当前位置: 仪器信息网 > 行业主题 > >

可溶性硫化黑

仪器信息网可溶性硫化黑专题为您提供2024年最新可溶性硫化黑价格报价、厂家品牌的相关信息, 包括可溶性硫化黑参数、型号等,不管是国产,还是进口品牌的可溶性硫化黑您都可以在这里找到。 除此之外,仪器信息网还免费为您整合可溶性硫化黑相关的耗材配件、试剂标物,还有可溶性硫化黑相关的最新资讯、资料,以及可溶性硫化黑相关的解决方案。

可溶性硫化黑相关的资讯

  • 土壤中可溶性硫酸盐的测定等三项国家环保标准征求意见
    关于征求《土壤 可溶性硫酸盐的测定 重量法》(征求意见稿)等三项国家环境保护标准意见的函  各有关单位:  为贯彻《中华人民共和国环境保护法》,保护环境,保障人体健康,提高环境管理水平,规范环境监测工作,我部决定制订《土壤 可溶性硫酸盐的测定 重量法》等3项国家环境保护标准。目前,标准编制单位已编制完成标准的征求意见稿。根据国家环境保护标准制修订工作管理规定,现将标准征求意见稿和有关材料印送给你们,请研究并提出书面意见,并于2010年8月15日前反馈我部。  联系人:环境保护部科技标准司 李晓弢  通信地址:北京市西直门内南小街115号  邮政编码:100035  联系电话:(010)66556215  传真:(010)66556213  附件:1.《土壤可溶性硫酸盐的测定重量法》(征求意见稿)  2.《土壤可溶性硫酸盐的测定重量法》(征求意见稿)编制说明  3.《土壤氨氮、亚硝酸盐氮、硝酸盐氮的测定分光光度法》(征求意见稿)  4.《土壤氨氮、亚硝酸盐氮、硝酸盐氮的测定分光光度法》(征求意见稿)编制说明  5.《土壤、沉积物挥发性有机物的测定吹扫捕集/气相色谱—质谱法》(征求意见稿)  6.《土壤、沉积物挥发性有机物的测定吹扫捕集/气相色谱—质谱法》(征求意见稿)编制说明   二○一○年七月十六日
  • 新欧盟玩具指令可溶性重金属的筛查服务
    新欧盟玩具指令(2009/48/EC)可溶性重金属的筛查服务  挑战  由于人们对玩具的安全性日益关注,欧盟颁布了新的玩具指令2009/48/EC,旨在应对不断变化的玩具安全问题,并提升执法力度和有效性。该指令于2009年6月在欧盟官方公报上发布,除化学要求将于2013年7月生效外,其他部份巳于2011年7月生效。  现行的欧盟玩具指令88/378/EEC于20多年前开始实施。在过去的20年中,玩具产品发生了巨大变化,现行指令中要求的8项受限制可溶性重金属巳不能满足玩具安全的需要。在新的指令中,受限制的可溶性重金属大幅增加至19项。附表为在不同材质中规定的限量。  在不同材质中可溶性重金属的规定限量 标准EN71-3元素新标准的限值现行标准的限值在干燥,粉末状 或柔软的玩具材料中在液态或粘稠的玩具材料中在玩具表面刮出物中普通玩具材料造型粘土 (mg/kg)(mg/kg)(mg/kg)(mg/kg)(mg/kg)铝(Al)5625140670000----锑(Sb)4511.35606060砷(As)3.80.9472525钡(Ba)45001125560001000250硼(B)120030015000----镉(Cd)1.30.3177550三价铬(Cr III)37.59.446060(可溶性铬总含量)25(可溶性铬总含量)六价铬(Cr IV)0.020.0050.2钴(Co)10.52.6130----铜(Cu)622.51567700----铅(Pb)13.53.41609090锰(Mn)120030015000----汞(Hg)7.51.9946025镍(Ni)7518.8930----硒(Se)37.59.4460500500锶(Sr)4500112556000----锡(Sn)150003750180000----有机锡(Organictin)0.90.212----锌(Zn)375093846000----  解决方案  Intertek为帮助玩具企业尽早了解自身的产品是否符合新的规定,现提供2009/48/EC受限制可溶性重金属的筛查服務。  关于Intertek  Intertek天祥集团是全球领先的质量和安全服务机构,为众多行业提供专业创新的解决方案。从审核和检验,到测试,质量保证和认证,Intertek致力为客户的产品和流程增加价值,促进客户在全球市场取得成功。Intertek在超过100个国家拥有1,000多家实验室和分支机构,以及33,000名的员工,凭借专业技术,资源和全球网络,为客户提供最优质的服务。Intertek集团(LSE:ITRK)在伦敦证券交易所上市,是英国富时100指数成分股之一。
  • 欧盟加强玩具中的可溶性镉限量要求
    近日,根据新的玩具安全指令,欧盟对玩具中的可溶性镉设定了更为严格的限量要求。同时,欧盟要求成员国在2013年1月20日之前将新要求转化为国家法律。要求的正式生效日期将与其他化学品要求相同,即2013年7月20日。  2009年6月,新玩具安全指令2009/48/EC(TSD)发布于《欧盟官方公报》(OJEU)上,并在2009年7月20日生效,成员国从2011年7月20日开始实施新的措施。但是根据指令附件二第三部分规定,个别化学物质具有豁免权,而这些化学物质的相关要求将在2013年7月20日生效。  2012年3月3日,《欧盟官方公报》公布了新指令2012/7/EU。指令参照新的科学数据,将更严格限制玩具中的镉迁移限量。  • 1.9毫克/千克至1.3毫克/千克(干燥、脆弱、粉状或柔软玩具材料)  • 0.5毫克/千克至0.3毫克/千克(液体或胶质玩具材料)  • 23毫克/千克至17毫克/千克(易刮落玩具材料)  因此,欧盟要求成员国在2013年1月20日之前将新指令转化为国家法律。附件二第三部分规定的化学物质的生效日期继续保持至2013年7月20日。其中,总结了19种重金属元素的迁移限量,以及新的限量与之前的比较如表格1所示。为方便参考,豁免的玩具材料在表格2中给出。  可溶性镉限量的变化来自所谓的欧盟专家委员会程序(comitology procedure)。该新程序使欧盟委员会修改部分指令而不需要通过欧洲议会和理事会的双方同意。限制物质使用限量 新生儿和儿童服装(12岁以下)直接与皮肤接触的产品间接与皮肤接触的产品致癌染料禁止偶氮染料禁止海军蓝染料禁止溴化阻燃剂(PBB,TRIS,TEPA)禁止甲醛<20毫克/千克<75毫克/千克<300毫克/千克邻苯二甲酸盐(DEHP,DBP,BBP,DNOP,DINP,DIDP)≤0.1%——镉禁止镍小于0.5微克/平方厘米/每周铅<300毫克/千克 玩具材料豁免1干燥、脆弱、粉状或柔软• 压缩油漆表面• 粉笔、蜡笔、石膏粉、防水沙、印模膏和橡皮泥• 烤箱硬PVC造型化合物、弹性油泥2液体或胶质• 吹泡泡玩具、广告涂料、指画法颜料• 液体胶粘剂、胶棒、软泥3易刮落• 表面材料(油漆、清漆)• 聚合物(聚苯乙烯、ABS、PVC、聚丙烯(PP)、橡胶、立体塑胶)• 木材(纤维板、刨花板、胶合板)• 服装(短绒毛毡、棉絮、涤纶短纤维、长毛绒)• 玻璃、陶瓷(大理石、玻璃纤维)• 金属和合金(钢、镍黄铜)• 其他材料(皮革、骨头、天然海绵)
  • 地表水中可溶性阳离子知多少?离子色谱IC-16显身手
    导读地表水是人类生活用水的重要来源之一,也是各国水资源的主要组成部分。近年来,随着工业化进程加快,过度取水和工、农业废水的排放,导致地表水受到不同程度的污染。水中可溶性阳离子(K+、NH4+、Ca2+、Mg2+等)在一定程度上反映水质,并与人民健康息息相关。为了保护自然环境,保障人体健康,亟需对地表水中可溶性阳离子进行定量分析。相对于传统方法(化学法和原子吸收法等),离子色谱法(简称IC法)无论在方法检出限、分析速度、测定范围等方面都表现出明显的优势,已成为水质中可溶性阳离子测定的重要手段。今天,我们带来离子色谱检测方案,一起来看看吧。 水中可溶性阳离子超标的危害水质中可溶性阳离子浓度会影响水体硬度,它不仅会干扰基础的新陈代谢还会诱发疾病。比如高钾、钠离子浓度过高,将会使体液失去平衡,对于肾功能不好的人有一定危害。高钙摄入能影响铁、锌、镁、磷的生物利用率,并引发肾结石、奶碱综合症等疾病;过量镁摄入,可能发生心脏完全传导阻滞或心搏停止等。 IC法测定水中可溶性阳离子相关法规随着环保监管的日趋严格,水质中可溶性阳离子的检测日益得到重视。目前我国采用离子色谱法分析水质阳离子的常见标准见下表。其中,《HJ 812-2016 水质 可溶性阳离子的测定 离子色谱法》涉及最常见的6种可溶性阳离子(Li+、Na+、K+、NH4+、Ca2+、Mg2+)。 可溶性阳离子测定,岛津IC-16显身手岛津Essentia IC-16离子色谱仪配置阳离子抑制器,可快速高效对地表水中6种可溶性阳离子进行测定,轻松应对《HJ 812-2016 水质 可溶性阳离子的测定 离子色谱法》中阳离子检测标准的要求。 l 分析条件 l 对照品色谱图按上述分析条件进行测定,对照品色谱图如图1所示。图1. 对照品溶液色谱图(1 µg/mL) l 校准曲线将对照品溶液按照上述分析条件进行测定,使用外标法定量。校准曲线见图2,线性方程、相关系数见表1。 表1. 6种水溶性阳离子校准曲线(1/C)图2. 6种水溶性阳离子校准曲线 l 实际样品取供试品溶液进样5 μL进行测定,以外标法计算供试品含量,色谱图见图3,定量结果如表2所示。图3. 样品色谱图 表2. 供试品溶液测试结果注:N.D. 表示未检出。 结语岛津Essentia IC-16离子色谱仪性能稳定,灵敏度高,配置阳离子膜抑制器CS-1000可轻松应对《HJ 812-2016水质 可溶性阳离子的测定 离子色谱法》检测标准的要求,快速、便捷的实现地表水中6种水溶性阳离子的测定。地表水安全监测刻不容缓,岛津为您的健康安全保驾护航。 本文内容非商业广告,仅供专业人士参考。
  • 【瑞士步琦】白酒酿造,酒醅中可溶性淀粉转化葡萄糖有多少?
    酒醅中可溶性淀粉转化葡萄糖有多少?酒曲生产需要一定的发酵周期,发酵过程不便调控,因此酒曲的化学成分分析对于制曲生产起着相当重要的作用。衡量大曲质量的优劣主要是根据大曲的水分、酸度、淀粉、发酵力、酯化力、糖化力等理化指标的大小,再辅以感官来进行综合评判。其中大曲糖化力是一个重要指标,是表征大曲将酒醅中可溶性淀粉转化为葡萄糖的能力。检测大曲糖化力的传统方法为斐林试剂法,存在耗时长、样品前处理过程繁琐等不足,因此建立一种快速、高效的大曲糖化力检测方法具有重要意义。本实验采用步琦的近红外光谱仪 NIRMaster 对大曲糖化力的快速检测。近红外光谱技术结合偏最小二乘法检测大曲糖化力 1仪器设备瑞士 Buchi 公司的 NIRMaster 傅里叶变换近红外光谱仪。光谱谱区范围为 4000~10000 cm-1,光谱分辨率为 8 cm-1,扫描次数为 48 次,测量序列个数为 3。 2样品酒厂酿酒周期的现用大曲 200 个 3实验方法3.1大曲糖化力化学方法测定大曲糖化力的化学测定法采用斐林试剂法。大曲中的糖化酶能将淀粉水解为还原糖,还原糖可以将斐林试剂中的二价铜离子还原为一价铜离子,反应终点由次甲基蓝指示。根据还原一定量的斐林试剂所需的还原糖量,可计算大曲样品的糖化酶活力,即 1g 大曲在 35 ℃、pH4.6 条件下,反应 1h,将可溶性淀粉分解为葡萄糖的能力。每个样品的检测均取 2 个平行样。3.2大曲样品的近红外光谱测量方法将大曲样品平铺于培氏培养皿样品杯底部,样品量约占样品杯 2/3,并用样品勺压紧,避免出现缝隙,然后将样品杯放置于测量池上进行测量。 4结果实验数据处理方法采集的光谱数据用 NIRCal 化学计量学分析软件处理和计算。▲ 大曲糖化力化学值与预测值的散点图上图可直观的看出模型的光谱预测值与原始值的相关性较好。其中,建模集的相关系数为 r 为 0.9613,验证集的相关系数 r 为 0.9528;建模集标准偏差 SEC 与验证集标准偏差 SEP 的比值为 29.6099/29.7088=0.9967,模型稳定性较好,具有很好的预测能力。▲ 未知样品含量预测值与化学值的比较模型的验证结果可以看出,大曲糖化力近红外模型预测值的平均相对误差为 5.27 %,说明该近红外模型有较好的预测能力。为考察两种方法检测结果之间的差异性,采用 SPSS 软件对 50 组大曲样品进行差异显著性分析。结果见下表。从分析结果可以看出,在 0.05 水平上,两种方法差值的显著性结果为 0.830,大于 0.05,说明两种方法的检测结果的差异性并不显著,均可以反映大曲糖化酶活力大小,该模型可以用于大曲糖化力的预测。 5讨论本试验采用近红外光谱技术结合偏最小二乘法建立了预测大曲糖化力的定量模型。通过对模型的预测结果与传统方法检测结果的对比分析可以看出,该模型的准确度可以满足实际生产中大曲糖化力的预测。近红外光谱分析具有以下特点:操作简单分析速度较快,适合大批量重复测试测试过程中无需使用化学试剂、无污染样品可以重复使用可用于生产线等在线检测6参考文献王军凯,王卫东,蒋明,韩瑶,等. 近红外光谱技术结合偏最小二乘法检测大曲糖化力[J].酿酒,2018(3):116-118.
  • ASD | 利用新鲜葡萄浆果的反射光谱测量估算葡萄浆果中的可溶性固形物总含量
    在葡萄栽培与酿酒工业中,可溶性固形物总含量(Total Soluble Solids, TSS)是衡量果实成熟度和品质的关键指标。不同品种的葡萄因其遗传特性和生长环境的差异,其TSS含量存在显著变化。准确估算各品种葡萄的TSS含量,对于预测酒的品质、调整酿造工艺以及确定最佳采收时机均具有重要意义。那么,如何能够准确估算葡萄的TSS含量呢?跟随小编,一起来看看下面这篇论文给出了怎样的答案。摘要 ABSTRACT可溶性固形物总含量(TSS)是决定葡萄最佳成熟度的关键变量之一。在这项工作中,基于漫反射光谱测量,开发了偏最小二乘(PLS)回归模型,用于估算Godello、Verdejo(白葡萄)、Mencía 和Tempranillo(红葡萄)等葡萄品种的TSS含量。为了确定TSS预测的最适合光谱范围,对四个数据集进行了回归模型的校准,其中包括以下光谱范围:400–700 nm(可见光)、701–1000 nm(近红外)、1001–2500 nm(短波红外)和400–2500 nm(全光谱范围)。我们还测试了标准正态变量变换技术。使用留一交叉验证评估了回归模型,评估指标包括均方根误差(RMSE)、决定系数(R2)、性能与偏差比(RPD)和因子数(F)。红葡萄品种的回归模型通常比白葡萄品种的模型更准确。最佳的回归模型是针对Mencía(红葡萄)得到的:R2 = 0.72,RMSE = 0.55 °Brix,RPD = 1.87,因子数 n = 7。对于白葡萄,Godello取得了最佳结果:R2 = 0.75,RMSE = 0.98 °Brix,RPD = 1.97,因子数 n = 7。所使用的方法和得到的结果表明,可以使用漫反射光谱和将反射值用作预测变量的回归模型来估算葡萄中的TSS含量。结果 RESULT葡萄的反射率是使用ASD FieldSpec 4 地物光谱仪进行测量,该仪器可检测350–2500 nm光谱范围内的反射率。葡萄样品(每个葡萄品种60个样品,每个样品有100颗浆果)散布在黑色容器芯中(17 × 17 cm)。从4个不同的数据中获取了100颗浆果的反射数据(在每次测量之前将样品顺时针旋转90°)。然后对反射数据进行预处理,得到4次数据的平均值。图1. 利用ASD地物光谱仪获取光谱数据的流程图2展示了四种葡萄品种的平均反射值范围以及原始数据(图2a)和SNV转换数据(图2b)的TSS反射值。在图2a中,红葡萄品种(Mencía和Tempranillo)具有非常相似的光谱特征。虽然在可见光范围内的反射值相似,但从波长675 nm处可以看出一些差异,最大和最小反射值分别约为895 nm和1080 nm,以及675 nm和960 nm。白葡萄(Godello和Verdejo)的光谱特征与红葡萄不同,但彼此非常相似。Godello和Verdejo在可见光-近红外范围的570 nm、830 nm和890 nm处具有最高的反射值。在这个范围内,反射值呈现轻微差异,尽管它们具有相同的光谱特征。从波长1160 nm开始,四种葡萄品种的反射值是相同的。图2 四种葡萄品种(Mencía、Godello、Tempranillo和Verdejo)采样浆果的平均光谱范围图3 Godello、Mencía、Tempranillo和Verdejo葡萄品种在使用原始数据(实线)和SNV转换数据(虚线)进行PLS回归时加权回归系数在全光谱范围内的分布。对四个品种的酿酒特性进行了交叉验证。黑线表示零相关性,并为了清晰呈现而偏移了3.0单位图4 利用原始光谱反射数据进行每个波长的简单线性相关性葡萄糖度(TSS)相关图。图5 利用原始(a–d)和SNV转换(e–h)反射数据进行的偏最小二乘回归(PLS)的均方根误差(RMSE)值。所有图应用相同的颜色刻度(请参阅右侧图例)。结论 CONCLUSION采用漫反射光谱测量方法,利用偏最小二乘(PLS)回归模型估计了四种葡萄品种(Godello、Verdejo、Mencía和Tempranillo)的总可溶性固形物(TSS)含量。基于所获得的结果,红葡萄品种的TSS含量估算最佳,特别是Mencía。用于TSS预测的最适宜光谱范围是近红外(NIR)范围(701–1000 nm)。在此光谱范围内获得了最高的R2和RPD值,以及最低的RMSE和F值。在所有光谱范围内,对数据进行SNV转换进一步改善了模型的评估指标结果。用于估算TSS的最佳变量(图5)分别位于860 nm处,波长201 nm的Godello;883 nm处,波长232 nm的Mencía;916 nm处,波长230 nm的Tempranillo;以及1055 nm处,波长230 nm的Verdejo。这些最佳点呈现出最低的RMSE值。研究表明,通过光谱测量的反射值,可以迅速、非侵入性地进行现场测量,从而估算TSS含量。
  • Resonon | 基于深度学习和高光谱图像估算车厘茄可溶性固形物含量及硬度
    车厘子,相信大家都不陌生,毕竟“车厘子自由”曾经也是风靡一时的网络热词。但是车厘茄是什么呢?车厘子的变种?车厘子和茄子的结合?空想不如实干,看看度娘怎么说......嚯,原来车厘茄就是常见的小番茄!另外,小加还了解到车厘茄含有丰富的维他命和十分高的铁质含量,不仅有美容功效,还可以预防出现贫血,可谓是值得多次购买的营养好物。但是购买时,我们只能通过朴素的双眼判断其好坏,如果从专业性的角度出发,该如何评估车厘茄的质量呢?答案就在下面这篇论文里,快一起来看看吧!基于深度学习和高光谱图像估算车厘茄可溶性固形物含量及硬度车厘茄(Solanum lycopersicum)因其特殊的香味深受世界各地消费者喜爱。可溶性固形物(SSC)和硬度是评估产品质量的两个主要指标。现存的测量技术主要依赖于化学方法。然而,这种破坏性的方法不适用于大面积的测量。高光谱成像技术可以同时获取光谱信息和空间信息,已广泛应用于各个领域,如植物病害胁迫检测、工业食品包装、医学图像分类及水果质量分析。基于此,来自浙江工业大学和浙江省农业科学院的研究人员选择当地主流的车厘茄(Zheyingfen-1)为研究对象,测量其硬度和SSC,并基于高光谱图像(PIKA XC 高光谱相机,Resonon Inc.,Bozeman,MT,USA)和相应的深度学习回归模型开发了无损式测量技术。高光谱成像系统【结果】(A)校正的光谱反射率图。(B)MSC预处理。(C)二阶差分预处理。每个模型的SSC估算结果。(A)小样本数据的SVR估算结果。(B)大样本数据的SVR估算结果。(C)小样本数据的KNNR估算结果。(D)大样本数据的KNNR估算结果。(E)小样本数据的AdaBoostR估算结果。(F)大样本数据的AdaBoostR估算结果。(G)小样本数据的PLSR估算结果。(H)大样本数据的PLSR估算结果。(I)小样本数据的Con1dResNet估算结果。(J)大样本数据的Con1dResNet估算结果。大样本数据集每个模型的硬度估算结果。【结论】本研究中,作者利用高光谱图像提出了Con1dResNet深度学习模型来估算车厘茄的SSC和硬度。相比传统的机器学习方法,充足的样本数量可以实现更好的结果。就SSC估算而言,其R2值为0.901,比PLSR高26.4%,其MSE为0.018,比PLSR低0.046。就硬度估算而言,其R2值为0.532,优于PLSR33.7%。结果表明高光谱成像结合深度学习可以显著提高车厘茄SSC和硬度估算准确性
  • 中国轻工业联合会公开征集对《重组可溶性胶原》等104项轻工行业标准计划项目的意见
