓷样品的拉曼特征峰,通过3700cm-1附近的羟基峰判断古陶瓷真伪。图1:拉曼光谱图,没有检测到羟基峰图2:拉曼光谱图,可以检测到3632cm-1的羟基峰图3:拉曼光谱图,可以检测到微弱的3601cm-1的羟基峰  拉曼光谱——羟基古陶瓷真伪检测鉴定法的依据和原理是现代仿品和古代真品的成岩过程有着本质区别,而时间是造成的这种区别的根本原因,造假者无法跨越时间所产生的鸿沟。时间所造成的古陶瓷的物理、化学变化是造假者无法仿制的。基于此,古陶瓷真伪拉曼光谱——羟基鉴定法的技术研发者把古陶瓷真品在地表环境下其釉面所产生的化学反应中生成的羟基作为古陶瓷鉴定的定性及定量物质,从而做出准确而科学的鉴定结论。
  • 欧盟批准硒代蛋氨酸羟基类似物用作饲料添加剂
    5月15日,欧盟委员会发布(EU)No445/2013号条例,批准硒代蛋氨酸羟基类似物用作动物饲料添加剂。硒代蛋氨酸羟基类似物添加于饲料时,分属的添加剂类型为“营养添加剂”,功能组为“微量元素化合物”,需保证硒元素在12%含水量的饲料成品中的含量不超过0.5mg/kg,有机硒不超过0.2mg/kg。   硒代蛋氨酸羟基类似物用作饲料添加剂时,可作为蛋氨酸营养补充剂,促进动物生长发育。但该物对皮肤和眼睛有刺激作用,在使用该产品后,必须用水冲净皮肤。对此,检验检疫部门提醒相关企业:一是根据欧盟委员会发布的法规,严格按照相关要求来用作动物饲料添加剂。二是与相关部门合作,加大检测力度,确保出口产品符合欧盟标准。三是推进生产工序升级和优化,并建立自检自控体系,分析关键控制点并予以重点关注,确保其含量符合法规要求,避免退运或召回。
  • 【瑞士步琦】近红外光谱法定量测定多元醇中羟基值和浊点
    近红外光谱法定量测定多元醇中羟基值和浊点近红外应用”1简介多元醇见图1是用于生产各种最终用途的聚合物和塑料的基本组成部分。例如,我们日常使用的聚氨酯产品就是用多元醇来制造的。多元醇是从多功能醇或胺开始,通常与环氧乙烷(EO)或环氧丙烷(PO)反应制成的。▲ 图1. 多元醇真正的多元醇是复杂的,具有混合和不同的链长和末端。羟基值(OH值)是有机化合物质量的快速评价指标。它是可用于反应的活性羟基数量的量度,并提供有关链长分布和范围的信息。羟值既是衡量多元醇分子量及质量的主要参数之一,又是聚氨酯制品生产厂家在配方设计时决定各原料投用量的重要参考依据。 因此羟值测定的准确性非常重要。目前,检测羟值的方法主要有化学分析法和仪器分析法。化学分析法中最常用的是滴定法,基于滴加试剂与被测溶液中物质的反应,利用滴加滴定试剂的量来推测被测物质的浓度。该方法中使用吡啶作为溶剂,吡啶易挥发且有恶臭气味,被世界卫生组织国际癌症研究机构列入2B 类致癌物清单,对实验人员的身体健康有一定的危害,且该方法反应时间较长( 需回流加热 1h),操作复杂,分析时间较长,测试效率低,测试准确性受人为因素影响较大。仪器分析法主要有核磁共振法和近红外光谱法。核磁共振法操作简单,测试快速且准确度较高。但是该方法所需要的设施昂贵,且实验室环境要求高,在企业中并未得到广泛推广。近红外光谱法是近红外光源照射下分子发生能级跃迁时产生的,记录的是分子中单个化学键的基频振动的倍频和合频信息,受含氢基团 X-H(X 为C,N,O)的倍频和合频的重叠主导,其光谱信息与样品的结构和成分组成相关。 多元醇在近红外光谱区的吸收主要包括 C-H、N-H,O-H 个含氢基团基频振动的合频和倍频振动吸收,通过这些含氢基团分子振动从基态到高能级跃迁的过程中记录的羟基的合频和倍频吸收信息,从而进行羟值的定量分析。 该方法在测试过程中无需对样品进行稀释、分散处理,因其操作简单、检测快速、绿色安全的特点而被广泛应用。浊点是当混合物从足够高的温度缓慢冷却以使混合物成为单相时,多元醇混合物中形成薄雾或云状的温度。浊点随着多元醇分子量的增加而减小,随着 EO 的加入而增大。这一分析被用来衡量多元醇的水溶性、表面活性剂性质和反应性。浊点控制反应系统中多元醇的相行为,这种行为对最终产品质量有极其重要的影响。由于多元醇在水中具有反溶解度,较高的浊点表明这些重要性能属性的增加。2应用设备及附件本文重点介绍步琦近红外光谱 N-500 用于快速测定多元醇的 OH 值和浊点。它可以应用于:最终产品或来料的检测和过程的监控支持。使用的仪器介绍如下:N-500 是市面上第一台商业化偏振干涉仪的傅里叶变换近红外光谱仪。▲步琦近红外光谱仪 N-500多至 6 通道同时检测0.5, 1, 2, 4, 5,8, 10mm 的比色皿控温,室温至 65 度3实验仪器配置:液体样品 NIRFlex Liquids,配备样品腔用于液体透射分析,可控温(室温~65℃),可自动切换背景测量通道,同时容纳 6 个比色皿。测量参数:波长:4500-10000;分辨率:8cm-1;温度设定 60°C,扫描次数:液体样品 64 次。测量要求:多元醇样品装入比色皿 8mm 后测量,每个样品测量三次光谱,每条光谱采集前都进行相同的混匀、取样。测量多元醇的样品光谱谱图:如图2▲图2. 测量多元醇的样品光谱谱图从光谱本身来看,样品的信号加强,反射率在 0.3 以上可以满足近红外分析。模型参数如下表:从表中可以看出:模型的相关系数均大于 0.99,样品羟值和浊点的准确度较高完全符合国家标准《塑料 聚氨酯生产用多元醇近红外光谱法测定羟值》的误差要求,分析方法重复性较好,可以用于实验室日常检测。4结论结果表明,近红外光谱技术可以成功地监测 OH 值和浊点,并具有良好的精度。该技术不需要样品制备用于测定 OH 值的标准湿化学方法可以被更快,更便宜和更简单的近红外分析所取代,以更快的批 QA 审核通过。近红外法具有分析效率高、制样简单、环保等优势,测试成本低,被实验室和企业广泛应用。
