当前位置: 仪器信息网 > 行业主题 > >

碘化木兰花碱

仪器信息网碘化木兰花碱专题为您提供2024年最新碘化木兰花碱价格报价、厂家品牌的相关信息, 包括碘化木兰花碱参数、型号等,不管是国产,还是进口品牌的碘化木兰花碱您都可以在这里找到。 除此之外,仪器信息网还免费为您整合碘化木兰花碱相关的耗材配件、试剂标物,还有碘化木兰花碱相关的最新资讯、资料,以及碘化木兰花碱相关的解决方案。

碘化木兰花碱相关的方案

  • 用光照培养箱培育米兰花
    米兰花要生长在适宜的土壤中,用疏松、排水、透气良好的微酸性沙壤土,千万不能使用盐碱重的板结土质。养上一两年左右要换次合适盆土。
  • 光照培养箱对2种野生兰花的研究
    兰花枝叶细长深绿,花型鲜艳,具有很高的观赏价值,盆栽可装饰环境和布置各类商业空间,还可与其它花卉配合建造各类花坛 其花枝切下后,瓶插水养可维持数周,是高档的插花材料。为了了解该植物生长环境对其影响,通过光照培养箱对光照和温度两个主要条件进行小陇山林区野生春兰和蕙兰的生长以及开花的时间影响研究。
  • 海能仪器:凯氏定氮仪测定兰花豆中粗蛋白的含量
    兰花豆是中国传统的小吃,用蚕豆作为原材,经去杂、吸水膨胀、剥口、沥干、油炸等工序制作而成,根据口味可适量撒拌些食盐等,口感酥、脆、香。蚕豆含蛋白质、碳水化合物、粗纤维、磷脂、胆碱、维生素B1、维生素B2、烟酸、和钙、铁、磷、钾等多种矿物质,尤其是磷和钾含量较高。蚕豆营养价值丰富,含8种必需氨基酸,且不含胆固醇,可以提高食品营养价值,预防心血管疾病,有治疗脾胃不键、水肿等病症的功效。参照国标《GB 5009.5-2016 食品安全国家标准 食品中蛋白质的测定》对兰花豆样品进行粗蛋白的测定。
  • 谈谈铃兰培养中重要的条件之光照培养箱
    铃兰的花语是幸福归来,象征着纯洁与幸福。铃兰花株型小巧,每年的5-6月份,铃兰花朵绽放,像一个个小铃铛挂在枝头,散发着怡人的香味,铃兰非常适合盆栽观赏,用铃兰花花束做的手捧花非常雅致,最受欧洲皇室和明星喜爱。
  • 天津兰力科:电化学氧化对碳纤维表面电化学性质的影响
    碳纤维表面呈现化学惰性,缺乏活性官能团,限制了碳纤维作为电化学分析电极的应用。目前,许多手段被用于碳纤维的表面改性处理。采用电化学氧化方法,在磷酸溶液中对碳纤维进行了处理,并进行了红外光谱和循环伏安试验。结果发现:处理后碳纤维的表面接上了活性官能团,大量活性碳原子被剥离出来。在K4 Fe (CN) 6 加KCl、FeSO4 加HClO4 两组混合溶液体系中的电化学响应明显改善,适合作为电化学分析电极。
  • 【PalmSens4电化学应用】电沉积氧化对乙酰氨基酚,用于尼古丁和乙基香兰素β-D-葡萄糖苷的智能便携式比率检测
    对乙酰氨基酚氧化物(PA ox)的电沉积,用于尼古丁(NIC)和乙基香兰素β-D-葡萄糖苷(EVG)的智能便携式比率检测。在丝网印刷碳电极(SPCE)上电沉积PA氧作为新的固定状态比率参考探针。将便携式电化学工作站与智能手机相结合,作为智能便携式电化学传感平台。
  • 天津兰力科:添加钙对氢氧化镍结构和电化学性能的影响
    通过XRD 和循环伏安法研究了添加钙对氢氧化镍结构和电化学性能的影响。其中钙是以离子的形式对氢氧化镍掺杂。结果表明:添加了钙的氢氧化镍的晶粒尺寸变小,比表面积增加,晶体缺陷和畸变增多,提高了质子的传递能力和活性物质的利用率,其中以共沉淀方式添加1%钙的氢氧化镍电极的电化学性能最佳。
  • 天津兰力科:溶胶电泳法制备纳米TiO2膜的电化学行为研究
