当前位置: 仪器信息网 > 行业主题 > >

次氯酸叔丁酯

仪器信息网次氯酸叔丁酯专题为您提供2024年最新次氯酸叔丁酯价格报价、厂家品牌的相关信息, 包括次氯酸叔丁酯参数、型号等,不管是国产,还是进口品牌的次氯酸叔丁酯您都可以在这里找到。 除此之外,仪器信息网还免费为您整合次氯酸叔丁酯相关的耗材配件、试剂标物,还有次氯酸叔丁酯相关的最新资讯、资料,以及次氯酸叔丁酯相关的解决方案。

次氯酸叔丁酯相关的资讯

  • 卫生部取消以次氯酸钠为主要有效成分的消毒剂
    卫生部取消以次氯酸钠为主要有效成分的消毒剂和以戊二醛为主要有效成分的消毒剂的卫生行政许可(公告〔2010〕第8号)   为进一步深化消毒产品的卫生行政许可改革,我部决定取消以次氯酸钠为主要有效成分的消毒剂和以戊二醛为主要有效成分的消毒剂的卫生行政许可。产品首次上市前,生产企业应当按照《消毒产品卫生安全评价规定》的有关要求,对产品进行卫生安全评价,有完整的《卫生安全评价报告》。产品杀灭微生物效果(以次氯酸钠为主要有效成分的消毒剂按照清洁条件进行试验)和有效期应当达到《次氯酸钠类消毒剂卫生质量技术规范》、《戊二醛类消毒剂卫生质量技术规范》的要求。   自本公告发布之日起,我部不再受理以次氯酸钠为主要有效成分的消毒剂和以戊二醛为主要有效成分的消毒剂的许可和延续申请。之前已受理的,不再发放卫生行政许可批件。   特此公告。   二〇一〇年五月十八日
  • 江苏省城镇供水排水协会批准发布《次氯酸钠 溴酸盐 、氯酸盐的测定 离子色谱法》团体标准
    各会员单位、相关单位:根据《江苏省城镇供水排水协会团体标准管理办法》、《江苏省城镇供水排水协会团体标准制修定工作细则》的有关规定,经我会审定,现批准发布团体标准《次氯酸钠 溴酸盐 氯酸盐的测定 离子色谱法》,标准编号为T/JSWA 006-2023,自2023年4月10日起实施。本标准由江苏省城镇供水排水协会提出并归口,江苏省城镇供水排水协会标准化委员会组织制定,由昆山市供排水水质检测中心有限公司、昆山市疾病预防控制中心、江苏中法水务股份有限公司、江苏长江水务股份有限公司、泰州市水务有限公司、常州通用自来水有限公司共同参与起草。特此公告。江苏省城镇供水排水协会2023年4月10日
  • 爱拓发布ATAGO(爱拓)便携式氯酸浓度计新品
    次氯酸水是安全无毒的杀菌产品,亦是食品级安全添加剂,次氯酸水一般使用的氯浓度约为10~30ppm,PH值在5~6.5之间,无色无味,酸碱值与皮肤差不多,完全不会刺激,并且对伤口没有刺激性,安全性高,杀菌效果更超越酒精和双氧水,次氯酸在杀菌、杀病毒过程,可作用于细胞壁、病毒外壳,而且因次氯酸分子小,不带电荷,能通过细胞壁,可渗透入菌(病毒)体内与菌(病毒)体蛋白、核酸、酶等发生氧化反应,破坏细菌的酶系统,阻碍细菌的新陈代谢,从而杀死病原微生物。 一般应用于公共场所的门、门把手、桌面等消毒清洁。ATAGO(爱拓)全新推出“次氯酸检测仪 PAL-Hypochlorous Acid (COVID-19) ”仅需少量样品,3秒就能快速检过氧乙酸浓度!钛电极,耐用性更好,抗腐蚀性更高!型号PAL-Hypochlorous Acid (COVID-19) 货号4554测量范围50-550ppm电源2 x AAA 碱性电池 国际防护等级IP 65尺寸和重量5.5 x 3.1 x10.9cm,100g创新点:次氯酸水是安全无毒的杀菌产品,亦是食品级安全添加剂,次氯酸水一般使用的氯浓度约为10~30ppm,PH值在5~6.5之间,无色无味,酸碱值与皮肤差不多,完全不会刺激,并且对伤口没有刺激性,安全性高,杀菌效果更超越酒精和双氧水,次氯酸在杀菌、杀病毒过程,可作用于细胞壁、病毒外壳,而且因次氯酸分子小,不带电荷,能通过细胞壁,可渗透入菌(病毒)体内与菌(病毒)体蛋白、核酸、酶等发生氧化反应,破坏细菌的酶系统,阻碍细菌的新陈代谢,从而杀死病原微生物。 一般应用于公共场所的门、门把手、桌面等消毒清洁。 ATAGO(爱拓)便携式氯酸浓度计
  • 日本修订食品卫生法施行规则和食品、添加剂等规格标准
    2013年2月1日,日本厚生劳动省医药食品局食品安全部发布食安输发0201第3号:对食品卫生法施行规则(省令)和食品、添加剂等规格标准(告示)进行补充修订。具体如下:   1. 省令:根据食品卫生法第10条规定,省令附表1中增加次氯酸水。自发布之日起实施。   2. 告示:(1)设定了农药溴虫腈(Chlorfenapyr)、排草净(Dimethametryn)、戊唑醇(Tebuconazole)、福拉比(Furametpyr)、乙腈(Acetonitrile)、NC-620(Metazosulfuron)和兽药卡洛芬(Carprofen)、甲砜霉素(Thiamphenicol)的残留限量标准值。删除了XMC等22种农药和萘啶酮酸、丁苯咪唑2种兽药的残留限量标准值。(2)设定了1中次氯酸水的成分规格及使用标准、生产标准和成分规格。自2013年8月1日起实施。
  • 食品(奶粉、牛奶、果蔬等)中高氯酸盐的检测
    食品(奶粉、牛奶、果蔬、矿泉水、玉米、小麦淀粉等)中高氯酸盐的检测 根据美国FDA以及EPA方法 高氯酸盐为无色晶体。在高温下,高氯酸盐有较强的氧化性。可由氯酸盐热分解或电解氧化氯酸盐制得。高氯酸镁和高氯酸钡的去水作用很强,可制高效脱水剂。高氯酸钠可做除草剂。高氯酸钾可制炸药。高氯酸盐是冷战时期火箭和导弹燃料常用的化学物质,多种研究显示,高氯酸盐是一种强力甲状腺毒素,可能影响胎儿和婴儿大脑发育。美国FDA和EPA方法采用IC-ESI/MS离子色谱-质谱检测各种食品中的高氯酸盐含量,内标法定量。 货号 名称 品牌 规格 报价(RMB) CFFD-ICCLO41-1# 高氯酸盐离子色谱标准溶液,1000ug/ml溶于水 进口 125ml 1060.00 CFFD-ICCLO41-5 高氯酸盐离子色谱标准溶液,1000ug/ml溶于水 进口 500ml 2180.00 SBAA-Ag# Ag离子小柱,1mL Anpel 10支/包 398.00 SBAA-H# H离子小柱,1mL Anpel 10支/包 298.00 SBAA-Ba# Ba离子小柱,1mL Anpel 10支/包 398.00 SBEQ-CA1654# CNWBOND Carbon-GCB石墨化碳黑SPE小柱,500mg/6mL CNW 30支/盒 1129.00 LAEB-F6995243 NI-424阴离子色谱柱100*4.6mm Shodex 根 13581.00 LBEB-F6709616 NI-G保护柱10*4.6mm Shodex 根 4415.00 DAAQ-6-1006-510 万通离子色谱柱,SUPP5-100, 4-mm I.D. X 100-mm length Metrohm 根 19975.80 DAAQ-6-1006-500# 万通离子色谱保护柱,ASUPP-4/5 Guard 4-mm I.D Metrohm 根 2792.40
  • 赛默飞发布乳制品中氯酸盐、高氯酸盐的检测方案
    2015年3月27日,上海——近日,赛默飞发布乳制品中氯酸盐、高氯酸盐的检测方案,旨在为检测机构提供更具针对性的解决方案,确保消费者能够获得优质奶粉,进而维护广大婴幼儿的身体健康。近年来我国很多消费者对国产婴儿奶粉质量问题存在担心,而德国、新西兰等国生产的婴幼儿奶粉则成为了家长们的首选,尤其是一些知名品牌奶粉最受欢迎。今年 2月,多家国外媒体报道出德国质量检测机构的乳粉检测报告,其中关于乳品中氯酸盐、高氯酸盐超标的信息让不少消费者感到不安。测评结果指出,某品牌的奶粉 中氯酸盐、高氯酸盐超标,并且已经超过世界卫生组织在2007年制定的每日容许摄入量。牛奶在加工包装过程中可能涉及到各种器皿的清洗和消毒,而最常见的有害人体健康的消毒副产物氯酸盐和亚氯酸盐,存在于各种牛奶产品中。国际癌症 研究中心(IARC)已将亚氯酸盐列为致癌物,氯酸盐为中等毒性化合物。而高氯酸盐则是一种新型的持久性污染物质,其作为一种强力甲状腺毒素,会导致成人 新陈代谢功能紊乱。目前大量研究结果表明,饮用水、牛奶、鱼肉等都有可能受到这几种物质的污染。因此精确检测牛奶中的氯酸盐、高氯酸盐显得尤为重要。针对这一问题,赛默飞发布了乳制品中氯酸盐、亚氯酸盐的检测方案,采用离子色谱ICS-2100,配备串联质谱系统,建立了同时测定乳制品中氯酸盐和亚氯 酸盐的方法。样品经过前处理后进行分析,该方法极大地降低了基体干扰,提高了分析方法的信噪比和灵敏度。该方法应用于牛奶样品中亚氯酸盐和氯酸盐的同时测 定,取得了良好的测定效果。对于乳制品中高氯酸盐的检测,赛默飞同样采用离子色谱与质谱联用技术,检测限可达1 μg/kg,完全可以满足鲜牛奶、酸牛奶等其它乳制品中高氯酸盐的测定要求。ICS-2100 RFIC 离子色谱系统产品详情:www.thermo.com.cn/Product6474.html下载应用纪要:AN_C_IC-42_离子色谱-串联质谱法同时测定牛奶中氯酸盐和亚氯酸盐:http://www.thermo.com.cn/Resources/201503/191598140.pdfAB_C_IC-5_离子色谱-质谱法测定乳制品中的高氯酸盐:http://www.thermo.com.cn/Resources/201503/20161442921.pdf乳制品食品安全检测解决方案:http://www.thermo.com.cn/Resources/201503/20161313328.pdf有关ICS-2100 RFIC 离子色谱系统的更多信息,请访问:http://www.thermo.com.cn/Product6474.html ------------------------------------------------关于赛默飞世尔科技赛默飞世尔科技(纽约证交所代码:TMO)是科学服务领域的世界领导者。公司年销售额170亿美元,在50个国家拥有约50,000名员工。我 们的使命是帮助客户使世界更健康、更清洁、更安全。我们的产品和服务帮助客户加速生命科学领域的研究、解决在分析领域所遇到的复杂问题与挑战,促进医疗诊 断发展、提高实验室生产力。借助于首要品牌Thermo Scientific、Applied Biosystems、Invitrogen、Fisher Scientific和Unity Lab Services,我们将创新技术、便捷采购方案和实验室运营管理的整体解决方案相结合,为客户、股东和员工创造价值。欲了解更多信息,请浏览公司网站:www.thermofisher.com赛默飞世尔科技中国赛默飞世尔科技进入中国发展已有30多年,在中国的总部设于上海,并在北京、广州、香港、台湾、成都、沈阳、西安、南京、武汉等地设立了分公 司,员工人数超过3800名。我们的产品主要包括分析仪器、实验室设备、试剂、耗材和软件等,提供实验室综合解决方案,为各行各业的客户服务。为了满足中 国市场的需求,现有8家工厂分别在上海、北京和苏州运营。我们在全国共设立了6个应用开发中心,将世界级的前沿技术和产品带给国内客户,并提供应用开发与 培训等多项服务;位于上海的中国创新中心结合国内市场的需求和国外先进技术,研发适合中国的技术和产品;我们拥有遍布全国的维修服务网点和特别成立的中国 技术培训团队,在全国有超过2000名专业人员直接为客户提供服务。我们致力于帮助客户使世界更健康、更清洁、更安全。欲了解更多信息,请登录网站 www.thermofisher.cn
  • 日本修订食品、添加剂等规格标准相关条款
    2012年4月26日,日本厚生劳动省发布食安输发0426第2号通知,对食品、添加剂等规格标准进行补充修订,主要包括:   (1)从食品中农药成分“未检出”名单中删除“杀草强”。   (2)设定了农药杀草强(Amitrole)、吲熟酯(Ethychlozate)、乙氧氟草醚(Oxyfluorfen)、呋虫胺(Dinotefuran)、唑虫酰胺(Tolfenpyrad)、吡蚜酮(Pymetrozine)、苯噻菌胺(Benthiavalicarb-isopropyl)和腈菌唑(Myclobutanil)的限量标准值。   (3)设定了兽药克拉维酸(Clavulanic acid)和吡芬溴铵(Prifinium)的限量标准值。   (4)对次氯酸水的标准进行修订。   自2012年10月26日起实施。
  • 禾工“关外第一市”电位滴定技术实验操作培训
    近期,禾工技术陈工奔赴我国最大的重工业基地——东北,精心给这里的客户做了电位滴定仪的安装与培训讲解。 东北地区是新中国成立后建成的第一个重工业基地,这里有非常多的石油化工企业。本次培训单位为葫芦岛连石化工有限责任公司,公司坐落在素有“关外第一市”美誉的海滨城市葫芦岛,前身为中国兵器工业集团原辽宁北方锦化聚氨酯有限公司。主要生产经营甲苯二异氰酸酯(TDI)、甲苯二胺(TDA)、盐酸、次氯酸钠、邻位TDA等产品。 据相关负责人介绍,实验室日常需要做大量的基础滴定实验,原来都以手动操作来进行实验,但操作复杂、准确度不佳,在新时代新形势下,智能,精准成为了客户的迫切需求。 仪器安装调试的同时,陈工还与客户在一起探讨了树脂材料样品滴定方法的调整优化,帮助解决了用户日常工作中遇到的实际样品测试问题。对于易溶,难溶、不溶的样品,禾工分别在仪器参数和配置上给了用户更多的选择,争取一台仪器实现价值最大化,并提供专业的实测案例!
  • 水厂加氯消毒工艺改进,看看绍兴市上虞区水司是怎么做的!
