当前位置: 仪器信息网 > 行业主题 > >

迷迭香酸甲酯

仪器信息网迷迭香酸甲酯专题为您提供2024年最新迷迭香酸甲酯价格报价、厂家品牌的相关信息, 包括迷迭香酸甲酯参数、型号等,不管是国产,还是进口品牌的迷迭香酸甲酯您都可以在这里找到。 除此之外,仪器信息网还免费为您整合迷迭香酸甲酯相关的耗材配件、试剂标物,还有迷迭香酸甲酯相关的最新资讯、资料,以及迷迭香酸甲酯相关的解决方案。

迷迭香酸甲酯相关的资讯

  • FOSS助力中国粮油生产 | 第32届中国粮油学会油脂学术年会
    会议导读11月14日,中国粮油学会油脂分会第三十二届学术年会在海南瞻洲市召开,会议由中国粮油学会油脂分会、海南省粮食和物资储备局主办。协会代表、高等院校和科研单位、粮油企业代表共计300余人参会。“高质高效,创新发展”为本届年会主题,围绕两大方向进行深刻交流。一是国家粮食生产和安全。应积极推进乡村农业振兴,提高农民收入;加快农业基础建设,保障国家粮食安全。二是加速推进粮油企业科技化、产业化转型。应积极创新生产技术,高效利用资源;因地制宜开发新应用和产品,高质量发展;推进智能化、数字化生产。科技以创新为本,本次盛会展示了食用油脂行业的前沿研究和创新技术,例《抗温度波动巧克力油脂的开发》、《迷迭香用于油脂抗氧化的前景》、《精炼过程中微生物油脂品质变化与风味形成机制》等研究成果。福斯创立于1956年,研发推出了首台谷物分析仪Cera Tester,近70年来始终致力于农业食品行业安全和生产。自1990年代进入中国,福斯的一系列粮油生产质量控制解决方案已在中国本土粮油生产加工企业应用超过30年,也将继续为中国粮油生产发展提供先进、精准的分析解决方案。福斯粮油行业分析解决方案DS3 近红外多功能品质分析仪样品油籽、粕、饼、胚等蛋白、含油、纤维、水分、各种脂肪酸/氨基酸等功能特点:近红外光谱漫反射法(波长范围400-2500nm)一分钟快速检测即装即用的定标数据库强大的定标开发能力Infratec&trade 近红外原粮分析仪整粒无损,一分钟快速检测玉米、大米、大麦、淀粉等蛋白、含油、纤维、水分、容重等功能特点:近红外光谱透射法波长范围400-1100nm一分钟快速检测整粒粮食直接测,无损不粉碎STM小样品单元,可用于少量样品检测即装即用定标数据库可选容重模块ProFoss&trade 2 近红外在线分析仪过程控制安装在生产管路(在线)蛋白、含油、水分等功能特点:高分辨率、高频次,实时连续检测精准控制生产工艺,实现高标准压线生产高度标准化,极低台间差,定标无缝转移适用液体、粘稠液体、固体多种产线防爆认证IECEx/ATEX;工业IP69级防水防飞溅Kjeltec&trade 9 全自动凯氏定氮仪官方标准的凯氏法氮/蛋白质、铵态氮、TKN总凯氏氮、阳离子交换量、挥发酸/碱等30mg氮用时3.5分钟(200mg氮用时6.5分钟)功能特点:官方标准的凯氏法(国标方法)全自动化操作完善的监控设计,确保精准度和操作安全全新数字化联网,数据可追溯
  • 英国食品标准局发布食品添加剂新规则草案
    2011年1月17日,英国食品标准局发布英格兰地区食品添加剂新规则草案,该草案将贯彻欧盟两个食品添加剂的指令。这些指令对四种新食品添加剂和一种最近批准在欧盟使用的甜味剂的纯度设置了标准。这些新食品添加剂是:E392 迷迭香提取物、E427肉桂胶、E961纽甜素、E1203聚乙烯醇和E1521聚乙二醇。  新纯度标准的设置旨在确保每种添加剂都符合自身特定生产和应用的组成规格。这种对现有规格标准进行的小范围修订,可以使其符合国际通行的安全标准和技术上的新发展。  所执行的两个欧盟指令是:  2010/67/EU号指令——修订关于食品添加剂(除色素和甜味剂外)的纯度标准2008/84/EC号指令   2010/37/EU号指令——修订关于甜味剂的纯度标准2008/60/EC号指令  新规则将于2011年3月31日开始强制执行,新规则的执行不会给生产商强加额外的生产成本。类似规则也很快将在苏格兰、威尔士和北爱尔兰地区发布。
  • 天然提取物:现代化妆品的健康新趋势
    在当前消费者越来越注重产品成分天然健康的市场环境下,植物提取物因其独特的功效和相对较低的副作用风险,成为化妆品研发的重要方向。化妆品中的天然提取物以其绿色、自然和健康的特性,在现代化妆品行业中的应用日益广泛,据不完全统计,天然化妆品在整个化妆品中的比例已经达到40%。本文汇总了天然提取物在美白祛斑、防晒、抗衰老、保湿、乳化、防腐、透皮吸收促进、香料等8个方面的应用情况,供大家阅读参考。1、天然提取物-美白剂传统美白剂有稳定性不佳,刺激,功效显现缓慢等劣势。而天然来源的美白剂可结合多成分、多靶点与多功效的优势,同时还兼具温和、安全、持久的特点,已成为美白化妆品行业的一个趋势。常见的天然美白成分有金银花、茶多酚、石榴、花青素、珍珠等。化妆品常见天然美白提取物汇总2、天然提取物-抗衰剂以天然提取物为原料的抗衰老化妆品同样越来越多的被应用于化妆品中。根据衰老学说,天然提取物的抗衰机制主要有以下几点:①通过提取物中的抗氧化组分,减少皮肤的自由基损伤,来调节皮肤免疫和提高自我保护作用。②通过抑制MMP表达,或促进组织型抑制剂(TIMP)表达来维持真皮层的结构。此外,防晒组分可有效防止紫外线对皮肤的伤害。而由于天然物种中组分较为复杂,往往能够多靶点协同作用起到抗衰老的效果,因此备受市场欢迎。常见天然抗衰剂有番红花素、人参皂苷、姜黄提取物、丹参酮、牡丹花等。化妆品常见天然抗衰提取物汇总3、天然提取物-保湿剂天然提取物在保湿方面的机制一般为:1、天然多酚羟基与水以氢键形式结合,形成锁水膜。2、其中的神经酰胺成分可以修护皮肤屏障,从而提高锁水能力。3、抑制透明质酸酶活性,减少皮肤保湿剂-HA的降解。常见的天然保湿成分有白及成分、竹叶黄酮、甘草提取物、芦荟有机酸、百合提取物等。化妆品常见天然保湿提取物汇总 4、天然提取物-防晒剂目前市面上的防晒产品多为物理紫外屏蔽剂、化学紫外吸收剂,这两种类型的防晒剂均会给皮肤造成不同程度的负担,同时对水体生态环境也是造成了不小的压力。天然来源的防晒剂则具有广谱防晒、副作用小等特点。我国目前已将芦荟、黄岑、甘草、桂皮、沙棘等用于防晒产品中。化妆品常见天然防晒剂汇总5、天然提取物-毛发用剂发用化妆品中添加一些中药提取物已经比较常见,主要是可以使头发柔软、促进头发生长等。如何首乌、五味子、黑芝麻、人参、侧柏叶等都具有不错的养发护发的功效。此外,有一部分的收涩药含有的有机酸和鞣质能与美发剂中的铁、铜结合,用于染发剂的制备。化妆品常见天然护发剂汇总6、天然提取物-防腐剂化妆品中常用的防腐剂有尼泊金酯类、咪唑烷基脲、苯甲酸及其衍生物、醇类及其衍生物类等。安全的天然防腐剂一直成为化妆品研究的热点。常用的天然防腐剂有芦荟、益母草、黄岑、月见草、金缕梅等。化妆品常见天然防腐剂汇总7、天然提取物-香精 天然香料是指以自然界存在的动植物的芳香部位为原料提取加工而成的原态香材天然香料。动物香料常用的有香、龙涎香、灵猫香、海狸香和香鼠香等,一般作定香剂使用,价格比较昂贵。植物性香料由植物的花、果、叶、茎、根、皮或者树木的木质茎、叶、树根和树皮中提取的易挥发芳香组分的混合物。常见的天然香精有玫瑰、薰衣草、苦橙叶、迷迭香、茉莉等。化妆品常见天然香精汇总8、天然提取物-其他功能① 乳化乳化剂是化妆品的重要辅助原料,具有乳化作用的天然提取物一般含有皂苷、树胶、蛋白质、胆固卵磷脂、明胶等。② 头皮吸收促进剂如月桂氮卓酮之类的化学合成促进剂,毒性大,长时间会对皮肤造成伤害。对比之下,天然的促进剂如薄荷油、桉油、丁香油、蛇床子油、当归挥发油、川芎挥发油等则有促渗作用强,不良反应小等特点。9、品牌天然提取物及功效举例
  • 卫生部废止《酸牛乳》等86项国家标准
    2010年3月26日,卫生部发布了《生乳》(GB 19301-2010)等66项食品安全国家标准。依据《食品安全法》和《乳品质量安全监督管理条例》的规定,对上述标准所代替的《酸牛乳》等86项国家标准自相关替代标准实施之日起废止,现予以公布(见附件)。 附件:关于废止《酸牛乳》等86项国家标准的公告740)this.width=740" border=undefined740)this.width=740" border=undefined 740)this.width=740" border=undefined740)this.width=740" border=undefined
  • Supelco脂肪酸及脂肪酸甲酯分析产品用户回馈活动
    Supelco脂肪酸及脂肪酸甲酯分析产品促销 --为您提供一站式脂肪酸甲酯分析服务2010年8月1日--2010年10月31日活动规则: 1.凡在活动期间购买指定促销产品单次订单金额达10,000元,可获赠价值300元North face登山包一个或等值折扣 2.凡在活动期间购买指定促销产品单次订单金额达15,000元,可获赠价值600元伊莱克斯早餐吧一台或等值折扣 3.凡在活动期间购买指定促销产品单次订单金额达25,000元,可获赠价值1500元Ipod touch一台或等值折扣脂肪酸/脂肪酸甲酯分析专用柱 Sigma-Aldrich/SUPELCO提供全面的脂肪酸分析气相色谱毛细管柱,满足您的各种需求。 SPTM-2560柱(强极性氰丙基硅氧烷类毛细管柱), 可最大程度地分离顺反异构脂肪酸甲酯,完全符合GB5413.27-2010,GB5413.36-2010等国标和USP G5方法,并且是AOAC方法996.06和 AOCS 方法Ce 1h-05指定用柱; SPTM-2380柱(强极性氰丙基硅氧烷类毛细管柱), 用于顺反异构、双键位置异构的脂肪酸甲酯分离,符合USP G48方法; SLB-IL100柱(强极性离子液体固定相毛细管柱), 可最大程度地分离顺反异构脂肪酸甲酯,是SP-2560和SP-2380柱的很好补充。 OmegawaxTM柱(聚乙二醇),用于不同碳链长度和不同饱和度(特别是omega-3和omega-6)的脂肪酸甲酯(FAMEs)的分离,符合USP G16方法,并且是AOAC方法991.39和 AOCS 方法Ce 1b-89指定用柱; Equity-1柱(非极性聚二甲基硅氧烷),用于不同沸点的脂肪酸甲酯(FAMEs)分离,符合USP G1、G 2和G 9方法; NukolTM 柱(改性聚乙二醇),用于自由脂肪酸( Free Fatty Acids)的分析,符合USP G25和35方法; Discovery银离子交换SPE小柱 Discovery 银离子交换SPE小柱, 利用特有的技术将银离子(Ag+)嵌入SCX(磺酸基阳离子交换)载体上。在正相洗脱条件下,银离子(Ag+)仅对脂肪酸甲酯的双键有吸附作用,具体表现为: · 饱和的脂肪酸甲酯(无双键),不吸附,最快流出; · 顺式的双键,吸附作用比反式的强。反式的先流出,顺式的后流出; · 双键越多,吸附作用越强。双键少的先流出,双键多的后流出。 脂肪酸及脂肪酸甲酯标准品 Sigma-Aldrich/SUPELCO提供全面的脂肪酸及脂肪酸甲酯标准品, 质量保证&mdash SUPELCO品牌值得信赖,每个标准品均有分析证书(Certificate of Analysis) 品种齐全&mdash 从C 1到C 31一应俱全; 形式多样&mdash 纯品、溶液型,单标、混标全有; 特别是SUPELCO专有的37种脂肪酸甲酯混标(47885-U),涵盖了大部分常用脂肪酸甲酯标准品,完全符合国标GB5413.27-2010,深受广大用户喜爱! 衍生化反应瓶及反应加热器 反应瓶,内为锥形,容易移取微量样品,厚壁硼酸盐玻璃,配有Teflon/红橡胶垫,空心盖,可高压灭菌或离心。反应加热器,有两档温控范围可调节:室温~100℃,和75℃~ 150 ℃;有两种加热模块可选,一种是8孔的,适合3mL及5mL反应瓶;一种是12孔的,适合1mL及2mL反应瓶。 衍生化试剂及衬管 衍生化试剂 Sigma-Aldich/SUPELCO 提供种类齐全的GC衍生化试剂,如:酯化试剂、硅烷化试剂、酰化试剂等。在脂肪酸的分析中,除了自由脂肪酸可以直接GC测定,其它脂肪酸必须要甲酯化之后才可以GC检测。三氟化硼甲醇溶液,就是最通用的脂肪酸甲酯化的试剂。并且大部分SUPELCO品牌的衍生化试剂,随货附有产品规格说明书,其中包括性质、特点、典型的衍生化步骤、机理、毒性、有害性和稳定性等信息,对于使用非常有帮助。 去活玻璃衬管 杯型玻璃衬管可以增加高分子量化合物在进样口的挥发,提高分辨力,降低进样口岐化。
  • 2023年“三新食品”公示名单汇总!