    利用有机钛制备TiO2溶胶,采用电泳法在铂金基底上镀膜,经室温晾干后,对TiO2膜进行电化学活性实验。实验中对影响TiO2薄膜电化学活性的因素进行了讨论,结果表明:胶体浓度、电泳时间、外加电压等因素对膜的电化学性能产生影响。该法制得的TiO2纳米薄膜膜层连续,具有一定的电催化活性,其在亚甲基蓝PBS溶液中的循环伏安图与空白铂片电极相比,有一对明显的可逆氧化还原峰。利用SEM、UV-vis 对膜进行表征。 关键词:溶胶-凝胶 电泳 TiO2薄膜 电催化 亚甲基蓝
  • 天津兰力科:综合电化学工作站硬件设计与实现
    随着电池行业的迅猛发展,人们对电池检测技术提出了更高的要求,迫切需要一种高效,能测量体现电池反应过程参数的检测设备。本课题目的在于研发一种综合电化学工作站满足上述需求。综合电化学工作站是一套完整的、数字化的、电化学体系的检测分析设备。它把恒电位仪,恒电流仪和电化学交流阻抗分析仪有机地结合到一起,既可以做常规的基本测试如动电位扫描、动电流扫描试验和电化学交流阻抗测量,也可以做基于这三种基本试验的程式化试验,如恒电流充电-电化学交流阻抗测量,电池寿命循环试验-电化学交流阻抗测量试验,从而完成多种状态下电化学体系的参数跟踪和分析。它可以快捷、精确的检测电池的容量、测量体现电池反应机理的交流阻抗参数。本文以交流阻抗谱为理论依据,在既定电位范围、精度、分辨率和响应速度等性能指标的要求下构建出上下位机多层次硬件体系结构,有针对性地设计了下位机的接口电路板和测量电路板,并在此设计方案下进行了大量的硬件功能调试,达到了预期的性能指标。本文的主要内容可概括为以下三点:(1)电化学工作站的功能原理研究与硬件系统设计。介绍了电化学工作站的三种基本功能和性能指标,电化学交流阻抗测量的原理,并进而提出了电化学工作站的硬件系统结构,构建了电化学工作站的硬件结构设计;(2)下位机的接口电路板和测量电路板设计,在设计中力图提高系统精度、灵活性。实现对电池电压和电流的测量和控制功能,使工作站测量和控制功能达到了功能多样化精确化,为电化学交流阻抗测量等功能实现打下基础;(3)实验及误差分析。对电化学工作站的硬件测量和控制功能进行了实验验证,分析了误差产生得原因,对固有误差进行了补偿,对不同幅值直流信号和不同幅值、频率的交流信号进行测量,达到了精确测量的性能指标。
  • 基于电子鼻的运输振动蔬菜气味品质检测
    以尖椒、青圆椒和西兰花为试材,采用振动、不振动和MeJA3种方式处理以上3种蔬菜,利用电子鼻对蔬菜在不同贮藏时间内挥发性成分进行检测。
  • 液相柱 Inertsil ODS-3 用于辛夷中木兰脂素的检测
    色谱柱Inertsil ODS-3 (4.6x150mm,5μ m)流动相:乙腈-四氢呋喃-水(35:1:64)柱温: 35℃检测波长278nm流速1.0ml/min进样量10μ L※此条件同样适用于Inertsil ODS-4 (4.6x150mm, 5μ m)
  • 催化剂中的镧的测定
    稀土元素镧以其独特的电子结构, 提供了良好的电子转移轨道, 使含镧催化剂具有良好的催化活性。用镧交换X 和Y 分子筛可明显地改善催化剂的活性和稳定性, 且镧的加入量直接影响催化剂的活性、热稳定性、选择性[ 1 ]。目前催化剂中镧含量的测定用草酸盐重量法, 该方法结果准确, 但操作过程繁杂, 时间长 X 荧光光谱法[ 2 ]具有较好的效果, 但因需要昂贵的仪器和特定的实验设备,不适合常规分析和推广普及。本文用偶氮胂(Ë ) [ 3 ]为显色剂, 测定了全馏分FCC 汽油芳构化降烯烃催化剂中的镧含量, 与X 荧光光谱法对照表明, 结果准确可靠, 能满足日常分析要求。