    导读2019年7月,清时捷和《净水技术》杂志联合设立了“供排水企业运行及管理成果专栏”。众多行业专家依据多年的从业经验,结合水厂的实际情况,分享了他们所在单位在日常运行管理中实际生产运行遇到的问题以及所采用的应对策略。消毒是保障饮用水微生物安全的重要环节,但消毒工艺控制水平的优劣,除直接影响消毒效果外,也影响到消毒副产物的产生。此外,消毒工艺所涉及的药剂、设备等,也是水厂安全运行管理中心的重要部分,是各水厂关注的焦点。本次带来了绍兴市上虞区供水有限公司分享的——水厂加氯消毒工艺改进实例,看看他们在水厂加氯消毒这方面给我们带来了哪些实践经验。水厂加氯消毒工艺改进实例吴建江,李晓云,娄风(绍兴市上虞区供水有限公司,浙江绍兴,312300)为防止饮用水传播疾病,保障百姓的身体健康,在自来水厂中消毒是必不可少的一个环节,也是保证水质的最后一关。含氯消毒剂用于饮用水消毒最早可追溯到1903年[1],是历史最为悠久的饮用水消毒方式,在水处理消毒行业中拥有重要地位。随着科学技术的发展,紫外线消毒、臭氧消毒等新方式逐渐进入人们的视线,然而,氯化消毒因其消毒效率高、效果持续稳定、经济成本可控等原因,仍然是水处理工艺中较为主流的消毒技术。含氯消毒剂主要有氯气、二氧化氯、次氯酸钠三种。氯气是化工业的主要产品,价格低廉,容易获得,同时消毒效果明显,因而早期自来水厂多选择使用氯气作为消毒制剂。随着城市发展,原先处于城市边缘的自来水厂、污水厂逐渐处于城市中心地段,生产管理的安全问题越来越受到监管部门重视,氯气作为剧毒危险化学品在运输和储存过程中具有安全隐患,受到公安、安监部门严格监管。同时在消毒过程中,氯气分子与水中自然有机物发生反应,还会产生三氯甲烷等具有致癌性的消毒副产物;二氧化氯本身亦属于危险品,且其反应副产物氯酸盐含量较高。随着人们对饮用水安全和饮用水品质的重视程度越来越高,目前,我国大型城市自来水厂正逐步限制氯气和二氧化氯的使用,从而寻求更加安全有效、副产物更少的消毒剂。一、大三角水厂加氯消毒工艺迭代概况上虞大三角水厂在寻找有效的氯气替代工艺时,对比了二氧化氯和次氯酸钠的工艺安全、消毒效率、维护成本等,选择了更为安全、高效和经济的次氯酸钠作为消毒药剂。水厂在消毒工艺的迭代过程中经历了成品次氯酸钠投加,管式次氯酸钠发生器的试用以及板式次氯酸钠发生器的使用三个过程,在摸索中获得了一定的对比经验,可用于后续数据分析,供其他水厂消毒工艺升级时参考。上虞大三角水厂设计日处理水量为15万t,投产时采用传统氯气消毒工艺。2013年,出于工艺安全以及消毒副产物控制的考虑,水厂决定升级消毒系统。当时在使用次氯酸钠消毒时,行业内有次氯酸钠发生器和次氯酸钠成品两种选择方案,可分别通过次氯酸钠发生器现场制备有效氯浓度0.8%的次氯酸钠溶液,或采购10%的成品次氯酸钠溶液,利用计量泵加注至各投加点。因成品次氯酸钠投加工艺工程量小,投产速度较快,前期投入小,大三角水厂选用采购10%次氯酸钠成品运输至现场稀释到5%储存并投加消毒,废除了原加氯设备除余氯仪表外等全部设备,并增加了次氯酸钠储存投加设备,大大提高了加氯工艺的安全性,投用效果良好。2016年,由于杭州周边G20等重大活动的举办和筹备,成品次氯酸钠的运输受到限制,给水厂消毒工艺的运行造成了一定压力,以此为契机,水厂考虑升级为次氯酸钠现场制备工艺。2016年底,汤浦水厂试用了管式次氯酸钠发生器,现场制备有效氯浓度为0.8%的次氯酸钠溶液并通过计量泵调节流量,经运行一年,投加效果与成品次氯酸钠无异2018年,大三角水厂通过改造,增加了次氯酸钠制备设备,使用工艺更为先进的板式次氯酸钠发生器,仍利用智能型计量泵加注至各投加点,运行至今半年,投加效果稳定。二、消毒效果与药剂品质对比从氯气到成品次氯酸钠到现场制备的次氯酸钠,含氯制剂的消毒原理大同小异,都是通过与水反应生成具有强氧化性的次氯酸,反应如式(1)和式(2),次氯酸会分解形成新生态氧,通过次氯酸和新生态氧所具备的强氧化性使菌体病毒上的蛋白变性,从而达到杀菌消毒的目的。含氯药剂的有效杀菌能力可通过有效氯浓度体现,一般都可通过投加量的调节,实现有效杀菌。CL2+H2O=HOCl+Hˉ+Clˉ(氯气)(1)NaOCl+H2O=HOCl+Na﹢+OHˉ(次氯酸钠)(2)应用次氯酸钠消毒的优势主要体现在消毒副产物的产生量上。在消毒过程中,和氯气或二氧化氯不同,次氯酸钠不会在水中产生游离分子氯,避免了氯代化合反应,减少了消毒副产物的产生量【2】。同时,使用次氯酸钠避免了氯气与水反应时盐酸的产生,取而代之生成氢氧化,对于原水为弱酸性水库水的水厂尤为适用。(大三角水厂原水取自上虞汤浦水库,水质呈弱酸性,常年pH值在6.5-6.8,日常需通过投加熟石灰调节pH,改造后水厂石灰投加量明显降低)。同时生成的附产物为略带嗅味的氯胺化合物,该物质也是一种低效的消毒剂,不会造成安全问题【2】。大三角水厂最先选用10%次氯酸钠成品用于消毒使用,有效解决了氯气管理的安全性问题。但成品次氯酸钠多由电化厂通过氯气和氢氧化钠的中和反应生成,其原料不可控,成品品质不稳定。工业制次氯酸钠由于其反应机制,常带有游离碱(成品次氯酸钠因含有0.6%-1%游离碱,对pH的提高效果更明显,在原水pH较高的河道水源水厂应用时需考虑这一情况)。次氯酸钠在pH值小于7.5的环境下杀菌效果最好,选用游离碱含量较高的成品次氯酸钠消毒,可能会影响消毒效果,并影响出水pH值。由于高浓度储存和高温环境下的歧化反应,如式(3),高温下NaClO不稳定,易分解为NaClO3和NaCl。3NaClO=NaClO3+2NaCl(3)成品次氯酸钠常含有少量氯酸盐副产物,在7kg/kt(最大)投加量下,一般不会超过0.7mg/L的国家标准限制【3】。但其储存时间不宜过长,储存温度要尽量低,且需要避光储存。使用发生器现场制取的次氯酸钠对比成品次氯酸钠,其原料为食盐和水,生产过程不引入氢氧化钠,原料相对可控,没有化工产品质量风险。现场制备时氯酸盐产物极低,其中板式次氯酸钠发生器氯酸盐产物更低(表1)。三、安全性对比成品次氯酸钠的安全隐患主要来自于药剂运输与储存。为保证水厂连续运行,在使用成品次氯酸钠时,大三角水厂设置了90t次氯酸钠总储量,如果按成品5%有效氯计算,总有效氯储量达到4.5t,而按次氯酸钠发生器制备的有效氯为0.8%的次氯酸钠溶液储存时,总有效氯储量为0.72t,泄漏风险大幅下降,水厂运行管理安全性得到提升。次氯酸钠现场制备的风险主要来源于脱氢系统,食盐电解工艺经过多年的发展,已具备成熟的脱氢工艺。大三角水厂选用的次氯酸钠发生装置不论管式还是板式都装备有氢气脱氢桶,可在桶内将氢气稀释至1%(体积比)以下排放,远远低于爆炸极限(4%-76%),而且1%含量以下的氢气排放属于有序排放,不会增加环境负荷。同时,厂区安装了氢气探头,氢气稀释装置、风量报警等一系列自动监测和控制系统,多重保障氢气有序、安全排放,安全性得到了进一步保障。四、经济数据对比在水厂的运行过程中,后期维护相关的经济数据也是重要的参考依据。大三角水厂在投人使用前的调研数据显示,成品氯气及成品次氯酸钠前期投入成本较小,而次氯酸钠发生器前期投入约是氯气的2倍,是成品次氯酸钠的3倍(表2)。然而对于后期运行费用来说,次氯酸钠发生器的运行成本为8.1元/kt,仅为成品次氯酸钠的0.6倍,氯气的1.6倍。其中,板式次氯酸钠发生器由于其电效率得到了有效的提高,电耗最低,使用效率最高。在后期使用中,通过对相关水厂不同加氯工艺进行成本核算,板式隔膜次氯酸钠发生器的运行成本相对最低的,基本符合前期调研结果,具体数据如表1所示。五、其他影响决策的因素在技术因素之外,在实际生产过程中,有许多其他因素影响水厂对消毒工艺的选择。水厂消毒是民生需求,必须具备安全连续稳定的特点,对消毒药剂供给有较高要求。成品药剂交通运输的不稳定性及药剂库存的不安全性是选择使用现场制备次氯酸钠消毒工艺的重要原因。10%次氯酸钠属于危险品范畴,在国家重大活动期间其生产运输将受到严格控制,在重大社会活动期间可能会出现药剂供应厂家暂时停产的情况,导致药剂的应急储备急剧增加,从而影响水厂正常生产运行,对水厂药剂库存安全储备和生产运行稳定可靠可能带来极大的考验。此外,在政策方面,我国《生活饮用水卫生标准》(GB5749-2006)以及全国第一部饮用水水质地方标准—上海地方标准《生活饮用水卫生标准》(DB31/T1091-2018)【4】中对消毒副产物有了明确的限定,这预示着水行业在发展过程中对消毒副产物的重点防治将是趋势所向。因此,在大三角水厂进行消毒工艺的选择时,对消毒副产物指标也进行了细致的对比,选择了副产物浓度更小的板式隔膜发生器,使该水厂在健康、安全消毒工艺的发展上走在了同行前列。六、总结通过对安全性、消毒副产物的产生量、经济可行性等对比,现场制备次氯酸钠的加氯消毒方式更为经济、消毒稳定性更高,其中对于板式次氯酸钠发生器较管式次氯酸钠发生器产能更大,盐耗与电耗都更低,同时由于阳离子膜的使用,消毒副产物也更少,在经济预算允许的情况下,板式隔膜次氯酸钠发生器制备次氯酸钠消毒是加氯消毒的推荐工艺。- END -参考文献:(1)田园,唐超然浅谈饮用水的氯消毒万法【J】.林业科技情报,1997(2):6-7(2)闫贵才次氯酸钠、二氧化氯和臭氧的比较【J】.商品与质量,2009(7):147-150(3)彭敏,吕斯濠,范洪波不同游离碱含量的次氯酸钠消毒效果与消毒副产物比较【J】.给水排水,2015(7):12-14(4)朱慧峰上海市《生活饮用水水质标准》解读与高品质饮用水目标的展望【J】净水技木,2018,37(8):39-44●往期推荐 ●● 次氯酸钠消毒工艺全过程监控解决方案● 我国自来水处理工艺常见问题及解决措施,你了解么?● 农村饮水安全问题,你那里解决了吗?● 实验室安全消解,你选对了吗?长按关注清时捷公众号微信号 : sinsche-com联系热线:400-660-7869免责声明微信图片系网络转载,仅供分享不作商业用途,版权归原作者和原出处所有。如原版权所有者不同意转载的,请及时联系我们(0755-21033425),我们会立即删除,谢谢!
  • 供水企业应选择哪种消毒技术?
    饮用水消毒技术的主要目的是消除或杀灭水质环境中的病源微生物,以切断传染病的病源及传播途径,预防和防止传染病发生。传统消毒技术采用氯消毒,最早起源于19世纪初,可以有效的杀灭病源微生物,降低痢疾、霍乱感染及传播。20世纪70年代,随着检测技术的发展,氯消毒过程中产生的消毒副产物三卤甲烷等不断被检测出来。生物毒性试验显示,长期摄入此类消毒副产物,会出现动脉粥样硬化,引发心脏病或致癌,对健康影响非常大,所以氯气消毒受到了质疑。同时,氯消毒技术对杀灭隐孢子虫和贾第鞭毛虫效果不明显。另外,自来水的运输还会受到二次污染,城市供水管网庞大,消毒剂对管网产生腐蚀,管网老化,造成漏损和水质合格率下降。(图片来源于网络)为杜绝水质传染病及保障身体健康,生活饮用水必须经过严格的消毒技术处理,选择合理的消毒工艺,对水中细菌及杂质进行充分的消毒处理,提升处理成效,保障生活饮用水安全。目前我国的饮用水消毒的方法有多种,常用的饮用水消毒技术包括:氯气消毒、次氯酸钠消毒、二氧化氯消毒、臭氧消毒、紫外线消毒等。本文对以上消毒技术的选用原则进行说明,对消毒技术选择和升级改造提供有效技术信息。01氯气消毒原水中消毒副产物前体物含量较低,在满足消毒需求的氯气投加剂量下,卤代烃、卤乙酸、三氯乙醛等氯消毒副产物的含量及相关水质指标能达到《生活饮用水卫生标准》(GB5749-2006)的要求,或者采取措施后上述水质指标能够达标的水厂,可选择氯气消毒。采用氯气消毒的水厂,氯气储存仓库应满足《建筑设计防火规范》(GB50016-2014)的要求,氯气储存仓库距离单、多层民用建筑的距离不应小于25m,距离高层民用建筑及重要的公共建筑的距离不应小于50m。氯气储存和使用的空间及设施条件应符合《氯气安全规程》(GB11984)的要求。采用氯气消毒的水厂,应具备使用氯气的相关资质或具备取得相关资质的条件。现状采用氯气消毒的水厂,在进行消毒设施升级改造时,如果能够满足前两段内容的要求,宜采用氯气消毒。现状采用氯气消毒的水厂,如因原水水质变化存在氯消毒副产物超标风险且在现有工艺条件下难以有效控制时,宜将氯气与其它消毒工艺相结合,降低消毒副产物超标风险。采用氯气消毒的水厂,应配备次氯酸钠或二氧化氯等备用的消毒措施。当水厂由于供水范围过大或管网水停留时间过长导致管网水大面积余氯不足时,宜通过加氨进行氯胺消毒,或采用二次补加消毒剂的方式以保障水质。(图片来源于网络)02次氯酸钠消毒次氯酸钠与氯气有基本相同的消毒机理和消毒效果,原水水质可采取氯气消毒的水厂,或对安全要求较高的中心城区,亦可采用次氯酸钠消毒。消毒用的次氯酸钠可选择次氯酸钠发生器现场制备或购买次氯酸钠成品。次氯酸钠发生器宜选择盐水电解低浓度型发生器(0.8%),次氯酸钠成品宜选择有效含量约10%的水溶液。采购成品次氯酸钠消毒时,应选择市场上质量稳定可靠的成熟产品,并要求供应商采用专用的车辆输送。采用次氯酸钠成品消毒的水厂,应对每批次产品进行氯酸盐含量检测,出厂水宜增加氯酸盐检测指标,不具备检测条件的水厂可委托检测。采用次氯酸钠发生器现场制备次氯酸钠的水厂,在进行设备选型时,应要求厂家提供安全可靠的氢气处置措施。现场制备次氯酸钠时,应选择食品级氯化钠作为现场制备的原料,并定期对次氯酸钠溶液进行氯酸盐和溴酸盐检测。采用次氯酸钠消毒的水厂,宜对成品和现场制备两种方式进行经济、技术、安全、运行管理等方面的综合比选。03二氧化氯消毒满足下列条件的水厂,可采用二氧化氯消毒:(1)原水水质较好,在满足消毒需求的二氧化氯投加量下,消毒副产物亚氯酸盐和氯酸盐含量能满足《生活饮用水卫生标准》(GB5749-2006)的要求;(2)水厂供水范围内的配水管网没有大面积采用PE管道。采用二氧化氯消毒时,宜用二氧化氯发生器现场制备,可根据原水水质和现场条件选择复合型二氧化氯或纯二氧化氯发生器。当二氧化氯投加量不高于1mg/L时,可选择纯二氧化氯发生器,当二氧化氯投加量高于1mg/L时,宜采用复合二氧化氯发生器,或采用纯二氧化氯与其他消毒方式联用。采用复合二氧化氯发生器,设备的原料转化率应稳定达到80%以上,应有气液分离设备并以气体形态投加,应具备稳定可靠的残液处理措施。采用纯二氧化氯发生器时,设备的原料转化率应稳定达到95%以上,应有可靠的防爆措施及残液处理措施。两种二氧化氯发生器均应有原料流量的在线计量和控制装置。制备二氧化氯的原料应为食品级或获得卫生部涉水产品许可批件,如果市场上没有符合上述条件的原料(如氯酸钠、亚氯酸钠),应采用符合相应标准的工业一级品。(图片来源于网络)04臭氧消毒原水存在贾第虫和隐孢子虫等难以被含氯消毒剂灭活的病原微生物的水厂,可采用臭氧消毒。采用常规净水工艺的水厂,臭氧的投加点宜设在原水进口处,并在其后设粉末活性炭投加点;采用深度处理的水厂,臭氧投加点可以设在原水进口处,也可设在活性炭池之前。采用臭氧作为消毒剂时,应在出厂前补加含氯消毒剂,且含氯消毒剂余量应符合相应的水质标准。原水溴离子浓度高时,不宜采用臭氧消毒。05紫外线消毒原水存在贾第虫和隐孢子虫等难以被含氯消毒剂灭活的病原微生物的水厂,亦可采用紫外线消毒。紫外线消毒可选择低压高强灯管或中压灯管,应根据水厂实际情况,在对占地、能耗、维护及寿命等进行综合评价后选择,小规模水厂可采用中压灯管,大型水厂宜采用低压高强灯管。紫外消毒应设在砂滤池或活性炭池之后,采用紫外线消毒后,还应投加含氯化学消毒剂,且消毒剂余量应符合相应的水质标准。06其他当原水中铁、锰含量较高,采用二氧化氯消毒亚氯酸盐或氯酸盐存在超标风险时,宜以高锰酸盐作为预氧化剂去除铁、锰,以二氧化氯作为消毒剂;或者以二氧化氯作为预氧化剂去除铁锰,以氯气或次氯酸钠作为消毒剂。采用预氯化工艺控制藻类和浮游动物的供水企业,当原水中氯消毒副产物前体物较高,采用氯气或次氯酸钠消毒存在较高的副产物超标风险时,应适当降低预氯化的加氯量,或者采用高锰酸钾、二氧化氯、臭氧等作为预氧化剂控制藻类或浮游动物。- END -来源: 水务加●往期推荐 ●● 清时捷联合主办2020年给水大会诚邀您参加● 清时捷|次氯酸钠消毒工艺全过程监控解决方案● 清时捷/城镇供水过程控制与水质工艺管理信息化方案● 清时捷|厂级和班组检验解决方案长按关注清时捷公众号微信号 : sinsche-com联系热线:400-660-7869免责声明微信文章及图片系网络转载,仅供分享不作商业用途,版权归原作者和原出处所有。如原版权所有者不同意转载的,请及时联系我们(0755-21033425),我们会立即删除,谢谢!
