当前位置: 仪器信息网 > 行业主题 > >

恩格列净杂质

仪器信息网恩格列净杂质专题为您提供2024年最新恩格列净杂质价格报价、厂家品牌的相关信息, 包括恩格列净杂质参数、型号等,不管是国产,还是进口品牌的恩格列净杂质您都可以在这里找到。 除此之外,仪器信息网还免费为您整合恩格列净杂质相关的耗材配件、试剂标物,还有恩格列净杂质相关的最新资讯、资料,以及恩格列净杂质相关的解决方案。

恩格列净杂质相关的资讯

  • 赛默飞发布药物杂质鉴定新流程
    2015年8月18日,上海——科学服务领域的世界领导者赛默飞世尔科技(以下简称:赛默飞)近日发布基于Thermo ScientificTM Q ExactiveTM Focus串联四极杆高分辨质谱仪(产品详情:www.thermoscientific.cn/product/q-exactive-focus-hybrid-quadrupole-orbitrap-mass-spectrometer.html)和新一代的智能小分子化合物鉴定软件Thermo ScientificTM Compound DiscovererTM的药物杂质鉴定的新流程,实现了对泮托拉唑杂质谱的分析。无论是优质数据的有效获取,还是获取后对已知和未知杂质的分析鉴定,该工作流程都可以完美实现。药物杂质是药物活性成分(原料药)或药物制剂中不希望存在的化学成分,会对用药的安全性和有效性带来隐患,因此杂质的检测是保证药物质量至关重要的部分,FDA、EMEA、PMDA、CFDA等各国药品监管部门均制定了相应的指导原则对其进行严格管控。赛默飞独有的四极杆静电场轨道阱高分辨液质联用技术,凭其高灵敏度、高专属性和高准确性的分析能力,可对样品中药物杂质进行全面的信息采集。结合小分子化合物鉴定软件Compound Discoverer以高度灵活的自定义方式制定分析工作流程,对数据中的目标和非目标杂质进行提取、比对及鉴定,工作流程如下:通过软件对样品数据的分析和提取,在Compound Discoverer中可以直观、便捷的查看和筛选预期和未知的杂质分析结果,从结果界面中可获得不同条件下样品杂质的变化情况,获得所有杂质保留时间、一级质谱、同位素和二级质谱等丰富信息。在获得母药和杂质的一级和二级质谱信息后,软件将调用碎裂数据库(Fragmentation Library)快速的对泮托拉唑的碎片结构进行归属,该数据库几乎涵盖了所有已发表的文献,保证了碎片解析的准确性。在此研究结果之上,通过软件对杂质与母药二级质谱信息之间的比对,进一步对杂质变化位点进行推测。在本例中,共鉴定到泮托拉唑杂质15个,其中可能的降解杂质9个,可能的工艺杂质6个,为药物杂质的质量控制、安全性评估提供了富有价值的信息。相关资料下载地址:www.thermoscientific.cn/content/dam/tfs/Country%20Specific%20Assets/zh-ch/CMD/MS/LSMS/documents/analysis%20drug%20impurity%20in%20pantoprazole.pdf -------------------------------------------------关于赛默飞世尔科技赛默飞世尔科技(纽约证交所代码:TMO)是科学服务领域的世界领导者。公司年销售额170亿美元,在50个国家拥有约50,000名员工。我们的使命是帮助客户使世界更健康、更清洁、更安全。我们的产品和服务帮助客户加速生命科学领域的研究、解决在分析领域所遇到的复杂问题与挑战,促进医疗诊断发展、提高实验室生产力。借助于首要品牌Thermo Scientific、Applied Biosystems、Invitrogen、Fisher Scientific和Unity Lab Services,我们将创新技术、便捷采购方案和实验室运营管理的整体解决方案相结合,为客户、股东和员工创造价值。欲了解更多信息,请浏览公司网站:www.thermofisher.com 赛默飞世尔科技中国赛默飞世尔科技进入中国已超过30年,在中国的总部设于上海,并在北京、广州、香港、台湾、成都、沈阳、西安、南京、武汉等地设立了分公司,员工人数约3700名。为了满足中国市场的需求,现有8家工厂分别在上海、北京和苏州运营。我们在北京和上海共设立了9个应用开发中心,将世界级的前沿技术和产品带给国内客户,并提供应用开发与培训等多项服务;位于上海的中国创新中心结合国内市场的需求和国外先进技术,研发适合中国的技术和产品;我们拥有遍布全国的维修服务网点和特别成立的中国技术培训团队,在全国有超过2000 名工程师提供售后服务。我们致力于帮助客户使世界更健康、更清洁、更安全。欲了解更多信息,请登录www.thermofisher.cn
  • 原料药中杂质分离和特征描述战略性方法
    原料药中杂质的分离和特征描述的战略性方法 迈克尔 道. 琼斯, 玛丽安 特渥辛, 罗布 Plumb,宋相晋, 约翰 Shockcor, 乔斯 卡斯特罗 佩雷斯 和 安德鲁 奥宾 沃特世公司, 米尔福德市, 马萨诸塞州, 美国, 01757 简介 监测化合物中的杂质对于生产制剂和原料药的公司来说是有既得利益的,除了法规要求外,还有其它很多原因。杂质的鉴定可以帮助发现潜在未知的降解途径,虚假的过程/专利保护侵害,和/或遗传毒性影响。杂质的分析是劳动密集型的工作,包括方法开发,杂质分离技术和各种各样的分析方法,以得出所感兴趣杂质的真实结构。 这篇文章介绍了一种战略性的方法,该方法应用了高分离液相色谱理论和强制降解研究,以最大化生产原料药喹硫平中的杂质。高分离液质联用和核磁被用来解释结构。 方法学 分析 仪器: ACQUITY 超高效液相 色谱柱: ACQUITY UPLC™ BEH C18 规格: 100 x 2.1mm, 1.7µ m 流动相: A: 20mM Ammonium 碳酸氢铵, pH10 B: 乙腈 梯度: 见图 1 和 2 柱温: 650C 进样量: 3 µ L 检测器: ACQUITY PDA @ 250 nm ACQUITY SQD 扫描范围 100-1000amu 质谱条件 仪器: Waters® SYNAPT™ 软件: Masslynx™ 4.1 离子源: ES+ 毛细管电压 (kV): 3.2 提取电压 (V): 4.0 脱溶剂气温度 (0C): 350.0 源温度 (0C): 120.0 脱溶剂气流速 (L/Hr): 650.0 锁定质量: 300pg/µ L白氨酸/脑啡肽@ 50µ L/min 质谱/质谱参数设置 飞行时间 椎孔电压 (V): 15 碰撞能 (V): 变化从15到30 采集范围: 质谱 100 - 1000Da 质谱/质谱 50—600 Da 制备 沃特世质谱引导的纯化系统 泵 2454二元溶剂管理器 进样/收集器 2767 检测器 2998 光电二极管阵列 质谱 3100 色谱柱 100X19mm XBridge, 5 um 溶剂 A = 10 mm 碳酸氢铵 pH 10 溶剂 B = 乙腈 流速 25/mL/min 梯度 B 经过10分钟 从5% 到60% 95% 有机相保持5分钟 核磁 仪器参数见图9 观察,制备和分离 喹硫平的酸解 该杂质鉴定方法(以前建立的)被用来鉴定喹硫平原料药在0.1mol/L盐酸中降解的主要杂质。 图1: pH 9 的碳酸氢铵, ACQUITY BEH C18 2.1x100 mm 1.7um, 乙腈, 0.8mL/min. 650C, 20 分钟, 15-39%B到10.5分钟, 39-43%B到14.4分钟, 43-95%B到18分钟, 保持95%B到20分钟. 制备分离的准备 此方法为了更快的速度、更低的温度和更短的色谱柱,而进行了再优化,同时又能保持主要杂质和喹硫平间足够的分辨率 . 为什么呢? 在从超高效液相方法转换到制备型高效液相时,有些因素必须要考虑: 保持分离效率: L/dP (柱长度/颗粒度) 例如: 50 mm、1.7 um色谱柱的L/Dp为29,411,和具有30,000 L/Dp 值的150mm、5um制备柱等效 能使用更短的制备柱吗?在杂质402的分离中,100 mm的制备柱仍能提供足够的柱效以完全分离杂质。 在放大制备梯度中,对于制备流速,柱体积数必须保持合适的数值。如果这些因素都被考虑到,从超高效液相方法转换到制备型高效液相是能保证相似的选择性的。 从超高效液相放大到制备色谱 传统上, 从分析型高效液相放大到制备型高效液相使用同样的色谱柱长度和颗粒度,并运用下面的公式: Fp= Fa [(Dp)2]/[Da2] 注: Fp=制备柱的流速 Fa=分析柱的流速 Dp=制备柱的内径 Da=分析柱的内径 其它工具: Waters 制备放大计算器可以计算每个梯度段的时间,柱长度的变化和进样量。 聚焦梯度 *克利里等. 纯化过程中聚焦梯度的影响, Waters 应用文献 720002284EN 质谱引导的自动纯化 主要杂质m/z =402的分离在分析和化学上都很容易。 最大化产出: 8g/mL 喹硫平的储备液在 600C、0.1mol/L的盐酸中加热回流8小时, 以增加m/z=402 杂质的 产量 制备上样研究允许色谱柱进样20uL。 图3: 强制降解样品的制备色谱 仪器优势: 分离是通过Masslynx™ Fractionlynx™ 软件中的自动质量触发进行的。 ACQUITY BEH C18的方法可以无缝转换到XBridge C18 制备柱 通过超高效液相对感兴趣杂质的再优化可提供快速方法,以通过UPLC-SQD, UPLC-oaTof, 和/或UPLC MS/MS进一步确认分析 鉴定,确认和特征描述 分离的确认 通过质谱引导的纯化系统收集的m/z = 402的馏分被收集并挥干。该分离步骤得到了28.6mg m/z = 402的杂质。用甲醇稀释得到浓度为286µ g/mL和2.86µ g/mL的溶液,并用3分钟的UPLC-SQD方法进样以确认分离的质量 . 图4: 被分离杂质m/z=402的UPLC UV/SQD 确认 质量精度的重要性 杂质的质荷比为402,等于喹硫平(m/z = 384)加合了18 amu。样品进样到Waters SYNAPT™ MS可得到精确质量数以确认元素组成 . 图5: m/z = 402杂质的元素组成. 双键等价值(DBE) 、低的同位素匹配度(low i-Fit)、毫道(mDa)和结果都支持第一个分子式 加合可以在喹硫平结构中氧化一个点,同时减少一个双键 . 图6: 建议的结构. A.) 硫代氧化物 或 B.氮代氧化物 )? 氮代氧化物为基础的结构的确认 通常, 在低PH流动相的反相液相中,含有氮代氧化物杂质的化合物在原料药后被洗脱出来。超高效液相是在pH=9.0下进行的,所以使用pH=3.0的甲酸铵和乙腈的梯度检测速度变快 。 图7: 酸性流动相条件下进样时,酸降解喹硫平的洗脱顺序。因为感兴趣的峰在喹硫平原料药前被洗脱出来,所以氮代氧化物的可能性不大 . 质谱/质谱分析 精确质量数质谱/质谱分析是为了确认任何碎片数据的存在已进一步支持喹硫平的硫代氧化物降解形式。指示性的碎片最有可能是分子量很低的碎片,在那里所发生的裂解可以区分硫代氧化物和氮代氧化物。 图 8: 裂解分析显示了硫代氧化物/裂解为基础的结构。 通过分析m/z = 137.0063的碎片可得出: -元素组成是 C7 H5 O S -质量精度为 0.2毫道尔顿 -双键等价值(DBE) = 5.5, 对于环结构转换为4.5,而对于硫代氧化物为1.0。 如果N=C是完整的,由于四价碳缺少质子,所以不可能得到228.0480和175.1428的碎片 NMR 支持的数据 核磁数据和建议的结构是一致的 图 9: 被分离的喹硫平中m/z = 402杂质的C13-NMR and H-NMR 结论 从超高效液相转换到制备色谱 -保持L/Dp不变被证明是放大可能性的关键因素 -相容的化学性质可最小化分离度差异 -利用强制降解研究可增加最大化产出的潜能 -质谱引导的馏分收集可保证正确的杂质收集 杂质确认和说明 -ACQUITY UV/SQD 为很多的馏分组成提供快速确认 -高分辨率 SYNAPT MS为母离子和产物离子的元素组成确认提供很好的质量精度 -对于有显著不同色谱行为的结构,高/低PH值流动相测试可以帮助确定建议的结构 -尽管采集了核磁数据(不是决定性的),但它的精确质量质谱/质谱数据证明了杂质是硫代氧 化物而不是遗传毒性结构。
  • 机械杂质测定仪|石油产品机械杂质测定的作用及意义
    得利特(北京)科技有限公司专注油品分析仪器领域的开发研制销售,致力于为国内企业提供高性能的自动化油品分析仪器。公司推出系列精品润滑油分析检测仪器、燃料油分析检测仪器、润滑脂分析检测仪器等。垂询电话:010-80764046,807640561、什么叫做试油的机械杂质?答:试油中的机械杂质是指存在于油品中所有不溶于溶剂(汽油,苯)的沉淀状或悬浮状物质。这些杂质多由砂子,粘土、铁屑粒子等组成。现行方法测出的杂质也包括了一些不溶于溶剂的有机成份,如碳青质和碳化物等。2、油品中机械杂质对机组运行以下危害:(1)可引起调速系统卡涩和机组的转动部分磨损等潜在故障。(2)引起绝缘油的绝缘强度、介质损耗因数及体积电阻率等电气性 能下降。(3)影响汽轮机油的乳化性能和分离空气的性能。(4)堵塞滤油器和滤网,影响油箱油位的显示,磨损油泵齿轮。(5)影响变压器散热,引起局部过热故障。相关仪器ENDENDA1280机械杂质测定仪符合GB/T511标准,适用于测定石油产品中的各类轻、重质油、润滑油及添加剂的机械杂质的含量。可广泛应用于电力、石油、化工、商检及科研等部门。仪器特点1.数码显示,智能温控表控温2.外观美观,测试方便,性能稳定可靠3.实现按标准要求的升温速率4.仪器主要由玻璃器皿、恒温水浴、真空 泵、电子控温箱组成技术参数• 工作电源: AC 220V±10%,50Hz• 水浴加热功率: 1000W• 水浴控温范围: 室温~90℃内可调• 水浴温度显示: LED数字显示• 水浴控温精度: ±1℃• 漏斗控温范围: 室温∼90℃内可调• 漏斗控温显示: LED数字显示• 漏斗控温精度: ±2℃• 环境温度: 5℃∼45℃• 相对湿度: ≤85%• 整机功耗: ≤1200W• 外形尺寸: 400*380*600• 重 量: 7.5KG
  • 非手性杂质的超高效合相色谱分析方法开发
    Michael D. Jones、Andrew Aubin、Paula Hong和Warren Potts 沃特世公司(美国马萨诸塞州米尔福德市) 应用优势 1.正交法进行药物杂质分析 2.用于药物杂质分析的 UPC2 方法 3.对杂质采用超临界流体色谱分析符合 ICH 指南和法规要求 沃特世解决方案 ACQUITY UPC2&trade 系统 ACQUITY UPC2色谱柱套装 Empower® 3软件 ACQUITY® SQD质谱仪 关键词 UPC2,药物杂质,稳定性指示方法,降解分析,方法开发,甲氧氯普胺,合相色谱 简介 超高效合相色谱 (UPC2&trade )以亚2 µ m颗粒为固定相,采用超临界流体二氧化碳作为主要流动相成分。合相色谱是一种使用少量溶剂即可实现高速分析的分析工具,尤其是在分析杂质时,相比于反向液相色谱(LC),合相色谱的正交方法更有利于发现未知杂质。合相色谱的方法开发不同于液相和气相色谱的方法开发策略,后者已经基本成熟。为了简化这个过程,我们需要研究一种系统的方法,用于开发非手性物质的合相色谱方法。 了解药品和药物材料中的杂质分布是一个重要步骤,样品纯度的评估可帮助制药公司在药物开发过程中做出决策,推进药物上市进程。杂质分布将确定供应商所提供原材料的质量、成品的保质期、合成途径和防止伪造的知识产权保护。色谱图的正交对比有助于生产商作出最明智的决策。在本应用纪要中,实验采用ACQUITY UPC2系统分析甲氧氯普胺及其相关杂质。如图1所示,甲氧氯普胺(胃复安)是一种止吐药,可以治疗胃灼热、胃溃疡以及由化疗导致的恶心。方法开发研究了色谱柱和溶剂,以确定优化特异性和峰形的合适方法条件。 图1. 甲氧氯普胺的化学结构。 实验 UPC2条件 系统:配备PDA和SQD检测器的ACQUITY UPC2系统 色谱柱:ACQUITY UPC2 BEH 2-EP 3.0 × 100 mm,1.7 µ m 流动相A:CO2 流动相B:含1 g/L甲酸铵的甲醇/乙腈(50:50)溶液,加2%的甲酸 清洗溶剂: 70:30的甲醇/异丙醇 分离模式:梯度;溶剂B在5.0 min内由2%增加至30%;达到30%后,保持1 min 流速:2.0 mL/min CCM 反压:1500 psi 柱温:50 ℃ 样品温度:10 ℃ 进样体积: 1.0 µ L 运行时间: 6.0 min 检测条件: PDA 3D通道:PDA,200到410 nm;20Hz PDA 2D通道:270 nm,4.8 nm分辨率(补偿500到600 nm)SQD MS:150到1200 Da;ESi+和ESi- 补液流速:不需要 数据管理: Empower 3软件 样品描述 分离度溶液由甲氧氯普胺和八种相关杂质制备而成,将其置于TruView&trade 最大回收样品瓶中等待进样,如表1所示。杂质的浓度为甲氧氯普胺标准品浓度的0.1% w/w。分离度溶液用于色谱分析方法开发。 表1. 甲氧氯普胺杂质标准品、峰的名称、质量数和欧洲药典分类列表。 结果与讨论 系统筛选 方法开发过程对色谱柱、改性剂和改性添加剂进行了系统筛选,以获得最佳分离结果。初始的配置通过四种改性剂对四种UPC2色谱柱进行了筛选。&ldquo 改性剂&rdquo 是强溶剂流动相,有利于洗脱极性较强的分析物。所使用的四种溶剂分别是甲醇、含0.5%甲酸的甲醇、含2 g/L甲酸铵的甲醇和含0.5%三乙胺的甲醇。筛选过程采用溶剂B在5 min内从5%增加至30%,达到30%时保持1 min的常用梯度。总筛选时间仅两个多小时。对比各色谱柱所得峰可以发现,含有甲酸铵的甲醇总体上可提供最好的峰形,如图2所示。