    “三新食品”是指新食品原料、食品添加剂新品种和食品相关产品新品种。2023年5月,根据《食品安全法》及其实施条例有关规定,国家卫生健康委组织专业技术机构梳理了 “三新食品”目录及适用的食品安全标准(点击下载),范围涵盖自原卫生部2009年第3号公告至国家卫生健康委2021年第9号公告的新食品原料(菌种除外)、自原卫生部2009年第11号公告至国家卫生健康委2021年第9号公告的食品添加剂新品种、自原卫生部2012年第11号公告至国家卫生健康委2021年第9号公告的食品相关产品新品种,共计98个新食品原料品种、215个食品添加剂新品种和235个食品相关产品新品种。2023年国家食品安全风险评估中心共发布16条征求意见,共涉及53种化合物。小编汇总了2023年以来公开征求意见的“三新食品”名录。新品种序号名称公示时间使用范围111-氨基十一(烷)酸的均聚物2023年11月03日聚酰胺(PA)2瑞鲍迪苷 M2023年10月26日调制乳、风味发酵乳、冰淇淋、雪糕类、胶基糖果、饮料类3环糊精葡萄糖苷转移酶2023年10月26日食品工业用酶制剂4纤维素酶2023年10月26日食品工业用酶制剂52’-岩藻糖基乳糖2023年10月26日食品营养强化剂6(3R,3'S)-二羟基-β-胡萝卜素2023年8月28日乳及乳制品、饮料类、焙烤食品、糖果、即食谷物、冷冻饮品,使用范围不包括婴幼儿食品。7克鲁维毕赤酵母2023年8月28日批准列入《可用于食品的菌种名单》,使用范围包括发酵酒、果蔬汁、茶饮料的发酵加工,不包括婴幼儿食品。8枯草芽孢杆菌 DE1112023年8月28日批准列入《可用于食品的菌种名单》92'-岩藻糖基乳糖2023年8月23日:食品营养强化剂10甲基丙烯酸丁酯与甲基丙烯酸甲酯、丙烯酸正丁酯和1,4-丁二醇二甲基丙烯酸酯的聚合物2023年6月28日涂料及涂层11混合生育三烯酚浓缩物2023年6月26日植物油脂12巴拉圭冬青叶2023年6月21日马黛茶叶新原料131,4-苯二甲酸与癸二酸和 1,2-乙二醇的聚合物2023年4月25日涂料及涂层14.甲基丙烯酸与甲基丙烯酸丁酯、丙烯酸乙酯和甲基丙 烯酸甲酯的聚合物和对苯二酚与 4,4-亚甲基双(2,6-二甲基 酚)和氯甲基环氧乙烷的聚合物与 N,N-二甲基乙醇胺的反应 产物2023年4月25日涂料及涂层15丝氨酸蛋白酶2023年4月24日食品工业用酶制剂新品种16桃胶2023年4月23日婴幼儿、孕妇、哺乳期妇女及经期妇女不宜食用,标签、说明书应当标注不适宜人群和食用限量。17油莎豆2023年4月23日食品安全指标按照我国现行食品安全国家标准中坚果与籽类食品的规定执行。18肠膜明串珠菌乳脂亚种2023年4月23日批准列入《可用于食品的菌种名单》,使用范围包括乳及乳制品、果蔬制品、谷物制品的发酵加工,不包括婴幼儿食品。19吡咯并喹啉醌二钠盐2023年4月23日使用范围和最大使用量:饮料(40mg/kg,固体饮料按照冲调后液体质量折算)。20N-(2-氨基乙基)-β-丙氨酸单钠盐与1,4-丁二醇、1,6-二异氰酸根合己烷、1,3-二异氰酸根合甲苯和己二酸的聚合物2023年3月15日黏合剂(直接接触食品用)21文冠果种仁2023年3月10日食品安全指标按照我国现行食品安全国家标准中坚果与籽类食品的规定执行。22文冠果叶2023年3月10日食用方式:泡饮。23酵母蛋白2023年3月10日婴幼儿、孕妇和哺乳期妇女不宜食用,标签及说明书应当标注不适宜人群。24β-淀粉酶2023年2月10日食品工业用酶制剂新品种25溶血磷脂酶2023年2月10日食品工业用酶制剂新品种262’-岩藻糖基乳糖2023年2月10日食品营养强化剂新品种27己二酸与 2-乙基-2-(羟甲基)-1,3-丙二醇和 4-(1,1-二 甲基乙基)苯甲酸酯的聚合物2023年1月16日涂料及涂层284,8-三环[5.2.1.02,7]癸烷二甲醇与对苯二甲酸和 1,6-己 二醇的聚合物2023年1月16日涂料及涂层29氢化二聚 C18 不饱和脂肪酸与 1,4-丁二醇、乙二醇、 对苯二甲酸和 2-乙基-2-(羟甲基)-1,3-丙二醇的嵌段共聚物2023年1月16日塑料30蓝莓花色苷2023年1月12日乳及乳制品、饮料类、果冻、可可制品、巧克力和巧克力制品、糖果、冷冻饮品、焙烤食品、酒类。31绿茶儿茶素2023年1月12日饮料、糖果32蛋壳膜提取物2023年1月12日婴幼儿、孕妇、哺乳期妇女、对鸡蛋过敏者不宜食用。33黑麦花粉2023年1月12日婴幼儿、孕妇、哺乳期妇女,以及花粉过敏者不宜食用。扩大使用范围序号名称公示时间扩大使用范围1番茄红2023年10月26日肉脯类、肉灌肠类、腌腊肉制品类2聚氧乙烯(20)山梨醇酐单油酸酯(又名吐温 80)2023年10月26日胶原蛋白肠衣3迷迭香提取物2023年10月26日加工坚果与籽类4维生素 E(dl-α- 生育酚,d-α-生育酚,混合生育酚浓缩物)2023年10月26日其他(仅限叶黄素酯)5L-丙氨酸2023年8月23日果蔬汁(浆)类饮料6海藻酸丙二醇酯2023年8月23日粉丝、粉条、粉圆7N,N'-己基-1,6-二[3-(3,5-二叔丁基-4-羟苯基)丙酰胺]2023年6月28日塑料:聚氨酯(PUR)传送带82,2-双[[3[3,5-双(1,1-二甲基乙基)-4-羟苯基]-1-氧代丙氧基]甲基]-1,3-丙二基-3,5-双(1,1-二甲基乙基)-4-羟基苯丙酸酯;四[3-(3,5-二叔丁基-4-羟基苯基)丙酸]季戊四醇酯2023年6月28日塑料:聚氨酯(PUR)传送带9咖啡渣2023年6月28日塑料:聚乳酸(PLA)、聚丁二酸丁二醇酯(PBS)10食用单宁2023年6月26日制糖工艺11乙酸乙酯2023年6月26日茶叶提取物的加工工艺12C.I.颜料黑 72023年4月25日塑料:聚醚醚酮(PEEK)13丙烯酰胺与甲基丙烯酰氧乙基三甲基氯化铵、衣康酸 和 N,N'-亚甲基双丙烯酰胺的共聚物2023年4月25日纸和纸板142-(乙烯氧基)-1,2,3-丙三羧酸三丁基酯2023年4月25日间接接触食品用油墨15乳酸钙2023年4月24日腌渍的蔬菜、蔬菜罐头16三赞胶2023年4月24日调制乳、复合蛋白饮料17玻璃纤维;玻璃棉2023年3月15日塑料:聚醚醚酮(PEEK)18C.I.颜料黑 282023年3月15日涂料及涂层19三赞胶2023年2月10日调制乳、冰激凌、雪糕类、复合蛋白饮料、风味饮料20硫酸2023年2月10日油脂加工工艺三新食品2023年公示.rar
  • 6月4日起,全欧盟限制富马酸二甲酯
    5月15日,欧盟发布政府公报,颁布(EU)No 412/2012指令,将富马酸二甲酯加入REACH法规附件17(对某些危险物质、混合物、物品在制造,投放市场和使用过程中的限制)物质清单第61项,法令在自欧盟公报发布之日20天后执行,并要求成员国将其无条件转化为本国法律。这预示着6月4日起,全欧盟限制富马酸二甲酯。   富马酸二甲酯是一种挥发性化合物,通常用作真菌杀灭剂,也可用于干燥剂袋中,以防止皮革、家具、鞋或皮革配件在储存或运输过程中产生霉菌。人体吸入、摄入或与之接触,会对皮肤、眼睛和上呼吸道造成刺激和伤害。  针对富马酸二甲酯对人体的伤害作用,欧盟发布2009/251/EC规定,2009年5月1日后,欧盟市场上流通的产品或产品零件中富马酸二甲酯的含量不应超过0.1ppm,产品及包装内不得使用含有富马酸二甲酯的干燥剂、防霉剂小袋。欧盟又于2012年1月26日发布了该禁令的修订指令2012/48/EU,将2009/251/EC指令的有效期延至2013年3月15日。2012/48/EU指令明确指出,若富马酸二甲酯列入REACH法规附录17中进行强制管控的提案正式通过的时间早于前者,则富马酸二甲酯禁令即时生效。  根据此次修订,用于物品及物品的任一成分中的富马酸二甲酯含量不得超过0.1mg/kg,物品及物品中任一成分富马酸二甲酯含量超过0.1mg/kg不得置于市场销售。在此,检验检疫部门建议广大出口企业:继续严格遵守欧盟富马酸二甲酯指令,确保出口产品符合进口国的相关要求。
  • 离子液体柱——脂质组学中分离脂肪酸的气相色谱柱
    编者注:傅若农教授生于1930年,1953年毕业于北京大学化学系,而后一直在北京理工大学(原北京工业学院)从事教学与科研工作。1958年,傅若农教授开始带领学生初步进入吸附柱色谱和气相色谱的探索 1966到1976年文化大革命的后期,傅若农教授在干校劳动的间隙,系统地阅读并翻译了两本气相色谱启蒙书,从此进入其后半生一直从事的事业&mdash &mdash 色谱研究。傅若农教授是我国老一辈色谱研究专家,见证了我国气相色谱研究的发展,为我国培养了众多色谱研究人才。 第一讲:傅若农讲述气相色谱技术发展历史及趋势第二讲:傅若农:从三家公司GC产品更迭看气相技术发展第三讲:傅若农:从国产气相产品看国内气相发展脉络及现状第四讲:傅若农:气相色谱固定液的前世今生第五讲:傅若农:气-固色谱的魅力第六讲:傅若农:PLOT气相色谱柱的诱惑力第七讲:傅若农:酒驾判官&mdash &mdash 顶空气相色谱的前世今生第八讲:傅若农:一扫而光&mdash &mdash 吹扫捕集-气相色谱的发展第九讲:傅若农:凌空一瞥洞察一切&mdash &mdash 神通广大的固相微萃取(SPME)第十讲:傅若农:悬&ldquo 珠&rdquo 济世&mdash &mdash 单液滴微萃取(SDME)的妙用第十一讲:傅若农:扭转乾坤&mdash &mdash 神奇的反应顶空气相色谱分析第十二讲:擒魔序曲&mdash &mdash 脂质组学研究中的样品处理前言  作为代谢组学的重要分支之一,脂质组学(Lipidomics)的研究对象是生物体的所有脂质分子,并以此为依据推测其它与脂质作用的生物分子的变化,进而揭示脂质在各种生命活动中的重要作用机制。脂质组学是总体研究和这些疾病有关的脂质化合物,找到昭示这些疾病的生物标记物。  前一篇讲述了脂质组学研究中的样品处理技术,一般情况下样品处理后可以直接用鸟枪法进行质谱分析,但是如果是一个成分复杂的系统,就要进行分离,可以用气相色谱、液相色谱、薄层色谱或毛细管电泳,本文介绍代谢组学研究中使用离子液体色谱柱分离脂肪酸的气相色谱方法。1、基本情况  由于脂质分子是不挥发性的化合物,同时有些脂质分子受热易于降解,所以在脂质组学研究中使用气相色谱有些困难,逊色于薄层色谱和液相色谱。如果使用气相色谱进行衍生化是必须的步骤,但是很多情况下衍生化会丧失脂质分子种类特点的结构信息。但是由于气相色谱以其对异构体的高分离能力、高灵敏度、便于进行定量分析的能力,它仍然是脂质组学分析中的有力工具。通常气相色谱用于分析某些类别的脂质,可以获得很高的分离度和灵敏度,所以经过很特殊的萃取、用TLC 或 HPLC与分离、再经衍生化是用气相色谱进行脂质组学研究的基本方法。用气相色谱可以很灵敏地检测许多类别的脂质,如脂肪酸、磷脂、鞘脂类、甘油酯、胆固醇和类固醇。分析高分子量的化合物,必须使用高柱温,甚至需要400 C,近年Sutton等配置了高温气相色谱-飞行时间质谱,这一系统可以进行高分子量化合物(m/z达1850),进行在线质谱分析温度达430℃,这样的系统适合于长链脂质的分析。  近年把离子液体用作气相色谱固定相,用以分离脂质混合物,特别是脂质的异构体。Delmonte等讨论了脂肪酸顺反异构体的分离问题,一些单不饱和脂肪酸的几何和位置异构体可以得到很好的分离。使用这一方法对18:1 FFA的各种异构体可以分离出10个单独的峰,此后使用这一方法分析了人头发、指甲等实际样品,因此建议使用离子液体毛细管色谱柱分析全脂肪酸或脂肪酸甲酯,这种固定相适合于脂质组学,得到更多脂质分子的种类信息。(刘虎威研究组,Anal Chem, 2014, 86, 161&minus 175)2、室温离子液体作气相色谱固定相  室温离子液体,是指室温或接近室温时呈液态的离子化合物,一般由体积相对较大的有机阳离子(如烷基咪唑盐、烷基吡啶盐、烷基季铵盐、烷基季膦盐)和相对较小的无机或有机阴离子如六氟磷酸根([PF6]-)、四氟硼酸根([BF4]-)、硝酸根(NO3-)、三氟甲基磺酰亚胺([{CF3SO2}2N]-)等构成。离子液体,早期称作熔盐,在一战时期(1914)发现的第一个室温离子液体为乙基季胺硝酸盐。第一个使用熔盐作气相色谱固定相的是Barber(1959年),他利用硬脂酸和二价金属离子的盐(锰、钴、镍、铜和锌盐)作气相色谱固定相,测定了烃类、酮类、醇类和胺类在156℃下的保留行为,具有特点的是用锰的硬脂酸熔盐作固定相可以很好地分离&alpha -甲基吡啶和&beta -甲基吡啶,而使用相阿皮松一类固定相则完全不能分离。1982年 Poole等研究了乙基季胺硝酸盐作气相色谱固定相的保留行为,发现这一固定相可在40-120℃范围内使用,是一种极性强于PEG20M 的具有静电力和氢键力的极性固定相,适于分离醇类和苯的单功能团取代衍生物,而胺类与固定相有强烈的作用,不能从色谱柱洗脱出来。就在这一年 Wilker 等报道了首例基于1-烷基-3-甲基咪唑为阳离子的室温离子液体,研究了它们的合成方法和在电化学中的应用。此后Armstrong等在1999年首先将六氟磷酸 1-丁基-3-甲基咪唑 ([BuMIm][PF6] ) 及相应的氯化物([BuMIm][Cl] )用作气相色谱固定相 ,通过分离烃类、芳香族化合物、醛、酰胺、醚、酮、醇、酚、胺及羧酸类化合物 ,发现离子液体固定相具有双重性质:当分离非极性物质或弱极性物质时表现为非极性或弱极性固定相 当分离含有酸性或碱性官能团的分子时 ,表现为强极性固定相,并测定了[BuMIm][PF6]和[BuMIm][Cl]色谱固定相的麦氏(McRynolds)常数。之后的几年里Armstrong等进行了一系列有关室温离子液体作气相色谱固定相的研究,奠定了室温离子液体固定相在实际中应用的基础。此后人们竞相研究室温离子液体用作气相色谱固定相的问题,最近两年由于Supelco公司承袭了Armstrong研究团队的研究成果,把室温离子液体固定相商品化,出现了几种性能优越的室温离子液体毛细管色谱柱,就促使许多研究者使用商品室温离子液体柱,分离一些复杂的难分离的混合物,因而也大大促进了离子液体气相色谱固定相的广泛使用。(傅若农,化学试剂,2013,35( 6): 481 ~ 490)(1).室温离子液体气相色谱固定相的特点  室温离子液在许多领域得到了广泛的应用,如有机合成溶剂、催化剂用溶剂、基质辅助激光解析/电离质谱的液体基质、萃取溶剂、液相微萃取溶剂、毛细管电泳缓冲溶液添加剂等,此外它们在分析化学领域得样品制备、分离介质中也得到充分的应用,气相色谱固定相是应用最多的一个领域。所以能得到如此广泛的应用是因为它具有许多特殊的性能,联系到气相色谱固定相,它们非常适应毛细管色谱柱的多方面要求:(a) 蒸汽压低  气相色谱固定相在使用温度下具有很低的蒸汽压是必要条件,室温离子液体具有很低的蒸汽压,它们能很好地满足气相色谱固定相的这一要求,例如现在使用较多的1-丁基-3-甲基咪唑二(三氟甲基磺酰)亚胺([C4mim][NTf2])的蒸汽压见下表1,从表中数据看出在在不到180℃下蒸汽压不到1 mm Hg柱,这完全符合气相色谱固定相的要求。表1 [C4mim][NTf2]在不同温度下的蒸汽压温度/℃蒸汽压/P× 102 (Pa)184.51.22(0.92 mmHg柱)194.42.29(1.72 mmHg柱)205.55.07 (3.8 mmHg柱)214.48.74 (6.6 mmHg柱)224.415.2 (11.4 mmHg柱)234.427.4 (20.5 mmHg柱)244.346.6 (35.0 mmHg柱)(b) 粘度高  室温离子液体的粘度高,适合于气相色谱固定相的要求,而且在较宽的温度范围内变化不大,因为粘度低会影响色谱柱的分离效率和寿命,因为气相色谱固定相在温度升高时趋向于降低粘度使液膜流动,造成膜厚改变,降低柱效,甚至液膜破裂降低柱寿命,室温离子液体的黏度比一般溶剂高很多,例如二乙基咪唑二(三氟甲基磺酰)亚胺在20℃的粘度为34cP,n-己基-3-甲基咪唑氯化物在25℃的粘度为18000 cP,所以离子液体的粘度一般比传统溶剂高1到3个数量级 。(c) 湿润性好  要使毛细管色谱柱的柱效提高,就要把固定相涂渍成一层均匀、牢固的薄膜,这样固定相对毛细管壁要有很好的湿润性,室温离子液体正好具备这样的特性,它们的表面张力在 30 到 50 dyne/cm 之间,例如1-丁基-3-甲基咪唑六氟磷酸盐,1-己基-3-甲基咪唑六氟磷酸盐,和1-辛基-3-甲基咪唑六氟磷酸盐分别为44.81, 39.02, 和 35.16 dyne/cm,这样的表面张力正好可以让固定相溶液湿润并铺展在未经处理的石英毛细管内壁上 。(d)热稳定性好  大家都知道色谱柱的保留性能稳定性和柱寿命都与固定相的热稳定性有关,室温离子液体气相色谱固定相的热稳定性自然是十分重要的关键性能,离子液体的热稳定性随其阴阳离子的不同有很大的差异,离子液体的阴离子具有低亲和性及共轭键时(如三氟磺酸基,三氟甲基磺酰亚胺阴离子)就有很高的热稳定性,反之具有亲和性强的阴离子(如卤素基)其热稳定性就不好,一般像二烷基咪唑类离子液体固定相在220&ndash 250℃之间稳定,具有长烷基链的季鏻基离子液体可以在335&ndash 405℃之间稳定,Anderson等研究了双阴离子咪唑和双吡咯烷鎓基离子液体的热稳定性。极性强的室温离子液体气相色谱固定相(比如商品名为SLB-IL 111)的热稳定性虽然比不上二甲基硅氧烷的好,但是要比强极性固定相(氰丙基聚硅氧烷)的热稳定性要好,可是它的极性要比后者高,因而在分离脂肪酸甲酯的能力要大大优于后者。从图1可以看出商品离子液体柱SLB-IL82的热稳定性大大优于一些常用的极性固定相。图1 几种离子液体色谱柱和常规固定相色谱柱热稳定性的比较(e) 极性高  固定相的极性是极为重要的关键指标,目前表示固定相极性的有Mcrynolds常数,和Abrham溶剂化参数,离子液体的极性也仍然使用这两种方法表示,McReynolds常数是于120℃下以10种典型化合物测定所研究固定相的保留指数差(△I) ,用五种典型化合物(苯、正丁醇、2-戊酮、硝基丙烷和吡啶)的保留指数差(△I)之和来表示固定液的极性。Abraham表征固定相的方法是使用多种具有特殊作用力的标样来表征固定相和溶质 n-电子对及&pi -电子对作用能力、与溶质的静电和诱导作用能力、与溶质的氢键碱性作用能力、与溶质的氢键酸性作用能力、与溶质的色散作用能力。表 2 是几种商品离子液体固定相的极性,从表中数据看出,室温离子液体的极性要比极性最强的TCEP(1,2,3-三(2-氰乙氧基)丙烷)还要高,这样在分离脂肪酸甲酯和石油样品分析中就有特殊的用途。表 2 几种商品离子液体固定相的极性 商品色谱柱组成McRynolds 极性(P)相对极性数(p.N.)