  • 日本拟批准嘧菌酯和亚氯酸水用作食品添加剂
    2012年8月29日,日本厚生劳动省发布G/SPS/N/JPN/302号通报,拟授权嘧菌酯(Azoxystrobin)和亚氯酸水(Chlorous Acid Water)用作食品添加剂,并建立了这两种物质的使用标准和规格标准。   1.嘧菌酯   只能用于柑橘类水果,残留量不得超过0.010g/kg。   2.亚氯酸水   可用于精白米,豆类,蔬菜(不包括蘑菇),水果,海藻,新鲜的鱼类和贝类(包括鲜鲸鱼肉),新鲜肉类(牲畜和家禽,包括野生动物),加工肉类,加工鲸鱼肉以及其通过适当的处理方法,如盐腌或干燥,而得到的可保存的产品。在用于浸渍或喷涂的水中,最大使用量为0.40 g/kg。在最终食品前,所使用的亚氯酸水应被分解或去除。
  • 北京第九自来水厂再次购入TIM840滴定仪
    近期再次采购TIM840自动电位滴定仪(由雷迪美特中国有限公司提供),主要用于测定水的硬度;水的酚酞碱度和总碱度;药剂如氢氧化钠中氢氧化钠和碳酸钠、次氯酸钠;净水剂中铁、亚铁。仪器近期已顺利完成安装调试,初步实验结果表明,该套设备完全符合监控要求,并取得良好的实验结果。 TIM840自动电位滴定仪制造商Radiometer Aanlytical,作为美国哈希(Hach)公司的子品牌,一直致力于用于实验室和工厂常规测试、研发和教学的电化学仪器的研发和制造,具有六十多年生产和制造电化学仪器的成功经验。雷迪美特中国有限公司已经为国内多家高校、企事业单位提供了不同型号的电位滴定仪、伏安极谱仪及电化学工作站,并同时提供优质的售前和售后服务。   更详细的信息,请咨询雷迪美特中国有限公司: cherryradiometer@126.com 0086-20-38055580。
  • 抗“疫”必备之消毒剂解决方案
    这场突如其来的瘟疫席卷了每个国人的心,我们希望时刻保护自己和家人,彻底远离病毒!新冠肺炎疫情防控,消毒剂是不可或缺的“必杀剂”。为了科学指导公众正确使用消毒剂,充分发挥消毒剂在新冠肺炎疫情防控中的有效作用,国家卫生健康委办公厅于2020年2月19日发布《国家卫生健康委办公厅关于印发消毒剂使用指南的通知》。下面就让小梅来给大家讲解一下有关消毒剂的基础知识和消毒液是怎么生产出来的吧~消毒剂都有哪些类别?按有效成分分类,消毒剂可分为醇类消毒剂(如75%酒精)、含氯消毒剂(如84消毒液)、过氧化物类消毒剂(如过氧乙酸)、酚类消毒剂(如滴露消毒液)、含碘消毒剂(如碘伏)、胍类消毒剂(如洗必泰)、季铵盐类消毒剂(如新洁尔灭)等。能有效杀灭新冠病毒消毒剂为前三种,但过氧化物类消毒液,一般不推荐家庭使用。所以我们主要介绍酒精和含氯消毒剂。杀菌杀毒的原理是什么?1酒精(乙醇)酒精杀菌杀病毒的机制是:其脂溶性可以破坏生物磷脂双分子构成的生物膜,造成生物膜结构和功能障碍。70%以上浓度的乙醇可以破坏膜的结构“秩序”,从而破坏膜的功能,导致“有膜”微生物的死亡。但浓度超过75%的乙醇会使细菌表面的蛋白质凝结形成一层硬膜,变向对细菌起到保护作用,防止酒精进一步渗入。此时,该细胞将变为非活动状态,但不会死亡。因此,酒精浓度并不是越高越好,75%的乙醇是更理想的选择。酒精类消毒液主要用于手和皮肤消毒,也可用于较小物体表面的消毒。2含氯消毒剂含氯消毒剂其实是指溶于水产生次氯酸的消毒剂,它的消毒原理是强氧化性,会导致微生物中的很多成分被氧化,最终丧失机能,无法繁殖或感染。适用于物体表面、织物等污染物品以及水、果蔬和食饮具等的消毒。消毒剂生产的工艺流程75%酒精和含氯消毒剂的主要生产工艺流程为:原料进厂及检验-物料管理-生产混配-灌装及包装-运输环节,参考下图。梅特勒-托利多作为消毒剂企业的忠诚合作伙伴一直致力为客户提供原料、成品的称量及分析;原料、辅料配料混合搅拌;工艺参数控制及优化;灌装;为包装与物流提供半自动或全自动系统解决方案,帮助消毒剂生产企业提高产能和产品质量,助力抗击疫情,保障民生安全。下面让小梅详细讲解我们是如何提供贯穿消毒剂整个生产工艺过程的产品和解决方案的。我们的产品广泛覆盖防爆与非防爆应用需求。解决方案1原料和成品检验解决方案2生产过程中的称重解决方案3在线检测解决方案在含氯消毒剂生产环节主要涉及碱液与氯气反应生成次氯酸钠:2NaOH+Cl2=NaOCl+NaCl+H2O该过程需要了解烧碱的吸收能力,残留烧碱含量和次氯酸钠浓度。在线电导率测量能够反应烧碱吸收溶液和副产物的离子总浓度。我们提供适用于腐蚀性环境中的电感式电导率传感器, 传感器电极不与测量介质直接接触,即使传感器表面被覆盖也不会影响测量,几乎无需维护,具有超高稳定性及超长使用寿命。4包装检测解决方案瓶装消毒剂在灌装中需要满足严格的净含量法规要求,在大规模运行的流水线上,使用自动检重秤可以实现每瓶必检,能够有效节省人力;通过净含量自动检测,能够有效避免灌装不足的情况,使得瓶装消毒液符合净含量法规要求;还能避免过量灌装的问题,避免产品浪费,优化生产流程。5自动化灌装产线新形势下消毒剂生产厂家同样面临各种挑战例如:人员接触问题、提高产能、提高生产效率、生产安全性以及残液回收避免污染等。梅特勒-托利多可根据客户要求,定制化提供成套的全自动化设备满足客户现代化加工的高速大量优质生产。★消/毒/液/使/用/小/贴/示 ★1、由于酒精的挥发性和易燃性,不能用于空气消毒。在使用时一定要特别注意避开明火,也不宜大面积喷洒。2、含氯消毒液中使用最多的84消毒液有一定的刺激性与腐蚀性,必须稀释后使用。一般情况下在确保消毒液在质保期内的前提下,可按照1:100的比例稀释。稀释和使用过程请佩戴手套。3、由于大部分含氯消毒剂为碱性,所以不能和洁厕灵等酸性清洁剂混用,否则有可能产生有毒氯气,毒害身体。4、消毒剂应避免放置在高温、高湿的环境。5、为了环境安全,每个人都需要谨慎使用消毒剂。 最后向所有消毒剂行业工作者致敬!是你们不惧危险坚持生产,为隔离病毒,共同抗"疫"提供有效的武器。 让我们携手抗击疫情,胜利指日可待!
  • 安全“食”刻 | QSight LC-MSMS应对食品中氯酸盐和高氯酸盐含量的测定
    在当今食品行业的生产和检测中,氯酸盐和高氯酸盐是新型的具有高稳定性、高扩散性和持久性的污染物质,它们会影响机体的甲状腺正常功能,并可能在一定程度上造成血红细胞破坏和肝肾损伤。因此,食品中氯酸盐和高氯酸盐的测定对于保证人体健康具有重要意义。目前,国际国内都在积极开展相关研究,旨在深入了解这些污染物的来源、分布和影响,并寻求有效的控制和消除方法。参考BJS 201706标准,珀金埃尔默采用了QSight系列液质联用系统,成功开发了一种快速高效的液相色谱-质谱联用检测方法,能够准确分析食品中氯酸盐和高氯酸盐的含量,为保障食品安全提供了有力支持。图1 QSight系列液质联用系统实验采用了如下图2,图3所述的 QSight 220&trade 质谱参数图2 质谱离子源参数图3 化合物质谱参数用醋酸铵甲醇溶液(20mM醋酸铵:甲醇=1:2)稀释混合标准工作溶液,考察了不同添加浓度下的重复性情况,选取不同低中高浓度重复分析8次,发现所得峰面积的RSD均在2% 以内,可以获得非常好的重现性。该仪器具有优异的灵敏度,检出限远远低于标准的要求,可以轻松满足日常检测的需求,同时可以得到出色的峰形。图4 不同添加浓度的峰面积结果珀金埃尔默的QSight系列三重四极杆液质联用系统具有HSID热表面诱导去溶剂的专利技术,使其具有优异的自清洁功能,应对该类复杂基质样品分析时,可以起到抗污染免维护的作用,大大节省了仪器的维护成本和人员工作效率的提升。
  • RO反渗透系统氯和亚硫酸盐过程控制应用
    RO反渗透系统氯和亚硫酸盐过程控制应用解决方案众所周知,工业生产中会涉及到众多的反渗透(RO)系统,这些系统如果不采用一些氧化剂或者生物杀菌剂,就会极易受到生物污染,从而会导致该系统功能退化和膜的寿命显著下降,所以在这个过程中,一般都会加入氯(Cl2)来消灭大多数的致病微生物。然而,在反渗透(RO)系统中,膜极易受到进水中氯的破坏,这会导致较低的盐排斥率和较差的渗透。用户不得不频繁的更好价格昂贵的RO反渗透膜,以及面对频繁的设备停机。为了保护反渗透(RO)系统,氯的残留必须要维持到一个非常低得浓度,用户在除氯的过程中,一般采用颗粒活性炭(GAC)来消除水中的氯,那么实时监测GAC系统的健康状况,就变得尤为重要,这就需要一个非常灵敏、准确且易于使用的仪器来完成这项任务,但是传统的DPD法或者安培滴定法都存在一定的局限性。 另外,亚硫酸氢钠经常被用于降低进入反渗透系统(RO)中的氯,在这个过程中,亚硫酸氢钠的用量至关重要,因为亚硫酸氢盐会与溶解物发生反应,让水中的氧气导致厌氧生物生长加速,从而迅速污染反渗透(RO)系统。 但是由于氯或次氯酸盐的浓度会随着其年龄的变化而变化,因此获取氯或次氯酸盐的难度很大,这也意味着监测亚硫酸氢盐是困难的。传统的亚硫酸盐分析方法存在着一定的局限性,比如量程,准确性,精确度和易用性。即使不存在氯,过量的亚硫酸氢盐会降低pH值,也会导致ORP读数增加,这样会导致控制系统提示需要加入更多的亚硫酸氢盐,最终产生生物淤积,降低了膜的使用寿命。由此可知,一个灵敏、精确和易用的氯监测和亚硫酸盐检测仪器,对解决用户上述的痛点至关重要,传统的DPD法或者安培滴定法存在量程、精确性和易用性等方面的局限性,因而市场上缺乏可以真正解决用户这些痛点的在线或实验室,亦或者两者相结合的整体解决方案。哈希公司一直致力于对氯参数的分析和研究,在该领域拥有超过60年的技术研究历史,深厚的技术积淀为用户找到了一套切实可行的在线和实验室超低量程氯和亚硫酸盐监测方案提供了可能性。ULR CL17 sc总氯分析仪DR 1300 FL荧光比色计ULR CL17 sc是哈希最新推出的一款超低量程的总氯分析仪,它的量程范围可达0 – 5 PPM,并且检出限可以做到8ppb, 是一款非常灵敏型和准确性的过程仪表,它既可以单独用于过程中超低浓度总氯的检测与控制,也可以配套最新上市的DR 1300 FL荧光比色计,这是一款实验室用途的分析仪,是采用荧光原理来监测RO反渗透系统进水中的超低浓度的总氯、余氯和亚硫酸盐等参数,ULR CL17sc和DR 1300 FL一起组成了哈希在RO反渗透系统中对超低浓度的氯和亚硫酸盐等参数的检测,为保护用户重要的设备和资产,以及过程工艺中精确控氯和加亚硫酸盐提供了科学的决策依据,帮助您降低生产成本,提高运营效率,创造更大价值。END
  • 赛默飞发布茶叶中高氯酸盐的检测方案
    赛默飞世尔科技(以下简称:赛默飞)于近日发布茶叶中高氯酸盐的检测方案,旨在为检测机构提供更具针对性的解决方案,弥补国内茶叶中高氯酸盐检测空白。 高氯酸盐是一种持久性的有毒物质。由于人体的甲状腺会吸收高氯酸盐,并受其影响,减少对碘的吸收,进而扰乱新陈代谢,危害人的健康。欧洲食品安全局(EFSA)评估了长期和短期内暴露于高氯酸盐的风险,结果表明,单次摄入食品和水中的高氯酸盐对健康影响不大,但是长期摄入高氯酸盐,对人体的危害应当引起关注,尤其是孕妇、胚胎、婴儿最容易受到危害。 高氯酸盐污染的主要来源是航空航天、烟火制造、军火工业、橡胶制品、燃料涂料等。但高氯酸盐是如何通过上述源头进入茶叶,目前还没有科学结论。业内专家推测,茶树种植过程中使用的化学肥料、灌溉用水、工业废水或者自来水,食品加工过程中含氯消毒剂的使用以及包装材料的迁移,都可能成为茶叶高氯酸盐的污染来源。因此,茶叶及各项可能的污染源中高氯酸盐高灵敏度的检测方案显得尤为重要。 自1997年美国在加州饮用水中监测到较高含量的高氯酸根存在后,高氯酸盐已成为美国环境污染研究的热点。欧盟已考虑把食品中的高氯酸限量定在0.75 mg/Kg,同时,也正在酝酿一项针对来自中国茶叶的强制性标准,即规定茶叶中高氯酸盐的含量应在合理限值之下。 更严重的问题在于,这一拟定中的标准可能进一步收紧。欧洲食品安全局(EFSA)生物危害与污染研究部食物污染专题相关负责人曾表示,EFSA在评估报告建议茶叶中高氯酸盐含量是0.55—0.58 mg/Kg,拟发布的0.75 mg/Kg的标准较为宽松。欧盟将综合考虑各方科学意见后,公布正式适合欧盟全境的检测标准,预计强制性标准将于2016年正式颁布。一旦该标准制定实施,中国对欧盟的茶叶出口将严重受阻。针对上述情况,赛默飞发布了茶叶中高氯酸盐的检测方案,采用Thermo ScientificTM DionexTM ICS-5000+多功能离子色谱仪,配备Thermo ScientificTM MSQ PlusTM 单四极杆质谱,建立了茶叶中高氯酸盐的分析方法。茶叶粉末样品经浸提后过RP柱净化再进行离子色谱-质谱分析。相比于液质方法,离子色谱的流动相经过电解抑制器抑制后基本为水,且采用稳定的高分子聚合物交换色谱柱,均可大大降低质谱的基线噪音,从而获得更高的分析灵敏度。 该方法应用于茶叶中高氯酸盐的测定,方法前处理简单,准确性高,加标回收率可达95%以上。并且灵敏度高,检测限可达0.02 mg/kg或更低,完全满足欧盟拟定的限值0.75 mg/Kg,甚至更严苛的0.55-0.58 mg/Kg的检测要求。质谱端若选用Thermo ScientificTM TSQ系列三重四级杆质谱仪,将获得更高的检测灵敏度。茶叶实际样品质谱图(IC-MSQ)更多产品信息,请访问:DionexTM ICS-5000+ 多功能离子色谱仪www.thermoscientific.cn/product/dionex-ics-5000-capillary-hpic-system.html MSQ PlusTM 单四极杆质谱www.thermoscientific.cn/product/msq-plus-single-quadrupole-mass-spectrometer.html TSQ 系列三重四级杆质谱仪www.thermoscientific.cn/product/tsq-quantum-access-max-triple-quadrupole-mass-spectrometer.html---------------------------------------------------关于赛默飞世尔科技赛默飞世尔科技(纽约证交所代码:TMO)是科学服务领域的世界领导者。公司年销售额170亿美元,在50个国家拥有约50,000名员工。我们的使命是帮助客户使世界更健康、更清洁、更安全。我们的产品和服务帮助客户加速生命科学领域的研究、解决在分析领域所遇到的复杂问题与挑战,促进医疗诊断发展、提高实验室生产力。借助于首要品牌Thermo Scientific、Applied Biosystems、Invitrogen、Fisher Scientific和Unity Lab Services,我们将创新技术、便捷采购方案和实验室运营管理的整体解决方案相结合,为客户、股东和员工创造价值。欲了解更多信息,请浏览公司网站:www.thermofisher.com 赛默飞世尔科技中国赛默飞世尔科技进入中国发展已有30多年,在中国的总部设于上海,并在北京、广州、香港、台湾、成都、沈阳、西安、南京、武汉、昆明等地设立了分公 司,员工人数约3800名。我们的产品主要包括分析仪器、实验室设备、试剂、耗材和软件等,提供实验室综合解决方案,为各行各业的客户服务。为了满足中国市场的需求,现有8家工厂分别在上海、北京和苏州运营。我们在全国共设立了6个应用开发中心,将世界级的前沿技术和产品带给国内客户,并提供应 用开发与培训等多项服务;位于上海的中国创新中心结合国内市场的需求和国外先进技术,研发适合中国的技术和产品;我们拥有遍布全国的维修服务网点和特别成 立的中国技术培训团队,在全国有超过2000名专业人员直接为客户提供服务。我们致力于帮助客户使世界更健康、更清洁、更安全。欲了解更多信息,请登录网站:www.thermofisher.com请扫码关注:赛默飞世尔科技中国官方微信
  • 【新案例】产能700倍提升!不可不知的醇醛氧化新工艺!