方法筛选过程中通过查看ACQUITY SQD提供的质谱图实现峰跟踪。对于极性较强的分析物,选择性(&alpha )有很大不同。在这些对比实验中,流动相保持恒定,因而不断变化的&alpha 是由[固定相 &ndash 溶质]相互作用所导致。 图2. 色谱柱筛选结果。改性剂(B)是含有2 g/L甲酸铵的甲醇。溶剂B在5 min内从5%增加至30%,达到30%时保持1 min。 基于这些结果,UPC2 2-EP固定相是最佳的色谱柱选择,可以为大多数分析物提供更好的峰形和分离度。UPC2 CSH Flouro-Phenyl色谱柱可以提供较好的选择性和峰形;但是,杂质C未能按预期分离成两个峰。这种未知现象将在未包括在本应用纪要中的另一组实验中进一步考察。1 梯度斜率的影响 在反相LC中,梯度斜率是控制选择性和分离度的常用工具。使用UPC2 2-EP固定相,延长总的梯度运行时间可以降低梯度斜率。斜率的改变对色谱图基本没有影响,仅使峰6和7之间的选择性发生改变,如图3所示。 图3. 归一化的x轴叠加显示甲氧氯普胺,采用延长的12 min和35 min梯度运行时间,其斜率较6 min的筛选实验更小。使用原始梯度;溶剂B由5%增加至30%。 不同洗脱溶剂的影响 使用变化率较平缓的梯度并未增加峰与峰之间的分离度。为提高分离度,将低极性非质子有机溶剂(乙腈)与甲醇(极性较强的洗脱溶剂)以不同比例混合。乙腈的添加提高了分离度,扩展了峰之间的分离间隔。这些现象证明本方法可在方法开发中发挥重要作用,如之前发表的结果所示。1 图4. 如叠加图中突出部分所示,在改性剂成分中添加乙腈后,后部洗脱分析物的分离度明显提高。 在添加剂筛选过程中,我们也考察了每种杂质各自的标准品。甲酸可以优化杂质H的峰形;但是,它会影响其它相关物质的色谱分析性能。添加剂的浓度也会对峰形产生影响。为了得到更理想的峰形,浓度需要高于反向LC的常用浓度。增加甲酸的浓度可以进一步改善杂质H的峰形,如图5所示。但是,杂质F的峰形受到了影响,如图6所示。组合使用甲酸和甲酸铵可同时获得两种添加剂的优势,使全部的分离均获得最佳峰形。在改性剂中使用添加剂甲酸和/或甲酸铵对过期样品进行分析所得结果如图7所示。在此对比实验中使用过期样品使我们能够更好地评估已知杂质在存在未知杂质条件下的选择性和峰形。如图7所示,解决峰形问题最终会影响色谱分离的效率、分离度和灵敏度。 图7. 过期甲氧氯普胺样品的分析,改性剂中分别添加不同的添加剂成分。将甲酸铵和甲酸组合,称之为&ldquo 类缓冲液&rdquo 系统,此系统可使样品中的所有分析物均获得最佳峰形。所使用的改性剂为50:50的甲醇/乙腈。 评估特异性 在确定可对选择性、分离度和峰形产生积极影响的方法条件后,各变量同时获得了优化。实验使用甲氧氯普胺和杂质(对照)的标准混合物和过期的样品混合物对最终方法进行了评估,如图8所示。有关未知杂质的进一步考察,请参阅沃特世(Waters® )应用纪要。2 图8. 采用&ldquo 实验&rdquo 部分中列出的最终方法条件对甲氧氯普胺对照混合物和降解混合物进行的对比分析。 结论 本实验使用ACQUITY UPC2系统成功对甲氧氯普胺及其相关物质进行了非手性分析。了解杂质结构的特性有利于方法开发。实验中分析的多种杂质包括胺类、羟基、酯类和羧酸。能够影响选择性、分离度和峰完整性的主要方法变量分别是固定相、改性剂的洗脱强度和添加剂的组成。最后甲氧氯普胺相关物质的分析方法展示了此方法对过期甲氧氯普胺样品的特异性。 本方法开发过程通过色谱柱筛选处理中的对比实验揭示了多种[固定相 &ndash 分析物]相互作用。更多的相互作用需要在已发表的研究基础3-6上进行进一步的探索。了解这些方法变量相互作用的影响将有助于创建一种更加适用的方法开发技术。 参考文献 1. Jones MD, et al.Analysis of Organic Light Emitting Diode Materials by UltraPerformance Convergence C hromatography Coupled with Mass Spectrometry (UPC2 /MS).Waters Application Note 720004305EN.2012 April. 2. Jones MD, et al.Impurity Profiling Using UPC2 /MS. Waters Application Note 720004575EN.2013 Jan. 3. West C, Lesellier E. A unified classification of stationary phases for packed column supercritical fluid c hromatography.J Chromatogr A. 2008 May 1191(1-2):21-39. 4. West C, K hater S, Lesellier E. C haracterization and use of hydrophilic interaction liquid c hromatography type stationary phases in supercritical fluid c hromatography.J Chromatogr A. 2012 Aug 1250:182-95. 5. Lesellier E. Retention mec hanisms in super/subcritical fluid c hromatography on packed columns.J Chromatogr A. 2009 Mar 1216(10):1881-90. 6. Zou W, Dorsey JG, C hester T L. Modifier effects on column efficiency in packed-column supercritical fluid c hromatography.Anal Chem.2000 Aug 72(15):3620-6.
  • 赛默飞发布基于高分辨液质的药物杂质分析解决方案
    2015年7月,上海——赛默飞于近日发布了基于Thermo ScientificTM Q ExactiveTM Focus 组合型四极杆 Orbitrap 质谱仪的药物杂质分析解决方案,帮助用户快速高效地采集隐藏在大量母药中微量杂质的质谱信息,并对其进行有效的鉴定和定量分析。药物杂质因其可能对药品质量、安全性和有效性产生影响,目前已成为国内外药品监管机构的重点关注内容之一。药物中含有杂质会降低药物疗效,影响其稳定性,有的甚至对人体健康有害或产生其他毒副作用。因此,检测有关物质,控制纯度对确保用药安全有效,保证药物质量至关重要。赛默飞建立基于 Q Exactive Focus 的药物杂质分析解决方案,介绍了Q Exactive Focus 在药物杂质分析中的应用,从样品制备到结构解析帮助用户建立杂质分析工作流程和数据分析方法。Q Exactive Focus 是基于 Orbitrap 技术的台式高分辨质谱,将高性能四极杆的母离子选择能力与高分辨Orbitrap 的精确质量数(HR/AM)检测技术相结合,提供优异性能和出色多功能性,并能进行高精度的目标杂质筛选或非目标杂质鉴定,高品质的数据可提供更可靠更灵敏的杂质定性和定量检测。本解决方案还列举了Q Exactive Series 应用于药物分析的部分客户文章,以及提供了药物杂质研究相关的网站和参考信息。为用户在药物杂质分析领域带来新的质谱检测体验。产品链接:www.thermoscientific.cn/product/q-exactive-focus-hybrid-quadrupole-orbitrap-mass-spectrometer.html解决方案下载链接:www.thermoscientific.cn/content/dam/tfs/Country%20Specific%20Assets/zh-ch/CMD/MS/LSMS/documents/QE%20Focus%20drug%20impurity%20analysis.pdf-------------------------------------------------关于赛默飞世尔科技赛默飞世尔科技(纽约证交所代码:TMO)是科学服务领域的世界领导者。公司年销售额170亿美元,在50个国家拥有约50,000名员工。我们的使命是帮助客户使世界更健康、更清洁、更安全。我们的产品和服务帮助客户加速生命科学领域的研究、解决在分析领域所遇到的复杂问题与挑战,促进医疗诊断发展、提高实验室生产力。借助于首要品牌Thermo Scientific、Applied Biosystems、Invitrogen、Fisher Scientific和Unity Lab Services,我们将创新技术、便捷采购方案和实验室运营管理的整体解决方案相结合,为客户、股东和员工创造价值。欲了解更多信息,请浏览公司网站:www.thermofisher.com 赛默飞世尔科技中国赛默飞世尔科技进入中国发展已有30多年,在中国的总部设于上海,并在北京、广州、香港、台湾、成都、沈阳、西安、南京、武汉等地设立了分公司,员工人数约3700名。我们的产品主要包括分析仪器、实验室设备、试剂、耗材和软件等,提供实验室综合解决方案,为各行各业的客户服务。为了满足中国市场的需求,现有8家工厂分别在上海、北京和苏州运营。我们在全国共设立了6个应用开发中心,将世界级的前沿技术和产品带给国内客户,并提供应用开发与培训等多项服务;位于上海的中国创新中心结合国内市场的需求和国外先进技术,研发适合中国的技术和产品;我们拥有遍布全国的维修服务网点和特别成立的中国技术培训团队,在全国有超过2000名专业人员直接为客户提供服务。我们致力于帮助客户使世界更健康、更清洁、更安全。欲了解更多信息,请登录网站www.thermofisher.cn
  • 赛默飞推出针对药物杂质分析的离子阱多级液质解决方案
    2015年2月25日,上海——科学服务领域的世界领导者赛默飞世尔科技(以下简称:赛默飞)近日推出《离子阱多级液质药物杂质分析解决方案》。助力药物杂质分析,提供从数据采集到数据处理的完整工作流程,帮助客户开展快速、智能和深入的杂质研究工作。 药物杂质因其可能对药品质量、安全性和有效性产生影响,目前成为国内外药品监管机构的重点关注内容之一。随着我国医药产品出口规模的扩大,了解国外法规市 场的药物杂质控制要求、加强对药物杂质的分析与控制已成为国内药品生产企业共同关注的话题。药物中的杂质会降低疗效,影响药物的稳定性,甚至对人体健康有 害。因此,检测有关物质,控制纯度对确保用药安全有效,对保证药物质量非常重要。 赛默飞的离子阱技术有效解决了药物杂质研究难题,其高灵敏度和宽广的动态范围能够采集到药物中微量杂质的有效质谱信息;离子阱的多级质谱能力可以获得杂质的“指纹图谱”-- 离子树,结合强大的结构解析软件可以对工艺杂质或降解产物的结构进行深入有效的剖析;结合高效的色谱分离、深入的多级质谱分析和智能化的解析软件,赛默飞建立了基于离子阱质谱技术的药物杂质分析解决方案。 下载链接:http://www.thermo.com.cn/article7037.html ------------------------------------------- 关于赛默飞世尔科技 赛默飞世尔科技(纽约证交所代码:TMO)是科学服务领域的世界领导者。公司年销售额170亿美元,在50个国家拥有员工约50,000人。我 们的使命是帮助客户使世界更健康、更清洁、更安全。我们的产品和服务帮助客户加速生命科学领域的研究、解决在分析领域所遇到的复杂问题与挑战,促进医疗诊 断发展、提高实验室生产力。借助于Thermo Scientific、Life Technologies、Fisher Scientific和Unity? Lab Services四个首要品牌,我们将创新技术、便捷采购方案和实验室运营管理的整体解决方案相结合,为客户、股东和员工创造价值。欲了解更多信息,请浏 览公司网站:www.thermofisher.com赛默飞世尔科技中国 赛默飞世尔科技进入中国发展已有30多年,在中国的总部设于上海,并在北京、广州、香港、台湾、成都、沈阳、西安、南京、武汉等地设立了分公 司,员工人数超过3800名。我们的产品主要包括分析仪器、实验室设备、试剂、耗材和软件等,提供实验室综合解决方案,为各行各业的客户服务。为了满足中 国市场的需求,现有8家工厂分别在上海、北京和苏州运营。我们在全国共设立了6个应用开发中心,将世界级的前沿技术和产品带给国内客户,并提供应用开发与 培训等多项服务;位于上海的中国创新中心结合国内市场的需求和国外先进技术,研发适合中国的技术和产品;我们拥有遍布全国的维修服务网点和特别成立的中国 技术培训团队,在全国有超过2000名专业人员直接为客户提供服务。我们致力于帮助客户使世界更健康、更清洁、更安全。欲了解更多信息,请登录网站 www.thermofisher.cn
  • 岛津推出二维液质杂质鉴定系统
    制药企业QA/QC 部门的液相检测方法中会经常使用非挥发性缓冲盐流动相(如磷酸盐缓冲溶液),但当进行液质联用分析时,流动相必须转换为适合于ESI(APCI)的挥发性流动相。而改变流动相很多时候会使得杂质峰的保留时间发生变化,甚至湮没在主峰中,因此,需要耗时耗力摸索新的分析方法。 为解决上述问题,近日,岛津公司在中国市场推出了岛津独有的LCMS-IT-TOF 的新应用系统&mdash &mdash 二维液质杂质鉴定系统。通过使用岛津二维液质杂质鉴定系统,无需改变原先的流动相分离条件,就可以将目标杂质从一维色谱中收集下来,在二维色谱中直接使用挥发性流动相进行MS 分析。如果同时配备IT-TOF,则可以通过多级高分辨质谱进行精确定性分析。 2D LC/MS 杂质鉴定系统流路图 二维液质杂质鉴定系统是基于Prominence 设计、用于LCMS-IT-TOF 前端的应用系统,配置包括LCMS-IT-TOF,Prominence 系列液相单元以及 &ldquo 二维液质杂质鉴定系统启动包&rdquo 。启动包中包括二维液相色谱质谱联用的控制软件及整套连接管路。 本系统特长 1)无需改变分析方法 无需改变原有分析方法,系统就可以通过一维色谱分离,将目标杂质组分导入样品环;然后,二维色谱分离目标杂质,并通过提供准确和多级(n³ 2)的质谱数据来达到鉴别杂质的目的。 2) 二维方式实现全自动切换 当液相色谱分析使用非挥发性盐流动相(如磷酸盐缓冲液),转换为液质联用分析时,需将流动相转换为挥发性流动相(不使用缓冲盐或使用挥发性缓冲盐)以适应大气压离子源。而本系统允许在一维分析中使用非挥发性盐流动相,在二维液质分析中使用挥发性流动相,自动实现流动相的在线改变。 3)可通过专用软件轻松使用该系统 二维色谱分析通常需要复杂的指令程序来控制切换阀以收集目标杂质。在此系统中,通过简单的输入杂质保留时间,即可以自动创建时间程序来实现阀的切换等动作。当杂质的保留时间未知或者因为分析条件变化而改变时,也可手动控制阀来实现切换。 有关详情,敬请咨询岛津公司 · 北京分公司 (010) 8525-2310/2312 · 浦西分公司 (021) 2201-3888 · 广州分公司 (020) 8710-8661 · 四川分公司 (028) 8619-8421 · 沈阳分公司(024) 2341-4778 · 西安分公司(029) 8838-6350 · 乌鲁木齐分公司(0991) 230-6271 · 昆明分公司(0871) 315-2986 · 南京分公司(025) 8689-0258 · 重庆分公司(023) 6380-6068 · 深圳分公司(0755) 8287-7677 · 武汉分公司(027) 8555-7910 · 河南分公司(0371) 8663-2981 岛津用户服务热线电话:800-8100439 400-6500439 关于岛津 岛津企业管理(中国)有限公司是(株)岛津制作所为扩大中国事业的规模,于1999年100%出资,在中国设立的现地法人公司。 目前,岛津企业管理(中国)有限公司在中国全境拥有13个分公司,事业规模正在不断扩大。其下设有北京、上海、广州、沈阳、成都分析中心;覆盖全国30个省的销售代理商网络;60多个技术服务站,构筑起为广大用户提供良好服务的完整体系。 岛津作为全球化的生产基地,已构筑起了不仅面向中国客户,同时也面向全世界的产品生产、供应体系,并力图构建起一个符合中国市场要求的产品生产体制。 以&ldquo 为了人类和地球的健康&rdquo 为目标,岛津人将始终致力于为用户提供更加先进的产品和更加满意的服务。 更多信息请关注岛津公司网站www.shimadzu.com.cn/an/ 。
  • 赛默飞推出高分辨质谱在药物微量杂质定量中的解决方案