    根据标准化工作的总体安排,现将申请立项的《重组可溶性胶原》等104项轻工行业标准计划项目予以公示(见附件1),截止日期为2023年3月14日。如对拟立项标准项目有不同意见,请在公示期间填写《标准立项反馈意见表》(见附件2)并反馈至我部,电子邮件发送至qgbz445@163.com(邮件注明:轻工行业标准立项公示反馈)。联系电话:010-68396445附件: 1. 2023年3月轻工行业标准制修订计划(征求意见稿)2.标准立项反馈意见表中国轻工业联合会质量标准部2023年3月8日相关标准如下:序号标准项目名称制、修订代替标准项目周期(月)标准化技术组织1重组可溶性胶原制定24中国轻工业联合会2白桦树汁制定24中国轻工业联合会3智能制造 家电行业应用 大规模个性化定制实施指南制定24中国轻工业联合会4两步法发酵玉米皮生产蛋白饲料技术规程制定QB/T 4465-201324中国轻工业联合会5制糖行业节能监察技术规范制定24全国制糖标准化技术委员会6氨基酸生产企业水平衡测试方法制定24轻工行业节水标准化工作组7酵母生产企业水平衡测试方法制定24轻工行业节水标准化工作组8食品工业产品水足迹核算、评价与报告通则制定24轻工行业节水标准化工作组9节水型企业 发酵酒精行业制定24轻工行业节水标准化工作组10淀粉糖生产企业水平衡测试方法制定24轻工行业节水标准化工作组11多元醇生产企业水平衡测试方法制定24轻工行业节水标准化工作组12有机酸生产企业水平衡测试方法制定24轻工行业节水标准化工作组13节水型企业 乳制品行业制定24轻工行业节水标准化工作组14节水型企业 调味品行业制定24轻工行业节水标准化工作组15软水机水效限定值及水效等级制定24轻工行业节水标准化工作组16梨膏糖制定24全国食品工业标准化技术委员会17辅酶Q10制定24全国食品工业标准化技术委员会工业发酵分技术委员会18发酵食品用曲通用技术要求制定24全国食品工业标准化技术委员会工业发酵分技术委员会19食品中乳糖酶活力的测定制定24全国食品工业标准化技术委员会工业发酵分技术委员会20植物甾醇(酯)制定24全国食品工业标准化技术委员会工业发酵分技术委员会21食品中总黄酮的测定制定24全国食品工业标准化技术委员会工业发酵分技术委员会22食品中N-乙酰神经氨酸的测定制定24全国食品工业标准化技术委员会工业发酵分技术委员会23酵母多肽制定24全国食品工业标准化技术委员会工业发酵分技术委员会24顺-15-二十四碳烯酸制定24全国食品工业标准化技术委员会工业发酵分技术委员会25奇亚籽及其制品制定24全国食品工业标准化技术委员会工业发酵分技术委员会26酵母中硒代蛋氨酸的测定制定24全国食品工业标准化技术委员会工业发酵分技术委员会27食品中脂质组分的测定 第1部分:鞘磷脂的测定制定24全国食品工业标准化技术委员会工业发酵分技术委员会28厨卫五金 产品轻量化设计规范制定24全国五金制品标准化技术委员会厨卫五金分技术委员会29家具 产品碳足迹 产品种类规则制定24全国家具标准化技术委员会30抗菌杯壶制定24全国食品直接接触材料及制品标准化技术委员会31固体食品包装用镀锡(铬)薄钢板容器修订QB 1878-199318全国食品直接接触材料及制品标准化技术委员会32面条罐头制定24全国食品工业标准化技术委员会罐头分技术委员会33汤类罐头通则制定24全国食品工业标准化技术委员会罐头分技术委员会34具有深冷功能的家用制冷器具修订QB/T 4497-201318全国家用电器标准化技术委员会35制盐工业能效限定值及能效等级标准制定24全国盐业标准化技术委员会36饮料生产数字化车间技术要求制定24全国轻工机械标准化技术委员会制酒饮料机械分技术委员会37制酒饮料机械 码瓶(罐)垛机修订QB/T 4224-201118全国轻工机械标准化技术委员会制酒饮料机械分技术委员会38制酒饮料机械 卸瓶(罐)垛机修订QB/T 4225-201118全国轻工机械标准化技术委员会制酒饮料机械分技术委员会39漱口盐制定24全国盐业标准化技术委员会40酿造用盐制定24全国盐业标准化技术委员会41生态海盐评价技术规范制定24全国盐业标准化技术委员会42自动化低温生物样本库制定24全国制冷标准化技术委员会43疫苗冷库技术要求制定24全国制冷标准化技术委员会44聚乙烯中空板材修订QB/T 1651-199218全国塑料制品标准化技术委员会45冰箱用耐腐蚀抗开裂塑料内胆制定24全国塑料制品标准化技术委员会46滚塑成型 聚烯烃粉末通用技术规范制定24全国塑料制品标准化技术委员会47聚醚醚酮(PEEK)板材制定24全国塑料制品标准化技术委员会48软聚氯乙烯复合膜修订QB/T 1260-199118全国塑料制品标准化技术委员会49硬聚氯乙烯(PVC)塑料管道系统用溶剂型胶粘剂修订QB/T 2568-200218全国塑料制品标准化技术委员会50塑料薄膜和薄片 镀铝层附着力测定方法 EAA膜拉伸法制定24全国塑料制品标准化技术委员会51自动燃气炒菜机制定24全国食品加工机械标准化技术委员会52卫生级凸轮转子泵制定24全国食品加工机械标准化技术委员会53卫生级混合均质泵制定24全国食品加工机械标准化技术委员会54真空乳化机修订QB/T 1170-201418全国轻工机械标准化技术委员会55转鼓碎浆机制定24全国轻工机械标准化技术委员会56纸和纸板水分测定仪(烘干法)制定24全国轻工机械标准化技术委员会57纸管抗压强度测定仪制定24全国轻工机械标准化技术委员会58黄酒感官品评导则制定24全国酿酒标准化技术委员会59黄酒感官品评术语制定24全国酿酒标准化技术委员会60特种啤酒 第2部分 精酿啤酒制定24全国酿酒标准化技术委员会61固态法白酒原酒 第3部分:清香型制定24全国白酒标准化技术委员会62拉杆式购物包制定24全国皮革工业标准化技术委员会63一次性拖鞋制定24全国制鞋标准化技术委员会64眼镜镜片 光学树脂镜片修订QB/T 2506-201718全国眼视光标准化技术委员会眼科光学分技术委员会65记号笔修订QB/T 2777-201518全国制笔标准化技术委员会66水溶性彩色铅笔修订QB/T 4435-201218全国制笔标准化技术委员会67微孔笔头修订QB/T 4163-201118全国制笔标准化技术委员会68微孔笔用墨水修订QB/T 4168-201118全国制笔标准化技术委员会69纤维笔头修订QB/T 4164-201118全国制笔标准化技术委员会70纤维储水芯修订QB/T 4165-201118全国制笔标准化技术委员会71荧光笔修订QB/T 2778-201518全国制笔标准化技术委员会72荧光笔用墨水修订QB/T 4166-201118全国制笔标准化技术委员会
  • 陕西省质量认证认可协会批准发布《水质 可溶性阳离子(Sr2+、Ba2+)的测定 离子色谱法》等两项团体标准
    根据《陕西省质量认证认可协会团体标准管理办法》的有关要求,现批准《水质 可溶性阳离子(Sr2+、Ba2+)的测定 离子色谱法》和《细粒土颗粒分析试验 激光法》2项标准为陕西省质量认证认可协会团体标准,编号分别为T/SXQCA 001-2023、T/SXQCA 002-2023并予以发布,发布日期2023年12月22日,实施日期2024年01月01日特此公告。陕西省质量认证认可协会2024年01月02日关于批准发布水质可溶性阳离子(Sr2+、Ba2+)的测定离子色谱法等2项团体标准的公告.pdf
  • 果汁检测用试剂——钾、总磷、总黄酮、可溶性固形物(折光率)、L-脯氨酸、总D-异柠檬酸,抵制 “烂果门”
    果汁检测用试剂&mdash &mdash 钾、总磷、总黄酮、可溶性固形物(折光率)、L-脯氨酸、总D-异柠檬酸&ldquo 烂果门&rdquo 事件,怎可坐以待毙! 近期有媒体暗访指多家内地果汁生产商涉嫌使用腐烂果汁。国产果汁巨头卷入&ldquo 烂果门&rdquo ,你是否忧心忡忡?大多果汁含量无据可依,你该如何选择?国家统计局的数据显示,2012年全国饮料行业总产量为13024.01万吨,比上年增长10.73%,其中,国内果汁和蔬菜汁饮料产量为2229.17万吨(最主要为果汁饮料),占到饮料总产量的17.16%,较2011年增长16.09%。这些果汁真的如消费者理解的哪样健康自然高品质吗?上海甄准生物科技有限公司是一家专业经营标准物质、标准品、化学试剂及相关技术服务创新型高科技企业,坐落于人才荟萃的上海张江高科技园区。自公司成立以来,一直以"客户满意"为公司核心价值观,产品主要应用于制药、生物、食品、环境、材料和农业等领域。本着始终拥有的创业激情和服务热忱,甄准生物已成长为我国重要的标准物质和标准品领域集成服务的领导者、中国最大的标准物质/标准品供应商之一。上海甄准生物提供果汁检测的钾、总磷、氨基酸态氮、总黄酮、可溶性固形物(折光率)、L-脯氨酸、总D-异柠檬酸检测标准品和试剂。产品信息:货号描述规格可溶性固形物检测ZZSRIBS07S折光率标准液1.343253 (± 0.00004)@20C15mlZZSRIBS10S折光率标准液1.347824 (± 0.00004)@20C15mlZZSRIBS112S折光率标准液1.349682 (± 0.00004)@20C15mlZZSRIBS115S折光率标准液1.350149 (± 0.00004)@20C15mlZZSRIBS12S折光率标准液1.35093 (± 0.00004)@20C15mlZZSRIBS125S折光率标准液1.35093 (± 0.00004)@20C15mlZZSRIBS15S折光率标准液1.355679 (± 0.00004)@20C15mlZZSRIBS20S折光率标准液1.363842 (± 0.00004)@20C15mlZZSRIBS25S折光率标准液1.372328 (± 0.00004)@20C15mlZZSRIBS30S折光率标准液1.381149 (± 0.00004)@20C15mlZZSRIBS35S折光率标准液1.390322 (± 0.00004)@20C15mlZZSRIBS40S折光率标准液1.39986 (± 0.00004)@20C15mlZZSRIBS45S折光率标准液1.409777 (± 0.00004)@20C15mlZZSRIBS50S折光率标准液1.420087 (± 0.00004)@20C15mlZZSRIBS55S折光率标准液1.4308 (± 0.00004)@20C15mlZZSRIBS60S折光率标准液1.441928 (± 0.00004)@20C15ml总D-异柠檬酸检测ZZK-ISOCD-异柠檬酸检测试剂盒100 testL-脯氨酸检测ZZS1568506L-脯氨酸标准品200MGZZR70501茚三酮显色液2L钾检测ICCS03 钾离子 K+ 1mg/ml 1000ppm100mlICCT03 钾离子 K+ 0.2mg/ml 200ppm100ml 甄准,甄心倾听您每一个标准!
  • 应用方案|安杰科技为您送来硫化物测试解决方案,请您查收
    -2价硫的化合物统称为硫化物。地表水以及饮用水中检测的硫化物通常为硫化氢以及可溶性硫化物,硫化物是水体污染的重要指标。硫化氢有强烈的臭鸡蛋味,水中只要含有零点零几mg/L的硫化氢,就会引起异味;硫化氢的毒性也很大,可危害细胞色素、氧化酶,造成细胞组织缺氧,甚至危及生命;另外,硫化氢在细菌作用下会氧化生成硫酸,从而腐蚀金属设备和管道。一、产品介绍安杰科技AJ-1000流动注射分析仪,在《HJ 824-2017 水质 硫化物的测定 流动注射-亚甲基蓝分光光度法》(HJ 824-2017)、《生活饮用水标准检验方法 第5部分:无机非金属指标-N,N-二乙基对苯二胺分光光度法》(GB T 5750.5-2023)等标准基础上进行开发的一款全自动快速分析仪器,该仪器从进样到测试全程采用自动化流程,可以实现无人值守测试,自动数据分析,自动保存报告等人性化功能,具有操作简单测试速度快,结果准确等优点。二、产品优势与传统检测方法对比,AJ-1000有显著的优势:试剂添加上:传统方法需要人工添加各种反应试剂,不仅操作繁琐,而且容易出错同时也存在一定的健康风险;AJ-1000采用蠕动泵自动添加样品以及试剂,全程不需要人工干预,简便快捷不会引入人为误差,同时也最大限度降低了健康风险。反应过程上:传统方法加入试剂后需要等待显色反应达到稳定后再进行检测,显色温度会随环境温度变化,而且样品量大时显色时间很难统一;AJ-1000精确控制反应管路长度并且内置恒温装置,温度、流速以及反应时间均由PC端精准控制,显色稳定,重现性好,大大提高了检测的准确度和稳定性。检测效率上:传统方法需要人工添加各种反应试剂,手动比色,费时费力;AJ-1000采用蠕动泵自动连续进样,所有反应均在毛细管中流动状态下完成,实现了非稳态检测,不需要等待反应完全,大大提高了检测速度。并且检测数据由软件自动处理,可以立即出具检测结果,效率远高于传统方法。准确度上:传统方法精密度10%;检出限0.020mg/L;AJ-1000精密度2%;检出限0.003mg/L。三、技术参数标准曲线的测定精密度的测定检出限的测定
  • 可溶性冻干丝素蛋白的应用领域及水分含量检测
    丝素是最早利用的动物蛋白质之一,它作为纤维材料在纺织领域中具有无可比拟的优越性。随着科学技术的进步和人们对蚕丝结构、性质研究的不断深入,丝素在生物材料及医药领域中的应用越来越引人注目。 丝素蛋白可用作手术缝线、隐形眼镜、人工皮肤等,还可以与其他材料混合制作人工肌肉。丝素具有独特的氨基酸组成和丝阮蛋白的二级结构,并且其中部分氨基酸对人体具有保健、医药功效,丝素蛋白作为生物医药材料的研究更加广阔而深入,特别在创面覆盖材料、药物释放材料、活性酶的载体及其生物传感器的应用、生物材料等方面的研究已取得了十分显著的成效。 丝素蛋白冻干粉是丝素蛋白再经技术处理后,通过冷冻干燥技术制备出来的丝素蛋白的冻干态,丝素蛋白冻干粉结构稳定,可溶于水,同时在室温下能长期保存和运输。丝素蛋白冻干粉经水调配后会再次形成丝素蛋白溶液,继而用于生物材料的制备和其他科学研发领域。广泛应用于组织工程、化妆品等领域,本文为您提供专业的应用方法来检测丝素蛋白冻干粉中的水分含量。使用仪器:禾工AKF-2010V智能卡尔费休水分测定仪配置:全封闭安全滴定池组件;铂针电极;滴定池搅拌台;10ul微量注样针;样品称量舟;电子天平(0.1mg)使用试剂:滴定剂:容量法单组份试剂,当量3mg/ml;溶剂:无水甲醇; 实验步骤:使用AKF-2010V水分仪的“吸溶剂”功能向滴定池内注入约40ml的无水甲醇溶剂,再通过”打空白“功能滴定至终点,以去除滴定池内的水分,仪器就绪并保持终点的状态,用经过干燥处理的微量进样针精确抽取5ul的纯水,拭干针头后放入天平称量选择仪器标定仪功能,将纯水注入到滴定池内液面以下,拭干针头后放入天平称量,将前后两次称量只差作为纯水的重量输入到仪器,开始标定。重复操作3-5次,仪器自动保存标定结果并计算出平均值作为试剂的滴定度。用称量舟称取一定量的样品加入滴定池,将进样前后称量舟的重量之差作为样品进样量输入仪器,并开始测量。 结果表明通过使用禾工AKF-2010V直接进样法测量,不但为分析测试人员省去了宝贵的时间,还同样有效的检测出了丝素蛋白冻干粉当中的含水量。
  • 硫化锂电池原位电镜表征与循环稳定性调控研究获进展
    p  随着社会和科技的发展,人类对电化学储能技术的需求日益增加,新兴储能系统——锂硫电池具有理论容量高、成本低、环境友好等优点,备受国内外研究者的关注。而研发高容量锂硫电池正极材料,对推动新能源动力汽车、便携式电子设备等领域的发展至关重要。/pp  硫化锂(Lisub2/subS)材料理论容量高达1166 mA h gsup-1/sup,是其它过渡金属氧化物和磷酸盐的数倍 其首次脱锂充电过程中所发生的体积收缩能给后续的嵌锂放电反应提供空间,保护了电极结构不受破坏 其可与非锂金属负极材料(诸如硅、锡等)组装电池,有效避免锂枝晶形成等问题所带来的安全隐患,是极具发展潜力的锂硫电池正极材料。然而,该材料电子/离子导电率低,反应中间产物多硫化物在电解液中的溶解引发穿梭效应等问题,限制了其在锂硫电池中的实际应用。/pp  近日,中国科学院苏州纳米技术与纳米仿生研究所张跃钢课题组自主研发设计了原位扫描/透射电镜电化学芯片,实现了其对硫化锂电极充电过程的实时观测 在充分理解Lisub2/subS充放电机理的基础上设计了高氮掺杂石墨烯负载硫化锂材料作为电池正极,并通过控制充电容量和电压,显著提升了Lisub2/subS的容量利用率及循环寿命,相关成果发表在Advanced Energy Materials 杂志上。/pp  研究人员为提高锂硫电池的容量利用率和循环寿命,通常会将硫填充至具有高比表面积和高导电性的多孔材料中(如:碳纳米管,多孔碳,石墨烯和碳纤维等)。张跃钢课题组在前期研究工作中发现氧化石墨烯上引入氮掺杂官能团,不仅可以有效减少多硫化物在电解液中的溶解,而且可优化多硫化物在沉积过程中的分布(Nano Letters,2014, 14, 4821-4827)。为了更好地改善Lisub2/subS的容量利用率以及循环寿命,该团队利用原位表征技术研究了Lisub2/subS溶解和再沉积机理,进而提出将最初活化电池电压调控到3.8 V,然后通过控制电压(1.7~2.4 V)和充电容量可有效阻止长链可溶性多硫化物的形成,该充放电调控方法让电极在充电过程中保留了一部分不可溶的Lisub2/subS作为种子,使得Lisub2/subS材料能够有效地活化和均匀地再沉积。此外,该研究通过在氮化处理前的氧化石墨烯表面包覆葡萄糖,有效增加了石墨烯的折皱率和弯曲率,进而为多硫化物提供了更多的负载位点 反应过程中利用氨水和高温氨气热处理的方法使得氮掺杂量提高至12.2% 该高氮掺杂石墨烯材料不仅具有高导电性,其表面氮官能团更能有效减少多硫化物的溶解,优化Li2S的均匀分布。利用该高氮掺杂石墨烯-Li2S复合正极材料所制备的锂硫电池在2000圈(1C)循环后其容量仍能保持318 mA h gsup-1/sup(按硫元素重量折算为457 mA h gsup-1/sup),3000圈(2C)循环后仍能保持256 mA h gsup-1/sup(按硫元素重量折算为368 mA h gsup-1/sup),是迄今为止所报道的最长循环寿命。/pp  该研究工作首次利用了新开发的原位扫描电镜和原位透射电镜芯片技术实现了对硫化锂电极充电过程的实时观测,并在研究/pp  Lisub2/subS充放电机理的基础上,开发新的电压-容量调控机制,设计了一种新型的高氮掺杂负载硫化锂的电极材料,为高能量的Lisub2/subS-C /Li 电池的应用打开了广阔的应用前景。/pp  该项研究工作得到了国家自然科学基金重点项目、中国科学院千人计划人才专项的大力支持。/pp  a href="http://onlinelibrary.wiley.com/doi/10.1002/aenm.201501369/epdf" target="_self" title=""原文链接/a/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201510/noimg/3d4cdfa8-d284-4598-81b3-9799a4671568.jpg" title="00000.jpg"//pp  负载于单层石墨烯电极表面的Lisub2/subS材料在LiTFSI-DOL/DME电解液中活化过程的原位观测SEM图/p
  • 低水溶性化合物TOC分析:清洁验证中棉签回收率的评估
    本研究旨在通过总有机碳(TOC)分析评测具有低水溶性的化合物能否进行回收。在默克索引中,这些化合物的可溶性说明被描述为“基本不溶”或“实际不溶”。我们的任务是在实验中测定这些化合物的溶解度,并调查研究擦拭技术的百分比回收率。鉴于保密协议,不能公开这些化合物的特性。化合物A-F(参见表1)为小分子(300-600 g/mol)。材料12x12cm不锈钢板,具有10x10cm加标区域,使用CIP-100清洗,使用低TOC水漂洗,放置干燥无粉手套容量瓶,按照Sievers️步骤914-80015进行清洗棉签(Texwipe Alpha棉签)预清洁的40 mL样品瓶移液管,30 mLHamilton气密注射器,使用CIP-100和低TOC水清洗使用膜电导检测技术的Sievers️ TOC分析仪带自动进样器步骤为最大限度地降低有机污染,在整个实验过程中须佩戴无粉手套。各化合物的溶解度通过将化合物加入低TOC水中进行经验测定。对混合物进行摇动、搅拌和超声处理以帮助化合物的溶解。目测检查后,按以下公式计算储备液的碳浓度。百分比(%碳)从化合物的经验式推导得出。如,化合物C20H22N4O10S的%碳是:用TOC分析确定各储备液的碳浓度。对化合物A和B的储备液直接分析,而化合物C到F的储备液进行10倍稀释。进行TOC分析之前,使用磷酸将少量(2 mL)的各储备液酸化到pH2。(对于溶液C到F,酸化少量稀释溶液)。对得到的酸化溶液进行目测检查,观察是否有沉淀形成。在任何酸化溶液中都没有观察到沉淀。然后使用Sievers TOC分析仪分析A和B储备液,以及储备液C到F的稀释液。TOC结果与计算的碳浓度吻合,各种化合物的溶解度列在下表1中。进行棉签回收研究时,配制了以下溶液:2个样品瓶的试剂水2个样品瓶的背景棉签溶液2个样品瓶的标准添加溶液(共12个)2个样品瓶的棉签回收溶液(共12个)试剂水:30 mL的移液管用于在28个预清洁样品瓶(40 mL)中注入30 mL的低TOC水。流入后,马上盖上各样品瓶,直到以后使用。2个试剂水样品瓶进行标注并放到一边,以备随后的TOC分析。剩余的26个充注好的样品瓶用于制备背景棉签溶液、标准添加溶液和棉签回收溶液。背景棉签溶液:通过切除三个棉签尖端到30 mL低TOC水中制备两个样品瓶的背景棉签溶液。小心避免污染切入水中的棉签柄部分。标准添加溶液:在低TOC水(30 mL)中加入少量储备液(试剂量范围为0.1-1.0 mL)制备标准添加溶液(每种化合物2个样品瓶)。每种化合物所选的试剂量使最终的标准添加溶液浓度约为1 ppm C。棉签回收溶液:制备棉签回收溶液时,在不锈钢板上放置用于制备标准添加溶液的同样试剂量的储备液。溶液在10x10cm钢板表面区域均匀分布,以便干燥(大约1个小时)。然后使用三根由低TOC水预湿润的棉签擦拭钢板的表面。然后将三根棉签的尖端切入低TOC水的样品瓶(30 mL)中。分析前剧烈摇动所有的样品瓶。使用配备自动取样器的Sievers TOC分析仪(采用膜电导检测技术)对所有样品瓶(28个)进行分析。分析条件为:氧化剂流速为0.2 mL/min,酸流速为0.75 mL/min。每个样品瓶重复分析四次。舍弃各样品瓶的第一次测定数值,将后面的三次进行平均。然后将重复样品瓶的结果进行平均,显示于表1中。这些数据用于计算图1所示的百分比回收率。结论虽然化合物A至F在默克索引中描述为在水中“基本不溶”或“实际不溶”,我们通过实验测定其室温下的溶解度,其范围为百万分之几(ppm)。使用擦拭技术和TOC分析从不锈钢板上成功回收了这些化合物。本研究论证了使用TOC分析进行清洁验证应用的可行性。通过TOC分析,诸如A至F通常被认为在水中“不溶”的有机化合物实际上对于回收而言充分可溶。◆ ◆ ◆联系我们,了解更多!