    背景介绍酮类和醛类化合物在生物化学和香料工业中占有重要地位,通常是有机合成的关键中间体。最常见的是将醇直接氧化产生酮和酯。常用的氧化剂包括氯铬酸吡啶(PCC)、Jones试剂、重铬酸吡啶(PDC)、Swern、TEMPO、TPAP和Collins试剂。这些试剂或具有毒性或对环境不友好,与之相比,在相转移催化剂(PTC)作用下,使用次氯酸钠氧化醇类化合物具有以下优点:原料成本低;反应条件温和;能快速、高产地氧化伯、仲醇和醛;无重金属污染。应用该试剂氧化醇类的可行性很早之前就得到了证实,Lee和Freedman是最先利用次氯酸钠进行醇的两相催化氧化研究的人。该类反应使用间歇反应器进行放大有较多问题由于反应速率受反应器的大小、形状和搅拌速率等影响,通常收率较低;换热效率较低,局部的热量很容易导致氧化剂的热降解;氧化反应,存在安全隐患。缓解上述挑战的有效方法之一是使用连续流微反应器(图1a)连续流微反应器可以提供更好的传质和传热;无放大效应(康宁反应器具有);持液量相对较低,安全性高。Yanjie Zhang等人使用康宁微通道反应器,选择了三个PTC催化次氯酸盐氧化反应来验证该氧化反应从微量到中试级别的放大效果。结果显示:从流速每小时几微升的反应器放大到每分钟几十毫升的康宁反应器均能获得较好的反应效果;氧化反应的生产效率得到显著提高,得到一种安全有效的连续放大生产的方法 从螺旋微反应器优化条件通过康宁反应器放大通量提高了700倍,无明显放大效应。 一. 实验简介Yanjie Zhang等人使用康宁公司生产的低流量反应器(LFR)和高通量反应器G1(AFR)(图1b、c)进行实验.,选择了三个PTC催化次氯酸盐氧化反应来验证该氧化反应从微量到中试级别的放大效果。图1、 各种微反应结构(a)螺旋设计微反应器和螺旋反应器内丁醇/水的流动模式(b)康宁LFR套装(c)康宁AFR装置和AFR模块内正己烷/水的流动模式结果显示:在康宁微反应器中,从小试到中试其传质和传热效率并未发生明显改变 氧化反应的生产效率得到显著提高,得到一种安全有效的连续放大生产的方法  数据表明在从螺旋微反应器到LFR再到AFR的不同型号的反应器,生产效率提高了700倍,而没出现明显放大效应。关于传质传热的分析:在康宁微通道反应器独有的心形混合通道内反应物料快速流动,进行有效的非均相混合,有机相在水相中迅速分散成小液滴,从而产生较高的传质速率,所以其非均相流体的效率比螺旋盘管反应器更高(见图2)。图2、用水从正丁醇中提取丁二酸得到的液-液流动中单个模块停留时间与传质系数(kLa)的关系在这些反应模块中,反应区夹在两个玻璃传热板之间,传热路径变短,传热性能得到了很大的改善。图3. 康宁反应器反应模块结构 二、实验过程作者在小范围内进行了PTC催化的次氯酸钠溶液氧化反应的尝试(方案1),• 在螺旋微型反应器(图1a)中进行反应条件优化;• 随后将反应工艺条件在到康宁LFR和G1反应器中进行放大研究;图4. 方案1:(a)1-苯乙醇、(b)3-硝基苯甲醇、(c)苯甲醛氧化反应条件的优化1-苯基乙醇的氧化初步试验表明,最有效的加速反应的方法是将水相的pH值调整到9.3-9.5(图5a)。在该pH范围内,大多数次氯酸盐阴离子被质子化并形成次氯酸,然后用相转移催化剂将其萃取到含有次氯酸盐阴离子的有机相中,从而显著提高反应速率。使用14.6%次氯酸钠溶液与饱和碳酸氢钠,很容易获得pH 9.3~9.5的反应体系,这是一个比氢氯酸和乙酸效率更高的反应体系。饱和次氯酸钠溶液具有较高的离子强度,有助于有机盐从水相萃取到有机相 在相同的停留时间下,由于比表面积的增加,水相流速和有机相流速的比值(QA/QO)在控制整个反应速率方面也起着重要作用,因此随着QA/QO 的增加,传质速率有所提高(见图3b)。与螺旋反应器相比,康宁LFR系列具有更高的生产率,因为LRS持液体积较大,在相同的停留时间内,它的流量更高。图5. (a) 螺旋微反应器中1-苯乙醇在不同反应条件下的停留时间与转化率的关系(方案1a)。(b) 康宁AFR和螺旋微反应器中1-苯乙醇停留时间为1分钟的氧化转化率与流量比(QA/QO)的关系。1-苯乙醇浓度为0.8 M,NaOCl浓度为2 M。菱形,螺旋微反应器(pH 9,τ=1 M in);方块,康宁LFR(pH 9,τ=1 min)。3-硝基苄醇的氧化在甲醇存在下,3-硝基苄醇可以直接氧化成其甲酯(方案1b)。在此反应中,醇首先被氧化成相应的醛,醛与甲醇迅速形成半缩醛,并进一步氧化成相应的甲酯。 该反应受pH影响大,实验最优pH是9?9.5,最佳的水相与有机相比为2:1,浓度和停留时间分别为0.8M和1.5min。在康宁LRS和AFR反应器上,3-硝基苄醇氧化反应的停留时间在1min时产能达到最大,效率明显优于螺旋微反应器。图6. 不同反应物在康宁反应上的生产效率苯甲醛的氧化 在甲醇存在下,苯甲醛可以直接氧化为苯甲酸甲酯,而不需要经过酸的过渡态( 方案1c)。但Leduc和Jamison研究发现,一旦转化率达到60%,反应会停止。用甲醇取代乙酸乙酯作为溶剂,反应能够完全进行反应是均相,无需相转移催化剂苯甲醛的氧化在2.7min内在康宁反应器中可以100%转化,而在螺旋微反应器中3min后转化率仅为90%(图6c)图7. 螺旋微反应器与康宁LFR和AFR氧化(A)1-苯乙醇、(B)3-硝基苄醇和(C)苯甲醛的转化率和收率比较;蓝色,转化率(%);红色,产品收率(%)实验总结• 作者使用次氯酸钠溶液做了三种底物的氧化反应,从螺旋微反应器优化到康宁LFR和AFR系统均获得了较好的结果;• 这些物质的氧化反应为非均相反应,通过微反应器增强传质可以提高反应效果;• 工艺过程中替换溶剂或者使用传质更好的反应结构单元都可以起到提高传质的作用;• 和传统微反应器相比,康宁反应器可以实现更高的转化率且单台反应器可以获得更高的通量(生产效率);• 从螺旋微反应器到康宁G1反应器通量提高了700倍,同时保持了良好的传质传热效果。参考文献:dx.doi.org/10.1021/op500158h | Org. Process Res. Dev. 2014, 18, 1476?1481
  • 中国首台电子束辐照处理医疗废水示范装置正式投入使用
    5月19日,中国首个“电子束辐照处理医疗废水示范装置”项目在湖北省十堰市通过专家评审验收,我国首台用于医疗废水处理的电子束装置正式投入使用。这是国家原子能机构为应对新冠疫情紧急启动,由中国广核集团有限公司与清华大学联合承制的科研项目,是核技术服务人民生命健康,促进经济社会发展的重要体现。  该装置已经在湖北省十堰市西苑医院试运行数月。经过第三方检测,电子束辐照组合工艺处理后的医疗废水指标优于国家传染病医院排放标准,对病毒有明显去除作用,其中甲型肝炎病毒和星状病毒去除率达到100%,粪大肠菌群数小于100MPN/L,能够实现医疗污水中抗生素的完全降解,出水水质达到《医疗机构水污染物排放标准》(GB18466-2005)。目前西苑医院示范装置及系统日污水处理能力最高可达400吨。本项目的完成,标志着我国利用电子束辐照处理医疗废水技术达到国际领先水平。项目核心设备——自屏蔽电子加速器(国家原子能机构供图)  据西苑医院院长刘振伟介绍,传统医疗废水处理方式是通过向污水中注入次氯酸钠等化学消毒剂进行微生物灭杀,易造成化学试剂残留,且无法降解污水中残留的抗生素,一旦被饮用可能导致人体产生耐药性。现在采用的电子束辐照处理技术,是通过电子加速器产生高能电子束,可以与废水中的微生物DNA、RNA分子或细胞组织瞬间发生作用,损伤微生物活性,灭杀废水废物中的致病菌和病毒,灭菌效率高、无需添加额外消毒剂、不产生二次污染,并能降解废水中抗生素等残留物质。十堰是南水北调中线控制性工程丹江口大坝所在地,确保水质对百姓健康意义重大。  中国首台电子束辐照处理医疗废水示范装置由中广核集团与清华大学联合研制,也是首个采用先立项后补助模式并完成验收的核能开发科研项目。本项目创造性地将电子束辐照技术与医疗消毒灭菌相结合,研制团队仅用时5个月就攻克了电子束辐照技术在医疗废水领域应用工艺及核心装备等难题,自主建设了一套用于医疗废水辐照的自屏蔽电子加速器,同时建立了适用于医疗废水中病毒浓缩及检测的方法,为防止新冠肺炎病毒和其他潜在病原体在医疗废水中传播提供了高效安全的解决方案。  中广核集团党委书记、董事长、总经理杨长利向记者介绍,中广核集团在辐照消毒灭菌、医疗废水处理等方面充分发挥核技术优势,助力共同打赢疫情阻击战。目前中广核集团正在持续拓展电子束治污技术的应用领域,将陆续建成抗生素菌渣、危废浓液、医疗固废、制药废水、垃圾渗透等示范项目。  新冠疫情暴发以来,国家原子能机构围绕医用防护服灭菌、医疗废物处理等疫情防控堵点难点,第一时间组织开展核技术应用论证,并紧急部署了一批核技术应用科研项目。中国首个电子束辐照处理医疗废水示范装置作为典型示范项目建成投运,是继今年3月份取得电子束灭活冷链食品外包装新冠病毒研究成果之后,利用核技术助力疫情防控的又一生动实践。  国家原子能机构副主任张建华表示,目前在国际市场上,核技术已广泛应用于工业、农业、医疗健康、环境保护等领域,年产值规模近万亿。国内核技术作为新兴产业尚处于起步阶段,市场前景广阔。下一步,国家原子能机构将统筹全行业技术资源,提升科技创新能力,与财政部、生态环境部、卫健委等有关部委共同推动核技术研究成果转化应用及产业化发展,促进核技术服务经济社会发展,为我国人民生命健康高质量发展作出应有贡献。
  • 康宁新案例 |可烯醇化酮α -羟胺化连续流合成工艺之一
    氮是生物体中含量排名第四的元素,普遍存在于蛋白、多肽和神经传递介质的生物分子中。在含氮有机化合物中,β-氨基醇和α-氨基酮(下图)广泛应用于活性药物成分(API)的分子骨架。构建碳氮键的过程包括常规的亲核胺化和极性转换的亲电胺化。在各类亲电胺化试剂中,亚硝基衍生物主要应用于氮杂Diels-Alder反应和N-亚硝基Aldol缩合反应。而在亚硝基衍生物中,α-氯亚硝衍生物(例如1-氯-1-亚硝基环戊烷 1a 和1-氯-1d-亚硝基环己烷 1b)的使用效率高、碳骨架易于解离并且可以避免繁琐冗长的后处理方案,反应机理如下图所示:间歇釜工艺中1-氯-1-亚硝基环戊烷 1a的大规模批量应用需要-78℃的低温条件,其毒性较高、不稳定且易爆。随着现代化工危化品应用监管日益严格,在间歇釜条件下 ,具有高活性和潜在危险性的化学品的使用也已逐渐受限。而连续流条件下,危化品原位产生、原位消耗的模型有效减轻了处理和储存危化品的安全问题,为高活性中间体的开发与使用提供了可靠的解决方案。接下来小编将分两篇内容为大家介绍最近由著名连续流专家Jean-Christophe M. Monbaliu 带领的团队Victor-Emmanuel H. Kassin, Romain Morodo, Thomas Toupy等人利用康宁多功能微通道反应器G1,取得的最新成果,联合发表在Green Chemistry杂志上。该研究中α-氯亚硝基衍生物独特的反应特性通过开发集成模块化、可放大的连续流工艺并进行各种可烯醇化酮的α-羟胺化反应过程得到充分的展现(下图)。图3.在连续流反应条件下,氯亚硝基衍生物(如1a)与一级、二级和三级烯醇化底物反应。 α-氯亚硝基衍生物的原位制备一、α-氯亚硝基衍生物的原位制备原理与流程流动化学反应条件下物料得到迅速充分的混合反应完全,有助于缓和α-氯亚硝基衍生物的高活性、高毒性对工艺过程带来的影响。α-氯亚硝基衍生物的原位制备过程主要在以下两个串联的发生器中得以实现:图4. (a)发生器I 有机强氧化剂次氯酸叔丁酯(t-BuOCl)的制备图5.(b)发生器II,肟与发生器I产生的次氯酸叔丁酯反应制备α-氯亚硝基衍生物 二、α-氯亚硝基衍生物的原位制备实验首先在1/16英寸PFA管线中分别以21℃,5 min和10℃,5 min的反应条件制备次氯酸叔丁酯(发生器I)和α-氯亚硝基衍生物(发生器II)。由于1a和1b化学性质不稳定,具有刺激性气味在加热或紫外线照射下分解。实验过程中采取避光措施,最后通过在线IR分光计在5巴负压下实时监测。结果显示成功实现1a和1b的制备。研究者接下来进行了放大实验,将两步反应放大至康宁G1反应器,反应条件分别优化为25℃,36 s和10℃,18 s。在康宁G1反应器中制备α-氯亚硝基衍生物(发生器II),由于玻璃模块的视窗效果,可以很清晰地观察到特征反应现象,随着次氯酸叔丁酯和肟在心形通道中混合反应,反应液立即呈现为α-氯亚硝基衍生物所具有的特征性蓝色(下图)。表6. G1反应器制备α-氯亚硝基衍生物阶段实验结果讨论本实验通过连续流工艺实现了原位制备或生产α-氯亚硝基衍生物。应用康宁反应器可实现放大生产且反应速度提高,康宁反应器高效的传热、传质特点可以实现原位规模化生产,同时原位使用的工艺,有效降低具有毒性和潜在爆炸风险的化合物对环境的不利影响。连续流反应单元与在线分析的集成既可以实时监控反应物变化又可以降低取样操作风险下一篇文章我们将为您继续介绍这项绿色安全工艺后续及扩展研究!敬请期待!Reference:Victor-Emmanuel H. Kassin, Romain Morodo,a Thomas Toupy,Isaline Jacquemin, Kristof Van Hecke, Raphaël Robiette and Jean-Christophe M. Monbaliu ,Green Chem., 2021, 23,2336
  • 戴安公司提供奶粉中高氯酸盐检测方法