    2015年4月13日,上海——科学服务领域的世界领导者赛默飞世尔科技(以下简称:赛默飞)近日推出了基于Thermo Scientific? Q Exactive? Focus高分辨液质产品的药物杂质定量分析解决方案,该解决方案利用Q Exactive Focus的高灵敏度定量能力,实现了对盐酸美金刚片中微量杂质N-(二甲基金刚烷)甘氨酸的完美定量分析。药物中含有杂质会降低疗效,影响药物的稳定性,有的甚至对人体健康有害或产生其他毒副作用,因此加强对药物杂质的分析与控制已成为国内外药品生产企业共同关注的话题,随着对药物杂质的不断认识和法规要求的日益严苛,需要有更高灵敏度的检测手段来应对此类挑战。Q Exactive Focus结合了高性能四极杆和Orbitrap高分辨质量分析器,具有媲美高端三重四极杆的灵敏度和极佳的重现性,本应用利用Q Exactive Focus的多种高分辨扫描模式,对中重度至重度阿尔茨海默型痴呆治疗药物盐酸美金刚片中杂质N-(二甲基金刚烷)甘氨酸进行了不同方式的定量,获得了远优于进口药品注册标准中的液质定量效果,这表明Q Exactive Focus作为高分辨液质,不仅能胜任定性工作,同时也能够完美的应用于杂质定量研究,Fullscan、SIM和PRM三种扫描方式更可满足杂质定量的广泛性、灵敏度和专属性需求。 产品手册下载链接:http://www.thermoscientific.cn/content/dam/tfs/Country%20Specific%20Assets/zh-ch/CMD/MS/LSMS/documents/Q%20Exactive%20Focus%E4%B8%8D%E5%90%8C%E9%AB%98%E5%88%86%E8%BE%A8%E5%AE%9A%E9%87%8F%E6%96%B9%E5%BC%8F%E5%9C%A8%E8%8D%AF%E7%89%A9%E5%88%86%E6%9E%90%E4%B8%AD%E7%9A%84%E5%BA%94%E7%94%A8-20150304.pdf---------------------------------------关于赛默飞世尔科技赛默飞世尔科技(纽约证交所代码:TMO)是科学服务领域的世界领导者。公司年销售额170亿美元,在50个国家拥有约50,000名员工。我们的使命是帮助客户使世界更健康、更清洁、更安全。我们的产品和服务帮助客户加速生命科学领域的研究、解决在分析领域所遇到的复杂问题与挑战,促进医疗诊断发展、提高实验室生产力。借助于首要品牌Thermo Scientific、Applied Biosystems、Invitrogen、Fisher Scientific和Unity Lab Services,我们将创新技术、便捷采购方案和实验室运营管理的整体解决方案相结合,为客户、股东和员工创造价值。欲了解更多信息,请浏览公司网站:www.thermofisher.com赛默飞世尔科技中国赛默飞世尔科技进入中国发展已有30多年,在中国的总部设于上海,并在北京、广州、香港、台湾、成都、沈阳、西安、南京、武汉等地设立了分公司,员工人数约3700名。我们的产品主要包括分析仪器、实验室设备、试剂、耗材和软件等,提供实验室综合解决方案,为各行各业的客户服务。为了满足中国市场的需求,现有8家工厂分别在上海、北京和苏州运营。我们在全国共设立了6个应用开发中心,将世界级的前沿技术和产品带给国内客户,并提供应用开发与培训等多项服务;位于上海的中国创新中心结合国内市场的需求和国外先进技术,研发适合中国的技术和产品;我们拥有遍布全国的维修服务网点和特别成立的中国技术培训团队,在全国有超过2000名专业人员直接为客户提供服务。我们致力于帮助客户使世界更健康、更清洁、更安全。欲了解更多信息,请登录网站www.thermofisher.cn- See more at: http://www.thermoscientific.cn/about-us/news/Thermo-Fisher-launched-a-solution-for-for-trace-impurities-quantitative-measurement-in-the-drug-by-high-resolution-mass-spectrometry.html#sthash.9BjSejtj.dpuf
  • 岛津推出玉米赤霉醇及其杂质的离子阱-飞行时间串联质谱定性方法
    玉米赤霉醇是略带雌激素活性的合成激素,有催生长、提高瘦肉率的药物特性,作为家畜增重的外源激素,效果良好,但对人体生殖系统的形成和血浆中的甲状腺素水平有影响。家畜组织中玉米赤霉醇残留量一般为&mu g/kg水平,尽管极微量,但它仍对人体有潜在的危害。目前,许多国家对玉米赤霉醇用作动物促蛋白合成激素有严格控制,甚至禁止使用。我国农业部第235号公告明确规定玉米赤霉醇禁止用于所有食用动物,所有可食动物尿液。 &alpha -玉米赤霉醇结构式如图1所示。 图1:&alpha -玉米赤霉醇结构图 本文在研究&alpha ‐玉米赤霉醇(&alpha ‐zearalanol)标准物质时,采用高效液相色谱/离子阱-飞行时间/串联质谱仪(HPLC‐IT‐TOF MS)对其中杂质进行定性鉴定。高效液相色谱/离子阱-飞行时间/串联质谱仪是将高效液相色谱和离子阱质谱仪(IONS TRAP)以及飞行时间质谱仪(TOF MS)串联起来,使其在准确质量数和灵敏度方面较之其它多级质谱有较大提高,仪器具备高分辨率性能,能够准确提供分子和碎片离子的结构信息。由HPLC‐IT‐TOF MS 得到杂质的多级谱,对碎片裂解规律进行了探索,利用TOF较高的质量准确度,推测了杂质的可能结构,并用标准品对方法进行验证,结果表明,高效液相色谱/离子阱-飞行时间/串联质谱方法对杂质定性分析是很有效的。 有关玉米赤霉醇及其杂质的离子阱-飞行时间串联质谱定性方法的详细内容请参见http://www.instrument.com.cn/netshow/SH100277/down_171768.htm。 岛津高效液相色谱‐离子阱‐飞行时间质谱LCMS‐IT‐TOF LCMS-IT-TOF是岛津公司的高端质谱仪,该仪器曾于2005年3月获得了全球著名分析仪器匹兹堡展会的银奖,这是该年度质谱仪整机产品得到的最高奖。而后,又获得了国际权威的分析仪器杂志R&D的2006年新产品大奖。 关于岛津 岛津国际贸易(上海)有限公司是(株)岛津制作所为扩大中国事业的规模,于1999年100%出资,在中国设立的现地法人公司。 目前,岛津国际贸易(上海)有限公司在中国全境拥有12个分公司,事业规模正在不断扩大。其下设有北京、上海、广州分析中心;覆盖全国30个省的销售代理商网络;60多个技术服务站,构筑起为广大用户提供良好服务的完整体系。 岛津作为全球化的生产基地,已构筑起了不仅面向中国客户,同时也面向全世界的产品生产、供应体系,并力图构建起一个符合中国市场要求的产品生产体制。 以&ldquo 为了人类和地球的健康&rdquo 为目标,岛津人将始终致力于为用户提供更加先进的产品和更加满意的服务。 更多信息请关注岛津公司网站www.shimadzu.com.cn。
  • 又是杂质?岛津药物杂质综合分析方案来了!
    导读NDMA杂质超标下架雷尼替丁?因叠氮杂质召回厄贝沙坦?包材有溶剂残留导致生产企业被监管部门处罚数万元?药用辅料不当导致患者死亡?近几年连续发生多起因药物含有不合规杂质,而被要求市场召回的案例。因药物杂质超标而导致不合格问题,时刻触碰着分析行业老师们的神经:又是杂质?不同杂质参照哪种法规进行检测?杂质如何控制限度?使用哪种仪器进行检测?有没有成熟的方案可参考?药物杂质种类多:包括有机杂质、无机杂质、残留溶剂,涉及到仪器种类广、分析方法和前处理技术复杂多样。今天,我们带来了岛津药物杂质综合分析方案《药物杂质分析综合应用文集》,涵盖色谱、质谱、光谱产品仪器方面的杂质分析案例,快来一起随小编看看吧。药物杂质分析法规指南药物杂质一直是药品研发生产中风险控制的重要内容,药物杂质影响到药物的质量和临床疗效。人用药品注册技术要求国际协调会(ICH)按照杂质理化性质将其分为三大类:有机杂质、无机杂质及残留溶剂。不同杂质参考法规不同,具体如下表所示。杂质类型及法规参考依据《药物杂质分析综合应用文集》密切关注相关药典、法规、标准的更新和发布,聚焦时事热点,如沙坦类物质中亚硝胺类基因毒性杂质事件、溶剂残留检测要求、元素杂质分析国际标准等。针对药物杂质不同理化性质,开发契合标准和法规的药物杂质分析应用报告。形成一份包含多种类型杂质分析的综合应用文集,为相关科研和分析工作人员提供一定的参考。更多应用详情,请关注岛津官网,下载《药物杂质分析综合应用文集 》。典型案例分享案例分享1在线体积排阻反相液相色谱-飞行时间质谱鉴定注射用头孢哌酮钠舒巴坦钠中聚合物杂质建立在线体积排阻-反相液相色谱-飞行时间质谱法(SEC-RPLC-QTOFMS)用于注射用头孢哌酮钠舒巴坦钠中的聚合物杂质的鉴定。一维采用SEC分离条件,将头孢哌酮和聚合物杂质进行分离,分离所得聚合物杂质通过中心切割技术收集到二维RPLC中脱盐和进一步分离,采用Q-TOF为检测器,采集分离所得杂质一级和二级质谱信息后对其进行结构鉴定。推测出9个杂质的结构,其中有4个为闭环二聚物。二维SEC-RPLC-QTOFMS杂质鉴定系统流路图头孢哌酮聚合物峰液相色谱图及空白溶剂二维色谱图案例分享2超临界流体色谱系统在原料药杂质分析中的应用二乙酰鸟嘌呤是重要的医药中间体,杂质检测是其质量控制的关键。该化合物在常用溶剂中溶解性差,并且遇水分解,使得常规的RP-HPLC分析不能实现。使用的岛津Nexera UC SFC-UV系统,对药物中间体二乙酰鸟嘌呤中的杂质进行分析,有效避免使用反相色谱分析中该药物不稳定遇水分解的可能,并且SFC系统分析速度快、重现性好、灵敏度高。甲醇和乙醇作为改性剂时分离效果对比(检测波长:264 nm)1.OD-H-甲醇,2.OD-H-乙醇,3.SFC-A-甲醇,4.SFC-A-乙醇案例分享3电感耦合等离子体质谱法测定喷雾剂中的元素杂质含量参考美国药典USP对元素杂质的限量要求及USP对元素杂质的测定方法,利用电感耦合等离子体质谱法(ICP-MS)测定了吸附给药样品中的重金属元素和其它元素杂质的含量。结果全符合USP规定每种目标元素的线性、加标回收率的要求,该方法操作简便、快速,样品前处理简单,可以满足美国药典对口服药中杂质元素限量值的测定要求。样品分析结果及加标回收率《药物杂质分析综合应用文集》目录有机杂质分析1、工艺及降解杂质高效液相色谱法分析盐酸多西环素中的有关物质高效液相色谱法结合Co-injection功能测定双氯芬酸钠肠溶片有关物质采用加校正因子主成分自身对照法测定马来酸依那普利片有关物质二维液相色谱法用于碘帕醇对映异构体杂质的定量分析液相色谱-四极杆飞行时间质谱联用分析头孢替唑钠及其杂质在线体积排阻反相液相色谱-飞行时间质谱鉴定注射用头孢哌酮钠舒巴坦钠中2、聚合物杂质在线二维液相色谱-四极杆飞行时间质谱法鉴定盐酸氟西汀的杂质超临界流体色谱系统在原料药杂质分析中的应用3、遗传毒性杂质三重四极杆气质联用法同时测定药品中八种磺酸酯类基因毒性杂质三重四极杆气质联用法测定沙坦类药物中六种N-亚硝胺含量高效液相色谱应用于沙坦类原料药中NDMA和NDEA的检测三重四极杆液质联用法检测缬沙坦原料药中六种亚硝胺类杂质厄贝沙坦原料中叠氮类遗传毒性杂质AZBC的分析厄贝沙坦原料中叠氮基遗传毒性杂质MB-X的分析三重四极杆气质联用法测定丁酸氯维地平中基因毒性杂质丁酸氯甲酯和2,3-二氯苯甲醛含量三重四极杆液质联用系统测定甲磺酸伊马替尼中芳香胺类遗传毒性杂质含量药品中无机(元素)杂质分析ICH Q3D X-射线荧光光谱法分析原料药的元素杂质电感耦合等离子体光谱法测定原料药样品中的元素杂质含量利用电感耦合等离子体质谱测定药物中间体中Pd催化剂残留量电感耦合等离子体质谱法测定喷雾剂中的元素杂质含量利用电感耦合等离子体质谱测定葡萄糖注射液中重金属元素含量残留溶剂检测气相色谱结合顶空进样器测定药品中微量环氧氯丙烷残留顶空-气相色谱法测定化学药品中三种溶剂残留气相色谱法测定药用辅料聚山梨酯80中六种杂质含量气质联用仪结合顶空进样器测定药品中溶剂残留顶空-气质联用法测定药物中水合肼含量了解更多应用,敬请下载《药物杂质分析综合应用文集》撰稿人:孟海涛本文内容非商业广告,仅供专业人士参考。
  • 日本岛津推出Trap-Free二维LC/MS杂质鉴定系统
    &mdash &mdash 可从不挥发性流动相在线变更为挥发性流动相 无需改变现有HPLC流动相条件 实施医药品、食品等中杂质的LC/MS分析&mdash &mdash Trap-Free 二维LC/MS 杂质鉴定系统 Question : 使用LC/MS测定以不挥发性流动相条件测出的杂质时,还是否需要重新探讨挥发性流动相条件? Solution : 不需要。如果使用Trap-Free 二维LC/MS杂质鉴定系统,可以在线变更流动相。 使用便利的与LCMSsolution联手的支持工具,从不挥发性流动相在线变更为挥发性流动相,只将目标杂质导入MS,无需担心误鉴定。 使用支持工具制作时间程序与批处理表 只需输入一维UV色谱图上杂质峰的保留时间,便可制定最优的阀序列。可以制作批处理表,用于获取多个杂质和各自空白的数据。 有力支持杂质解析的软件 数据浏览器显示样品与空白的数据 利用LCMSsolution附属的数据浏览器功能,可以方便地比较样品数据与空白数据。 如果与组成推测软件Formula Predictor、代谢物结构解析软件MetID Solution联合使用,可以实施更高效的杂质解析。 &rArr (相关产品1)离子阱-飞行时间型LC/MS LCMS-IT-TOF &rArr (相关产品2)通用高性能HPLC系统 "Prominence" &rArr (相关产品3)自动样品前处理系统 Co-Sense for Impurities 注意事项 1.本系统由LC单元(Prominence系列)、LCMS-IT-TOF以及「2DLC+LCMS系统启动工具包」构成。 2.启动工具包含专用软件与一套必备的配管部件。 3.启动工具包所含专用软件不具数据处理功能。需另外准备LCMSsolution (Ver.3.70以上版本)。 关于岛津 岛津企业管理(中国)有限公司是(株)岛津制作所为扩大中国事业的规模,于1999年100%出资,在中国设立的现地法人公司。 目前,岛津企业管理(中国)有限公司在中国全境拥有13个分公司,事业规模正在不断扩大。其下设有北京、上海、广州、沈阳、成都分析中心;覆盖全国30个省的销售代理商网络;60多个技术服务站,构筑起为广大用户提供良好服务的完整体系。 岛津作为全球化的生产基地,已构筑起了不仅面向中国客户,同时也面向全世界的产品生产、供应体系,并力图构建起一个符合中国市场要求的产品生产体制。 以&ldquo 为了人类和地球的健康&rdquo 为目标,岛津人将始终致力于为用户提供更加先进的产品和更加满意的服务。 更多信息请关注岛津公司网站www.shimadzu.com.cn/an/ 。
  • 知名专家聚姑苏,热议药物杂质研究新动向
    杂质控制是药品质量控制的核心内容之一,杂质研究及控制是药品安全保证的关键要素。我国药物杂质研究水平仍处于起步阶段,与国际前沿杂质研究相比呈现相对滞后的态势。国际上杂质研究不断吸纳分析科学成熟的新成就,分析仪器越来越专业化,联用技术越来越成熟,各类数据库越来越丰富,联机智能化解析系统越来越普及,为杂质研究提供了更为完善的利器。为助力我国药物杂质研究水平的快速提升,为期两天的“2017药物杂质研讨会苏州论坛”于11月2日在苏州市吴宫泛太平洋酒店开幕,多位业界权威专家与超过百位的与会者就药物杂质的研究方法与策略、申报和案例展开了深入探讨。本论坛由中国药学会制药工程专委会、美中药协中国分会 (SAPA - China)联合主办。岛津公司倾情赞助并承办了此次论坛。“2017药物杂质研讨会苏州论坛” 于11月2日在苏州市吴宫泛太平洋酒店开幕 论坛现场传真在论坛开幕上,中国药学会制药工程专委会主任委员俞雄先生首先发表致辞为论坛的召开送上祝福。他在致辞中详细介绍并解读了近期国家重磅出台的一系列医药领域相关新政,指出这些新政的推出令我国医药领域迎来了创新发展的大好局面。他在致辞中强调为进一步提升药物杂质分析水平,先进的分析方法与分析工具必不可少,期待通过此次论坛的举办能够促进药物分析技术的发展。在致辞的最后,他特别感谢岛津公司对会议举办的赞助支持。 随后,岛津公司分析仪器事业部吴彤彬事业部长发表致辞。他在致辞中谈到,岛津公司与医药行业专家用户密切沟通,倾听用户声音,开发出一系列具有世界领先水平、独具特色的药物分析工具与应用方法。当今,药物杂质分析重要性日益增加,好的分析工具与方法已成为推进医药行业发展的重要因素。在致辞的最后他预祝论坛获得圆满成功。华海药业副总裁、中国药学会制药工程专委会委员李敏博士介绍了美中药协创建发展的历程和近年来为促进医药和生物技术的发展、促进美中生物医药科技和商业领域的合作与交流以及协助会员事业发展而开展的卓有成效的活动。他特别感谢岛津公司为美中药协举办的多个活动所给予的大力度支持。 中国药学会制药工程专委会主任委员俞雄先生发表致辞岛津公司分析仪器事业部吴彤彬事业部长发表致辞华海药业副总裁、中国药学会制药工程专委会委员李敏博士介绍美中药协简短的开幕式结束后,论坛进入大会报告环节。首先由浙江大学求是特聘教授、博士生导师潘远江先生做了题为《现代分离分析技术在药物研究中的应用》的演讲。潘教授在演讲中首先介绍了现代质谱技术的发展与应用成果,其中涉及到了诺贝尔化学奖获得者岛津公司职员田中耕一先生的研究成就以及岛津公司先进的高端质谱仪的优异性能。潘教授在演讲中基于其长期从事有机分析、药物分析与质谱分析等领域的研究所获得的丰富科研成果为与会者详尽介绍了液质联用技术、现代逆流色谱技术等在药物杂质研究中的最新应用和发展趋势。潘教授的演讲引起与会者的热烈反响,双方召开了深入探讨。浙江大学求是特聘教授、博士生导师潘远江先生做演讲潘教授的演讲引起与会者的热烈反响大会报告环节,岛津分析应用支持中心姚劲挺经理做了题为《现代色谱及其联用技术在药物杂质分析中的应用》的演讲。他在演讲中详细介绍了岛津多种先进的药物杂质分析技术与应用。演讲内容包括:LC/LCMS在药物杂质分析领域的新技术:方法开发系统,用于SFC/LC杂质分析方法快速开发,兼容超临界色谱和液相色谱;高效能制备纯化系统,提高杂质制备效率;鬼峰捕集柱,解决流动相本底干扰,确保得到准确的杂质定量分析结果;二维杂质鉴定系统,用于实现不挥发性缓冲液流动相条件下直接进样进行杂质液质联用分析;三重四极杆液质联用仪进行基因毒性杂质定量分析技术等。岛津分析应用支持中心姚劲挺经理做演讲 与会者和姚劲挺经理探讨技术细节问题随后,华海药业副总裁、中国药学会制药工程专委会委员李敏博士做了题为《药物杂质结构快速解析的策略:运用LC-MSn分子指纹谱技术与合理的药物强降解研究的组合策略得到高可信度的杂质结构》的演讲。他在演讲中指出,当前各国药政部门对药物杂质研究的要求越来越高,如何开展好这项研究尤其是降解杂质的研究是本讲座的重点所在。如何将强降解研究做好还存在很多误区,对此,他结合其丰富的研究成果详尽讲述了运用LC-MSn分子指纹谱技术与合理的药物强降解研究的组合策略,快速得到高可信度的杂质结构和杂质的形成机理。华海药业副总裁、中国药学会制药工程专委会委员李敏博士做演讲在论坛首日的最后一个演讲是华海药业高等分析技术中心副主任、公司原料药分析总监助理朱文泉先生做的题为《药物杂质研究的申报要求与基本思路》的演讲。在演讲中,他剖析了当前药物申报在杂质研究中遇到的一些常见问题以及结合丰富的案例说明了如何满足注册申报的要求。他指出有效、全面、系统的开展药物的杂质研究变的尤为重要,为保证药品质量安全性,杂质研究也正发挥着越来越重要的作用。华海药业高等分析技术中心副主任、公司原料药分析总监助理朱文泉先生做演讲 论坛报告环节结束后,组委会特别安排了与参会者互动时间。演讲嘉宾和与会者就药物杂质的研究方法与策略、申报和案例展开了深入探讨。现场气氛非常热烈。演讲嘉宾和与会者展开了深入探讨,现场气氛非常热烈李敏博士和岛津公司分析仪器事业部刘兵经理(左)主持了今天的论坛论坛次日将有如下演讲,敬请继续关注后续报道。 王玉博士,江苏省药检院原副院长, 国家药典委员会理化专业委员会委员 演讲题目:有关物质分析方法建立和验证 李敏博士,华海药业副总裁, 中国药学会制药工程专委会委员 演讲题目:药物降解化学与药物降解杂质的研究 黄伟新博士,资深药物分析专家, CMC和CGMP法规独立顾问 演讲题目:如何确保分析实验室的数据完整性 张袁超博士,前FDA临床药理高级审评员 演讲题目:从新药临床试验申请(IND)到新药报批(NDA):美国新药申报中FDA对药物有关物质的要求 关于岛津 岛津企业管理(中国)有限公司是(株)岛津制作所于1999年100%出资,在中国设立的现地法人公司,在中国全境拥有13个分公司,事业规模不断扩大。其下设有北京、上海、广州、沈阳、成都分析中心,并拥有覆盖全国30个省的销售代理商网络以及60多个技术服务站,已构筑起为广大用户提供良好服务的完整体系。本公司以“为了人类和地球的健康”为经营理念,始终致力于为用户提供更加先进的产品和更加满意的服务,为中国社会的进步贡献力量。