  • 锌、铅精矿化学分析方法新标准解读
    锌、铅精矿中的目标金属元素主要以硫化物的形式存在,还有可能以可溶性状态存在,如可溶性锌和可溶性铅。可溶性锌、铅的存在会直接影响烧结块的温度,脱硫率,及结块性。因此在今年已经实施和即将实施的GB/T 8151.24-2021和GB/T 8152.15-2021分别规定了锌、铅精矿中可溶性锌、铅的测定方法。 GB/T 8151.24-2021锌精矿化学分析方法 第24部分:可溶性锌含量的测定 火焰原子吸收光谱法于11月1日正式实施,此标准重点补充了锌精矿中可溶性锌含量的测定,测定范围:0.1%~10.5%。原理:利用可溶性锌(硫酸锌、碳酸锌、氧化锌等)易溶解于氨水-氯化铵溶剂的特点,选择氨水-氯化铵为溶剂,加入适量抗血酸与二水合二氧化亚锡作为抑制剂,使样品中可溶性锌与硫化锌及难溶性锌实现有效分离。然后用火焰原子吸收法测定可溶性锌的含量。 GB/T 8152.15-2021铅精矿化学分析方法 第15部分:可溶性铅含量的测定 火焰原子吸收光谱法也将于12月1日实施,此标准重点补充了铅精矿中可溶性铅含量的测定,测定范围:0.3%~10.5%。原理:利用可溶性铅(硫酸铅、碳酸铅、氧化铅等)易溶解于乙酸-乙酸铵溶剂的特点,选择乙酸-乙酸铵为溶剂,加少量二水合二氧化亚锡消除Fe3+的干扰,使样品中可溶性铅与硫化铅及难溶性铅盐实现有效分离。然后用火焰原子吸收法测定可溶性铅的含量。 AA-7000系列AA-6800系列 这两个标准都涉及火焰原子吸收光谱法,岛津原子吸收分光光度计AA-6880系列和AA-7000系列,拥有优异的性能和灵活的配置,可满足GB/T 8151.24-2021和GB/T 8152.15-2021中可溶性锌、铅的测试要求。 火焰法工作条件 本文内容非商业广告,仅供专业人士参考。
  • 华东理工大学在锂硫电池领域研究获新进展
    近日,国际知名学术期刊Advanced Functional Materials以“Accelerated Li+ Desolvation for Diffusion Booster Enabling Low-Temperature Sulfur Redox Kinetics via Electrocatalytic Carbon-grafted-CoP Porous Nanosheets”为题,在线报道了华东理工大学化工学院功能炭材料研究团队在锂硫电池方面的研究新进展。锂硫电池的超高能量密度(2600 Wh kg−1)和低成本等优势,使其成为继锂离子电池之后最具发展潜力的新型二次电池体系之一。充放电过程中中间产物多硫化锂的“穿梭效应”及其缓慢的氧化还原动力学降低了活性硫的有效利用率。其原因之一是溶剂化Li+难以在短时间内解离出Li+而参与生成多硫化锂的电化学还原反应;尤其在低温等条件下,Li+的溶剂化现象严重阻碍了多硫化锂的氧化还原反应动力学,进而在一定程度上影响炭黑/硫正极综合电化学性能的有效发挥。对此,功能炭材料研究团队提出了一种孔径筛分效应与电催化结合的策略,设计了表面分散CoP、氮掺杂的“贯穿孔”结构二维多孔碳纳米片,使其在Li+扩散过程中发挥离子助推器的作用。其中,贯穿孔结构,有利于提高溶剂化Li+的去溶剂化程度,进而提高Li+的扩散速率;CoP提供的活性位点,可提高溶剂化Li+的去溶剂化速率,并对多硫化锂发挥化学吸附和催化转化的功能。当该材料用作商用聚丙烯隔膜的涂层材料时,炭黑/硫正极展现出优异的电化学性能:大电流倍率性能(3C,775 mAh g−1)、循环稳定性(2C,800次,容量衰减率仅为0.048%)、高硫利用率(0.1C,80次,3.2 mAh cm−2)和低温耐受性(0oC,0.1C,80次, 647 mAh g−1)。此外,采用密度泛函理论、原位Raman、飞行时间二次离子质谱等分析表征手段,揭示了贯穿孔结构、CoP化学位点等对可溶性多硫化锂的物理阻挡-化学吸附-催化转化耦合强化机制。该研究对促进锂硫电池的商业化进程具有重要意义。在国家自然科学基金的资助下,该研究由华东理工大学化工学院的张欣硕士研究生完成。功能炭材料研究团队的詹亮教授和德国卡尔斯鲁厄理工学院的王健博士为该论文的通讯作者。同时,该研究得到凌立成教授的悉心指导。
  • 遭遇“质量门”被曝光 大牌华伦世家上黑榜
    日前,在国家质量监督检验检疫总局公布的一份关于家具行业的抽检公告中,不合格的产品近百家。今年的3.15的主题是消费与发展,在3.15来临之际,告诉消费者在装修时如何挑选合格家具。  新闻背景  2009年第三批产品质量国家监督抽查结果在日历翻到2010年之时才露出峥嵘,被抽检的375家家具企业的400种产品中,有将近1/3的产品为不合格产品,成为2010年开年伊始家居行业第一个亮相的“质量门”事件。这些登上质量“黑榜”的不合格家具产品中,有40%左右的产品为广东和四川家具企业生产,其中不乏消费者耳熟能详的实力派企业,如广东的富之岛、华伦世家,成都的掌上明珠等,令人唏嘘不已。  家具大牌成为“黑榜”主角  日前,国家质量监督检验检疫总局公布的《2009年第三批产品质量国家监督抽查质量公告》让家具企业倍感寒意。这是一次范围广阔、规模巨大的质量大抽检。其中木质家具(木质柜)抽查对象为北京、天津、河北、辽宁、黑龙江、上海、江苏、浙江、安徽、江西、山东、河南、陕西、广东、湖南、重庆、四川17个省、直辖市375家企业生产的400种产品,包括床头柜、文件柜、办公推柜、电视柜、茶水柜等。其中286种产品合格,占抽检总数的71.4% 不合格产品114种,涉及近百家企业,其中有18种产品的甲醛释放量、可溶性铅含量不合格。  检查结果显示,木制家具(木制柜)近三成不合格,颇有些怵目惊心。如果说这些不合格产品都是市场上得过且过的杂牌,那也就不值得大惊小怪了,偏偏有一些大名鼎鼎的大品牌,从大批的杂牌中跳将出来,吸引人们的注意力。不幸登上这个质量“黑榜”的,竟然有广东深圳大富豪实业发展有限公司生产的“富之岛”家具、广东深圳华伦世家家具有限公司生产的“华伦世家”家具和四川成都市明珠家具集团生产的“掌上明珠”家具,每一个都是声名显赫,令人惊诧。  广东四川产家具抽检中“掉链儿”  广东和四川是中国两个著名的家具生产基地,全中国有将近70%的出口家具来源于这两个地区。经过近20年的发展,这两个地区也培育出一批家具大品牌,如广东的富之岛,是广东省家具商会会长单位 广东的华伦世家,早在1993年就开始家具生产,号称“以卓越品质创造质感生活” 四川的掌上明珠,其生产单位成都市明珠家具集团自称在家具行业无形资产名列第一。然而,在这次抽检中,广东和四川两地的家具却集体“掉链儿”了,不合格家具数量竟占到全部114种不合格产品中的41.2%。  据悉,此次抽查依据的是《木制柜》QB/T 2530-2001、《室内装饰装修材料 木家具中有害物质限量》GB18584-2001和《消费品使用说明第六部分:家具》GB5296.6-2004等标准,对木制柜的底脚平稳性、下垂度、用料要求、木工要求、涂饰要求、漆膜涂层软硬覆面理化性能、力学性能、有害物质限量以及使用说明等9个项目进行了检验。  富之岛、华伦世家和掌上明珠的“罪名”是同一个,那就是“力学性能”不合格。据专家介绍,力学性能不合格的家具,要么是材料上偷工减料,要么是绷簧、绷带等配件质次价低。这些做法似乎都与家具大品牌挂不上钩,它们如何成了“质量门”主角,着实令人惊讶。
  • 物理所吴凡团队:硫化物固态电解质与有机液态电极固-液界面兼容性新突破
    【工作介绍】锂金属由于其最高的能量密度而被认为是最理想的锂电池负极材料,但传统的锂金属-液体电解液电池系统存在着低库仑效率、SEI重复破裂生成和锂枝晶生长等问题。由锂金属、芳香烃和醚类溶剂组成的室温液态锂金属可从根本上抑制锂枝晶形核生长,从而解决以上问题,并且比高温熔融的碱金属或碱金属合金更容易控制、更稳定、更安全。然而,室温液态锂金属与硫化物固态电解质界面不兼容,会发生剧烈的化学反应。基于此,中科院物理所吴凡团队在解决硫化物固态电解质与有机液体电极之间长期存在的固-液界面相容性难题上取得了突破。开发出了包括PEO和β-Li3PS4/S在内的多种兼容性强的界面保护层,实现了大于1000h的长时间稳定循环。这种稳定硫化物固态电解质和有机液态锂负极之间的固-液界面的技术方法,成功地解决了界面副反应的关键问题,使这种电池构造在长周期运行中安全稳定。这为进一步提高锂电池的循环寿命和安全性开辟了新的路径。该成果以“Stable Interface Between Sulfide Solid Electrolyte and-Room-Temperature Liquid Lithium Anode”为题发表在ACS Nano上,通讯作者为中国科学院物理研究所吴凡研究员,共同第一作者为彭健博士,伍登旭硕士和姜智文硕士。【背景介绍】在锂离子电池中,固-液界面的化学和电化学不稳定性对电池特性有重要影响,如充放电效率、能量效率、能量密度、功率密度、循环性、使用寿命、安全性和自放电。不稳定的固体电解质界面(SEI)和暴露的表面会消耗锂源,降低循环性能/放电效率,增加内阻,产生气体,并降低安全性。解决固-液界面的化学/电化学不稳定问题是电池有效运行的关键。因此,对界面问题的研究是锂离子电池基础研究的核心。为了稳定电极-电解质界面,研究人员通常对电极/电解质材料或电极/电解质表面进行改性,或在电解质中添加添加剂以形成更稳定的SEI层,以获得良好效果。硫化物固体电解质(SE)表现出与液体电解质相当/超过液体电解质的高离子传导性和理想的机械硬度。然而,硫化物SE和有机液体电极(LE)之间的固-液界面问题一直是一个难以克服的挑战,研究结果非常有限。如果这个界面问题能够得到很好的解决,硫化物SE的应用范围可以从全固态电池(ASSB)系统进一步扩大到半固态电池(SSSB)系统。例如,在锂硫(Li-S)电池系统中,硫化物SE被用来形成固-液混合电解质,可以有效防止锂-硫电池中的穿梭效应,进一步提高循环性能。此外,在这项工作和以前的相关工作中,硫化物SE被应用于液体金属锂(Li-BP-DME)电池。在这种新的电池配置中,带有PEO保护层的硫化物SE和Li-BP-DME溶液可以保持稳定和兼容的界面,从而提高循环稳定性。然而,深入的降解机制仍然是缺失的,没有得到理解。为了清楚准确地了解硫化物SE(Li7P3S11(LPS))-有机LEs(液态金属Li-BP-DME)电池的固-液界面的形成和演变机制,本工作利用各种先进的表征技术对界面进行了研究,如X射线粉末衍射仪(XRD)、扫描电子显微镜(SEM)、能量色散谱(EDS)、X射线光电子能谱(XPS)、飞行时间二次离子质谱(TOF-SIMS)等。此外,基于对界面的深入研究,有效地设计和控制了有机LE/硫化物SE界面。因此,在有机LE和硫化物SE之间的固-液界面相容性这一长期难题上取得了突破性进展。获得了多种化学/电化学稳定、高锂电导率、电子绝缘的与有机LEs(液态金属锂-BP-DME)和硫化物SEs(LPS)兼容的界面保护层,包括PEO-LiTFSI和β-Li3PS4/S界面层。对液态金属锂(Li-BP-DME)与保护层反应形成的SEI层进行了深入表征。此外,在使用两种界面保护层的硫化物SE(LPS)/界面保护层/有机LE(Li-BP-DME)对称电池中获得了长周期性能。在使用PEO-LiTFSI聚合物界面保护层的对称电池中,在循环1000小时后,阻抗和极化电压值仍然很小。同样,带有β-Li3PS4/S界面保护层的对称电池也可以稳定地循环1100h,而且阻抗很小。这些结果证明了两个界面保护层的有效性,它们可以长期稳定硫化物SE(LPS)和有机LE(Li-BP-DME)之间的固-液界面。这种稳定固-液界面的技术方法成功地解决了硫化物SE(LPS)-有机LE(Li-BP-DME)电池体系中界面副反应的关键问题。因此,"液态金属锂(Li-BP-DME)"可以提供优异的性能,如高安全性、优异的树枝状物抑制能力、低氧化还原电位0.2V-0.3V vs Li/Li+,以及室温下12mS cm-1的高电导率,并且电池系统可以长期安全循环。该技术方法为解决硫化物SE和有机LE的固-液界面相容性问题提供了宝贵的方法,对进一步提高锂电池的循环寿命和安全性具有重要的现实意义。 【核心内容】为了研究裸露的硫化物SE(Li7P3S11)和液体金属锂BP-DME之间的SEI,我们组装了Li1.5BP3DME10/LPS/Li1.5BP3DME10对称电池(图1a-1c)。有机LE与硫化物SE接触,形成固-液界面,如图1c所示。图1a显示了对称电池的电压曲线,显示了逐渐增加的过电位(从0.123V到2.45V)和不稳定的循环,在30℃下电流密度为0.127mA cm-2,持续200小时。对称电池的阻抗持续增加表明在界面上发生了副反应,硫化物SE(LPS)和有机LE(Li-BP-DME)之间的化学/电化学稳定性很差。这也可以从循环前后的LPS的XRD数据中得到证实(图1d)。循环后,LPS片材表面的特征峰几乎完全消失,表明LPS表面几乎完全反应或分解了。循环后裸露的硫化物SE的横截面和平视形态由SEM进行了表征。由于硫化物SE的面积比有机LE的面积大,LPS有两个区域。一个是暴露于Li-BP-DME的反应区,另一个是未暴露于Li-BP-DME的非反应区,如图1e所示。图1f-g显示了循环后的LPS片的SEM图像,它显示了LPS片的反应区和非反应区的细节。结果显示,许多界面侧面反应的产物堆积在反应区,而未反应区是光滑、平坦和密集的。图1g的EDS映射图见图1h。比较反应区和未反应区的C、O、P和S元素含量,未反应区的P和S元素含量明显高于反应区,而反应区的C和O元素含量则高于未反应区。这些结果表明,界面副反应导致了硫化物SE的分解,大量的有机物质在反应区积累。图1i-1j分别显示了非反应区、轻度反应区、轻度严重反应区和严重反应区的细节。与图1i中的非反应区相比,在从非反应区向反应区过渡的过程中,界面侧的反应程度逐渐加强。轻度反应区的反应物的形态特征是光滑的球形小颗粒堆积,而轻度反应区的反应物是小绒球状颗粒,有不连续的薄层和裂缝。那些在严重反应区的颗粒的特点是更多的颗粒堆积在一起,形成一个更厚的界面层,它是崎岖不平的,有许多孔隙。图1m-1p是LPS片界面的SEM和EDS图谱。图1n中严重反应区的横截面形态显示,反应后的LPS片变得松散,具有多层结构。这表明在LPS界面和内部发生了化学反应,产生了更多的反应产物。反应产物很大,导致固体电解质层之间出现断裂和撕裂。由于反应产物的离子传导能力比原来的LPS SE弱,而且整个电解质片的离子传导通道不均匀,对称电池的极化不断增加。图1o清楚地显示了一个蓬松的、较厚的SEI层,厚度约为1.5μm。图1o的EDS映射图显示在图1p。可以看出,SEI层中C和O元素的含量高于LPS片,而LPS片中P和S元素的含量则高于SEI层。这些结果表明,SEI层的成分中含有大量的有机物和部分无机物,导致其具有蓬松而非致密的特点,离子传导率低。 图2显示了Li7P3S11的XPS分析以及它们与液体金属锂的反应。P 2p光谱可分为131.4 eV和133.1 eV的两个峰,分别对应于P2S74-和PS43-物种。随着反应的加剧,P2S74-的峰面积比从散装Li7P3S11的61%下降到严重反应区的48%。这一现象的原因是在Li7P3S11的DME溶解产物中,P2S7相比PS4相更易溶解。P2S7相的逐渐溶解导致Li7P3S11电解液表面不断形成孔和裂缝,这与SEM的结果很一致。在块状Li7P3S11中,S 2p信号可由三种不同的硫物种描述,在161.3、162.0和163.4 eV处发现峰值,它们分别对应于P-S-Li、P=S和P-S-P硫物种。峰区产生的P-S-Li、P=S和P-S-P硫磺物种的比例约为7:3:1,与Li7P3S11结构模型的理论值非常吻合。在Li7P3S11的轻度和重度反应区,属于P2S7相的P-S-P的峰面积比下降,这也证实了P2S7相的溶解。此外,在严重反应区,159.9 eV的新峰被赋予Li2S,这源于Li7P3S11 SE与液体金属锂的反应。至于C 1s光谱,Li7P3S11中284.8和286.7 eV的信号分别对应于-(CH2)-键和-O-CH2-键,这归因于样品杂质(脂肪族、不定形碳)。以284.8 eV为中心的碳峰被用作参考峰。在轻度反应区,在288.6 eV处出现了另一个C 1s信号,它源于DME分解的-O=C-O-。在严重反应区,也检测到了来自碳酸盐物种(如Li2CO3和ROCO2Li)的-OCO2-(在289.6 eV)。Li7P3S11中的O 1s光谱由两个主要贡献描述。位于531.2和532.9 eV的峰值分别属于Li-O-(Li2O)和C-O-C。Li2O是另一种常见的相位杂质。在轻度反应区,发现来自酯类(-COOR)的C=O键(在532.4 eV)。在严重反应区,C=O(-COOR和-OCO2-)的峰面积比明显增加,这与上述C 1s光谱的分析一致。在Li 1s光谱中,55.4 eV的峰可以归属于Li-O(Li2O,LiOH,Li2CO3)或Li-S(Li-S-P,Li2S),这些材料的BEs非常接近,因此这里用一个宽峰来近似地拟合Li 1s光谱。为了进一步研究SEI,通过TOF-SIMS技术对循环后的LPS裸片进行了测量。补充图1显示了LPS表面的SEI带负电和正电的片段的质谱,其中包含了关于SEI带电片段的信息。质谱包含了大量的正负离子碎片,包括无机离子碎片离子碎片。无机物包括LiC(C-)、LiH(Li2H+)、Li2O(Li3O+)、多硫化锂LiSx(S-、S2-、S3-、Li2S+、Li3S+)、Li3P(P-)、Li3PO4(P-、PO2-、Li2PO2+)、Li2SO3或LiSxOy(SO-、S2O-、SO2、 Li2SO+,Li3SO+),LiOH(LiO2H2-),LiSH(SH-,Li2SH+),Li2CO3(Li3CO3+),一些硫化物的分解产物(PS-,PS2-,PS3-,PSO-,PS2O-),以及由一些杂质元素产生的LiF,LiCl。有机化合物包括烷氧基碳酸盐ROCO2Li(O-)、烷氧基亚硫酸盐ROSO2Li(SO-、S2O-、SO2-、Li2SO+、Li3SO+)、乙炔化合物(CH-、C2H-)、烷基化合物(CH3+)、非芳香族化合物硫醇RSH(SH-)、甲酸锂HCOOLi(CHO2-)、乙酰基锂HCCOLi(C2HO-)和其他有机化合物。C6H5+苯环离子的存在表明联苯的分解。虽然不同反应区(轻度反应区和重度反应区)的SEI形态特征不同(图1j-1l所示),但不同区域的离子碎片基本相同,而只有个别离子种类不同。例如,Li2S+(m/z=46)、Li2SO+(m/z=62)、Li3SO+(m/z=69)和Li2PO2+(m/z=77)无机离子碎片没有出现在严重反应区,而CH3OLi2+(m/z=45)、CH3O2+(m/z=47)和 C6H5+(m/z=77)有机离子碎片没有出现在温和反应区。这表明严重反应区的SEI层比轻微反应区的SEI层含有更多的有机产物,这样,严重反应区的SEI层的形态是由大量的有机物堆积形成的笨重而松散的结构。为了研究这些反应产物物种的空间分布,测量了负离子和正离子模式的映射图像,如图3a,图3b所示。从图3a中可以看出,C-、O-、CH-、C2H-、S-和SH-有机二次离子表现出相对较高的强度,而其他无机二次离子表现出相对较低的强度。这意味着SEI层的表面,即靠近有机LE的一侧,主要由有机物组成,而无机物的比例较少。图3b显示Li+二次离子的强度相对较高,说明在SEI形成过程中,锂源被部分消耗,SEI表层的有机产物含有大量的锂元素。根据LPS片在负离子和正离子模式下循环后的深度曲线(图3c-3f),无机离子片段(Sx-(S-,S2-,S3-),SxOy-(SO-,SO2-,S2O-),PSxOy-(PS-,PS2-,PS3-,PSO-),P-,PO2-,SH-、 LiO2H2-, LiS-, Li+, Li2+, Li2H+, Li2SH+, Li2OH+, Li3O+, Li3CO3+, LiSxOy+ (Li2S+, Li3S+, Li2SO+, Li3SO+), Li2PO2+) 随着分析深度的增加而增加、 而有机离子碎片(C-, O-, CH-, C2H-, CH2O-, CHO2-, CH3+, CH3O2-, C6H5+, CH3OLi2+)的强度随着深度的增加而降低,表明SEI是双层结构,外层和内层分别由有机和无机相组成。这与主流的SEI层模型和镶嵌模型中的双层模型是一致的(即SEI层由两层物质组成,靠近液态电解质的松散有机物和靠近金属锂的致密无机物)。从深度剖面曲线也可以确认SEI的厚度,大于166nm(10nm min-1 SiO2标准,1000s),比传统液态电解质金属锂电池的厚度(10~20nm)。从二次离子的三维分布(图3g),可以观察到二次离子随深度变化的趋势。二次离子的三维分布与图3c-3f中二次离子随深度变化的趋势一致。值得指出的是,硫化物SE (Li7P3S11)的分解产物(PS-, PS2-, PS3-, PSO-, PS2O-)的含量随深度增加,说明大量的硫化物SE (Li7P3S11)被分解,分解产物在硫化物SE附近的表面聚集。总之,裸露的硫化物SE和有机液体金属锂-BP-DME之间的界面层是一个松散的界面层,其中有机和无机产物是随机堆积的。松散的界面层没有形成一个薄而密的连续无机界面层来阻挡有机Li-BP-DME,而是让液态金属锂不断地通过这个界面层与硫化物SE发生反应,从而消耗了电池中的锂源,降低了电池的循环性能,导致电池的内阻增加,最终失效。 根据上述特征分析,由硫化物SE和有机LE Li-BP-DME反应形成的SEI不能稳定地兼容。因此,有必要设计出化学/电化学稳定、高锂导电性和电子绝缘性并与有机LE Li-BP-DME和硫化物SE兼容的人工SEI层。此文选择了四种可能适用于硫化物SE和液体有机阳极的界面层材料,包括LIPON、富含LiF的界面层、PEO-LiTFSI聚合物和β-Li3PS4/S(图4a-4d)。LIPON界面层的厚度为200纳米,通过磁控溅射在硫化物SE片上,如图4e所示。图4f显示了在固定电流为0.127 mA cm-2时,由Li7P3S11、Li-BP-DME和LIPON界面层组装的对称电池的电压曲线。对称电池显示出低的初始过电位(0.08V),但在循环200小时后电压迅速上升到0.68V。低的初始过电位表明在循环前有一个小的界面阻抗和良好的界面接触,但迅速增加的电压表明LIPON和Li-BP-DME之间有严重的反应。因此,LIPON界面层并没有起到稳定界面的作用。由LIPON和Li-BP-DME之间的反应产生的SEI不具有化学/电化学稳定性和高离子传导性,这样的LIPON界面层就不适合做界面保护。富含LiF的界面层是在Li7P3S11片材的表面原位形成的,实验过程见图4b。从界面层的照片(图4g)可以看出,界面层的厚度均匀性较差,界面层中出现了材料聚集的现象,部分区域出现了可观察到的白色材料聚集。带有富含LiF的界面层的Li7P3S11和Li-BP-DME溶液在0.127 mA cm-2的固定电流下被组装成一个对称电池。电压曲线如图4h所示,这与带有LIPON界面层的对称电池相似。稳定性差的循环200h后,极化电压从0.135V逐渐增加到1.3V,表明界面阻抗逐渐增加。这种界面层不能发挥兼容作用,因此不适合硫化物SE和液体电解质电池系统。PEO-LiTFSI聚合物具有良好的化学/电化学稳定性,可以作为硫化物SE和金属锂之间的界面层,起到良好的界面保护作用。因此,尝试将PEO-LiTFSI聚合物引入硫化物SE和液态金属负极体系中,具体制备过程见图4c。图4i所示为制备好的带有PEO界面层的Li7P3S11薄片,它被组装成一个对称电池。电压曲线如图4j所示。该对称电池在电流密度为0.127 mA cm-2的情况下稳定循环200h,极化电压0.115V几乎没有变化,表明PEO-LiTFSI聚合物和Li-BP-DME之间反应形成的SEI与硫化物SE Li7P3S11兼容。这种SEI具有良好的化学/电化学稳定性,在室温下具有高的Li+导电性,以及理想的电子绝缘性能。另一个有效的界面层是β-Li3PS4/S。该界面层的制备过程如图4d所示,它也是在原地生成的。图4k显示了制备好的带有β-Li3PS4/S的Li7P3S11片,它被用来组装对称电池。对称电池的电压曲线如图4l所示,显示了对称电池在电流密度为0.127 mA cm-2的情况下200h的稳定循环,以及几乎不变的0.075V的极化电压。因此,β-Li3PS4/S界面层适用于硫化物SE和液体电解质电池系统。总之,通过实验筛选,从四种可能的兼容界面层材料中选出了两种具有实际效果的界面层材料(即PEO-LiTFSI聚合物和β-Li3PS4/S)。为了获得具有最佳化学/电化学稳定性和Li+电导率的PEO-LiTFSI和β-Li3PS4/S界面保护层,对两种界面层的制备参数进行了详细研究。