    近期有消息报导部分美国品牌婴幼儿奶粉中检测出高氯酸盐,这是继我国牛奶及奶制品的三聚氰胺事件后又一波引起关注的奶制品污染事件。 高氯酸盐是一种持久性环境污染物质,广泛用于火箭推进剂、导弹和烟火制造工业,使高氯酸盐很容易释放到环境中。研究表明,由于高氯酸盐和碘离子具有相似的电荷和离子半径,会与碘竞争进入人体甲状腺,抑制甲状腺对碘的吸收,从而减少甲状腺荷尔蒙的生成,影响甲状腺功能,导致成人新陈代谢功能紊乱、影响胎儿和婴儿神经中枢的正常生长和发展,高氯酸盐的高暴露还会导致甲状腺癌。2002年美国国家环保署(US EPA)规定饮用水中高氯酸盐的最大容许浓度为1&mu g/L。美国的一些州将高氯酸盐的限定浓度规定为1-18&mu g/L。高氯酸盐的分析已进入美国EPA系列标准方法中(EPA314.0、314.1、314.2、331、332、6850)。 需要关注的是,除了奶粉本身的污染外,冲调奶粉的水中如果被高氯酸污染,也会引起冲调牛奶的高氯酸超标。目前随着人们对环境与食品安全意识的加强,国内高氯酸盐的检测受到了各行业广泛的关注,对于水中高氯酸盐的离子色谱检测,戴安公司提供符合EPA314.0和314.1的成熟分析方法,专门推出了IonPacAS20和AS21色谱分析柱。目前戴安公司的IC/MS技术可以分别用于牛奶中的高氯酸盐检测;饮用水及环境水样中的痕量高氯酸盐以及污泥样品中的高氯酸盐的检测。为了满足大量科研分析人员对该项技术的需求,更大程度和范围推广该项检测技术,戴安公司可提供以下技术资料,欢迎索取。 一、戴安技术资料: 1、改进的离子色谱法检测环境样品中的高氯酸盐 2、离子色谱-质谱联用测定牛奶中的高氯酸盐、溴酸盐和碘离子 3、离子色谱-质谱联用测定瓶装水中的高氯酸盐、溴酸盐 4、离子色谱-质谱联用技术测定饮用水及环境水样中的痕量高氯酸盐 5、大体积进样离子色谱法测定环境水样品中的高氯酸根 6、离子色谱-质谱联用技术测定测定污泥样品中的高氯酸盐 7、《戴安公司离子色谱应用技术专辑》 二、美国国家环保署标准方法(EPA) 1、EPA314 离子色谱法检测饮用水中的高氯酸盐(戴安公司AS16色谱柱) 2、EPA314.1 在线柱浓缩/基体消除离子色谱抑制型电导检测饮用水中的高氯酸盐(戴安公司AS16色谱柱) 3、EPA314.2 二维离子色谱抑制型电导法检测饮用水中的高氯酸盐(戴安AS20和AS16色谱柱) 4、EPA331 LC-MS/MS法检测饮用水中的高氯酸盐(戴安AS21离子色谱柱) 5、EPA332 IC-MS 和IC-MS/MS法检测饮用水中的高氯酸盐(戴安AS16与AS20色谱柱) 6、EPA6850 IC/电喷雾/质谱法检测水、泥土、固体废弃物中的高氯酸盐 索取以上资料请联系戴安中国有限公司市场部: 010-64436740 戴安中国市场部 2009年4月7号
  • 【行业应用】赛默飞发布茶叶中高氯酸盐的检测方案
    赛默飞世尔科技(以下简称:赛默飞)于近日发布茶叶中高氯酸盐的检测方案,旨在为检测机构提供更具针对性的解决方案,弥补国内茶叶中高氯酸盐检测空白。 高氯酸盐是一种持久性的有毒物质。由于人体的甲状腺会吸收高氯酸盐,并受其影响,减少对碘的吸收,进而扰乱新陈代谢,危害人的健康。欧洲食品安全局(EFSA)评估了长期和短期内暴露于高氯酸盐的风险,结果表明,单次摄入食品和水中的高氯酸盐对健康影响不大,但是长期摄入高氯酸盐,对人体的危害应当引起关注,尤其是孕妇、胚胎、婴儿最容易受到危害。 高氯酸盐污染的主要来源是航空航天、烟火制造、军火工业、橡胶制品、燃料涂料等。但高氯酸盐是如何通过上述源头进入茶叶,目前还没有科学结论。业内专家推测,茶树种植过程中使用的化学肥料、灌溉用水、工业废水或者自来水,食品加工过程中含氯消毒剂的使用以及包装材料的迁移,都可能成为茶叶高氯酸盐的污染来源。因此,茶叶及各项可能的污染源中高氯酸盐高灵敏度的检测方案显得尤为重要。 自1997年美国在加州饮用水中监测到较高含量的高氯酸根存在后,高氯酸盐已成为美国环境污染研究的热点。欧盟已考虑把食品中的高氯酸限量定在0.75 mg/Kg,同时,也正在酝酿一项针对来自中国茶叶的强制性标准,即规定茶叶中高氯酸盐的含量应在合理限值之下。 更严重的问题在于,这一拟定中的标准可能进一步收紧。欧洲食品安全局(EFSA)生物危害与污染研究部食物污染专题相关负责人曾表示,EFSA在评估报告建议茶叶中高氯酸盐含量是0.55—0.58 mg/Kg,拟发布的0.75 mg/Kg的标准较为宽松。欧盟将综合考虑各方科学意见后,公布正式适合欧盟全境的检测标准,预计强制性标准将于2016年正式颁布。一旦该标准制定实施,中国对欧盟的茶叶出口将严重受阻。针对上述情况,赛默飞发布了茶叶中高氯酸盐的检测方案,采用Thermo ScientificTM DionexTM ICS-5000+多功能离子色谱仪,配备Thermo ScientificTM MSQ PlusTM 单四极杆质谱,建立了茶叶中高氯酸盐的分析方法。茶叶粉末样品经浸提后过RP柱净化再进行离子色谱-质谱分析。相比于液质方法,离子色谱的流动相经过电解抑制器抑制后基本为水,且采用稳定的高分子聚合物交换色谱柱,均可大大降低质谱的基线噪音,从而获得更高的分析灵敏度。 该方法应用于茶叶中高氯酸盐的测定,方法前处理简单,准确性高,加标回收率可达95%以上。并且灵敏度高,检测限可达0.02 mg/kg或更低,完全满足欧盟拟定的限值0.75 mg/Kg,甚至更严苛的0.55-0.58 mg/Kg的检测要求。质谱端若选用Thermo ScientificTM TSQ系列三重四级杆质谱仪,将获得更高的检测灵敏度。茶叶实际样品质谱图(IC-MSQ)更多产品信息,请访问:DionexTM ICS-5000+ 多功能离子色谱仪www.thermoscientific.cn/product/dionex-ics-5000-capillary-hpic-system.html MSQ PlusTM 单四极杆质谱www.thermoscientific.cn/product/msq-plus-single-quadrupole-mass-spectrometer.html TSQ 系列三重四级杆质谱仪www.thermoscientific.cn/product/tsq-quantum-access-max-triple-quadrupole-mass-spectrometer.html---------------------------------------------------关于赛默飞世尔科技赛默飞世尔科技(纽约证交所代码:TMO)是科学服务领域的世界领导者。公司年销售额170亿美元,在50个国家拥有约50,000名员工。我们的使命是帮助客户使世界更健康、更清洁、更安全。我们的产品和服务帮助客户加速生命科学领域的研究、解决在分析领域所遇到的复杂问题与挑战,促进医疗诊断发展、提高实验室生产力。借助于首要品牌Thermo Scientific、Applied Biosystems、Invitrogen、Fisher Scientific和Unity Lab Services,我们将创新技术、便捷采购方案和实验室运营管理的整体解决方案相结合,为客户、股东和员工创造价值。欲了解更多信息,请浏览公司网站:www.thermofisher.com 赛默飞世尔科技中国赛默飞世尔科技进入中国发展已有30多年,在中国的总部设于上海,并在北京、广州、香港、台湾、成都、沈阳、西安、南京、武汉、昆明等地设立了分公 司,员工人数约3800名。我们的产品主要包括分析仪器、实验室设备、试剂、耗材和软件等,提供实验室综合解决方案,为各行各业的客户服务。为了满足中国市场的需求,现有8家工厂分别在上海、北京和苏州运营。我们在全国共设立了6个应用开发中心,将世界级的前沿技术和产品带给国内客户,并提供应 用开发与培训等多项服务;位于上海的中国创新中心结合国内市场的需求和国外先进技术,研发适合中国的技术和产品;我们拥有遍布全国的维修服务网点和特别成 立的中国技术培训团队,在全国有超过2000名专业人员直接为客户提供服务。我们致力于帮助客户使世界更健康、更清洁、更安全。欲了解更多信息,请登录网站:www.thermofisher.com请扫码关注:赛默飞世尔科技中国官方微信
  • 英国豪迈的流体部件品牌百柯发布更加稳定耐用的新型柱塞泵
    2015年12月,英国豪迈的流体部件品牌百柯(biochemfluidics.com.cn)研发了一款新型的柱塞分配泵,取名Maestro柱塞泵。Maestro柱塞泵经过严苛的实际使用条件要求和技术规范测试。在现有的柱塞分配泵中,Maestro柱塞泵的性能将更加稳定,使用寿命将更加持久。百柯的新型Maestro柱塞分配泵。百柯一直以来是制造惰性材料特殊阀方面公认的专家。百柯追求的目标是向客户提供优质的产品:精确、可靠、耐用。Maestro柱塞泵经过了严苛的实际使用条件要求和技术规范测试。所以在现有的柱塞分配泵中,Maestro柱塞泵最具特征,精度最高,寿命也最长。它是IVD及类似低压应用的理想选择。这些泵的设计和验证过的寿命是市场上任何现有分配泵的两倍。Maestro产品正以她超凡的优越性建立起柱塞泵的新标准。Maestro柱塞分配泵的功能优势Maestro与两常见竞争对手的比较Maestro竞争者A竞争者B泵头Acrylic???PEEK???Ultem?? 柱塞Zirconia Ceramic???PEEK√ 密封圈UHWM-PE???Viton O-ring?? 丝杆螺距20TPI???30TPI√ 40TPI?? 使用寿命蒸馏水测试1000万次Model A:200万次Model B:500万次500万次强腐蚀性液体测试(氢氧化钠,酸液,次氯酸钠等)500万次 Maestro柱塞分配泵的基本规格排量(μl):50, 100, 250, 500, 1000, 2500, 5000精确度:~99.5%精度:关于百柯和英国豪迈:百柯流体有限公司(Bio-Chem Fluidics)是世界顶尖的流体部件专业制造商,总部位于美国新泽西州。百柯的产品线包括微量泵、隔离阀、分配阀、夹管阀、回转阀及非标定制服务,致力于为临床诊断、化学分析、水质分析、医疗器械制造等行业提供流体部件及流体系统解决方案。百柯是英国豪迈(Halma)的子公司,隶属于豪迈的医疗设备事业部。1894年创立的英国豪迈如今是安全、医疗、环保产业的投资集团,伦敦证交所中唯一在过去30多年股息年增长5%的上市公司。集团在全球拥有5000多名员工,近50家子公司,在中国的上海、北京、广州、成都和沈阳设有区域代表处,且在上海、北京、保定、深圳等地建立了多家工厂。业务合作联系人:俞燕军(William Yu)百柯流体有限公司中国区销售经理电话:021-61519061邮箱:william.yu@biochemfluidics.com
  • 徐州市新城区新安路徐州市水务局668.92万元采购计量泵
    详细信息 沛县自来水一厂消毒方式改造项目设备采购招标公告 江苏省-徐州市-沛县 状态:公告 更新时间: 2022-11-04 沛县自来水一厂消毒方式改造项目设备采购招标公告 【信息发布时间:2022-11-04 】 【我要打印】 【关闭】 沛县自来水一厂消毒方式改造项目设备采购招标公告 (资格后审) 1、沛县兴蓉水务发展有限公司实施的沛县自来水一厂消毒方式改造项目已经批准建设,工程所需资金来源是国有资金,已落实。现对本项目设备采购进行公开招标。 2、徐州市通源招标代理有限公司受招标人委托具体负责本工程招标事宜。 3、工程概况 (1)工程地点:江苏沛县大屯街道汉景路1号。 (2)工程建设内容:将沛县自来水一厂原有液氯消毒方式改造为次氯酸钠消毒方式。 (3)招标范围:次氯酸钠发生系统(成套)包括但不限于:地埋储盐罐、配盐罐、发生器主机、隔膜计量泵、电气PLC控制柜等并按招标文件要求配套螺栓、螺帽、垫圈等连接配件的采购、安装、配合系统运行调试、验收、技术操作培训及售后服务、缺陷责任期和试运营期工程缺陷修复和质量保修工作等(详见招标文件)。 (4)交货时间:详见招标文件。 4、本项目招标为1个标段,总投资约668.92万元。 5、申请人应当具备的主要资格条件 (1)投标申请人资格:具备独立法人资格的设备制造商或代理商,如投标人为代理商,须具有所代理厂家的直接授权;已授权代理商参与本次投标的制造商,不得再以制造商的身份参与本次招标活动。本次招标不接受联合体投标。 (2)投标人所投次氯酸钠发生器制造商应具有卫生行政部门颁发的有效的涉及饮用水卫生安全产品卫生许可批件。 (3)类似业绩:自2017年1月1日以来完成过单项合同金额400万元及以上的自来水厂消毒设备(含次氯酸钠发生器)供货业绩。 业绩证明材料以合同协议书、业主反馈意见(或设备安装运行验收证明)扫描件为准,两者须同时具备,时间以合同签订时间为准。 (4)一个制造商对同一品牌同一型号的设备,仅能委托一个代理商参加投标。多种设备打包采购的,招标人应选择其中主要设备要求投标人提供授权,主要设备包括:次氯酸钠发生器。 (5)被各级政府信用管理部门公布的失信被执行人(包括自然人和单位),在失信记录解除前,不得参加本项目的招标投标活动(不同网站公布的失信被执行人信息存在差异的,以“信用中国”公布的信息为准)。 (6)投标人应取得经徐州市社会信用体系建设领导小组办公室备案的第三方信用服务机构出具的有效期内的企业信用报告(a.经徐州市社会信用体系建设领导小组办公室备案的第三方信用服务机构名称及联系方式请查阅“诚信徐州”[网址https://www.xuzhoucredit.gov.cn]“征信]“征信服务机构”专栏;b.第三方信用服务机构出具信用报告的时限为5个工作日,信用报告有效期为1年,有效期内可重复使用;c.第三方信用报告须在江苏省信用服务机构管理系统(系统(http://www.xuzhoucredit.gov.cn)备案)备案公示;d.第三方信用服务机构的监督管理部门为徐州市社会信用体系建设领导小组办公室(监督电话:0516-83701244、0516-83755971)。 6、投标保证金的缴纳与退还: (1)本工程投标保证金的缴纳方式采用银行电汇(必须从投标申请人法人基本存款账户汇出)、银行(电子)保函(必须从投标申请人法人基本存款账户开出)、保险电子保函。 (2)本工程投标保证金金额:人民币壹拾贰万元整。 开户行:江苏银行徐州新城区支行 账户号:6009018800012738310053619 开户名:徐州市公共资源交易中心 (3)未中标人的投标保证金在中标通知书发出后的第二个工作日起,以转账方式退还至其基本存款账户;中标人投标保证金在签订合同并递交履约担保后以转账方式退还至其基本存款账户。投标保证金利息计息日:自投标文件递交截止时间结束次日起,至中标公示结束之日止。 (4)投标申请人采用银行保函缴纳投标保证金时,投标有效期应在银行保函的有效期内。 投标申请人在办理投标保函时,应向本工程投标保证金缴纳账户开户行发起保函查询通知(在交易系统中使用银行电子保函的除外),查询通知中应注明保函编号、保函金额、受益人及申请人。 (5)投标人将银行保函扫描件放入投标文件,在开标时将银行保函原件质押在徐州市公共资源交易中心,并开具保函收据(在交易系统中使用银行电子保函的除外)。