当前位置: 仪器信息网 > 行业主题 > >

次野鸢尾黄素

仪器信息网次野鸢尾黄素专题为您提供2024年最新次野鸢尾黄素价格报价、厂家品牌的相关信息, 包括次野鸢尾黄素参数、型号等,不管是国产,还是进口品牌的次野鸢尾黄素您都可以在这里找到。 除此之外,仪器信息网还免费为您整合次野鸢尾黄素相关的耗材配件、试剂标物,还有次野鸢尾黄素相关的最新资讯、资料,以及次野鸢尾黄素相关的解决方案。

次野鸢尾黄素相关的论坛

  • 35.1 高效液相色谱法测定射干利咽口服液中射干苷、次野鸢尾黄素的含量

    35.1 高效液相色谱法测定射干利咽口服液中射干苷、次野鸢尾黄素的含量

    1.5。以峰面积对进样浓度(ng.mL-1)线性回归,射干苷回归方程:Y=7 485.5X+82.95,r=0.999 7,线性范围:150~3 000 ng.mL-1;次野鸢尾黄素回归方程:Y=2 031X-78.14,r=0.999 9,线性范围:50~1 000 ng.mL-1。射干苷和次野鸢尾黄素的回收率分别为97.2%和98.7%、RSD分别为2.1%和2.8%。结论本方法操作简便,测定结果准确可靠,可用于射干利咽口服液中射干苷、次野鸢尾黄素的含量测定。谱图:http://ng1.17img.cn/bbsfiles/images/2012/08/201208061051_381727_1606903_3.jpg

  • 射干中次野鸢尾黄素成分的测定

    射干中次野鸢尾黄素成分的测定

    [align=center][img=,600,400]https://ng1.17img.cn/bbsfiles/images/2019/09/201909111545058835_3538_932_3.jpg!w690x460.jpg[/img][/align]今天为您带来月旭Ultimate LP-C18(4.6×250mm,5μm)色谱柱对射干中次野鸢尾黄素成分的测定。[align=center][b]色谱条件[/b][/align]色谱柱:月旭Ultimate LP-C18(4.6×250mm,5μm)。流动相:0.2%磷酸溶液/甲醇=47/53;检测波长:266nm;柱温:40℃;流速:1.0ml/min;进样量:10μL。[align=center][b]谱图和数据[/b][/align][b]1、对照溶液图[/b][align=center][img=,600,317]https://ng1.17img.cn/bbsfiles/images/2019/09/201909111545087418_772_932_3.jpg!w690x365.jpg[/img][/align][align=center][img=,600,38]https://ng1.17img.cn/bbsfiles/images/2019/09/201909111545138748_9028_932_3.png!w690x44.jpg[/img][/align][align=left]2、样品溶液图[/align][align=center][img=,600,310]https://ng1.17img.cn/bbsfiles/images/2019/09/201909111545196029_4284_932_3.jpg!w690x357.jpg[/img][/align][align=center][img=,600,38]https://ng1.17img.cn/bbsfiles/images/2019/09/201909111545249614_3231_932_3.png!w690x44.jpg[/img][/align][b][/b][align=center][b][/b][/align][align=center][b][/b][/align][align=center][b]结 论[/b][/align]使用月旭Ultimate LP-C18(4.6×250mm,5μm),在此色谱条件下,能满足检测需求。

  • 17.4 HPLC法测定胃力片中大黄酸、大黄素、大黄酚和大黄素甲醚的含量

    17.4 HPLC法测定胃力片中大黄酸、大黄素、大黄酚和大黄素甲醚的含量

    HPLC法测定胃力片中大黄酸、大黄素、大黄酚和大黄素甲醚的含量张红霞,金艺,许海燕,赵怀清(沈阳药科大学药学院,辽宁沈阳110016)摘要:目的建立胃力片中大黄酸、大黄素、大黄酚、大黄素甲醚的含量测定方法。方法采用HPLC法,色谱柱:Diamonsil c18(4.6 mm×200 mm,5弘m),以甲醇一体积分数为0.1%的磷酸水溶液(体积比为82:18)为流动相,流速:1.0 mL·min~,柱温:35℃,检测波长:254 nm。结果大黄酸、大黄素、大黄酚、大黄素甲醚分别在1.42~12.79、2.02~18.14、1.28~11.52、0.76~8.36 mg·Lo内呈良好的线性关系,相关系数分别为O.999 1、O.999 4、O.999 0和0.999 6,平均回收率分别为102。7%(RSD=l。0%,魁=9)、10l。2%(RSD=2.7%,露=9)、99.4%(RSD=1。6%,n=9)和97.9%(RSD=2.8%,咒=9)。结论本方法可作为胃力片质量控制方法之一。关键词:胃力片;大黄酸;大黄素;大黄酚;大黄素甲醚;高效液相色谱法http://ng1.17img.cn/bbsfiles/images/2012/07/201207241901_379466_2355529_3.jpg

  • 叶黄素是好东西,不能少,也不能多哦!

    叶黄素是好东西,不能少,也不能多哦!

    叶黄素是人类日常食用生果及蔬菜时可吸收到的营养素,但吸收利用率一般较低。如果缺乏叶黄素,可服用补充剂。如果是消化系统较差的老年人,可以使用舌下的喷剂来补充叶黄素。早在 1996 年叶黄素已被加入到膳食补充剂。另外,过量吸取叶黄素会对肝脏造成多余的负担,建议用量每日大约为 12 毫克。一般在绿叶的蔬菜中可以找得到。叶黄素本身是一种抗氧化物,并可以吸收蓝光等有害光线。[align=center][img=,324,276]https://ng1.17img.cn/bbsfiles/images/2019/10/201910101153518939_6860_932_3.jpg!w324x276.jpg[/img][/align][color=#646464]本实验主要针对果汁中叶黄素的测定[/color][align=center][color=#646464][img=,600,405]https://ng1.17img.cn/bbsfiles/images/2019/10/201910101153577234_9508_932_3.jpg!w640x433.jpg[/img][/color][/align][color=#646464][color=#646464]参考标准:《GB 5009.248-2016食品安全国家标准 果汁中叶黄素的测定》[/color][/color][b][color=#646464] [/color]萃取溶剂称取 1g BHT(二丁基羟基甲苯),以 200mL 环己烷溶解,加入 400mL 乙醚和 400mL 正己烷,混匀。1、样品提取称取 10g 果汁试样于 50mL 离心管中,加入 10mL 萃取剂,避光旋涡震荡提取 3min,4000r/min 离心 3min,重复提取两次,合并三次萃取液,室温减压浓缩至近干,用 3mL 萃取溶剂溶解待净化。2、样品净化Welchrom Alumina-N, 500mg/3mL活化: 5mL 萃取溶剂淋洗,保持柱体湿润,弃去。上样:将上述萃取液,以 1滴/s 的速度通过Welchrom Alumina-N 柱至鸡心瓶中。洗脱:用 3mL 萃取液洗脱至鸡心瓶中,室温减压浓缩近干,用甲醇定容至 10mL,过 0.45μm 滤膜待 HPLC 分析。3、仪器条件HPLC条件色谱柱:Ultimate AQ-C18 4.6×150mm,5μm仪器型号:Waters2695+PDA2996流动相:甲醇-乙腈=20:80柱温:35℃流速:1.0mL/min检测波长:445nm进样体积:10μL4、实验图谱及结果[/b][align=center][img=,600,488]https://ng1.17img.cn/bbsfiles/images/2019/10/201910101326381133_6340_932_3.jpg!w640x521.jpg[/img][/align][align=center]图1 叶黄素样品加标 5mg/kg 液相色谱图[/align]由图1可看出经 Alumina-N 柱净化,采用月旭 Ultimate C18 色谱柱检测峰形良好,保留时间稳定。[color=#646464][/color][align=center][color=#646464][img=,600,486]https://ng1.17img.cn/bbsfiles/images/2019/10/201910101154109028_1819_932_3.png!w640x519.jpg[/img][/color][/align]图2 叶黄素样品加标 10mg/kg 液相色谱色谱图[align=center][b][img=,600,111]https://ng1.17img.cn/bbsfiles/images/2019/10/201910101154198884_9526_932_3.jpg!w640x119.jpg[/img][/b][/align][align=center]表1 叶黄素加标回收实验结果(n=10)[/align][b]由表1可知,采用月旭 Welchrom Alumina-N 小柱结合液相色谱法检测叶黄素,加标量为 5mg/kg 和 10mg/kg 的样品进行了检测,回收率在86.29%~97.27%,能够满足检测要求。5、实际样品检测为了保证果汁样品的代表性,从多家超市以及菜场选择具有代表性的 10 个果汁样品进行检测,结果均为未检出。6、结论本实验建立了叶黄素检测的 HPLC 检测方法,对于加标量为 5 和 10mg/kg 的样品进行了检测,回收率在 86.29%~97.27%,固相萃取柱方法稳定并且色谱柱重现性良好,说明本方法能够用于检测食品中的叶黄素的含量。7、订购指南[/b][align=center][img=,600,524]https://ng1.17img.cn/bbsfiles/images/2019/10/201910101154281505_9762_932_3.jpg!w581x508.jpg[/img][/align]