PEO界面层有两个关键参数,一个是界面层的厚度,另一个是界面层中锂盐LiTFSI的浓度。首先探讨了PEO界面层的最佳厚度,如图5a所示。探讨了两种LiTFSI浓度(EO/Li+=24和EO/Li+=8)的PEO界面层的不同厚度。通过在Li7P3S11片材上浸泡不同数量的PEO溶液来控制界面层的厚度,PEO溶液的浸泡量为20μL、30μL、40μL和50μL。具有不同厚度参数的界面层的Li7P3S11片被组装成对称的电池。结果表明,在两种锂盐浓度下,不同量的PEO溶液(或不同厚度)的PEO界面层,对称电池在稳定循环200h后,在0.127mA cm-2的电流密度和0.15V左右的小极化电压下表现出良好的循环性能。接下来,我们探讨了不同浓度的锂盐LiTFSI的界面层在相同厚度下的有效性(图5b)。在固定的PEO溶液体积(40μL)下,研究了不同锂盐浓度EO/Li+=120、62.5、30、24、12和8的界面层并组装成对称电池。结果表明,在电流密度为0.127 mA cm-2、极化电压为0.15V左右的小电流下,具有不同锂盐LiTFSI浓度的界面层的对称电池也显示出良好的循环稳定性(200小时)。对PEO界面层的两个最佳参数的探索实验表明,PEO-LiTFSI系统的界面层在实验探索的广泛参数范围内具有良好的有效性。依次探讨了β-Li3PS4/S界面层的最佳厚度参数(图5c)。β-Li3PS4/S界面层的厚度是通过控制硫化物SE Li7P3S11片在β-Li3PS4/S前驱体溶液中的提拉次数来调节的。提拉次数分别为2、4、6、8、10、20和40。可以看出,随着拉动时间增加到10,对称电池的稳定性明显提高,但提拉次数为20和40时,对称电池就失效了。提拉次数少于10次的对称电池失败是因为β-Li3PS4/S界面层的厚度很薄,与Li-BP-DME发生了反应。提拉次数为20次和40次的对称电池的失败原因是β-Li3PS4/S界面层太厚,在原位加热过程中出现裂纹现象(图6i-m)。因此,Li-BP-DME溶液渗透并与硫化物SE Li7P3S11反应,导致对称电池失效。因此,当提拉次数为10时,β-Li3PS4/S界面层的厚度参数是最佳的。极化电压0.08V几乎没有变化,界面阻抗也没有增加,说明这个参数的β-Li3PS4/S界面层是最有效的。循环后的PEO和β-Li3PS4/S界面层的特征由SEM描述,如图6所示。图6a-6h显示了循环后PEO界面层的SEM图像,其中图6a-6d显示了平视形态,图6e-6h显示了横断面形态。图6a显示了循环后带有PEO界面层的Li7P3S11板材。片材的中间部分与Li-BP-DME接触以产生SEI,而片材的边缘部分是涂在Li7P3S11片材上的原始PEO薄膜,没有与Li-BP-DME接触。PEO界面层与Li-BP-DME反应的部分的形态与Li7P3S11片材的未反应区域明显不同。图6c显示了未反应区域的PEO层的放大SEM图像,它是光滑、平坦和致密的。图6b和6d显示了SEI区域的放大SEM图像,它也是致密的,而不是裸Li7P3S11片材的充满裂纹的片材(图1k和1l)。SEI表面是凹凸不平的鱼鳞层,说明靠近Li-BP-DME的SEI表面是以有机物为主体。图6e-6h显示了PEO界面层的横截面形态。循环前的SEM图像为图6e和6g,显示了3.56μm的PEO界面层的致密和平整。图6f和6h显示了循环后PEO界面的SEM图像,其厚度为3.29μm,与循环前相比,其厚度略有减少。然而,它仍然是致密和相对平坦的,没有裂缝。在PEO界面层下的Li7P3S11薄片也得到了很好的保护和致密,没有出现裸Li7P3S11的分层(图1n)。从这两个角度来看,PEO界面层可以有效地阻止液态金属锂-BP-DME对硫化物SE Li7P3S11的侵蚀。β-Li3PS4/S界面层也通过SEM进行了表征,如图6i-6p所示。图6i和图6k是循环前的β-Li3PS4/S界面层的平视形态图。结果显示,界面层的边缘是平坦而致密的,但在界面层的较厚部分存在一些裂缝。图6j和图6l显示了循环后的界面层的平视形态。界面层表面存在裂缝,球形的有机物在裂缝处聚集/生长,而没有裂缝的地方则是平坦而密集的。图6m-6p显示了界面层的横截面形态,其中循环前的界面层光滑、致密、平整,厚度为2.05μm(图6m和图6o)。循环后的界面层厚度约为0.67μm(如果包括上面的凹凸不平的有机层,则1μm),但裂缝出现并增长,使β-Li3PS4/S界面层爆裂(图6n和图6p)。因此,β-Li3PS4/S界面层失败的原因不是它与Li-BP-DME的反应,而是由于其不均匀的厚度所引起的裂缝。Li-BP-DME溶液通过这些裂缝与硫化SE Li7P3S11反应,导致Li7P3S11和β-Li3PS4/S之间的界面反应产物的增长,使界面层破裂。在形成更多的裂缝后,当β-Li3PS4/S界面层被破坏时,对称电池就会失效。为了了解PEO-LiTFSI界面层与硫化物SE Li7P3S11/有机LE Li-BP-DME兼容,以便在室温下实现良好的Li+传导,通过TOF-SIMS技术测量了循环后的PEO@Li7P3S11片。结果显示,大量的无机和有机界面反应产物积累。无机产物包括LiF(F-,Li2F+,Li3F2+),Li2CO3(Li3CO3+),Li2NO3(NO2-,NO3-),Li3P(P-),Li2S(S-),LiH(Li2H+),LiCx(C-,C2-,C4-,C6-,Li3C3+),Li2O(O-),Li3PO4(PO2-,Li3P2O2、Li3P2O3-, Li2PO2+, Li4POH4+),Li2SO3(Li3SO+),LiSH(Li2SH+),LiOH(Li2OH+),微量硫化物SE Li7P3S11的一些分解产物(PS2-,PSO-),以及由微量杂质元素产生的LiCl(Cl-)。有机产品包括乙炔化合物(CH-,C2H-),烷基化合物(CH3+,C2H3+,C2H5+,C3H7+,C4H7+),烯基化合物(C3H5+),甲酸锂HCOOLi(CHO2-)、乙酰化锂HCCOLi(C2HO-),LiTFSI的有机分解产物(OFH3-、CH2OF-、C2O2F-、CNO-)和残留的乙腈(ACN)小分子(CN-)。从负离子(图7a和补充图6)和正离子(图7b)模式的映射图像可以看出,除了C-和Li+的分布相对均匀外,无机和有机二级离子片段的分布并不均匀。这些二次离子碎片的聚集分布与循环后PEO界面层的SEM图像(图6d和图6h)的粗糙表面一致。根据负离子和正离子模式的深度曲线(图7c-7f),S-、SH-和Li+二次离子碎片的信号强度随着深度的增加而增强,这表明SEI层中越来越多的Li2S(S-)、LiSH(SH-)无机物。一些无机离子碎片(如F-、PSO-、PS2-、PO2-、P-、Li3P2O2-、Li2+、Li2OH+、Li2F+、Li3F2+和Li3O+)的信号强度随着深度的增加先减后增,说明这些无机物在SEI表面或深层的分布较多,而在SEI表层的分布较少。其中,无机物LiF(F-、Li2F+、Li3F2+)、LiOH(Li2OH+)、Li3PO4(Li3P2O2-)、Li2O(Li3O+)都是有利于Li+传导的成分。其他无机二次离子碎片如NO2-、NO3-、Li3CO3+、Li2H+、Li3C3+和Li4POH4+的信号强度随着深度的增加而降低,说明Li2NO3(NO2-、NO3-)、Li2CO3(Li3CO3+)、LiH(Li2H+)、LiC(Li3C3+)等无机物更多地分布在SEI层的表面,在SEI层内部分布很少。CN-、CH2OF-、CH-和C2H-的信号强度很强,但随着深度的增加而降低,表明这些有机物主要分布在靠近SEI的表面。CN-的存在表明小的乙腈分子仍然存在,而CH2OF-是LiTFSI的分解产物。其他有机离子碎片C7H5-, C2HO-, CHO2-, OFH3-, C2O2F-, CNO-, CH3+, C2H3+, C2H5+, C3H5+, C3H7+, C4H7+, C3H6O+, CH2OLi+的信号强度随深度增加而明显下降,说明这些有机物只分布在SEI的表面。这些离子碎片的信号强度随深度变化的信息在三维分布图中得到了更直观的体现(图7g)。基于TOF-SIMS的表征结果表明,当温度高于玻璃状态时,PEO-LiTFSI界面层中Li+的传导模式不再是PEO分子链运动引起的Li+的跳跃性传导、而是在PEO界面层中产生了大量的无机锂导体(LiF、Li2CO3、Li2NO3、Li3P、Li2S、LiH、LiCx、Li2O、Li3PO4、Li2SO3、LiSH、LiOH)。一般认为,单一的化合物不能实现理想的SEI膜的理想功能,因为当不同的化合物成分共存于SEI中时,它们可以相互合作,形成异质结构,从而改善阳极面的离子导电性和电子绝缘性能。此外,氰基和甲氟烷的作用进一步改变了Li+在PEO层中的传输模式,因为氟具有很强的电子汲取能力,可以削弱含氟有机物(OFH3-、CH2OF-(甲基氟醚))与Li+的相互作用。此外,含氟有机物可以与含氟阴离子(TFSI-)相互作用,抑制阴离子的运输,从而减少浓度极化。作为增塑剂的小乙腈分子和液体锂金属Li-BP-DME的残留物也可以促进Li+在电解质中的迁移。在无机锂盐、甲醚和增塑剂的共同作用下,界面层可以有效地运输Li+。Li-BP-DME溶液作为一种活性电子间接转移引发剂,可以引发环氧乙烷的阴离子活性聚合,生成PEO。因此,高分子量的PEO与Li-BP-DME具有良好的化学稳定性。因此,该界面层具有化学/电化学稳定性、高Li+导电性和电子绝缘性。由于TOF-SIMS的检测限制,测试深度只能达到500nm,这与SEM显示的2.6μm的界面层厚度不同(图6f和图6h)。因此,TOF-SIMS只测试SEI的表面层和SEI内层的一部分。根据这部分信息,无机产物的信号强度随着深度的增加而增加,而有机化合物的信号强度则随着深度的增加而减少。可以推测,在靠近硫化物SE的一侧积累了更多的无机产物,而在靠近Li-BP-DME的一侧存在更多的有机产物。β-Li3PS4/S能够作为硫化物SE和有机LE电池系统的界面层的机制是由于β-Li3PS4/S与醚基液体电解质反应的唯一产物是DME溶解的Li3PS4,它不溶于各种有机极性溶剂,从而阻止了β-Li3PS4/S的进一步溶解,从而阻止了硫化物SE Li7P3S11被有机LE Li-BP-DME侵蚀的现象。为了了解β-Li3PS4/S界面层如何有效地工作,通过TOF-SIMS技术测量了循环后的β-Li3PS4/S@ Li7P3S11片层。β-Li3PS4/S表面的SEI带负电和正电的片段的质谱显示在补充图8。可以看出,在界面上产生了一些无机和有机产物。无机物有Li2CO3(Li3CO3+), Li2NO3(NO2-), Li3P(P-), Li2S(S-), LiH(Li2H+), LiCx(C-), Li2O(O-), Li3PO4(PO2-, Li4POH4+)、 LiSH(SH-),LiOH(OH-),硫化物SE Li7P3S11(PS2-,PSO-)的分解产物,以及由杂质元素氟产生的LiF。有机化合物包括乙炔化合物(CH-,C2H-),烷基化合物(CH3+,C2H5+,C3H7+,C4H7+),烯基化合物(C2H3+,C3H5+),甲酸锂HCOOLi(CHO2-),乙酰锂HCCOLi(C2HO-)和其他有机化合物。从负离子(图8a)和正离子(图8b)模式的映射图像可以看出,各种界面产物均匀分布。有机物质CH-、C2H-、C-、O-和无机物质Li2OH+的信号强度很强,说明SEI表面基本上是由有机物质和少量无机LiOH组成。根据负离子和正离子模式的深度曲线(图8c-8f),Li2H+、Li3CO3+、Li4POH4+和Li2F+(杂质碎片离子)的信号强度随深度增加而降低,说明SEI层表面存在Li2H(Li2H+)、Li2CO3(Li3CO3+)、Li3PO4(Li4POH4+)和LiF(Li2F+)。其他无机离子片段,如S-、S2-、SH-、P-、PS-、PS2-、PSO-、Li2+、Li2S+、Li3S+、Li3O+和Li2OH+的信号强度随着深度的增加而增加,表明Li2O(Li3O+)、Li3P(P-)、LiSx(Li2S+, Li3S+)、 LiOH(Li2OH+)、LiSH(SH-)和与Li7P3S11有关的离子性物种PSx-(P-、PS-、PS2-、PSO-是PSx-的氧化产物)在SEI层的分布相对较多,在SEI表层的分布较少。与无机物的信号强度相比,大多数有机物(CHO2-, C2HO-, CH3+, C2H3+, C2H5+, C3H3+, C3H5+, C3H7+, C4H7+)的信号强度较弱,并随着深度的增加而降低,说明它们只分布在SEI表面。相反,CH-和C2H-信号强度较强,并随深度的增加而减少,表明SEI中的有机物质。这些二级离子片段的信号强度随深度变化的信息在三维分布图中得到了更直观的体现(图8g)。从上述数据中,可以得到一个相对清晰的SEI结构。β- Li3PS4/S界面层被分为两层。靠近Li-BP-DME的一层是溶解的β-Li3PS4/S,因为在这层中同时存在着与Li3PS4有关的离子物种PSx-和与DME有关的有机离子物种CH-, C2H-, CHO2-, C2HO-。此外,一些无机锂导体Li2CO3、Li3PO4、LiF、Li2O、Li3P、LiSx、LiOH(Li2OH+)和LiSH也存在于该层中,它们相互配合,提高了Li+的导电性和负极端的电子绝缘性。另一层是靠近硫化物SE Li7P3S11的致密的β-Li3PS4/S层。受TOF-SIMS测量范围的限制,SEI的深度为500nm,小于SEM显示的SEI层厚度的1μm(图6n和图6p)。然而,根据有机和无机物质随深度增加而变化的趋势,可以推断出SEI具有上述的双层结构。经过一系列的表征分析,得到了裸Li7P3S11以及PEO-LiTFSI和-Li3PS4/S界面保护层的SEI信息,如图9a-9c所示。裸硫化物SE Li7P3S11的SEI结构(图9a)由两层组成。靠近有机LE Li-BP-DME的一侧是一个松散多孔的有机层,它是由Li-BP-DME的联苯和二甲醚分解形成的。这种可被液态金属锂渗透的SEI层包括一个相对密集的无机内层和一个富含有机物的外层。在Li7P3S11的一侧是一个无机松散层,其中分布着少量的有机物。因此,Li-BP-DME溶液可以穿透这层非致密的SEI,继续与硫化物SE反应,导致这个电池系统的失败。还得到了一个清晰的PEO-LiTFSI界面保护层的SEI结构(图9b)。这个SEI层由PEO框架组成,它与Li-BP-DME的化学性质稳定,其中存在大量的无机Li+导电成分(LiF, Li2CO3, Li2NO3, Li3P, Li2S, LiH, LiCx, Li2O, Li3PO4, Li2SO3, LiSH, LiOH)。这些无机成分相互合作,以提高Li+的导电性和阳极一侧的电子绝缘性。再加上少量的乙腈小分子和甲氟烷(CH2OF-)的作用,SEI层在室温下可以有效地传导Li+。图9c显示了β-Li3PS4/S界面保护层的SEI结构,它由两层组成,靠近Li-BP-DME的一层是溶解的β-Li3PS4/S。另一层是靠近硫化物SE Li7P3S11的密集的β-Li3PS4/S层。同时,一些无机锂导体Li2CO3、Li3PO4、LiF、Li2O、Li3P、LiSx、LiOH(Li2OH+)和LiSH相互配合,提高了Li+的导电性和阳极一侧的电子绝缘性。在明确了PEO-LiTFSI和β- Li3PS4/S界面层的机制后,组装了具有两个界面层的对称电池,以测试硫化物SE Li7P3S11对Li1.5BP3DME10阳极的界面稳定性。图10显示了Li-BP-DME//β-Li3PS4/S//Li7P3S11//β-Li3PS4/S//Li-BP-DME电池和Li-BP-DME//PEO//Li7P3S11//PEO//Li-BP-DME电池在固定电流为0.127 mA cm-2和面积容量为0.254 mAh cm-2的电压曲线。两种电池都表现出低的初始过电位(PEO和β-Li3PS4/S约为0.11V)。带有PEO界面层的电池可以稳定地循环约1000小时(电压上升到0.8V),而带有β-Li3PS4/S界面层的电池可以稳定地循环约1100小时(电压上升到0.2V)。与Li-BP-DME/裸露的LPS/Li-BP-DME对称电池相比,这些带有PEO和β-Li3PS4/S保护层的电池显示出更好的循环稳定性(~1000小时和~1100小时)。【结论】总之,通过一系列系统的表征,明确了硫化物SE Li7P3S11与有机LE Li-BP-DME之间的界面反应机制。在此基础上,设计并探索了硫化物SE (Li7P3S11)与有机LE (Li-BP-DME)之间稳定的界面层材料,从而突破了硫化物SE与有机LE之间长期存在的固-液界面相容性难题。事实证明,PEO-LiTFSI聚合物界面层和β-Li3PS4/S界面层在近1100h和1000h的长期稳定循环中是有效的。此外,对这两种界面层进行了详细的描述,以深入了解其保护机制。该工作为解决硫化物固体电解质与有机液体电极之间的固-液界面相容性问题提供了宝贵的方法,对进一步提高锂电池的循环寿命和安全性具有重要的现实意义。 【作者及团队介绍】 第一作者:彭健,男,博士毕业于中科院物理所。研究方向为新型电极材料、新型硫化物固态电解质材料及电池研究。伍登旭,男,本科毕业于北京理工大学化学与化工学院,现为中科院物理所E01组研究生。主要研究方向为硫化物固态电解质及其界面问题。姜智文,男,本科毕业于南京工业大学,现为英国南安普顿大学研究生。主要研究方向为硫化物固态电解质及其界面问题。 合作作者:陈立泉:中科院物理所博士生导师。中国工程院院士。北京星恒电源股份有限公司技术总监。曾任亚洲固体离子学会副主席,中国材料研究学会副理事长,2004年至今任中国硅酸盐学会副理事长。主要从事锂电池及相关材料研究,在中国首先研制成功锂离子电池,解决了锂离子电池规模化生产的科学、技术与工程问题,实现了锂离子电池的产业化。近年来,开展了全固态锂电池、锂硫电池、锂空气电池、室温钠离子电池等研究,为开发下一代动力电池和储能电池奠定了基础。曾获国家自然科学奖一等奖、中科院科技进步奖特等奖和二等奖,2007年获国际电池材料协会终身成就奖。2001年当选为中国工程院院士。合作作者:李泓:中国科学院物理研究所研究员,博士生导师。主要研究方向为高能量密度鲤离子电池、固态鲤电池、电池失效分析、固态离子学。提出和发展了高容量纳米硅碳负极材料,基于原位固态化技术的混合固液电解质高能量密度鲤离子电池及全固态电池等。发表了470余篇学术论文,引用47000次,授权70余项发明专利,H因子115。国家重大人才工程B类专家,荣获国家杰出青年科学基金资助。目前是科技部和工信部+四五储能和智能电网重点专项实施方案与指南编写组的总体组组长,国家新能源汽车创新中心学术委员会委员。国际固态离子学会、国际鲤电池会议、国际储能联盟科学执委会成员。围绕固态电池,推动孵化成立了多家企业。 通讯作者:吴凡:中科院物理所博士生导师、共青团常州市委副书记。入选国家级人才计划、中科院人才计划、江苏省杰出青年基金。获全国青年岗位能手(共青团中央)、全国未来储能技术挑战赛一等奖、全国先进储能技术创新挑战赛二等奖(国家工信部)、江苏青年五四奖章等荣誉。
  • 赫施曼助力矿泉水检测
    近日,大连市沙河口区市监局抽检某天然弱碱矿泉(矿泉水),结果界限指标锶和偏硅酸项目不合格。依据是GB 8538-2016《食品安全国家标准 饮用天然矿泉水检验方法》,而此标准也要在今年年底进行更新(GB 8538-2022),主要增加和修改了多个微生物相关内容。偏硅酸的检测方法为硅钼黄光谱法,此方法所用仪器为分光光度计,类似仪器和方法也应用于饮用天然矿泉水的多个重金属(铁、锰、铜、银、钒、钴、砷)、硼酸、氟化物、碘化物、硫化物、硝酸根、硫酸根、挥发酚、阴离子表活等众多项目中。硅钼黄光谱法的原理是在酸性溶液中,可溶性硅酸与钼酸铵反应,生成可溶性的黄色硅钼杂多酸,在一定浓度范围内,其吸光度与可溶性硅酸含量成正比。有以下两个重要步骤:一、试样测定:取50.0ml水样于50ml比色管中,加1.0ml盐酸溶液,2.0ml钼酸铵溶液,充分摇匀,放置15min。加入2.0ml草酸溶液,充分摇匀。放置2min后,在波长420nm~430nm处,用2cm比色皿,试剂空白作参比,测量吸光度(15min内完成)。试样测定中涉及多种试剂的定体积加液(盐酸、钼酸铵、草酸等),赫施曼的瓶口分液器非常适合此类毫升级别的快速、准确、安全地加液,规格丰富,体积最小为0.2ml,最大为60ml。二、绘制校准曲线:吸取偏硅酸标准工作溶液0ml、0.50ml、1.00ml、2.00ml、4.00ml、6.00ml、8.00ml和10.00ml于一系列50ml比色管中,用水稀释至50ml。以下操作同试样测定。以比色管中偏硅酸质量(ug)为横坐标、吸光度为纵坐标,绘制校准曲线。绘制校准曲线中需要配置不同浓度的溶液,需要添加不同体积的母液和稀释液。赫施曼的opus电子稀释配液系统,不仅可以通过触摸屏设定单次加液体积,也可以在一个分液程序中设定多达10个独立的分液体积,按下分液键就可以进行一组分液,且分液参数(程序)还可保存和调用。此外,标准的附录B(饮用天然矿泉水的采集和保存)中,规定了采样后保护剂的添加,涉及硝酸、氢氧化钠、硫酸、乙酸锌等。赫施曼的水质固定剂箱,可装配多种保护剂,解决传统添加方式里玻璃量具不易携带、易碎、漏液、效率较低等问题,使取样的保护剂添加更加准确、便捷。
  • 【和泰纯水知识集锦】第3期-水的纯化方法