如投标人未中标,中标通知书发出后,代理机构通知其凭保函收据自行取回;如投标人中标,在签订合同并递交履约担保后,代理机构通知其凭保函收据自行取回。 (6)任何以个人或非投标申请人法人单位的名义提交的投标保证金都将被拒绝接收。 (7)如采用银行电子保函、保险电子保函形式按以下要求办理: 1)电子保函按照“一标段一保函”的原则。 2)电子保函须在招标文件规定的投标截止时间前办理完成。 3)使用保险电子保函投保人申请退保时,将按照原路返回至其账户中(具体办理流程详见徐州市公共资源交易金融综合服务平台网站)。 (8)资格审查不合格投标人的投标保证金由徐州市公共资源交易中心以转账方式退还至其基本存款账户。 7、本公告发布时间为2022年11月4日至2022年11月11日。 (1)本工程实行电子招投标,请投标申请人办理江苏CFCA证书或国信CA证书后(办理指南网址:http://ggzy.zwb.xz.gov.cn/bszn/superviseInfo.html),于2022年11月11日16时前登陆《徐州市水利项目招投标会员网上交易系统》(网址“http://218.3.177.169/xzslhy/”)自行建立企业投标信息资料库(开户银行及其开户账号必须是本单位基本账户,凡已在《徐州市水利项目招投标会员网上交易系统》中已备案的企业,如不是基本账户的,请及时在系统中变更、提交审核后,方可参与本项目投标。如未及时变更备案,由此造成的一切后果自行承担)并致电徐州市水利工程建设招标投标管理办公室(电话:0516-80802071、80802070)进行线上审核; (2)凡有意向的投标人在信息资料库资料审核合格后登录《徐州市水利项目招投标会员网上交易系统》进行网上报名操作完成网上报名程序,网上报名时间为2022年11月4日至2022年11月11日17时30分; (3)招标文件每套售价0元,另电子交易平台系统要求:须支付100元平台软件使用费,售后不退。 8、递交投标文件的截止时间为:2022年11月25日14时00分,地点:徐州市政务服务中心。 9、本工程执行资格后审。评标办法采用综合评估法。本工程采用远程“不见面”开标模式,具体详见招标文件。 10、招标人地址:沛县迎宾大道15号 联系人:陈 林 电话:0516-80352725 11、招标代理机构地址:徐州市新城区新安路徐州市水务局229室 联系人:史兆鹏 电话:0516-80807678 徐州市通源招标代理有限公司 2022年 11月 4 日 × 扫码打开掌上仪信通App 查看联系方式 基本信息 关键内容:计量泵 开标时间:2022-11-25 14:00 预算金额:668.92万元 采购单位:徐州市新城区新安路徐州市水务局 采购联系人:点击查看 采购联系方式:点击查看 招标代理机构:徐州市通源招标代理有限公司 代理联系人:点击查看 代理联系方式:点击查看 详细信息 沛县自来水一厂消毒方式改造项目设备采购招标公告 江苏省-徐州市-沛县 状态:公告 更新时间: 2022-11-04 沛县自来水一厂消毒方式改造项目设备采购招标公告 【信息发布时间:2022-11-04 】 【我要打印】 【关闭】 沛县自来水一厂消毒方式改造项目设备采购招标公告 (资格后审) 1、沛县兴蓉水务发展有限公司实施的沛县自来水一厂消毒方式改造项目已经批准建设,工程所需资金来源是国有资金,已落实。现对本项目设备采购进行公开招标。 2、徐州市通源招标代理有限公司受招标人委托具体负责本工程招标事宜。 3、工程概况 (1)工程地点:江苏沛县大屯街道汉景路1号。 (2)工程建设内容:将沛县自来水一厂原有液氯消毒方式改造为次氯酸钠消毒方式。 (3)招标范围:次氯酸钠发生系统(成套)包括但不限于:地埋储盐罐、配盐罐、发生器主机、隔膜计量泵、电气PLC控制柜等并按招标文件要求配套螺栓、螺帽、垫圈等连接配件的采购、安装、配合系统运行调试、验收、技术操作培训及售后服务、缺陷责任期和试运营期工程缺陷修复和质量保修工作等(详见招标文件)。 (4)交货时间:详见招标文件。 4、本项目招标为1个标段,总投资约668.92万元。 5、申请人应当具备的主要资格条件 (1)投标申请人资格:具备独立法人资格的设备制造商或代理商,如投标人为代理商,须具有所代理厂家的直接授权;已授权代理商参与本次投标的制造商,不得再以制造商的身份参与本次招标活动。本次招标不接受联合体投标。 (2)投标人所投次氯酸钠发生器制造商应具有卫生行政部门颁发的有效的涉及饮用水卫生安全产品卫生许可批件。 (3)类似业绩:自2017年1月1日以来完成过单项合同金额400万元及以上的自来水厂消毒设备(含次氯酸钠发生器)供货业绩。 业绩证明材料以合同协议书、业主反馈意见(或设备安装运行验收证明)扫描件为准,两者须同时具备,时间以合同签订时间为准。 (4)一个制造商对同一品牌同一型号的设备,仅能委托一个代理商参加投标。多种设备打包采购的,招标人应选择其中主要设备要求投标人提供授权,主要设备包括:次氯酸钠发生器。 (5)被各级政府信用管理部门公布的失信被执行人(包括自然人和单位),在失信记录解除前,不得参加本项目的招标投标活动(不同网站公布的失信被执行人信息存在差异的,以“信用中国”公布的信息为准)。 (6)投标人应取得经徐州市社会信用体系建设领导小组办公室备案的第三方信用服务机构出具的有效期内的企业信用报告(a.经徐州市社会信用体系建设领导小组办公室备案的第三方信用服务机构名称及联系方式请查阅“诚信徐州”[网址https://www.xuzhoucredit.gov.cn]“征信]“征信服务机构”专栏;b.第三方信用服务机构出具信用报告的时限为5个工作日,信用报告有效期为1年,有效期内可重复使用;c.第三方信用报告须在江苏省信用服务机构管理系统(系统(http://www.xuzhoucredit.gov.cn)备案)备案公示;d.第三方信用服务机构的监督管理部门为徐州市社会信用体系建设领导小组办公室(监督电话:0516-83701244、0516-83755971)。 6、投标保证金的缴纳与退还: (1)本工程投标保证金的缴纳方式采用银行电汇(必须从投标申请人法人基本存款账户汇出)、银行(电子)保函(必须从投标申请人法人基本存款账户开出)、保险电子保函。 (2)本工程投标保证金金额:人民币壹拾贰万元整。 开户行:江苏银行徐州新城区支行 账户号:6009018800012738310053619 开户名:徐州市公共资源交易中心 (3)未中标人的投标保证金在中标通知书发出后的第二个工作日起,以转账方式退还至其基本存款账户;中标人投标保证金在签订合同并递交履约担保后以转账方式退还至其基本存款账户。投标保证金利息计息日:自投标文件递交截止时间结束次日起,至中标公示结束之日止。 (4)投标申请人采用银行保函缴纳投标保证金时,投标有效期应在银行保函的有效期内。 投标申请人在办理投标保函时,应向本工程投标保证金缴纳账户开户行发起保函查询通知(在交易系统中使用银行电子保函的除外),查询通知中应注明保函编号、保函金额、受益人及申请人。 (5)投标人将银行保函扫描件放入投标文件,在开标时将银行保函原件质押在徐州市公共资源交易中心,并开具保函收据(在交易系统中使用银行电子保函的除外)。如投标人未中标,中标通知书发出后,代理机构通知其凭保函收据自行取回;如投标人中标,在签订合同并递交履约担保后,代理机构通知其凭保函收据自行取回。 (6)任何以个人或非投标申请人法人单位的名义提交的投标保证金都将被拒绝接收。 (7)如采用银行电子保函、保险电子保函形式按以下要求办理: 1)电子保函按照“一标段一保函”的原则。 2)电子保函须在招标文件规定的投标截止时间前办理完成。 3)使用保险电子保函投保人申请退保时,将按照原路返回至其账户中(具体办理流程详见徐州市公共资源交易金融综合服务平台网站)。 (8)资格审查不合格投标人的投标保证金由徐州市公共资源交易中心以转账方式退还至其基本存款账户。 7、本公告发布时间为2022年11月4日至2022年11月11日。 (1)本工程实行电子招投标,请投标申请人办理江苏CFCA证书或国信CA证书后(办理指南网址:http://ggzy.zwb.xz.gov.cn/bszn/superviseInfo.html),于2022年11月11日16时前登陆《徐州市水利项目招投标会员网上交易系统》(网址“http://218.3.177.169/xzslhy/”)自行建立企业投标信息资料库(开户银行及其开户账号必须是本单位基本账户,凡已在《徐州市水利项目招投标会员网上交易系统》中已备案的企业,如不是基本账户的,请及时在系统中变更、提交审核后,方可参与本项目投标。如未及时变更备案,由此造成的一切后果自行承担)并致电徐州市水利工程建设招标投标管理办公室(电话:0516-80802071、80802070)进行线上审核; (2)凡有意向的投标人在信息资料库资料审核合格后登录《徐州市水利项目招投标会员网上交易系统》进行网上报名操作完成网上报名程序,网上报名时间为2022年11月4日至2022年11月11日17时30分; (3)招标文件每套售价0元,另电子交易平台系统要求:须支付100元平台软件使用费,售后不退。 8、递交投标文件的截止时间为:2022年11月25日14时00分,地点:徐州市政务服务中心。 9、本工程执行资格后审。评标办法采用综合评估法。本工程采用远程“不见面”开标模式,具体详见招标文件。 10、招标人地址:沛县迎宾大道15号 联系人:陈 林 电话:0516-80352725 11、招标代理机构地址:徐州市新城区新安路徐州市水务局229室 联系人:史兆鹏 电话:0516-80807678 徐州市通源招标代理有限公司 2022年 11月 4 日
  • 宁夏化学分析测试协会发布《酿酒葡萄及葡萄酒中氯酸盐和高氯酸盐的测定 液相色谱-质谱/质谱法》团体标准征求意见稿
    各相关单位:按照宁夏化学分析测试协会团体标准工作程序,标准起草组已完成《酿酒葡萄及葡萄酒中氯酸盐和高氯酸盐的测定 液相色谱-质谱/质谱法》团体标准征求意见稿的编制工作。现按照我协会《团体标准制修订程序》要求,公开征求意见。请有关单位及专家提出宝贵意见,并将征求意见表(附件)于2024年3月23日前反馈给秘书处。联系人:张小飞 电 话:13995098931邮箱:1904691657@qq.com 宁夏化学分析测试协会2024年2月23日关于团标征求意见函 -2.23.pdf团标表格7-专家意见表.doc文本-酿酒葡萄及葡萄酒中氯酸盐和高氯酸盐的测定.pdf
  • 新疆理化所基于探针结构精细调控实现高氯酸盐可视化检测
    高氯酸盐具有强氧化性和高稳定性,是广泛应用于固体推进剂、军工生产、航天器材、烟花爆竹等领域的重要含能材料之一。据美国爆炸数据中心统计,以高氯酸盐/氯酸盐作为原料直接或间接参与的爆炸案达全球爆炸案总量的63.4%。因此,开展对痕量高氯酸盐固体的高灵敏、准确的现场检测对保障国家公共安全具有重要的现实意义。中国科学院新疆理化技术研究所爆炸物传感检测团队长期致力于痕量危化品检测方法研究,在危爆品、特别是非制式爆炸物的高灵敏、快速、识别检测原理和器件设计方面发展了系列新的解决方案(Adv. Mater. 2020, 32, 1907043、Adv. Sci. 2020, 2002991、Angew. Chem. Int. Ed. 2022,DOI: 10.1002/anie.202203358等)。近期在高氯酸盐现场可视化检测方面取得进展,提出了一种基于自组装配合物探针与水凝胶耦合作用协同调控的超高灵敏比色-荧光双模可视化传感新策略,成功实现了超痕量高氯酸盐的现场双模可视化检测。该团队以三联吡啶铂(II)辅助配体为切入口,结合量子化学计算,系统研究了不同辅助配体对水溶液中三联吡啶铂(II)自组装产物Pt-Pt金属作用导致的MMLCT态光谱能量和发光稳定性的影响,阐明了辅助配体调控高氯酸根诱导聚集产物发光性质的一般性规律。研究发现,异硫氰酸根为辅助配体时,高氯酸根诱导聚集的三联吡啶铂(II)自组装产物具有能量最低且最稳定的MMLCT吸收/发射光谱,而溴为辅助配体时,自组装产物的MMLCT发生强度最高。因此,结合反阴离子调控,获得了具有良好水溶性的三联吡啶铂(II)配合物高氯酸盐比色-荧光双模可视化探针,实现了对高氯酸盐的高灵敏、高特异、快速、双模可视化传感。在此基础上,该团队提出了利用水凝胶反应介质与探针之间的耦合效应对传感材料发光信号局域增强的提升策略。通过将该铂(II)配合物探针与具有均一网络结构的PVA水凝胶耦合,利用自组装生成的微米级一维纤维状聚集体与水凝胶网络的相互作用,实现了对发光产物的完全锚定,实现了对0.75 μm(0.73 fg)高氯酸盐单颗粒的比色-荧光双模传感信号的直接观测,对空气中高氯酸盐悬浮微粒的检测限低至0.02 fg。该研究提出的辅助配体精细调控提升自组装阴离子探针双模可视化传感性能的策略,不仅可为具有特异双模光学响应信号的阴离子探针设计提供指导,还发展了基于单颗粒响应信号直接观测的超灵敏嗅觉传感方法,可为其他超痕量难挥发化学物质传感提供借鉴。此外,爆炸物传感检测团队以该研究为核心,与新疆公安厅共同发布自治区地方标准1项(DB 65/T 4451-2021《氯酸盐和高氯酸盐的检测目视化学比色法》),为相关行业提供了高氯酸盐检验鉴定操作规范。系列研究成果分别发表在《Journal of Materials Chemistry A》(杂志封底)和《Sensors and Actuators B: Chemical》上,博士研究生苏珍为第一作者,导师窦新存研究员和李毓姝副研究员为共同通讯作者,相关理论计算部分与太原科技大学李坤教授合作完成。研究工作得到国家自然科学基金委、中国科学院及自治区相关项目的资助。论文链接:https://pubs.rsc.org/en/content/articlelanding/2022/ta/d2ta00843bhttps://www.sciencedirect.com/science/article/pii/S0925400521002975封底链接:https://pubs.rsc.org/en/content/articlelanding/2022/ta/d2ta90087d
  • 【告别危险生产】制药企业安全生产改良方案!