  • 【原创大赛】离子液体双水相微波辅助萃取姜黄中的姜黄素

    以亲水性离子液体溴化N-丁基吡啶(Br)和K2HPO4形成的双水相体系-微波辅助萃取姜黄中的姜黄素类化合物,并以紫外分光光度法在424.5nm处测定姜黄素类化合物总量。通过单因素实验和正交实验相结合的方法对离子液体双水相微波辅助提取姜黄中姜黄素的工艺条件进行了研究。姜黄中姜黄素的最佳提取工艺为:料液比(姜黄的质量:0.20g/mL离子液体的体积)为0.015:1、微波功率为320 W、提取时间为120 s。在最佳提取工艺下,提取率(提取出来的姜黄素质量/姜黄的质量)可达4.99%。

  • 谈谈叶黄素只能是从外界的摄取

    叶黄素只能从外界摄取,这就需要我们通过吃大量的蔬菜水果补充,富含叶黄素的果蔬有:玉米、甘蓝菜、南瓜、地瓜叶、橙子、橘子、猕猴桃、芒果等。界摄取,这就需要我们通过吃大量的蔬菜水果补充,富含叶黄素的果蔬有:玉米、甘蓝菜、南瓜、地瓜叶、橙子、橘子、猕猴桃、芒果等。

  • 【我们不一YOUNG】叶黄素多的食物

    叶黄素属于类胡萝卜素的一种,是视网膜黄斑的主要色素,但叶黄素在人体内不能自行合成,主要是通过进食蔬菜或水果维持体内叶黄素的需求,叶黄素含量较高的食物主要有菠菜、西兰花、芥菜、芹菜叶、胡萝卜、香菜、西红柿等蔬菜,以及柑桔、猕猴桃、鲜枣、芒果等水果。含叶黄素高的食物:1、蔬菜类。蔬菜类中含有叶黄素的食物较多,如南瓜、胡萝卜、西红柿、菠菜、甘蓝菜、绿花椰菜、韭菜、小白菜、芹菜叶、香菜等,这些绿叶蔬菜及黄橙色蔬菜中都含有较多的叶黄素,通常是人们补充叶黄素的重要蔬菜来源。2、水果类。水果类含有叶黄素较多的食物,有芒果、猕猴桃、葡萄、黄桃、橙子、橘子等。3、谷物类。谷物类中含叶黄素多的食物有玉米、小米等,同样这些谷物制品中也含有叶黄素,如玉米面、小米糕等。4、其他食物。除了上述这些食物之外,还有鸡蛋的蛋黄、红薯等中也含有大量的叶黄素,同时一些花卉中也含有较多叶黄素,如万寿菊、金盏花,这些花卉本身不可以食用,但可作为提取叶黄素的原材料,将提取的叶黄素应用到乳制品、脂肪制品、糖果、烘烤类食品等的制作中。叶黄素的作用:1、保护视力。太阳光中含有强烈的紫外线和蓝光,可以伤害视网膜和黄斑,其中蓝光对人眼的伤害甚至比紫外线还大,叶黄素能够吸收蓝光和紫外线,并协助黄斑过滤蓝光,协助视网膜抵挡紫外线,从而避免蓝光和紫外线损害视力,此外太阳光具有强氧化性,很容易损伤黄斑,眼睛若长期受到强光直射会生成大量的氧自由基,使黄斑区和视网膜退化,视力严重减退,甚至失明,叶黄素是还原剂,有强抗氧化的作用,可以抑制氧自由基生成,所以补充叶黄素,有助于保护眼睛,尤其是保护视网膜和黄斑。可以保护视力,延缓视力进展,减少视力损害。2、抗氧化作用。氧自由基可加速人体各种器官的老化,对眼睛和皮肤损害尤其严重,再加上太阳光中紫外线的照射,更会加速皮肤的老化,叶黄素具强抗氧化能力,能够抑制氧自由基生成,不仅能保护眼睛,还能保护皮肤,在一定程度上能够延缓皮肤的老化。3、其他。叶黄素对于减缓早期动脉硬化的发展也有一定作用,还可以辅助加强胰岛素降血糖的功能,减少患糖尿病的风险。

  • 异戊二烯衍生物色素——类胡萝卜色素(叶黄素、胡萝卜素)

    类胡萝卜素是一类广泛存在于自然界中的脂溶性色素,它为许多食品提供红色或黄色色泽。存在于植物的叶、茎、花、根或果实中,自然界中的类胡萝卜素以岩藻黄素(存在于藻类)最多,其次是存在于绿叶中的叶黄素、紫黄素和新黄素,其他的类胡萝卜素如β一胡萝卜素广泛存在于胡萝卜、南瓜、辣椒等蔬菜中:水果、蛋黄、奶油中的含量也较丰富。类胡萝卜素按其组成可以分为两大类,即胡萝卜素类和叶黄素类。1.番茄红素从结构上来看番茄红素是直链开环结构,无维生素A的功能,具有防癌抗癌作用,主要存在于番茄中。(1)“α-胡萝卜素“α-胡萝卜素分子断裂后可形成一分子维生素A,主要存在于胡萝卜中,其次是番茄。(2)β-胡萝卜素β-胡萝卜素则形成2分子维生素A,并且自然界中三种胡萝卜素以它占多,分布最广。1μg的β-胡萝卜素相当于1.6IU的维生素A。主要存在于胡萝卜中,其次是番茄中。(3)r-胡萝卜素 r-胡萝卜素分子断裂后可形成一分子维生素。2.叶黄素类(Xanthophylls)叶黄素类是共轭多烯烃的加氧衍生物,即在分子中含有羟基、甲氧基、羧基、酮基或环氧基,多呈浅黄、橙、黄等色泽;在绿叶中它们的含量一般比叶绿素多一倍,常见的叶黄素类色素有以下的十几种,它们可以简单地被认为是胡萝卜素类的衍生物。性质:①低浓度呈橙黄色至黄色,高浓度为橙红色;②不溶于水、甘油、丙酮、酸、碱,微溶乙醇和食用油,易溶苯、石油醚;③酸性不稳定,弱碱较稳定,不受还原物影响;④光、热、空气使其色泽变淡;⑤重金属(铁)使其褪色。

  • 16.1 高效液相色谱法测定大鼠血浆和全血中核黄素的含量

    16.1 高效液相色谱法测定大鼠血浆和全血中核黄素的含量

    高效液相色谱法测定大鼠血浆和全血中核黄素的含量韦京豫, 郭长江, 杨继军, 蒋与刚, 李云峰, 徐琪寿(军事医学科学院卫生学环境医学研究所,天津)摘要:为了直接反映核黄素营养状况对血中核黄素水平的影响,建立了高效液相色谱测定大鼠血浆及全血中核黄素含量的方法。采用Diamonsil C18色谱柱250mmx4.6mm i.d.5um)分离,以甲醇5mol/l乙酸铵(体积比为1.2ml/min)为流动相,流速1.2ml/min,荧光检测器检测(激发波长450nm,发射波长:520nm)。样品经乙腈、三氯甲烷处理后进样分析。核黄素测定的线性范围5-200nmol/l,最低检测限为2.5nmol/l(s/n=2),日内测定的峰面积的相对标准偏差(RSD)为1.2%,日间测定的RSD=4.3%。核黄素在血浆样品中的加标回收率为97.0%-104%,在全血样品中的加标回收率为97.4%-104.4%.关键词:高效液相色谱法;核黄素;血浆;全血;大鼠http://ng1.17img.cn/bbsfiles/images/2012/07/201207241234_379356_2355529_3.jpg

  • 叶黄素的质谱

    [color=#444444]请问有没有什么叶黄素的质谱方法?我怎么没找到啊[/color]

  • 药物分析核黄素磷酸钠,用核黄素对照品可否?