  • 助力精准诊断!药明奥测质谱法“25-羟基维生素D测定试剂盒”获批
    维生素D是人体内重要的微量元素之一,可调节钙、磷代谢、促进骨骼生长、调节细胞生长分化、调节免疫功能,但据不完全统计,目前有50%以上的中国人群存在维生素D缺乏的现象。维生素D在体内转化成25-羟基维生素D2/D3,因其半衰期长、含量高、易于检测,已成为评估VD含量的最佳指标。传统VD测定试剂盒多采用免疫分析法,因抗体特异性差异等因素影响,常存在干扰,影响了定量的准确度。为助力精准诊断,近日,上海药明奥测医疗科技有限公司(以下简称“药明奥测”)自主开发推出了“25-羟基维生素D测定试剂盒(液相色谱-串联质谱法)”,且该试剂盒已获批二类医疗器械注册证。据了解,药明奥测是中国第一家践行整合诊断的赋能平台公司,公司依托Mayo Clinic的整合诊疗理念与经验,凭借融合多平台、多组学及临床数据驱动的开放式赋能平台,通过算法整合升级,不断推出创新诊断服务和产品,同时加速诊疗创新者从研发到应用的技术转化,创造共赢共享的产业新生态。值得关注的是,为打造领先的临床质谱平台,药明奥测独家引进Mayo Clinic的400余项质谱项目,提供肿瘤、个体化用药、人体营养和代谢、激素、金属元素检测等服务,其质谱法25-羟基维生素D测定试剂盒,更是经过严格质量体系验证,可溯源至美国国家标准与技术研究院(NIST)Standard Reference Material® 2972a。液相色谱-串联质谱法(LC-MS/MS)检测特异性及灵敏度高,可对25-羟基维生素D2、25-羟基维生素D3分别测定,保证了测试准确度。同时,作为一家高新技术企业,药明奥测始终坚持国际高标准自主创新,在试剂盒的开发过程中,药明奥测秉承以客户为中心的理念,积极提出差异化的解决方案并落实到产品性能优化中。在前处理阶段,采用“蛋白沉淀一步法”,显著减少了前处理步骤,操作方便快捷,有效地提高通量。此外,鉴于25-羟基稳定性差,目前市场上诸多解决方案采用-20℃冷冻保存或冻干粉基质,增加了客户使用成本,影响了用户体验。奥测试剂盒创新的采用独特配方新基质,产品为液体剂型,2-8℃稳定保存。据悉,截至目前,公司已累计申请体外诊断(IVD)专利近200项,涉及免疫、分子及质谱技术平台。目前,国内疫情仍处于不平静阶段,疫情常态化推动了诊疗场景拓展,在社区、在第三方检测机构、在家庭,方便快捷地采集、检测,已成为广大人民群众的需求,药明奥测国际高标准的试剂开发与整体解决方案创新,不仅大大提高了维生素D检测准确性与便捷性,实现了应用场景拓宽,也让更多人获益于高质量的医疗服务。此后,药明奥测将持续凭借强大的医疗及商业资源整合能力,基于临床需求布局丰富的研发管线,通过算法整合升级,不断创新整合诊断服务和产品,以“自主研发+授权合作”双模式,推动诊疗药险全新生态,促进诊疗场景的融合与拓展,让更多人在医院、在社区、在家庭中,都能获得高品质的医疗服务。
  • 【瑞士步琦】干货!聚醚多元醇羟基含量分析,BUCHI FT-NIR 快速检测技术助您一臂之力!
    聚醚多元醇羟基含量分析 聚醚(又称聚醚多元醇)主要是由环氧丙烷、环氧乙烷等为原料,以碱金属氢氧化物为催化剂,按阴离子机理开环聚合,可以是均聚或共聚而制得分子末端带有羟基基团的线型聚合物, 聚醚在聚氨酯以及合成润滑材料上得到广泛的应用,对聚醚多元醇羟基含量的测定是监测反应程度和产品质量的主要手段。传统的聚醚羟值分析一般采用化学法,其原理是:样品中羟基与酸酐定量地进行反应,生成酯或酸。过量的酸酐水解成酸。 用已知浓度的碱标准溶液滴定酸。同量的酰化剂,不加样品,其他条件与样品滴定相同,做空白滴定。空白滴定和样品滴定两者所耗用碱标准溶液的体积差就是样品中的羟基所相当于耗用碱标准溶液的体积。由于这种方法反应时间长需要 3-4h, 操作比较复杂, 已不能适应工业分析的需要。近红外光是介于可见光与中红外光之间的电磁波, 波长为 780~2500nm。 有机物分子中 C-H , O-H , C=O 等基团振动频率的合频与倍频吸收在近红外区。 光谱中 OH 伸缩振动所引起的吸收峰的强弱决定于羟值的高低, 即单位质量聚醚羟值含量的多少。羟值高则吸收峰强度大, 反之则强度小。 所以可以应用此关系来测量聚醚羟值。BUCHI FT-NIR 的优点1无损利用近红外光以透射或透反射的方式采集被照样品的近红外光谱,对样品没有破坏性。2快速平均 1-2min 可以完成 1 个样品的检测,采集一次样品光谱,可以同时分析多组分含量。3利润高,成本低无需化学试剂消耗,实现零成本,可以大大提高检测效率。4绿色环保无需样品前处理,避免使用有毒,有害的化学试剂,从而对环境造成污染。▲ 建模样品集的近红外吸收光谱▲ 羟值含量的化学值与模型校正值、模型预测值的相关关系图▲ 羟值含量检测的液体附件配置多至6个孔位, 0.5,1,2,5,8,10mm 比色皿根据样品可选,控温室温到 65 度。用近红外光谱法,克服了化学方法测定羟值费时费力且大量使用有害试剂的缺点,此外,使用比色皿作样品吸收池,省去了每次测试后需要花费大量时间清洗吸收池的麻烦。这种方法不仅在聚醚多元醇生产中具有很大实用价值,而且在其他类似黏度较大、清洗不便的样品测试中也具有很大推广价值。步琦近红外光谱仪可以提供各种型号的光谱,以适用于实验室检测、旁线检测和在线检测的应用过程设备。如您对以上应用产品感兴趣,欢迎咨询了解!