    一家总部位于瑞士的全球知名的制药企业决定利用现有的设备,满足全球市场对药品产量的需求。因此对生产过程产生的废溶剂、母液进行精馏回收,技改项目的工艺流程涉及高危工艺-氧化反应。制药小知识氧化反应为化工工艺生产过程中的一种重要反应类型,是制备许多化工原料产品及中间体必须经过的一道生产工序。氧化反应为有电子转移的化学反应中失电子的过程,即氧化数值升高的过程。多数有机化合物的氧化反应表现为反应原料得到氧或失去氢。氧化反应是一种危险的放热反应类型,如果在反应过程中气相氧含量过高,容易引起爆燃造成工艺反应失控,轻则造成设备损毁、环境污染、物料经济损失,重则可能造成人身伤亡安全事故。因此,根据国家安监总局的要求,氧化反应釜必须设置气相氧含量检测仪器。为保证安全生产,防止发生生产安全事故,除了反应釜温度和压力的报警和联锁、反应物料的比例控制和联锁及紧急切断动力系统、紧急断料系统、紧急冷却系统、紧急充氮系统,气相氧含量监测、报警和联锁系统也是安全控制的基本要求,气相氧含量是工艺重点监控的工艺参数之一。客户在为氧化反应釜选择气相氧分析仪过程中,充分考虑了工艺的特殊性和危险性。#工艺危险特点#反应原料及产品具有燃爆危险性,反应原料含有酯类、醇类有机物、催化氧化剂、次氯酸钠强氧化剂等,反应气相组成容易达到爆炸极限,具有闪爆危险;反应过程物料具有强腐蚀性,由于加入物料中有溴化钠和次氯酸钠,导致反应气相中含有腐蚀性溴化氢和氯气气体。#传统解决方案#传统的分析方法是采用电化学氧分析仪或磁氧分析仪配套预处理系统进行分析,由于反应物料中含有酯类、醇类有机物、溴化氢、氯气等物质,氧气分析仪表本身及预处理系统使用效果并不是特别理想。电化学氧分析仪燃料电池更换频繁由于其生产产品和流程工艺物料组成成分的特殊性,电化学氧分析仪燃料电池非常容易失效,需要频繁更换燃料电池才能正常分析,仪表备件成本高,仪表长期运行维护费用很大。磁氧分析仪氧传感器部件容易出现故障磁氧分析仪的氧传感器部件非常精密,容易受到粉尘、水汽和腐蚀性气体的影响,容易出现故障,氧传感器经常维护同样增加了用户仪表的长期运行维护费用。预处理系统样品传输不锈钢管线及部件的腐蚀问题由于氧化反应釜气相物料中含有微量溴化氢、氯气和水,势必会对预处理系统样品传输不锈钢管线及相关附属部件造成腐蚀,预处理系统的长期正常安全运行存在隐患。维护和标定困难, 工作量大由于样气背景中含有容易损伤磁氧和电化学传感器的介质组分,及含有溴化氢、氯气气体容易腐蚀样品不锈钢传输管线等原因, 因此造成系统维护和标定工作量大, 加之故障后如果备件不能及时供应上,很难在较短时间内修好,系统常常处于半瘫痪状态。测量不准确, 数据可靠性差系统故障率高,氧化釜气相含氧量测量不准确, 测量数据可靠性差, 不能作为有关工艺操作安全监控措施的依据。TDL激光气体分析解决方案及优势在传统的磁氧或电化学氧分析仪系统中,采样预处理系统的日常维护是其中的主要工作。激光氧气分析仪TDL能够原位安装,彻底取消了采样系统,无样品传输管线、无传动部件、无消耗性部件,避免了众多可能影响测量的故障点,大大降低了系统维护工作量, 运行费用低。梅特勒托利多所设计的GPro500激光气体分析仪具有原位安装的特点而且采用探头式设计,易于安装与调节光路,消耗氮气量少。对于氧化釜气相介质内含有微量溴化氢、氯气腐蚀性介质的特点,与物料接触部分采用耐腐蚀的金属材质,有效解决了微量腐蚀性气体对仪表的腐蚀问题。采用探头式设计,激光源发射的激光被探头头部的直角棱镜平行反射回与激光源位于同侧的激光接收器,形成折叠式光程,此设计在实际使用中具有一些技术特点:1. 单个法兰安装, 无需两侧对焦2. 降低吹扫气体消耗量,只需3L/min3. 激光穿过气体两次,有效光程翻倍,准确性更高4. 尺寸小,易于安装在狭小空间内采用多点谱线锁定和内置一致性检查技术,完全避免温度、压力、信号波动造成的测量误差,进一步提高了测量的精确性,维护周期预测性提示功能改被动性维护为主动性维护,有效确保了生产过程安全性和可靠性。
  • 水中氨氮测定方法及操作步骤汇总介绍
    氨 氮 氨氮(NH3-N)以游离氨(NH3)或铵盐(NH4+)形式存在于水中,两者的组成比取决于水的pH值。当pH值偏高时,游离氨的比例较高。反之,则铵盐的比例为高。 水中氨氮的来源主要为生活污水中含氮有机物受微生物作用的分解产物,某些工业废水,如焦化废水和合成氨化肥厂废水等,以及农田排水。此外,在无氧环境中,水中存在的亚硝酸盐亦可受微生物作用,还原为氨。在有氧环境中,水中氨亦可转变为亚硝酸盐、甚至继续转变为硝酸盐。 测定水中各种形态的氮化合物,有助于评价水体被污染和“自净”状况。 氨氮含量较高时,对鱼类则可呈现毒害作用。 1. 方法的选择 氨氮的测定方法,通常有纳氏比色法、苯酚-次氯酸盐(或水杨酸-次氯酸盐)比色法和电极法等。纳氏试剂比色法具操作简便、灵敏等特点,水中钙、镁和铁等金属离子、硫化物、醛和酮类、颜色,以及浑浊等干扰测定,需做相应的预处理,苯酚-次氯酸盐比色法具灵敏、稳定等优点,干扰情况和消除方法同纳氏试剂比色法。电极法通常不需要对水样进行预处理和具测量范围宽等优点。氨氮含量较高时,尚可采用蒸馏﹣酸滴定法。 2.水样的保存 水样采集在聚乙烯瓶或玻璃瓶内,并应尽快分析,必要时可加硫酸将水样酸化至pH2,于2—5℃下存放。酸化样品应注意防止吸收空气中的氮而遭致污染。 预 处 理 水样带色或浑浊以及含其它一些干扰物质,影响氨氮的测定。为此,在分析时需做适当的预处理。对较清洁的水,可采用絮凝沉淀法,对污染严重的水或工业废水,则以蒸馏法使之消除干扰。 (一)絮 凝 沉 淀 法 概 述 加适量的硫酸锌于水样中,并加氢氧化钠使呈碱性,生成氢氧化锌沉淀,再经过滤去除颜色和浑浊等。 仪 器 100ml具塞量筒或比色管。 试 剂 (1)10%(m/V)硫酸锌溶液:称取10g硫酸锌溶于水,稀释至100ml。 (2)25%氢氧化钠溶液:称取25g氢氧化钠溶于水,稀释至100ml,贮于聚乙烯瓶中。 (3)硫酸ρ=1.84。 步 骤 取100ml水样于具塞量筒或比色管中,加入1ml 10%硫酸锌溶液和0.1—0.2ml 25%氢氧化钠溶液,调节pH至10.5左右,混匀。放置使沉淀,用经无氨水充分洗涤过的中速滤纸过滤,弃去初滤液20ml。 (二)蒸 馏 法 概 述 调节水样的pH使在6.0—7.4的范围,加入适量氧化镁使呈微碱性(也可加入pH9.5的Na4B4O7-NaOH缓冲溶液使呈弱碱性进行蒸馏;pH过高能促使有机氮的水解,导致结果偏高),蒸馏释出的氨,被吸收于硫酸或硼酸溶液中。采用纳氏比色法或酸滴定发时,以硼酸溶液为吸收液;采用水杨酸-次氯酸比色法时,则以硫酸溶液为吸收液。 仪 器 带氮球的定氮蒸馏装置:500ml凯氏烧瓶、氮球、直形冷凝管和导管。 试 剂 水样稀释及试剂配制均用无氨水。 (1) 无氨水制备: ① 蒸馏法:每升蒸馏水中加0.1ml硫酸,在全玻璃蒸馏器中重蒸馏,弃去50ml初滤液,接取其余馏出液于具塞磨口的玻瓶中,密塞保存。 ② 离子交换法:使蒸馏水通过强酸性阳离子交换树脂柱。 (2) 1mol/L盐酸溶液。 (3) 1mol/L氢氧化钠溶液。 (4) 轻质氧化镁(MgO):将氧化镁在500℃下加热,以除去碳酸盐。 (5) 0.05%溴百里酚蓝指示液(pH6.0—7.6)。 (6) 防沫剂,如石蜡碎片。 (7) 吸收液:① 硼酸溶液:称取20g硼酸溶于水稀释至1L。 ② 硫酸(H2SO4)溶液:0.01mol/L。 步 骤 (1) 蒸馏装置的预处理:加250ml水于凯氏烧瓶中,加0.25g轻质氧化镁和数粒玻璃珠,加热蒸馏,至馏出液不含氨为止,弃去瓶内残渣。 (2) 分取250ml水样(如氨氮含量较高,可分取适量并加水至250ml,使氨氮含量不超过2.5mg),移入凯氏烧瓶中,加数滴溴百里酚蓝指示液,用氢氧化钠溶液或盐酸溶液调至pH7左右。加入0.25g轻质氧化镁和数粒玻璃珠,立即连接氮球和冷凝管,导管下端插入吸收液液面下。加热蒸馏至馏出液达200ml时,停止蒸馏。定容至250ml。 采用酸滴定法或纳氏比色法时,以50ml硼酸溶液为吸收液,采用水杨酸-次氯酸盐比色法时,改用50ml 0.0 1mol/L硫酸溶液为吸收液。 注意事项 (1) 蒸馏时应避免发生暴沸,否则可造成馏出液温度升高,氨吸收不完全。 (2) 防止在蒸馏时产生泡沫,必要时加入少量石蜡碎片于凯氏烧瓶中。 (3) 水样如含余氯,则应加入适量0.35%硫代硫酸钠溶液,每0.5ml可除去0.25mg余氯。 (一) 纳氏试剂光度法GB7479--87 概 述 1. 方法原理 碘化汞和碘化钾的碱性溶液与氨反应生成淡红棕色胶态化合物,此颜色在较宽的波长范围内具强烈吸收。通常测量用波长在410—425nm范围。 2. 干扰及消除 脂肪胺、芳香胺、醛类、丙酮、醇类和有机氯胺类等有机化合物,以及铁、锰、镁、硫等无机离子,因产生异色或浑浊而引起干扰,水中颜色和浑浊亦影响比色。为此,须经絮凝沉淀过滤或蒸馏预处理,易挥发的还原性干扰物质,还可在酸性条件下加热除去。对金属离子的干扰,可加入适量的掩蔽剂加以消除。 3.方法适用范围 本法最低检出浓度为0.025mol/L(光度法),测定上限为2mg/L。采用目视比色法,最低检出浓度为0.02mg/L。水样作适当的预处理后,本法可适用于地表水、地下水、工业废水和生活污水。 仪 器 (1) 分光光度法。 (2) pH计。 试 剂 配制试剂用水应为无氨水。 1. 纳氏试剂 可选择下列一种方法制备。 (1) 称取20g碘化钾溶于约25ml水中,边搅拌边分次少量加入二氯化汞(HgCI2)结晶粉末(约10g),至出现朱红色沉淀不易溶解时,改为滴加饱和二氯化汞溶液,并充分搅拌,当出现微量朱红色沉淀不再溶解时,停止滴加二氯化汞溶液。 另称取60g氢氧化钾溶于水,并稀释至250ml,冷却至室温后,将上述溶液在边搅拌下,徐徐注入氢氧化钾溶液中,用水稀释至400ml,混匀。静置过夜,将上清液移入聚乙烯瓶中,密塞保存。 (2) 称取16g氢氧化钠,溶于50ml充分冷却至室温。 另称取7g碘化钾和10g碘化汞(HgI2)溶于水,然后将此溶液在搅拌下徐徐注入氢氧化钠溶液中,用水稀释至100ml,贮于聚乙烯瓶中,密塞保存。 2.酒石酸钾钠溶液 称取50g酒石酸钾钠(KnaC4H4O64H2O)溶于100ml水中,加热煮沸以除去氨,放冷,定容至100ml。 3.铵标准贮备溶液 称取3.819g经100℃干燥过的氯化铵(NH4Cl)溶于水中,稀释至标线。此溶液每毫升含1.00mg氨氮。 4. 铵标准使用溶液 移取5.00ml铵标准贮备液于500ml容量瓶中,用水稀释至标线。此溶液每毫升含0.010mg氨氮。 步 骤 1. 校准曲线的绘制 吸取0、0.50、1.00、3.00、5.00、7.00、和10.0ml铵标准使用液于50ml比色管中,加水至标线。加1.0ml酒石酸钾钠溶液,混匀。加1.5ml纳氏试剂,混匀。放置10min后,在波长4250nm处,用光程20mm比色皿,以水作参比,测量吸光度。 由测得得吸光度,减去零浓度空白管的吸光度后,得到校正吸光度,绘制以氨氮含量(mg)对校正吸光度得校准曲线。 2. 水样的测定 (1) 分取适量经絮凝沉淀预处理后的水样(使氨氮含量不超过0.1mg),加入50ml比色管中,稀释至标线,加1.0ml酒石酸钾钠溶液。 (2)分取适量经蒸馏预处理后的馏出液,加入50ml比色管中,加一定量1mol/L氢氧化钠溶液以中和硼酸,稀释至标线。加1.5ml纳氏试剂,混匀。放置10min后,同校准曲线步骤测量吸光度。 3. 空白试验:以无氨水代替水样,作全程序空白测定。计 算 由水样测得的吸光度减去空白试验的吸光度后,从校准曲线上查得氨氮含量(mg)。 氨氮(N,mg/L)= 式中,m—由校准曲线查得的氨氮量(mg); V—水样体积(ml)。 精密度和准确度 三个实验室分析含1.14~1.16mg/L氨氮的加标水样,单个实验室的相对标准偏差不超过9.5%;加标回收率范围为95~104%。 四个实验室分析含1.81~3.06mg/L氨氮的加标水样,单个实验室的相对标准偏差不超过4.4%;加标回收率范围为94~96%。 注意事项 (1) 纳氏试剂中碘化汞与碘化钾的比例,对显色反应的灵敏度有较大影响。静置后生成的沉淀应除去。 (2) 滤纸中常含有痕量铵盐,使用时注意用无氨水洗涤。所用玻璃器皿应避免实验室空气中氨的沾污。 (二) 水杨酸-次氯酸盐光度法 GB7481--87 概 述 1. 方法原理 在亚硝基铁氰化钠存在下,铵与水杨酸盐和次氯酸离子反应生成兰色化合物,在波长697nm具最大吸收。 2. 干扰及消除 氯铵在此条件下,均被定量的测定。钙、镁等阳离子的干扰,可加酒石酸钾钠掩蔽。 3. 方法的适用范围 本法最低检出浓度为0.01mg/L,测定上限为1mg/L。适用于饮用水、生活污水和大部分工业废水中氨氮的测定。 仪 器 (1) 分光光度计。 (2) 滴瓶(滴管流出液体,每毫升相当于20±1滴) 试 剂 所有试剂配制均用无氨水。 1. 铵标准贮备液 称取3.819g经100℃干燥过的氯化铵(NH4Cl)溶于水中,移入1000ml容量瓶中,稀释至标线。此溶液每毫升含1.00mg氨氮。 2. 铵标准中间液 吸取10.00ml铵标准贮备液移取100ml容量瓶中,稀释至标线。此溶液每毫升含0.10mg氨氮。 3. 铵标准使用液 吸取10.00ml铵标准中间液移入1000ml容量瓶中,稀释至标线。此溶液每毫升含1.00μg氨氮。临用时配置。 4. 显色液 称取50g水杨酸〔C6H4(OH)COOH〕,加入100ml水,再加入160ml 2mol/L氢氧化钠溶液,搅拌使之完全溶解。另称取50g酒石酸钾钠溶于水中,与上述溶液合并移入1000ml容量瓶中,稀释至标线。存放于棕色玻瓶中,本试剂至少稳定一个月。 注: 若水杨酸未能全部溶解,可再加入数毫升氢氧化钠溶液,直至完全溶解为止,最后溶液的pH值为6.0—6.5。 5. 次氯酸钠溶液 取市售或自行制备的次氯酸钠溶液,经标定后,用氢氧化钠溶液稀释成含有效氯浓度为0.35%(m/V),游离碱浓度为0.75mol/L(以NaOH计)的次氯酸钠溶液。存放于棕色滴瓶内,本试剂可稳定一星期。 6. 亚硝基铁氰化钠溶液 称取0.1g亚硝基铁氰化钠{Na2〔Fe(CN)6NO〕2H2O}置于10ml具塞比色管中,溶于水,稀释至标线。此溶液临用前配制。 7. 