如欲了解更多该产品信息,可来电咨询 021-61610135 ---------------------------------------------------------------------------  上海纳锘仪器有限公司  地址:上海市莲花南路1388弄8号楼碧恒广场1503室[201108]  电话:021-60900829,60900830,61131031,61131051  传真:021-61131052  E-Mail:info@nano-instru.com
  • 天津兰力科:综合电化学工作站系统结构的设计
    电池行业的发展对电池检测技术提出了更高的要求,迫切需要高效智能的检测设备。本课题目的是设计一种满足功能和精度要求的综合电化学工作站。综合电化学工作站在电池检测中占有重要地位,它将恒电位仪、恒电流仪和电化学交流阻抗分析仪有机地结合,既可以做三种基本功能的常规试验,也可以做基于这三种基本功能的程式化试验。在试验中,既能检测电池电压、电流、容量等基本参数,又能检测体现电池反应机理的交流阻抗参数,从而完成对多种状态下电池参数的跟踪和分析。本文从结构设计的角度,对综合电化学工作站进行了研究。根据恒电位测量、恒电流测量、交流阻抗测量三种功能的工作原理和相应的性能指标,提出以DSP处理器为控制核心的硬件结构体系。在该设计方案下,进行了大量的硬件设计调试工作和软件设计调试工作。本文的内容包括以下三点:(1)电化学工作站的系统分析。详细分析了电化学工作站三种基本功能的工作原理和性能指标,确定了电化学工作站的硬件系统结构—以DSP处理器为整个系统的控制核心,实现对六个通道的电池测量和控制,以及将数据送往PC机进行储存和处理。(2)系统硬件设计。硬件设计主要集中在DSP电路板、接口电路板、测量控制电路板的设计上。DSP电路负责发出控制信号和处理测量信号;测量电路直接与被测对象相连接,实现具体测量、控制;接口电路是DSP电路板与测量控制电路板之间的桥梁。从电路结构、芯片选型到最后布局,将各个功能电路进行细化,分步骤设计。(3)系统软件设计。结合系统工作特点和硬件结构,确定了软件总体架构。重点研究了过采样滤波软件算法和快速傅立叶变换(FFT)测算交流阻抗软件算法。
  • 天津兰力科:酵母核糖核酸与中性红相互作用及电化学检测
    采用循环伏安法对酵母核糖核酸与中性红的相互作用进行了研究。NR在玻碳电极上有一对氧化还原峰, 加入yRNA后, 氧化还原峰电流降低, 但没有新的氧化还原峰出现, 表明NR与yRNA发生了较强的相互作用, 紫外光谱进一步证实该作用方式为静电作用。求得NR与yRNA的结合比为1 ∶2, 建立了一种间接检测酵母核糖核酸的电化学方法, 检测范围为510 ×10 - 3 ~0125 g/L, 检出限达110 ×10 - 5 g/L。
  • 天津兰力科:亚甲基蓝与酵母核糖核酸相互作用的电化学研究
    亚甲基蓝(methylene blue, MB )是一种具有平面结构(结构式见图1)的碱性生物染色剂,在医学临床诊断及化学分析中已有较长的应用历史,可用于亚硝酸盐、磺氨类、氰化物及一氧化碳等中毒的解毒药。电分析化学中常被用作氧化还原指示剂或电子媒介体,其在水溶液中的电化学行为曾被深入地研究[ 1 - 2 ] 。在水溶液中,MB的还原态为无色中性分子,而氧化态MB +为一价阳离子,由于分子中环平面和氮杂原子上甲基的存在而具有一定的疏水性。水溶液中MB容易形成二聚体,在电极上发生两个连续的1电子转移反应(EE mechanism) [ 1 ] ,其氧化还原电位的峰距ΔEp介于1电子转移反应( 59mV)和2电子转移反应(2815mV)之间。以MB 为分子探针来研究其他生物大分子已有很多报道[ 3 - 9 ] ,如近年来发现MB对DNA具有插入作用[ 8 - 9 ] ,可被用于抗癌药物的体外筛选,但对于RNA 的研究目前还没有文献报道。