    样品为复方维生素,其中一项是核黄素磷酸钠,没找到核黄素磷酸钠的对照品,故用的核黄素对照品样品制备:先用水溶,然后用流动相稀释,流动相弱酸性做出的结果比标示量低了很多啊用核黄素对照品代替核黄素磷酸钠对照品,请问结果可信吗?

  • 紫外分光光度法测定盐酸麻黄素注射液含量

    紫外分光光度法测定盐酸麻黄素注射液含量关键词: 麻黄素;可见和紫外分光光度法[摘要] 目的:探讨盐酸麻黄素注射液含量测定的新方法,以求更快速、准确地适应临床用药需要。方法:用不同厂家不同批号的盐酸麻黄素注射液做供试品,用标准麻黄素做对照品,用紫外分光光度计测出标准品的最大吸收度,求出浓度与吸收度关系,得其回归方程,测其回收率。求出含量与药典法进行比较。结果:在256±1 nm处有最大吸收,以256 nm为测定波长,盐酸麻黄素浓度与吸收度呈标准曲线线性范围0.2~1.2 mg/ml(r=0.999 9),平均回收率为(100.31±1.02)%,两种方法测定结果差异无显著性(P>0.05)。结论:紫外分光光度法,可以做为盐酸麻黄素注射液含量测定的新方法。[中国图书资料分类法分类号] R 974.3;O 657.32   [文献标识码] A[文章编号] 1000-2200(2000)05-0380-02  盐酸麻黄素是拟肾上腺素药,目前对该病及其制剂的含量测定方法有非水滴定法[1]、银量法[1]及中和法[2]。本文采用紫外分光光度法[1],测定盐酸麻黄素注射液的含量[3],并与1995年版药典的非水滴定法进行比较,兹作报道。1 材料与方法1.1 仪器 Du-640型紫外分光光度计(美国贝克曼公司)。1.2 试药 盐酸麻黄素对照品,盐酸麻黄素注射液(上海信谊制药厂,批号951201-1,951201-2;无锡市第七制药厂,批号960117-1,960117-2,960610;规格均为1 ml∶50 mg)。1.3 测定方法 (1)盐酸麻黄素紫外吸收光谱:取盐酸麻黄素对照品适量,用蒸馏水溶解并配制成0.6 mg/ml的溶液,以蒸馏水为空白,在230~300 nm波长之间扫描,在256±1 nm波长处有最大吸收,故采用256 nm为测定波长。(2)标准曲线的绘制:精密称取经105℃干燥至恒重的盐酸麻黄素对照品50 mg,置25 ml量瓶中,加水溶解并稀释至刻度,摇匀。精密量取该药液1.0、2.0、3.0、4.0、5.0、6.0 ml分别置10 ml量瓶中,加水稀释至刻度,摇匀,以水为空白,在256 nm处分别测定吸收度。结果表明,在0.2~1.2 mg/ml浓度范围内,浓度与吸收度呈良好的线性关系。得其回归方程为:A=0.8256 C+0.012 0(r=0.999 9,n=6)。(3)稳定性实验:取(2)项下的各溶液于配制后0、1、2、3、4、8、16、24 h分别测吸收度,结果几无变化。(4)回收率试验:精密称取经105℃干燥至恒重的盐酸麻黄素对照品约25 mg,置50 ml量瓶中,加水溶解并稀释至刻度,以水为空白,在256 nm波长处依法测定吸收度,求出回收率。(5)样品测定:取不同批号的盐酸麻黄素注射液,精密量取1 ml,分别置于100 ml量瓶中,加水稀释至刻度,摇匀,以水为空白,在256 nm处测吸收度,计算其含量,并将本法测定的结果与中国药典1995年版收载的非水滴定法测定的结果进行比较。1.4 统计学方法 采用配对t检验。2 结果  紫外分光光度法回收率试验结果见表1;与药典法测定样品中盐酸麻黄素注射液的含量结果比较见表2。表1 回收率试验结果(n=5) 编号 加入量(mg) 测得量(mg) 回收率(%) ±s(%) 1 26.40 26.42 100.08 2 24.80 25.20 101.61   3 25.20 25.08  99.52 100.31±1.02 4 24.30 24.57 101.11 5 25.00 24.81  99.24 表2 两种方法测定结果比较(ni=15;±s) 测定方法 标示量(%) ±sd td P 紫外分光光度法药典法 100.17±1.07100.18±0.48 0.01±0.80 0.02 >0.05 3 讨论  盐酸麻黄素注射液是卫生部规定的控制药品。为保证患者用药的准确有效,防止在生产这类药品过程中盐酸麻黄素原料的流失,对其含有盐酸麻黄素的药品进行快速、简便、准确的含量测定显得尤为重要。传统的本品测定方法,不但操作过程繁琐,消耗试药量大,且非水滴定法中的醋酸汞试剂对人体有害,污染环境。  麻黄素属β肾上腺素受体激动剂,可直接或间接激动肾上腺素受体。对心血管系统、支气管平滑肌、中枢神经系统都有较强的作用。在临床上应用较为广泛且剂量要求十分准确,所以对其含量的准确、快速测定更为重要。特别是临床上经常使用“盐酸麻黄素滴鼻剂”是医院自配药品,效期短,配制频繁,在其准确的基础上,快速测定及时保证药品的临床供应,并指导临床用药有一定的意义。  两种方法测定结果差异无显著性(P>0.05),表明紫外分光光度法可以做为盐酸麻黄素注射液的含量测定新方法。且本法操作简便、快速、准确,重复性好。作者简介:郗 颖(1967-),女,安徽灵璧县人,药剂师.[参考文献][1]中华人民共和国卫生部药典委员会.中国药典二部[M].广州:广东科学技术出版社,1995.18,693~694.[2]中华人民共和国卫生部药政局.中国医药制剂规范*西药制剂[M].北京:中国医药科学技术出版社,1996.166~167.[3]熊凤英,简 洁,周淑群.紫外分光光度法测定米非司酮血药浓度[J].中国医院药学杂志,1998,18(6)∶262.

  • 【求助】求叶黄素的红外光谱

    【求助】求叶黄素的红外光谱

    求叶黄素的红外光谱,十分感谢!叶黄素资料:英文名称: Lutein 中文名称: 叶黄素 CAS号: 127-40-2 分子式: C40H56O2 分子量: 568.88 纯度: 98.00% 别名:α-Carotene-3,3'-diolβ, ε-carotene-3,3′-diolβ, ε-caroteneLutein [img]http://ng1.17img.cn/bbsfiles/images/2008/12/200812252139_126260_1781331_3.jpg[/img]

  • 叶黄素2016版国标皂化的问题

    我们按照2016版的叶黄素国标处理奶粉,氮吹之后有脂肪吹不掉,是皂化条件不对吗?皂化方法是2克粉加0.2gBHT,加10ml乙醇,加10ml10%氢氧化钠溶液,室温避光振荡30分钟。

  • 36.5 高效液相色谱法测定上清丸中大黄素和大黄酚的含量

    36.5 高效液相色谱法测定上清丸中大黄素和大黄酚的含量

    【作者中文名】肖燕; 刘建锋;【作者英文名】XIAO Yan; LIU Jian-feng(1.Huaihua Institute for Drug Control; Huaihua Hunan 418000; 2.School of Pharmaceutical Sciences; Central South University; Changsha 410013);【作者单位】怀化市药品检验所; 中南大学药学院;【摘要】目的建立上清丸中大黄素和大黄酚的含量测定方法。方法色谱柱为Diamonsil C18(250 mm×4.6 mm,5μm),流动相为甲醇-0.1%磷酸溶液(85∶15),流速:1.0 mL.min-1,检测波长:254 nm。结果大黄素进样量在0.0576~0.153 6μg线性关系良好,r=0.9999,平均加样回收率为98.49%,RSD为1.75%(n=6);大黄酚进样量在0.1397~0.3725μg线性关系良好,r=0.9998,平均加样回收率为98.86%,RSD为1.24%(n=6)。结论该方法操作简便,结果准确,重现性好,适用于上清丸中大黄素和大黄酚的含量测定。http://ng1.17img.cn/bbsfiles/images/2012/08/201208061211_381810_2379123_3.jpg