  • 质子传递反应质谱电离技术重大突破—新型1,4-二氟苯前驱体研发与应用
    质谱法是利用带电粒子在磁场或电场中的运动规律,然后按照质量或荷质比实现分离分析的技术。早在1898年,W.维恩用电场和磁场使正离子束发生偏转时发现,电荷相同时,质量小的离子偏转得多,质量大的离子偏转得少。1913年J.J.汤姆孙和F.W.阿斯顿用磁偏转仪证实氖有两种同位素。阿斯顿于1919年制成一台能分辨一百分之一质量单位的质谱计,用以测定同位素的相对丰度,成功鉴定了多种同位素。质谱计的发展也从只用于气体分析和测定化学元素的稳定同位素到后来用于对石油馏分中的复杂烃类混合物进行分析,并证实了复杂分子能产生确定的能够重复的质谱之后,才将质谱法用于测定有机化合物的结构,开拓了有机质谱的新领域。 图1. 图左为英国物理学家J.J.汤姆孙,图右为诺贝尔化学奖获得者F.W.阿斯顿 质子传递反应质谱(Proton Transfer Reaction- Mass Spectrometry)是分析挥发性有机物(VOCs)的一种新的先进分析手段。该技术具有检测速度快、灵敏度高、无需内标定量测量等优点,特别适合挥发性有机物的实时在线监测与预警。基于多年挥发性有机物在线分析质谱研究经验,法国AlyXan公司研发的质子传递反应-傅里叶变换离子回旋共振质谱(BTrap)通过运用先进的傅里叶变换离子回旋共振质谱技术,使仪器的质量分辨率高达10000,成为质量分辨率高的质子传递反应质谱。BTrap具有高质量分辨率,高度与稳定性、低离子碎片、高灵敏度高、低检测限等诸多优势,可用于材料,环境,汽车工业,化工等多领域的气体组分在线监测分析,适应各种复杂实验气候与环境。 质子传递反应质谱一般采用质子(H3O+ )作为电离源,该技术的原理是大多数VOCs的质子亲和能高于水而低于高聚水,可以跟质子反应而被电离。但对醇,醛与长链烷烃类化合物,该方法的应用会受到很大限制。如正丁醇在正常测试条件下,不能测到分子离子峰,只能测到脱去羟基的丁烯的峰,为正丁醇的测试带来的很大困难。针对此类问题,法国AlyXan公司研发了一种全新的前驱体——1,4-二氟苯(C6H4F2)[1]。1,4-二氟苯的质子亲合能为718.7 kJ/mol,介于691到750 kJ/mol。因此C6H5F2+可以与大多数VOCs反应,同时产生更少的碎片,可以作为更加温和的质子转移试剂。同时1,4-二氟苯分子非常稳定,生成离子只会发生质子转移反应,不会参与其他反应。分子量比质子大,具有更小的质量歧视效应。 如图2所示,以正丙醇分子为例。在1.26×10-5 mbar的压力下,(a)采用C6H5F2+作为电离源,分子离子(C3H7OH2+)强度非常高,而脱羟基产物(C3H7+)的峰浓度一直维持再非常低的浓度;(b)采用H3O+作为电离源,脱羟基产物将为主要离子,分子离子峰为次要离子。说明有大量分子离子峰发生脱羟基反应,生成C3H7+离子。(c) 在更高的压力7.34×10-5 mbar下, 采用C6H5F2+作为电离源,分子离子峰(C3H7OH2+)依然为主要离子,脱羟基产物,水合离子及高聚水离子的含量非常少;(d) 采用H3O+作为电离源, 脱羟基产物为主要离子,分子离子峰为次要离子,同时有大量水合离子及高聚水离子生成。 图2. 以正丙醇为样品,离子相对强度图 1.26×10-5 mbar压力下, (a)C6H5F2+作为电离源,(b)H3O+作为电离源 7.34×10-5mbar压力下 (c)C6H5F2+作为电离源,(d)H3O+作为电离源。 从下表数据中可以发现,在其他有机物中可以有效重复试验结果,新型前躯体产生的C6H5F2+可以与大多数VOCs反应,并产生少的碎片信号。 除此之外,很多测试实例也证实了质子传递反应-傅里叶变换离子回旋共振质谱技术的先进性和可靠性,1,4-二氟苯作为一种新型的前驱体,有效解决了醇、醛及长链脂肪烃的测定难题,为质子传递反应质谱分析提供了突破性的解决方案。参考文献:[1] Latappy, H. Lemaire, J. Heninger, M. Louarn, E. Bauchard, E. Mestdagh, H. International Journal of Mass Spectrometry 2016, 405, 13.质子传递反应质谱;1,4-二氟苯;VOCs;高分辨率;少碎片相关产品:法国Alyxan公司高分辨质子传递反应质谱(BTrap):http://www.instrument.com.cn/netshow/C247308.htm
  • 欧盟审查苯丁锡的最大残留限量
    p   据欧盟食品安全局(EFSA)消息,近日欧盟食品安全局按照(EC) No 396/2005第12章的要求,审查了苯丁锡(fenbutatin oxide)的最大残留限量。 /p p   苯丁锡为抑制神经组织的有机锡杀螨剂,又名托尔克、 克螨锡,对害螨以触杀为主,广泛用于果树、柑橘、苹果等,可防治多种活动期的植食性螨类。 br/ /p p   据了解,由于缺少二羟基苯丁锡的毒理学数据,欧盟地区已不再许可苯丁锡的最大残留限量。然而,国际食品法典委员会制定的限量仍然存在。 br/ /p p   由于缺少完整的苯丁锡毒理学特性,欧盟食品安全局不能开展国际食品法典委员会限量的评估,也不建议将该限量整合进欧盟法律。然而,欧盟食品安全局可以根据现有数据,提议针对非法使用的标示残留物和定量限。 br/ /p p br/ br/ /p
  • 饮用水中苯酚类化合物的检测方法
    下载: 饮用水中苯酚类化合物的检测方法.pdf 关键词: 饮用水 苯酚类化合物 标准品 石炭酸 羟基苯 镇江 上海安谱科学仪器有限公司 地址:上海市斜土路2897弄50号海文商务楼5层 [200030] 电话:86-21-54890099 传真:86-21-54248311 网址:www.anpel.com.cn 联系方式:shanpel@anpel.com.cn 技术支持:techservice@anpel.com.cn
  • 聚苯乙烯磁性微球正式上架