    一、微孔过滤法微孔过滤法包括三种类型:深层过滤(depth)、筛网过滤(screen)及表面过滤(surface)。深层滤膜是以编织纤维或压缩材料制成的基质,利用随机性吸附或是捕捉方式来滞留颗粒。筛网滤膜基本上是具有一致性的结构,就像筛子一般,将大于孔径的颗粒,都滞留在表面上(这种滤膜的孔径大小是非常精确的),而表面过滤则是多层结构,当溶液通过滤膜时,较滤膜内部孔隙大的颗粒将被滞留下来,并主要堆积在滤膜表面上。由于上述三种滤膜的功能不同,因此对滤膜之间的分辨非常重要。由于深层过滤是一种较为经济的方式,可去除98%以上的悬浮固体,同时保护下游的纯化单元不会败坏或堵塞,因此通常被作为预过滤处理。表面过滤可去除99.99%以上的悬浮固体,所以也可作为预过滤处理或澄清用。微孔薄膜(筛网滤膜)一般被置于纯化系统中的最终使用点,以去除最终残留的微量树脂碎片、碳屑、胶质颗粒和微生物。例如:0.22μm微孔滤膜,其可滤过所有的细菌,通常用于将静脉注射用的液体、血清及抗生素进行除菌用。二、活性碳吸附法有机物可能是阳离子、阴离子或非离子性的物质,离子交换树脂可去除原水中一些可溶性的有机酸和有机碱(阴离子和阳离子),但有些非离子性的有机物却会被树脂包覆,这过程称为树脂的“污染阻塞”现象,不但会减少树脂的寿命,而且降低其交换能力。为保护离子交换树脂,可将活性碳过滤器安装在离子交换树脂之前,以去除非离子性的有机物。活性碳的吸附过程是利用活性碳过滤器的孔隙大小及有机物通过孔隙时的渗透率来达到的。吸附率和有机物的分子量及其分子大小有关,某些颗粒状的活性碳较能有效的去除氯胺。活性碳也能去除水中的自由氯,以保护纯水系统内其他对氧化剂敏感的纯化单元。活性碳通常与其他的处理方法组合应用。在设计纯水系统时,活性碳与其他相关纯化单位的相关配置,是一项极为重要的项目。三、反渗透法反渗透(RO)法是可达到90%~99%杂质去除率中最经济的方法。RO膜的滤孔结构较UF膜还要致密,RO膜可去除所有的颗粒、细菌以及分子量大于300的有机物(包括热源)。RO膜的滤孔结构较UF膜还要致密,RO膜可去除所有的颗粒、细菌以及分子量大于300的有机物(包括热源)。当二种不同浓度的溶液,由一个半透膜隔开时,渗透现象会自然发生。渗透压将水压过半透膜,水将浓度较高的溶液稀释,后造成浓度平衡。在水纯化系统中,施加压力于高浓度的溶液中,以抗衡渗透压。如此迫使得纯水由高浓度的液体通过RO膜,并可加以收集。由于RO膜致密度极高,因此,产出的水流很慢,需要经过相当的时间,贮水箱内才会有足够的水量。RO膜可执行离子排除,使得只有水可通过RO膜,其余所有的离子及溶解的分子都被截留,并加以排除(包括盐类和糖)。RO膜以电荷反应将离子排除,带电荷愈大,排除性愈高,所以RO膜几乎可排除所有的(99%)强离子性的高价离子,但是,对于弱离子性的单价离子(如钠离子)的效果只有95%。不同的进水需要不同种类的RO膜,RO膜包括由乙酸纤维酯制成,或是以聚硫胺与聚砜基质的混合薄层聚合物。如果以原水水质及产水水质为基准,经过适当设计后,RO是将自来水纯化的最经济有效方法。RO同时也是试剂级纯水系统很好的前处理方法。四、离子交换法离子交换法是以圆球形树脂(离子交换树脂)过滤原水,水中的离子会与固定在树脂上的离子交换。常见的两种离子交换方法分别是硬水软化和去离子法。硬水软化主要是用在反渗透(RO)处理之前,先将水质硬度降低的一种前处理程序。软化机里面的球状树脂,以两个钠离子交换一个钙离子或镁离子的方式来软化水质。离子交换树脂利用氢离子交换阳离子,而以氢氧根离子交换阴离子;以包含磺酸根的苯乙烯和二乙烯苯制成的阳离子交换树脂会以氢离子交换碰到的各种阳离子(例如Na+、Ca2+、Al3+)。同样的,以包含季铵盐的苯乙烯制成的阴离子交换树脂会以氢氧根离子交换碰到的各种阴离子(如Cl-)。从阳离子交换树脂释出的氢离子与从阴离子交换树脂释出的氢氧根离子相结合后生成纯水。阴阳离子交换树脂可被分别包装在不同的离子交换床中,分成所谓的阴离子交换床和阳离子交换床。也可以将阳离子交换树脂与阴离子交换树脂混在一起,置于同一个离子交换床中。不论是那一种形式,当树脂与水中带电荷的杂质交换完树脂上的氢离子及(或)氢氧根离子,就必须进行“再生”。再生的程序恰与纯化的程序相反,利用氢离子及氢氧根离子进行再生,交换附着在离子交换树脂上的杂质。若将离子交换法与其他纯化水质方法(例如反渗透法、过滤法和活性碳吸附法)组合应用时,则离子交换法在整个纯化系统中,将扮演非常重要的一个部分。离子交换法能有效的去除离子,却无法有效的去除大部分的有机物或微生物。而微生物可附着在树脂上,并以树脂作为培养基,使得微生物可快速生长并产生热源。因此,需配合其他的纯化方法设计使用。五、EDI纯水技术电渗析(EDI)是一项结合了离子交换树脂和离子选择性通透膜,并结合直流电去除水中离子化杂质的技术。该项技术的发展克服了离子交换树脂的局限性,特别是离子交换柱耗竭时离子杂质的释放及重填或再生离子交换柱的工作。水通过一个或多个在阳离子或阴离子选择膜之间填满离子交换树脂的管腔,在电场的作用下,离子在离子交换树脂间向管腔的两侧移动并进入另外的管腔,这个过程中也会电解产生维持树脂处于再生状态所需的H+和OH- 。流向两侧独立管腔的离子被水冲刷掉。六 、超滤法超滤(UF)是一个过滤术语,指能去除如蛋白质大小的颗粒的过滤器。膜孔径通常在1-50nm之间,中空纤维结构的超滤膜通常有较高的滤过速率。超滤膜根据其降低相关污染物浓度的效率来分级微孔薄膜是依其孔径大小来去除颗粒,而超滤(UF)薄膜则是一个分子筛,它以尺寸为基准,让溶液通过极细微的滤膜,以达到分离溶液中不同大小分子的目的。超滤膜是一种强韧、薄、具有选择性的通透膜,可截留大部分某种特定大小以上的分子,包括:胶质、微生物和热源。较小的分子,例如:水和离子,都可通过滤膜。所以,超滤法可将截留液中的大分子加以浓缩,但是,仍有些大分子会渗漏至滤过液中。超滤膜有数种不同的范围,在所有的实例中,超滤膜会留在大部分大于其分子筛所定义分子量的分子。七 、紫外线照射法紫外线照射法已广泛的使用在水处理上,低压水银灯所放射出来的254nm的紫外线是一种有效的杀菌方法,因为细菌中的DNA及蛋白质会吸收紫外线而导致死亡。近来在UV灯制造技术方面的进步,已可制造同时产生185nm和254nm波长的紫外灯管,这种光波长组合可利用光氧化有机化合物,接着这种特殊灯泡,将纯水中的总有机碳浓度降低至5ppb以下。八、蒸馏法蒸馏法是通过改变水的形态,从液态到气态再回到液态,将水和污染物分离。蒸馏法的每一个转换过程都为纯水与污染物的分离提供了机会。理论上,除蒸汽压力与水接近的物质和共沸化合物,蒸馏法能去除所有种类的水中污染物。像RO一样,蒸馏法生产纯水的速度较慢,所以蒸馏水必须先储存起来以备日后使用。蒸馏水器非常耗电,每生产1升纯水通常耗费1KW电力。依据蒸馏水器的不同设计,蒸馏水的电阻率大约能达到1 MΩ-cm,因为空气中的CO2会溶入蒸馏水中迅速降低其电导率。新鲜蒸馏水是无菌的,但如果保存不当,一段时间后就不再是无菌的了。九、凯得菲(KDF)凯得菲(KDF)的作用及功效:凯得菲(KDF)是高纯度的铜/锌合金颗粒,它通过微电化学氧化-还原反应(Redox)进行水处理工作,在与水接触时,合金中的两种金属在亚微观尺度上构成无数小的原电池系统,这种材料在水中具有强大的反应能力和极快的反应速度,可以清除水中高达99%的氯和水中溶解的铅、汞、镍、铬等金属离子和化合物。对抑制细菌、真菌、污垢、水藻的滋生效果卓著。被用于预处理、主处理与废水处理设备。凯得菲(KDF)完善或取代现有技术,可大辐度延长了系统寿命,减少重金属、微生物、污垢,降低了总费用,减化系统维护。(1) 去除强氧化剂(余氯)凯得菲(KDF)具有强大的还原能力,能去除水中的各种强氧化剂,对余氯特别有效。(2)去除重金属凯得菲(KDF)处理介质可以去除水中的多种重金属离子,如铅、汞、铜、镍、镉、砷、锑、铝和其他许多可溶性重金属离子,它们的去除是通过置换反应和物理和化学吸附反应来完成的。凯得菲(KDF)去除重金属离子的机理如下:金属离子吸附于凯得菲(KDF)处理介质的表面并与凯得菲(KDF)中的锌发生置换反应,生成的金属或吸附在凯得菲(KDF)表面,或进入凯得菲(KDF)晶格中,从而使有毒重金属污染物结合在凯得菲(KDF)上。例如,水中溶解的铅离子还原成不溶性的铅原子,并吸附于凯得菲(KDF)介质的表面,汞离子与凯得菲(KDF)也发生类似的反应,X射线衍射研究发现汞的去除是形成了铜-汞合金。(3)去除硫化氢在应用膜法进行水处理时,如果选用地下水作水源,水中可能存在硫化氢,硫化氢如被氧化成硫磺就会污染滤膜表面,凯得菲(KDF)过滤介质有去除硫化氢的功能,生成的硫化铜不溶于水,可在凯得菲(KDF)介质反冲洗时去除(4)减少悬浮固体凯得菲(KDF)处理介质的颗粒平均尺寸大约为60目,最小的颗粒约110目,也能起到物理过滤去除悬浮物质的作用,通常凯得菲(KDF)过滤介质能够有效地去除直径小于至50μm的颗粒。(5)减少矿物质结垢(6)抑制微生物繁殖凯得菲(KDF)处理介质不是通过一种机理、而是几种机理控制微生物的生长繁殖,通过每一种的单独作用或协同作用来达到抑制微生物的作用。主要机理包括:氧化还原电位的变化,氢氧根离子和过氧化氢的形成,介质中锌的溶出等。在一般情况下,凯得菲(KDF)处理介质作为反渗透膜的预处理手段时,能够抑制细菌、藻类等微生物的繁殖,从而防止了微生物对膜的破坏。【本文由和泰仪器发布,未经允许,禁止转载、抄袭!部分内容整理摘编自网络,如有侵权,请联系改正!】
  • 8部门关注水泥中水溶性六价铬安全风险
    2月21日,质检总局召开水泥中水溶性六价铬风险会商会,就如何有效处置水泥中水溶性六价铬质量安全风险,与工业和信息化部、人力资源社会保障部、环境保护部、卫生计生委、工商总局、安全监管总局、食品药品监管总局等部门进行了会商。这也是2009年产品质量安全风险监控工作开展以来,质检总局首次召开的工业产品质量安全风险会商会。质检总局副局长魏传忠出席会议并讲话。  魏传忠在讲话中指出,水泥中水溶性六价铬问题事关重大,希望各部门高度重视,统一认识,统一思想,统一行动,合力解决潜在的质量安全风险,共同促进提高水泥产品质量安全水平。对于质检部门来说,他强调,一是要结合环境保护、水泥产业发展等方面情况,加快制定水泥中水溶性六价铬限量标准并尽快实施 二是要以适当方式向水泥生产企业通报相关风险信息,督促生产企业查找原因,改进生产技术和工艺,落实质量安全主体责任。  据悉,在今年1月发布的《关于加强产品质量安全风险监控工作的指导意见》中,质检总局提出,要以消费品为重点,以产品质量中影响人体健康和人身财产安全等因素为内容,建立以风险信息采集为基础、风险监测为手段、风险评估为支撑、风险控制为目标的产品质量安全风险监控工作体系,形成以预防为主、风险管理为核心的产品质量安全监管新机制。本次多部门参与的风险会商会,就属于风险处置机制中的重要工作之一。
  • 橡胶硫化特性的测试 (包括门尼焦烧和硫化曲线)
    硫化是橡胶制品制造工艺中最重要的工艺过程之一。 就是使橡胶大分子链由线性变为网状的交联过程,从而获得良好物理机械性能和化学性能。 橡胶的硫化性能是反映橡胶在硫化过程中各种表现或者现象的指标,对进行科研、指导生产具有很大的实用价值,硫化性能主要包括焦烧性能、正硫化时间、硫化历程等,测定橡胶的硫化性能方法很多。其中以硫化仪和气泡点分析仪最佳。 ⑴ 门尼粘度计法 门尼粘度计法不但能测定生胶门尼粘度或混炼胶门尼粘度,表征胶料流变特性,而且能测定胶料的触变效应,弹性恢复、焦烧特性及硫化指数等性能,因此它是最早用于测定胶料硫化曲线的工具。虽然门尼粘度计不能直接读出正硫化时间,但可以用它来推算出硫化时间。 ⑵ 硫化仪法 硫化仪是近年出现的专用于测试橡胶硫化特性的试验仪器, 类型有多种。按作用原理有二大类。第一类在胶料硫化中施加一定振幅的力,测定相应变形量如流变仪;第二类是目前通用的一类。这一类流变仪在胶料硫化中施加一定振幅变形,测定相应剪切应力,如振动圆盘式流变仪。 3.1 橡胶门尼焦烧试验 胶料的焦烧是胶料在加工过程中出现的早期硫化现象,每个胶料配方都有它的焦烧时间(包括操作焦烧时间和剩余焦烧时间)。在生产中应控制此段时间的长短。如果太短,则在操作过程中易发生焦烧现象或者硫化时胶料不能充分流动,而使花纹不清而影响制品质量甚至出现废品,如果焦烧时间太长,导致硫化周期增长,从而降低生产效率。当前测定焦烧时间广泛使用的方法是门尼焦烧粘度计(测定的焦烧时间称为门尼焦烧时间),此外也可以用硫化仪测其胶料初期时间(t10)。 3.1.1 门尼焦烧的试验原理 用门尼粘度计测定胶料焦烧是在特定的条件下, 根据未硫化胶料门尼粘度的变化,测定橡胶开始出现硫化现象的时间。 3.2 橡胶硫化特性测定 为了测定橡胶硫化程度及橡胶硫化过程过去采用方法有化学法(结合硫法、溶胀法),物理机械性能法(定伸应力法、拉伸强度法、永久变形法等),这些方法存在的主要缺点是不能连续测定硫化过程的全貌。硫化仪的出现解决了这个问题,并把测定硫化程度的方法向前推进了一步。 硫化仪是上世纪六十年代发展起来的一种较好的橡胶测试仪器。广泛的应用于测定胶料的硫化特性。硫化仪能连续、直观地描绘出整个硫化过程的曲线,从而获得胶料硫化过程中的某些主要参数。 上岛 硫化试验仪(无转子) 型号:VR-3110 在规定的温度下,混合橡胶放在上下平板膜腔之间并施以正弦波扭矩振动时,随着橡胶的硫化测定其扭矩的变化。可根据最大扭矩、最小扭矩、焦烧时间、硫化时间、粘弹性等其它因素的变化求出硫化特性的试验机。 上岛 气泡点分析仪型号:VR-9110 气泡点分析仪是能在需要的最小限度抑制橡胶的硫化时间的测试机,而对车胎、皮带、防振橡胶等产品的硫化工程控制有效。对生产性提高、能源消减、摩耗特性或者耐久性等产品特性的提高有益。 橡胶硫化不够时看到的内部气泡在硫化工程中控制 ,知道每种材料的最佳硫化时间。
  • 关于举办国家推荐性方法标准GB/T 33318-2016《气体分析 硫化物的测定硫化学发光气相色谱法》标准宣贯及研讨会的通知
    p style="text-align: center "strong  全国气体标准化专业技术委员会气体分析分技术委员会/strong/pp style="text-align: center "strong  分析秘字〔2017〕 8号/strong/pp /pp style="text-align: center "  关于举办国家推荐性方法标准GB/T 33318-2016《气体分析 硫化物的测定硫化学发光气相色谱法》标准宣贯及研讨会的通知/pp  各有关单位:/pp  由全国气体标准化专业技术委员会气体分析分技术委员会(SAC/TC 206/SC 1)归口的国家推荐性方法标准GB/T 33318-2016《气体分析硫化物的测定 硫化学发光气相色谱法》已于2016年12月13日由中华人民共和国质量监督检验检疫总局、中国国家标准化管理委员会批准发布,并于2017年7月1日起正式实施。该项标准为首次制定实施,与其它现行相关标准存在较大的技术差异。/pp  为了满足标准使用相关方的实际需求,加深对标准的理解,减少标准使用过程中的偏差,保证标准的有效实施,全国气体标准化专业技术委员会气体分析分技术委员会(SAC/TC 206/SC 1)决定于近期联合标准制定单位中国测试技术研究院和安捷伦科技(中国)有限公司共同举办该项标准的宣贯及相关技术研讨会,由标准主要起草人进行系统的标准宣讲,并开展气体分析领域相关技术研讨。/pp  因会议时间按国标委要求临时提前,报名截止时间延迟到8月20日,欢迎参会。现将有关事项通知如下:/ppstrong  一、参会对象/strong/pp  与气体分析相关的企业(石化行业)、环境监测、质检部门、第三方检验检测机构、仪器厂家等标准使用相关方的专业技术人员、管理人员等。/ppstrong  二、宣贯内容/strong/pp  1、GB/T 33318-2016《气体分析 硫化物的测定 硫化学发光气相色谱法》标准制定概况及条款释义 /pp  2、分析检测实验过程的试验技巧、重点及注意事项 /pp  3、其他相关硫化物分析技术介绍 /pp  4、石油化工、环境监测领域气体检测技术与行业发展方向交流研讨。/pp  5、交流与答疑 /pp  6、标准项目承担单位(中国测试技术研究院)气体分析实验室考察。/ppstrong  三、宣贯时间、地点及费用/strong/pp  1、会议时间:2017年8月31日到9月2号(8月31号报到)。/pp  2、会议地点:瑞升· 芭富丽大酒店(成都市成华区玉双路7号) /pp  会务组不负责接送,请各位代表自行前往酒店,可参考以下路线:/pp  (1) 乘坐机场专线1号线至地铁省体育馆站下车,乘坐地铁三号线,至市二医院站转地铁四号线,至玉双路站A出口出站,步行400米可到达。/pp  (2) 乘坐机场专线3号线,火车南站东站下车,步行174米,至天和西二街中环路口站乘坐74路,水碾河站下车,步行600米可到达。/pp  (3) 双流国际机场打车至瑞升· 芭富丽大酒店,约23公里,出租车费约70元。/pp  3、会议费:800元/人(含资料、餐费等费用)。/pp  4、会议住宿费(费用自理):360元/间(标间或大床房)。/pp strong 四、会务承办单位:/strong成都思创睿智科技有限公司 /pp  strong五、注意事项/strong/pp  1、请各位代表于8月20日前将会议所有回执(见附件1)反馈至六中联系方式中所示电子邮箱。/pp  2、会务组只收取会务费、开具会务费发票 住宿费由酒店收取、酒店开具发票。请各位代表提前将开票信息、发票邮寄信息登记表(见附件1)反馈至六中联系方式中所示电子邮箱。/ppstrong  六、报名参会联系方式/strong/pp  秘书处联系人:潘 义(13880777735),(028)84403610 /pp  王维康(18980409695),(028)84403036 /pp  黄慎敏(18111280301),(028)84403036 /pp  秘书处电子邮箱:TC206SC1@126.com /pp  会务承办单位联系人:金慧琳 (13096377829),13806895@qq.com。/pp style="text-align: right "  全国气体标准化专业技术委员会/pp style="text-align: right "  气体分析分技术委员会秘书处/pp style="text-align: right "  2017年7月4日/pp  附件:标准宣贯报名回执表/pp  表1 参会代表回执登记表/ptable width="568" border="1" cellspacing="0" cellpadding="0"tbodytr class="firstRow" style="height: 35px "td width="88" height="35" style="padding: 0px 7px border: 1px solid windowtext background-color: transparent "p style="text-align: center "strongspan style="font-family: 楷体 "姓名/span/strong/p/tdtd width="149" height="35" style="border-width: 1px 1px 1px 0px border-style: solid solid solid none border-color: windowtext windowtext windowtext rgb(0, 0, 0) padding: 0px 7px background-color: transparent "br//tdtd width="58" height="35" style="border-width: 1px 1px 1px 0px border-style: solid solid solid none border-color: windowtext windowtext windowtext rgb(0, 0, 0) padding: 0px 7px background-color: transparent "p style="text-align: center "strongspan style="font-family: 楷体 "性别/span/strong/p/tdtd width="81" height="35" style="border-width: 1px 1px 1px 0px border-style: solid solid solid none border-color: windowtext windowtext windowtext rgb(0, 0, 0) padding: 0px 7px background-color: transparent "br//tdtd width="85" height="35" style="border-width: 1px 1px 1px 0px border-style: solid solid solid none border-color: windowtext windowtext windowtext rgb(0, 0, 0) padding: 0px 7px background-color: transparent "p style="text-align: center "strongspan style="font-family: 楷体 "职称/span/strong/p/tdtd width="107" height="35" style="border-width: 1px 1px 1px 0px border-style: solid solid solid none border-color: windowtext windowtext windowtext rgb(0, 0, 0) padding: 0px 7px background-color: transparent "br//td/trtr style="height: 30px "td width="88" height="30" style="border-width: 0px 1px 1px border-style: none solid solid border-color: rgb(0, 0, 0) windowtext windowtext padding: 0px 7px background-color: transparent "p style="text-align: center "strongspan style="font-family: 楷体 "单位名称/span/strong/p/tdtd width="480" height="30" style="border-width: 0px 1px 1px 0px border-style: none solid solid none border-color: rgb(0, 0, 0) windowtext windowtext rgb(0, 0, 0) padding: 0px 7px background-color: transparent " colspan="5"br//td/trtr style="height: 30px "td width="88" height="30" style="border-width: 0px 1px 1px border-style: none solid solid border-color: rgb(0, 0, 0) windowtext windowtext padding: 0px 7px background-color: transparent "p style="text-align: center "strongspan style="font-family: 楷体 "邮寄地址/span/strong/p/tdtd width="288" height="30" style="border-width: 0px 1px 1px 0px border-style: none solid solid none border-color: rgb(0, 0, 0) windowtext windowtext rgb(0, 0, 0) padding: 0px 7px background-color: transparent " colspan="3"br//tdtd width="85" height="30" style="border-width: 0px 1px 1px 0px border-style: none solid solid none border-color: rgb(0, 0, 0) windowtext windowtext rgb(0, 0, 0) padding: 0px 7px background-color: transparent "p style="text-align: justify text-justify: distribute-all-lines "strongspan style="font-family: 楷体 "邮编/span/strong/p/tdtd width="107" height="30" style="border-width: 0px 1px 1px 0px border-style: none solid solid none border-color: rgb(0, 0, 0) windowtext windowtext rgb(0, 0, 0) padding: 0px 7px background-color: transparent "br//td/trtr style="height: 34px "td width="88" height="34" style="border-width: 0px 1px 1px border-style: none solid solid border-color: rgb(0, 0, 0) windowtext windowtext padding: 0px 7px background-color: transparent "p style="text-align: center "strongspan style="font-family: 楷体 "电子邮箱/span/strong/p/tdtd width="288" height="34" style="border-width: 0px 1px 1px 0px border-style: none solid solid none border-color: rgb(0, 0, 0) windowtext windowtext rgb(0, 0, 0) padding: 0px 7px background-color: transparent " colspan="3"br//tdtd width="85" height="34" style="border-width: 0px 1px 1px 0px border-style: none solid solid none border-color: rgb(0, 0, 0) windowtext windowtext rgb(0, 0, 0) padding: 0px 7px background-color: transparent "p style="text-align: justify text-justify: distribute-all-lines "strongspan style="font-family: 楷体 "手机/span/strong/p/tdtd width="107" height="34" style="border-width: 0px 1px 1px 0px border-style: none solid solid none border-color: rgb(0, 0, 0) windowtext windowtext rgb(0, 0, 