  • 液质联用测大黄素

    [color=#444444]用安捷伦[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]液质联用[/color][/url]测大黄素,标曲0.3-300 ng/ml,发现残留严重,比较了洗针液,发现加碱,加酸,加乙酸铵缓冲液效果都不好,最后选择了水-甲醇-异丙醇(1:2:1),因为还要兼顾其他几个极性比较大的化合物,洗针时间提高到10秒,走样前冲洗了柱子,超声清洗了针座,连续冲洗进样针3次,每次一分钟。开始走样时在标曲之前先走了十针纯甲醇,结果还是有很高的响应,16000左右,到了标曲最低点,响应又降到1000以下,但响应完全没有线性,相同浓度质控的响应也差很多。请问这个可能是什么情况?按理说我在走样之前已经清洗了柱子,针和针座,为什么还是有这么高的残留?如何选择洗针液?希望有经验的老师同学指点迷津,非常感谢。[/color][color=#444444][img]http://muchongimg.xmcimg.com/oss2/img/2018/0621/bw256h2437383_1529557070_831.png[/img][/color]

  • 迪马产品有奖问答2.27(已完结)——RP-HPLC法测定番石榴叶中桑黄素来苏糖苷和桑黄素阿拉伯糖苷的含量

    迪马产品有奖问答2.27(已完结)——RP-HPLC法测定番石榴叶中桑黄素来苏糖苷和桑黄素阿拉伯糖苷的含量

    10,抽取5个版友);中奖名单:mengzhaocheng(注册ID:mengzhaocheng)夏天的雪(注册ID:bingwang228)WUYUWUQIU(注册ID:wulin321)捌道巴拉巴巴巴(注册ID:v3082413)莫名其妙(注册ID:moyueqiu)http://ng1.17img.cn/bbsfiles/images/2017/02/201702271518_01_1610895_3.jpghttp://ng1.17img.cn/bbsfiles/images/2017/02/201702271518_02_1610895_3.jpg【注意事项】同样的答案,每人只能发一次PS:该贴浏览权限为“回贴仅作者和自己可见”,回复的版友仅能看到版主的题目及自己的回答内容,无法看到其他版友的回复内容。下午3点之后解除,即可看到正确答案、获奖情况及所有版友的回复内容。=======================================================================RP-HPLC法测定番石榴叶中桑黄素来苏糖苷和桑黄素阿拉伯糖苷的含量方法:HPLC基质:药品应用编号:102953固定相:Diamonsil C18(2)色谱柱/前处理小柱:Diamonsil 5μm C18(2), 250 x 4.6mm色谱条件:色谱柱:Diamonsil C18 250 mm× 4.6 mm, 5μm(Cat#:99603) 流动相: 甲醇-0.1% 磷酸溶液( 35: 65) 流速: 1.0 mL/min 柱温: 室温 进样量: 10 μL 检测器: UV 355 nm文章出处:中国实验方剂学杂志 2009, 15(6):21-23关键字:反相高效液相色谱, 番石榴叶, 桑黄素来苏糖苷, 桑黄素阿拉伯糖苷, Diamonsil C18, 钻石二代, 含量测定谱图:摘要:目的:建立番石榴叶中桑黄素来苏糖苷和桑黄素阿拉伯糖苷的含量测定方法。方法:用Diamonsil C18色谱柱(250mm×4.6mm,5μm),以甲醇-0.1%磷酸溶液(35∶65)为流动相,流速为1.0mL·min-1,检测波长为355nm。结果:桑黄素来苏糖苷在0.06132~0.14308μg范围内呈良好的线性关系(r=0.9999);桑黄素阿拉伯糖苷在0.05844~0.13636μg范围内呈良好的线性关系(r=1),平均回收率分别为98.6%和100.7%,RSD分别为1.0%和1.7%。结论:本方法对番石榴叶质量标准的制定具有很好的参考价值。http://www.dikma.com.cn/Public/Uploads/images/108-1.JPG

  • 维生素B2又称核黄素

    维生素B2又称核黄素,如果缺乏容易导致疲劳、乏力、喉咙痛、眼睛红痒、紫红色舌头、肌肤红疹、口腔生殖系统综合征,其对光比较敏感,容易被光所破坏。主要来源于猪肝、麸皮、鸡蛋、黄豆、核桃、牛肉、牛奶、花生仁、菠菜、油菜、瘦猪肉、鲫鱼、粳米、小麦、豆角等。

  • 当茶黄素邂逅咖啡因

    般而言,人们都希望饮料澄清透明。比如茶,清亮的总比浑浊的更有吸引力一些。所以,人们发现有的红茶茶汤在放凉之后出现浅褐色或橙色乳状的浑浊之后,在相当长的时间里并不待见它。直到后来有农艺师指出这其实是优质红茶的标志,这种被称为“冷后浑”的现象才受到人们的欢迎。冷后浑是如何产生的?为什么它又被认为是好茶的标志呢?茶叶中有许多种成分,其中有一类在化学结构上有共同之处,统称为茶多酚,现在已经识别出了有几十种。在未经加工的茶叶中,茶多酚大多数以儿茶素的形态存在。红茶制作中要进行充分的氧化,许多儿茶素会转化成茶黄素,还有的会进一步转化成茶红素。茶黄素和茶红素,就是为红茶带来红亮颜色的功臣。茶黄素的溶解度受温度影响比较大。在高温下,它还能好好地呆在茶汤中。当温度降低,它们就开始扎堆。温度越低,扎的堆就越大。大到一定程度——大致相当于牛奶中的乳滴大小,看起来就是茶汤变浑浊了。再进一步扎堆,就会形成乳酪那样的东西,与茶汤分层。茶中还有一种成分是咖啡因。其实它跟茶黄素一样,随着温度的降低也会喜欢扎堆,溶解度也会降低。不过在茶汤中的咖啡因含量低于它的溶解度,所以它们自己并不足以导致茶汤浑浊。但咖啡因非常喜欢茶黄素——相对于自己扎堆,它们更喜欢跟茶黄素混在一起。一个茶黄素分子上有两个位置能够结合咖啡因,当第一个咖啡因分子傍上茶黄素之后,就会使茶黄素露出第二个结合位点,再容纳另一个咖啡因分子。咖啡因到了人的嘴里,会与舌头上的苦味受体结合,让我们尝到苦味。而多酚类物质到了嘴里,则可能与舌头上的蛋白质结合,生成不溶于唾液的沉淀物,然后我们就感觉到了涩。相对来说,绿茶中的儿茶素和咖啡因比较多,所以绿茶比较容易出现苦涩。在红茶里,儿茶素经过氧化和聚合变成茶黄素,能与蛋白质结合的位点变少了,涩味也就降低了。茶黄素与咖啡因的结合在茶黄素自己扎堆之前就会进行。这种结合不仅进一步消耗了茶黄素的结合位点,同时也限制了咖啡因与舌头上苦味受体的结合。于是,与同样固体含量的绿茶茶汤相比,红茶茶汤的苦涩味就往往要低。茶黄素与咖啡因的络合产物溶解度更低,更容易扎堆变大,从而导致冷后浑的出现。因此,许多人认为冷后浑是茶黄素和咖啡因发生反应的结果。在实际的红茶中,咖啡因和茶黄素都存在,所以这样的解释也说得过去。“无事生非”的科学家,会把红茶中的咖啡因去掉,非要看看茶黄素自己能否出现冷后浑——结果是能,只是需要的茶黄素浓度会高一些。冷后浑还有一个名字叫做“茶乳酪”。跟牛奶形成奶酪一样,茶中的茶黄素等成分含量越高,就越容易出现冷后浑。茶黄素是红茶最关键的标志成分——冷后浑意味着它的含量高,“冷后浑是好茶的标志”之说,也就主要是这个原因。在红茶饮料生产中,冷后浑的出现导致产品不均一、外观不合格,风味口感也受到影响。在生产过程中,有一些阶段是以红茶提取物浓缩液的状态存在。因为固体含量高,“茶乳酪”就更容易出现——这会导致有效成分的损失,也为下一步的生产流程带来困难。因此,这个产业需要避免冷后浑的出现——这种需要,也就导致了许多关于冷后浑的研究。科学家们发现,除了咖啡因,茶汤中的钙离子对冷后浑的出现也有显著的作用。他们把茶乳酪拿去分析,发现其中的钙占固体总量的比例,大大高于茶汤中的钙占其固体含量的比例。这是因为,茶汤中的茶黄素带着负电,而钙离子带着正电——类似于卤水点豆腐,钙离子会把本来不想扎堆的茶黄素们拉到一起,让它们沉淀析出。茶中本来就具有不少钙,要避免它导致冷后浑,就需要压制住它的活动。在食品饮料工业中,这可以通过加入“螯合剂”来实现——螯合剂是一些结构特殊的分子,对于钙离子有超级强大的吸引力。只要螯合剂一出现,钙离子们就纷纷投奔而去,茶黄素也就“无钙问津”,不会被它们拉到一起扎堆了。科学家们还发现,如果把糖分子通过“糖苷化”加到茶黄素上,可以增加茶黄素的溶解度、避免冷后浑的出现。红茶制作中的氧化那一步加入一些糖,它们就会在后续的加工过程中结合到茶黄素上去。最后得到的红茶,就不容易出现冷后浑。“冷后浑是优质红茶的标志”是对的,但只是针对正常的红茶。当科学研究让我们对冷后浑有了更深入的认识,就会发现:如果我们不喜欢它,可以通过技术手段避免它的出现;如果我们喜欢它,也可以“捣鬼”促使它的出现。转自:科学松鼠会