*SLB-IL 111 1,5-二(2,3-二甲基咪唑)戊烷二(三氟甲基磺酰基)亚胺5150116SLB-IL 1001,9-二(3-乙烯基咪唑)壬烷二(三氟甲磺酰基)亚胺4437100TCEP1,2,3-三(2-氰乙氧基)丙烷429494SLB-IL 821,12-二(2,3-二甲基咪唑)十二烷二(三氟甲基磺酰基)亚胺363882SLB-IL 76三(三丙基鏻六氨基)三甲氨(三氟甲基磺酰基)亚胺337976SLB-IL 69未知 312670SLB-IL 65未知 283464SLB-IL 611,12-二(三丙基鏻)十二烷-(三氟甲基磺酰基)亚胺-三氟甲基磺酸盐270561SLB-IL 601,12-二(三丙基鏻)十二烷二(三氟甲基磺酰基)亚胺(柱表面去活)266660SLB-IL 591,12-二(三丙基鏻)十二烷二(三氟甲基磺酰基)亚胺262459SupelcoWax100%聚乙二醇232452SPB-5MS5%二苯基/95%二甲基)硅氧烷2516Equity-1100%聚二甲基硅氧烷1303*相对极性数=(Px x 100)/ PSLB-IL 100= McRynolds 极性乘以100再除以SLB-IL 100的 McRynolds 极性(McRynolds 极性指标是上世纪60年代中期研究建立的一种气相色谱固定相极性量度指标,近半个世纪一直在使用,W O McReynolds.J Chromatogr Sci,1970,8:685-691)几种离子液体色谱柱的结构和性能见表3表3:几种离子液体色谱柱的结构和性能3、几种商品离子液体色谱柱在脂肪酸甲酯分离中应用举例,见表4表4 离子液体色谱柱在脂肪酸甲酯分离中应用1SLB-IL111奶油中的脂肪酸使用200m 长的SLB-IL111色谱柱可以很好地分离奶油中的脂肪酸,包括顺反和位置异构体12SLB-IL 82 和 SLB-IL 100 水藻中的脂肪酸这两种商品离子液体柱用于分离水藻中的脂肪酸,具有很好的选择性和低流失,可以得到详细的脂肪酸分布,这是一种分析各种脂肪酸的色谱柱。一维:聚二甲基硅氧烷二维:SLB-IL 82 和 SLB-IL 10023SLB-IL100鱼的类脂中反式20碳烯酸顺反异构体的分析用60m长色谱柱可把C20:13和C20:11异构体得到基线分离,分离因子1.02,分离度1,5734SLB-IL111分离16碳烯酸顺反异构体和其他不饱和脂肪酸如果不使用SLB-IL111柱就不可能发现岩芹酸(顺式-6-十八碳烯酸),可以把cis-8 18:1和cis-6 18:1基线分离。证明岩芹酸在人的头发、指甲和皮肤中是内源性脂肪酸。45SLB-IL111分离脂肪酸顺反异构体SLB-IL111 可以很好地分离cis-,trans-18:1和 cis/trans 共轭异构体脂肪酸56 SLB-IL100牛奶和牛油中的脂肪酸顺反异构体使用全二维GC,把离子液体柱用作第一维色谱柱一维:SLB-IL100二维:SGE BPX50 (50% 苯基聚亚芳基硅氧烷67SLB-IL 100(快速柱)生物柴油中的脂肪酸甲酯(C1-C28)SLB-IL100是极性很高的固定相,可以排除样品中的饱和烴的干扰,减少了样品处理难度,免去使用全二维GC。78SLB-IL100分离C18:1, C18:2, 和 C18:3顺反异构体SLB-IL100是极性很高的固定相,可以很好地分离不饱和脂肪酸顺反异构体,优于二丙氰聚硅氧烷色谱柱89SLB-IL111SLB-IL100SLB-IL82SLB-IL76SLB-IL61SLB-IL60SLB-IL59评价7种商品离子液体固定相分离37种脂肪酸甲酯的分离性能IL59, IL60, 和 IL61三种色谱柱性能近似,不能分离C18:1脂肪酸的顺/反异构体,所有的色谱柱度可以基线分离C18:2 顺/反, C18:3 n6/n3, 和 C20:3 n6/n3异构体,IL82柱以5℃/min程序升温,可以把实验的37种脂肪酸甲酯分离开910SLB-IL59SLB-IL60SLB-IL61SLB-IL76SLB-IL82 SLB-IL100 SLB-IL111用7种商品离子液体固定相分离脂肪酸甲酯的及和异构体除去IL60柱以外所有色谱柱上对饱和脂肪酸的洗脱温度,随它们的极性降低而增加,当固定相极性增加是它们的等价链长急剧增加。还研究了脂肪酸甲酯在这些色谱柱上Abraham 的保留能量线性关系1011SLB-IL111使用强极性离子液体色谱柱快速分离食用油中的反式脂肪酸使用强极性薄液膜细内径离子液体毛细管柱(75 m × 0.18 mm i d , 0.18 &mu m)快速分离食用油(例如奶油)中的反式脂肪酸1112SLB-IL111使用强极性离子液体色谱柱分析食用油中顺反式硬脂酸在120℃柱温下可以分离所有cis-C18:1位置异构体,把柱温提高到160℃可以分离反-6-C18:1 和 反-7-C18:1异构体12 表中文献1Delmonte P, Fardin-Kia A R, Kramer J K G,et al, Evaluation of highly polar ionic liquid gas chromatographic column for the determination of the fatty acids in milk fat [J].J. Chromatogr.A,2012, 1233:137-1462Gua, Q , David F., Lynen F. et al., Evaluation of ionic liquid stationary phases for one dimensional gas chromatography&ndash mass spectrometry and comprehensive two dimensional gas chromatographic analyses of fatty acids in marine biota[J]. J. Chromatogr.A, 2011, 1218:3056-30633Ando Y.Sasaki, GC separation of cis-eicosenoic acid positional isomers on an ionic liquid SLB-IL100 stationary phase[J]. J. Am. Chem. Oil Soc.,2011,88:743-7484Destaillats F.,Guitard M. Cruz-Hernandez C, Identification of _6-monounsaturated fatty acids in human hair and nail samples by gas-chromatography&ndash mass-spectrometry using ionic-liquid coated capillary column[J]. J.Chromatogr.A 2011,1218: 9384&ndash 93895Delmonte P, Fardin Kia A-R, Kramerb J.K.G.et al, Separation characteristics of fatty acid methyl esters using SLB-IL111, a new ionic liquid coated capillary gas chromatographic column[J]. J.Chromatogr.A, 2011,1218: 545&ndash 554 6Villegas C.Zhao, Y.Curtis J M, Two methods for the separation of monounsaturated octadecenoic acid isomers [J].J. Chromatogr. A, 1217 (2010) 775&ndash 7847Ragonesea C,Tranchidaa P. Q.,Sciarronea D.et al, Conventional and fast gas chromatography analysis of biodiesel blends using an ionic liquid stationary phase[J]. J. Chromatogr.A, 2009,1216:8992&ndash 89978Ragonese C, Tranchida P Q, Dugo P,et al,Evaluation of use of a dicationic liquid stationary phase in the fast and Cconventional gas chromatographic analysis of health-Hazardous C18 Cis/Trans fatty acids[J]. Anal. Chem., 2009, 81:5561&ndash 55689Dettmer K, Assessment of ionic liquid stationary phases for the GC analysisof fatty acid methyl esters,Anal Bioanal Chem ,2014, 406:4931&ndash 493910Characterisation of capillary ionic liquid columns for gaschromatography&ndash mass spectrometry analysis of fatty acid methylestersAnnie Zeng X, Chin S , Nolvachai Y,et al, Anal Chim Acta , 2013 803:166&ndash 17311Inagaki S,Numata M, Fast GC Analysis of Fatty Acid Methyl Esters Using a HighlyPolar Ionic Liquid Column and its Application for the Determination of Trans Fatty Acid Contents in Edible Oils,Chromatographia , 2015,78:291&ndash 29512Yoshinaga K,Asanuma M,Mizobe H et al,Characterization of cis- and trans-octadecenoic acid positional isomers in edible fat and oil using gas chromatography&ndash flame ionisation detector equipped with highly polar ionic liquid capillary column, Food Chemistry , 2014 160:39&ndash 45 有关离子液体固定相在分离脂肪酸时的一些选择性和分离特点在下一讲叙述。
  • 禾工实验室——食用油中酸价和过氧化值含量检测技术分享
    国标:《GB5009.229-2016食品安全国家标准 食品中酸价的测定》以及《GB 5009.227-2016食品安全 国家标准 食品中过氧化值的测定》。在这两项标准中明确指出对电位滴定仪的要求是:具有PH校正功能 和动态滴定模式,信号精度0.1mV且能实时显示滴定曲线和一阶微分曲线,具备20mL计量管、防扩散滴 定头以及对应的电极。 根据标准要求上海禾工实验室工程师采用禾工CT-1Plus型多功能电位滴定仪并按照国标的方法进行样品分析测试。 检测方法:酸价:首先标定 NaOH 滴定剂的浓度,做好空白实验,然后精密称取 5~10g 混匀的食用油至滴定杯中, 准确加入 50mL 乙醚—异丙醇混合液,再加入 1 颗干净的聚四氟乙烯磁力搅拌子,将滴定杯放在 CT-1Plus 电 位滴定仪上,以适当的转速搅拌至少 20s,使试样完全溶解并形成样品溶液。输入样品重量,用标定好的氢氧 化钠滴定剂滴定至终点,仪器根据编辑好的公式自动计算酸价结果。 过氧化值:称取 5.00~10g 混匀(必要时过滤)的试样,置于滴定杯中,加50mL 异辛烷—冰乙酸混合液, 轻轻振摇使试样完全溶解。准确加入 0.5mL 饱和碘化钾溶液,加入 1 颗干净的聚四氟乙烯磁力搅拌子,将滴 定杯放在 CT-1Plus 电位滴定仪上,以适当的转速搅拌 60s,用硫代硫酸钠标准滴定溶液(0.01mol/L)在自动电 位滴定仪上滴定至终点。同时做空白实验。HOGON电位滴定样品测定记录样品来源:食用油环境湿度:55%环境温度:24 ℃ NaoH标定滴定记录:样品名称邻苯二甲酸氢钾标准物质测定次序进样量终点体积含量结果10.5191 g27.0211 mL0.0941 mol/L20.5436 g28.2266 mL0.0943 mol/L 样品测定记录:样品名称油样酸价测定次序进样量终点体积含量结果15.025 g3.852 mL3.9637 mg/g---滴定曲线--- 硫代硫酸钠标定记录:样品名称重铬酸钾标准物质测定次序进样量终点体积含量结果11.056 g40.409 mL0.533 mol/L
  • 脂肪酸气相色谱分析的故事
    编者注:傅若农教授生于1930年,1953年毕业于北京大学化学系,而后一直在北京理工大学(原北京工业学院)从事教学与科研工作。1958年,傅若农教授开始带领学生初步进入吸附柱色谱和气相色谱的探索 1966到1976年文化大革命的后期,傅若农教授在干校劳动的间隙,系统地阅读并翻译了两本气相色谱启蒙书,从此进入其后半生一直从事的事业——色谱研究。傅若农教授是我国老一辈色谱研究专家,见证了我国气相色谱研究的发展,为我国培养了众多色谱研究人才。 第一讲:傅若农讲述气相色谱技术发展历史及趋势第二讲:傅若农:从三家公司GC产品更迭看气相技术发展第三讲:傅若农:从国产气相产品看国内气相发展脉络及现状第四讲:傅若农:气相色谱固定液的前世今生第五讲:傅若农:气-固色谱的魅力第六讲:傅若农:PLOT气相色谱柱的诱惑力第七讲:傅若农:酒驾判官——顶空气相色谱的前世今生第八讲:傅若农:一扫而光——吹扫捕集-气相色谱的发展第九讲:傅若农:凌空一瞥洞察一切——神通广大的固相微萃取(SPME)第十讲:傅若农:悬“珠”济世——单液滴微萃取(SDME)的妙用第十一讲:傅若农:扭转乾坤——神奇的反应顶空气相色谱分析第十二讲:擒魔序曲——脂质组学研究中的样品处理第十三讲:离子液体柱——脂质组学中分离脂肪酸的气相色谱柱 上一讲我们主要介绍了在脂质组学中对脂肪酸的分析所用的离子液体毛细管色谱柱,但是用气相色谱分析脂肪酸源远流长,有许多故事,了解一些过去的故事对现在的发展理解有好处,温故才可以知新。  先讲一下脂质组学中常常要研究的血浆分析,其中一个重要的项目是分析其中的脂肪酸,下面一个例子,概要介绍了血浆中脂肪酸的主要成分:  “虽然游离脂肪酸只占血浆中脂肪酸的一小部分,但它代表一类高度代谢活性的脂质,脂肪组织是血浆游离脂肪酸的主要来源,其分布与食物的脂肪酸组成密切相关。在正常情况下从脂肪组织中释放脂肪酸与组织对能量的需要紧密相连。但是当代谢失调时,这种平衡被打乱,导致脂解增加,会释放出多于组织所需要脂肪酸的量。健康人经过一夜禁食后血浆中含有214 nmol/ml游离脂肪酸,油酸(18:1)的含量最高,其次是棕榈酸(16:0)和硬脂酸(18:0),这三种酸占全部游离脂肪酸的78%。亚油酸(18:2)和花生四酸(20:4) 是主要的多不饱和脂肪酸(约占8%)。但是有营养作用的α-亚麻酸(18:3ω-3),二十碳五烯酸(20:5, EPA)和二十二碳六烯酸(22:6, DHA)也占有一定比例,约为全部游离脂肪酸的1%。”1 脂肪酸气相色谱分析的历史故事  气相色谱被认为是分析复杂混合物中脂肪酸的可靠方法,这一方法可追述到上世纪50年代,气相色谱的出现于脂肪酸的分析有密切的关系,1952年气相色谱发明人A. T. James 和 A. J. P. Martin就用最为原始的自制气相色谱仪分析小分子脂肪酸(Biochem J,1952,50:679),他们首次阐明气-液分配气相色谱的原理,设计了自动滴定检测脂肪酸的气相色谱仪。实验过程中使用的色谱柱为玻璃柱,其内径为4mm,长度为5英尺,固定相是把DC 550硅油涂渍在硅藻土Celite 545上。分离小分子脂肪酸的色谱如图1所示。 图1 用自动滴定计气相色谱仪分析小分子脂肪酸的色谱图  分离从乙酸到戊酸的色谱如图2所示:图 2 分离从乙酸到戊酸的色谱  此后分析脂肪酸的一个重大进步是把脂肪酸进行甲酯化,1956年James和Martin使用气体密度检测器,并把脂肪酸进行甲酯化,使用阿皮松类高温润滑脂作固定相,可以分离分子量大的脂肪酸。图3 是分离C5-C13直链和支链脂肪酸甲酯的色谱图。图 3 用高沸点润滑脂分离C5-C13直链和支链脂肪酸甲酯的色谱图色谱柱:在硅藻土载体上涂渍高沸点润滑脂;柱温:197℃;载气:氮气 14.1mL/min 色谱峰: (1) 空气, (2) n-戊酸甲酯,(3) n-己酸甲酯, (4) 4-甲基己酸甲酯,(5) 6-甲基庚酸甲酯, (6) n-辛酸甲酯, (7) 6-甲基辛酸甲酯, (8) n-壬酸甲酯,(9) 8-甲基壬酸酯, (10) n-癸酸酯, (11) 8-甲基癸酸酯, (12) 10-甲基十一酸酯 ,(13) n-十二酸酯, (14) 10-甲基十二酸酯2 脂肪酸气相色谱分析的发展  脂肪酸的气相色谱分析由于它的极性和挥发性不好而带来麻烦,所以首先要把它的极性羰基转化成易于挥发的非极性衍生物。有多种烷基化试剂可以进行羰基的衍生化,使用最多的是进行甲基化,特别是使用氢火焰离子化监测器(FID)气相色谱时,尤为方便普及。但是使用FID也有一些不足之处。绝对的定量要依靠内标物的信号强度,经常使用的内标物是十七酸(而不是使用化学和物理性质与所测定脂肪酸相近的同位素标记脂肪酸混合物作内标)。人类体内不能合成奇数碳链的脂肪酸(包括碳17酸),但是人们可以通过食物摄取它们,它们存在于血液的血浆中,增加内标物十七酸的量,从而扰乱定量分析。  进一步讲,FID不能提供分子质量或其他结构特征信息,以便区分不同的脂肪酸,所以色谱和FID只是解决把所有要研究的脂肪酸分子完全分离开,用质谱解决脂肪酸的结构信息。大家应该知道使用电子轰击电离脂肪酸分子很容易被打成碎片,通过这些碎片可以进行脂肪酸的结构分析,但是灵敏度受到限制。弱电离技术比如负化学电离(NCI)可以改善检测限。使用卤代衍生化试剂可以进一步提高检测灵敏度,这种试剂增加了电子亲和力,可改善NCI-MS的灵敏度。Kawahara 使用五氟基苄(PFB) 作衍生化试剂来衍生化有机羧酸,这样的含氟衍生物电子很容易被俘获。此后这一方法扩展到脂肪酸的衍生化为脂肪酸酯,与脂肪酸甲酯相比,它很容易被NCI-MS检测。所以使用五氟基苄进行衍生化有利于提高检测灵敏度。