  • 2020药典 |化药杂质检测有大变化:与国际接轨,监管更加严格
    p style=" text-indent: 2em text-align: justify " span style=" font-family: 楷体, 楷体_GB2312, SimKai " 化学药品的质量直接关联用药安全。而化药中的杂质是影响药品质量的关键原因。这些检测杂质所应用的仪器在药品质量控制环节中发挥了举足轻重的作用。2020年是新版药典颁布的年份。关于化学药品杂质检测技术有哪些新变化?安捷伦可以提供哪些解决方案呢?仪器信息网邀请安捷伦市场与应用团队来介绍有关化药杂质的相关内容。 /span /p p style=" text-indent: 2em margin-top: 20px " span style=" color: rgb(0, 112, 192) " strong 仪器信息网: /strong /span 2020新版药典中关于化学药品杂质检测技术的内容有哪些新变化? /p p style=" text-indent: 2em text-align: justify " span style=" color: rgb(255, 0, 0) " strong 安捷伦市场与应用团队: /strong /span 我们注意到2020版药典相对于2015版在化学药品杂质检测这一部分有了较大的程度的修订和增加,总体上来说体现为与国际标准更加接近、更适应行业发展需求以及对于药品安全性的监管更加严格。 /p p style=" text-align: justify text-indent: 2em " 本次涉及到的变动主要体现为以下几方面: /p p style=" text-align: justify text-indent: 2em " 1. strong 《9102药品杂质分析指导原则》 /strong 的修订:杂质的确定、研究和检查分析增加了参考ICH Q3A、Q3B、Q3D、Q2A、Q2B部分,体现了我国加入ICH之后积极与国际标准接轨的意愿,也为本土药企更好的开拓海外市场奠定基础。另外,确定了原料药和制剂质量标准应包括已鉴定杂质外、未鉴定杂质、非特定杂质以及杂质总量,对整体药品杂质的质量控制非常严格,这同时也要求药企建立完善的杂质全面检测控制方案,保障药品的安全性。 /p p style=" text-align: justify text-indent: 2em " 2. strong 《0861 残留溶剂测定法》 /strong 的修订:主要体现为对药品常见的残留溶剂列表及其限度进行了增加和修改,增加了三乙胺、异丙基苯和甲基异丁基酮及其限度,降低了乙二醇的限度;同时,增加了使用“中等极性色谱柱”时常见有机溶剂在等温法测定时相对于丁酮的保留参考值,充分适应行业发展的趋势。 /p p style=" text-align: justify text-indent: 2em " 3.增加了 strong 《遗传毒性杂质控制指导原则》 /strong :本指导原则弥补了我国药品安全检测指导文件方面的缺失。原则中包含遗传毒性杂质的分类及限度制定方法,以及危害评估方法,包括数据库文献检索评估、(Q)SAR评估以及AMES实验评估等。 /p p style=" text-align: justify text-indent: 2em " 4. 增加了 strong 《元素杂质限度和测定指导原则》 /strong :本原则明确了需要检测的金属元素杂质以及其不同机型允许的元素杂质浓度和每日允许暴露量。是对药物安全检测管理的进一步完善,为行业质控提供了指导意见。 /p p style=" text-indent: 2em text-align: justify margin-top: 20px " span style=" color: rgb(0, 112, 192) " strong 仪器信息网: /strong /span 关于化学药品中杂质的检测项主要有哪些? 对于这些检测项,目前药典中规定的检测方法是什么? /p p style=" text-indent: 2em text-align: justify " span style=" color: rgb(255, 0, 0) " strong 安捷伦市场与应用团队: /strong /span 药物杂质是活性药物成分(API,原料药)或药物制剂中不希望存在的化学成分。原料药物中的杂质可能源于合成过程或起始物料、中间体、溶剂、催化剂,以及反应副产物等其它来源。在药品开发过程中,杂质可能由于原料药物成分不稳定、与辅料不兼容,或者是与包装材料发生反应而产生。药物中各种杂质的数量将影响最终药品的安全性。因此,杂质的鉴别、定量、定性和控制已成为药物开发过程的关键组成部分。 /p p style=" text-indent: 2em text-align: justify " span style=" background-color: rgb(255, 192, 0) " strong 许多监管机构都在关注杂质的控制: /strong /span 如国际协调会议(ICH)、美国食品药品管理局(USFDA)、欧盟药管局(EMA)、加拿大药品与健康管理局、日本药物和医疗器械管理局(PMDA),和澳大利亚健康和老龄化的治疗用品部。除此之外,很多官方药典,如英国药典(BP)、美国药典(USP)、日本药典(JP)和欧洲药典(EP)也越来越多地加入了对原料药和药品制剂中杂质限量水平的规定。 /p p style=" text-align: justify text-indent: 2em " 化学药品中杂质的主要检测项为有机杂质、无机(元素)杂质以及残留溶剂如原料药、辅料检测相关项目,基因毒性杂质检测等。 span style=" color: rgb(255, 0, 0) " 药典中描述对于残留溶剂一般采用色谱法,对于其他杂质并未明确规定或建议用那种检测方法。 /span 目前根据我们国外和国内研发和应用团队的经验总结,大致如下: /p p style=" text-align: justify text-indent: 2em " 1. span style=" color: rgb(0, 112, 192) " strong HPLC /strong /span : 非挥发性杂质分析,安捷伦 1200 Infinity系列,其中1290 Infinity可以进行二维液相分析,对于复杂的难分离的成分有很好的分析作用; /p p style=" text-align: justify text-indent: 2em " 2. span style=" color: rgb(0, 112, 192) " strong LC-MS /strong /span : 对已知杂质的确认和未知杂质初步结构评估的有效分析工具。如安捷伦 6100系列,6500系列Q-TOF,6400三重四级杆系列。 /p p style=" text-align: justify text-indent: 2em " 3. strong span style=" color: rgb(0, 112, 192) " GC & amp GC-MS /span /strong : 试分析大量杂质的首选技术,如卤化物、磺酸盐和环氧化合物。如安捷伦 7690 GC系列等。 /p p style=" text-align: justify text-indent: 2em " 4. span style=" color: rgb(0, 112, 192) " strong ICP-OES & amp ICP-MS /strong : /span 强大的多元素分析技术,用于分析金属杂质。如安捷伦 700系列ICP-OES以及7700系列ICP-MS。 /p p style=" text-align: justify text-indent: 2em margin-top: 15px " span style=" color: rgb(255, 0, 0) " 对于遗传毒性物质不同的检定限,有以下方法: /span /p p style=" text-align: center margin-top: 10px " img style=" max-width: 100% max-height: 100% width: 450px height: 309px " src=" https://img1.17img.cn/17img/images/202006/uepic/6a57d1be-d421-48b9-a115-275a5a6e3c0e.jpg" title=" 1-基因毒性药物的检测方案.png" alt=" 1-基因毒性药物的检测方案.png" width=" 450" vspace=" 0" height=" 309" border=" 0" / /p p style=" text-align: center " span style=" font-family: 楷体, 楷体_GB2312, SimKai font-size: 14px " (注:主要综合参考目前药典委公布的征求意见稿。) /span /p p style=" text-indent: 2em margin-top: 20px " span style=" color: rgb(0, 112, 192) " strong 仪器信息网: /strong /span 安捷伦在化药杂质检测方面可提供哪些仪器产品和解决方案? /p p style=" text-align: justify text-indent: 2em " span style=" color: rgb(255, 0, 0) " strong 安捷伦市场与应用团队: /strong /span 安捷伦是生命科学、诊断和应用化学市场领域的领导者,为全世界的实验室提供仪器、服务、消耗品、应用与专业知识,以帮助客户获得他们所寻求的深入见解。作为能够为医药行业提供最广泛解决方案产品组合的公司之一,从疾病研究和药物发现到药物开发、制造和质量管理,安捷伦的解决方案为医药行业的各个环节提供了精确的分析结果。贯穿整个流程的完整解决方案意味着客户可以让产品更快进入市场,同时确保客户的仪器和流程符合最严格的法规要求。 /p p style=" text-align: justify text-indent: 2em " ICH 指南将原料药物相关杂质分为三个大类:有机杂质,无机杂质和溶剂残留。安捷伦现有产品线可完美覆盖上述主要的杂质检测需求,例如: /p p style=" text-align: justify text-indent: 2em margin-top: 10px " strong 1.顶空+气相色谱检测器(FID),顶空+气相色谱检测器和质谱检测器组 /strong strong 合。 /strong 后者可以更好地对溶剂残留相关化合物定性。安捷伦公司最新一代智能化GC产品提供了更加可靠便利的分析平台,顶空自动进样器独特的背压控制技术可精确控制顶空加压和充满定量环压力至0.001 psi,二者合体为化学药物的溶剂残留分析提供完美的解决方案。 /p p style=" text-align: justify text-indent: 2em margin-top: 15px " strong 2.化药无机元素检测仪器方案有:方案一ICP-MS;方案二ICP-OES+GFAAS的组合。 /strong /p p style=" text-align: justify text-indent: 2em " 相比于同类产品,安捷伦ICP-MS的优势在于: /p p style=" text-align: justify text-indent: 2em " 1)标配耐高盐进样系统,可以耐受各类化药的盐度,包括NaCl注射液直接进样; /p p style=" text-align: justify text-indent: 2em " 2)可以实现一个碰撞模式完成ChP/USP元素杂质测试要求,方法简单快速,干扰去除彻底; /p p style=" text-align: justify text-indent: 2em " 3)100%有机溶剂溶解化药直接进样,前处理方法简单,分析稳定。 /p p style=" text-align: justify text-indent: 2em margin-top: 10px " 安捷伦ICP-OES+GFAAS组合的优势在于: /p p style=" text-align: justify text-indent: 2em margin-top: 5px " 1)全新一代ICP-OES对于化药中限量较低的Pb,Cd等元素具有高灵敏度,可以满足口服类药物全元素分析; /p p style=" text-align: justify text-indent: 2em margin-top: 5px " 2)安捷伦 GFAAS(石墨炉原子吸收)化药分析具有单个样品分析速度快,分析成本低(石墨炉损坏小),灵敏度高等特点。 /p p style=" text-align: justify text-indent: 2em margin-top: 15px " 3.以目前热门的 strong 基因毒性杂质检测 /strong 为例,国内外权威监管部门如中检院、FDA、EMA同时采用安捷伦GCMS与LCMS进行了二甲双胍、沙坦类药物、雷尼替丁等相关基因毒性杂质的检测。 /p p style=" text-align: justify text-indent: 2em margin-top: 15px " 4.此外, strong 安捷伦具备完善的信息学、色谱柱与耗材、售后服务与培训支持体系 /strong ,可帮助用户有效面对复杂的药品杂质分析挑战。 /p p style=" text-align: justify " & nbsp /p table style=" border-collapse:collapse " width=" 648" align=" center" tbody tr class=" firstRow" td style=" border: 1px solid rgb(255, 255, 255) word-break: break-all " width=" 324" valign=" middle" align=" center" p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 293px height: 414px " src=" https://img1.17img.cn/17img/images/202006/uepic/c452a724-363f-4d28-9469-a3353fff1a3c.jpg" title=" 2A.png" alt=" 2A.png" width=" 293" vspace=" 0" height=" 414" border=" 0" / /p /td td style=" border: 1px solid rgb(255, 255, 255) " width=" 324" valign=" middle" align=" center" p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 293px height: 413px " src=" https://img1.17img.cn/17img/images/202006/uepic/79bebd34-4573-4dae-b0e2-bcf003f09b59.jpg" title=" 2B.png" alt=" 2B.png" width=" 293" vspace=" 0" height=" 413" border=" 0" / /p /td /tr /tbody /table p style=" text-align: justify text-indent: 2em margin-top: 15px " span style=" color: rgb(255, 0, 0) " 基于安捷伦GC产品平台和色谱柱等消耗品产线,提供预调试的药物残留溶剂分析仪系统和详实的应用资料可供参考: /span /p p style=" text-align: justify text-indent: 2em " 1. 