  • CNS_04.023_茶黄素

    CNS_04.023_茶黄素

    [align=center]茶黄素[/align][align=center] 邱雪[/align][align=left]摘要:[font='arial'][color=#333333][back=#ffffff]茶黄素是一种金黄色色素,是茶叶发酵的产物[/back][/color][/font][font='arial'][color=#333333][back=#ffffff]。其在人体的身体健康保健中有不可忽视的作用。[/back][/color][/font][font='arial'][color=#333333][back=#ffffff]这篇文章将从多个方面向大家介绍茶黄素。并且介绍一些检测方法[/back][/color][/font][font='arial'][color=#333333][back=#ffffff]检测其在[/back][/color][/font][font='arial'][color=#333333][back=#ffffff]含量。[/back][/color][/font][/align][align=left][font='arial'][color=#333333][back=#ffffff]关键词:理化性质;应用;限量;检测;标准[/back][/color][/font][/align][align=left][/align][align=left][font='arial'][color=#333333][back=#ffffff]1.[/back][/color][/font][font='arial'][color=#333333][back=#ffffff]前言[/back][/color][/font][/align]茶黄色素又称茶黄素,是存在于红茶中的一种金黄色色素,是茶叶[url=https://baike.baidu.com/item/%E5%8F%91%E9%85%B5/661835][color=#000000]发酵[/color][/url]的产物。在生物化学上,茶黄色素是一类多酚羟基具苯骈酚酮结构的物质,是第一个从茶叶中找到具有确切药理作用的化合物。茶黄色素占干茶重量的0.5%到2%,且取决于红茶加工的方法。茶黄色素在茶汤中鲜亮的颜色和浓烈的口感方面,起到了一定的作用,是红茶的一个重要的质量指标。茶黄色素以多酚类物质、[url=https://baike.baidu.com/item/%E5%84%BF%E8%8C%B6%E7%B4%A0][color=#000000]儿茶素[/color][/url]为主要成分,还含有[url=https://baike.baidu.com/item/%E6%B0%A8%E5%9F%BA%E9%85%B8][color=#000000]氨基酸[/color][/url]、维生索C、[url=https://baike.baidu.com/item/%E7%BB%B4%E7%94%9F%E7%B4%A0E][color=#000000]维生素[/color][/url][url=https://baike.baidu.com/item/%E7%BB%B4%E7%94%9F%E7%B4%A0E][color=#000000]E[/color][/url]、[url=https://baike.baidu.com/item/%E7%BB%B4%E7%94%9F%E7%B4%A0A%E5%8E%9F][color=#000000]维生素[/color][/url][url=https://baike.baidu.com/item/%E7%BB%B4%E7%94%9F%E7%B4%A0A%E5%8E%9F][color=#000000]A[/color][/url][url=https://baike.baidu.com/item/%E7%BB%B4%E7%94%9F%E7%B4%A0A%E5%8E%9F][color=#000000]原[/color][/url]、[url=https://baike.baidu.com/item/%E9%BB%84%E9%85%AE][color=#000000]黄酮[/color][/url]及[url=https://baike.baidu.com/item/%E9%BB%84%E9%85%AE%E9%86%87][color=#000000]黄酮醇[/color][/url]等。茶黄素是茶色素的主要成分,共有12种组分,其中茶黄素、[url=https://baike.baidu.com/item/%E8%8C%B6%E9%BB%84%E7%B4%A0-3-%E6%B2%A1%E9%A3%9F%E5%AD%90%E9%85%B8%E9%85%AF/9600430][color=#000000]茶黄素[/color][/url][url=https://baike.baidu.com/item/%E8%8C%B6%E9%BB%84%E7%B4%A0-3-%E6%B2%A1%E9%A3%9F%E5%AD%90%E9%85%B8%E9%85%AF/9600430][color=#000000]-3-[/color][/url][url=https://baike.baidu.com/item/%E8%8C%B6%E9%BB%84%E7%B4%A0-3-%E6%B2%A1%E9%A3%9F%E5%AD%90%E9%85%B8%E9%85%AF/9600430][color=#000000]没食子酸酯[/color][/url]、茶黄素-3,3’-双没食子酸酯和茶黄素-3’-没食子酸酯是4种最主要的茶黄素。在茶叶加工中主要由简单儿茶素和[url=https://baike.baidu.com/item/%E6%B2%A1%E9%A3%9F%E5%AD%90%E5%84%BF%E8%8C%B6%E7%B4%A0/9802086][color=#000000]没食子儿茶素[/color][/url]配对氧化缩合而成。茶黄素类的发现与红茶发酵过程的研究密切相关。[font='calibri'][size=13px][1][/size][/font]2.[font='b5+华光楷体_cnki'][size=18px] [/size][/font]分子结构和理化性质[font='calibri'][size=13px][1][/size][/font]茶黄素是一类具有苯并卓酚酮结构化合物的总称[font='calibri']?[/font]其中茶黄素(theaflavin[font='calibri']?[/font]TF1)、茶黄素-3-没食子酸酯(theaflavin-3-gallate[font='calibri']?[/font]TF2A)、茶黄素-3′-没食子酸酯(theaflavin-3′-gallate[font='calibri']?[/font]TF2B)和茶黄素双没食子酸酯(theaflavin-3[font='calibri']?[/font]3[font='calibri']′[/font]-digallate[font='calibri']?[/font]TF3)是4种主要的茶黄素[font='calibri']?[/font]其化学结构如图1。茶黄素的红外光谱表明[font='calibri']?[/font]所有茶黄素的最大吸收都出现在380nm和460nm。茶黄素纯物呈橙黄色针状结晶[font='calibri']?[/font]熔点237~240[font='宋体']℃[/font][font='calibri']?[/font]易溶于水、甲醇、乙醇、丙酮、正丁醇和乙酸乙酯难溶于乙醚不溶于三氯甲烷和苯。茶黄素溶液呈鲜明的橙黄色水溶液呈弱酸性pH 约5.7[font='calibri']?[/font]颜色不受茶提取液 pH 影响[font='calibri']?[/font]但在碱性溶液中有自动氧化的倾向且随pH的增加而加强。[img]https://ng1.17img.cn/bbsfiles/images/2021/07/202107161930268731_216_1608728_3.png[/img]图13. 茶黄素的药理功效[font='calibri'][size=13px][2][/size][/font]3.1 抗氧化自由基学说认为,正常人体内的自由基与抗氧化物质处于平衡状态。 当人体器官和组织的细胞膜在自由基过量时便可能遭受其进攻,引起脂质过氧化、蛋白质变性、DNA 链断裂、细胞解体、机体衰老,并可能诱发肿瘤等恶性疾病。 