  • 天津兰力科:细胞色素c 在硒代胱氨酸修饰电极上的直接电化学
    采用电化学和接触角实验方法研究了硒代胱氨酸自组装膜修饰金电极(SeCys SAMs/Au)和十六烷基三甲基溴化铵(CTAB)-硒代胱氨酸自组装复合膜修饰金电极(CTAB-SeCys SAMs/Au)的特性. 探讨了细胞色素c(Cyt c)在SeCys SAMs/Au 电极和CTAB-SeCys SAMs/Au 电极上的电化学行为. 实验证明SeCys 可促进Cyt c 在电极上的氧化还原反应, 加入CTAB 后其与SeCys 之间的协同作用可在Cyt c 与电极之间形成一个开放的通道,促进作用更加明显, 且在一定浓度范围内, 随CTAB 浓度(1×10-5-1×10-4 molL-1)的增大, Cyt c 在CTAB-SeCysSAMs/Au 电极上的氧化还原电流增大, 在接近临界胶束浓度处出现极大值. 在CTAB-SeCys SAMs/Au 电极上Cyt c 产生一对氧化还原峰, 其峰电位分别为0.305 和0.235 V, 其电化学过程受扩散控制. 光谱实验证实SeCys对Cyt c 电化学过程的促进作用是由于SeCys 与Cyt c 中赖氨酸残基的结合.
  • 天津兰力科:Ti基纳米TiO_2_CNT_Pt复合电极制备、表征及电化学性能
    以电合成前驱体直接水解法和电化学扫描电沉积制备复合电极。复合电极具有高活性表面,对甲醇的电化学氧化具有高催化活性和稳定性。
  • 瑞士万通简报-电位滴定法测定碘化亚铜
    电位滴定法测定碘化亚铜应用领域: 制药关键词: 905,电位滴定法,Cu样品: 已处理好的碘化铜溶液,蓝色透明液体绑定:905
  • 天津兰力科:对乙酰氨基酚在碳原子线修饰电极上的电化学行为研究
    运用循环伏安法研究了对乙酰氨基酚在碳原子线修饰电极上的电化学行为. 实验结果表明,对乙酰氨基酚在裸玻碳电极上表现为不可逆的电极过程,而在碳原子线修饰电极上氧化峰和还原峰的电位差为0. 048V,为准可逆过程. 另外,对乙酰氨基酚在该修饰电极上的检出限为1 ×10 - 5mol/L.
  • 基于高光谱成像的西兰花农药残留无损检测方法研究
    本研究应用了400-1000nm的高光谱相机,可采用杭州彩谱科技有限公司产品FS13进行相关研究。光谱范围在400-1000nm,波长分辨率优于2.5nm,可达1200个光谱通道。采集速度全谱段可达128FPS,波段选择后最高3300Hz(支持多区域波段选择)。
  • 天津兰力科:不同离子液体中三氯化铁的电化学行为
    本文采用循环伏安法研究了FeCl3在五种不同的离子液体(包括疏水性和亲水性的离子液体)中的电化学行为,计算了不同离子液体中FeCl3的扩散系数。实验结果表明: Fe3 +在离子液体中的氧化还原过程是一个具有较高可逆性的扩散控制过程。离子液体的阴、阳离子的结构及大小对Fe3 +的电化学响应有影响,且离子液体的阴离子的影响较阳离子更大一些。
  • 天津兰力科:双2[ 22吡咯( 乙氧基) ] 乙烷的合成及其电化学聚合