5990-7625CHCN 使用安捷伦 7697A 顶空进样器进行 USP& lt 467& gt 溶剂残留的高精度分析 !--467-- !--467-- !--467-- !--467-- !--467-- !--467-- !--467-- !--467-- /p p style=" text-align: justify text-indent: 2em " 2. 5991-0616CHCN 使用安捷伦特殊设计和测试的针对USP& lt 467& gt 的J& amp W DB-Select 色谱柱进行溶剂残留分析 !--467-- !--467-- !--467-- !--467-- !--467-- !--467-- !--467-- !--467-- /p p style=" text-align: justify text-indent: 2em " 3. 5991-1834CHCN 采用配有 安捷伦 7697A 顶空进样器的 安捷伦 7890B 气相色谱仪分析 USP& lt 467& gt 残留溶剂 !--467-- !--467-- !--467-- !--467-- !--467-- !--467-- !--467-- !--467-- /p p style=" text-align: justify text-indent: 2em " 4. 5991-9029ZHCN 使用 安捷伦 Intuvo 9000 气相色谱系统进行残留溶剂分析 /p p style=" text-align: center margin-top: 15px " br/ /p table style=" border-collapse: collapse " data-sort=" sortDisabled" align=" center" tbody tr class=" firstRow" td rowspan=" 1" colspan=" 2" style=" border-color: rgb(255, 255, 255) border-left-width: 1px border-top-width: 1px word-break: break-all " width=" 77" valign=" middle" align=" center" strong [Aglient] Gas Chromagraphy br/ /strong /td /tr tr td style=" border: 1px solid rgb(255, 255, 255) word-break: break-all " rowspan=" 1" colspan=" 2" width=" 578" valign=" top" p style=" text-align: center" strong img style=" max-width: 100% max-height: 100% width: 518px height: 389px " src=" https://img1.17img.cn/17img/images/202006/uepic/14fcdde2-00f1-4c19-90d2-1868efb9d91b.jpg" title=" 3.jpg" alt=" 3.jpg" width=" 518" vspace=" 0" height=" 389" border=" 0" / /strong /p /td /tr tr td rowspan=" 1" colspan=" 1" style=" border-left-color: rgb(255, 255, 255) border-left-width: 1px border-top-color: rgb(255, 255, 255) border-top-width: 1px word-break: break-all " width=" 266" valign=" middle" align=" center" a href=" https://www.instrument.com.cn/netshow/SH100320/C170097.htm" target=" _blank" textvalue=" Aglient 7890B气相色谱仪" style=" color: rgb(255, 0, 0) font-size: 14px text-decoration: underline " span style=" color: rgb(255, 0, 0) font-size: 14px " strong Aglient 7890B气相色谱仪 /strong /span /a span style=" color: rgb(255, 0, 0) font-size: 14px " strong br/ /strong /span /td td rowspan=" 1" colspan=" 1" style=" border-left-color: rgb(255, 255, 255) border-left-width: 1px border-top-color: rgb(255, 255, 255) border-top-width: 1px word-break: break-all " width=" 296" valign=" middle" align=" center" a href=" https://www.instrument.com.cn/netshow/SH100320/C122881.htm" target=" _blank" style=" color: rgb(255, 0, 0) font-size: 14px text-decoration: underline " span style=" color: rgb(255, 0, 0) font-size: 14px " strong Aglient 7697A顶空自动进样器 /strong /span /a span style=" color: rgb(255, 0, 0) font-size: 14px " strong br/ /strong /span /td /tr /tbody /table p style=" text-align: center" br/ /p p style=" text-indent: 2em " 欲了解更多相关信息,请点击进入 span style=" color: rgb(255, 255, 0) font-size: 18px background-color: rgb(255, 255, 255) " strong /strong /span span style=" font-size: 18px background-color: rgb(255, 255, 255) color: rgb(0, 112, 192) " strong 专题页面《化学药物杂质与检测》 /strong /span 浏览。 /p p style=" text-align: center " img style=" max-width: 100% max-height: 100% width: 95px height: 39px " src=" https://img1.17img.cn/17img/images/202006/noimg/1779e9c9-3b79-4d88-ab7c-b723c1fbceba.gif" title=" 箭头分割线.gif" alt=" 箭头分割线.gif" width=" 95" height=" 39" / /p p style=" text-align: center margin-top: 15px " a href=" https://www.instrument.com.cn/zt/chemmed-impurity" target=" _blank" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/53e42e2e-6a23-4911-89b4-90bed3d5fc35.jpg" title=" w640h110impurity.jpg" alt=" w640h110impurity.jpg" / /a /p
  • 惠氏营养品在南京铭奥购买德国盖博的牛奶杂质度测定仪/杂质度检测仪/杂质度分析仪SEDILAB-E
    惠氏营养品在南京铭奥购买了德国盖博的牛奶杂质度测定仪/杂质度检测仪/杂质度分析仪SEDILAB-E。 技术参数 全自动杂质度测定仪 → 用于乳品,牛奶杂质度的测试→ 检测速度:800样品/小时→ 每一滤膜可测500ml牛奶溶液→ 杂质度板直径:32mm
  • 解密“N-二甲基亚硝胺”,浅谈基因毒性杂质
    2018年中旬,长春长生的疫苗案还未彻底了结,缬沙坦原料药事件让N-二甲基亚硝胺(NDMA)又一次上了热搜。 时至今日,风波犹存,欧盟范围内对所有沙坦类药物进行审查。之后EMA通报,分别在印度药企Hetero Labs和Aurobindo Pharma生产的氯沙坦及厄贝沙坦原料药中,同样发现了含量极低的亚硝胺类化合物。美国FDA 仍在继续评估含缬沙坦的药物,并将获得的新信息持续更新「召回范围内的药物清单」和「不在召回范围内的药物清单」。 “治病”?“致病”!众所周知,药品是特殊的商品,它可以预防、治疗、诊断人的疾病。近年来,多种新药例如PD1/PD-L1免疫抑制剂的问世,让攻克癌症不再是梦想。 同时,药品的副作用及其安全性很大程度上决定其使用效果,有时不仅不能“治病”,还可能“致病”,甚至危及生命安全,所以药品生产商和监管部门对药品追溯和管理承担着不可或缺的责任。 揭开“基因毒性杂质”真面目NDMA是亚硝胺化合物的一种,而亚硝胺化合物、甲基磺酸酯、烷基-氧化偶氮等又均为常见的基因毒性杂质。基因毒性杂质(或遗传毒性杂质, Genotoxic Impurity, GTI)一般指能直接或间接损伤细胞DNA,产生致突变和致癌作用的物质,具有致癌可能或者倾向。 基因毒性杂质向来受到了严格的监控,2006年爆发甲磺酸奈非那非(维拉赛特锭)事件后,欧洲药品管理局( EMA)随即颁布了《基因毒性杂质限度指南》,人用药品注册技术要求国际协调会议(ICH)与美国食品与药品监督管理局( FDA)出台了相应的法规,中国国家食品药品监督管理总局也密切跟踪国际药品质量控制技术要求,不断完善现有药典收载技术指南,包括方法学验证、药品稳定性评价指导原则以及药品基因毒性杂质评价技术指南等。 药物合成、纯化和储存运输(与包装物接触)等过程中,多个环节均有产生或有可能产生基因毒性杂质。在工艺研究中采用“避免-控制-清除(ACP)”的策略能够最大限度减少基因毒性杂质对原料药物的影响,从而快速灵敏的监测分析手段变得尤为重要。 这时候,飞飞在此!今天赛默飞借助全新一代LC-QQQ技术,让我们一起助力“解密N-二甲基亚硝胺”。 赛默飞针对药品中基因毒性杂质液质检测解决方案 飞飞芳基磺酸酯类基因毒性解决方案Thermo Scientific™ 全新液相色谱三重四极杆质谱TSQ Fortis™ 平台建立了检测8种磺酸酯类的方法(苯磺酸酯类3个、对甲苯磺酸酯类3个、1,5-戊二醇单苯磺酸酯、 1,5-戊二醇二苯磺酸酯)。本方法灵敏度高、专属性强、稳定性好,可以满足各药企对此类基因毒性杂质的检测要求,可为基因毒性杂质风险监控提供有效的技术支持。结果如下:图1. 8种芳基磺酸酯提取离子流图(点击查看大图) 图2. 部分化合物标准曲线图(点击查看大图) 可以看出实验建立了三重四极杆液质联用仪(TSQ Fortis)分析8种芳基磺酸酯类的检测方法。实验结果表明,基于Thermo Scientific™ TSQ Fortis™ 建立的检测方法不仅具有优异的灵敏度和线性范围,同时具备良好的重现性。本方法可用于芳基磺酸酯类基因毒性化合物的日常分析检测。 飞飞N-亚硝基类基因毒性解决方案Thermo Scientific™ TSQ Fortis™ 针对基因毒性物质10个N-亚硝基化合物建立了稳定灵敏的分析方法。该方法在电喷雾离子化(ESI)条件下即可进行有效检测分析,试验结果优异,该方法稳定,快速,满足日常微量基因毒性物质N-亚硝胺类化合物的分析要求。图3. 10个N-亚硝基化合物的色谱图(5ng/mL)(点击查看大图) 图4. 部分化合物标准曲线图(点击查看大图) 从上图中可以看出建立的方法灵敏,快速和稳定性,色谱峰形良好,同时具备优异的重现性,可以满足药品中日常分析N-亚硝基类基因毒性杂质的检测要求。 飞飞总结语此次的应用案例就分享到这里了,不过难道只有这些?不!后续赛默飞更会带来应对基因毒性杂质的多平台解决方案,令“NDMA们” 无所遁形,敬请期待!扫描下方二维码即可获取赛默飞全行业解决方案,或关注“赛默飞色谱与质谱中国”公众号,了解更多资讯
  • 又出遗传毒性杂质?莫慌,岛津叠氮杂质分析方案来帮忙
    导读2021年欧洲药品质量管理局(EDQM)发布:四氮唑环的沙坦活性物质中存在致突变性叠氮杂质的风险,并根据ICH M7的要求对数据进行审核,确保叠氮杂质的水平低于毒理学关注阈值(TTC)。其后某国际医药公司因叠氮杂质而被召回多批厄贝沙坦药物。沙坦中叠氮类杂质,是继亚硝胺类杂质后又一类需重点关注的基因毒性杂质。 叠氮杂质的由来叠氮化合物是医药行业中常见的化工原料,通常作为起始物料、反应试剂或中间体存在于药物合成过程中,在厄贝沙坦的合成中,通常需要使用三丁基叠氮化锡或叠氮化钠以形成药物结构中的四唑环,如厄贝沙坦原料药中的4’-(叠氮甲基)[1,1-联苯]-2-氰基(AZBC)、5-[4’-(叠氮甲基)[1,1-联苯]-2-基]-2H-四氮唑(MB-X),见下图。 分析方案l 两种叠氮化合物分析采用岛津超高速LC-MS/MS技术,可分别建立快速、稳定、高灵敏度的叠氮化合物AZBC、MB-X的分析方法。 超高效液相色谱-质谱联用仪 AZBC和MB-X的线性范围分别为0.25ng/mL-25 ng/mL和1 ng/mL-75 ng/mL,且线性回归系数R20.999,各标准点校准误差均在±5%以内。 空白厄贝沙坦样品分别加入低、中、高三种不同浓度的标准溶液,AZBC的回收率在95.97%~100.55%之间,MB-X的回收率在103.53%~111.82%之间。 AZBC和MB-X加标回收率 l 岛津遗传毒性杂质解决方案近年来,随着药物杂质分析研究的不断深入,新遗传毒性杂质不断发现,已上市药品中因痕量遗传毒性杂质残留而发生大范围的召回事故,如N-亚硝胺类、磺酸酯类等基因毒性杂质给制药企业带来巨大经济损失。岛津紧跟法规动态,在相关遗传毒性杂质分析检测方面积累了丰富的经验,目前已发布多份关于遗传毒性杂质的解决方案,具体内容可关注“岛津应用云”—方案下载—应用文集,敬请下载。 结语在化学药物研发和生产过程中,杂质分析一直是重要而关键的检测领域,岛津一直积极响应和应对行业最新动态,积极参与新化合物、新药物杂质、新法规指南等分析方法的开发和研究,及时为客户提供完整、准确的应对解决方案,助力客户掌握行业最新的检测技术。 撰稿人:孟海涛 本文内容非商业广告,仅供专业人士参考。
  • 浅谈药物质量标准中杂质的确定、限度制定、杂质测定
    一、对于杂质检查,需要有针对性的确定各原料药或辅料中需要测定的杂质,药品标准中的杂质检查项目,应包括以下几点:药物在研究中和稳定性考察中产生的;药物在生产中产生和降解的杂质。综上,药物在整个周期的杂质检查,应研究起始物料、生产工艺、药品稳定性这三个环节把控杂质检出,从而制定严格的内控质量标准,确保药品安全性。尤其是降解杂质和毒性杂质,通常为必检项目,除降解产物和毒性杂质外,在原料药中已控制的杂质,在制剂中一般不再控制。对于对映体药品,与之相关的异构体应作为杂质来检查。对于消旋体药品,质量标准中,除订入异构体标准外,还需定入旋光度。二、讲述杂质限度相关问题首先明确杂质限度中涉及到的以下术语:报告限度:超出此限度的杂质均应在检测报告中报告,并应报告具体的检测数据; 鉴定限度:超出此限度的杂质均应进行定性分析,确定其化学结构; 质控限度:质量标准中一般允许的杂质限度,如制定的限度高于此限度,则应有充分的依据; TDI:药品杂质的每日总摄入量。注:上表摘自2020版中国药典四部9102药品杂质分析指导原则创新药杂质制定:根据已进行的临床安全性数据获得。仿制药杂质制定:根据已有的标准,制定适应自研产品的杂质内控质量标准。研究杂质过程中,必要研究杂质的LOQ,LOQ浓度不得大于该杂质的报告限浓度(容易忽略项)。对于药品中的杂质检查,有薄层色谱法、高效液相色谱、气相色谱法,最常用的就是高效液相色谱方法和薄层色谱法,现介绍如下:对于采用高效液相色谱法测定杂质检出量,有以下几种办法:外标法(也称杂质对照品法)加校正因子的主成分自身对照法不加校正因子的主成分自身对照法面积归一化法下面一一讲述这几个方法,请耐心看完,表格形式汇总,易查看三、对于采用薄层色谱法测定杂质检出量,有以下几种办法:杂质对照品法;供试品溶液自身稀释对照法;杂质对照品法与供试品溶液自身稀释对照法;对照物法。下面一一讲述这几个方法,请耐心看完,表格形式汇总,易查看!