许多研究者使用PFB做衍生化试剂进行脂质组学中的脂肪酸分析,例如Quehenberger等就是用这一方法分析巨噬细胞中的各种脂肪酸(Prostaglandins, Leukotrienesand Essential Fatty Acids,2008,79:123–129)。下图4 是分析巨噬细胞中的各种脂肪酸的色谱图。图 4 巨噬细胞中的各种脂肪酸的色谱图图中色谱峰的脂肪酸如下:(1)12:0 (2)14:0 (3)15:0 (4)16:1 (5)16:0 (6)17:1 (7)17:0 (8) a18:3 (9) 18:4 (10) g18:3 (11)18:2 (12)18:1 (13)18:0 (14)20:4 (15)20:5 (16)11,14,17–20:3 (17)bishomo-20:3 (18)20:2 (19)5,8,11–20:3 (20)20:0 (21)22:6 (22)22:4 (23)22:5 (24)22:2 (25)22:3 (26)22:1 (27)22:0 (28) 23:0 (29)24:1 (30)24:0 3 国内外进行气相色谱分析脂肪酸的一些例证   为了进一步了解进行气相色谱分析脂肪酸的具体情况,下面表1列出近50例分析各种样品中脂肪酸的色谱柱和分离对象。表2列出国外文献中分析人体组织中脂肪酸的例证。表 1 国内气相色谱分析脂肪酸的色谱柱和分析对象 表 2 国外文献中有关分析人体组织中脂肪酸的衍生化方法和所用色谱柱4 脂肪酸气相色谱分析所用色谱柱  从已发表的文献看分析整体脂肪酸需用非极性的聚硅氧烷毛细管色谱柱,如聚二甲基硅氧烷,分离多不饱和脂肪酸需用极性强的色谱柱,如OV-275,OV-275(这是聚硅氧烷固定相中极性最强的色谱柱)和CP-Sil 88(HP-88)。 据安捷伦公司一份研究报告(5989-3760 EN),他们对最重要的一些脂肪酸(甲酯)(见表3)进行研究,研究总结认为:聚乙二醇柱对不太复杂的样品可以得到很好的分离 而中等极性的氰丙基聚硅氧烷柱(DB 23)对复杂的 FAMEs 样品可以得到很好的分离,对一些顺反异构体也可以得到分离 要使顺反异构体分离的更好,就要使用更高极性的 HP-88 氰丙基色谱柱。表3 重要的一些脂肪酸  三种主要色谱柱分离脂肪酸的特点如下:  使用DB-Wax柱,DB-23 柱和HP-88 柱上分离37种脂肪酸混合物的色谱见图5-图7.图 5 FAMEs在30 m 0.25 mm ID, 0.25 μm DB-Wax 色谱柱上的色谱图 6 FAMEs混合物在 60 m 0.25 mm ID, 0.15 μm DB-23 柱上的色谱图 7 FAMEs 混合物 在 100 m 0.25 mm ID, 0.2 μm HP-88 柱上 的色谱  其中HP-88 柱的极性最强,是含88%氰丙基甲基聚硅氧烷,其结构如下图8:图8 HP-88 的分子结构  HP-88 对一些异构体的分离能力由于DB-23如下图9所示  图 8 HP-88和HP-23分离能力的差别  (此图来自Walter Jennings博士2008年在北京大学作报告时的ppt文稿)  吴惠勤等使用P-88毛细管色谱柱分离了39种脂肪酸得到的质谱基峰离子和特征离子如表4中的数据。表4 39种脂肪酸在HP-88毛细管色谱柱上出峰次序( 吴惠勤等,分析化学,2007,35(7):998-1003)
  • 五大问题困扰我国碳酸二甲酯行业
    到2010年10月底,全国碳酸二甲酯(DMC)的实际产能已经达到23.6万吨,明年有望达到49万吨。中国石油和化工杂志社副总编辑杨扬在第七届全国有机碳酸酯技术开发与应用研讨会上,披露上述数据。作为一个持续关注、跟踪报道碳酸二甲酯行业将近10年的记者,杨扬对整个行业有着独到的见解和认识。  据杨扬介绍,前些年,由于DMC生产能力较小,产品供不应求。一些企业因此上马几套数万吨级酯交换法碳酸二甲酯装置。这些装置投产后,对国际、国内市场产生较大影响,供应量充足,从金融危机以来价格基本稳定在5000—6000元/吨左右。预计以后的价格只会越来越低。  经过长时间的实地调研、考察与采访,杨扬认为目前我国DMC行业存在着如下制约行业发展的全局性、战略性的问题。缺乏统一的行业管理 缺乏行业性的合作、协作与沟通的机制和渠道 缺乏行业的领军企业和企业家,没有形成一致对外的合力 缺乏DMC新兴应用领域的相关标准和知识产权保护制度 缺乏共同开拓与培养市场的意识与机制。同时全行业长期受制于环氧丙烷等上游原料供应,没有市场和原料供应的话语权。  为推进中国DMC产业健康发展,杨扬建议上项目时选择适合本企业的工艺路线,就近主要原料或产品销售市场选择厂址。建议重新组建全国DMC行业协作组,完善运行机制与管理办法。通过各种渠道向政府主管部门呼吁和反映行业存在的问题,给予政策、税收、科研专项等等方面的支持。  本次研讨会11月4日在北京召开,由中国化工报社、中国碳酸二甲酯行业协作组联合主办。
  • 看PacBio等3家仪器公司的相似轨迹:研发增投、股价下跌、重视新产品
    尽管经历了一年的销售增长不均衡、股市下跌和通胀压力,但以其最大控股上市公司的业绩衡量,实验室工具行业在2022年仍保持着增加研发支出的记录。根据有关调研数据,全球实验室工具行业价值超过800亿美元,不包括诊断检测,而是由10类技术组成:原子光谱、分子光谱,色谱、实验室自动化、生命科学技术、实验室常用设备、样品制备技术、质谱、材料测试设备和表面科学技术。实验室工具公司的研发支出增加是必然的,因为客户期望技术进步来解决速度、灵敏度、准确性和成本效益等因素,以及获得突破性创新。DNA测序、冷冻扫描电子显微镜和高分辨率质谱等新技术促进了科学和商业的进步,实验室工具的进步是癌症研究、食品安全和电池开发取得重大进展的幕后推手。新产品的推出对成长型公司来说尤其重要,这一点从去年三家仪器公司研发支出的快速增长中可见一斑。2022年,10x Genomics、PacBio和908 Devices的研发支出增长轻松超过了收入增长。并且,2022年几家成长型公司研发支出的增加正值其因股价下跌和缺乏盈利能力而普遍面临压力之际,这也表明了实验室工具行业对创新的依赖,以及每家公司对推出主要新产品的优先考虑。10x Genomics研发支出增长26% 推出Xenium10x Genomics以其Chromium单细胞基因表达分析解决方案而闻名,去年的销售额为5.164亿美元,增长了5%,但该公司的研发支出增长速度更快,增长26%,达到2.657亿美元。在该公司2022年发布的产品中,新的Xenium原位平台在年底首次商业发货,该平台用于组织中RNA靶标的亚细胞定位。Xenium是该公司继Chromium和Visium空间基因表达和蛋白基因组学空间分析仪之后的第三个主要产品平台。然而,10x Genomics不得不在研发与其他投资之间取得平衡。2022年,运营亏损增加了一倍多,从5230万美元增至1.679亿美元。该公司的股价也下跌了75.5%,而纳斯达克的总跌幅为33.1%。为了应对市场环境和组织调整,该公司在8月份宣布降低成本,包括裁员8%。Xenium预计将在今年推动未来公司产品销售方面发挥作用,该公司已经宣布了未来几年的产品路线图。10x Genomics首席执行官Serge Saxonov博士表示,Xenium受到了好评。他在5月份告诉股东,“总的来说,我们对早期的进展和势头感到满意。Xenium未来有巨大的潜力,我们正在全力以赴。”该公司当时更新了年度收入指导,预测2023年的销售额将在这三个平台的推动下增长14%-18%。第一季度,10x Genomics的研发费用仅增长4.7%,达到6710万美元。该公司今年的目标是现金流为正。PacBio研发支出增长71% 推出Revio和OnsoDNA测序仪制造商PacBio 2022年的研发支出增长速度甚至超过了10x Genomics,增长了71%,达到1.93亿美元,而公司收入下降了2%,为1.283亿美元。研发的增加可能是由于该公司去年秋天宣布推出两款主要产品:Revio和Onso。Revio是该公司主要的长读测序业务的下一代系统;Onso平台是其首个短读测序系统。Revio于三月份开始发货,Onso也计划于今年开始发货。预计新产品的推出将提升公司的财务业绩。2022年,PacBio的运营亏损从2.104亿美元增加到3.072亿美元,股价暴跌60%。今年1月,该公司完成了普通股的公开发行,净收益约为1.892亿美元,这或许是新产品潜在影响的一个迹象。5月,PacBio宣布在第一季度发货32个Revio系统(Revio的标价为77.9万美元)。5月,PacBio总裁兼首席执行官Christian Henry认识到该系统对公司的影响,表示:“第一季度订购的Revio系统中有三分之一来自全新客户,2023年剩余时间我们销售渠道中超过三分之一的系统由新客户组成。”该公司预测,2023年度公司总销售额将增长33%-44%。第一季度研发支出下降7.5%,至4890万美元。该公司计划在2026年实现现金流正增长。908 Devices研发支出增长了34.1% 推出MAVEN908 Devices是一家质谱和毛细管电泳技术公司,去年的研发支出增长了34.1%,达到1750万美元,收入增长了11.0%,达到4690万美元。今年早些时候,该公司推出了MAVEN,这是其首款用于生物过程监测的在线设备,也是继2019年推出在线REBEL桌面系统后,专门用于生物过程应用的第二款设备。MAVEN测量生物反应器中细胞培养物中的葡萄糖和乳酸。该公司的大部分收入来自其用于非生命科学应用的手持MS设备,如爆炸物探测仪。与PacBio和10x Genomics一样,908 Devices加大研发投资的同时,其股价也在下跌,运营亏损也在增加。2022年,公司股价下跌70.5%,营业亏损从2210万美元增至3540万美元。5月,908 Devices报告称,其在第一季度交付了六个MAVEN系统,尽管该公司指出,客户的生物工艺支出仍面临压力。当时,908 Devices首席执行官Kevin J.Knopp博士评论道:“MAVEN是我们REBEL设备的补充,也是REBEL在线的先驱。”第一季度研发支出增长38.2%,达到540万美元。同期,该公司预测全年销售额将增长2%至11%,这得益于该公司用于取证应用的手持MS产品线。今年3月,该公司宣布计划今年运营费用增长不到10%。10x Genomics、PacBio和908 Devices在2022年优先投资研发,扩大了其产品组合,并将差异化系统引入新的细分市场。新产品的销售额将以稳定的进展和关键客户的接受程度来衡量,从而为公司的持久增长定位。这三家公司的第二季度财务业绩即将发布,看一下前期的研发投入,是否在这个财务周期内有所反馈。
  • 欧盟通过禁用富马酸二甲酯草案
    1月29日,欧盟成员国通过了“保证含有富马酸二甲酯的消费品不会投放欧洲市场”的决议草案。目前,该决议仍处于欧洲议会审查阶段,预计将在5月1日前正式生效。  草案明确规定,如果消费品或其部件中富马酸二甲酯的含量超过了0.1毫克/千克,或者产品本身已声明了其富马酸二甲酯的含量,就将被认定为“含有富马酸二甲酯”的产品,其将禁止进入欧盟市场流通和销售。  富马酸二甲酯(简称DMF)通常被用作防腐防霉剂产品,常用于皮革、鞋类、纺织品等的生产、储存、运输中。但从去年10月起,欧盟方面就陆续通报了多起因消费者接触含有富马酸二甲酯的鞋、皮沙发等而产生皮肤过敏、急性湿疹及灼伤的案例,使其受到了广泛关注。欧盟也在此后进行了研究和分析,并最终出台了上述草案及限量标准。  在欧盟草案通过之前,法国、比利时已采取了具体措施,禁止进口和销售含富马酸二甲酯的鞋和座椅。西班牙也出台规定,禁止任何接触到皮肤的产品含有富马酸二甲酯。而且,自去年年底开始,已有多批中国产品因富马酸二甲酯含量超标被法国等国扣留。  富马酸二甲酯在国内产品中的应用十分广泛,相当多的鞋类、皮革家具及家纺等产品都会在包装中放入含该成分的防潮袋,用于防潮防霉。而在我省,温州、海宁等地的皮革类产品是传统的外贸出口产品,仅温州一地,其2008年鞋类产品出口就达到了2.76亿美元。纺织品更是浙江的出口优势产品,每年约有400亿的出口量。上述出口产品占了欧盟市场相当大的份额。更让人担心的是,据资料显示,由于富马酸二甲酯具有毒性低、抑菌能力强、抑菌种类多、不受环境影响等特点,还被广泛用于食品、粮食、饲料、化妆品、烟草等防腐防霉及保鲜,因此,欧盟此次对所有含有富马酸二甲酯的消费品颁布禁令,势必将给我省相关行业带来很大的不利影响。  面对该禁令的巨大挑战,检验检疫部门提醒相关出口企业应及时进行调整,换用更为环保和健康的防潮防霉产品,以符合草案的要求,并积极与国外客户进行沟通,减少草案对产品出口的影响。近期,检验检疫部门也将对辖区内的相关企业加强检验和监管,避免不合格产品运至欧盟后,造成更大的经济和声誉上的损失。
  • 甲氨蝶呤、革兰阳性菌鉴定等14项试剂注册审查指导原则发布
    近日, 国家药监局器审中心发布了血液融化设备、甲氨蝶呤检测试剂、革兰阳性菌鉴定试剂等14项医疗器械产品注册审查指导原则。在这些原则中“甲氨蝶呤检测试剂注册审查指导原则”和“革兰阳性菌鉴定试剂注册审查指导原则”适用于质谱检测法。甲氨蝶呤检测试剂注册审查指导原则适用范围:本指导原则适用于以化学发光法、液相色谱-串联质谱法、均相酶免疫等方法对人体血清/血浆中甲氨蝶呤进行定量检测的体外诊断试剂。其他方法学的甲氨蝶呤检测试剂注册可参照本指导原则,但应根据产品的具体特性确定其中内容是否适用。革兰阳性菌鉴定试剂注册审查指导原则适用范围:本指导原则适用于利用生化鉴定原理,鉴定临床医学相关的革兰阳性需氧型、厌氧型或兼性厌氧细菌的试剂(革兰阳性菌及其鉴定简介见附件);检测样本为从血液、体液、粪便、泌尿生殖道分泌物等临床样本中分离的纯菌。《血液融化设备注册审查指导原则》等14项医疗器械产品注册审查指导原则.ra
  • 海关总署发布《工业脂肪酸及其盐和酯中脂肪酸组成的测定》等8项海关行业标准
    根据《中华人民共和国海关行业标准管理办法(试行)》(海关总署令第140号公布,根据海关总署令第235号修改),海关总署发布《工业脂肪酸及其盐和酯中脂肪酸组成的测定》等8项海关行业标准(标准目录见附件)。本批标准自2024年1月1日起实施。以上发布标准的文本可通过中国技术性贸易措施网站(http://www.tbtsps.cn)标准栏目查阅。特此公告。附件:海关行业标准编号名称表.doc海关总署2023年12月11日公告正文下载链接:海关总署关于发布《工业脂肪酸及其盐和酯中脂肪酸组成的测定》等8项海关行业标准的公告.doc海关总署关于发布《工业脂肪酸及其盐和酯中脂肪酸组成的测定》等8项海关行业标准的公告.pdf相关标准如下:海关标准编号海关标准名称批准日期实施日期HS/T 74-2023《工业脂肪酸及其盐和酯的测定》2023-12-112024-01-01HS/T 76-2023《碳酸钙粉体属性的验证方法》2023-12-112024-01-01HS/T 77-2023《钙基钠基膨润土的鉴别》2023-12-112024-01-01HS/T 81-2023《脱皮花生检测方法》2023-12-112024-01-01
  • 欧盟将富马酸二甲酯限制令纳入REACH法规
    近日,欧盟将一项有关富马酸二甲酯(Dimethyl Fumarate,DMFu)的法令合并到了REACH法规附件十七中。新法规已于2012年6月4日生效。 2009年3月,欧盟采纳2009/251/EC指令,采取临时措施限制消费品中的DMFu,该措施的有效期被3项进一步的指令延长,最新的2012/48/EU指令将于REACH生效时适用或于2013年3月15日生效,以时间早者为准。 2012年5月16日,欧盟官方公报(OJEU)公布了(EU) 412/2012法规。根据新法规,DMFu临时限制法规将被整合成永久性限制令列入REACH法规附件十七中。新法规已于2012年6月4日生效(公布于OJEU的20天后)。新法规的重点如表格一所示: 物质引证范围要求注意事项富马酸二甲酯(DMFu)(EU) 412/2012法规物品或零部件≤ 0.1 毫克/千克目前受2012/48/EU指令规管,直至2012年6月4日。根据REACH法规附件十七第61条整合为永久性限制令。
  • 欧盟根据REACH指令起草法规限制富马酸二甲酯
    欧盟委员会近日公布一项法规草案,限制在消费品中使用富马酸二甲酯(DMF)。法规将在草案公布于欧盟《官方公报》的二十天后生效。该限制法规也将被收录进REACH法规附件十七条中。  富马酸二甲酯一直作为防腐剂在欧盟制造业中使用,直至98/8/EC指令颁布。但是该指令并未限制经DMF处理后的商品进口至欧盟。因此,欧盟采取紧急措施,决定采纳2009/251/EC指令以确保含有DMF的商品不会进入或在欧盟范围内生产。  作为临时措施,2009/251/EC指令被扩展为2010/153/EU指令和2011/135/EU指令,在2012年3月15日之前有效。此次,若DMF被添加至REACH法规附件十七中,临时限制将成为永久性限制措施。
  • 如何使用EDGE从需要进行酸水解的食品样品中提取脂肪
    简介食品制造商需要提取脂肪。 通常,必须使用酸对食品样品进行预水解,以便在提取过程中回收其总脂肪。 例如,在低于正常脂肪提取温度的情况下,发生化学变化的食物(如鸡蛋)需要此步骤。使用这个操作程序从需要预水解的食 品中,用酸水解的方式提取脂肪,对于用户而言,在他们的实验室中这个步骤是必须的。 样品类型 含有结合脂肪的食物或用户想要水解的任何食物。 但是请不要使用这种方法从肉类中提取脂肪。 样品准备 1. 研磨或均质食品样品。 注意:食物含水多吗?研磨前,请在 100 °C 的烘箱中预干燥样品 1 小时。 2.称取 3 g 或更少的食物样品放入玻璃烧杯中。记录重量。 注意:对于坚果酱等脂肪较多的食物,请使用较小的样本量(2 克或更少)。 3. 向样品中加入 45 mL 沸水。然后,向样品中添加 55 mL 的 8 M HCl。 4. 用玻璃搅拌棒搅拌混合物,用表面皿盖住混合物,并使用加热板或加热块使样品沸腾 1 小时。混合物会变 成黑色的变体。 5. 将混合物从火上移开,让它摸起来冷却。 6. 使用 Whatman 1 过滤器组装过滤装置。 注意:过滤装置可以是放置在带有真空的过滤瓶中的布氏漏斗中的过滤器,也可以是放置在带有烧瓶下方的 漏斗中的过滤器,允许样品通过重力滴入。 7. 将样品转移到过滤组件中,让过滤器收集黑色水解产物。用 100 mL 水冲洗原始样品烧杯,以转移可能留 在烧杯中的任何水解产物 8. 从过滤装置中取出过滤器。在 100 °C 下烘箱干燥过滤器 1 小时。 9. 通过将 G0 Q-Disc 插入 Q-Cup 的底部,然后在顶部放置 Q-Support 来准备 Q-Cup。 注意:EDGE方法编程时请选择G0作为EDGE方法中的Q-Disc 10. 将干燥的过滤器插入 Q-Cup 的顶部。 注意:过滤器可能会被撕裂或穿孔,而不会降低脂肪回收率。如果使用的过滤器很大,可以将它们撕开以 更好地安装在 Q-Cup 内。 11. 在折叠过滤器的顶部放置一个 Q-Screen,然后使用 Q-Screen 工具将过滤器压缩到 Q-Cup 中。 12. 将 Q-Cup 放在 EDGE 架上。将预先称重的小瓶与架子上记录的重量放在一起。 EDGE萃取 13. 通过用石油醚或所需溶剂灌注溶剂管线并在下面的 EDGE 方法中编程来准备 EDGE。 14. 使用下面的 EDGE 方法提取样品。 注意:此方法需要两个 40 mL 或 60 mL 小瓶。萃取的后续工作15. 从架子上取下萃取瓶。 注意:如果样品的脂肪含量较高,则所得提取物可能呈黄色。 16. 将样品瓶置于 60 °C 的蒸发器中,让所有溶剂蒸发。 注意:脂肪将作为油性粘稠层保留在小瓶底部。 17. 将样品瓶放入 100 °C 的烘箱中 1 小时,以去除任何残留的水分或溶剂。 18. 让小瓶冷却并称重。 其中小瓶之后是蒸发后小瓶的重量,小瓶之前是提取前小瓶的重量。方法开发技巧 以下方法是适用于大多数样品类型的保守方法。请注意,可能有针对特定样品的更优化方法。请联系 Molecular Support以获取更多信息。 文献中有许多可用的酸水解方法。任何方法都可以,只要将黑色水解产物过滤,用水彻底冲洗,并用可干燥 和提取的过滤器捕获即可。  其他提取溶剂,如乙醚和己烷,可用于提取脂肪。  如果此方法的回收率低于预期,则将每个循环的保持时间增加 1 分钟。此外,如果可能,请考虑增加总提 取量或减少样本量。