体内过量的超氧阴离子及双氧水等,是产生毒副作用的重要因素。 细胞中的主要抗氧化酶超氧化物歧化酶(Superoxide Dismutase,SOD)能够将 超 氧 阴 离 子 催 化 分 解 为 双 氧 水 (Hydrogen Oxygen,H2O2),H2O2 在过氧化氢酶(Catalase,CAT)或硒谷胱甘肽过氧化物酶 (Selenium-glutathione Peroxidase,Se-GSH-Px)催化作用下迅速转化为无毒的 O2 和 H2O。 TFs 具有良好的抗氧化性,如 TFs可以清除自由基,防止脂质过氧化,提高 SOD、谷光 甘 肽 硫 转 移 酶 (Glutathione S -Transferase,GST)、醌还原酶(Quinone Reductase,QR)的活性,增强人体免疫力。在低密度脂蛋白 (Low Density Lipid,LDL)模型中,TFs 能够抑制二价铜离子介导的脂质过氧化。 研究表明,巨噬细胞中 LDL 氧化程度与金属离子浓度有关,金属离子浓度升高,LDL 氧化程度也升高,而 TFs 能抑制 LDL 的氧化,这与它能螯合金属离子有关。 YOSHIDA 等和 HAN 等用 TFs 类化合物分别处理鼠巨噬细胞和人内表皮细胞,以考察细胞 LDL 氧化能力,结果显示 TFs能与脂质氧合酶的活性中心铁结合,从而降低脂质氧合酶的活性,并抑制细胞 LDL 氧化。另外,TFs对外源性因子引起的生物膜脂质过氧化反应有较好的效果。如持续高强度的有氧运动会使肌肉酸痛肿胀,每天给予高强度有氧运动的男大学生1760 mg 富含茶黄素的红茶提取物,持续 9 天,发现其能够缓解酸痛肿胀,即茶黄素能够提高肌肉损伤恢复能力并降低氧化应激程度。茶黄素作为天然植物多酚类成分,可形成氢自由基,淬灭体内产生的自由基,从而保护组织,起到延缓衰老、抗突变、抗癌、杀菌消炎、防治心血管疾病和动脉粥样硬化等功能, 故在医药领域得到人们广泛关注。因此,加强茶黄素类成分抗氧化机理研究与临床用药的应用显得尤为迫切。3.2 抗心脑血管疾病 心血管疾病是心脏和血管疾患的总称,包括高血压、冠心病、脑血管疾病(中风)、周围血管疾病、血栓性疾病、动脉粥样硬化、心力衰竭、心脏病等。经济转型、城市化、工业化及全球化带来生活方式的改变,包括吸烟、缺乏活动、不健康饮食是导致心血管疾病增加的重要因素。每年死于心血管疾病的人数多于其它任何病因,成为全球头号死因。 MARON 等设计了一种含有75 mg TFs、150 mg儿茶素和150 mg其他多酚的胶囊, 给予240 名 18 岁以上高胆固醇成年人群低脂饮食 12周,且每日服用该胶囊。结果表明试验组能够使总胆固醇及低密度脂蛋白分别降低 11.3%和 16.4%,高密度脂蛋白与甘油三酯增长2%左右,降脂效果优于不含 TFs 的绿茶多酚胶囊。茶黄素不仅通过抑制脂肪酸合成、 激活脂肪酸的氧化消耗来降低脂肪积累,也通过肝激酶 B(Liver Kinase B1,LKB1)与活性氧途径激活 5'—磷酸腺苷 (Adenosine 5'-Monophosphate,AMP)依赖的蛋白激酶(Activated Protein Kinase,AMPK)达到抑制乙酰辅酶 A 羧化酶,降低肝脏脂质累积的作用。在试验组与对照组在粪便量上没有显著差异的情况下,茶黄素能够抑制高脂饮食肥胖鼠体重增加及内脏脂肪累积。茶黄素可以明显抑制由胶原、ADP、前列腺素 H2(PGH2)/血栓素 A2(TxA2)(TP)受体激动剂 U46619 等多种刺激剂引起的人体血小板聚集,且呈现出剂量依赖效应。茶 黄 素 还是血小板非受体酪氨酸激酶(NonReceptor Cytoplasmic Tyrosine Kinases,SYK)胶原引起的血小板活性的一个重要的靶点抑制剂,茶黄素组和对照组相比,小鼠肠系膜动脉血管形成血栓性堵塞的时间明显延长,充分证明了茶黄素对血小板功能的抑制,且优于目前临床使用的抗血小板药物,如存在着出血、引起胃肠道不适等副作用的药物阿司匹林。3.3 抗炎症作用炎症(Inflammation)是机体对于刺激的一种防御反应,表现为红、肿、热、痛和功能障碍,包括感染引感染性炎症及非感染性炎症。任何能够引起组织损伤的因素,如致炎因子 (Inflammatory Agent)都可成为炎症的原因。每日口服 5 mg/kg 剂量的TF-3,3’-G 能够显 著改善三硝基苯磺酸(Trinitro Benzene Sulfonic Acid,TNBS)诱导的结肠炎,降低结肠上皮粘膜肿瘤坏死因子(Tumor Necrosis Factor,TNF -α)、 白细胞介素 -12(Interleukin 12,IL-12)、人干扰素-g(Interferon-g, IFN-g) 及诱导型一氧化氮合酶 (Inducible Nitric Oxide Synthase,iNOS)基因与蛋白表达水平。同时茶黄素能抑制佛波酯促使的 TNF-α、白细胞介素 1β(Interleukin -1 beta,IL-1β)及白细胞介素6(Interleukin 6,IL-6)的活性。 TFs 能够有效阻止脂多糖 (Lipopolysaccharide,LPS) 诱导的巨噬细胞促炎反应,包括抑制IL-6、单核细胞趋化蛋白(Monocyte Chemoattractant Protein-1,MCP-1)、细胞间粘附分子-1(Intercellular Adhesion Molecule-1,ICAM-1)的表达,并有效阻止 LPS 诱导的核因子抑制蛋白(Inhibitor of Nuclear Factor kappa B alpha,IκBα)与核易位蛋白(Nuclear Translocation of REL-Associated Protein,RelA),胞外信号调控激酶(Extracellular Signal Regulated Kinase,ERK1/2)、c-Jun 氨基末端激酶(c-Jun-N-Terminal Kinase,JNK)及 p38 丝裂原活化蛋白激酶(Mitogen-Activated Protein Kinase,p38 MAPK)的表达[14];在急性肺损伤小鼠模型中,TF-3,3’-G 通过减少促炎因子降低急性肺损伤(Acute Lung Injury,ALI),抑制 LPS 诱导的NK及 p38 MAPK 丝裂原活化蛋白激酶的表达。风湿性关节炎(Rheumatoid Arthritis,RA)或骨关节炎(Osteoarthritis,OA)最明显的特征是关节软骨的损伤。引起关节损伤和疼痛的 IL-1β 和IL-18 在 RA 和 OA 中促炎症因子发挥重要作用。在 IL-1β 诱导建立的 OA 细胞模型中,TF-3,3’-G 能够明显改善 OA 软骨细胞形态,上调软骨细胞分子标志物 II 型胶原(Type II Collagen,Col II)mRNA 的表达, 还可以下调炎症因子 IL-1β 与IL-6 mRNA 的表达,降低炎症诱导酶环氧化酶(Cyclooxygenase-2,COX-2)蛋白表达量;并可增强软骨细胞合成因子活性、 减弱分解因子活性并抑制细胞炎症反应, 有效延缓大鼠软骨细胞炎性退变进程。 同时,茶黄素还可显著下调由血管紧张素 II(Angiotensin II,AngII) 诱导的促炎因子 IL -6mRNA 的表达,降低由 AngII 刺激产生的大鼠血管平滑肌细胞(Vascular Smooth Muscle Cell,VSMC)中ROS水平,达到抵抗 AngII 引起的大鼠VSMC 细胞炎症作用。慢性阻塞性肺疾病(Chronic Obstructive Pulmonary Disease,COPD)的突出特征是慢性炎症致气道阻塞,引起不完全可逆的气流受限,从而引发一系列临床症状。以往的研究表明,气道黏液高分泌是导致气流受限的危险因素。在刺激气道的各种炎性因子中,中性粒细胞弹力蛋白酶(Neutrophil Elastase,NE)被认为是肺炎性级联反应的终效应分子,以及炎症气道微生态平衡的重要恶化性推动因素,茶黄素被证明能够起到抑制气道黏液高分泌的作用。此外以高频雾化的方式使大鼠吸入茶黄素乳酸-羟基乙酸共聚物(Poly Lactic Co Glycolic Acid,PLGA)纳米粒,能够抑制香烟引起的炎性气道黏蛋白(Mucoprotein 5AC,MUC5AC)高分泌作用。3.4 抗病毒与抗菌作用严重急性呼吸系统综合症(Severe Acute Respiratory Syndrome,SARS)由 SARS 冠状病毒引起,该病毒属于包膜病毒,包含正极性单链 RNA,其所含有的一个开放的阅读框用于编辑两个重叠的多聚蛋白,PP1a(Polyprotein-1a,450 kDa)与PP1ab(Poplyprotein-1ab,750 kDa)负责病毒的复制。