    以吡咯和二缩三乙二醇为原料合成了N 取代吡咯衍生物单体———双2[ 22吡咯(乙氧基) ]乙烷,并用循环扫描伏安技术研究了该单体的电化学聚合过程。结果表明:在乙腈/ 高氯酸锂溶液中,双2[ 22吡咯(乙氧基) ]乙烷在铟锡氧化物导电玻璃( ITO) 、Pt 、Au 、玻璃碳、石墨电极上均能顺利发生反应,形成一定厚度的聚合物膜。但聚合速率、膜的结构、膜的颜色有差异。溶剂水对聚合有明显影响。形成的聚合膜具有良好的电化学稳定性。
  • 天津兰力科:碱性有机体系中铝阳极的电化学行为
    为了提高铝的活化性能和减少铝的腐蚀,用电化学方法研究了碱性甲醇有机体系及加入添加剂饱和Ca (OH) 2对铝阳极( w (Al) = 991999 %) 电化学行为的影响。结果表明:浓度4 molPL KOH2甲醇+ w (H2O) 30 %体系能大幅度抑制铝的腐蚀,但极化程度有所增大 添加剂饱和Ca (OH) 2 ,使铝在浓度4 molPL KOH2甲醇+ w (H2O) 30 % + 饱和Ca (OH) 2中的电化学活性接近在浓度4 molPL KOH 水溶液中的活性 在1120 V 处的电流密度比无添加剂时的提高了11402 倍 开路电位值Eocp 为- 11870 V。同时铝的腐蚀速度降低,缓蚀率为87167 %。
  • 天津兰力科:杨梅酮的电化学和光谱性质研究
    应用循环伏安和紫外光谱法研究杨梅酮氧化还原性质及其稳定性. 结果表明:在B2R缓冲溶液中玻碳电极上,杨梅酮的氧化还原表现为两步氧化反应和两步还原反应. 氧化反应对应于B环4′2 OH和C环32OH的氧化,还原反应对应于C环4位羰基还原为中间体自由基之后再进一步还原生成羟基. 以上各步反应均为单电子单质子电极过程. 杨梅酮的氧化还原反应与溶液pH关系密切,但其原因来自于去质子化作用,并导致它的抗氧化能力增强,但其最终氧化产物没有电化学活性,并吸附在电极表面,阻碍了电极过程电子传递. 在pH 7. 45~12. 00范围内,杨梅酮也因去质子化作用导致紫外光谱Ⅰ带和Ⅱ带随pH增加,而发生红移,分解作用加剧. 同时分解作用还与放置时间有关.
  • 天津兰力科:盐酸阿霉素在玻碳电极上的电化学行为研究及分析应用
    采用线性扫描伏安法和循环伏安法研究了盐酸阿霉素在玻碳电极上的电化学行为及电极反应机理, 优化了测定盐酸阿霉素的各实验参数。结果表明, 在0.01 mol/L的HCl溶液中, 盐酸阿霉素在-0.40V处出现(vs.SCE) 一灵敏的还原峰, 峰电流与其溶液浓度在0.00000005~0.000001 mol/L ( r = 0.999) 和0.000001~0.00001mol/L ( r = 0.998) 范围内呈良好的线性关系, 检出限为0.00000001mol/L。并用循环伏安法研究了盐酸阿霉素的峰电流性质, 发现电极反应属于准可逆过程, 出现一对灵敏的氧化还原峰, 体系属准可逆吸附波。利用盐酸阿霉素在玻碳电极的电化学行为建立的分析方法可用于盐酸阿霉素的质量监控及药代动力学研究。
  • 天津兰力科:硼氢化钠的电化学行为研究
    硼氢化钠直接燃料电池(DBFC)理论开路电压达到1.64V而引起人们的广泛关注,且其高能量密度可达到9.3Wh/g,高于甲醇燃料电池(6.1 Wh/g)。在硼氢化钠直接燃料电池的工作过程中,硼氢化钠在阳极进行直接氧化反应,但同时硼氢根的水解反应也在进行,而氢气的生成不仅会降低燃料的利用率,且会降低电池的性能。因此,在研究BH4-阳极氧化过程中,如何改善BH4-直接氧化反应,抑制BH4-水解反应具有重要的意义。论文首先采用循环伏安法研究了NaBH4碱性溶液在铂、微盘铂、金、铜、银、泡沫镍、玻碳等电极上的电化学行为。