  • 卫计委发布243项食品安全国家标准
    p style="text-align: center "strong关于发布《食品安全国家标准 食品添加剂 磷酸氢钙》(GB 1886.3-2016)等243项食品安全国家标准和2项标准修改单的公告/strong/pp style="text-align: center "2016年 第11号/pp  根据《中华人民共和国食品安全法》和《食品安全国家标准管理办法》规定,经食品安全国家标准审评委员会审查通过,现发布《食品安全国家标准食品添加剂 磷酸氢钙》(GB 1886.3-2016)等243项食品安全国家标准和2项标准修改单。其编号和名称如下:/pp  GB 1886.3-2016 食品安全国家标准 食品添加剂 磷酸氢钙/pp  GB 1886.6-2016 食品安全国家标准 食品添加剂 硫酸钙/pp  GB 1886.9-2016 食品安全国家标准 食品添加剂 盐酸/pp  GB 1886.11-2016 食品安全国家标准 食品添加剂 亚硝酸钠/pp  GB 1886.20-2016 食品安全国家标准 食品添加剂 氢氧化钠/pp  GB 1886.21-2016 食品安全国家标准 食品添加剂 乳酸钙/pp  GB 1886.22-2016 食品安全国家标准 食品添加剂 柠檬油/pp  GB 1886.25-2016 食品安全国家标准 食品添加剂 柠檬酸钠/pp  GB 1886.26-2016 食品安全国家标准 食品添加剂 石蜡/pp  GB 1886.28-2016 食品安全国家标准 食品添加剂 D-异抗坏血酸钠/pp  GB 1886.44-2016 食品安全国家标准 食品添加剂 抗坏血酸钠/pp  GB 1886.45-2016 食品安全国家标准 食品添加剂 氯化钙/pp  GB 1886.47-2016 食品安全国家标准 食品添加剂 天门冬酰苯丙氨酸甲酯(又名阿斯巴甜)/pp  GB 1886.49-2016 食品安全国家标准 食品添加剂 D-异抗坏血酸/pp  GB 1886.57-2016 食品安全国家标准 食品添加剂 单辛酸甘油酯/pp  GB 1886.69-2016 食品安全国家标准 食品添加剂 天门冬酰苯丙氨酸甲酯乙酰磺胺酸/pp  GB 1886.72-2016 食品安全国家标准 食品添加剂 聚氧乙烯聚氧丙烯胺醚/pp  GB 1886.75-2016 食品安全国家标准 食品添加剂 L-半胱氨酸盐酸盐/pp  GB 1886.77-2016 食品安全国家标准 食品添加剂 罗汉果甜苷/pp  GB 1886.78-2016 食品安全国家标准 食品添加剂 番茄红素(合成)/pp  GB 1886.83-2016 食品安全国家标准 食品添加剂 铵磷脂/pp  GB 1886.85-2016 食品安全国家标准 食品添加剂 冰乙酸(低压羰基化法)/pp  GB 1886.91-2016 食品安全国家标准 食品添加剂 硬脂酸镁/pp  GB 1886.92-2016 食品安全国家标准 食品添加剂 硬脂酰乳酸钠/pp  GB 1886.94-2016 食品安全国家标准 食品添加剂 亚硝酸钾/pp  GB 1886.96-2016 食品安全国家标准 食品添加剂 松香季戊四醇酯/pp  GB 1886.98-2016 食品安全国家标准 食品添加剂 乳糖醇(又名4-β-D吡喃半乳糖-D-山梨醇)/pp  GB 1886.101-2016 食品安全国家标准 食品添加剂 硬脂酸(又名十八烷酸)/pp  GB 1886.102-2016 食品安全国家标准 食品添加剂 硬脂酸钙/pp  GB 1886.105-2016 食品安全国家标准 食品添加剂 辣椒橙/pp  GB 1886.127-2016 食品安全国家标准 食品添加剂 山楂核烟熏香味料I号、II号/pp  GB 1886.141-2016 食品安全国家标准 食品添加剂 d-核糖/pp  GB 1886.169-2016 食品安全国家标准 食品添加剂 卡拉胶/pp  GB 1886.170-2016 食品安全国家标准 食品添加剂 5′-鸟苷酸二钠/pp  GB 1886.171-2016 食品安全国家标准 食品添加剂 5′-呈味核苷酸二钠(又名呈味核苷酸二钠)/pp  GB 1886.172-2016 食品安全国家标准 食品添加剂 迷迭香提取物/pp  GB 1886.173-2016 食品安全国家标准 食品添加剂 乳酸/pp  GB 1886.174-2016 食品安全国家标准 食品添加剂 食品工业用酶制剂/pp  GB 1886.175-2016 食品安全国家标准 食品添加剂 亚麻籽胶(又名富兰克胶)/pp  GB 1886.176-2016 食品安全国家标准 食品添加剂 异构化乳糖液/pp  GB 1886.177-2016 食品安全国家标准 食品添加剂 D-甘露糖醇/pp  GB 1886.178-2016 食品安全国家标准 食品添加剂 聚甘油脂肪酸酯/pp  GB 1886.179-2016 食品安全国家标准 食品添加剂 硬脂酰乳酸钙/pp  GB 1886.180-2016 食品安全国家标准 食品添加剂 β-环状糊精/pp  GB 1886.181-2016 食品安全国家标准 食品添加剂 红曲红/pp  GB 1886.182-2016 食品安全国家标准 食品添加剂 异麦芽酮糖/pp  GB 1886.183-2016 食品安全国家标准 食品添加剂 苯甲酸/pp  GB 1886.184-2016 食品安全国家标准 食品添加剂 苯甲酸钠/pp  GB 1886.185-2016 食品安全国家标准 食品添加剂 琥珀酸单甘油酯/pp  GB 1886.186-2016 食品安全国家标准 食品添加剂 山梨酸/pp  GB 1886.187-2016 食品安全国家标准 食品添加剂 山梨糖醇和山梨糖醇液/pp  GB 1886.188-2016 食品安全国家标准 食品添加剂 田菁胶/pp  GB 1886.189-2016 食品安全国家标准 食品添加剂 3-环己基丙酸烯丙酯/pp  GB 1886.190-2016 食品安全国家标准 食品添加剂 乙酸乙酯/pp  GB 1886.191-2016 食品安全国家标准 食品添加剂 柠檬醛/pp  GB 1886.192-2016 食品安全国家标准 食品添加剂 苯乙醇/pp  GB 1886.193-2016 食品安全国家标准 食品添加剂 丙酸乙酯/pp  GB 1886.194-2016 食品安全国家标准 食品添加剂 丁酸乙酯/pp  GB 1886.195-2016 食品安全国家标准 食品添加剂 丁酸异戊酯/pp  GB 1886.196-2016 食品安全国家标准 食品添加剂 己酸乙酯/pp  GB 1886.197-2016 食品安全国家标准 食品添加剂 乳酸乙酯/pp  GB 1886.198-2016 食品安全国家标准 食品添加剂 α-松油醇/pp  GB 1886.199-2016 食品安全国家标准 食品添加剂 天然薄荷脑/pp  GB 1886.200-2016 食品安全国家标准 食品添加剂 香叶油(又名玫瑰香叶油)/pp  GB 1886.201-2016 食品安全国家标准 食品添加剂 乙酸苄酯/pp  GB 1886.202-2016 食品安全国家标准 食品添加剂 乙酸异戊酯/pp  GB 1886.203-2016 食品安全国家标准 食品添加剂 异戊酸异戊酯/pp  GB 1886.204-2016 食品安全国家标准 食品添加剂 亚洲薄荷素油/pp  GB 1886.205-2016 食品安全国家标准 食品添加剂 d-香芹酮/pp  GB 1886.206-2016 食品安全国家标准 食品添加剂 l-香芹酮/pp  GB 1886.207-2016 食品安全国家标准 食品添加剂 中国肉桂油/pp  GB 1886.208-2016 食品安全国家标准 食品添加剂 乙基麦芽酚/pp  GB 1886.209-2016 食品安全国家标准 食品添加剂 正丁醇/pp  GB 1886.210-2016 食品安全国家标准 食品添加剂 丙酸/pp  GB 1886.211-2016 食品安全国家标准 食品添加剂 茶多酚(又名维多酚)/pp  GB 1886.212-2016 食品安全国家标准 食品添加剂 酪蛋白酸钠(又名酪朊酸钠)/pp  GB 1886.213-2016 食品安全国家标准 食品添加剂 二氧化硫/pp  GB 1886.214-2016 食品安全国家标准 食品添加剂 碳酸钙(包括轻质和重质碳酸钙)/pp  GB 1886.215-2016 食品安全国家标准 食品添加剂 白油(又名液体石蜡)/pp  GB 1886.216-2016 食品安全国家标准 食品添加剂 氧化镁(包括重质和轻质)/pp  GB 1886.217-2016 食品安全国家标准 食品添加剂 亮蓝/pp  GB 1886.218-2016 食品安全国家标准 食品添加剂 亮蓝铝色淀/pp  GB 1886.219-2016 食品安全国家标准 食品添加剂 苋菜红铝色淀/pp  GB 1886.220-2016 食品安全国家标准 食品添加剂 胭脂红/pp  GB 1886.221-2016 食品安全国家标准 食品添加剂 胭脂红铝色淀/pp  GB 1886.222-2016 食品安全国家标准 食品添加剂 诱惑红/pp  GB 1886.223-2016 食品安全国家标准 食品添加剂 诱惑红铝色淀/pp  GB 1886.224-2016 食品安全国家标准 食品添加剂 日落黄铝色淀/pp  GB 1886.225-2016 食品安全国家标准 食品添加剂 乙氧基喹/pp  GB 1886.226-2016 食品安全国家标准 食品添加剂 海藻酸丙二醇酯/pp  GB 1886.227-2016 食品安全国家标准 食品添加剂 吗啉脂肪酸盐果蜡/pp  GB 1886.228-2016 食品安全国家标准 食品添加剂 二氧化碳/pp  GB 1886.229-2016 食品安全国家标准 食品添加剂 硫酸铝钾(又名钾明矾)/pp  GB 1886.230-2016 食品安全国家标准 食品添加剂 抗坏血酸棕榈酸酯/pp  GB 1886.231-2016 食品安全国家标准 食品添加剂 乳酸链球菌素/pp  GB 1886.232-2016 食品安全国家标准 食品添加剂 羧甲基纤维素钠/pp  GB 1886.233-2016 食品安全国家标准 食品添加剂 维生素E/pp  GB 1886.234-2016 食品安全国家标准 食品添加剂 木糖醇/pp  GB 1886.235-2016 食品安全国家标准 食品添加剂 柠檬酸/pp  GB 1886.236-2016 食品安全国家标准 食品添加剂 丙二醇脂肪酸酯/pp  GB 1886.237-2016 食品安全国家标准 食品添加剂 植酸(又名肌醇六磷酸)/pp  GB 1886.238-2016 食品安全国家标准 食品添加剂 改性大豆磷脂/pp  GB 1886.239-2016 食品安全国家标准 食品添加剂 琼脂/pp  GB 1886.240-2016 食品安全国家标准 食品添加剂 甘草酸一钾/pp  GB 1886.241-2016 食品安全国家标准 食品添加剂 甘草酸三钾/pp  GB 1886.242-2016 食品安全国家标准 食品添加剂 甘草酸铵/pp  GB 1886.243-2016 食品安全国家标准 食品添加剂 海藻酸钠(又名褐藻酸钠)/pp  GB 1886.244-2016 食品安全国家标准 食品添加剂 紫甘薯色素/pp  GB 1886.245-2016 食品安全国家标准 食品添加剂 复配膨松剂/pp  GB 1886.246-2016 食品安全国家标准 食品添加剂 滑石粉/pp  GB 1886.247-2016 食品安全国家标准 食品添加剂 碳酸氢钾/pp  GB 1886.248-2016 食品安全国家标准 食品添加剂 稳定态二氧化氯/pp  GB 1886.249-2016 食品安全国家标准 食品添加剂 4-己基间苯二酚/pp  GB 1886.250-2016 食品安全国家标准 食品添加剂 植酸钠/pp  GB 1886.251-2016 食品安全国家标准 食品添加剂 氧化铁黑/pp  GB 1886.252-2016 食品安全国家标准 食品添加剂 氧化铁红/pp  GB 1886.253-2016 食品安全国家标准 食品添加剂 羟基硬脂精(又名氧化硬脂精)/pp  GB 1886.254-2016 食品安全国家标准 食品添加剂 刺梧桐胶/pp  GB 1886.255-2016 食品安全国家标准 食品添加剂 活性炭/pp  GB 1886.256-2016 食品安全国家标准 食品添加剂 甲基纤维素/pp  GB 1886.257-2016 食品安全国家标准 食品添加剂 溶菌酶/pp  GB 1886.258-2016 食品安全国家标准 食品添加剂 正己烷/pp  GB 1886.259-2016 食品安全国家标准 食品添加剂 蔗糖聚丙烯醚/pp  GB 1886.260-2016 食品安全国家标准 食品添加剂 橙皮素/pp  GB 1886.261-2016 食品安全国家标准 食品添加剂 根皮素/pp  GB 1886.262-2016 食品安全国家标准 食品添加剂 柚苷(柚皮甙提取物)/pp  GB 1886.263-2016 食品安全国家标准 食品添加剂 玫瑰净油/pp  GB 1886.264-2016 食品安全国家标准 食品添加剂 小花茉莉净油/pp  GB 1886.265-2016 食品安全国家标准 食品添加剂 桂花净油/pp  GB 1886.266-2016 食品安全国家标准 食品添加剂 红茶酊/pp  GB 1886.267-2016 食品安全国家标准 食品添加剂 绿茶酊/pp  GB 1886.268-2016 食品安全国家标准 食品添加剂 罗汉果酊/pp  GB 1886.269-2016 食品安全国家标准 食品添加剂 黄芥末提取物/pp  GB 1886.270-2016 食品安全国家标准 食品添加剂 茶树油(又名互叶白千层油)/pp  GB 1886.271-2016 食品安全国家标准 食品添加剂 香茅油/pp  GB 1886.272-2016 食品安全国家标准 食品添加剂 大蒜油/pp  GB 1886.273-2016 食品安全国家标准 食品添加剂 丁香花蕾油/pp  GB 1886.274-2016 食品安全国家标准 食品添加剂 杭白菊花油/pp  GB 1886.275-2016 食品安全国家标准 食品添加剂 白兰花油/pp  GB 1886.276-2016 食品安全国家标准 食品添加剂 白兰叶油/pp  GB 1886.277-2016 食品安全国家标准 食品添加剂 树兰花油/pp  GB 1886.278-2016 食品安全国家标准 食品添加剂 椒样薄荷油/pp  GB 1886.279-2016 食品安全国家标准 食品添加剂 洋茉莉醛(又名胡椒醛)/pp  GB 1886.280-2016 食品安全国家标准 食品添加剂 2-甲基戊酸乙酯/pp  GB 1886.281-2016 食品安全国家标准 食品添加剂 香茅醛/pp  GB 1886.282-2016 食品安全国家标准 食品添加剂 麦芽酚/pp  GB 1886.283-2016 食品安全国家标准 食品添加剂 乙基香兰素/pp  GB 1886.284-2016 食品安全国家标准 食品添加剂 覆盆子酮(又名悬钩子酮)/pp  GB 1886.285-2016 食品安全国家标准 食品添加剂 丙酸苄酯/pp  GB 1886.286-2016 食品安全国家标准 食品添加剂 丁酸丁酯/pp  GB 1886.287-2016 食品安全国家标准 食品添加剂 异戊酸乙酯/pp  GB 1886.288-2016 食品安全国家标准 食品添加剂 苯甲酸乙酯/pp  GB 1886.289-2016 食品安全国家标准 食品添加剂 苯甲酸苄酯/pp  GB 1886.290-2016 食品安全国家标准 食品添加剂 2-甲基吡嗪/pp  GB 1886.291-2016 食品安全国家标准 食品添加剂 2,3-二甲基吡嗪/pp  GB 1886.292-2016 食品安全国家标准 食品添加剂2,3,5-三甲基吡嗪/pp  GB 1886.293-2016 食品安全国家标准 食品添加剂 5-羟乙基-4-甲基噻唑/pp  GB 1886.294-2016 食品安全国家标准 食品添加剂 2-乙酰基噻唑/pp  GB 1886.295-2016 食品安全国家标准 食品添加剂2,3,5,6-四甲基吡嗪/pp  GB 1886.296-2016 食品安全国家标准 食品添加剂 柠檬酸铁铵/pp  GB 1903.5-2016 食品安全国家标准 食品营养强化剂5' -胞苷酸二钠/pp  GB 4789.8-2016 食品安全国家标准 食品微生物学检验 小肠结肠炎耶尔森氏菌检验/pp  GB 4789.41-2016食品安全国家标准 食品微生物学检验 肠杆菌科检验/pp  GB 5009.2-2016 食品安全国家标准 食品相对密度的测定/pp  GB 5009.3-2016 