清洗溶液 称取100g氢氧化钾溶于100ml水中,冷却后与900ml 95%(V/V)乙醇混合,贮于聚乙烯瓶内。 步 骤 1. 校准曲线的绘制 吸取0、1.00、2.00、4.00、6.00、8.00ml铵标准使用液于10ml比色管中,用水稀释至8ml,加入1.00ml显色液和2滴亚硝基铁氰化钠溶液,混匀。再滴加2滴次氯酸钠溶液,稀释至标线,充分混匀。放置1h后,在波长697nm处,用光程为10mm的比色皿,以水为参比,测量吸光度。 由测得的吸光度,减去空白管的吸光度后,得到校正吸光度,绘制以氨氮含量(μg)对校正吸光度的校准曲线。 2. 水样的测定 分取适量经预处理的水样(使氨氮含量不超过8μg)至10ml比色管中,加水稀释至8ml,与校准曲线相同操作,进行显色和测量吸光度。 3. 空白试验 以无氨水代替水样,按样品测定相同步骤进行显色和测量。 计 算 由水样测得的吸光度减去空白试验的吸光度后,从校准曲线上查得氨氮含量(μg)。 氨氮(N,mg/L)= 式中,m—由校准曲线查得的氨氮量(μg); V—水样体积(ml)。 注意事项 水样采用蒸馏预处理时,应以硫酸溶液为吸收液,显色前加氢氧化钠溶液使其中和。 (三) 滴 定 法 GB7478--87 概 述 滴定法仅适用于进行蒸馏预处理的水样。调节水样至pH6.0~7.4范围,加入氧化镁使呈微碱性。加热蒸馏,释出的氨被吸收入硼酸溶液中,以甲基红-亚甲蓝为指示剂,用酸标准溶液滴定馏出液中的铵。 当水样中含有在此条件下,可被蒸馏出并在滴定时能与酸反应的物质,如挥发性胺类等,则将使测定结果偏高。 试 剂 (1) 混合指示液: 称取200mg甲基红溶于100ml 95%乙醇;另称取100mg亚甲蓝溶于50ml 95%乙醇。以两份甲基红溶液与一份亚甲蓝溶液混合后供用。混合液一个月配制一次。 注: 为使滴定终点明显,必要时添加少量甲基红溶液于混合指示液中,以调节二者的比例至合适为止。 (2) 硫酸标准溶液(1/2H2SO4=0.020mol/L): 分取5.6ml(1+9)硫酸溶液于1000ml容量瓶中,稀释至标线,混匀。按下述操作进行标定。 称取经180℃干燥2h的基准试剂级无水碳酸钠(Na2CO3)约0.5g(称准至0.0001g),溶于新煮沸放冷的水中,移入500ml容量瓶中,稀释至标线。移取25.00ml碳酸钠溶液于150ml锥形瓶中,加25ml水,加1滴0.05%甲基橙指示液,用硫酸溶液滴定至淡橙红色止。记录用量,用下列公式计算,硫酸溶液的浓度。 硫酸溶液浓度(1/2H2SO4,mol/L)= 式中,W—碳酸钠的重量(g); V—硫酸溶液体积(ml)。 (3)0.05%甲基橙指示液。 步 骤 1. 水样的测定 于全部经蒸馏预处理、以硼酸溶液为吸收液的馏出液中,加2滴混合指示液,用0.020mol/L硫酸溶液滴定至绿色转变成淡紫色止,记录用量。 2. 空白试验 以无氨水代替水样,同水样全程序步骤进行测定。 计 算 氨氮(N,mg/L)= 式中,A—滴定水样时消耗硫酸溶液体积(ml); B—空白试验硫酸溶液体积(ml); M—硫酸溶液浓度(mol/L); V—水样体积(ml); 14—氨氮(N)摩尔质量。 (四) 电 极 法 概 述 1. 方法原理 氨气敏电极为一复合电极,以pH玻璃电极为指示电极,银-氯化银电极为参比电极。此电极对置于盛有0.1mol/L氯化铵内充液的塑料管中,管端部紧贴指示电极敏感膜处装有疏水半渗透薄膜,使内电解液与外部试液隔开,半透膜与pH玻璃电极有一层很薄的液膜。当水样中加入强碱溶液将pH提高到11以上,使铵盐转化为氨,生成的氨由于扩散作用而通过半透膜(水和其他离子则不能通过),使氯化铵电解质液膜层内NH4+Ö NH3+H+的反应向左移动,引起氢离子浓度改变,由pH玻璃电极测得其变化。在恒定的离子强度下,测得的电动势与水样中氨氮浓度的对数呈一定的线性关系。由此,可从测得的电位确定样品中氨氮的含量。 2. 干扰及消除 挥发性胺产生正干扰;汞和银因同氨络合力强而有干扰;高浓度溶解离子影响测定。 3. 方法适用范围 本法可用于测定饮用水、地面水、生活污水及工业废水中氨氮的含量。色度和浊度对测定没有影响,水样不必进行预蒸馏,标准溶液和水样的温度应相同,含有溶解物质的总浓度也要大致相同。 方法的最低检出浓度为0.03mg/L氨氮;测定上限为1400mg/L氨氮。 仪 器 (1) 离子活度计或带扩展毫伏的pH计。 (2) 氨气敏电极。 (3) 电磁搅拌器。 试 剂 所有试剂均用无氨水配制。 (1) 铵标准贮备液: 称取3.819g经100℃干燥过的氯化铵(NH4Cl)溶于水中,移入1000ml容量瓶中,稀释至标线。此溶液每毫升含1.00mg氨氮。 (2) 100、10、1.0、0.1mg/L的氨标准使用液: 用铵标准贮备液稀释配制。 (3) 电极内充液:0.1mol氯化铵溶液。 (4) 氢氧化钠(5mol/L)-Na2-EDTA(0.5mol/L)混合溶液,贮于聚乙烯瓶中。 步 骤 1. 仪器和电极的准备 按使用说明书进行,调试仪器。 2. 校准曲线的绘制 吸取10.00ml浓度为0.1、1.0、10、100、1000mg/L的铵标准溶液于25ml小烧杯中,浸入电极后加入1.0ml氢氧化钠-Na2-EDTA溶液,在搅拌下,读取稳定的电位值(在1min内变化不超过1mV时,即可读数)。在半对数坐标线绘制E-logc的校准曲线。 3. 水样的测定 吸取10.00ml水样,以下步骤与校准曲线绘制相同。由测得的电位值,在校准曲线上直接查得水样的氨氮含量(mg/L)。 精密度与准确度 七个实验室分析含14.5mg/L氨氮的统一分发的加标地面水。实验室内相对标准偏差为2.0%;实验室间相对标准偏差为5.2%;相对误差为-1.4%。 注意事项 (1) 绘制校准曲线时,可以根据水样中氨氮含量,自行取舍三或四个标准点。 (2) 试验过程中,应避免由于搅拌器发热而引起被测溶液温度上升,影响电位值的测定。 (3) 当水样酸性较大时,应先用碱液调至中性后,再加离子强度调节液进行测定。 (4) 水样不要加氯化汞保存。 (5) 搅拌速度应适当,不使形成涡流,避免在电极处产生气泡。 (6) 水样中盐类含量过高时,将影响测定结果。必要时,应在标准溶液中加入相同量的盐类,以消除误差。
  • 力合科技高氯酸盐水质分析仪新品上市
    水为生命之源,水质安全与人们的健康生活息息相关,2023年4月1日新版《生活饮用水卫生标准》(GB5749-2022)正式实施,相比《生活饮用水卫生标准》(GB5749-2006)旧版的标准,高氯酸盐为重要新增指标,规定标准限值为0.07mg/L。高氯酸盐来源广泛,是火药、烟花的主要原料之一,其化学性质稳定、迁移性强、潜在危害大、暴露途径多,对食品安全和人体健康构成巨大威胁,我国部分地区饮用水中存在高暴露情况;高氯酸根为正四面体结构,具有高度的化学稳定性,是一种持久性的有毒环境污染物质。研究表明,高氯酸盐作为一种内分泌干扰物,主要危害是影响机体甲状腺的正常功能,主要原因在于高氯酸盐的电荷和离子半径与碘离子非常接近,可以与碘离子竞争直接进入人体的甲状腺,阻碍人体对碘的吸收,从而造成甲状腺功能紊乱,因此研究高氯酸盐高灵敏监测技术与装备,支撑饮用水安全保障十分必要。01研发时间轴2013年,开始了高氯酸盐自动监测技术的研究。2014年,开发出了基于离子色谱法的高氯酸盐水质自动分析仪,但前处理过程复杂,且整体购置成本及运行成本相对较高。2019年,仪器设备安装于长江巡测示范站,开启了长江干流高氯酸盐浓度水平的研究之旅。2023年,公司研发团队基于前期积累的应用经验,成功开发出低成本、全自动以及稳定可靠的光学法的高氯酸盐自动分析仪,定量下限低于《生活饮用水卫生标准》(GB5749-2022)标准限值的十分之一,针对光学测量干扰问题专门配备抗干扰模块,整体性能媲美离子色谱法的仪器,可用于生活饮用水、地表水、地下水、工业废水以及企业废水排放监测。产品类型1:在线监测分析仪产品类型2:实验室自动分析仪02优势特点灵敏度高,检测限低选取具有高选择性、专一性强、灵敏度高的反应体系,配备自动化富集浓缩装置,可实现高氯酸盐的高精度实时连续监测。兼容性强,建设及运行成本低相对于传统离子色谱分析方案,仪器购置及运行成本均较低。仪器采用公司标准化外观设计,可直接接入已建的监测系统,经济性整体优势明显。分析速度快单次样品分析时间<30min。智能化运行可根据实际应用场景进行切换,对工作模式、仪器关键部件状态信息、辅助设备信息实时监控,实现仪器健康度自诊断与自修复,可获得极佳的稳定性和可靠性。
  • 福利+干货>2,读透草甘膦衍生要点
    2022年3月15日,国家市场监督管理总局和国家标准化管理委员会联合发布《生活饮用水卫生标准》等5项强制性国家标准。新发布的《生活饮用水卫生标准》标准号定为GB5749-2022,将于2023年4月1日起正式实行,全面代替现行的GB5749-2006。 图1:《生活饮用水卫生标准》发布本次修订对标准的范围进行了更加明确的表述,对规范性引用文件及检验方法进行了更新,其中农残的测试仍占据很大的比重。可见我国对于农残危害以及检测依旧高度重视。 草甘膦作为通用型的广谱杀虫剂,日常的使用占比很大,在常规的环境检测中均属于必检项目。而在2022版的《生活饮用水卫生标准》中依然沿用了,草甘膦的经典测试方法——柱后衍生法。 针对标准相关要求,Pickering实验室开发了“草甘磷的完整应用方案”,本文也将剖析草甘磷衍生化中的关键问题,并进行逐一解释。草甘膦的衍生化原理是什么呢?草甘膦和AMPA在强阳离子交换柱(Pickering Lot No.1954150)上完全磺化,交联、分离。等度分离后,用柱再生液(Pickering Lot No.RG019)再生色谱柱后,再用洗脱液重新平衡。荧光检测遵循两阶段柱后反应。 *阶段,草甘膦通过次氯酸盐被氧化成氨基乙酸。在第二阶段,氨基乙酸与OPA(Pickering Lot No.0120)和Thiofluor™ (Pickering Lot No.3700-2000)在pH值为9-10反应时产生高荧光的异吲哚。而AMPA不需要初始氧化,可直接与OPA反应,事实上,氧化会降低AMPA的荧光效应。(如图2所示) 图2:氧化会降低AMPA的荧光效应 为何需同时测试草甘膦及AMPA?根据标准要求,需同时测试草甘膦及氨甲基膦酸(AMPA)。 这是因为,按照标准要求,衍生溶液制备过程中,OPA稀释液(Pickering Lot No.GA116)中需加入5%次氯酸钠溶液。草甘磷在含氯消毒液中会发生降解,信号值发生变化,AMPA作为草甘膦的降解产物,在测试过程中与草甘膦信号值有对应关系,可帮助校准和确定草甘膦信号值是否达到*状态。(参考图3) 图3:AMPA与草甘膦信号值有对应关系 此处请注意:在添加时次氯酸钠的浓度非常重要,目前市面上出售的溶液浓度标示有不准确情况,建议先从低浓度加起,缓慢调整。 Pickering应用方案的方法灵敏度如何?根据标准要求“本方法草甘膦和氨甲基膦酸的*检测质量均为5.0 ng,若取200 μL直接进样,则*检测质量浓度均为25 μg/L。” Pickering应用方案在优化流动相(Pickering Lot No.GA104、K200)梯度情况下,可达到100μL进样,*检测浓度达到12 μg/L,完全满足方法要求。 图4:12ug/L草甘膦 Pickering推荐配置方案&获取方式 图5:Pickering推荐配置方案 点击填写表单,即刻咨询更多相关内容 上述配置方案,还可用于扩展呋喃丹、甲萘威等农残的测试。
  • 北京预防医学会发布《母乳、血液和尿液中氯酸盐和高氯酸盐的测定》等6项团体标准征求意见稿
    由北京预防医学会批准立项的《母乳、血液和尿液中氯酸盐和高氯酸盐的测定》《韭菜中氯酸盐和高氯酸盐的测定 离子色谱-质谱/质谱法》《空气中16种多环芳烃的测定 气相色谱三重四级杆质谱法》《工作场所空气有毒物质测定乙醇胺的离子色谱法》《新型冠状病毒感染样本采集包装运输及检测规范》(修订)和《新型冠状病毒感染样本意外溢洒事故处理规范》(修订)等6项团体标准的征求意见稿已完成。根据《北京预防医学会团体标准管理办法(2023年版)》的要求,现在网上公开征求意见,欢迎提出宝贵意见。请将意见填入附件《意见反馈表》中,于2024年3月2日之前,以E-mail或电话的方式反馈至我会。若各单位了解到该标准内容涉及专利权/商标权,请将涉及专利权/商标权的相关情况一并反馈。联系人:侯宏电话:010-64407272E-mail:ttbz7272@163.com北京预防医学会2024年2月1日1-2编制说明-母乳血液和尿液中氯酸盐和高氯酸盐的测定编制说明.pdf1-1征求意见稿-母乳血液和尿液中氯酸盐和高氯酸盐的测定.pdf2-1征求意见稿-韭菜中氯酸盐和高氯酸盐的测定 离子色谱-质谱质谱法.pdf1-3验证报告1-母乳血液和尿液中氯酸盐和高氯酸盐的测定.pdf2-2编制说明-韭菜中氯酸盐和高氯酸盐的测定 离子色谱-质谱质谱法.pdf2-3验证报告1-韭菜中氯酸盐和高氯酸盐的测定 离子色谱-质谱质谱法.pdf1-4验证报告2-母乳血液和尿液中氯酸盐和高氯酸盐的测定.pdf3-2编制说明-空气中16种多环芳烃测定-?相?谱三重四级杆质谱法.pdf3-1征求意见稿-空气中16种多环芳烃测定-气相色谱三重四级杆质谱法.pdf3-3验证报告1-空气中16种多环芳烃测定-气相色谱三重四级杆质谱法(通州疾控).pdf2-4验证报告2-韭菜中氯酸盐和高氯酸盐的测定 离子色谱-质谱质谱法.pdf4-1征求意见稿-工作场所空气有毒物质测定 乙醇胺的离子色谱法.pdf4-2编制说明-工作场所空气有毒物质测定乙醇胺的离子色谱法.pdf4-3验证报告1-工作场所空气有毒物质测定(通州疾控).pdf3-4验证报告2-空气中16种多环芳烃测定-气相色谱三重四级杆质谱法(朝阳疾控).pdf5-2修订说明-新型冠状病毒感染样本采集包装运输及检测规范.pdf5-1征求意见稿-新型冠状病毒感染样本采集包装运输及检测规范.pdf4-4验证报告2-工作场所空气有毒物质测定(丰台疾控).pdf附件7 意见反馈表.docx6-2修订说明-新型冠状病毒感染样本意外溢洒事故处理规范.pdf6-1征求意见稿-新型冠状病毒感染样本意外溢洒事故处理规范.pdf
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制