  • 药品研发中杂质与杂质对照品研究监控、新理念新技术研讨会召开
    p   由天津市滨海新区科学技术协会和中国蛋白药物质量联盟主办,北京医恒健康科技有限公司和天津市滨海新区蛋白药物质量和产业技术创新研究会承办的“药品研发中杂质与杂质对照品研究监控、新理念新技术研讨会”于12月10日在天津巨川百合酒店胜利召开。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201712/insimg/bc2519d0-e110-45f9-a4b9-a587227c56be.jpg" title=" 培训现场.jpg" / /p p style=" text-align: center " strong span style=" color: rgb(0, 112, 192) " 培训现场 /span /strong /p p   本次研讨会来自全国各地的医药企事业单位及科研院所的药品研发人员、注册申报人员、质量控制人员、项目负责人等有关人员参加了本次研讨会。10日上午,研讨会开幕式由中国蛋白药物质量联盟秘书长史晋海博士主持,介绍了出席此次会议开幕式的嘉宾,包括天津市滨海新区科学技术协会学会处侯立群处长,三位演讲专家余立老师、周立春老师,山广志老师。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201712/insimg/3ed2bb10-7c99-43a4-a149-f4b53818d3c8.jpg" title=" 史晋海博士主持.jpg" / /p p style=" text-align: center " strong span style=" color: rgb(0, 112, 192) " 史晋海博士主持 /span /strong /p p strong span style=" color: rgb(0, 112, 192) " /span /strong /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201712/insimg/d08b2e76-4772-4265-a184-7061d03658ea.jpg" title=" 余立老师2 .jpg" / br/ /p p style=" text-align: center " strong span style=" color: rgb(0, 112, 192) " 余立老师 /span /strong /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201712/insimg/b04550f4-a0d4-4b49-96d8-975893232c64.jpg" style=" " title=" 周立春老师.jpg" / /p p style=" text-align: center " strong span style=" color: rgb(0, 112, 192) " 周立春老师 /span /strong /p p strong span style=" color: rgb(0, 112, 192) " /span /strong /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201712/insimg/94d80e5c-6b2f-49ab-8f61-a6f64f658cb3.jpg" title=" 山广志老师.jpg" / /p p style=" text-align: center " strong span style=" color: rgb(0, 112, 192) " 山广志老师 /span /strong /p p   无论是创新药研发还是仿制药一致性评价,无论是原料药还是制剂产品,无论是药品临床前开发还是上市后质量监控,杂质的研究无疑都是重头戏。也是药品申报资料中出现问题最多的模块。由于药品中杂质含量的水平比较活性成分而言大多都是百分之几、千分之几、甚至更低数量级的,一种药品中含有几种、十几种、乃至几十种杂质,所以药品杂质的定性定量都远比活性成分难度要大的多。余立老师就杂质研究与控制思路为与会人员进行的讲解。 br/ /p p   杂质定向控制越来越细,质量标准中特定杂质越规定越多,定位,定量,测定响应因子,哪个也少不了杂质对照品。类杂质对照品的制备、纯化、结构确证,特别是赋值方法都有哪些要求,还有杂质对照品分装、保存时的注意事项的相关细节,山广志老师就在这次研讨会中介绍了这方面的常见问题与案例分析。 /p p   微信群中常有问杂质研究与杂质检测方法学验证方面的的问题。但微信交流信息局限大,讨论不方便也不具有系统性,解决一两个问题其他问题还是不明白。周立春老师用她30多年的一线审评与实验室工作经验为与会人员讲解了杂质研究与杂质检测的方法学验证。 /p p   会后问答环节讨论热烈。与会者意犹未尽,期待更多交流机会。 /p p   生物医药产业是天津市八大优势支柱产业之一,更是滨海新区重点发展产业。本次研讨会将创造机会,促进天津市滨海新区与顶级生物制药企业和专业人才的合作,极大地推动相关领域健康快速发展。此次会议搭建了具有国内影响力的生物医药专业交流平台,既利于增强新区医药企业实施创新发展及国际化战略的信心,又扩大新区医药企业在生物医药领域中的影响力,大力促进新区医药产业的健康发展。 /p p   /p
  • 《科学》杂志公布2012年度10大科学突破
    今日视点   美国《科学》杂志20日公布了本年度10大科学突破,科学家在难以捉摸的希格斯玻色子亚原子粒子研究领域取得的成果被评为2012年最重要的科学发现。40多年前,科学家假定了希格斯玻色子的存在,它是解释其他基本粒子(诸如电子和夸克等)如何获取其质量的关键。   1.希格斯玻色子   7月4日,科学家宣布找到了希格斯玻色子存在的证据,从而完成了粒子物理标准模型。该模型解释了粒子如何通过电磁力、弱核力和强核力相互作用以组成宇宙中的物质。然而,在今年之前,科学家无法解释这些基本粒子如何获得它们的质量。   《科学》新闻记者艾德里安表示,物理学家假设空间由与电场类似的“希格斯场”所填充。粒子与“希格斯场”相互作用以获取能量以及质量。“希格斯场”是由分布在真空中的希格斯玻色子组成,物理学家现在将它们从真空中轰出并进入短暂的存在状态。   但是,观察到希格斯玻色子可谓来之不易甚或代价不菲。在瑞士日内瓦附近的粒子物理实验室中,与造价高达55亿美元的原子加速器相伴的数千名研究人员借助两台巨型粒子探测器(ATLAS和CMS)发现了盼望已久的玻色子。   除希格斯玻色子的发现外,《科学》杂志及其发行机构美国科促会确认的本年度其他9项具有开创性的科学成就如下:   2.丹尼索瓦人基因组   一种将特定分子绑定在DNA(脱氧核糖核酸)单链上的新技术帮助研究人员仅用一块远古人的小指骨碎片,就完成丹尼索瓦人完整的基因组测序。该基因组序列让研究人员能够将丹尼索瓦人——这是与尼安德特人密切相关的古老人类——与现代人进行比较。研究显示,该指骨属于生活在7.4万年至8.2万年之间的一个眼睛、毛发和皮肤均为棕色的女孩,她死于西伯利亚。   3.让干细胞形成卵子   日本研究人员证实,小鼠的胚胎干细胞可被诱导成为具有生育能力的卵细胞。在研究中,他们让实验室中受精的细胞在代孕母体发育并产下小鼠幼仔。这种方法要求发育中的卵子在雌性小鼠体内存留一段时间。虽然这没有达到科学家追求的完全在实验室中得到卵细胞的终极目标,但是它为研究基因和其他影响生育力和卵细胞发育的因素提供了强有力的工具。   4.好奇号的着陆系统   尽管无法在火星条件下测试其探测器所有的着陆系统,但在加州帕萨迪纳美国宇航局喷气动力实验室里承担探索火星使命的工程师们仍安全并准确地将好奇号探测车抵达火星表面。这个3.3吨的飞行器因过重而无法以传统的方式登陆,为此该团队从起重机和直升飞机那里得到灵感,创建了“空中起重机”着陆系统,它将带轮的好奇号吊挂在3根线缆的末端让其着落。这一完美无暇的着陆让设计人员再次获得了信心,宇航局希望未来在已有的探测车附近让第二辆探测车着陆,并将第一辆探测车取得的样本收集起来送回地球。   5.X射线激光解开蛋白质的结构   研究人员用一种比传统的同步加速辐射源亮10亿倍的X射线激光确认了布氏锥虫所需的一种酶的结钩,这种寄生虫是引起非洲昏睡病的原因。新的研究进展证明了X射线激光解密蛋白质的潜力,而这是传统的X射线源所无法做到的。   6.基因组的精密工程   通常,人们无法确定对高级生物的DNA进行修改和删除的最终结果。然而,在2012年,名为“转录激活子样效应因子核酸酶”(TALENs)的工具赋予研究人员改变或关闭斑马鱼、蟾蜍、牲畜及其他动物甚至病人的细胞中特定基因的能力。这种技术以及其他新兴的技术与已有的基因靶向技术一样廉价和有效,同时它能让研究人员在健康人和病人中确认基因及变异的特定作用。   7.马约拉纳费米子   人们有关马约拉纳费米子是否存在的问题的争论已有70多年,该粒子会作为它们自己的反物质并湮灭它们自己。今年,由荷兰物理学家和化学家组成的研究小组首次提出了马约拉纳费米子以准粒子形式存在的可靠证据,它们是相互作为的电子群,其行为像单个粒子。该发现促使人们努力将马约拉纳费米子结合到量子计算中,因为科学家们认为由这些神秘粒子组成的“量子比特”与目前数字计算机中所拥有的比特相比,能够更有效率地存储和处理数据。   8.ENCODE项目   今年,超过30篇文章报道的一项长达10年的研究显示,人类基因组比研究人员曾经认为的更具“功能”。尽管只有2%的基因组会为实际蛋白编码,但“DNA元素百科全书”(ENCODE)研究项目表明,基因组的大约80%是有活性的,可帮助开启或关闭基因。这些新的细节有望帮助研究人员理解基因受到控制的途径,以及澄清某些疾病的遗传学风险因子。   9.大脑/机器界面   曾经用大脑神经记录移动电脑荧幕上光标的同一个研究团队在2012年向人们展示,瘫痪的病人能够用他们的思想来移动一个机械臂并从事复杂的三维运动。该技术虽然仍处于试验阶段且极端昂贵,但科学家希望更先进的计算程序可改善这种神经性假体以帮助因中风、脊髓损伤及其他疾病导致瘫痪的病人。   10.中微子混合角   数百名在中国大亚湾反应堆中微子实验中工作的研究人员报告了一个模型的最后的未知参数,该模型描述了被称作中微子的这种难以捉摸的粒子在以接近光速穿行时,如何从一种类型或“特色”变形为另一种类型。这些结果显示,中微子和反中微子可能会以不同的方式改变其特色,并提示中微子物理可能有朝一日帮助研究人员解释为什么宇宙含有如此多的物质及如此少的反物质。如果物理学家无法发现超越希格斯玻色子的新粒子,那么中微子物理可能会代表粒子物理学的未来。(驻美国记者 毛黎)
  • 利用XP色谱柱改进美国药典(USP)噻康唑有机杂质分析方法
    利用eXtended Performance(XP)色谱柱改进美国药典(USP)噻康唑有机杂质分析方法 Kenneth D.Berthelette、Mia Summers和Kenneth J.Fountain 沃特世公司,美国马萨诸塞州米尔福德 方案优势 ■ 使用XP色谱柱改进耗时的USP美国药典有机杂质分析方法,实现更快速的分析并减少溶剂的使用量,同时仍符合美国药典章指南的规定。 ■ 将样品运行时间缩短80%,从而提高了生产能力。 ■ 将溶剂用量减少90%,降低了运行成本。 沃特世提供的解决方案 ACQUITY UPLC® H-Class系统 Alliance® HPLC系统 XSelect&trade CSH&trade C18色谱柱 Empower® 3软件 eXtended Performance [XP] 2.5 &mu m色谱柱 TruView&trade LCMS认证最大回收样品瓶 关键词 美国药典方法、噻康唑、ACQUITY UPLC色谱柱计算器、沃特世反相色谱柱选择表、仿制药 引言 全世界的制药企业在日常工作中都需要对仿制药中的有机杂质进行分析。使用较为陈旧的仪器和色谱柱技术进行有机杂质分析,因为需要长时间使用大量的溶剂,所以既耗时又费钱。然而通过使用显著改进的仪器和色谱柱技术有机杂质分析会变得更高效。2.5&mu m 粒径的eXtended Performance(XP)色谱柱设计用于高效液相色谱和超高效液相色谱。该色谱柱是改进美国药典方法的理想选择,因为其能够使色谱分析工作者实现更小粒径和低扩散系统带来的利益,同时能够符合美国药典章色谱分析指南的规定。章列出了允许的方法变化幅度。 噻康唑是一种用于治疗酵母菌感染的咪唑类抗真菌化合物。被转换的方法是噻康唑有机杂质的分析方法2。有机杂质分析方法用于测定样品中是否存在杂质及其含量。该XP色谱柱方法是从最初在HPLC系统上的色谱柱规模的美国药典方法缩放至HPLC和UPLC仪器上的。在HPLC仪器上使用XP色谱柱对现行美国药典方法进行改进能够缩短运行时间,从而提高了常规分析实验室的样品通量。而在UPLC系统上使用XP色谱柱则可以比HPLC进一步缩短运行时间并减少溶剂的使用,从而节约了总成本。 实验条件 Alliance 2695 HPLC色谱条件 流动相: 44:40:28乙腈/甲醇/水加2 mL氢氧化铵 分离模式: 等度洗脱 检测波长: 219 nm 色谱柱(L1): XSelect CSH C18,4.6 x 250 mm,5 &mu m, 部件号:186005291;XSelect CSH C18 XP,4.6 x 150 mm,2.5 &mu m, 部件号:186006729;XSelect CSH C18 XP,4.6 x 100 mm,2.5 &mu m, 部件号:186006111 柱温: 25 ℃ 洗针液: 95:5乙腈/水 样品清洗液: 95:5水/乙腈 密封垫冲洗液: 50:50甲醇/水 流速: 根据方法调整 进样量: 根据方法调整 ACQUITY UPLC H-Class色谱条件 流动相: 44:40:28 乙腈/甲醇/水加2 mL氢氧化铵 分离模式: 等度洗脱 检测波长: 219 nm 色谱柱(L1): XSelect CSH C18 XP,4.6 x 150 mm,2.5 &mu m, 部件号:186006729;XSelect CSH C18 XP,4.6 x 100 mm,2.5 &mu m, 部件号:186006111;XSelect CSH C18 XP,2.1 x 150 mm,2.5 &mu m, 部件号:186006727 柱温: 25℃ 洗针液: 95:5乙腈/水 样品清洗液: 95:5水/乙腈 密封垫冲洗液: 50:50甲醇/水 流速: 根据方法调整 进样量: 根据方法调整 数据管理: Empower 3软件 样品描述 用100%的甲醇将噻康唑样品制备成表1所述的浓度。将样品转移至一个进样用的TruView最大回收样品瓶中(部件号:186005662CV)。 结果与讨论 全世界制药企业都需要对常规方法制备的噻康唑进行日常分析。本应用纪要使用美国药典专论中规定的有机杂质分析方法,在几种不同规格的色谱柱上对噻康唑及其有关物质A、B、C的分离进行了比较。因为噻康唑许多杂质缺乏实际可用性,所以将噻康唑有关物质A、B、C用作低浓度杂质标准品。美国药典所列的有机杂质分析方法用于分析复杂的样品处方。样品中多种成分的有效分离通常需要使用更长的色谱柱。使用较大填料粒径(&ge 3.5 &mu m)的长色谱柱会使运行时间加长,溶剂使用量增大。例如,最初的美国药典中的噻康唑有机杂质分析需要使用4.6 x 250 mm,5 &mu m的色谱柱,分离时间长达30分钟,每分析一个样品需要耗费30 mL溶剂。但是,使用2.5&mu m粒径的eXtended Performance(XP)色谱柱,可以在缩短运行时间的同时仍然符合考核的要求。由于运行时间缩短,样品通量得到了提高,每次分析所需溶剂减少,从而降低了总成本。现行的美国药典章色谱分析指南规定了允许的方法变化幅度。这些允许的变化包括± 70%的色谱柱长度变化,-50%的粒径变化,± 50%的流速变化。1美国药典要求有关物质B和C之间的分离度要达到1.5,本应用纪要证明:在不同的色谱柱和不同的色谱系统之间进行的方法转换完全满足对这两个难分离化合物的苛刻要求。 在HPLC仪器上使用XP色谱柱进行有机杂质分析 噻康唑的有机杂质分析方法需要使用L1专用色谱柱,为该分离而列出的色谱柱是LiChrosorb RP-182。参照沃特世反相液相色谱柱选择表,本文选用更先进的XSelect CSH C18固定相色谱柱。之所以选择XSelect CSH C18色谱柱是由于其与所列出的色谱柱相类似,并且能提供适用于HPLC UPLC仪器的各种规格和粒径。本文首先使用一根XSelect CSH C18,4.6x250mm,5&mu m色谱柱在Alliance HPLC系统上运行美国药典方法,流速1.0mL/min。如表2所示,本次分离符合考核标准。本次分离的总运行时间为30分钟,在连续批量分析样品时,将面临着时间和成本管理的双重挑战。如果使用原始的美国药典方法, 8小时的一个工作日仅能分析16个样品,要消耗480mL溶剂。通过使用XP色谱柱,在同样的8小时工作日内可分析80个样品,且仅需使用240mL溶剂,显著地提高了样品通量并降低了运行成本。 在不同的系统上使用2.5&mu m XP色谱柱改进的标准方法具有通用性,同时仍符合美国药典章指南的要求,如图1所示。XP色谱柱是一款2.5-&mu m颗粒的HPLC和UPLC色谱柱,经高效填装并能够承受UHPLC系统的高压,使XP色谱柱在HPLC和UPLC仪器上均能使用。 本纪要的标准方法首先从最初的4.6 x 250 mm,5 &mu m色谱柱转换至4.6 x 150 mm,2.5 &mu mXP色谱柱,用以说明使用更小粒径的色谱柱可以缩短运行时间。使用更小的粒径还可以提高分离能力,用色谱柱长度与粒径的比值(L/dp)即可预测。在本例中,L/dp从50,000(初始条件)提高到60,000(4.6 x 150 mm XP色谱柱)。根据ACQUITY UPLC色谱柱计算器的计算,用于该XP色谱柱的最佳流速为2.0 mL/min3。但是,这个流速超出了美国药典章指南规定的变化范围。故采用1.0 mL/min的流速以保证符合美国药典指南的规定,同时也适应HPLC系统反压的限制。噻康唑及其有关物质在原始色谱柱上与在4.6 x 150 mm XP色谱柱上的分离进行了对比,如图2A-B所示。4.6 x 150 mm XP色谱柱将运行时间缩短43%,分离度提高5%,如图2所示。 接着使用一根更短的4.6 x 100 mm,2.5 &mu m XP色谱柱进行分离,用以说明在实现更快速分离的同时,仍保持着合格的分离度。运行时间的缩短对于有机杂质分析尤其有用归因于附加的分离复杂性,这些方法一般比其他方法具有较长的运行时间。需要注意的一个重要问题是,不一定任何时候都会选用具有较低分离能力(L/dp 40,000)的较短色谱柱。例如在辅料和杂质洗脱时间很接近的情况下可能需要保持原始的分离能力。图2C显示了使用4.6 x 100 mm,2.5&mu m XP色谱柱进行分离时,与初始条件相比,运行时间缩短57%,并且仍然符合所有的考核标准,如图2所示。在这种情况下,L/dp从50,000(初始条件)降低至40,000导致有关物质B与C之间的分离度降低15%;但分离度仍然符合要求,这取决于原始分离的复杂程度。 在UPLC仪器上使用XP色谱柱进行有机杂质分析 如图1所示,通过同时使用XP色谱柱和ACQUITY UPLC色谱柱计算器,该方法可以从Alliance HPLC系统转换至ACQUITY UPLC H-Class系统上。更新的仪器,例如ACQUITY UPLC H-Class系统,可以实现更快速、更高效的分离,归因于其高反压耐受能力、进样之间更快速的平衡以及显著降低的系统体积和扩散。为了对比HPLC和UPLC系统之间的分离能力,将图2B中所示的使用4.6 x 150 mm,2.5 &mu m颗粒的 XP色谱柱进行的有机杂质分析方法在ACQUITY UPLC H-Class系统上重新运行,如图3A所示。仅仪器本身的变化&mdash &mdash 从HPLC变到UPLC,会使B与C色谱峰之间的分离度增加5%,使运行时间缩短12%,如表2和表3所示。分离度的增大归因于UPLC系统的低系统体积和低扩散,因为这两个属性都可以改善峰形。 为进一步说明UPLC仪器的优点,如图3B所示在UPLC系统上使用4.6 x 100 mm XP色谱柱进行分离。此分离操作使B与C色谱峰之间的分离度从使用HPLC系统时的1.6(参见表2)提高到使用UPLC系统时的1.8(参见表3)。在UPLC系统上使用4.6 x 100 mm XP色谱柱,得到与在HPLC系统上用原始方法分离相同的分离度,但是比原始方法快57%。 最后,将标准方法转换至一根2.1 x 150 mm 2.5 &mu m XP色谱柱上。这根色谱柱的测试结果说明通过减小色谱柱的内径,在保留相同分离度的同时,还能进一步缩短运行时间,并且大大减少溶剂用量。根据ACQUITY UPLC色谱柱计算器的计算,适合这根色谱柱的流速为0.42 mL/min。但这个流速超出了美国药典章指南的要求,因此实验使用符合规定的0.5 mL/min流速。分析得到的色谱图(如图3C所示)显示,如表3所示与原始条件相比运行时间缩短80%,而适用性要求仍很容易达到。此外,仅仅通过减小色谱柱的内径分析就比使用4.6 x 150 mm XP色谱柱快63%,如图3A所示。最后,通过使用2.1 x 150 mm XP色谱柱,与原始的标准方法相比,溶剂用量减少90%,显著地节约了成本。当对流速进行调整,以保持在美国药典章指南规定的范围内时,B和C色谱峰的分离度从1.9下降至1.8,但仍符合考核标准。 结论 在进行既耗时又费钱的有机杂质分析时,在现有HPLC系统上使用eXtended Performance [XP] 2.5 &mu m色谱柱,与原始的美国药典方法相比,可以缩短运行时间和减少溶剂用量57%。通过将XP色谱柱与UPLC仪器相结合,运行时间可减少80%,溶剂用量可减少90%。既能在HPLC仪器上运行又能在UPLC仪器上运行的XP色谱柱的实用性可以用于在遵循现行美国药典章指南的同时,改进美国药典方法。在常规分析实验室中,使用经更小粒径色谱柱改进的美国药典方法,可以节约大量的时间和运行成本。 参考文献 1. USP General Chapter , USP35-NF30, 258. The United States Pharmacopeial Convention, official from August 1, 2012. 2. USP Monograph. Tioconazole, USP35-NF30, 4875. The United States Pharmacopeial Convention, official from August 1, 2012. 3. Jones MD, Alden P, Fountain KJ, Aubin A. Implementation of Methods Translation between Liquid Chromatography Instrumentation. Waters Application Note 720003721en. 2010 Sept.