食品安全国家标准 食品中水分的测定/pp  GB 5009.4-2016 食品安全国家标准 食品中灰分的测定/pp  GB 5009.7-2016 食品安全国家标准 食品中还原糖的测定/pp  GB 5009.31-2016 食品安全国家标准 食品中对羟基苯甲酸酯类的测定/pp  GB 5009.34-2016 食品安全国家标准 食品中二氧化硫的测定/pp  GB 5009.35-2016 食品安全国家标准 食品中合成着色剂的测定/pp  GB 5009.42-2016 食品安全国家标准 食盐指标的测定/pp  GB 5009.43-2016 食品安全国家标准 味精中麸氨酸钠(谷氨酸钠)的测定/pp  GB 5009.44-2016 食品安全国家标准 食品中氯化物的测定/pp  GB 5009.84-2016 食品安全国家标准 食品中维生素B1的测定/pp  GB 5009.86-2016 食品安全国家标准 食品中抗坏血酸的测定/pp  GB 5009.97-2016 食品安全国家标准 食品中环己基氨基磺酸钠的测定/pp  GB 5009.120-2016 食品安全国家标准 食品中丙酸钠、丙酸钙的测定/pp  GB 5009.121-2016 食品安全国家标准 食品中脱氢乙酸的测定/pp  GB 5009.141-2016 食品安全国家标准 食品中诱惑红的测定/pp  GB 5009.153-2016 食品安全国家标准 食品中植酸的测定/pp  GB 5009.157-2016 食品安全国家标准 食品中有机酸的测定/pp  GB 5009.169-2016 食品安全国家标准 食品中牛磺酸的测定/pp  GB 5009.179-2016 食品安全国家标准 食品中三甲胺的测定/pp  GB 5009.181-2016 食品安全国家标准 食品中丙二醛的测定/pp  GB 5009.202-2016 食品安全国家标准 食用油中极性组分(PC)的测定/pp  GB 5009.210-2016 食品安全国家标准 食品中泛酸的测定/pp  GB 5009.215-2016 食品安全国家标准 食品中有机锡的测定/pp  GB 5009.224-2016 食品安全国家标准 大豆制品中胰蛋白酶抑制剂活性的测定/pp  GB 5009.225-2016 食品安全国家标准 酒中乙醇浓度的测定/pp  GB 5009.226-2016 食品安全国家标准 食品中过氧化氢残留量的测定/pp  GB 5009.227-2016 食品安全国家标准 食品中过氧化值的测定/pp  GB 5009.228-2016 食品安全国家标准 食品中挥发性盐基氮的测定/pp  GB 5009.229-2016 食品安全国家标准 食品中酸价的测定/pp  GB 5009.230-2016 食品安全国家标准 食品中羰基价的测定/pp  GB 5009.231-2016 食品安全国家标准 水产品中挥发酚残留量的测定/pp  GB 5009.232-2016 食品安全国家标准 水果、蔬菜及其制品中甲酸的测定/pp  GB 5009.233-2016 食品安全国家标准 食醋中游离矿酸的测定/pp  GB 5009.234-2016 食品安全国家标准 食品中铵盐的测定/pp  GB 5009.235-2016 食品安全国家标准 食品中氨基酸态氮的测定/pp  GB 5009.236-2016 食品安全国家标准 动植物油脂水分及挥发物的测定/pp  GB 5009.237-2016 食品安全国家标准 食品pH值的测定/pp  GB 5009.238-2016 食品安全国家标准 食品水分活度的测定/pp  GB 5009.239-2016 食品安全国家标准 食品酸度的测定/pp  GB 5009.240-2016 食品安全国家标准 食品中伏马毒素的测定/pp  GB 5009.243-2016 食品安全国家标准 高温烹调食品中杂环胺类物质的测定/pp  GB 5009.244-2016 食品安全国家标准 食品中二氧化氯的测定/pp  GB 5009.245-2016 食品安全国家标准 食品中聚葡萄糖的测定/pp  GB 5009.246-2016 食品安全国家标准 食品中二氧化钛的测定/pp  GB 5009.247-2016 食品安全国家标准 食品中纽甜的测定/pp  GB 5009.248-2016 食品安全国家标准 食品中叶黄素的测定/pp  GB 5009.249-2016 食品安全国家标准 铁强化酱油中乙二胺四乙酸铁钠的测定/pp  GB 5009.250-2016 食品安全国家标准 食品中乙基麦芽酚的测定/pp  GB 5009.251-2016 食品安全国家标准 食品中1,2-丙二醇的测定/pp  GB 5009.252-2016 食品安全国家标准 食品中乙酰丙酸的测定/pp  GB 5009.253-2016 食品安全国家标准 动物源性食品中全氟辛烷磺酸(PFOS)和全氟辛酸(PFOA)的测定/pp  GB 5009.254-2016 食品安全国家标准 动植物油脂中聚二甲基硅氧烷的测定/pp  GB 5009.255-2016 食品安全国家标准 食品中果聚糖的测定/pp  GB 5009.256-2016 食品安全国家标准 食品中多种磷酸盐的测定/pp  GB 5009.257-2016 食品安全国家标准 食品中反式脂肪酸的测定/pp  GB 5009.258-2016 食品安全国家标准 食品中棉子糖的测定/pp  GB 5009.259-2016 食品安全国家标准 食品中生物素的测定/pp  GB 5009.260-2016 食品安全国家标准 食品中叶绿素铜钠的测定/pp  GB 5413.38-2016 食品安全国家标准 生乳冰点的测定/pp  GB 5413.40-2016 食品安全国家标准 婴幼儿食品和乳品中核苷酸的测定/pp  GB 14883.1-2016 食品安全国家标准 食品中放射性物质检验 总则/pp  GB 14883.2-2016 食品安全国家标准 食品中放射性物质氢-3的测定/pp  GB 14883.3-2016 食品安全国家标准 食品中放射性物质锶-89和锶-90的测定/pp  GB 14883.4-2016 食品安全国家标准 食品中放射性物质钷-147的测定/pp  GB 14883.5-2016 食品安全国家标准 食品中放射性物质钋-210的测定/pp  GB 14883.6-2016 食品安全国家标准 食品中放射性物质镭-226和镭-228的测定/pp  GB 14883.7-2016 食品安全国家标准 食品中放射性物质天然钍和铀的测定/pp  GB 14883.8-2016 食品安全国家标准 食品中放射性物质钚-239、钚-240的测定/pp  GB 14883.9-2016 食品安全国家标准 食品中放射性物质碘-131的测定/pp  GB 14883.10-2016 食品安全国家标准 食品中放射性物质铯-137的测定/pp  GB 31604.2-2016 食品安全国家标准 食品接触材料及制品 高锰酸钾消耗量的测定/pp  GB 31604.3-2016 食品安全国家标准 食品接触材料及制品 树脂干燥失重的测定/pp  GB 31604.4-2016 食品安全国家标准 食品接触材料及制品 树脂中挥发物的测定/pp  GB 31604.5-2016 食品安全国家标准 食品接触材料及制品 树脂中提取物的测定/pp  GB 31604.6-2016 食品安全国家标准 食品接触材料及制品 树脂中灼烧残渣的测定/pp  GB 31604.7-2016 食品安全国家标准 食品接触材料及制品 脱色试验/pp  GB 31604.8-2016 食品安全国家标准 食品接触材料及制品 总迁移量的测定/pp  GB 31604.9-2016 食品安全国家标准 食品接触材料及制品 食品模拟物中重金属的测定/pp  GB 31604.10-2016 食品安全国家标准 食品接触材料及制品 2,2-二(4-羟基苯基)丙烷(双酚A)迁移量的测定/pp  GB 29202-2012 食品安全国家标准 食品添加剂 氮气 第1号修改单/pp  GB 30616-2014 食品安全国家标准 食品用香精 第1号修改单/pp  特此公告。/pp style="text-align: right "  国家卫生计生委 食品药品监管总局/pp style="text-align: right "  2016年8月31日/pp  附件:《食品安全国家标准 食品添加剂 磷酸氢钙》(GB 1886.3-2016)等243项食品安全国家标准和2项标准修改单.rar/ppbr//p
  • 国家药监局关于发布消肿片中松香酸检查项和复方龙胆碳酸氢钠片中土大黄苷检查项2项补充检验方法的公告
    根据《中华人民共和国药品管理法》及其实施条例的有关规定,《消肿片中松香酸检查项补充检验方法》《复方龙胆碳酸氢钠片中土大黄苷检查项补充检验方法》经国家药品监督管理局批准,现予发布。特此公告。附件1消肿片中松香酸检查项补充检验方法(BJY 202111)【检查】松香酸照高效液相色谱法(中国药典2020年版通则0512)测定。色谱条件与系统适用性试验以十八烷基硅烷键合硅胶为填充剂;以乙腈-0.1%甲酸(70:30)为流动相;检测波长为241nm。理论板数按松香酸峰计算应不低于3000。对照溶液的制备(临用新制)取松香酸对照试剂适量,精密称定,加乙醇制成每1ml含2µg的溶液,作为对照试剂溶液。另取11-羰基-β-乙酰乳香酸对照品适量,精密称定,加乙醇制成每1ml含2µg的溶液,作为参照溶液。供试品溶液的制备取本品10片,研细,取0.2g,精密称定,精密加入乙醇20ml,称定重量,超声处理20分钟,放冷,再称定重量,用乙醇补足减失的重量,摇匀,滤过,取续滤液,即得。测定法分别精密吸取供试品溶液、对照试剂溶液与参照溶液各10µl,注入液相色谱仪,记录色谱图。结果判断供试品色谱中,在与松香酸对照试剂溶液色谱峰保留时间相应的位置上不得出现相同的色谱峰。若出现保留时间相同的色谱峰,采用二极管阵列检测器比较相应色谱峰的紫外-可见吸收光谱,吸收光谱应不同(松香酸对照试剂色谱峰在241nm显示最大吸收);若吸收光谱相同,且该色谱峰的峰面积值大于11-羰基-β-乙酰乳香酸参照溶液色谱峰的峰面积值,则视为阳性检出。备注:必要时,可采用高效液相色谱-质谱联用方法进行验证。起草单位:连云港市食品药品检验检测中心复核单位:江苏省食品药品监督检验研究院广州市药品检验所附件2复方龙胆碳酸氢钠片中土大黄苷检查项补充检验方法(BJY 202112)【检查】土大黄苷(1)取本品细粉适量,约相当于大黄原生药0.1g,加甲醇10ml,超声处理20分钟,滤过,取滤液1ml,加甲醇至10ml,作为供试品溶液。另取土大黄苷对照品,加甲醇制成每1ml含10μg的溶液,作为对照品溶液(临用新制)。照薄层色谱法(中国药典2020年版通则0502)试验,吸取对照品溶液与供试品溶液各5μl,分别点于同一聚酰胺薄膜上,以甲苯甲酸乙酯丙酮甲醇甲酸(30:5:5:20:0.1)为展开剂展开,取出,晾干,置紫外光灯(365nm)下检视。供试品色谱中,在与对照品色谱相应的位置上,不得显相同的亮蓝色荧光斑点。(2)照高效液相色谱法(中国药典2020年版通则0512)测定。色谱条件与系统适用性试验 以十八烷基硅烷键合硅胶为填充剂;以乙腈-水(20:80)为流动相;二极管阵列检测器,检测波长为328nm,柱温30℃。理论板数按土大黄苷色谱峰计算应不低于3000,土大黄苷峰与相邻峰之间的分离度应符合要求。对照品溶液的制备(临用新制) 取土大黄苷对照品适量,精密称定,加甲醇制成每1ml含60μg的溶液,即得。供试品溶液的制备 取本品20片,研细,取约相当于大黄原生药0.1g,精密称定,精密加入甲醇25ml,称定重量,超声处理60分钟,放冷,再称定重量,用甲醇补足减失的重量,摇匀,滤过,取续滤液,即得。测定法 分别精密量取供试品溶液和对照品溶液各10μl,注入液相色谱仪,记录色谱图。结果判定 供试品色谱中,在与土大黄苷对照品色谱峰保留时间相应的位置上应不得出现相同的色谱峰。若出现保留时间相同的色谱峰,则采用二极管阵列检测器比较相应色谱峰的紫外-可见吸收光谱,吸收光谱应不同(土大黄苷对照品色谱峰在219nm和325nm波长处有最大吸收);若吸收光谱相同,则视为阳性检出。备注:必要时可采用高效液相色谱-质谱联用方法进行验证。起草单位:青海省药品检验检测院复核单位:甘肃省药品检验研究院陕西省食品药品检验研究院
  • 欧盟公布富马酸二甲酯限令草案
    据chemicalwatch网站消息,近日欧盟修订了REACH法规附录XVII,将富马酸二甲酯限令纳入其中,本次修订草案公布于欧盟相关文件中(comitology register)。  据了解,此项草案有望于11月份在REACH委员会会议上获得通过,它体现了欧洲化学品管理局风险评估委员会与社会经济委员会的观点。
  • LUMEX红外用于测定生物燃料FAME脂肪酸甲酯含量-阿曼燃料实验室
    2018年2月 - 塞拉莱,阿曼苏丹。 阿曼事世界上最大的燃料储存地之一,燃料储存过程需要密切进行监控。 Mina 集团的阿曼国石油实验室选购并使用LUMEX公司IR红外分析柴油中脂肪酸甲酯(FAME)含量监控,根据欧盟标准EN 14078:2014液体石油产品中的中间馏分油的脂肪酸甲酯( FAME)的含量的测定使用傅里叶红外光谱仪InfraLUM FT-08进行测定,可靠的产品质量和用户友好的操作方式受了客户的好评。生物柴油的主要成分是脂肪酸甲酯(FAME),是一种无毒、能生物降解、基本无硫和芳烃的优质清洁柴油,作为绿色环保的替代燃料,在欧洲和美国得到大力推广,是近年来世界能源领域的一个发展热电。欧盟各国对生物柴油的应用结果表明,生物柴油起动 性能与石油柴油无区别,可直接以100%浓度用于柴油发动机。柴油或加热燃料中的FAME含量测定有效鉴别燃料,可用于监控FAME对发动机或加油系统的影响。 LUMEX生物柴油解决方案提供可靠的FAME含量监控,可从0.05%(V / V)的最低浓度水平进行有效监控。仪器内置简单便捷的定量分析模块,集成到软件SpectraLUM中,可以即时以百分比的形式获得FAME测定结果,而无需额外的操作。Mina 石油公司实验室每月测定多次FAME含量以便进行工艺或过程控制,使用InfraLUM FT-08可以在几分钟内获得结果,极大提高了检测速率,降低了成本。 Lumex分析仪器还根据其他标准为柴油燃料的红外测试提供解决方案,例如ASTM D7371。针对石油天然气及燃料提供成套解决的方案,包括炼油、储存、运输等过程监控环节。 LUMEX公司自1991年成立以来一直致力于新产品和先进的技术方法的开发,现已拥有100多种分析方法,为全球用户提供相应行业解决方案,现产品和方法用户遍布全球80多个国家。 (来源:LUMEX公司)
  • 食品坚果中油脂的酸价测定方法—电位滴定法
    近年来,随着人民生活水平的不断提高,人们对高等级植物油的需求量逐年增加,对卫生质量指标酸价的要求更加严格,国家对食品酸价的数值和测定方法做出了明确和规范的要求。 《GB 5009.229-2016 食品安全国家标准 食品中酸价的测定》规定的第二法 冷溶剂自动电位滴定法适用于常温下能够被冷溶剂完全溶解成澄清溶液的食用油脂样品和含油食品中提取的油脂样品,适用范围包括食用植物油(包括辣椒油)、食用动物油、食用氢化油、起酥油、人造奶油、植脂奶油、植物油料、油炸小食品、膨化食品、烘炒食品、坚果食品、糕点、面包、饼干、油炸方便面、坚果与籽类的酱、动物性水产干制品、腌腊肉制品、添加食用油的辣椒酱共计19类。原理: 从食品样品中提取出油脂(纯油脂试样可直接取样)作为试样,用有机溶剂将油脂试样溶解成样品溶液,再用氢氧化钾或氢氧化钠标准滴定溶液中和滴定样品溶液中的游离脂肪酸,同时测定滴定过程中样品溶液pH 的变化并绘制相应的pH-滴定体积实时变化曲线及其一阶微分曲线,以游离脂肪酸发生中和反应所引起的“pH 突跃”为依据判定滴定终点,最后通过滴定终点消耗的标准溶液的体积计算油脂试样的酸价。酸价是脂肪中游离脂肪酸含量的标志。一般认为酸价越小,说明油脂质量越好,新鲜度和精炼程度越好。酸价和过氧化值略有升高不会对人体的健康产生损害。但如果酸价过高,则会导致人体肠胃不适、腹泻并损害肝脏。电位滴定法是一种经典的分析方法,采用CT-1Plus多功能全自动滴定仪测食品中油脂酸价具有操作简便、精确度高等优点。 来自天津某单位采用禾工CT-1Plus多功能滴定仪测定花生油实验图谱 来自山东某单位采用禾工CT-1Plus自动电位滴定仪测定香油滴定图谱
  • 软体家具遭遇富马酸二甲酯污染风险
    软体家具遭遇DMF(富马酸二甲酯)污染风险  前不久,国家质检总局在对全国85家木质家具制造企业进行检测后发现,甲醛超标的企业占76.9%,最高超标116倍。在板式家具尚未能摆脱甲醛阴影的此时,软体家具又蒙上DMF的新罪。  板式家具必须使用的板材、油漆、胶水等材料大多含有甲醛成分,虽然市面上有达到E1级和E0级甚至零甲醛的板材以及环保漆,但成本高昂,令很多企业望而却步。有业内人士透露,市场上标有“零甲醛”的产品基本都是在忽悠消费者。  欧美的板式家具也有很大的市场份额,记者了解发现,美国加州的CARB(California Air Resources Board,加州空气资源委员会)法规最为严厉。它不仅严格规定了各类板材的甲醛含量,还要求工厂必须建立质量管理体系和品质控制实验室,并必须强制第三方认证,产品必须贴上合格标签。而国内的板式家具,很多连规范的使用说明书都没有。  记者在了解欧盟对家具的相关环保要求时,发现其不仅对甲醛有相应规定,还对REACH(化学品注册、评估、许可和限制,影响化工、纺织、机电、玩具、家具等行业)有严格的规定,DMF(Dimethyl fumarate,富马酸二甲酯)更是在禁止之列。  据悉,DMF主要存在于沙发、床等软体家具之中,用于皮革和纺织品的生产、储存、运输等过程的杀菌和防霉,它虽然能抑制30多种霉菌、酵母菌和细菌,特别对肉毒梭菌和黄曲霉菌有很好的抑制作用,但根据相关专家论证,该物质在常温下升华具有熏蒸性,对眼睛、呼吸系统、皮肤和黏膜具有一定的刺激作用,与皮肤接触后易发生过敏、可引起皮肤湿疹和灼伤。
  • 食品安全检测IKA前处理解决方案之酸价的测定