    产品特点:功能化聚苯乙烯磁性微球是指通过化学修饰结合不同的官能团及具有特异性的抗体、核酸和蛋白,应用于核酸纯化、细胞筛选、免疫分析等多个领域。其表面可以修饰不同的功能基团,如氨基、羧基、羟基等,用于结合不同的生物分子,实现靶向检测和诊断等应用。此外,聚苯乙烯磁性微球还具有以下三大特点:1、单分散性好:粒径均一,可制备出单分散性良好的磁性微球。比表面积大,吸附性好:高比表面积有利于提高与生物分子结合的密度和效率。2、稳定性好:不易发生聚集和沉淀,可长时间保持稳定。材料亲和性好、生物相容性好:具有良好的生物相容性和生物安全性,可应用于生物医学和药物制剂等领域。3、磁响应性强:在外加磁场的作用下,可以方便地实现磁分离和定向操控。应用背景:氨基、羧基化聚苯乙烯磁性微球的应用背景主要基于其独特的物理和化学性质。通过氨基和羧基化修饰,这种材料可以在表面引入多种功能基团,从而实现对生物分子的特异性结合。由于其具有粒径均一、稳定性好、磁响应性强等特点,氨基、羧基化聚苯乙烯磁性微球在生物医学、化学、材料科学等领域具有广泛的应用前景。在生物医学领域,氨基、羧基化聚苯乙烯磁性微球可以用于药物载体、靶向药物、免疫分析、生物传感器等领域。通过其表面的氨基和羧基功能化,这种材料可以与生物分子(如蛋白质、酶和DNA等)相互作用,实现生物分子的分离、纯化和检测。此外,氨基、羧基化聚苯乙烯磁性微球还可以用于制备组织工程支架、细胞培养基质等领域,为组织再生和细胞培养提供良好的微环境。在化学和材料科学领域,氨基、羧基化聚苯乙烯磁性微球可以用于制备高分子复合材料、催化剂载体、过滤材料等。由于其大孔容积和高比表面积等特点,这种材料可以作为添加剂改善材料的性能和特性。此外,氨基、羧基化聚苯乙烯磁性微球还可以用于色谱填料和分离技术领域,实现高纯度、高回收率和高分离效率的分离效果。海岸鸿蒙颗粒标准物质的研发已经达到国内领先、国际前沿水平,其中PM2.5、可见异物等百余种标准物质的研制成功填补了国内的空白,被国家市场监督管理总局批准为国家一级、二级标准物质。其颗粒产品包括颗粒标准物质和功能微粒两大类,共有3000多种产品,涵盖颗粒尺寸从30纳米到2000微米,涉及聚苯乙烯、金属、二氧化硅、胶体金和多元琼脂糖等不同材质以及彩色微粒、荧光微粒、磁性微粒等不同功能的微粒产品。此外,海岸鸿蒙还可根据用户需可根据客户需求,提供多种材质,不同粒径,不同功能,单分散、窄分布,近乎于标准球体的微粒定制服务。产品特点: match 产品特点:产品特 啊啊特点:啊大
  • 岛津战略合作伙伴和合诊断集团自主研发25-羟基维生素D试剂盒,获批国家二类医疗器械注册证
    2020年2月,和合诊断集团全资子公司合肥和合医疗科技有限公司自主研发的25-羟基维生素D检测试剂盒(液相色谱-串联质谱法)、25-羟基维生素D校准品、25-羟基维生素D质控品正式通过审批,获得国家二类医疗器械注册证!上图为25-羟基维生素D检测试剂盒、校准品、质控品的国家二类医疗器械注册证件 合肥和合医疗科技有限公司自主研发的25-羟基维生素D系列检测试剂盒产品基于液相色谱-串联质谱检测方法,该方法为国际公认的维生素D项目检测金标准,可以大大提高血清维生素D检测的精确性,为相关疾病的临床诊断提供重要依据。产品适用机型广、组成全面,能很好的满足临床客户的检测需求。 和合诊断集团自2011年开始与岛津合作,现在拥有多台岛津LCMS-8050CL、Nexera系列液相色谱仪。LCMS-8050CLNexera X2(LC-30A系列) 岛津液相色谱仪历经50年在技术积淀,从输液泵、自动进样器到柱温箱和检测器,各个方面做到最优,为用户获得最优、最稳定的检测结果,提供最优秀的仪器平台。 和合诊断尤以开展高效液相色谱、串联质谱法检测擅长,是国内第一家也是目前规模最大的临床“色谱/质谱检验技术平台”,可提供临床化学和分子遗传学检验专业的百余项检测项目。集团率先在国内开展血清维生素检测,为全国2000余家医院提供诊断技术服务。集团各实验室执行国际通用标准ISO15189,拥有与世界同步的检验技术和实验室管理系统,检测结果为全球100多个国家和地区认可。科研能力突出,截至目前,集团共获得国家专利局审批及受理的专利近百余项、其中维生素D检测发明专利10余项。 研究表明,人体血清维生素D水平与免疫力息息相关,维生素D可以使细胞因子水平提高,从而增强人体免疫力。所以高度关注血清维生素水平,及时干预,可使肌体抗病毒感染能力提升。
  • 广东省食品流通协会发布《农药中涕灭威砜、涕灭威亚砜、3-羟基克百威、氟甲腈、氟虫腈砜、氟虫腈硫醚、甲拌磷砜、甲拌磷亚砜的测定》团体标准征求意见稿
    由广东省食品流通协会提出的《农药中涕灭威砜、涕灭威亚砜、3-羟基克百威、氟甲腈、氟虫腈砜、氟虫腈硫醚、甲拌磷砜、甲拌磷亚砜的测定》团体标准已完成征求意见稿,为保证团体标准的科学性、实用性及可操作性,现公开征求意见。请有关单位及专家认真审阅标准文本,对标准的征求意见稿提出宝贵的意见和建议,并将意见反馈表于2023年10月28日前反馈至协会标准化专委会处,意见接收邮箱:gdfcastandard@126.com。附件1、《农药中涕灭威砜、涕灭威亚砜、3-羟基克百威、氟甲腈、氟虫腈砜、氟虫腈硫醚、甲拌磷砜、甲拌磷亚砜的测定》(征求意见稿)附件2、《农药中涕灭威砜、涕灭威亚砜、3-羟基克百威、氟甲腈、氟虫腈砜、氟虫腈硫醚、甲拌磷砜、甲拌磷亚砜的测定》(征求意见稿)编制说明附件3、广东省食品流通协会团体标准征求意见表关于对《农药中涕灭威砜、涕灭威亚砜、3-羟基克百威、氟甲腈、氟虫腈砜、氟虫腈硫醚、甲拌磷砜、甲拌磷亚砜的测定》团体标准征求意见的函.pdf附件1、《农药中涕灭威砜、涕灭威亚砜、3-羟基克百威、氟甲腈、氟虫腈砜、氟虫腈硫醚、甲拌磷砜、甲拌磷亚砜的测定》(征求意见稿).pdf附件2、《农药中涕灭威砜、涕灭威亚砜、3-羟基克百威、氟甲腈、氟虫腈砜、氟虫腈硫醚、甲拌磷砜、甲拌磷亚砜的测定》(征求意见稿)编制说明.pdf附件3、广东省食品流通协会团体标准征求意见表.docx
  • 广东省农药协会发布《农药产品中涕灭威砜、涕灭威亚砜、3-羟基克百威、氟甲腈、氟虫腈砜、氟虫腈硫醚、甲拌磷砜、甲拌磷亚砜的测定》团体标准征求意见稿