0) padding: 0px 7px background-color: transparent "br//td/trtr style="height: 30px "td width="88" height="30" style="border-width: 0px 1px 1px border-style: none solid solid border-color: rgb(0, 0, 0) windowtext windowtext padding: 0px 7px background-color: transparent " rowspan="2"p style="text-align: center "strongspan style="font-family: 楷体 "住宿预订/span/strong/p/tdtd width="207" height="30" style="border-width: 0px 1px 1px 0px border-style: none solid solid none border-color: rgb(0, 0, 0) windowtext windowtext rgb(0, 0, 0) padding: 0px 7px background-color: transparent " colspan="2"p style="text-align: center "strongspan style="font-family: 楷体 "普标(/span/strongstrongspan style="font-family: Times New Roman "360/span/strongstrongspan style="font-family: 楷体 "元/span/strongstrongspan style="font-family: Times New Roman "//span/strongstrongspan style="font-family: 楷体 "间/span/strongstrongspan style="font-family: Times New Roman "//span/strongstrongspan style="font-family: 楷体 "天)/span/strong/p/tdtd width="81" height="30" style="border-width: 0px 1px 1px 0px border-style: none solid solid none border-color: rgb(0, 0, 0) windowtext windowtext rgb(0, 0, 0) padding: 0px 7px background-color: transparent "br//tdtd width="85" height="30" style="border-width: 0px 1px 1px 0px border-style: none solid solid none border-color: rgb(0, 0, 0) windowtext windowtext rgb(0, 0, 0) padding: 0px 7px background-color: transparent "p style="text-align: center "strongspan style="font-family: 楷体 "是否合住/span/strong/p/tdtd width="107" height="30" style="border-width: 0px 1px 1px 0px border-style: none solid solid none border-color: rgb(0, 0, 0) windowtext windowtext rgb(0, 0, 0) padding: 0px 7px background-color: transparent "br//td/trtr style="height: 30px "td width="207" height="30" style="border-width: 0px 1px 1px 0px border-style: none solid solid none border-color: rgb(0, 0, 0) windowtext windowtext rgb(0, 0, 0) padding: 0px 7px background-color: transparent " colspan="2"p style="text-align: center "strongspan style="font-family: 楷体 "普单(/span/strongstrongspan style="font-family: Times New Roman "360/span/strongstrongspan style="font-family: 楷体 "元/span/strongstrongspan style="font-family: Times New Roman "//span/strongstrongspan style="font-family: 楷体 "间/span/strongstrongspan style="font-family: Times New Roman "//span/strongstrongspan style="font-family: 楷体 "天)/span/strong/p/tdtd width="273" height="30" style="border-width: 0px 1px 1px 0px border-style: none solid solid none border-color: rgb(0, 0, 0) windowtext windowtext rgb(0, 0, 0) padding: 0px 7px background-color: transparent " colspan="3"br//td/trtr style="height: 28px "td width="88" height="28" style="border-width: 0px 1px 1px border-style: none solid solid border-color: rgb(0, 0, 0) windowtext windowtext padding: 0px 7px background-color: transparent "p style="text-align: center "strongspan style="font-family: 楷体 "入住日期/span/strong/p/tdtd width="207" height="28" style="border-width: 0px 1px 1px 0px border-style: none solid solid none border-color: rgb(0, 0, 0) windowtext windowtext rgb(0, 0, 0) padding: 0px 7px background-color: transparent " colspan="2"br//tdtd width="81" height="28" style="border-width: 0px 1px 1px 0px border-style: none solid solid none border-color: rgb(0, 0, 0) windowtext windowtext rgb(0, 0, 0) padding: 0px 7px background-color: transparent "p style="text-align: center "strongspan style="font-family: 楷体 "离会日期/span/strong/p/tdtd width="192" height="28" style="border-width: 0px 1px 1px 0px border-style: none solid solid none border-color: rgb(0, 0, 0) windowtext windowtext rgb(0, 0, 0) padding: 0px 7px background-color: transparent " colspan="2"br//td/trtr style="height: 28px "td width="88" height="28" style="border-width: 0px 1px 1px border-style: none solid solid border-color: rgb(0, 0, 0) windowtext windowtext padding: 0px 7px background-color: transparent "p style="text-align: center "strongspan style="font-family: 楷体 "是否参加交流考察/span/strong/p/tdtd width="207" height="28" style="border-width: 0px 1px 1px 0px border-style: none solid solid none border-color: rgb(0, 0, 0) windowtext windowtext rgb(0, 0, 0) padding: 0px 7px background-color: transparent " colspan="2"br//tdtd width="81" height="28" style="border-width: 0px 1px 1px 0px border-style: none solid solid none border-color: rgb(0, 0, 0) windowtext windowtext rgb(0, 0, 0) padding: 0px 7px background-color: transparent "p style="text-align: center "strongspan style="font-family: 楷体 "身份证号/span/strong/p/tdtd width="192" height="28" style="border-width: 0px 1px 1px 0px border-style: none solid solid none border-color: rgb(0, 0, 0) windowtext windowtext rgb(0, 0, 0) padding: 0px 7px background-color: transparent " colspan="2"br//td/trtr style="height: 35px "td width="568" height="35" style="border-width: 0px 1px 1px border-style: none solid solid border-color: rgb(0, 0, 0) windowtext windowtext padding: 0px 7px background-color: transparent " colspan="6"p style="text-align: center "strongspan style="font-family: 楷体 "请正确填写通讯信息,以便邮寄发票/span/strong/p/td/trtr style="height: 45px "td width="568" height="45" style="border-width: 0px 1px 1px border-style: none solid solid border-color: rgb(0, 0, 0) windowtext windowtext padding: 0px 7px background-color: transparent " colspan="6"p style="text-align: center "strongspan style="font-family: 楷体 "请于/span/strongstrongspan style="font-family: Times New Roman "8/span/strongstrongspan style="font-family: 楷体 "月/span/strongstrongspan style="font-family: Times New Roman "20/span/strongstrongspan style="font-family: 楷体 "日前将电子版的注册回执(/span/strongstrongspan style="font-family: Times New Roman "word/span/strongstrongspan style="font-family: 楷体 "文档)发至:/span/strong/pp style="text-align: center "strongspan style="font-family: Times New Roman "TC206SC1@126.com 13806895@qq.com/spana name="_GoBack"/a/strong/p/td/tr/tbody/tablep  *如不参加考察交流则不用填身份证号码/pp  *如同一单位多人参会,请复制上表,重新填写,谢谢!/pp  表2 参会单位开票资料/pp  如需要增值税专用发票请填写下表:/ptable border="1" cellspacing="0" cellpadding="0"tbodytr class="firstRow" style="height: 13px "td width="130" height="13" valign="top" style="padding: 0px 7px border: 1px solid windowtext background-color: transparent "p style="text-align: center "strongspan style="font-family: 楷体 "单位名称/span/strong/p/tdtd width="438" height="13" valign="top" style="border-width: 1px 1px 1px 0px border-style: solid solid solid none border-color: windowtext windowtext windowtext rgb(0, 0, 0) padding: 0px 7px background-color: transparent "br//td/trtr style="height: 13px "td width="130" height="13" valign="top" style="border-width: 0px 1px 1px border-style: none solid solid border-color: rgb(0, 0, 0) windowtext windowtext padding: 0px 7px background-color: transparent "p style="text-align: center "strongspan style="font-family: 楷体 "纳税人识别号/span/strong/p/tdtd width="438" height="13" valign="top" style="border-width: 0px 1px 1px 0px border-style: none solid solid none border-color: rgb(0, 0, 0) windowtext windowtext rgb(0, 0, 0) padding: 0px 7px background-color: transparent "br//td/trtr style="height: 15px "td width="130" height="15" valign="top" style="border-width: 0px 1px 1px border-style: none solid solid border-color: rgb(0, 0, 0) windowtext windowtext padding: 0px 7px background-color: transparent "p style="text-align: center "strongspan style="font-family: 楷体 "地址、电话/span/strong/p/tdtd width="438" height="15" valign="top" style="border-width: 0px 1px 1px 0px border-style: none solid solid none border-color: rgb(0, 0, 0) windowtext windowtext rgb(0, 0, 0) padding: 0px 7px background-color: transparent "br//td/trtrtd width="130" valign="top" style="border-width: 0px 1px 1px border-style: none solid solid border-color: rgb(0, 0, 0) windowtext windowtext padding: 0px 7px background-color: transparent "p style="text-align: center "strongspan style="font-family: 楷体 "开户行及账号/span/strong/p/tdtd width="438" valign="top" style="border-width: 0px 1px 1px 0px border-style: none solid solid none border-color: rgb(0, 0, 0) windowtext windowtext rgb(0, 0, 0) padding: 0px 7px background-color: transparent "br//td/tr/tbody/tablep  如不需要增值税专用发票请填写下表:/ptable width="559" border="0" cellspacing="0" cellpadding="0"tbodytr class="firstRow" style="height: 34px "td width="143" height="34" style="padding: 0px 7px border: 1px solid windowtext background-color: transparent "p style="text-align: center "strongspan style="color: black font-family: 楷体 "开票单位名称/span/strong/p/tdtd width="416" height="34" style="border-width: 1px 1px 1px 0px border-style: solid solid solid none border-color: windowtext windowtext windowtext rgb(0, 0, 0) padding: 0px 7px background-color: transparent "br//td/trtr style="height: 34px "td width="143" height="34" style="border-width: 0px 1px 1px border-style: none solid solid border-color: rgb(0, 0, 0) windowtext windowtext padding: 0px 7px background-color: transparent "p style="text-align: center "strongspan style="color: black font-family: 楷体 "纳税人识别号/span/strong/p/tdtd width="416" height="34" style="border-width: 0px 1px 1px 0px border-style: none solid solid none border-color: rgb(0, 0, 0) windowtext windowtext rgb(0, 0, 0) padding: 0px 7px background-color: transparent "br//td/tr/tbody/tablep  *同一单位多人参会,发票是否合并开具? (请填写是或否)/pp /pp style="line-height: 16px "img src="/admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_pdf.gif"/a href="http://img1.17img.cn/17img/files/201707/ueattachment/9344811b-8070-466c-b357-0400af407fd1.pdf"20170704-GC-SCD国家标准宣贯通知.pdf/a/pp style="line-height: 16px "img src="/admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_pdf.gif"/a href="http://img1.17img.cn/17img/files/201707/ueattachment/d79b2f98-ff39-4321-b598-c33c4d03cf09.pdf"GBT 33318-2016 气体分析 硫化物的测定 硫化学发光气相色谱法.pdf/a/ppbr//p
  • 酸性矿山废水中微生物分布影响因素
    随着全球工业化的迅速发展, 矿产资源的开发进一步加剧, 由此而产生的酸性矿山废水( AMD) 已经成为许多国家水体污染的主要来源之一。酸性矿山废水若不经处理任意排放就会造成大面积的酸污染和重金属污染, 它能够腐蚀管道、水泵、钢轨等矿井设备和混凝土结构, 还危害人体健康。另外, 酸性水会污染水源, 危害鱼类和其他水生生物 用酸性水灌溉农田, 会使土壤板结, 农作物发黄, 并且随着酸度提高, 废水中某些重金属离子由不溶性化合物转变为可溶性离子状态, 毒性增大。 对于酸性矿山废水的处理主要有这几种方法: 中和法、人工湿地法、硫化物沉淀法和微生物法。其中微生物法就是利用硫酸盐还原菌( SRB) 在厌氧条件下将AMD 中的硫酸盐还原为硫化物, 生成的硫化物再与废水中的重金属发生反应生成难溶解的金属硫化物。由于微生物技术的处理效果较好, 成本也较低, 且无二次污染, 因而受到广泛关注。 国内科学家对中国东南部14个地区的59个AMD样本进行了微生物群落分布的研究。通过对AMD样本中的微生物16SrRNA基因进行454测序,对测序结果进行了物种分布和聚类的分析,最终发现,影响微生物群落的主要因素并不是地域,而是环境的变化,如铁离子、硫酸根离子、有机物含量等等,相关学术论文发表在《自然》子刊ISME(International Society for Microbial Ecology)上。 通过对不同环境的微生物群落分布的研究,加深了人们对极端环境下微生物多样性的了解,为将来利用微生物技术对AMD进行处理和控制具有一定的理论和现实意义。 参考文献:ISME J. 2012 Nov 22. doi: 10.1038/ismej.2012.139. Contemporary environmental variation determines microbial diversity patterns in acid mine drainage.Kuang JL, Huang LN, Chen LX, Hua ZS, Li SJ, Hu M, Li JT, Shu WS.