结果表明:在以金、铂电极作工作电极时,硼氢化钠直接氧化反应可以很好的发生;微盘铂电极不宜用于研究浓度较大的硼氢化钠溶液的电化学性能;银和铜电极活性高,但对硼氢化钠直接氧化的研究干扰较大;泡沫镍也显示了一定的活性,但稳定性不好;玻碳不宜作为研究硼氢化钠直接氧化的电极材料。论文进一步采用线性伏安法对铂电极和金电极上的氧化过程进行了详细研究。结果表明:当硼氢化钠浓度大于0.135mol/L且[NaOH]∕[NaBH4]比值在3~7内,铂电极能较好地抑制硼氢化钠水解反应;在金电极上,[NaOH]∕[NaBH4]比值在10~40内,增大氢氧化钠浓度能抑制水解反应,但同时直接氧化电流会随之下降。在硼氢化钠浓度相同,用金电极比用铂做工作电极时,氢氧化钠的需用量要大;铂电极上的硼氢化钠直接氧化过程为非氧化-还原催化,金电极上的硼氢化钠直接氧化过程为扩散控制。但硼氢化钠浓度一定而氢氧化钠量未到所需时,扫描速度增大,溶液对流对电极反应的响应影响减少,有利于电流峰的测定;在303K~353K范围,铂电极上的直接氧化反应电流随温度升高先增大后降低,而金电极上的直接氧化反应电流随温度的升高而升高;添加适量的硫酸钠和硝酸钠,都能使铂和金电极上的直接氧化反应电流增大,但硫酸钠的加入还能促进硼氢化钠的水解反应且过量时会导致氧化反应电流降低,硝酸钠能抑制硼氢化钠水解反应。
  • 天津兰力科:膨胀石墨电极的制备及用于色氨酸电化学检测的研究
    以化学氧化法制备了膨胀石墨,再以石蜡作为粘合剂制备了膨胀石墨电极,该电极兼备电化学传感器和富集待测物分子,缩短传质过程时间的特点。优化了测定条件,在此基础上建立了一种直接测定色氨酸的电分析方法。结果表明:在0. 02~0. 12 mmol/L范围内,电极响应与色氨酸浓度呈良好的线性关系,检出限为2. 0 ×10 - 7 mol/L, RSD为2. 4%。该电极具有良好的选择性,除酪氨酸外,浓度高达5. 0 mmol/L (色氨酸浓度的100倍)的其它8种氨基酸在电极上均没有可测的响应。用该电极测定了医用氨基酸注射液中色氨酸的含量,结果与标称值相符。对色氨酸在膨胀石墨电极表面的富集原因和反应机理进行了初步探讨。
  • 天津兰力科:杨梅酮在碳纳米管上修饰电极上的电化学性质研究
    制备了多壁碳纳米管修饰玻碳电极(MWN T sö GC) , 并研究了杨梅酮在MWN T sö GC 上的电化学性质。方法:采用循环伏安法对杨梅酮的浓度进行测定。结果: 氧化还原峰电流与杨梅酮的浓度呈线性关系。结论: 多壁碳纳米管对杨梅酮有良好的催化活性,MWN T sö GC 对于测定杨梅酮呈现良好的响应特性和较高的测定灵敏度, 该传感器应用于杨梅酮的分析。
  • 天津兰力科:芦丁在碳纳米管修饰电极上的电化学性质研究
    制备了多壁碳纳米管修饰玻碳电极(MWNT/GC) ,并研究了芦丁在MWNT/GC 上的电化学行为. 研究表明,MWNT/GC 对芦丁的氧化具有明显的电催化作用. 用循环伏安法对芦丁浓度进行了测定,其氧化峰电流与芦丁的浓度在0.0000005 ~0.0001mol/L 范围内呈良好的线性关系,线性相关系数为0.9918.
  • 水中碘化物的检测
    根据HJ 778-2015水质中碘化物的检测要求,采用离子色谱法对地表水中中的碘化物进行测定,使用SH-AC-17型阴离子色谱柱 、电导检测器和Clarity工作站对碘化物含量进行测定。该方法也适用于地下水中碘化物的测定。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制