    各有关单位及专家:广东省农药协会立项的《农药产品中涕灭威砜、涕灭威亚砜、3-羟基克百威、氟甲腈、氟虫腈砜、氟虫腈硫醚、甲拌磷砜、甲拌磷亚砜的测定》团体标准已完成征求意见稿,为保证团体标准的科学性、严谨性和适用性,现公开征求意见。请有关单位及专家提出宝贵意见或建议,并请于2023年12月3日前将《标准征求意见汇总表》(见附件1)以电子邮件的形式反馈至广东省农药协会秘书处,逾期未回复将按无异议处理。感谢您对我们工作的大力支持!联系人:沈文胜;联系电话:020-37288797, 13802631090;电子邮箱:swsg@163.com 附件:1. 标准征求意见汇总表2. 《农药产品中涕灭威砜、涕灭威亚砜、3-羟基克百威、氟甲腈、氟虫腈砜、氟虫腈硫醚、甲拌磷砜、甲拌磷亚砜的测定》征求意见稿 广东省农药协会2023年11月3日广东省农药协会关于征求《农药产品中涕灭威砜、涕灭威亚砜、3-羟基克百威、氟甲腈、氟虫腈砜、氟虫腈硫醚、甲拌磷砜、甲拌磷亚砜的测定》团体标准意见的通知.pdf附件1:标准征求意见汇总表.docx附件2:农药产品中涕灭威砜、涕灭威亚砜、3-羟基克百威、氟甲腈、氟虫腈砜、氟虫腈硫醚、甲拌磷砜、甲拌磷亚砜的测定(征求意见稿).pdf
  • 国外太赫兹无损检测技术已趋成熟
    太赫兹技术属于一种新型无损检测技术,能够对某些组件及表面进行无损测试分析。但是这种检测装置,尤其是传感器探头,不仅价格昂贵,而且相当笨重。  现在,来自于德国弗劳恩霍夫协会的研究人员已经成功研制出一种非常紧凑、简单的传感器探头,其成本也因此变得更低,装置操作也变得更加容易。他们设计的第一种传感器探头原型已经被用于在塑料管的生产线上检测管壁的厚度。此外,这种装置还非常适用于分析纤维复合材料上的涂层等。  这种新型传感器探头将会于2016年4月25至29日在德国汉诺威工业博览会上进行展出。  十多年以前,当人们谈论最多的还都是人体扫描仪的时候,太赫兹技术就被视为“下一个大事件”。科学家们希望利用太赫兹辐射技术研发出一种能够用于材料测试与分析方面的测量体系 虽然人们对于太赫兹技术一直都抱有很大的期望,但太赫兹技术并没有取得人们所期待的进展。与传统的无损检测技术相比,例如X射线检测、超声检测等,太赫兹技术成本太高,装置笨重、不灵活。  搭配新型传感器探头的测量体系  现在,德国柏林的弗劳恩霍夫海因里希赫兹研究所在太赫兹技术方面取得了一项巨大的进步。由该研究所里Thorsten G?bel领导的太赫兹技术研究小组已经成功的研制出了首例标准太赫兹设备,而且成本更低,操作更为简便。  弗劳恩霍夫海因里希赫兹研究所激发太赫兹辐射的原理是基于一种光电方法 通过使用一种特殊的半导体,激光脉冲被转换成太赫兹电脉冲。而以前太赫兹技术一直没有取得实质性成功的原因主要就在于这种特殊半导体需要具备一些特殊的性质。  “我们研制出了一种半导体材料,能够被波长为1.5微米左右的激光刺激,” G?bel说道:“在光通信领域中,这是一种标准波长,这也是为什么市场上有那么多廉价但高质量的光学组件和激光器”。  但是,要研制出一种能够用于材料测试方面,且成本较低、操作便利的太赫兹体系仍然存在一个大障碍——迄今为止,用于扫描待测试组件的传感器探头太大而且非常笨重,并不便于使用。原因是太赫兹发射器和接收器是两个独立的组件,必须要精确的安装在套管里。这种排列的主要缺点在于测试样品只能在一个角度上进行测量。因此,测试对象必须准确的位于接收器和发射器的焦点上,这样经样品由发射器发出的太赫兹信号才会显示在接收器上。如果传感器探头和样品之间的距离发生了变化,例如发生轻微震动等,测量都会变得更加困难。  如今,研究人员制造了一个能够同时发射和接收信号的集成芯片,这使得操作距离可以更加灵活。人们将发射器和接收器“打包”成一个收发器,并置于一个直径只有25毫米,长度只有35毫米的简易传感器探头内部。  研究人员将太赫兹辐射中的发射单元与接收单元“打包”置于一个直径只有25毫米,长度只有35毫米的简易传感器探头内部  塑料管的壁厚检测  这种太赫兹传感器体系目前已经被一些制造厂商用于塑料管材的生产监测,这些传感器能够直接在生产线上检测塑料管壁的厚度 这项检测在生产过程中也是非常重要的,管壁太薄,塑料管就会变得非常不稳定 管壁太厚,无疑会浪费许多宝贵的原材料。  直到现在,塑料管生产线上一般都是采用超声检测体系。但超声检测不能准确的在空气中进行测量,通常需要用到水等耦合剂来起到超声传感器探头和塑料管材之间的耦合介质作用。正是由于这个原因,接近250℃的塑料管材必须通过水箱,才能完成检测。此外,超声检测技术并不能有效检测由不同材料层构成的所谓的智能管材。  纤维增强复合材料上的涂层检测  这种新型太赫兹传感器探头的另一个应用是验证纤维增强复合材料上的油漆以及涂料等。  人们能够利用涡流检测技术对一些金属基材料进行检测,例如在汽车行业中对金属薄片进行检测 但是涡流检测技术并不适用于导电性不好的纤维复合材料。“因此,随着复合材料在汽车、航空、航天以及能源等领域内的应用越来越广泛,人们迫切的需要一种可靠的检测方法”,G?bel说道,而这种新型太赫兹传感器探头可以解决这个问题。  虽然这种新型的太赫兹传感器体系来自于廉价的标准光学元件,可它目前的价格仍然高于一些超声检测装置,但是,G?bel预测,在不久的将来,随着逐步批量生产,其价格肯定会大幅降低。考虑到这种检测方法的优势及其目前的研究进展,G?bel相信太赫兹技术在未来几年将会取得更多的成功,很快成为一种成熟的无损检测手段。译自:sciencedaily
  • 扫描隧道显微镜发明者罗雷尔逝世 享年80岁
    据瑞士媒体报道,瑞士物理学家、1986年诺贝尔物理学奖获得者之一海因里希• 罗雷尔(Heinrich Rohrer)因病于5月16日在家中逝世,享年80岁。 海因里希• 罗雷尔(Heinrich Rohrer)   罗雷尔1933年生于圣加伦州布克斯市,拥有瑞士联邦工学院博士学位。据媒体报道,1981年他与同事成功研制出了扫描隧道显微镜(STM)。1983年,他们利用STM在硅单晶表面第一次直接观察到周期性排列的硅原子阵列。由于STM这一发明,他与Ernst Ruska、Gerd Binnig分享了1986年诺贝尔物理学奖。
  • 欧盟建议建立追溯体系避免大肠杆菌疫情
    据国外食品类网站报道,英国利兹海德食品研究所食品安全与危机管理主任托尼.海因斯表示,在大肠杆菌疫情期间,德国卫生当局失去了对食品行业的控制力,然而有效的追溯体系对于避免大肠杆菌疫情再次上演至关重要。   据了解,大肠杆菌疫情共造成德国48人死亡,法国15人死亡,最终疫情源头被追溯至从埃及进口的葫芦巴种子,后来这些种子被运至德国下萨克森州用以培植芽菜,培植出的芽菜最终导致疫情的爆发。   近日欧盟食品安全局执行理事在柏林会议上称,欧盟的食品安全体系非常脆弱。对此海因斯专家做出了回应认为,欧盟是全球最大的食品贸易市场,市场的完全开放使得食品安全体系面临很多威胁,一种食品会含有来自世界各地的多种配料,然而很多配料并未按照欧盟标准进行生产,对食品的配料成分进行追溯对于危机管理来讲至关重要,了解食品原料的来源、原料加工制成的食品类型、成品的销售地不仅是一项法律要求,对于危机管理的追溯来讲也很有帮助。