    /// 食品中酸价的测定酸价是脂肪中游离脂肪酸含量的标志。脂肪在长期保藏过程中,由于微生物、酶和热的作用发生缓慢水解,产生游离脂肪酸。因此可使用酸价作为衡量脂肪质量的标准之一。酸价可作为脂肪生产中水解程度的指标,也可作为食品保藏过程中酸败的指标。gb5009.229—2016食品中酸价的测定中规定了各类食品中酸价的三种测定方法,我们来看看这三种方法的不同适用范围:1| 第一法:冷溶剂指示剂滴定法 适用于常温下能够被冷溶剂完全溶解成澄清溶液的食用油脂样品食用植物油(辣椒油除外)、食用动物油、食用氢化油、起酥油、人造奶油、植脂奶油、植物油料共计7类2| 第二法:冷溶剂自动电位滴定法 常温下能够被冷溶剂完全溶解成澄清溶液的食用油脂样品,含油食品中提取的油脂样品食用植物油(包括辣椒油)、食用动物油、食用氢化油、起酥油、人造奶油、植脂奶油、植物油料、油炸小食品、膨化食品、烘炒食品、坚果食品、糕点、面包、饼干、油炸方便面、坚果与籽类的酱、动物性水产干制品、腌腊肉制品、添加食用油的辣椒酱共计19类3| 第三法:热乙醇指示剂滴定法 常温下不能被冷溶剂完全溶解成澄清溶液的食用油脂样品食用植物油、食用动物油、食用氢化油、起酥油、人造奶油、植脂奶油共计6类。由于油脂样品多种多样,标准中附录均详细描述了试样制备的步骤以及要求:样品类别样品状态处理方法食用油脂常温液态,且为澄清液体直接取样常温液态,有杂质,非澄清,含水分附录a:除杂和脱水干燥处理常温固态附录b:置于比其熔点高10℃左右的水浴或恒温干燥箱内,加热至完全熔化后取样经乳化加工的食用油脂附录c:溶剂浸提-旋转蒸发植物油料na依据附录d研磨-索氏提取-旋转蒸发含油食品硬度较小(如油炸食品、膨化食品、面包、糕点等d.1普通粉碎松软或有一定流动性(如馅料、花生酱、芝麻酱等d.2普通捣碎硬度较大(如动物性水产干制品、腌腊肉制品等d.3冷冻粉碎含有调味油包的预包装食品(油炸方便面)d.4含有调味油包的预包装食品的粉碎德 国 ika 专 家 推 荐 1a11 研磨仪研磨腔内放入液氮进行冷冻固定转速28000rpm硬质刀头/剪切刀头可供选择,适合多种样品附录d.3冷冻粉碎方法2tubemill 40 control 试管研磨机可加入干冰进行预冷冻及研磨程序控制,确保不同批次试样研磨重复性间歇运行模式避免样品过热附录d.4含有调味油包的预包装食品的粉碎 3icc control eco 18可接开口外循环,多样品恒温控温精度高达 ± 0.01 ℃可选配多种支架,用于放置不同容器温度曲线清晰可控附录b 固态油脂熔化4rv 10 auto-control定量蒸馏(ika专利)可选防爆膜玻璃件,保证安全全自动沸点识别常用溶剂库(可拓展)附录c 石油醚旋转蒸发5索式提取套装(ret control加热磁力搅拌器+加热套)节省高额费用长时间安全运行程序控制,确保批量样品的重复性植物油料-索氏提取
  • 辽宁检验检疫局具备富马酸二甲酯检测能力
    近期,为应对欧盟关于禁止含有富马酸二甲酯的产品投放市场或在市场上销售的有关决议,辽宁检验检疫局加强了出口轻纺产品中使用富马酸二甲酯的监测工作,辽宁局技术中心轻纺实验室发挥技术优势开展业务攻关,进行了一系列测试试验,努力改进试行的标准方法,通过确认试验,证实测试结果准确可靠。  目前,辽宁局已具备了轻纺产品中富马酸二甲酯成分检测能力,检测方法已投入应用,为辽宁口岸出口检验监管工作提供了强有力的技术支持
  • 月旭科技-专家讲座系列之食品酸价的特异性检测方法—铜皂络合比色技术
    本期“月旭科技-专家讲座”的嘉宾是曹文明博士,主要研究领域:油脂化学、食品质量与安全领域。本周六上午,曹文明博士将与大家分享讨论“食品酸价的特异性检测方法—铜皂络合比色技术”的相关内容。我们的讲座分为两大部分,zui后有互动答疑环节,来跟大家交流相关主题的内容,解决大家的实际问题,敬请关注!主讲人简介讲座主题《食品酸价的铜皂络合比色技术的概述》主讲人:曹文明内容摘要一) 酸价的释义与现行的检测技术标准二) 现行酸价检测国家标准主要存在的问题三) 酸价的特异性检测方法——铜皂络合比色技术及其zui新研究进展四) 铜皂络合比色技术70年的发展历史《铜皂络合比色法测定食品酸价专用检测试剂盒简介》主讲人:薛斌内容摘要一)试剂盒的组成和分类二)试剂盒的主要特点三)试剂盒的使用方法四)试剂盒使用时的注意事项本次网络报告的简介酸价是食用动植物油脂、油脂制品和含油食品重要的食品安全指标。长期以来,由于对酸价定义及作用的理解偏差,以及传统的酸碱中和滴定的酸价检测技术存在的油脂样品称样量过大和非特异性导致的复杂基质食品酸价测定值偏高问题,人们在酸价的检测与应用中,产生一些疑惑。本次报告旨在系统解读酸价的定义、意义、检测方法,以及若干主要问题,并提供了解决方案:一种酸价的特异性检测方法——铜皂络合比色技术。阐述了铜皂络合比色技术在大幅度减少酸价检测的油脂称样量、酸价的特异性测定等方面的理论、技术方案和适用范围,同时综述了铜皂络合比色法70年的发展历程中,对FFA含量检测、脂肪酶活性评价、食品品质评价等方面的应用。
  • 《鞋类化学试验方法富马酸二甲酯检测方法》等标准通过审定
    全国制鞋标准化技术委员会第一届三次会议日前在福建省龙岩市召开。会上对四项标准进行了审查,分别为国家强制性标准《鞋类钢勾心》、国家标准《鞋类化学试验方法富马酸二甲酯检测方法》、行业标准《鞋类帮面试验方法抗张强度和伸长率》和《鞋类、包装、运输和贮存》。与会委员完善了该四项标准的内容,一致同意秘书处将该标准整理形成报批稿上报。该四项国家、行业标准审查单独形成审查会议纪要。会上,中国皮革协会制鞋办公室主任卫亚非还对制鞋业要密切关注的几个问题和未来中国鞋业市场的预测做了分析。卫亚非从用工环境、内销市场、产业集群、进出口情况、资本运行情况诠释了2009年行业运行情况和特点。她认为,影响鞋业发展的因素已由原来关注的原材料价格、劳动力成本等传统因素方面转向更为关注石油价格、人民币汇率、人口因素、环境保护等。在国际金融危机影响的大环境下,未来还有许多不确定因素。卫亚非指出,制鞋业要密切关注人民币升值、劳动力资源短缺、城市化建设、石油价格、外资零售业的进入、物流业的建设等问题。
  • 傅若农谈用于固相微萃取样品制备中的吸着材料
    往期讲座内容见:傅若农老师讲气相色谱技术发展   对复杂基体(例如食品中微量残留物和污染物)的非常低浓度的化合物的分析,通常需要一个复杂的分析方法,包括采样,样品制备,分析物分离,定性和定量测定。多数分析家认为样品准备是关键、瓶颈,因为它通常是耗时最长的步骤,回收率低,容易产生污染,比其他步骤更难以自动化。最近,受绿色分析方法的刺激,把微量固相萃取技术推向前台,而各种吸着(吸附和吸收)材料是这些微萃取技术的基础,所以这一领域的研究最为活跃。  在上世纪70年代,固相萃取(SPE)——经典液相色谱的小型化,很快成为多年使用的液-液萃取处理样品的替代方法之一,虽然SPE比以前使用的样品制备方法大大降低了有机溶剂的量,但是由于要使用相对大量的有机溶剂。因此,出现了各种固相微萃取的小型化方法,进入了所谓的微萃取技术的时代,如下图1所示。 图 1 固相萃取半个多世纪的演变  固相萃取的小型化使这一技术进一步扩大了它的应用,并促进了固相萃取吸着剂的研究和发展,吸着剂(sorbent materials)(或萃取剂,捕获剂)包括吸收和吸附。从微观的角度看,这两类的 SPE 涂层有明显的区别。吸附是分析物分子直接以分子力吸着到涂层表面。吸收则是分子溶入涂层的主体内。基于吸附机理的萃取因其可进行吸附的表面位置有限,因此吸附是竞争过程 而基于吸收机理的萃取,由于两种性质相似的液体可以以任何比例互溶,因此吸收是非竞争过程。如下图2所示。我把两种过程总称为吸着。 图 2 吸收和吸附的概念左面: a 吸附 b. 大孔吸附 c. 小孔吸附右面 a 吸收 b. 大孔吸收 c. 小孔吸收( 色谱,2001,19(4):314)1. 微固相萃取使用的吸着剂  在SPE 半个多世纪的第一阶段,是使用活性碳作吸附剂的时期,这是沿袭了历史的经验,用活性碳吸附水中的有机物,是一种很有效的方法,但是活性炭吸附性不均一,重复性不好,有过高的吸附性,有不可逆活化点,回收率低。所以从上世纪 60 年代末到80 年代初,一直在寻找更为合适的适应性更强的 SPE 填料。有许多溶于水中的有机化合物不能被活性碳所吸附,而一些被吸附的化合物又不能被溶剂洗脱出来。当时就着重于使用聚合物和各种键合在硅胶上的有机基团,前者如交联聚苯乙烯树脂 Amberlite XAD-1,后者如十八烷基硅胶(ODS)和辛基、乙基硅胶。上世纪 60 年代中期 Rohm 和 Haas 公司推出 Amberlite XAD-1 (交联聚苯乙烯)作萃取用吸着剂,上世纪 70 年初代又引入苯乙烯-二乙烯基苯 Amberlite ( XAD-2 和XAD-4)和乙烯二甲基丙烯酸酯树脂(XAD-7和XAD-8)。用于ppb级有机物的萃取。还研究了多种共聚物,如 porapaks 和 Chromosorbs 其中以 Tenax (2,6-diphenyl-p-phenylene oxide) 使用者最多。由于聚合物吸着剂中残留制造时的一些化合物如单体、溶剂,给SPE 的标准化带来困难,同时受到上世纪 70 年代 HPLC 填料研究的刺激,兴起了在 SPE 中使用 HPLC 填料作SPE 的吸着剂。  硅胶是很古老的吸附剂,广泛用于萃取介质,硅胶又可以键合各种有机基团,所以在固相萃取中有较多的使用。硅胶的活性中心是其结构上的羟基(硅烷醇),在结晶的硅胶中,它们是孤立的,不与相邻的羟基相作用。用于SPE 的硅胶是无定形的,其相邻的羟基间可发生氢键相互作用,发生氢键相互作用的羟基数目取决于吸附剂的孔径。小孔硅胶表面主要被氢键相互作用的羟基所占有,大孔硅胶表面主要被孤立的羟基所占有。如果将无定形硅胶进行加热处理,则表面羟基失水转变为硅氧烷,这时,表面活性中心基本消失,吸附作用很弱,大孔硅胶的这种失水反应是可逆的,如果将失水硅胶与水一起加热,硅氧烷与水反应成为硅烷醇。如果失水发生在小孔硅胶或加热温度过高,则反应是不可逆的。未经加热处理的无定形硅胶,其表面羟基被水所覆盖,没有吸附活性,故需将它置于150一200℃下长时间加热进行活化。除去水后的相邻羟基形成氢键。若加热温度超过200℃,氢键相互作用的羟基将失水成为硅氧烷。加热温度超过 600℃,全部羟基(包括氢键相互作用的羟基和孤立的羟基)失水成为憎水的硅氧烷。在更高的温度(900℃)下,硅胶表面将烧结。硅胶表面上成氢键存在的羟基是吸附剂的活性中心,它对单官能团化合物有很强的吸附作用。它对一些化合物会产生永久性的吸附。因此作为SPE吸附剂,应当适当地进行减活处理,使其表面的活性中心比较均匀一致。硅胶吸附少水对其性能有很大的影响。由于极性化台物的k’值随着吸附剂含水量的增加而减少,为了保持吸附的稳定,含水量必须保持恒定。硅胶在含水量为4—20%时,分离效率差别很小,通常,水的加入量只要满足吸附剂表面形成50-75%的水单分子层就行了,此时,每100 m2吸附剂表而含水 0.02-0.038 g 。例如每l00 g 硅胶加水8-12 g 水。加入水后,与干吸附剂相比,容量可提高5-l00倍。  由于 硅胶键合有机物的稳定性和规范化,1978 年形成了SPE 小柱的商品,从而得到了广泛的应用,逐渐成为SPE的主流。如表1 中100例MEPS中使用最多的是这类吸着剂。其中C18—25.1%,C8—24.5%,C2—13.3%,MI——14.4%,硅胶——7.6%,其他——15.4%。C18+ C8+ C2=62.9%。  2006年我从500多篇使用SPE研究报告中发现使用最多的是C18 SPE柱 和OasisHLB 柱(二乙烯基苯-N-乙烯基吡络烷酮共聚物(分析试验室,2006,25(2):100-122)。  表 1 填充吸着剂微萃取(MEPS)使用过的吸着剂吸着剂分析物文献1C18利多卡因,甲哌卡因、布比卡因,罗哌卡因J Chromatogr B,2004, 801:317–3212MIP肌氨酸J Sep Sci,2014, doi:10.1002/jssc.201401116.3硅基苯磺酸阳离子交换剂局部麻醉药J Chromatogr,2004, B 813:129–135.4聚苯乙烯聚合物ISOLUTE ENV +6-(苄基氨基)-2(R)-[[1-(羟甲基)丙基]氨基]-9-异丙基嘌呤(Roscovitine)J Chromatogr B,2005, 817:303–3075聚苯乙烯聚合物奥罗莫星(Olomoucine)Anal Chim Acta,2005, 539: 35–396硅胶基(C8),聚合物( ENV+),和甲基丙烯酸甲酯的有机整体柱罗哌卡因,利多卡因,代谢物(甘氨酰二甲苯胺,甘氨酸二甲代苯胺,3-OH-利多卡因)J Liq Chromatogr Relat Technol,2006,29:829–840.7聚苯乙烯聚合物醋丁洛尔,美托洛尔J Liq Chromatogr Relat Technol, 2007,30:575–5868Csilica-C8美沙酮J Sep Sci,2007,30:2501–25059C2-吸附剂环磷酰胺J Liq Chromatogr Relat Technol, 2008,31: 683–694.10C2, C8, 聚苯乙烯聚合物AZD3409( N-[2-[2-(4-氟苯基)乙基]-5-[[[(2S,4S)-4-[(3-吡啶羰基)硫代]-2-吡咯啉]甲基]氨基]苄基]-L-蛋氨酸 1-甲基乙酯)J Chromatogr Sci,2008,46:518–523.11C18羟基化聚苯乙烯二乙烯基本共聚物(ENV+)布比卡因和 [d3]-甲哌卡因Anal Chim Acta,2008, 630 : 116–12312C18氟喹诺酮类Anal Chem,2009,81:3188–319313C8 , ENV+ ,Oasis MCX,Clean Screen DAU可卡因及其代谢物J Am Soc Mass Spectrom,2009,20:891–89914C18麻醉药品Electrophoresis, 2009,30 :1684–169115C18甲基安非他明和安非他明J Chromatogr A,2009, 1216 :4063–407016C18溶解性有机物和天然有机物Anal Bioanal Chem, 2009, 395:797–80717C18单萜类代谢产物Microchim Acta,2009,166:109–11418C18硅胶有机优先污染物和暴露的化合物J Chromatogr A,2010, 1217 :6002–601119C8抗抑郁药J Chromatogr B,2010, 878:2123–212920C8利培酮及其代谢产物Talanta,2010,81:1547–155321C8,C18紫外滤光片和多环麝香化合物J Chromatogr A,2010,1217:2925–293222C18奥卡西平及其代谢物Anal Chim Acta,2010, 661:222–22823C2, C8, C18,硅胶,C8/SCX可替宁Anal Bioanal Chem,2010,396:937–94124C18甾体代谢物J Chromatogr A,2010,1217:6652–666025C8利培酮和9-羟利培酮J Chromatogr B,2011,879:167–17326MIP氟喹诺酮类化合物Anal Chim Acta,2011,685:146–15227C18非极性杂环胺Talanta,2011,83:1562–156728C8瑞芬太尼J Chromatogr B,2011,879:815–81829--氯氮平及其代谢产物J Chromatogr A,2011,1218:2153–2159.30C8阿托伐他汀及其代谢产物J Pharm Biomed Anal,2011,55:301–308.31C18氯贝酸,布洛芬,萘普生,双氯芬酸和布洛芬J Chromatogr A,2011,1218:9390–939632MIP,C18-硅胶(改性)雌激素类化合物的17β -雌二醇Anal Chim Acta,2011,703 41–5133C8阿片类药物Anal Chim Acta,2011,702:280–28734C2, C8, C18, SIL(未改性硅胶), M1(80% C8 和 20% SCX)(E)-白藜芦醇J Sep Sci,2011,34 :2376–2384. 35C18美沙酮Anal Bioanal Chem,2012,404:503–51136C18黑索金,TNTChromatographia,2012,75:739–74537C18多环芳烃Talanta,2012, 94:152–15738C8免疫抑制药物J Chromatogr B,2012,897:42–49.39C2, C8, C18, SIL, and M1生物相关的酚类成分J Chromatogr A,2012,1229:13–2340C18哌嗪类兴奋剂J Pharm Biomed Anal,2012,61:93–9941C18, C8,和 C8-SCX精神治疗药Anal Bioanal Chem,2012,402:2249–225742C2, C8, C18, 1M(阳离子交换剂)和Sil普萘洛尔、美托洛尔、维拉帕米Rapid Commun Mass Spectrom,2012,26:297–30343C8普伐他汀普伐他汀内酯Talanta,2012,90:22–2944C18酚酸J Chromatogr A,2012 1226:71–76.45C18抗癫痫剂J Sep Sci,2012,35:359–36646硅胶离子液体Talanta,2012, 89:124–12847聚吡咯/尼龙有机磷农药J Sep Sci,2012,35:114–12048C2, C8, C18, 硅胶和 M1 (混合 C8-SCX)挥发性和半挥发性成分Talanta,2012,88:79–9449C8, C18哌嗪类兴奋剂J Chromatogr A,2012,1222:116–12050C2, C8和ENV+感觉神经元特异性受体激动剂BAM8-22和拮抗剂BAM22-8Biomed Chromatogr, 27,2013:396–40351C18大环麝香香水J Chromatogr A,2012,1264:87–9452C8多环芳烃J Chromatogr A,2012,1262:19–26.53C18抗癫痫药物J Sep Sci,2012,35:2970–297754C18卤代苯甲醚J Chromatogr A,2012,1260:200–20555C18芳香胺Anal Bioanal Chem,2012,404:2007–201556聚苯胺纳米线农药 Anal Chim Acta,2012,739:89–9857C2、C8、C18和C8 / SCX,SIL黄酮醇Anal Chim Acta,2012, 739:89–9858C8褪黑素与其他抗氧化剂J Pineal Res,2012,53:21–2859C2, C8, C18和含C8的硅胶类似M1L-抗坏血酸的测定Food Chem,2012,135:1613–161860C18卤代乙酸J Chromaogr A,2013,1318:35–4261MIP局部麻醉剂:利多卡因,甲哌卡因和布比卡因Biomed Chromatogr,2013,27:1481–148862C8心脏药物J