同时冠状病毒都编辑生成 Papline 类似蛋白及胰凝乳蛋白酶(Chymotrypsin,3CLPro)类似蛋白,用于病毒成熟过程中蛋白水解加工。 Papline 类似蛋白水解酶在 PP1a 蛋白上只含不超过 2 个的剪切位点,而 3CLPro 蛋白酶在PP1a 与 PP1ab 内在区域含有至少 11 个剪切位点。在720个筛选的天然化合物中仅发现 TF-3,3’-G 能够有效抑制3CLPro。并且 SARS 冠状病毒在胃肠道中的复制非常活跃, 红茶中的茶黄素类化合物具有预防该病毒对人体的侵染的应用潜力。1%的乳酸(pH4.0)能显著抑制对于单纯性 1型与 2 型疱疹病毒所引起的生殖器溃疡,但当pH4.5 时,则失去抑制活性状态。 茶黄素特别是TF-3,3’-G 能够在 5.7pH4.5 区间独立发挥作用,并在非洲绿猴肾细胞及人非小细胞肺癌细胞 A549 中得到验证。同时茶黄素还能够抗流感病毒,通过与血凝素 HA2 亚基结合,抑制病毒的神经氨酸酶活性从而抵抗高致病性禽流感(H5N1)病毒的感染。并且,TFs 可作为第二代杀微生物剂用于预防人类免疫缺陷毒(HumanImmunodeficiency Virus,HIV)的性传播,在高浓度时,还能抑制逆转录酶的活性。 白念珠菌(C.Albicans)是一种腐物寄生菌,作为机会性条件致病菌,平时生存于人体的皮肤、粘膜、 消化道及其他脏器中。当机体抵抗力降低时,白色念珠菌就会繁殖,达到一定量时,人体就会发病,通过微感染而引起的粘膜念珠菌病,对癌症、HIV 及重症病人还会造成致命性打击。茶黄素对白念珠菌 NCTC 3255 和 NCTC 3179 能够起到很强的抑制作用,其最低抑制浓度为1024 μg/mL,联合儿茶素时其最低抑菌浓度降为128 μg/mL。3.5 抗肿瘤在肝癌细胞体外处理中, 茶黄素类化合物能够通过抑制 STAT3 信号转导与转录激活因子磷酸化,并进一步阻止其下游抗凋亡蛋白 BCL-2 与生存素(Survivin)及入侵相关蛋白 MMP-2、MMP-9 来达到显著抑制肝癌细胞的迁移、入侵的作用,诱使其凋亡。此外,茶黄素类化合物对人类白血病细胞系 HL-60 与 K-562 呈剂量依赖性抑制,阻止细胞G1 期,活化 Caspase 3 和 Caspase 8,下调 BCL-2,同时上调 BAX 蛋白。4.检测[font='calibri'][size=13px][1][/size][/font]4.1 Roberts 法Roberts 法是根据茶黄素和一部分茶红素(TRsⅠ型)溶解于乙酸乙酯或4-甲基-戊酮(IBMK)这部分可利用其能溶于碳酸氢钠溶液而分离茶红素(TRsⅡ型)留在水层。该方法存在重复性差、测定含量值偏低的缺点[font='calibri']?[/font]但其方法简单、试剂价格便宜且同时测定茶红素的含量[font='calibri']?[/font]因此被广泛采用。4.2 a-氨基乙基二苯酸酯(Flavognost)试剂分析法Hiton 提出的一种快速测定方法。根据茶黄素分子中的苯并卓酚酮核可以与 Flavognost 试剂产生特异性反应产生绿色络合物测定其吸光值换算成茶黄素含量。与 Roberts 法相比[font='calibri']?[/font]该方法具有较好的重现性已被Ellis推荐为国际红茶最低质量标准的检测方法。但该法受到提取液、提取温度、水的pH值等因素的影响[font='calibri']?[/font]Flavognost 试剂仅与茶黄素顺式上的两个羟基结合[font='calibri']?[/font]使测定结果偏低[font='calibri']。[/font]同时Flavognost试剂不易购得。4.3 氯化铝比色法Likoleche-Nkhoma J W 等用 AlCl3 代 替Flavognost 试剂[font='calibri']?[/font]铝盐与茶黄素复合产生红色[font='calibri']?[/font]于波长525nm 具有最大吸收根据吸光值折算成茶黄素含量。该方法的测定值与 Flavognost 方法测定结构没有显著差异且铝盐的价格较便宜[font='calibri']?[/font]但样品中加入过量的铝盐会产生浑浊。4.4 Sephadex LH-20柱层析(Column Chromatography[font='calibri']?[/font]CC)法此方法是竹尾忠一提出的。该方法能有效地分离茶黄素而且对茶黄素的主要组分能定量[font='calibri']?[/font]但操作复杂。4.5 Whitehead 法Whitehead D L 等利用色素极性大小差异[font='calibri']?[/font]提出的一种快速测定茶黄素总量的方法[font='calibri']?[/font]该方法适于实验室和工厂的常规检测[font='calibri']?[/font]但测量值偏高。4.6 高效液相色谱法(High performance LiquidChromatography[font='calibri']?[/font]HPLC)Bailey R G 等使用光电二级管列检测器的反相 HPLC 研究红茶溶出物的性质[font='calibri']?[/font]4种茶黄素能够得到分离纯化[font='calibri']?[/font]提出了 HPLC 法测定茶黄素主要组分及其它物质的方法。HPLC 法更精确[font='calibri']?[/font]并能使各茶黄素单体得到较理想的分离。但该法需要高纯度的茶黄素标样。4.7 毛细管电泳法(Capillary Electrophoresis[font='calibri']?[/font]CE) Bee B L 等首次采用毛细管电泳测定儿茶素类化合物和茶黄素类化合物。Wright L P 等用非水相毛细管电泳测定红茶中的4种主要茶黄素[font='calibri']?[/font]并对有机溶剂的组成和电解质浓度对分离效果的影响进行了研究[font='calibri']?[/font]确定了最佳的分离溶剂组成为 V(乙腈)[font='宋体']∶[/font]V (甲醇)[font='宋体']∶[/font]V (乙酸)=71[font='宋体']∶[/font]25[font='宋体']∶[/font]4和90mmol/L 的醋酸铵[font='calibri']?[/font]10min 内实现了茶黄素的基线分离[font='calibri']?[/font]与常规毛细管电泳相比具有显著的优势。4.8 高速逆流色谱法(High Speed CountercurrentChromatography[font='calibri']?[/font]HSCCC) 高速逆流色谱法可避免样品与固体载体的化学反应和死吸附等缺点[font='calibri']?[/font]每次分离样品结束后[font='calibri']?[/font]管道中的残留溶剂均可以冲出[font='calibri']?[/font]不会对后续分离产生任何影响[font='calibri']?[/font]因此高速逆流色谱法分离样品具有高的回收率。 总之茶黄素的分析测定方法各有利弊[font='calibri']?[/font]可以根据具体情况选择一种切实可行的分析方法。5.结语 茶黄素总的来说是对人身体有益,但是要适量食用,身体保健从平时做起。参考文献:[1][font='b5+华光楷体_cnki'][size=18px][color=#000000] [/color][/size][/font]王洪新 孙军涛 [J]食品与生物技术学报 茶黄素的制备、分析、分离及功能活性研究进展[2] 涂云飞 茶黄素药理功效及分离纯化研究进展 [j] 健康与文化[3] MARON D J, LU G P, CAI N S, et al. Cholesterol-loweringeffect of a theaflavin-enriched green tea extract [J]. Archives of Internal Medicine, 2003, 163(12): 1448-1453[4] KUNDU T, DEY S, ROY M, et al. Induction of apoptosis in human leukemia cells by black tea and its polyphenol the aflavin [J]. Cancer Letter, 2005, 230(1): 111-121