  • 关于举办国家推荐性方法标准GB/T 33318-2016《气体分析 硫化物的测定 硫化学发光气相色谱法》标准宣贯及研讨会的通知(附日程安排 )
    p style="text-align: center "img title="1212212.jpg" src="http://img1.17img.cn/17img/images/201708/insimg/174ded8a-e6eb-40a3-b70f-1384506ddb63.jpg"//pp  关于举办国家推荐性方法标准GB/T 33318-2016《气体分析 硫化物的测定 硫化学发光气相色谱法》标准宣贯及研讨会的通知/pp  各有关单位:/pp  由全国气体标准化专业技术委员会气体分析分技术委员会(SAC/TC 206/SC 1)归口的国家推荐性方法标准GB/T 33318-2016《气体分析 硫化物的测定 硫化学发光气相色谱法》已于2016年12月13日由中华人民共和国质量监督检验检疫总局、中国国家标准化管理委员会批准发布,并于2017年7月1日起正式实施。该项标准为首次制定实施,与其它现行相关标准存在较大的技术差异。/pp  为了满足标准使用相关方的实际需求,加深对标准的理解,减少标准使用过程中的偏差,保证标准的有效实施,全国气体标准化专业技术委员会气体分析分技术委员会(SAC/TC 206/SC 1)决定联合标准制定单位中国测试技术研究院和安捷伦科技(中国)有限公司于2017年8月31日至9月2日在四川成都共同举办该项标准的宣贯及相关技术研讨会,由标准主要起草人进行系统的标准宣讲,并开展气体分析领域相关技术研讨。现将有关事项通知如下:/ppstrong  一、参会对象/strong/pp  与气体分析相关的企业(石化行业)、环境监测、质检部门、第三方检验检测机构、仪器厂家等标准使用相关方的专业技术人员、管理人员等。/pp strong 二、宣贯及研讨内容/strong/ptable border="0" cellspacing="0" cellpadding="0"tbodytr class="firstRow" style="height: 28px "td width="617" height="28" style="padding: 0px 7px border: 1px solid windowtext " colspan="5"p style="text-align: center "strongspan style="font-family: 仿宋 font-size: 16px "会议报告日程/span/strong/p/td/trtr style="height: 28px "td width="72" height="28" style="border-style: none solid solid padding: 0px 7px border-right-color: windowtext border-bottom-color: windowtext border-left-color: windowtext border-right-width: 1px border-bottom-width: 1px border-left-width: 1px "p style="text-align: center "span style="font-family: 仿宋 font-size: 16px "日期/span/p/tdtd width="107" height="28" style="border-style: none solid solid none padding: 0px 7px border-right-color: windowtext border-bottom-color: windowtext border-right-width: 1px border-bottom-width: 1px "p style="text-align: center "span style="font-family: 仿宋 font-size: 16px "时间/span/p/tdtd width="233" height="28" style="border-style: none solid solid none padding: 0px 7px border-right-color: windowtext border-bottom-color: windowtext border-right-width: 1px border-bottom-width: 1px "p style="text-align: center "span style="font-family: 仿宋 font-size: 16px "日程安排/span/p/tdtd width="196" height="28" style="border-style: none solid solid none padding: 0px 7px border-right-color: windowtext border-bottom-color: windowtext border-right-width: 1px border-bottom-width: 1px "p style="text-align: center "span style="font-family: 仿宋 font-size: 16px "报告人/span/p/tdtd width="121" height="28" style="border-style: none solid solid none padding: 0px 7px border-right-color: windowtext border-bottom-color: windowtext border-right-width: 1px border-bottom-width: 1px "p style="text-align: center "span style="font-family: 仿宋 font-size: 16px "报告人单位/span/p/td/trtr style="height: 28px "td width="72" height="28" style="border-style: none solid solid padding: 0px 7px border-right-color: windowtext border-bottom-color: windowtext border-left-color: windowtext border-right-width: 1px border-bottom-width: 1px border-left-width: 1px "p style="text-align: center "span style="font-size: 16px "8/spanspan style="font-family: 宋体 font-size: 16px "月/spanspan style="font-size: 16px "31/spanspan style="font-family: 宋体 font-size: 16px "日/span/p/tdtd width="107" height="28" style="border-style: none solid none none padding: 0px 7px border-right-color: windowtext border-right-width: 1px "p style="text-align: center "span style="font-family: 仿宋 font-size: 16px "全天/span/p/tdtd width="439" height="28" style="border-style: none solid none none padding: 0px 7px border-right-color: black border-right-width: 1px " colspan="3"p style="text-align: center "span style="font-family: 仿宋 font-size: 16px "报到/span/p/td/trtr style="height: 28px "td width="72" height="28" style="border-style: none solid solid padding: 0px 7px border-right-color: windowtext border-bottom-color: windowtext border-left-color: windowtext border-right-width: 1px border-bottom-width: 1px border-left-width: 1px " rowspan="6"p style="text-align: center "span style="font-size: 16px "9/spanspan style="font-family: 仿宋 font-size: 16px "月/spanspan style="font-size: 16px "1/spanspan style="font-family: 仿宋 font-size: 16px "日上午/span/p/tdtd width="107" height="28" style="border-style: solid solid solid none padding: 0px 7px border-top-color: windowtext border-right-color: windowtext border-bottom-color: windowtext border-top-width: 1px border-right-width: 1px border-bottom-width: 1px "p style="text-align: center "span style="font-size: 16px "9/spanspan style="font-family: 仿宋 font-size: 16px ":/spanspan style="font-size: 16px "00-9/spanspan style="font-family: 仿宋 font-size: 16px ":/spanspan style="font-size: 16px "30/span/p/tdtd width="439" height="28" style="border-style: solid solid solid none padding: 0px 7px border-top-color: windowtext border-right-color: windowtext border-bottom-color: windowtext border-top-width: 1px border-right-width: 1px border-bottom-width: 1px " colspan="3"p style="text-align: center "span style="font-family: 仿宋 font-size: 16px "欢迎致辞/span/p/td/trtr style="height: 69px "td width="107" height="69" style="border-style: none solid solid none padding: 0px 7px border-right-color: windowtext border-bottom-color: windowtext border-right-width: 1px border-bottom-width: 1px "p style="text-align: center "span style="font-size: 16px "9/spanspan style="font-family: 仿宋 font-size: 16px ":/spanspan style="font-size: 16px "30-10/spanspan style="font-family: 仿宋 font-size: 16px ":/spanspan style="font-size: 16px "30/span/p/tdtd width="180" height="69" style="border-style: none solid solid none padding: 0px 7px border-right-color: windowtext border-bottom-color: windowtext border-right-width: 1px border-bottom-width: 1px "p style="text-align: center "span style="font-size: 16px "GB/T 33318-2016/spanspan style="font-family: 仿宋 font-size: 16px "《气体分析/span span style="font-family: 仿宋 font-size: 16px "硫化物的测定硫化学发光气相色谱法》标准条款释义/span/p/tdtd width="88" height="69" style="border-style: none solid solid none padding: 0px 7px border-right-color: windowtext border-bottom-color: windowtext border-right-width: 1px border-bottom-width: 1px "p style="text-align: center "span style="font-family: 仿宋 font-size: 16px "李志昂/span span style="font-family: 仿宋 font-size: 16px "副研究员/span/p/tdtd width="180" height="69" style="border-style: none solid solid none padding: 0px 7px border-right-color: windowtext border-bottom-color: windowtext border-right-width: 1px border-bottom-width: 1px "p style="text-align: center "span style="font-family: 仿宋 font-size: 16px "中国测试技术研究院/span/p/td/trtr style="height: 28px "td width="107" height="28" style="border-style: none solid solid none padding: 0px 7px border-right-color: windowtext border-bottom-color: windowtext border-right-width: 1px border-bottom-width: 1px "p style="text-align: center "span style="font-size: 16px "10/spanspan style="font-family: 仿宋 font-size: 16px ":/spanspan style="font-size: 16px "30-10/spanspan style="font-family: 仿宋 font-size: 16px ":/spanspan style="font-size: 16px "50/span/p/tdtd width="439" height="28" style="border-style: none solid solid none padding: 0px 7px border-right-color: windowtext border-bottom-color: windowtext border-right-width: 1px border-bottom-width: 1px " colspan="3"p style="text-align: center "span style="font-family: 仿宋 font-size: 16px "茶歇、合影/span/p/td/trtr style="height: 54px "td width="107" height="54" style="border-style: none solid solid none padding: 0px 7px border-right-color: windowtext border-bottom-color: windowtext border-right-width: 1px border-bottom-width: 1px "p style="text-align: center "span style="font-size: 16px "10/spanspan style="font-family: 仿宋 font-size: 16px ":/spanspan style="font-size: 16px "50-11/spanspan style="font-family: 仿宋 font-size: 16px ":/spanspan style="font-size: 16px "30/span/p/tdtd width="180" height="54" style="border-style: none solid solid none padding: 0px 7px border-right-color: windowtext border-bottom-color: windowtext border-right-width: 1px border-bottom-width: 1px "p style="text-align: center "span style="font-family: 仿宋 font-size: 16px "安捷伦科技新型硫化学发光检测器提升硫化物分析灵敏度和便利性/span/p/tdtd width="97" height="54" style="border-style: none solid solid none padding: 0px 7px border-right-color: windowtext border-bottom-color: windowtext border-right-width: 1px border-bottom-width: 1px "p style="text-align: center "span style="font-family: 仿宋 font-size: 16px "张劲强/span span style="font-family: 仿宋 font-size: 16px "博士/spanspan style="font-size: 16px "//spanspan style="font-family: 仿宋 font-size: 16px "资深气相色谱应用工程师/span/p/tdtd width="180" height="54" style="border-style: none solid solid none padding: 0px 7px border-right-color: windowtext border-bottom-color: windowtext border-right-width: 1px border-bottom-width: 1px "pspan style="font-family: 仿宋 font-size: 16px "安捷伦科技/spanspan style="font-size: 16px "(/spanspan style="font-family: 仿宋 font-size: 16px "中国/spanspan style="font-size: 16px ")/spanspan style="font-family: 仿宋 font-size: 16px "有限公司/span/p/td/trtr style="height: 43px "td width="107" height="43" style="border-style: none solid solid none padding: 0px 7px border-right-color: windowtext border-bottom-color: windowtext border-right-width: 1px border-bottom-width: 1px "p style="text-align: center "span style="font-size: 16px "11/spanspan style="font-family: 仿宋 font-size: 16px ":/spanspan style="font-size: 16px "30-12/spanspan style="font-family: 仿宋 font-size: 16px ":/spanspan style="font-size: 16px "10/span/p/tdtd width="180" height="43" style="border-style: none solid solid none padding: 0px 7px border-right-color: windowtext border-bottom-color: windowtext border-right-width: 1px border-bottom-width: 1px "p style="text-align: center "span style="font-family: 仿宋 font-size: 16px "石化行业油品以及气体中硫化物分析方法进展/span/p/tdtd width="103" height="43" style="border-style: none solid solid none padding: 0px 7px border-right-color: windowtext border-bottom-color: windowtext border-right-width: 1px border-bottom-width: 1px "pspan style="font-family: 仿宋 font-size: 16px "王亚敏/span span style="font-family: 仿宋 font-size: 16px "教授级高级工程师/span/p/tdtd width="180" height="43" style="border-style: none solid solid none padding: 0px 7px border-right-color: windowtext border-bottom-color: windowtext border-right-width: 1px border-bottom-width: 1px "pspan style="font-family: 仿宋 font-size: 16px "中国石化石油化工科学研究院(石科院)/span/p/td/trtr style="height: 28px "td width="107" height="28" style="border-style: none solid solid none padding: 0px 7px border-right-color: windowtext border-bottom-color: windowtext border-right-width: 1px border-bottom-width: 1px "p style="text-align: center "span style="font-size: 16px "12/spanspan style="font-family: 仿宋 font-size: 16px ":/spanspan style="font-size: 16px "10-14/spanspan style="font-family: 仿宋 font-size: 16px ":/spanspan style="font-size: 16px "00/span/p/tdtd width="439" height="28" style="border-style: none solid solid none padding: 0px 7px border-right-color: windowtext border-bottom-color: windowtext border-right-width: 1px border-bottom-width: 1px " colspan="3"p style="text-align: center "span style="font-family: 仿宋 font-size: 16px "午餐、休息/span/p/td/trtr style="height: 48px "td width="72" height="48" style="border-style: none solid solid padding: 0px 7px border-right-color: windowtext border-bottom-color: windowtext border-left-color: windowtext border-right-width: 1px border-bottom-width: 1px border-left-width: 1px " rowspan="6"p style="text-align: center "span style="font-size: 16px "9/spanspan style="font-family: 仿宋 font-size: 16px "月/spanspan style="font-size: 16px "1/spanspan style="font-family: 仿宋 font-size: 16px "日下午/span/p/tdtd width="107" height="48" style="border-style: none solid solid none padding: 0px 7px border-right-color: windowtext border-bottom-color: windowtext border-right-width: 1px border-bottom-width: 1px "p style="text-align: center "span style="font-size: 16px "14/spanspan style="font-family: 仿宋 font-size: 16px ":/spanspan style="font-size: 16px "20-15/spanspan style="font-family: 仿宋 font-size: 16px ":/spanspan style="font-size: 16px "00/span/p/tdtd width="247" height="48" style="border-style: none solid solid none padding: 0px 7px border-right-color: windowtext border-bottom-color: windowtext border-right-width: 1px border-bottom-width: 1px "p style="text-align: center "span style="font-family: 仿宋 font-size: 16px "气质联用法分析聚合级乙烯丙烯中的微量砷化氢、磷化氢及硫化物/span/p/tdtd width="196" height="48" style="border-style: none solid solid none padding: 0px 7px border-right-color: windowtext border-bottom-color: windowtext border-right-width: 1px border-bottom-width: 1px "p style="text-align: center "span style="font-family: 仿宋 font-size: 16px "王春晓/span span style="font-family: 仿宋 font-size: 16px "解决方案开发中心经理/span/p/tdtd width="121" height="48" style="border-style: none solid solid none padding: 0px 7px border-right-color: windowtext border-bottom-color: windowtext border-right-width: 1px border-bottom-width: 1px "p style="text-align: center "span style="font-family: 仿宋 font-size: 16px "安捷伦科技/spanspan style="font-size: 16px "(/spanspan style="font-family: 仿宋 font-size: 16px "中国/spanspan style="font-size: 16px ")/spanspan style="font-family: 仿宋 font-size: 16px "有限公司/span/p/td/trtr style="height: 45px "td width="107" height="45" style="border-style: none solid solid none padding: 0px 7px border-right-color: windowtext border-bottom-color: windowtext border-right-width: 1px border-bottom-width: 1px "p style="text-align: center "span style="font-size: 16px "15/spanspan style="font-family: 仿宋 font-size: 16px ":/spanspan style="font-size: 16px "00-15/spanspan style="font-family: 仿宋 font-size: 16px ":/spanspan style="font-size: 16px "40/span/p/tdtd width="180" height="45" style="border-style: none solid solid none padding: 0px 7px border-right-color: windowtext border-bottom-color: windowtext border-right-width: 1px border-bottom-width: 1px "p style="text-align: center "span style="font-family: 仿宋 font-size: 16px "石化行业相关气体标准物质的正确使用/span/p/tdtd width="104" height="45" style="border-style: none solid solid none padding: 0px 7px border-right-color: windowtext border-bottom-color: windowtext border-right-width: 1px border-bottom-width: 1px "p style="text-align: center "span style="font-family: 仿宋 font-size: 16px "邓凡锋/span span style="font-family: 仿宋 font-size: 16px "副研究员/span/p/tdtd width="180" height="45" style="border-style: none solid solid none padding: 0px 7px border-right-color: windowtext border-bottom-color: windowtext border-right-width: 1px border-bottom-width: 1px "p style="text-align: center "span style="font-family: 仿宋 font-size: 16px "中国测试技术研究院/span/p/td/trtr style="height: 28px "td width="107" height="28" style="border-style: none solid solid none padding: 0px 7px border-right-color: windowtext border-bottom-color: windowtext border-right-width: 1px border-bottom-width: 1px "p style="text-align: center "span style="font-size: 16px "15/spanspan style="font-family: 仿宋 font-size: 16px ":/spanspan style="font-size: 16px "40-16/spanspan style="font-family: 仿宋 font-size: 16px ":/spanspan style="font-size: 16px "00/span/p/tdtd width="439" height="28" style="border-style: none solid solid none padding: 0px 7px border-right-color: windowtext border-bottom-color: windowtext border-right-width: 1px border-bottom-width: 1px " colspan="3"p style="text-align: center "span style="font-family: 仿宋 font-size: 16px "茶歇/span/p/td/trtr style="height: 46px "td width="107" height="46" style="border-style: none solid solid none padding: 0px 7px border-right-color: windowtext border-bottom-color: windowtext border-right-width: 1px border-bottom-width: 1px "p style="text-align: center "span style="font-size: 16px "16/spanspan style="font-family: 仿宋 font-size: 16px ":/spanspan style="font-size: 16px "00-16/spanspan