  • 300年电学史,20个重要而美丽的科学仪器
    现代社会离不开电。当你每天享受着电灯、空调、电话、互联网带来的便利时,你是否想过科学家是如何搞清楚其中的原理的?  在《电气时代序章》(The Prologue of Electrical Age)中,我们将通过大约20个重要而美丽的历史仪器,回顾1600—1900年间的电学历史。利用科学准确、高品质的电脑图像(CG),我们设法还原这些历史仪器当年的风采,并给出它们工作的原理和与之相关的重要科学发现。  我们计划《电气时代序章》的最终形态是一本图文并茂的科普书籍和一个互动的iPad App。我们目前正在寻找项目的合作文字作者。如果您是一位有经验的科普作家并且对这个项目感兴趣,欢迎联系我们(liangyan@novoedu.com)。下面是项目预览:  《电气时代序章》分为8个主题,对近20种重要的历史仪器,相关科学家及其重要科学发现进行介绍。以下是10种仪器的预览。  ?威廉吉尔伯特于1600年发明的静电验电器,这是最早的静电检测装置。吉尔伯特是最早区分电学和磁学现象的科学家。  ?奥托冯居里克于1663年发明的摩擦起电装置。用手磨擦黄色的硫磺球后,硫磺球可以吸引羽毛等小物体。居里克当时并不清楚其实验现象的本质,他认为硫磺球对其他物体的吸引力类似于地球的引力。  ?让-安托万诺莱于1753年发明的静电发电机。用手或者皮毛磨擦快速旋转的空心玻璃球体可以在玻璃表面产生大量的静电荷。  ?莱顿瓶由冯 克莱斯特在1745年和穆森布罗克在1745-1746年独立发明,其名称来源于穆森布罗克所在的城市莱顿城。莱顿瓶是最早的电容器。  ?本杰明富兰克林在1758年发明的莱顿瓶电池组。富兰克林是最早用Battery这个单词来描述电池组的。之前Battery指的是军事上的排炮。  ?夏尔奥古斯丁库仑于1785年所发明扭秤装置。通过这个精密的仪器,库伦发现了著名的库伦定律。  ?亚历山德罗伏特于1800年发明的伏打电堆。这是第一个可以连续供电的化学电池。伏打电堆的发明极大推动了电化学和电磁学的进展。  ?迈克尔法拉第于1821年所发明的电磁旋转装置。这个装置是所有电动机的前身。  ?迈克尔法拉第于1831年发现著名的电磁感应现象。上图是1832年皮克西根据法拉第的研究成果发明的第一台电磁感应发电机。  ?海因里希赫兹于1886年发明的用于电磁波检测的实验装置。通过这套实验装置,赫兹首次证实电磁波的存在,并测定电磁波的传播速度于光速相同。
  • 冷冻电镜揭示了细菌和人类膜蛋白之间惊人的相似之处
    简单生物体的细胞,如细菌,以及人类细胞,都被一层膜包围着,它可以完成各种任务,包括保护细胞免受压力。在一个联合项目中,来自美因茨约翰内斯古腾堡大学 (JGU)、德国于利希研究中心(Forschungszentrum Jülich) 和海因里希海涅大学杜塞尔多夫 (HHU) 的研究人员在细菌中发现的一种膜蛋白与一组负责重塑和重建人体细胞膜。根据研究人员的说法,这两个蛋白质组之间没有联系之前是已知的。然而,此次研究过程中,通过冷冻电子显微镜,发现细菌和人类的膜蛋白惊人地相似。细菌应激反应大约 30 年前,噬菌体休克蛋白 (Psp) 系统在细菌中被发现。“今天,我们知道 Psp 系统会响应多种类型的膜应力而被激活。然而,一些分子细节仍然令人费解,” 美因茨约翰内斯古腾堡大学膜蛋白组负责人德克施耐德(Dirk Schneider) 教授解释说。 “这就是为什么我们决定仔细研究 Psp 系统的核心蛋白。”施耐德及其同事最近发现了 Psp 代表 IM30 如何在细胞膜上形成保护性地毯状结构以应对膜应力。在他们的最新工作中,他们仔细研究了噬菌体休克蛋白 A (PspA),它在 Psp 系统中起着关键作用。 人类 酵母 细菌不同膜蛋白之间的结构相似性 [Benedikt Junglas、Dirk Schneider、Carsten Sachse]冷冻电子显微镜显示 PspA 形成长的螺旋形管,可以将生物膜包裹在内腔中。高分辨率图像首次显示了 PspA 如何局部溶解单个膜,然后将它们重塑为更大的单元,甚至介导新膜结构的形成。PspA 的原子低温电子显微结构:细长的分子是螺旋纳米棒的基本构建块(左)。灰度低温电子显微照片和示意图模型显示了掺入脂质的 PspA 管。“数千个 PspA 构建块可以组装成大型螺旋结构。因此,它们是我们冷冻电子显微结构分析的理想研究对象,”来自 Forschungszentrum Jülich 和 HHU Düsseldorf 的 Carsten Sachse 教授说。“在显微镜下,我们意识到 PspA 具有类似于 ESCRT-III 蛋白质的结构,我们的实验室已经在研究它,”他补充道。“这完全出人意料,表明阐明蛋白质结构是多么重要细节......数十亿年后,这两组蛋白质在遗传上已经发生了分歧,以至于只能根据它们的结构来检测它们的相似性。”“基于 PspA 和真核 ESCRT-III 蛋白的相似结构和功能特性,我们已将 PspA 鉴定为进化上保守的 ESCRT-III 膜重塑蛋白超家族的细菌成员,”作者在 Cell 中写道。研究发表在Cell 《细胞》上。符斌 供稿
  • 北方华创营收增速超50%,半导体设备企业业绩亮眼
    半导体设备公司中报业绩增速亮眼。根据各半导体设备公司披露的半年报来看,设备公司普遍都有较好的营收增长,其中北方华创今年的单季度营收增速稳定保持在50%左右的水平,中微公司增速也较为稳定;盛美上海因为疫情影响,Q1增速较低,但部分延迟的设备在 Q2出货,使得 Q2增速反弹;拓荆科技 Q2单季度营收规模明显增大;芯源微上半年新签订单同比大幅增长。国产量测设备取得中标。8月部分晶圆厂公布的设备中标中:1)量测与测试设备,上海精测和东方晶源分别中标 1台量测设备,其中上海精测中标晋华集成的 12吋扫描式电子显微镜,显示国内厂商在逐步突破壁垒较高的量测环节。另外,宁波舜宇仪器中标积塔半导体的 4台检测设备,而广立微中标华虹无锡的 1台电特性测试仪。2)刻蚀设备中,北方华创中标浙江创芯的 1台多晶硅刻蚀系统。3)清洗设备中,创微微电子继续在积塔半导体中标 3台槽式清洗机。上海精测 OCD 设备通过客户 28nm 工艺验证,多款设备交付客户。