  • TOP 科学杂志报道:与飞纳电镜一起探索地球最年轻洞穴的炙热深处
    《史密森尼(Smithsonian)》杂志,隶属于美国史密森尼学会,该学会 1846 年成立。《史密森尼(Smithsonian)》杂志是美国华盛顿特区的史密森学会官方发行刊物,于 1970 年出版第一期杂志。 索罗,一位专注洞穴研究的洞穴学家,同时担任La Venta 地理探险协会的领军人物,他跨越国界与美国宇航局和欧洲航天局携手合作,致力于宇航员的行星探索训练工作。他每天花数小时查看现场的照片和视频,这些丰富的信息,不仅让研究人员得以追踪洞穴的形成过程与具体位置,也提供了一个难得的机会,使科学家有机会深入探究未经生命物质触碰的洞穴深处:在前所未有的细节层面,观察冷却过程、矿物生成以及这些环境中早期微生物群落的诞生。 穿着冶金用“冷却服”的洞穴学家 1994 年,洞穴学家研究了意大利埃特纳火山喷发后形成的熔岩管。研究人员在火山喷发停止近一年后进入熔岩管,发现里面尽管余温高达 158℃,却存在着罕见的晶体与矿物。然而,六个月后回到实验室时,这些亚稳态的矿物已经因为温度的降低分解消失,错失了详细研究的机会。这次经历深刻体现了在极端环境中进行快速样本采集并及时表征的重要性。 为了准备进入冰岛的新洞穴,索罗及其团队需要掌握洞穴形成的具体位置,以及哪些通道最为简单安全。在国家地理学会的资助下,于 2021 年 9 月,即在火山停止喷发大约一周后,索罗团队接近这座火山。他们运用精心绘制的地图,成功确定了地表的“天窗点”——这些点极有可能是新形成的洞穴入口。研究团队在该区域放置一架搭载热成像摄像机的无人机,细致地记录下火山不同区域的温度数据。 1.研究人员操作一架配备有激光雷达扫描仪的无人机,对熔岩管网络进行精细的三维绘图 鉴于一些矿物会随着时间改变或消失,这一次在冰岛法格拉达尔火山,为了避免出现类似情况,研究人员携带飞纳台式扫描电镜大样品室卓越版 Phenom XL G2,将其安置在火山旁边的帐篷内,使用发电机以维持扫描电镜正常运行。“环境条件非常恶劣,记得有一次突如其来的降雨,帐篷内积流成河。我把电源设备放置在地板上,所幸水流绕过了它,”工作人员回忆道。 2.在火山旁,研究人员依靠这台飞纳台式扫描电镜进行矿物分析,这对火山口生态系统和生命起源的研究具有重要的价值。 2022 年 5 月,通过热成像摄像机传回的数据显示,里面的温度仍然高达 900℃。索罗描述了他们所遇到的情景:“空气仿佛在燃烧,一股热浪扑面而来。而外面的风却寒冷刺骨,这种内外温差所形成的鲜明对比,简直令人难以置信。” 研究人员穿过一条 1000 英尺长的熔岩管(地球上最年轻的洞穴之一) “空气温度在一米之内就能从 100℃ 骤升至 200℃,”索罗描述道。索罗进入的管道中,洞穴墙壁在发光,温度接近 600℃(1100华氏度)。“这是我见过的最为震撼的景象之一,”他感慨道。 索罗团队的研究主要集中在两个领域:首先,他们热衷于探索洞穴内所发现的矿物,尤其是那些在洞壁及其他岩石表面逐渐形成的独特矿物。其次,他们期待揭示这些极端环境何时成为微生物群落的领地,并鉴定出哪些微生物在此类环境中能够繁衍生息。深入探究这些新生洞穴如何逐步孕育生命,不仅有助于科研人员对地球生命发展过程的认知更加完善,而且对于科研人员在其他行星,如火星上寻找生命迹象的工作具有重要的指导意义。 研究人员发现,这些微生物通常能够通过氧化无机物质(如硫、铁和铜)来获取能量。在考察现场,Phenom XL 飞纳台式扫描电镜对于快速识别和分析矿物样本起到了非常重要的作用: 研究人员在洞穴表面的裂隙与凹槽中发现了各种矿物。“我们发现了这种美丽的矿物,有白色的、绿色的、蓝色的等等。”南佛罗里达大学的矿物学家博格丹奥纳克回忆道。研究人员用无菌刮刀刮下样本,并将其放置在真空密封袋中。收集样本后,索罗及其同事们便回到帐篷中,利用飞纳台式电镜的图像来确定样本的化学构成,他们通常能在半小时内识别出矿物,极大地提高了样本采集和分析的效率。 研究人员在飞纳台式扫描电镜下发现几种稀有矿物 追寻微生物的繁殖路径,将帮助科学家在宇宙中寻找生命。索罗提问:“既然地球上一些特定的微生物能在熔岩管道中迅速繁衍,那么在火星上为何不能上演同样的生命奇迹呢?” 从内部观察一个已经坍塌的熔岩管 美国宇航局艾姆斯研究中心 NASA 天体生物学研究所所长佩内洛普博斯顿博士将熔岩管形容为“太阳系其他天体可能存在现象的缩影”。火山活动并不仅限于地球和火星,即便是在木星的卫星之一IO上,也能观察到活跃的火山活动。这表明,太阳系外的行星和卫星同样可能存在火山以及熔岩管。因此,博斯顿博士认为索罗正在研究的洞穴具有很高的参考价值。 01洞穴内一个已经凝固的小熔岩湖 02.绳状熔岩(熔岩流表面构造) 03.洞穴入口附近的墙壁细节 法格拉达尔火山的喷发虽然已经平息,索罗对冰岛其他火山的动态依然保持着浓厚的兴趣。今年 3 月,雷克雅内斯半岛上的 Hagafell 山,距离法格拉达尔仅几英里之遥,突然开始了新的喷发。索罗望着那片火山喷发的壮丽景象,心中沉思:“新的熔岩管道正在形成。”这些神秘莫测的洞穴,或许将成为他下一次探险的目的地。
  • 9月13日 Science杂志精选
    封面故事 & 特刊:抗体,未来就在眼前   本封面的显示了一种主要抗体亚型:免疫球蛋白G 电子密度表面的结构模型 。人类的免疫系统会产生许多种类的Y字形抗体,他们可以识别外来分子,并直接有针对性地中和或者标记入侵者。科学家利用这一特性,通过绑定一个或多个特定目标的抗体,来对抗对疾病以及设计疫苗。[链接]   做好近距离观察的准备:HIV的入点之一   一项新的研究报道称,科学家们已经对HIV踏进免疫系统之门所利用的两种共受体中的一种进行了首次近距离的观察。科学家获得的这些见解可转化成为更加有效的HIV药物。CCR5是人类细胞表面的一种受体,它是HIV病毒初始攻击人类免疫系统的两种主要入点之一 通过与它结合,一个HIV的蛋白就能与其下方的细胞膜进行融合,并最终钻入细胞。HIV用来发挥这一本领的另外一种受体是CXCR4。CCR5 和 CXCR4两者都属于一种叫做G-蛋白偶联受体的受体蛋白家族,或GPCRs,它们可介导身体内的一系列功能,并因此而成为了重要的药物标靶。然而,科学家们只是在最近才获得了对GPCRs进行高分辨率成像的能力,而进行高分辨率成像对药物设计而言是至关重要的一步。来自中国科学院上海药物研究所(SIMM)并参与了这项研究的研究人员Beili Wu解释说:&ldquo 针对GPCRs的结构研究具有巨大的挑战性。&rdquo CXCR4的结构已经被破解,但即使如此,科学家仍不清楚这一受体是如何识别并与HIV病毒蛋白相结合的。   如今, 在9月13日《科学》杂志上发表的一项新研究中,Wu及其同事首次对CCR5进行了精确的观察,而HIV病毒株利用CCR5的频率更高。为了这项工作,研究人员利用了一种叫做马拉韦罗(Maraviroc)的用来治疗HIV-1的药物。这种药物是CCR5受体的拮抗剂,它通过与共受体结合从而使共受体无法被循环中的HIV利用。Wu解释说,她的研究团队之前对CXCR4所做的高分辨率成像工作也促成了此次的研究进展。她说:&ldquo 近些年来在GPCR结构生物学领域的突破,特别是我们先前在破解人类CXCR4结构的研究中所取得的成功,帮助我们更好地了解了这一更具挑战性的CCR5受体的蛋白质行为。&rdquo Wu和她的同事让马拉韦罗(Maraviroc)与一种经过设计的CCR5受体结合,然后对所产生的受体/药物复合物进行提纯且得到了长度在2.7埃的结晶&mdash &mdash 2.7埃是一个非常高的分辨率。对该结合复合物(在该复合物中,受体可以说并未受到抑制,它只是处于不活动的状态从而不会接受HIV)的观察就HIV与细胞融合的分子通路提供了见解。至关重要的是,这些观察展示了在分子水平上的奇异行为,其允许某些HIV变异株逃避CCR5抑制剂 这种奇异现象会在CCR5共受体呈现一种奇怪的穹顶形状时发生,而这种形状可降低其与该抑制剂的亲和力,使得受体开放并能被HIV结合。该研究还揭示了CCR5/药物复合物的各种特征有别于另外的那种与其抑制剂结合的共受体 : CXCR4的结构。例如,CCR5/药物复合物会在更深入标靶细胞膜的区域结合,而且它还占据了一个较大的面积。对这两种HIV共受体结构的比较可帮助阐释为什么一个HIV分子会选择一种共受体而不选择另外一种共受体。Wu说:&ldquo 尽管CCR5和CXCR4共有非常类似的整体构造,但这两种共受体的配体结合袋内存在的差异非常小,且它们可能会导致不同共受体对不同HIV-1病毒株进行识别的结果。&rdquo 这些及其它的见解将有助于科学家们以CCR5抑制为基础来改良现有的HIV药物,并创制新的HIV药物。Wu说:&ldquo 我们希望我们所确定的结构能被用来了解目前的HIV病毒株进入细胞的分子细节,研发可同样抑制CXCR4和 CCR5受体的新分子,以及阻断未来可能出现的、及可以用第二代的HIV进入抑制剂来处理的病毒株。&rdquo   由昆虫&ldquo 发明&rdquo 的机械齿轮   研究人员有时会向自然界寻求工程设计的灵感,例如,模仿蝇类翅膀的扑动来制造会飞的机械装置。但在有些时候,研究人员会发现所谓人类的发明&mdash &mdash 例如经典的螺丝与螺帽系统&mdash &mdash 已经在很久以前就被进化过程&ldquo 设计&rdquo 出来了。Malcolm Burrows和Gregory Sutton报告了一个全新的例子,而它正属于后面的(且较罕见的)一种情况:一个被称作伊苏斯(Issus)的在植物间蹦跳的昆虫属中的成员在它们的后腿中就有着能够像机械齿轮那样相互啮合并旋转的互动性齿轮。研究人员对一种特别的叫做Issus coleoptratus的昆虫拍摄了高速视频并发现,这种飞虱在其后腿的被称作转节的节段上有一个弯曲的狭条,上有10-12个轮齿。然而,他们说,这一特征只存在于I. coleoptratus的若虫中,并会在这些昆虫完成最后蜕皮而变为成虫时消失。在向前跳跃之前,飞虱将其一条腿上的轮齿与另外一条腿上的轮齿啮合以&ldquo 弯曲&rdquo 它们的腿。据研究人员披露,这一动作将该昆虫的后腿紧紧地耦合起来,确保其双腿在跳跃的过程中能同步移动,且两腿之间运动的时间差在几个微妙之内。他们的发现表明齿轮&mdash &mdash 曾经被认为是人类的发明&mdash &mdash 实际上在自然界中演化了出来,且它们在跳跃于植物间的昆虫的自然行为中扮演着一种基本且具功能性的作用。因为若虫在其蜕皮时似乎修复了对其齿轮的任何损坏,Burrows 和 Sutton提出,这样的维护很可能是为了保持这些齿轮继续转动所必需的。   如果冰架融化,冰会流失   据一项新的研究报道,科学家们已经确认了南极的一个特别重要的冰架下的一种复杂的融化模式。他们的发现可改进对海平面上升的预测。覆盖地面的巨型冰盖会变平并缓慢持续地向外伸展,引起冰向冰河汇聚的海中流去。这些冰架形成了一个环绕着与地面接触的冰的边界并缓冲了冰流的运动,而且只要冰架维持完整的话,冰流就会受到浮动冰架的阻挡并减缓速度。当冰架融化及破裂时麻烦就开始了&mdash &mdash 因为它使得如今缺乏出口的来自陆地的冰向海中流去。浮动冰架丧失的一种方式是通过与温暖的海水接触而致的冰的融化&mdash &mdash 这促成了海平面的上升。融冰可因洋流所含热量而发生。科学家们还不理解温暖的海水是否均匀地在其所有的基部侵蚀冰架,还是以一种更为零星的模式侵蚀冰架。在近几十年来,Pine Island Glacier (PIG)冰架&mdash &mdash 这是巨型的南极西部冰盖的一个缓冲区&mdash &mdash 已经变薄。为了更好地理解PIG下方的融冰模式,T.P. Stanton及其同事通过深部钻孔所布置的海洋传感器对PIG的下方进行了探索。他们发现了一个宽600米的通道,通过该通道,温暖且快速流动的海水沿着该冰架底部的具体部位流动。进一步的评估揭示了一个这样的汹涌且局域性的通道的复杂网络。研究人员推断,它们的影响造成了PIG冰架以每天0.06米的速度融化。(与此同时,在这些通道之外的冰很难融化。)Stanton及其同事的研究揭示了冰-海洋相互作用在冰架动力学中的重要性,它继而能够帮助科学家们更好地预测海平面的上升程度。   旅行者1号飞船离开日光层的一个确切日子?   来自美国宇航局NASA的旅行者1号飞船自它在1977年发射升空以来就在不停地朝着离开太阳的方向前进,而来自旅行者1号飞船的新数据表明,该飞船确实已经离开了日光层&mdash &mdash 即环绕太阳系的带电粒子气泡&mdash &mdash 的温暖舒适并进入到一个叫做星际空间的深邃黑暗的太空区域。这些新的测量显示该飞船周围的等离子密度与星际介质的理论预测是一致的,根据这些新的测量研究人员提出,旅行者1号是在2012年8月25日或大约那个时候到达这个寒冷且未经探索过的星际空间的。Donald Gurnett及其同事于今年4月9日至5月22日间提供了这些新的对电子等离子体振荡的测量结果&mdash &mdash 这是一种在先前的研究中没有被发现的测量结果&mdash &mdash 它们揭示了旅行者1号位于一个电子密度大约为每立方厘米0.08的太空区域之中。(根据目前的模型,在星际介质中的电子密度应该在每立方厘米0.05至0.22之间)。Gurnett及其同事接着回顾了来自旅行者1号的旧的数据并发现了在2012年10月23日至11月27日间的另外一个有着类似电子振荡的间期。他们计算的在那时围绕该飞船的电子密度约为每立方厘米0.06 他们说,在这两个事件之间的密度变化表明在它们之间的太空区域内有一个平稳增加的&ldquo 密度斜坡&rdquo 。由于旅行者1号是以每年大约3.5个天文单位进行移动的,研究人员提示,沿着这一密度斜坡电子密度随着每个天文单位的增加会上升约19%。研究人员最终回溯性地提到了1993年(插入链接)的一个《科学》研究报告,该报告利用了一系列强烈的太阳风暴,而太阳风暴发送了一个通过日光层的冲击波。该报告解释,在该风暴之后400天,研究人员探测到了距离在大约116至117天文单位之外的、频率大约为两千赫的射电辐射。因此,研究人员顺着他们的密度坡道的斜坡往回追溯时间,直到他们读数的频率与2千赫相符。所得到的日期与2012年8月25日相符,该日期在多个证明带电荷粒子强度衰减以及银河宇宙射线强度出现尖峰的旅行者1号的研究中被引述过。
  • Pall免费讲座:膜层析技术——快速去除杂质的灵活解决方案