Chromatogr B,2013,938:86–9563C8和强阳离子交换剂5-羟色胺再摄取抑制剂,抗抑郁药J Braz Chem Soc,2013,24:1635–164164C18麝香酮Anal Bioanal Chem,2013,405:7251–725765C8利多卡因Biomed Chromatogr,2013,27:1188–119166C18非甾体类抗炎药J Chromatogr A,2013,1304:1–967C2、C8、C18,SIL,M1苯基黄酮J Chromatogr A,2013,1304:42–5168C18大麻类J Chromatogr A,2013,1301:139–14669C18氯苯Anal Bioanal Chem,2013,405:6739–6748.70CMK-3纳米碳迷迭香酸Chromatographia,2013, 76:857–86071C2,C8,C18,SIL,M1氧化应激生物标记物Talanta,2013, 116:164–17272CMK-3纳米碳橄榄生物酚73 Anal Sci,2013,29:527–5327380% C8 20% SCX抗精神病药物Anal Bioanal Chem,2013,405:3953–396374C18多环芳烃和硝基麝香75C8氧化损伤DNA尿中的生物标记物PLoS ONE 8 (2013)e5836676C18抗精神病药物Anal Chim Acta,2013, 773:68–7577C2、C8、C18和C8,SIL / SCX羟基苯甲酸和羟基酸Microchem J,2013,106:129–138.78C2抗精神病药齐拉西酮J Pharm Biomed Anal,2014,88:467–47179C8可的松,皮质酮,acortisolJ Pharm Biomed Anal,2014,88:643–64880多孔石墨化碳颗粒恩替卡韦J Pharm Biomed Anal,2014,88:337–34481C18和 C8/SCX,莱克多巴胺Food Chem,2014,145:789–79582DVB芳香胺Talanta,2014, 119:375–38483SIL, C2, C8, C18, and M1氨基甲酸乙酯Anal Chim Acta, 2014,818:29–3584聚苯乙烯β -受体阻滞剂美托洛尔和醋丁洛尔M.M. Moein (Ph.D. thesis), Stockholm University, 201485C8多环芳香族碳氢化合物J Chromatogr A,2006, 1114:234–238.86C18布比卡因,利多卡因,罗哌卡因Bioanalysis,2010, 2:197–20587C18卤乙酸J Chromatogr A,2013, 1318:35–4288C8/SCX三环类抗抑郁药 Chromatogr A,2014, 1337:9–1689C18氯酚J Chromatogr A,2014, 1359:52–5990C18溴联苯醚J Chromatogr A,2014, 1364:28–3591C18非甾体类抗炎药物J Chromatogr A 1367 (2014) 1–892MIP瘦肉精,J Pharm.Biomed Anal. 91 (2014) 160–16893C18卡马西平、拉莫三嗪,奥卡西平,苯巴比妥,苯妥英和活性代谢物环氧化卡马西平和利卡西平J Chromatogr B 971 (2014) 20–2994C8千金藤素J Anal Methods Chem,2014,2014:1–695C8磺胺类药物J Liq Chromatogr Relat Technol,2014,37:2377–238896氨丙基杂化硅胶整体柱五种抗精神病药(奥氮平、奎硫平、氯氮平、氟哌啶醇、氯丙嗪)和七中抗抑郁药(米氮平、帕罗西汀、舍曲林、西酞普兰,氯丙咪嗪,丙咪嗪、氟西汀)Talanta1,2015,40:166–17597C2,C8,C18,M1肉碱和酰基肉碱J Pharmaceu Biomed Anal,2015,109:171–17698C18儿茶酚胺类(如去甲肾上腺素、肾上腺素和多巴胺)J Pharmaceu Biomed Anal,2015,104:122–12999M1氯胺酮及其代谢物J Chromatogr B, 2015,1004:67–78100Carbon-XCOSβ -受体阻滞剂美托洛尔,醋丁洛尔J Chromatogr B, 2015,992:86–902. 新型、选择性固相微萃取吸着剂  目前被分析物基体十分复杂,如生物样品、食品,含有多种化合物及多种异构体,使用传统萃取吸着剂对其缺乏选择性。由于很难消除基体中杂质的影响,导致后续的色谱、质谱分析受到严重干扰。因此出现了许多新的、选择性吸着剂,如分子印迹聚合物、免疫亲和吸着剂、核酸适配体功能化吸着剂、磁性固相萃取吸着剂、分子印迹介孔材料吸着剂、金属有机骨架材料吸着剂、树枝状大分子材料吸着剂、各种纳米材料吸着剂(富勒烯、石墨烯、碳纳米管等)。下表2列出近年新型选择性微固相萃取吸着剂的应用实例。  表 2 新型选择性微固相萃取吸着剂吸着剂被分析物样品基质检测回收率/%LOD文献1石墨烯, Pb环境水和蔬菜火焰原子吸收光谱(FAAS)95.3–100.40.61 ug/LAnal Chim Acta,2012,716:112–1182石墨烯谷胱甘肽人血浆荧光分光光度计92-1080.01 nMSpectrochim Acta,2011,79:860–1863氧化石墨烯氯苯氧酸除草剂河水与海水CE93.3- 102.40.3–1.5ng/LJ Chromatogr A,2013,1300:227–2354RGO-silica(氧化石墨烯衍生物-硅胶)氟喹诺酮自来水和河水LC-FLR72–118未报道J Chromatogr A,2015,1379:9–155磺化石墨烯多环芳烃河水GC-MS81.6 -113.50.8–3.9 ng/LJ Chromatogr A,2012,1233:16–216富勒烯-二硫代氨基甲酸钠(C60-NaDDC)Pb雨水GC-MS92 -100 415 ng/LAnal Chem,2002, 74:1519–15247富勒烯C60Cd水,牡蛎组织,猪肾牛肝AAS未报道0.3-0.3 ng/mLJ Anal At Spectrom,1997,12 :453–4578富勒烯C60汞(II)、甲基汞(I) 与乙基汞(I)海水,废水和河水GC-MS80–1051.5 ng/LJ Chromatogr A,2004,1055:185–1909富勒烯C60有机金属化合物水溶液GC-MS未报道5–15 ng/mLJ Chromatogr A,2000, 869:101–11010富勒烯C60金属二硫代氨基甲酸盐粮FAAS92–981–5 ng/mLAnalyst,2000,125:1495–149911富勒烯C60BTEX海水,废水,地表水,雨水,湖水,饮用水和河水GC-MS94–1040.04–0.05 ug/LJ Sep Sci,2006,29:33–4012富勒烯C60,C70芳烃和非芳烃,亚硝化单胞菌游泳池水,废水,饮用水和河水GC-MS95–1024–15 ng/LJ Chromatogr A,2009,1216 :1200–120513富勒烯C60-键合硅胶阿马多瑞多肽人血清MALDI-TOF MS未报道未报道Anal Biochem,2009,393: 8–2214氧化单层碳纳米管,氧化多层碳纳米管有机磷农药海水GC-FID79–1020.07–0.12 ug/LJ Environ Monit,2009, 11 : 439–444.15多层碳纳米管磺酰脲类除草剂土壤HPLC-DAD76–930.5–1.2 ng/g J Chromatogr A ,2009,1216:5504–551016多层碳纳米管莠去津和西玛津水GC-MS未报道2.5–5.0 pg/mL17 Microchem J, 2010,96 : 348–351.17氧化和改性碳纳米管,Ni (II), Pb (II)湖泊沉积物 污泥ETAAS(电热原子吸收光谱)92.1–102.010–30 ng/L Talanta,2011,85:245–25118改性多层碳纳米管Fe (III), Cu (II) Mn (II), Pb (II)矿泉水FAAS96–1003.5–8.0 ug/LFood Chem Toxicol,2010 ,48:2401–240619碳纳米锥,纳米盘,纳米纤维和纳米角 碳纳米锥/磁盘氯酚水GC-MS98.8–100.90.3–8 ng/mL J Chromatogr A, 2009,1216 : 5626–5633.20碳纳米锥/纳米盘甲苯、乙苯、二甲苯同分异构体和苯乙烯水GC-MS920.15 ng/mLJ Chromatogr A,2010, 1217 :3341–334721单壁碳纳米管PAHs水GC-TOF-MS21–9630–60 ng/LAnal Chim Acta,2012,714 :76–81.22碳纳米纤维氯三嗪,和去烷基化代谢产物粗土、水(自来水、井水、河水)LC-DAD83.5–1050.004–0.03 ng/mLAnal Chem,2011,83:5237–5244.23尼龙6纳米纤维垫多西他赛兔血浆HPLC-UV852 ng/mLJ Chromatogr B,2010,878:2403–2408.24PFSPE(PS)填充纤维固相萃取(聚苯乙烯)曲唑酮人血浆HPLC-UV94.6–105.58 ng/mL74顾忠泽,Anal Chim Acta,2007,587:75–81.25PS/G NF(聚苯乙烯/石墨烯纳米纤维)醛人呼出气冷凝液HPLC-VWD79.8–105.64.2–19.4 nmol/L Anal Chim Acta,2015,878:102–108(徐辉)26NFS(从烟灰得到的碳纳米纤维)芳香胺烟灰HPLC-UV70–1080.009–0.081 ug/LJ Chromatogr A,2011,1218:3581–3587.27树枝状大分子的功能化KIT-6(介孔材料)酸性药物尿HPLC-UV85.7–113.90.4–4.6 ng/mLJ Chromatogr A,2015,1392 :28–36.28改性硅胶(DPS)碱基核苷标准溶液LC-DAD未报道未报道J Chromatogr A,2014, 1337: 133–139.29聚丙烯亚胺树枝状大分子改性硅胶(PID-SG)铂,镍合金FAAS未报道0.014 ug/mL Ann Chim, 2005,95:695–701.30磁纳米颗粒Fe3O4@SiO2-C18葛根素大鼠血浆HPLC-UV85.2–92.30.05 ug/mLJ Chromatogr B,2013,912 :33–3731CTAB 涂渍 Fe3O4甲芬那酸血浆、尿液HPLC-UV92–990.087– 0.097 ng/mLJ Chromatogr B,2014,945–946:46–52.32磁性多层碳纳米管聚乙烯醇(PVA)复合凝胶邻苯二甲酸酯包装食品GC-FID70–11826.3–36.4 ng/mL Food Chem,2015,166:275–28233Fe3O4@SiO2-C18利多卡因大鼠血浆HPLC-UV-VIS-DAD89.4–92.30.01 ug/mLJ Chromatogr A, 2011, 1218:7248–725334免疫吸附剂单克隆抗体的琼脂糖凝胶活化单克隆抗体:吡唑醚菌酯苹果汁和红葡萄汁HPLC-UV98.5–101.6250 ug/LJ Chromatogr A,2011, 1218 : 4902–490935从内吗啡肽1和2 (End1 和 End2)的多克隆IgG抗体得到Fab片段,通过2-琥珀酰亚胺把它键合到硅胶上得到的吸着剂阿片肽人血浆CE-MS未报道End1: 0.5 ng/mL End2: 5 ng/mLAnal Chim Acta,2013, 789 : 91–99.36把苯基乙胺A 的多克隆抗体接枝到CNBr活化的交联琼脂糖(Sepharose )4B 上苯乙醇胺饲料,肉及肝HPLC-UV89.48–104.8948.7 ng/mL J Chromatogr B ,2014,945–946: 178–18437核酸适配体功能化吸附剂——链霉亲和素活化的琼脂糖,溴化氰活化的琼脂糖可卡因死后血液HPLC-DAD90未报道Talanta ,2011, 85:616–62438核酸适配体功能化吸附剂——单链DNA四环素抗体四环素尿液和血浆ESI-IMS82.8–86.5%0.019–0.037 ug/mL J ChromatogrB: Anal Technol Biomed. Life Sci,2013,925:26–32.39核酸适配体功能化吸附剂——链霉亲和素聚(TRIM-co-GMA)凝血酶人血清HPLC-UV-VIS未报道4 nm [Anal Chem,80,2008 (8) :7586–759340离子印迹聚合物---铁(Ⅲ)-印迹氨基功能化硅胶吸附剂铁(Ⅲ)标准溶液ICP-AES950.34 ug/LTalanta,2007 ,71 : 38–4341离子印迹聚合物--铑(Ⅲ)离子印迹聚合物铑(Ⅲ)地球化学参照样品RLS900.024 ng/mLTalanta,2013 ,105:124–130.42离子印迹聚合物--Pb(II)印迹聚合物颗粒Pb(II)食品FAAS97.6–100.70.42 ng/mL Food Chem. 138 (2013) 2050–2056.43分子印迹聚合物---功能单体MAA---交联剂:乙二醇二甲基丙烯酸酯,致孔剂:丁酮和正庚烷,聚合类型:沉淀聚合烯酰吗啉人参GC-u-ECD89.2–91.60.002 mg/kg J Chromatogr B,2015, 988 :182–18644分子印迹聚合物---功能单体:DEAEMA,交联剂: EDMA,聚合化类型:本体极化生物活性的萘醌植物提取物HPLC-UV-VIS未报道未报道J Chromatogr A,2013, 1315 : 15–2045分子印迹聚合物---功能单体:接枝PMAA/ SiO2,交联剂:EGGE,模板:肌酐,肌酐肌酐标准溶液UV/vis未报道未报道Anal Bioanal Chem,2015, 407 :2685–271046金属有机框架化合物-- MOF MIL-101(Cr)PAHs环境水HPLC-PDA81.3–105.02.8–27.2 ng/LAnalyst, 137,2012:3445–345147金属有机框架化合物-- MOF MIL-53, MIL-100, 和 MIL-101肽,蛋白生物样品MALDI-TODF-MS未报道未报道Chem Commun,2011 ,47: 4787–478948金属有机框架化合物-- MOF MIL-53(Al)Fe水溶液XRD98.2–106.20.9 uMAnal Chem,2013, 85: 7441–744649金属有机框架化合物-- MOF MIL-101有机氯农药水样GC-MS87.6–98.60.0025/0.016 ng/mL J Chromatogr A, 2015,1401: 9–1650限进性材料—RAMs-MIPs, 模板分子:马拉硫磷有机磷农药蜂蜜GC-FPD90.9–97.60.0005–0.0019 ug/mLFood Chem,2015,187: 331–337.51亲水性共聚单体:GMA XDS-RAM碱性药物人血浆LC-UV-VIS94.2–98.2未报道J Chromatogr A ,2002,975:145–15552亲水性共聚单体:GMA C-WCX-RAM碱性药物人血浆LC-UV96.7–104.9未报道J Chromatogr A, 2008,1190 : 8–13.  AAS--原子吸收光谱 CE--毛细管电泳 CTAB--十六烷基三甲基溴化铵 DEAEMA--二乙基氨基乙基-2-甲基丙烯酸酯 DPS--聚合物改性二氧化硅 EDMA--乙二醇二甲基丙烯酸酯 EGGE--乙二醇缩水甘油醚 ESI-IMS-- 电喷雾电离离子迁移谱 ETAAS--电热原子吸收光谱法 FAAS--火焰原子吸收光谱法 FLR--荧光,荧光检测器 G--石墨烯 GMA--甲基丙烯酸缩水甘油酯 GO--氧化石墨烯 GSH--谷胱甘肽 ICP-AES-- 电感耦合等离子体原子发射光谱法 MAA--甲基丙烯酸 mAbs--单克隆抗体 MC-WCXRAM, 甲基纤维素固定化弱阳离子交换硅基限进性材料 OMWCNT--氧化多壁碳纳米管 OSWCNT--氧化碳纳米管 PAHs--多环芳烃 PFSPE, 填充纤维固相萃取 PPID-SG--G4.0聚(亚胺)树枝状大分子的固定化硅胶 PS--聚苯乙烯 PS/G--聚苯乙烯/石墨烯 PVA--聚乙烯醇 RGO--还原氧化石墨烯 RLS--共振光散射法, VWD--可变波长检测器, XDS--阳离子交换限进性吸着剂材料(文献:Tr Anal Chem, 2016, 77: 23–43)3. 小结  由于篇幅限制,这一篇主要介绍了常规和新型、选择性固相微萃取剂的应用实例,从这些应用中可以看出:常规吸着剂使用的以烷基键合硅胶居多。在新型、选择性微固相萃取吸着剂中各种碳类纳米材料为多。下一篇将详细讨论这些新型、选择性微固相萃取吸着剂。
  • 卫生部办公厅发布《食品添加剂 醋酸酯淀粉》等16项食品安全国家标准征求意见函
    卫生部办公厅关于征求《食品添加剂 醋酸酯淀粉》等16项食品安全国家标准(征求意见稿)意见的函  卫办监督函〔2012〕441号  各有关单位:  根据《食品安全法》及其实施条例的规定,我部组织制定了《食品添加剂 醋酸酯淀粉》等16项食品安全国家标准(征求意见稿)。现征求你部门意见并向社会公开征求意见,请于2012年7月16日前以传真或电子邮件形式反馈我部。  传  真:010-67711813  电子信箱:gb2760@gmail.com  二○一二年五月十六日食品添加剂 醋酸酯淀粉》等16项食品安全国家标准(征求意见稿)编号标准名称1食品添加剂 醋酸酯淀粉2食品添加剂 磷酸酯双淀粉3食品添加剂 氧化淀粉4食品添加剂 酸处理淀粉5食品添加剂 乙酰化二淀粉磷酸酯6食品添加剂 羟丙基淀粉7食品添加剂 羟丙基二淀粉磷酸酯8食品添加剂 乙酰化双淀粉己二酸酯9食品添加剂 氧化羟丙基淀粉10食品添加剂 辛烯基琥珀酸铝淀粉11食品添加剂 磷酸化二淀粉磷酸酯12食品添加剂 淀粉磷酸酯钠13食品添加剂 羧甲基淀粉钠14食品添加剂 松香甘油酯和氢化松香甘油酯15食品添加剂 天门冬氨酸钙16食品添加剂 凹凸棒粘土  附件:16项食品安全国家标准(征求意见稿).rar
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制