  • 42.2 不同季节虎杖根茎与茎叶中大黄素含量变化研究

    42.2 不同季节虎杖根茎与茎叶中大黄素含量变化研究

    作者:胡冠宇;夏醒醒;尹政;陈勤;(安徽大学生命科学学院;安徽省中药研究与开发重点实验室;)摘要:目的通过测定药用植物虎杖在不同季节时其不同生长部位中的有效成分大黄素含量及其变化规律,旨在为虎杖的最佳采收时间提供依据。方法采用高效液相色谱法,Diamonsil-C18(250mm×4.6mm,5μm)色谱柱,甲醇-0.1%磷酸(80∶20)为流动相;检测波长:254nm;流速:1.0mL/min;柱温:27℃;进样量:20μL。结果通过测定不同季节虎杖的茎叶与根中的大黄素含量,发现根中大黄素含量最高,且大黄素含量在8月最高。结论虎杖在生长发育过程中,大黄素含量变化是有规律的,可根据其根中的大黄素含量确定最佳的采收时间。谱图:http://ng1.17img.cn/bbsfiles/images/2012/08/201208131105_383412_1606903_3.jpg

  • 【原创大赛】HPLC定性叶黄素及条件摸索

    【原创大赛】HPLC定性叶黄素及条件摸索

    [align=center][b][font=&]HPLC[/font][font=宋体]定性叶黄素及条件摸索[/font][/b][/align]叶黄素属于类胡萝卜素,是一种天然、营养和多功能的食品添加剂,素有“植物黄金”之称。人体自身不能够合成叶黄素,只能够从食物中提取。叶黄素化学结构中有多个共轭双键,且碳链较长,查阅相关文献可知,叶黄素具有构型异构体和多种顺反异构体,其结构式如图[font=&]1[/font]图2[font=宋体]所示所示。[/font][img=,526,425]https://ng1.17img.cn/bbsfiles/images/2019/10/201910311424570017_6074_3248977_3.png!w538x435.jpg[/img][img=,462,438]https://ng1.17img.cn/bbsfiles/images/2019/10/201910311424574391_6957_3248977_3.png!w579x549.jpg[/img][b]1. 样品的前处理[/b]接收到的样品中仅含有[font=&]15%[/font]的叶黄素,其余85%[font=宋体]为油脂类。通过百度百科了解到叶黄素在溶剂中的稳定性为[b]无水乙醇[/b][/font][font=&][/font][b][font=宋体]乙酸乙酯[/font][/b][font=&][/font][b][font=宋体]四氢呋喃[/font][/b][font=&][/font][b][font=宋体]甲苯[/font][/b][font=宋体],首先准确称取[/font][font=&]23.6mg[/font]样品,尝试了一下100%[font=宋体]的无水乙醇进行溶解,但是效果并不好,有沉淀产生。其次尝试了[/font][font=&]100%[/font]的THF[font=宋体]进行溶解,效果很好能够完全溶解,但是考虑到样品的稳定性等因素,并经过不断尝试,最终采用无水乙醇:[/font][font=&]THF=2:1[/font]的比例进行溶解,尽可能少的使用THF,从而增加溶液的稳定性。[b]2.条件摸索[/b][font=宋体]初始条件设置如下所示[/font] [table][tr][td=1,1,175][align=center][font=宋体]流动相[/font][/align][/td][td=1,1,190][align=center][font=宋体]色谱柱[/font][/align][/td][td=1,1,164][align=center][font=宋体]波长[/font][/align][/td][td=1,1,188][align=center][font=宋体]流速[/font][/align][/td][/tr][tr][td=1,1,175][align=center][font=宋体]甲醇:水[/font][/align][/td][td=1,1,190][align=center][font=宋体]安捷伦[/font]C18 [/align][/td][td=1,1,164][align=center][font=&]446nm[/font][/align][/td][td=1,1,188][align=center][font=&]1.0mL/min[/font][/align][/td][/tr][/table][align=left][font=宋体]通过查阅文献,使用上述条件进行测试时发现,无论怎么改变有机相比例,即使[/font][font=&]100%[/font]有机相都未见叶黄素出峰,色谱图及光谱图如下图[font=&]3[/font]所示。[/align][align=left][img=,690,184]https://ng1.17img.cn/bbsfiles/images/2019/10/201910311427451732_5668_3248977_3.png!w690x184.jpg[/img][/align][align=left][img=,690,517]https://ng1.17img.cn/bbsfiles/images/2019/10/201910311428527682_9974_3248977_3.jpg!w690x517.jpg[/img][/align][align=center][font=宋体]图[/font][font=&]3 [/font]接分离柱下色谱图及光谱图[/align][align=left]从以上色谱图可以看出,只有系统倒峰及杂峰,结合[font=&]3D[/font]光谱图在高波长446nm[font=宋体]处未见吸收峰,由此可以判断样品未出峰,极有可能被牢牢地吸附在色谱柱中,因为通过叶黄素的几个结构式可以看出其碳链较长,与色谱柱中十八烷基的作用力较强,导致很难进行洗脱。为了进一步验证样品被吸附在色谱柱中,在其它条件不变的情况下,仅拆下色谱柱,用两通将管路连接,再进一针样品,色谱图及光谱图如下图[/font][font=&]4[/font]所示。[/align][img=,690,185]https://ng1.17img.cn/bbsfiles/images/2019/10/201910311430481372_4937_3248977_3.png!w690x185.jpg[/img][img=,690,517]https://ng1.17img.cn/bbsfiles/images/2019/10/201910311430484992_6733_3248977_3.jpg!w690x517.jpg[/img][align=center][font=宋体]图[/font][font=&]4 [/font]不接分离柱下色谱图及光谱图[/align][align=left] 由上图可以看出,在不接分离柱的情况下,在高波长处有吸收,那么可以确定[font=&]C18[/font]柱对叶黄素的保留太强。接下来最直接的办法便是更换色谱柱了,将[font=&]C18[/font]色谱柱换为碳链更短的C8[font=宋体]柱进行分离,条件如下所示。[/font][/align] [table][tr][td=1,1,175][align=center][font=宋体]流动相[/font][/align][/td][td=1,1,190][align=center][font=宋体]色谱柱[/font][/align][/td][td=1,1,164][align=center][font=宋体]波长[/font][/align][/td][td=1,1,188][align=center][font=宋体]流速[/font][/align][/td][/tr][tr][td=1,1,175][align=center][font=宋体]甲醇:水[/font][/align][/td][td=1,1,190][align=center][font=宋体]安捷伦[/font]C8 [/align][/td][td=1,1,164][align=center][font=&]446nm[/font][/align][/td][td=1,1,188][align=center][font=&]1.0mL/min[/font][/align][/td][/tr][/table][align=left]本以为换上C8[font=宋体]色谱柱后,能够按照预期出峰,但是事与愿违!仍然无论怎么改变有机相比例,即使将甲醇比例增加为[/font][font=&]100%[/font]都不奏效,那么接下来只能通过改变流动相来降低其保留了。[/align][align=left]考虑到极性[b]水>甲醇>乙腈>乙醇[/b],那么我们可以通过降低流动相的极性,依据相似相溶来洗脱叶黄素,由于在配置样品时使用的是乙醇进行溶解,那么可以将极性很大的水相替换成极性较弱的乙醇,使用低极性的甲醇和乙醇的一个配比来将叶黄素进行分离。条件如下所示。[/align] [table][tr][td=1,1,175][align=center][font=宋体]流动相[/font][/align][/td][td=1,1,190][align=center][font=宋体]色谱柱[/font][/align][/td][td=1,1,164][align=center][font=宋体]波长[/font][/align][/td][td=1,1,188][align=center][font=宋体]流速[/font][/align][/td][/tr][tr][td=1,1,175][align=center][font=宋体]甲醇:乙醇[/font][/align][/td][td=1,1,190][align=center][font=宋体]安捷伦[/font]C8 [/align][/td][td=1,1,164][align=center][font=&]446nm[/font][/align][/td][td=1,1,188][align=center][font=&]1.0mL/min[/font][/align][/td][/tr][/table][align=left]按照上述条件,通过不断改变甲醇与乙醇的配比,终于叶黄素出峰!由于叶黄素有多个异构体,因此出的是一簇峰,色谱图及光谱图如下图[font=&]5[/font]所示。[/align][align=left][img=,690,184]https://ng1.17img.cn/bbsfiles/images/2019/10/201910311431478048_2051_3248977_3.png!w690x184.jpg[/img][img=,690,475]https://ng1.17img.cn/bbsfiles/images/2019/10/201910311431513092_653_3248977_3.png!w690x475.jpg[/img][/align][align=center]图5 [font=宋体]叶黄素色谱图及光谱图[/font][/align]

  • 【求助】求助:核黄素磷酸钠的游离磷酸的测定!!

    因为刚接触药品检验,在做核黄素磷酸钠的游离磷酸的测定的时候,做了几次都不合格。 按照标准要求进行对照及样品配制,对照品为蓝色的澄清液体,但是样品很浑浊,土黄色。在730nm处进行测定,结果不符合规定。 因为样品很浑浊,所以吸收值很大(2.0),大过了对照品; 我们把样品用0.45的滤膜过滤,吸收值(0.35)低于对照,但是我们怀疑过滤的影响太大,我们就再次过滤样品,吸收值又降低了一半(0.13). 请各位大侠帮帮忙啊!!!

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制