今年 7月,上海精测半导体的光学关键尺寸(OCD)测量设备再度通过关键客户 28nm 工艺验证,顺利进入量产生产线并全面投入使用。OCD 设备是图形晶圆检测中基于光学技术的重要设备。精测的突破显示国产量测设备取得积极进展。8月,精测向客户交付了第三批前道光学测量设备,包括光学膜厚测量和 OCD 设备,其中光学膜厚测量设备适用于 28nm FEOL 和 14nm BEOL 节点制程,而 OCD 设备主要应用于28nm 及以上制程。日本半导体设备销售增速回升,国内晶圆厂逆周期投资提升设备需求。根据 SEAJ数据,7月日本半导体设备厂商销售额(3个月移动平均)环比恢复增长,同比增速也提升到约 32%,显示半导体设备需求在 7月表现较好。近期,中芯国际宣布将在天津新投资一条规划产能 10万片/月的 12英寸晶圆代工生产线,提供28~180nm 的代工服务。中芯国际继续扩产显示国内晶圆厂投资热度不减,对于半导体设备需求也将带来提振。
  • 金融大鳄减持联合利华股份,价值达16.8亿元
    据路透社、雅虎财经等外媒近期消息,美国金融大鳄、激进投资者纳尔逊佩尔茨(Nelson Peltz)旗下的基金管理公司Trian Fund Management(下称Trian)已经减持了消费品巨头联合利华集团的股份,出售了价值约1.81亿英镑(约合人民币16.79亿元)的联合利华集团股份。△纳尔逊佩尔茨LSEG的数据显示,该基金是联合利华集团的第五大股东,交易前曾持有该集团1.47%的股份,即3660万股,总价值约18亿美元(约合人民币128亿元)。据Trian公布的文件,该基金在8月9日至13日期间分三批将联合利华股票出售,交易后,该基金目前持有联合利华股份约3260万股,持股比例缩减至1.31%。Trian在文件中称,这是一次“投资组合管理举措”,并表示佩尔茨期待与联合利华集团董事会和管理团队继续合作。这家隶属于佩尔茨的对冲基金于2022年初开始投资联合利华,佩尔茨本人也于同年5月加入联合利华集团董事会,担任非执行董事。这一任命曾引起同为联合利华投资者的Fundsmith公司所有人特里史密斯(Terry Smith)的不满,史密斯公开指责联合利华称,这家消费品巨头更乐意优待新投资者,而非长期投资者。据了解,佩尔茨曾在2023年支持任命海因舒马赫(Hein Schumacher)为联合利华集团首席执行官,而舒马赫在掌舵的第一年即启动战略改革,包括计划分拆联合利华的冰淇淋业务,裁员人数高达7500人,并宣称将集中精力发展30个关键品牌,以扭转多年来业绩不佳的局面。△海因舒马赫路透社指出,自2022年1月公布Trian基金的初始投资以来,联合利华的股价已经上涨了近30%,仅今年开年以来就上涨了超过23%,并在该集团公布2024上半年盈利超过预期的业绩后再度出现反弹。雅虎财经认为,这主要得益于联合利华集团在今年上半年的强劲表现,以及近期积极的盈利结果,也反映了市场对首席执行官海因舒马赫的战略方向充满信心。在佩尔茨的职业生涯中,他曾担任过数家全球消费品巨头集团的董事会成员,如2018年至2021年期间,他曾在宝洁集团任职。《福布斯》将其称为“一位令人畏惧的纽约激进投资分子”,并在其个人页面中介绍称,宝洁集团一度不愿授予他董事会席位,但最终向他屈服。“Trian出售联合利华股票的举动表明,佩尔茨对投资组合进行了战略性调整,并不意味着他对联合利华失去信心。联合利华的股价大幅上涨,部分原因是Trian最初的投资以及佩尔茨与领导团队的密切合作。”《福布斯》分析道,“投资者应注意到,联合利华在现任管理团队领导下的稳定性和战略举措,这些举措与股东利益非常一致。”《福布斯》还指出,纳尔逊佩尔茨与联合利华集团的合作表明,激进投资者可以推动集团内部的重大变革。“佩尔茨的主动干涉推动了联合利华集团内部运营效率的提升和战略性资产的出售,这也反映了一个更广泛的趋势,即投资者可以积极影响公司的未来战略,也凸显了董事会动态和主动治理在提升股东价值和公司绩效方面的重要性。”编辑视角:联合利华集团近日迎来一位重要投资者的减持,引发市场关注。激进投资者纳尔逊佩尔茨旗下的Trian基金减持了价值约16.8亿元人民币的联合利华股份。虽然此举引发了一些关于Trian对联合利华未来信心的猜测,但Trian方面表示这只是投资组合管理的举措。回顾Trian与联合利华的合作历程,我们可以看到激进投资者在推动公司改革和提升股东价值方面所发挥的作用。联合利华集团在Trian的投资和参与下,股价上涨显著,并启动了多项战略改革,展现出积极的发展态势。此次减持,或许正是Trian对联合利华投资收益的兑现,而非对其未来发展的质疑。
  • 微塑料、双酚A上榜!上海印发重点管控新污染物清单(2023年版)
    随着生态环境部、工业和信息化部、农业农村部、商务部、海关总署、国家市场监督管理总局等单位联合印发《重点管控新污染物清单(2023年版)》,并宣布该清单自2023年3月1日起施行,四大类14种新污染物治理被国家提上日程。各地方亦对此积极响应,全国各大省份的具体行动方案在去年下半年陆续出台。近日,根据《上海市新污染物治理行动工作方案》(沪府办规〔2023〕3号)和生态环境部等六部委印发的《重点管控新污染物清单(2023年版)》(生态环境部2022年第28号令),上海市印发《上海市重点管控新污染物清单(2023年版)》(以下简称《清单》),据悉,该清单将自2023年3月1日起施行。对比国家提出的《重点管控新污染物清单(2023年版)》,上海在全氟辛基磺酸及其盐类和全氟辛基磺酰氟(PFOS类)、全氟辛酸及其盐类和相关化合物(PFOA类)、十溴二苯醚、短链氯化石蜡、六氯丁二烯、五氯苯酚及其盐类和酯类、三氯杀螨醇、全氟己基磺酸及其盐类和其相关化合物(PFHxS类)、得克隆及其顺式异构体和反式异构体、二氯甲烷、三氯甲烷、壬基酚这几项新污染物的要求上几乎相同。此外,上海提到抗生素(抗菌药物)这类新污染物,并提出要推进自来水厂在常规工艺基础上增加深度处理工艺,有效去除抗生素等新污染物。仪器信息网关注到,与国家《重点管控新污染物清单(2023年版)》不同的是,《清单》特别提到微塑料,要求禁止生产销售一次性发泡塑料餐具、一次性塑料棉签、含塑料微珠的日化用品;厚度低于 0.025 毫米的超薄型塑料袋、厚度低于 0.01 毫米的聚乙烯农用地膜等;以及,对于双酚A,《清单》要求落实国家禁止、加工使用有关要求,如禁止销售含双酚A的婴幼儿食品容器,热敏纸产品中不得含有双酚A。详情参见:
  • 33岁教授揭示病毒攻克细胞屏障机制,获2019年默克分析科学奖
    p style=" line-height: 1.5em text-indent: 2em margin-bottom: 10px " 德国达姆施塔特默克公司(Merck Kgaa)创建于1668年,拥有约350年历史,总部位于德国达姆施塔特市(Darmstadt),该集团主要致力于创新型制药、生命科学以及前沿功能材料技术,并以技术为驱动力,为患者和客户创造价值。& nbsp & nbsp /p p style=" line-height: 1.5em text-indent: 2em margin-bottom: 10px " 近日,该公司向比利时鲁瓦纳纽夫天主教大学的大卫· 阿尔斯廷斯教授(33岁)颁发了2019年海因里希· 伊曼纽尔· 默克分析科学奖。颁奖典礼在土耳其伊斯坦布尔大学的欧洲分析会议上举行。 /p p style=" line-height: 1.5em text-indent: 2em margin-bottom: 10px " 默克公司科学关系主管克劳斯· 格里萨说:“大卫· 阿尔斯廷斯教授开创性的研究, strong 揭示了病毒克服细胞屏障并进入细胞的分子机制 /strong ,从而加入了海因里希?伊曼纽尔?默克公司(Heinrich Emanuel Merck)杰出的创新奖获得者群体。”德国达姆施塔特KGAA strong 。“也许在未来,他的研究可以被用来开发一种新的工具,来量化干扰病毒进入的分子的影响,从而支持开发抗病毒感染的新药。” /strong /p p style=" line-height: 1.5em text-indent: 2em margin-bottom: 10px " 大卫· 阿尔斯廷斯教授通过其关于生命系统纳米力学的研究(发表在《自然纳米技术》上)在国际上取得了显著的成绩。 strong 他利用原子力显微镜(AFM)和共聚焦显微镜相结合的方法,对病毒与动物细胞结合的第一步进行了纳米机械制图的开创性研究。 /strong /p p style=" line-height: 1.5em text-indent: 0em margin-bottom: 10px " & nbsp /p p style=" text-align: center " img width=" 500" height=" 334" title=" 222.jpg" style=" width: 500px height: 334px max-height: 100% max-width: 100% " alt=" 222.jpg" src=" https://img1.17img.cn/17img/images/201909/uepic/292bb0ae-706c-4f98-823b-7026718d3f81.jpg" border=" 0" vspace=" 0" / /p p style=" line-height: 1.5em text-indent: 2em margin-bottom: 10px " 细胞质膜是细胞内部、细胞质和细胞外环境之间高度复杂的界面。它既是一个屏障,又是一个通用的、必不可少的信令接口。在这一背景下,探索配体(肽、药物或病毒)如何在生理相关条件下与天然膜受体相互作用是许多生物学学科的基本兴趣,包括细胞生物学、分子生物学、结构生物学、生物化学和生物物理学。 /p p style=" line-height: 1.5em text-indent: 2em margin-bottom: 10px " strong 为了解决细胞壁上的受体如何与生物分子(例如病毒表面)相互作用的问题,大卫· 阿尔斯廷斯教授还引入了基于力-距离曲线的AFM技术,这是一种同时成像哺乳动物细胞并将其动态结合特性量化到特定细胞的技术。此外,他最近将该方法与共焦显微镜相结合,同时监测细胞特性,例如细胞状态、细胞表面受体的分布。 /strong /p p style=" line-height: 1.5em text-indent: 2em margin-bottom: 10px " 大卫· 阿尔斯廷斯教授的突破是在自然条件下用高分辨率的细胞表面原子力显微镜成像同时记录配体与特定受体结合的能量景观。 /p p style=" line-height: 1.5em text-indent: 2em margin-bottom: 10px " 自1988年以来,海因里希· 伊曼纽尔· 默克分析科学奖致力于表彰45岁以下的科学家,这些科学家主要致力于化学分析的新方法及其在提高人类生活质量的应用中的发展,例如在生命等领域科学、环境保护和生物科学。 /p p style=" line-height: 1.5em text-indent: 2em margin-bottom: 10px " 除了今天颁发的奖项外,德国达姆施塔特的默克公司(Merck KGAA)还授予科学和科学家许多其他奖项。最新增加的奖项是“未来洞察奖”(Future Insight Prize),该奖项今年首次颁发于2019年7月。德国达姆施塔特默克公司(Merck KGAA)颁发的进一步研究奖,除其他外,包括伊曼纽尔默克公司(Emanuel Merck)讲师奖学金以及全球医学教育补助金、新兴生物技术补助金计划和展示未来奖。 /p p br/ /p
  • 迪马科技赞助HPLC 2010国际大会
    2010高效液相分离和相关技术第35届国际研讨会将于2010年6月19日至24日在美国马萨诸塞州波士顿的海因斯会议中心和喜来登酒店盛大开幕。经过多年的发展,HPLC大会已经成为液相分离学界最重要的会议。这一国际性的系列会议涉及了多个学科门类,汇集了世界上多位知名的分析化学家、生物化学家、分子生物学家共享其所拥有的高效液相色谱法的宝贵资源,同时还将展出全球最先进的液相分离和分析技术的相关产品,对世界液相分离分析事业起着举足轻重的指导作用。 迪马科技铜牌赞助本次会议,同时将在712#展台展出2010年多款UHPLC专用柱新品,欢迎国内广大客户光临参观。 会议相关信息请参考:http://www.casss.org/displaycommon.cfm?an=1&subarticlenbr=272
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制