style="font-family: 仿宋 font-size: 16px ":/spanspan style="font-size: 16px "40/span/p/tdtd width="180" height="46" style="border-style: none solid solid none padding: 0px 7px border-right-color: windowtext border-bottom-color: windowtext border-right-width: 1px border-bottom-width: 1px "p style="text-align: center "span style="font-family: 仿宋 font-size: 16px "环境监测气体分析相关技术法规介绍/span/p/tdtd width="105" height="46" style="border-style: none solid solid none padding: 0px 7px border-right-color: windowtext border-bottom-color: windowtext border-right-width: 1px border-bottom-width: 1px "p style="text-align: center "span style="font-family: 仿宋 font-size: 16px "付强/span span style="font-family: 仿宋 font-size: 16px "科技处处长/spanspan style="font-size: 16px "//spanspan style="font-family: 仿宋 font-size: 16px "研究员/span/p/tdtd width="180" height="46" style="border-style: none solid solid none padding: 0px 7px border-right-color: windowtext border-bottom-color: windowtext border-right-width: 1px border-bottom-width: 1px "p style="text-align: center "span style="font-family: 仿宋 font-size: 16px "中国环境监测总站/span/p/td/trtr style="height: 40px "td width="107" height="40" style="border-style: none solid solid none padding: 0px 7px border-right-color: windowtext border-bottom-color: windowtext border-right-width: 1px border-bottom-width: 1px "p style="text-align: center "span style="font-size: 16px "16/spanspan style="font-family: 仿宋 font-size: 16px ":/spanspan style="font-size: 16px "40-17/spanspan style="font-family: 仿宋 font-size: 16px ":/spanspan style="font-size: 16px "20/span/p/tdtd width="180" height="40" style="border-style: none solid solid none padding: 0px 7px border-right-color: windowtext border-bottom-color: windowtext border-right-width: 1px border-bottom-width: 1px "p style="text-align: center "span style="font-size: 16px "VOCs/spanspan style="font-family: 仿宋 font-size: 16px "气体标准物质在环境污染物监测中的应用/span/p/tdtd width="105" height="40" style="border-style: none solid solid none padding: 0px 7px border-right-color: windowtext border-bottom-color: windowtext border-right-width: 1px border-bottom-width: 1px "p style="text-align: center "span style="font-family: 仿宋 font-size: 16px "周鑫/span span style="font-family: 仿宋 font-size: 16px "副研究员/span/p/tdtd width="180" height="40" style="border-style: none solid solid none padding: 0px 7px border-right-color: windowtext border-bottom-color: windowtext border-right-width: 1px border-bottom-width: 1px "pspan style="font-family: 仿宋 font-size: 16px "中国测试技术研究院/span/p/td/trtr style="height: 28px "td width="107" height="28" style="border-style: none solid solid none padding: 0px 7px border-right-color: windowtext border-bottom-color: windowtext border-right-width: 1px border-bottom-width: 1px "p style="text-align: center "span style="font-size: 16px "18/spanspan style="font-family: 仿宋 font-size: 16px ":/spanspan style="font-size: 16px "00-20/spanspan style="font-family: 仿宋 font-size: 16px ":/spanspan style="font-size: 16px "00/span/p/tdtd width="439" height="28" style="border-style: none solid solid none padding: 0px 7px border-right-color: windowtext border-bottom-color: windowtext border-right-width: 1px border-bottom-width: 1px " colspan="3"p style="text-align: center "span style="font-family: 仿宋 font-size: 16px "晚餐/span/p/td/trtr style="height: 92px "td width="72" height="92" style="border-style: none solid solid padding: 0px 7px border-right-color: windowtext border-bottom-color: windowtext border-left-color: windowtext border-right-width: 1px border-bottom-width: 1px border-left-width: 1px "p style="text-align: center "span style="font-size: 16px "9/spanspan style="font-family: 宋体 font-size: 16px "月/spanspan style="font-size: 16px "2/spanspan style="font-family: 宋体 font-size: 16px "日/span/p/tdtd width="107" height="92" style="border-style: none solid solid none padding: 0px 7px border-right-color: windowtext border-bottom-color: windowtext border-right-width: 1px border-bottom-width: 1px "p style="text-align: center "span style="font-family: 仿宋 font-size: 16px "全天/span/p/tdtd width="439" height="92" style="border-style: none solid solid none padding: 0px 7px border-right-color: windowtext border-bottom-color: windowtext border-right-width: 1px border-bottom-width: 1px word-break: break-all " colspan="3"pspan style="font-size: 16px "1/spanspan style="font-family: 仿宋 font-size: 16px "、标准项目承担单位(中国测试技术研究院)气体分析实验室考察。br//spanspan style="font-size: 16px "2/spanspan style="font-family: 仿宋 font-size: 16px "、石油化工、环境监测领域气体检测技术与行业发展方向交流研讨。br//spanspan style="font-size: 16px "3/spanspan style="font-family: 仿宋 font-size: 16px "、交流与答疑;/span/p/td/tr/tbody/tablep strong 三、宣贯时间、地点及费用/strong/pp  1、会议时间:2017年8月31日到9月2号(8月31号报到)。/pp  2、会议地点:瑞升· 芭富丽大酒店(成都市成华区玉双路7号) /pp  会务组不负责接送,请各位代表自行前往酒店,可参考以下路线:/pp  (1) 乘坐机场专线1号线至地铁省体育馆站下车,乘坐地铁三号线,至市二医院站转地铁四号线,至玉双路站A出口出站,步行400米可到达。/pp  (2) 乘坐机场专线3号线,火车南站东站下车,步行174米,至天和西二街中环路口站乘坐74路,水碾河站下车,步行600米可到达。/pp  (3) 双流国际机场打车至瑞升· 芭富丽大酒店,约23公里,出租车费约70元。/pp  3、会议费:800元/人(含资料、餐费等费用)。/pp  4、会议住宿费(费用自理):360元/间(标间或大床房)。/pp strong 四、会务承办单位:/strong成都思创睿智科技有限公司 /pp strong 五、注意事项/strong/pp  1、请各位代表于8月20日前将会议所有回执(见附件1)反馈至六中联系方式中所示电子邮箱。/pp  2、会务组只收取会务费、开具会务费发票 住宿费由酒店收取、酒店开具发票。请各位代表提前将开票信息、发票邮寄信息登记表(见附件1)反馈至六中联系方式中所示电子邮箱。/ppstrong  六、报名参会联系方式/strong/pp  秘书处联系人:潘 义(13880777735),(028)84403610 /pp  王维康(18980409695),(028)84403036 /pp  黄慎敏(18111280301),(028)84403036 /pp  秘书处电子邮箱:TC206SC1@126.com /pp  会务承办单位联系人:金慧琳 (13096377829),13806895@qq.com。/pp  附件:宣贯会议回执。/pp style="text-align: right "  全国气体标准化专业技术委员会/pp style="text-align: right "  气体分析分技术委员会秘书处/pp style="text-align: right "  2017年8月7日/pp style="line-height: 16px "img src="/admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_doc.gif"/a href="http://img1.17img.cn/17img/files/201708/ueattachment/94828823-01ef-4fc1-bfbe-93a719fa7451.doc"附件 宣贯会会议回执.doc/a/ppbr//p
  • 胤煌科技发布显微镜不溶性微粒检测仪新品
    YH-MIP-0103型显微镜不溶性微粒检测仪检测介绍药典规定:按照中国药典0903章节的要求,不溶性微粒的检测有两个方法,光阻法不溶性微粒检查和显微镜不溶性微粒检查。随着光阻法收录入药典作为不溶性微粒检查的一个方法以来,由于其操作简单,检测速度快,无需制样等优点深受广大用户的喜爱,也便成了用户偏爱和较高一种的检查方法。而显微镜法不溶性微粒慢慢淡出人们视野。随着药学的发展,尤其是制剂学的飞速进步,各式新的剂型进入临床,如注射用乳剂,常见的有丙泊酚、中长链脂肪乳、三腔袋脂肪乳等,脂质体,混悬剂,滴眼剂,混悬剂,易产生气泡剂型等。此种注射剂剂型的特殊性,无法利用常用的光阻法检测不溶性微粒,因为其样品本身的不透明性、高粘度等原因,使得采用光阻法检测会产生假性结果,因为光阻法会将样品本身和气泡也作为颗粒计入。中国药典CP中规定所有的注射剂都要做不溶性微粒项目检查,故而显微镜法不溶性微粒检查设备是非常重要的选择。常规显微镜不溶性检查的缺陷常规显微镜不溶性微粒检查大家会采用一台简单显微镜,人工进行计数。此种操作的难点是:无法避免人为的原因导致计数的偏差,主观性太强;最重要的是人为计数对实验员眼睛的要求较高,用眼过度会造成视力过早下降,引起一些不必要的眼疾;操作不规范性,测试结果重复性差YH-MIP-0103系列显微镜不溶性微粒检测仪上海胤煌科技有限公司自主研发生产的全自动显微镜不溶性微粒检测仪YH-MIP-0103系列,从样品制备到测试完成有一套完整的方案。1)直接按照药典要求出具报告;2)全自动进行滤膜全扫描,并进行颗粒图片分析;3)可以区分颗粒性质,鉴别不溶性微粒的来源,是金属还是纤维;4)按照颗粒性质进行归类分析统计;5)光阻法检测不通过时,作为光阻法不溶性微粒的一个验证;显微镜不溶性微粒检测仪设备构成样品过滤装置,烘干装置,检测分析系统,电脑等。检测分析系统可以根据用户要求配置奥林巴斯体式显微镜、奥利巴斯金相显微镜、徕卡金相显微镜、尼康金相显微镜等。显微镜不溶性微粒检测仪应用领域应用范围:乳剂、脂质体、滴眼剂、混悬剂、易产生气泡剂型、粘度大制剂等执行标准:中国药典CP,美国药典 USP 788、USP 789,欧洲药典 EP,英国药典 BP2013,日本药典JP等YH-MIP-0103系统介绍:组成:显微镜颗粒分析系统既可以观察颗粒形貌,还可以得到粒度分布、数量、大小、平均长径比以及长径比分布等,为科研、生产领域增添了一种新的粒度测试手段;该系统包括光学显微镜、数字CCD 摄像头、图像处理与分析软件、电脑、打印机等部分组成;是传统显微测量方法与现代图像处理技术结合的产品;软件:测试软件具有操作员管理系统、测试标准、零件测试模板、图像存储、颗粒追踪、报告输出、清洁度分析等功能;全面自动标准选择、颗粒尺寸设定、颗粒计数,或按用户设定范围计数,自动显示分析结果,并按照相关标准确定产品等级;专业软件控制分析过程,手动对焦,手动光强,自动扫描,自动摄入,自动分析;专用数字摄像机将显微镜的图像拍摄及扫描;全自动膜片扫描系统,无缝拼接, 数字化显微镜分析系统;数据传输:R232 接口数据传输方式将颗粒图像传输到分析系统; 颗粒图像分析软件及平台对图像进行处理与分析;显示器及打印机输出分析结果;特点:直观、形象、准确、测试范围宽以及自动识别、自动统计、自动标定等特点; 避免激光法的产品缺陷,扩展检测范围;YH-MIP-0103系统介绍:胤煌科技为您奉献的专门高性价比实验室显微镜。可以轻松地根据需要进行明场、暗场、相衬、荧光、偏光等多种观察;还可以连接照相机、数码摄像头,与电脑联机工作。1)物镜:独立校正光学系统,物镜拥有更高的数值孔径,成像更加平坦,清晰范围可达视场边缘。5X、10X、20X、30X、40X、50X、80X、100X 等可根据要求选配、经过防霉处理;2)目镜:高眼点,屈光度可调。10X 目镜视场范围有 20mm 和 22mm 两种配置。经过防霉处理;3)阿贝聚光镜:数值孔径 NA1.25,中心可调,带相衬板插孔,配孔径光阑调节装置,聚光镜孔径光阑采用与物镜色圈相同颜色的标记,方便您的使用;4)暗场聚光镜:专门用于暗场观察,安装方便;5)偏光装置:加配起偏器和验片器,您便可以轻松进行简易偏光观察;6)多功能转盘式相衬聚光镜:数值孔径 NA1.25,配置多功能相衬聚光镜,您可以配合 10X-100X 相衬物镜进行相衬观察,配合 10X-40X 物镜进行暗场观察,也可以明场观察;7)内倾式转换器:方便您放置切片,变换物镜进行观察;8)机械载物台:平台尺寸大于 100*100mm,可容纳 2*50mm 快切片,配切片定位夹;X/Y 方向移动范围大于 50*50mm。低位同轴移动手轮;9)无导轨机械载物台:平台尺寸大于 100*100mm,可容纳 2*50mm 快切片,配切片定位夹;X/Y 方向移动范围大于 50*50mm,低位同轴移动手轮,调节手轮可以根据您的用手习惯任意安装在载物台的左手或右手一侧;10)电动载物台:平台行程:大于 80*70mm;行程:2000μm;定位精度:≤±5μm;典型分辨率: 单步 0.625μm;11)观察筒:双目或三目铰链式观察筒;三目分光比 20/80,可以轻松与数码摄像头或照相机连接工作;视场较高可配置到 22mm;有 48-75mm和 52-75mm 两种不同的双目瞳孔,调节距分别适用于亚洲和欧美人士使用,您可以根据自己双目距离作出灵活的选择;12)粗微动手轮高度可调:根据您手形的大小,粗微动手轮高度可调,为您的手臂带来轻松和舒适;13)照明系统:6V/20W、6V/30W 卤素灯或者 LED 多种光源可供选择。抽屉式的灯座设计让您只需简单地拔出、插入便可方便地更换灯泡;14)高效率的独立散热系统:即使在 6V/30W 卤素灯 48 小时不间断照明的环境下,机身也不会烫手,完全解决了长期困扰研究人员的机身发烫问题;15)增高器:果您体型高大,可选配增高器,保证您观察时的坐姿更加舒适;16)搬运把手:保证您移动显微镜时轻松安全;YH-MINP-0103产品配置 显微镜不溶性微粒检测仪技术参数测试范围: 1 μm - 500 μm放大倍数:40X-l000X 倍比较大分辨:0.1 μm显微镜误差:0.02(不包含样品制备因素造成的误差)重复性误差: 5%(不包含样品制备因素造成的误差)数字摄像头(CCD):300 万像素标尺刻度:0.1 μm分析项目:粒度分布、长径比分布、圆形度分布等自动分割速度: 1 秒分割成功率: 93%软件运行环境:Windows 2000、Windows XP接口方式:RS232 或 USB 方式供货期:30 个工作日精 确 度:±3% 典型值;重合精度:10000 粒/mL(5%重合误差);分辨率:95%(按中国药典 2010 版校准)10%(按美国药典、ISO21501 校准)YH-MIP-0103分析过程: YH-MIP-0103系统介绍:美国药典 USP 788、USP 789、USP35-NF30、USP32-NF27;欧洲药典 EP6.0、EP7.0、EP7.8、EP8.0;英国药典 BP2013、BP2012、2010、2009;日本药典 JP16、JP15、JP14;印度药典 IP2010 版;WHO 国际药典 IntPh 第四版;中国药典 2010 年、2015 年;GB8368 输液器具;ISO21510;ISO11171 等。GB/T 11446.9-2013 电子级水中微粒的仪器测试方法。可根据客户要求,植入相应“光阻法颗粒度”测试和评判标准。 创新点:显微镜不溶性微粒检测仪全自动进行滤膜全扫描,并进行颗粒图片分析,可以区分颗粒性质,鉴别不溶性微粒的来源,是金属还是纤维按照颗粒性质进行归类分析统计,检测分析系统可按客户要求配置奥林巴斯体式显微镜、奥林巴斯金相显微镜等显微镜不溶性微粒检测仪
  • 硫化物的分解代谢可改善缺氧性脑损伤
    硫化物的分解代谢可改善缺氧性脑损伤个硫化物的分解代谢可改善缺氧性脑损伤 -哺乳动物的大脑极易遭受缺氧影响- 大脑对缺氧敏感的机制尚不完全清楚。H2S是一种抑制线粒体呼吸的气体,缺氧可以诱导H2S的积累。Eizo Marutani等人研究发现,在小鼠、大鼠和自然耐缺氧的地松鼠中,大脑对缺氧的的敏感性与SQOR的水平及分解硫化物的能力成反比。硫醌氧化还原酶(sulfide: quinone oxidoreductase , SQOR)是一种谷胱甘肽还原酶家族的膜结合黄素蛋白,为硫化物氧化解毒的一种关键酶。沉默的SQOR增加了大脑对缺氧的敏感性,而神经元特异性的SQOR表达则阻止了缺氧诱导的硫化物积累、生物能量衰竭和缺血性脑损伤。降低线粒体中SQOR的表达,不仅增加了大脑对缺氧的敏感性,也增加了心脏和肝脏对缺氧的敏感性。硫化物的药理清除维持了缺氧神经元的线粒体呼吸,并使小鼠能够抵抗缺氧。相关研究于2021年5月发表在Nature子刊Nature communications上,题为《Sulfide catabolism ameliorates hypoxic brain injury》,该研究由美国马萨诸塞州总医院以及哈佛医学院共同完成。该研究团队一开始的研究方向并不是寻找可以治疗脑卒中的靶点,他们的研究方向是「人体冬眠」,就像以往科幻电影里的那种,得了某种不治之症,然后进行冷冻或者其他技术的冬眠,等待科技进步以后,再次复苏。一开始,他们是要寻找可以对小鼠进行催眠的物质,锁定在了H2S。期初,吸入H2S的小鼠进入了一种「冬眠」状态,体温下降,无法动弹。但是,令人惊讶的是,小鼠很快就对吸入H2S的影响产生了耐受性。到了第五天,他们行动正常,不再受到H2S的影响。更有趣的现象是,研究团队发现,对H2S耐受的小鼠,对缺氧也能非常好的耐受。因而研究团队提出了SQOR基因在耐缺氧中起发挥重要作用的假设。实验方法描述所有小鼠都被饲养在12小时的昼/夜循环中,温度在20-25°C之间,湿度在40%-60%之间。 -间歇性H2S吸入- 小鼠暴露于80 ppmH2S的空气中连续5天,每天4小时。实验过程中实时监测H2S浓度和FiO2。每天在H2S吸入前后测量直肠温度,以检查H2S对体温的影响。 -CO2产生量的测量- 最后一次的吸入空气或H2S24小时后,在对照组或硫化物预处理小鼠中测量二氧化碳的产生。将小鼠放置在全身体积描记系统内,并测量二氧化碳的产量。 -小鼠的缺氧和缺氧耐受性- 为了测量缺氧耐受性,在最后一次空气或H2S吸入24小时后,将小鼠放入透明的塑料室中。然后,用低氧气体混合物以1 L/min连续冲洗腔室,以达到所需的FiO2。在缺氧暴露期间连续观察小鼠最多60 min,当小鼠出现严重痛苦迹象(扭动或发作、呼吸频率低于6/分钟和尿失禁)时,将其取出,用5%异氟烷安乐死并视为死亡。 -组织采集- 将小鼠采用异氟醚麻醉,呼吸机机械通气。用空气或缺氧气体混合物通气3 min后,将小鼠进行安乐死,开始取材。实验数据a:对照组和硫化物预处理组(SPC)小鼠的体温b:二氧化碳产生率(VCO2) c:血浆中硫化物的浓度d:血浆中的硫代硫酸盐、脑组织中的硫化物浓度f:脑组织中的硫代硫酸盐、 g:存活率h:小鼠在5% O2低氧下的VCO2i:常氧和5%低氧下,脑组织中的硫化物j:per sulfide,k NADH/NAD+比l:乳酸水平。m脑组织中的SQOR相对表达量,n、o:脑组织和心脏组织中 SQOR蛋白水平p、q:离体脑线粒体的氧气消耗速率 (OCR)r:计算得到的 ATP转换率。地松鼠的缺氧耐受性和硫胺分解代谢增强研究团队用RNA沉默SQOR,发现可增加大脑对缺氧的敏感性,而神经元特异性SQOR的表达可阻止缺氧诱导的硫化物积聚、生物能衰竭和缺血性脑损伤。SQOR可改善神经元细胞的线粒体功能降低线粒体的SQOR基因的表达,不只是大脑,而且心脏、肝脏对缺氧的敏感性都增加了。硫化物清除剂的作用通过药物清除硫化物,可维持缺氧神经元的线粒体呼吸过程,使小鼠耐受缺氧。该研究阐明了硫化物分解代谢在缺氧时能量平衡中的关键作用,并确定了缺血性脑损伤的治疗靶点。 在自然界中很多强有力的证据可以证明该研究的结论。例如,已知雌性哺乳动物比雄性哺乳动物更能抵抗缺氧,而前者的SQOR水平更高。当女性的SQOR水平被人为降低时,她们就更容易缺氧(雌激素可能是观察到的SQOR增加的原因),例如更年期。此外,一些冬眠动物,如地松鼠,对缺氧有很强的耐受性,这使得它们能够在冬季身体新陈代谢减缓的情况下生存下来。一只地松鼠的大脑比同样大小的老鼠的SQOR高出100倍。该研究的主要研究者说:“人脑的SQOR水平非常低,这意味着即使是少量的H2S积累,就可以影响神经元的健康。我们希望有一天我们研发出像SQOR一样有效的药物,这些药物可以用来治疗缺血性中风,以及心脏骤停引起的缺氧。 -塔望科技-解决方案- 全身体积描记系统小鼠放置于体积描记器内,可以实时监测呼吸,也可进行低氧干预、H2S暴露。可进行低氧耐受实验,也可监测动物的 耗氧量、CO2产生量、呼吸代谢率等。全身暴露染毒系统可以进行长期H2S暴露染毒、低氧实验等。动物能量代谢系统可以综合评估动物不同处理后的各种表型变化:进食量、进水量、进食进水模式、活动量、耗氧量、CO2产生量、呼吸代谢率等。动物低氧高氧实验系统各种常压/低压/高压下的缺氧/高氧实验。可进行恒定低氧,也可进行间歇低氧。 -相关文献- Marutani E, Morita M, Hirai S et al. "Sulfide catabolism ameliorates hypoxic brain injury".[J]. Nat Commun 12, 3108 (2021). &bull end &bull
  • 吉天仪器助力辽宁省水质安全行业系统会议
    八月中旬,由辽宁省建设厅主办,葫芦岛市自来水公司、大连理工大学等单位承办的“第二届饮用水水质安全保障检测与净化创新论坛及水产业创新技术联盟预备会”在辽宁省葫芦岛市成功举办,全省各自来水厂负责人、水质检测部门技术负责人共计一百多人参加了此次会议。聚光科技实验室业务平台成员——北京吉天仪器有限公司作为此次会议协办方全程助力系统会议的顺利进行。辽宁省水质安全行业系统会议现场  本次会议的主旨是为了改善城市供水现状,完善“十三五”规划编制,统计和总结2016年管网、水厂改造计划完成情况和水质三级检验制度建立情况,以及对水质存在的主要问题提出新的改进措施,从而加强二次供水改造计划的实施。  辽宁省目前的水质检测工作急需操作更方便、自动化程度更高的检测设备,会上吉天仪器的技术工程师和与会人员交流了“高效准确的溶液化学分析解决方案”,并分享了吉天仪器的FIA-6000全自动流动注射分析仪,该仪器应用非稳态FIA理论,保证了分析过程的快速准确;全自动分析,无需人工干预;多通道分析,软件工作站支持最多8通道同时检测,每个分析通道均包含独立的泵和检测系统,可以作为独立的分析仪器。同时也交流了流动注射分析仪在水质安全检测过程中的应用,该仪器可以检测水及污水中挥发酚,氰化物,总氰化物,总磷,总氮,可溶性硫化物,硝酸盐,亚硝酸盐,氨氮,硅酸盐,阴离子表面活性剂,正磷酸盐,六价铬,可溶性硼化物,氟化物,尿素,总碱度,总硬度,酸度,色度,钙,镁,甲醛等项目,满足GB5749-2006《生活饮用水卫生标准》中大部分检测项目。  针对饮用水中无机元素的检测,吉天仪器工程师介绍了一款聚光科技自主研发生产的ICP-5000全谱直读电感耦合等离子体发射光谱仪。该仪器最多可以同时分析72个元素,覆盖元素周期表绝大多数金属元素和非金属元素,检出能力达到ppb级别。吉天仪器工程师在会上交流“高效准确的溶液化学分析解决方案” 吉天仪器FIA-6000全自动流动注射分析仪 聚光科技ICP-5000电感耦合等离子体发射光谱仪  本次辽宁省水质安全行业系统会议的成功举办,将大力提高辽宁省水质监测的工作效率,改善城市供水现状,吉天仪器的流动注射产品和ICP产品在水质监测行业中有着丰富的应用,可以为水质检测工作提供更先进、更便捷的检测工具。
  • 政府贴息新政|就选TA(一台仪器=一个实验室)
    近期,国家一系列政策密集发布,支持高校、职业院校、医院、中小微企业等领域的设备购置和更新改造。图片来源:http://www.pbc.gov.cn/goutongjiaoliu/113456/113469/4670802/index.html丹麦福斯作为分析检测行业的领导者,深耕中国市场多年,为广大用户提供完善的解决方案。此外,早已在中国成立了全资的生产企业—福斯分析仪器(苏州)有限公司,打造自己的本土化发展道路,满足行业的多层次需求。支持国家项目,助力高校、职业院校等单位提升科研检测能力。通过以下介绍相信您一定可以找到心仪的福斯产品。营养分析解决方案(食品、动植物营养、环境土壤等)01KjeltecTM9全自动凯氏定氮仪/赛诺KT8400全自动凯氏定氮仪样品类型:食品、农产品、饲料、土壤、肥料等检测项目:总氮、蛋白质、阳离子交换量等功能特点:官方标准的凯氏法全自动化操作完善的监控设计,确保操作精度与安全性KjeltecTM9全自动凯氏定氮仪赛诺KT8400全自动凯氏定氮仪02DumatecTM8000杜马斯定氮仪样品类型:食品、农产品、饲料、土壤、肥料、水溶性尿素等检测项目:总氮功能特点:官方标准的杜马斯燃烧法全自动化操作检出限优于0.003mgN符合审计追踪要求03SoxtecTM8000全自动索氏提取仪样品类型:食品、农产品、饲料、纺织品、玩具等检测项目:脂肪以及各种可提取物功能特点:官方标准索氏方法全自动化操作处理效率更高的索氏系统完善的安全设计,确保操作安全04FibertecTM8000全自动纤维素分析仪样品类型:食品、农产品等检测项目:粗纤维以及洗涤纤维功能特点:官方标准洗涤法采用GB标准的P2玻璃坩埚作为滤器全自动化操作,无需繁琐的人工过程05FibertecTM1023膳食纤维分析仪样品类型:食品检测项目:总膳食纤维、可溶性与不可溶性膳食纤维功能特点:官方标准的酶重量法以及酶重量法-液相色谱法采用GB标准的P2玻璃坩埚作为滤器育种材料筛选解决方案(粮食谷物作物等等)01NIRSTMDS3F近红外多功能品质分析仪样品类型:粮食谷物、饲料、土壤等检测项目:蛋白、脂肪、纤维、水分、各种脂肪酸/氨基酸等等功能特点:近红外光谱漫反射法波长范围850-2500nm自动增益的硫化铅与硅检测配套即装即用的定标数据库强大的定标开发能力02InfratecNova样品类型:粮食谷物检测项目:蛋白、脂肪、纤维、水分、各种脂肪酸/氨基酸、容重等等功能特点:近红外光谱透射法波长范围400-1100nmSTM小样品单元(用于少量样品检测)配套即装即用的定标数据库强大的定标开发能力可选容重模块畜牧解决方案(乳品、肉类等)01FoodScan2肉类分析仪样品类型:各种肉类以及肉制品(包括植物肉)检测项目:蛋白、脂肪、胶原、水分、盐、色度等功能特点:近红外透射技术即装即用的ANN肉类定标可选颜色模块检测CIEL*a*b标准色25秒/个样品02MilkoScanFT3多功能乳品分析仪样品类型:原奶以及以及各种乳制品、母乳检测项目:蛋白、乳脂、乳糖、总固、冰点、柠檬酸、酪蛋白等功能特点:傅里叶中红外光谱技术强化的双向柱塞泵技术配套完善的数据库定标全自动清洗调零全自动标准化30秒/样品03BacSomatic体细胞与细菌总数分析仪样品类型:原奶检测项目:体细胞与细菌总数功能特点:同时检测原奶中的体细胞与细菌总数染色法原理全自动分析流式细胞技术
  • BCEIA2017,宝德在北京国家会议中心恭候您!
    北京宝德仪器有限公司邀请您参观指导展位号(21037-21042)公司简介 北京宝德仪器有限公司是一家集科学仪器研发、制造、销售和服务为一体的现代化高新技术企业,其产品发展目标是专为与食品及农副产品的营养与安全检测、环境检测等相关的各级分析实验室,提供从样品前处理到分析测试方法的完整解决方案。 公司目前自主研发的主要产品有:全自动流动注射分析仪、多道原子荧光光度计、液相色谱-原子荧光光谱联用仪(原子荧光形态分析仪)、全自动固相萃取仪、全自动液体样品稀释器、全自动消解工作站、总有机碳测试样品自动前处理装置、全自动快速溶剂萃取仪等系列产品。 “宝才厚德,求实创新”。公司将以创新精神作为发展源动力,结合市场,不断研发和生产出更专业、更精细的产品,为客户提供更优质的服务,为民众福祉、为中国的分析仪器贡献一点绵薄之力。宝 德 重 磅 产 品BAF-2000/3000/4000 原子荧光光度计 主要用于环境样品检测,食品卫生检验,水样检验,农业及其产品检测,地质冶金样品检测,疾控防疫中心样品检测,中西药,生物材料,化妆品,纺织品临床实验及教育科学研究等领域中砷、汞、铅、镉等重金属元素的痕量检测。BAF-2000/3000/4000原子荧光光度计BDFIA-8000 全自动流动注射分析仪 应用领域:主要用于水质分析(饮用水、公共污水、工业废水、地表水、地下水、海水等)、环境分析(土壤分析、植物分析)、食品分析、肥料分析及饮料酒类的分析。 检测成分:挥发酚、(总)氰化物、总磷、总氮、可溶性硫化物、高锰酸盐指数、硝酸盐、亚硝酸盐、氨氮、硅酸盐、阴离子表面活性剂、正磷酸盐、六价铬、可溶性硼化物、氟化物、尿素、总碱度,总硬度,酸度,色度,钙、镁、甲醛等参数的检测。BDTOC-40 总有机碳全自动前处理装置专用于石油、地矿等领域中相关样品总有机碳测试的前处理,可通过智能化的上位机软件控制,完成方法设置,实现样品的全自动批量前处理过程,包括自动加酸、补液、清洗,自动温度控制,自动判识处理终点;大大降低试剂消耗量,提高工作效率,减少实验人员与有害试剂的接触。无机碳处理完全。BSA-100A/100B/100C 液相色谱-原子荧光光谱联用仪主要用于环境样品、海产品、农副产品、中西医药、生物材料、化妆品及临床检验中的砷(As)、汞(Hg)、硒(Se) 、锑(Sb)等元素的形态和价态检测。仪器特点:☆ 高压液相泵与前处理装置一体化设计,以降低流路体积和减少试剂用量;☆ 总量与形态检测自动切换,无需更换管路;☆ 双色谱柱自动切换,无需手工换柱;☆ 在线紫外消解与否可自动切换,无需更换流路。BASE-26 全自动快速溶剂萃取仪适用于固体、半固体样品的快速样品预处理装置,能同时提取样品中的各类农残和污染物;自动化程度高,加溶剂、加热、加压、萃取、收集、过滤、清洗等所有萃取过程全部自动完成。BDIG-70 全自动消解工作站具有高度智能的自动化湿法消解工作站,能够根据内置的消解方法自动完成包括试剂添加、梯度升温消解、赶酸、冷却、定容和消解液转移稀释等功能。BDSPE-600 全自动通道式固相萃取仪通道式全自动固相萃取仪,既可完成小体积样品的净化,又可完成大体积水样的富集,可同时实现柱萃取和膜萃取;适用于农药残留、兽药残留、食品添加剂、药物等分析领域。BSD-10 全自动液体样品稀释器 可对标准样品母液进行预设倍数的稀释和定容,轻松自动完成标准系列溶液的配置。宝 德 荣 誉 宝 德 资 质 会 议 宣 传 北京宝德仪器有限公司Beijing Baode Instruments Co.,Ltd.
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制