    Pall免费在线讲座   上游工艺技术的持续改善已经使蛋白表达水平越来越高,从而使下游产量超过1g/L,甚至达到10g/L。这些前提将直接影响到下游工艺,直至遇到技术瓶颈。然而,目前的趋势,比如使用更高载量、选择性更广的层析填料,以及更多使用一次性技术如膜层析等,将会突破这些瓶颈,使制药行业的快速发展获得强大动力。   如何有效去除杂质是制药工艺中一个很大的挑战,这也是膜层析技术应用最受欢迎和流行的应用点。膜层析的操作非常简便,其高速以及高效的特性有效降低了工艺时间和成本,提高总产量。本次网络讲座将会阐述膜层析的基本原理,并举例客户应用,说明如何将该技术整合到工艺中,以节约时间和成本。   参会者将有机会学习:   如何使用Mustang® 膜层析产品有效去除杂质,提高工艺经济性?   如何将膜层析产品纳入到一次性系统的设计中?   如何使用膜层析技术解决当前以及未来的工艺挑战?   谁应该参加?   ● 致力于高效、高质药物研发和生产的行业领导者   ●下游工艺研发专家、工程师和组长   ●早期制药工艺开发相关的科学家   ● 产品工程师   ● 验证专员   ● 层析专员   ● 生产人员   ● 关注 cGMP 临床试验产品的质量经理   ● 工程咨询   讲座专家:   Russell M. H. Jones   Mustang膜层析全球产品经理   Pall Life Sciences   John M. Jenco, Ph.D   高级首席科学家   技术服务部   Pall Life Sciences   Dr Iann Rancé   工艺开发总监   Cytheris公司下游工艺及分析部门   讲座信息   讲座时间:2012年2月16日, 23:00pm(北京时间)   注册网址:https://event.webcasts.com/starthere.jsp?ei=1003510&sti=S   (本次讲座全部免费,但是请务必提前登陆注册,收到确认邮件后即可顺利参会。)   颇尔公司及Mustang层析技术简介   作为全球过滤、分离、纯化技术的领导者,颇尔公司(Pall Corporation)提供经济、高效、创新的层析纯化平台,帮助制药用户满足日益严格的应用需求,实现高产量目标。Pall层析产品提供极佳的独特选择性,完美解决当下的工艺挑战,具从实验室到生产规模的真实放大性,独特的平台可提高工艺经济性,应用于制药工艺下游多个步骤。产品系列包括:层析填料,PRC预装柱,LRC层析空柱,Mustang离子交换膜产品,Resolute层析柱,PKP层析系统,PK层析系统等。   Mustang离子交换层析产品为生物工艺提供了灵活的解决方案,包含一次性和重复使用两大类产品,均可放大。高流速,高通量,操作简便,紧凑设计等特性显著降低缓冲液的消耗,提高整体工艺的经济性。   Mustang膜层析技术是目前高效去除杂质、捕获大目标分子(质粒DNA,病毒载体等)的首选技术。
  • 前沿应用∣岛津高分辨质谱助力合成多肽药物杂质结构鉴定
    截至2020年,全球共有76个多肽类药物被批准上市,7000多个活性多肽被发现,约150个多肽药物进入临床试验,在过去20多年中,平均每年被批准的多肽药物约3个。微球、脂质体、聚乙二醇(PEG)修饰等方法的深入应用解决了多肽药物稳定性差、体内易降解、半衰期短等成药性差的问题,促进了多肽药物的开发利用。多肽药物药效广泛,临床上以慢性病治疗为主,例如罕见病、肿瘤、糖尿病、胃肠道、骨科、免疫、心血管疾病等。国内外药典将合成多肽类药物列入化药的范畴进行杂质的控制。欧洲药典规定合成多肽含量在0.5%以上的相关杂质需进行定性分析,对含量在1%以上的相关杂质进行定量分析并考察其毒副作用。2007年国家食品药品监督管理局发布了《合成多肽药物药学研究技术指导原则》,指出合成多肽原料药中工艺杂质的来源和一般化学药物有所不同,其可能的工艺杂质如:缺失肽、断裂肽、去酰胺多肽、氨基酸侧链的不完全脱保护所形成的副产物、氧化肽、二硫键交换的产物、非对映异构的多肽、低聚物和/或聚合物及合成中所用的毒性试剂和溶剂等。 多肽含有二硫键、裸露的氨基和羧基,容易因分子间二硫键或氨基羧基间脱水形成共价聚合物。共价键形成的聚合物杂质可能存在较大免疫原性风险,在多肽类药物制剂质量研究和新药申报中应予以重点关注。质谱分析、氨基酸组成分析和氨基酸序列测定是合成多肽药物及杂质结构确证最常用的技术手段。 岛津解决方案 ● 分析仪器岛津液相系统Nexera LC-40 +高分辨质谱仪LCMS-9030 ● 分析条件流动相为水:乙腈:TFA=60:40:0.2流速:0.5 mL/min等度洗脱柱温:25℃质谱:离子源:ESI(+)扫描范围:m/z 100 ~5000 多肽药物应用案例一STN聚合物杂质结构鉴定图1. 注射用STN破坏样品HPLC色谱图(UV 210 nm)图2. STN聚合物杂质可能的聚合方式 通过STN聚合物杂质精确质量数预测其分子式,结合多肽的质谱峰归属对STN聚合物杂质进行结构推测(如图2)。STN结构中含有一对二硫键,综合判断其聚合位点为分子间二硫键。 多肽药物应用案例二TJN聚合物杂质结构鉴定图3. 注射用TJN破坏样品HPLC色谱图(UV 214 nm) 图4. TJN聚合物杂质MS2质谱图 使用岛津精确分子式预测工具Formula Predictor对TJN聚合物杂质进行分子式预测,其分子式预测结果恰好相当于两分子TJN脱水,因此推测其聚合位点为两分子TJN的氨基端和羧基端缩合生成肽键。TJN为20肽,其游离氨基端为苯丙氨酸,游离羧基端为亮氨酸。结合TJN二聚体的推定氨基酸序列进行二级质谱碎片归属,TJN聚合物MS2质谱图中识别出多种特征碎片。特别是y19和b21碎片的存在证明聚合位点为亮氨酸(L)和苯丙氨酸(F)缩合而成的肽键。 结论随着我国成为国际人用药品注册技术协调会(ICH)成员国,药品的技术标准逐步与国际接轨。同时随着我国药品一致性评价工作的全面开展,合成多肽药物杂质结构鉴定将面临巨大的技术挑战。岛津公司采用尺寸排阻色谱法建立合成多肽药物的聚合物分析方法,并通过高分辨质谱LCMS-9030测定聚合物的准确质量数推测其分子式,同时结合MS/MS特征碎片推测聚合物杂质的结构。本文展示LCMS-9030在多肽药物的两种主要聚合方式(二硫键和肽键)鉴定中的应用。岛津液相色谱四极杆飞行时间串联质谱LCMS-9030具有高质量准确度,高分辨率的性能优势,是合成多肽药物杂质一级结构鉴定的强有力工具。 本文内容非商业广告,仅供专业人士参考。
  • 梅赛德斯-奔驰联合研究:减少锂电生产过程中杂质颗粒的 4 种方法
    Nature Energy|梅赛德斯-奔驰联合研究成果:减少锂电池生产过程中杂质颗粒的 4 种方法目前,尽管在实验室研究的锂离子电池材料的研发已经取得巨大进展,但是从实验室几克材料的合成,到千克、以及吨级大规模生产,还存在许多质量控制的盲点。本文作者重点关注下一代锂离子和锂金属电池,分别从电池的原材料、正负极加工工艺、超轻量集流体、以及电池生产过程中的清洁度把控(锂电池清洁度分析)等方面出发,给出了锂电池大规模量产的机遇和挑战。这一研究成果《锂电池从实验室研究到大规模量产》,由太平洋西北国家实验室、华盛顿大学、宾夕法尼亚州立大学和梅赛德斯 - 奔驰北美研发公司以及赛默飞世尔科技共同完成,并发表在国际顶级期刊《nature energy》上。原文链接:https://doi.org/10.1038/s41560-023-01221-y文章解读文中在“对锂电池原材料和生产过程的表征”部分指出,为了实现可控且高品质的电池材料生产,先进的表征手段在这个过程中非常关键。品质把控包括原材料、电极形貌和成分、以及表面处理等众多步骤。在品质把控的过程中,来料中有 2 类金属杂质对于电池性能危害最为严重。一种是非磁性颗粒,比如铜 (Cu)、锌 (Zn) 类。另一种是磁性颗粒,比如铁 (Fe)、铬 (Cr)、镍 (Ni) 以及合金颗粒。目前电池制造商们主要采用以下 4 种策略来减少生产过程中的杂质颗粒。对原料进行严格的品质把控 策略一 这一过程可以借助电感耦合等离子体发射光谱仪、光学显微镜和扫描电镜(ParticleX Battery 锂电清洁度检测系统),来识别原材料的杂质颗粒并分析其成分,这些方法对于磁性颗粒和非磁性颗粒都具有适用性。使用 ParticleX Battery 锂电清洁度检测系统,识别到的磁性和非磁性异物颗粒某些生产环节加入除磁步骤策略二生产工艺中(如搅拌池),添加除磁工艺,以去除磁性颗粒物。监测生产车间的环境清洁度 策略三 生产车间中任何金属零件的磨损,都有可能产生异物颗粒,都会影响生产环境的清洁度。这一过程可以使用光学显微镜和扫描电镜(PaticleX Battery 锂电清洁度检测系统)来追溯污染来源。生产设备的金属表面涂覆防护涂层 策略四 比如在金属储罐表面涂覆聚四氟乙烯涂层,以减少浆料中混入金属碎片的风险。/ ParticleX Battery 全自动锂电清洁度检测系统 /文中使用扫描电镜进行的清洁度检测,正是使用飞纳电镜的 ParticleX Battery 锂电清洁度系统完成的。锂电池中金属异物可能导致严重的安全事故,对金属异物的管控也已经成为行业共识。飞纳电镜 ParticleX Battery 全自动锂电清洁度分析系统,从异物颗粒的图像出发,结合颗粒的能谱(成分)信息,可以自动识别、分析和统计铜(Cu)、锌(Zn)、铁(Fe)等金属异物,进而帮助准确分析异物来源,改善生产条件,减少安全事故的发生。- 自动杂质颗粒识别- 自动高清图像采集- 自动能谱成分分析- 自动杂质颗粒分类
  • 知名专家聚姑苏,热议药物杂质研究新动向(续)
    11月2日,由中国药学会制药工程专委会、美中药协中国分会 (SAPA - China)联合主办,岛津公司倾情赞助并承办的“2017药物杂质研讨会苏州论坛”在苏州市吴宫泛太平洋酒店进入第二天的日程。业界权威专家继续与超过百位的与会者热议药物杂质的研究方法与策略、申报和案例。论坛现场传真 在论坛次日的大会报告环节,首先由江苏省药检院原副院长、国家药典委员会理化专业委员会委员王玉博士做了题为《有关物质分析方法建立和验证》的演讲。他想演讲中深入介绍了建立有关物质分析方法的基本思路,以及分析方法应满足的要求,并通过对ICH、美国药典和中国药典中有关验证项目和参数的解读,论述了如何对有关物质分析方法进行验证,讨论验证应达到的要求和验证中的注意事项。 江苏省药检院原副院长、国家药典委员会理化专业委员会委员王玉博士做演讲 华海药业副总裁、中国药学会制药工程专委会委员李敏博士继首日演讲后,再次做了题为《药物降解化学与药物降解杂质的研究》的演讲。他从药物的结构、与辅料的相容性(对于制剂方法而言)以及相应的降解化学入手,系统地讲述水解降解化学、氧化降解化学、药物与辅料间各种常见的降解化学、并重点介绍各类氧化降解的机理,包括对开发制剂处方有重大影响的药物自氧化化学Udenfriend Reaction。根据每个药物分子的结构,判断其最可能的降解途径,然后设计合理的强降解反应,使得到的降解杂质谱与真实条件下产生的杂质谱最大程度上相似,从而为制剂的设计和高质量的指示稳定性分析方法的开发提供坚实的基础。通过对药物降解化学的理解使设计的制剂处方具有满意的稳定性,是质量源于设计(QbD)理念的一个具体表现。华海药业副总裁、中国药学会制药工程专委会委员李敏博士做演讲 随后,资深药物分析专家、CMC和CGMP法规独立顾问黄伟新博士做了题为《如何确保分析实验室的数据完整性》的演讲。他在演讲中首先指出近几年来,国外有关法规部门在CGMP检查和PAI审计期间已经观察到一些国内制药企业严重涉及数据完整性的GMP违规。这些数据完整性相关的违规会导致了法规部门对某些企业实施许多监管行动,包括警告信、进口禁令和合意判决,数据完整性的违规会破坏了公司药品质量并严重损害其业务和声誉。在药品生产和实验室检测过程中,数据完整性是其质量控制体系的一个重要环节,确保药品质量安全和有效。也是法规部门监管药物质量和保护大众健康对制药行业管理一个基本要求。他在演讲中例举了审计中观察到一些常见药企数据完整性问题和讨论生产过程和实验室数据完整性的重要性。同时按照CGMP和FDA数据完整性的指导原则探讨了药企怎样按照这个指导原则来完善其数据完整性,并基于风险的策略预防和有关数据完整性问题应采取哪些有意义和有效的措施去管理生产和QC实验室数据。资深药物分析专家、CMC和CGMP法规独立顾问黄伟新博士做演讲 前FDA临床药理高级审评员张袁超博士带来了论坛的最后一个演讲《从新药临床试验申请(IND)到新药报批(NDA):美国新药申报中FDA对药物有关物质的要求》。他在演讲中从临床前毒理学及临床安全性的角度,讨论了FDA在审核相关原料药方面的监管要求。结合CMC资料的法规要求,讨论了从最初的IND(新药临床试验申请)启动,经过临床研究各阶段,直至NDA(新药上市许可申请)申报,这当中各个不同阶段所采用的药物开发策略。并讨论了FDA关于IND/NDA的一般法规政策以及与FDA审评部门的沟通环节,包括会议及信息交流情况。前FDA临床药理高级审评员张袁超博士做演讲 在论坛次日,专家和与会者继续热议药物研究的新方法关于岛津 岛津企业管理(中国)有限公司是(株)岛津制作所于1999年100%出资,在中国设立的现地法人公司,在中国全境拥有13个分公司,事业规模不断扩大。其下设有北京、上海、广州、沈阳、成都分析中心,并拥有覆盖全国30个省的销售代理商网络以及60多个技术服务站,已构筑起为广大用户提供良好服务的完整体系。本公司以“为了人类和地球的健康”为经营理念,始终致力于为用户提供更加先进的产品和更加满意的服务,为中国社会的进步贡献力量。
  • 肉眼能看出水中杂质 仪器检验竟合格
    近年来,七贤井家沟村村民也曾多次向有关部门反映,“每当反映得比较激烈时,村委会就会贴出一份水质检测报告,证明水质是合格的”。   在井家沟村一个公告栏里,记者也见到了一份水质合格的检测报告,对这一报告,很多村民半信半疑。记者也采访了出具检测报告的部门,该部门表示,该报告是基于送样进行的检测,他们只对样品检测结果负责,至于样品采集过程,他们没法控制。   村子里一些人得病,怀疑与水有关   在井家沟村,一提起村里饮用水的问题,村民们都有很多话要说。“人可以几天不吃饭,但不能一天不喝水。”一村民说,他们村里的饮用水是绿色的,还有异味,没法正常饮用。   这时,另一位村民接过话头说:“没法喝也得喝呀,人家经济条件好的,可以买大桶的纯净水,或是安装一个净水器,像我们这些条件不好的,就只能喝这个水了。”据了解,井家沟村总共4000多口人,绝大部分村民还是会饮用村里的水,洗衣、做饭也全都得靠它。另外,也有一些经济条件不算好,却不怕麻烦的村民会到外村去接水回来用。“喝村里的水,身体会有什么反应?”记者问。“以前经常会拉肚子,不知道与水有没有关系,现在都已经习惯了。”井先生说,但他担心村里的孩子们长年喝这样的水,会对其身体健康和成长有影响。   据介绍,近几年,井家沟村的一些老年人,患结石病、心脑血管疾病的人比较多,也有患癌症的,还有一些中年人,刚刚40多岁,就已经半瘫了,现在说话、走路都不利索。   不过,村民们同时表示,由于没有正规权威部门鉴定,他们也不能确定一些人得病就与这水有关系。“只是怀疑而已。”井先生说,“俗话讲‘病从口入’,我们更加希望我们喝的水是安全的。”   村民曾改喝外部自来水   既然村民怀疑饮用水受到了污染,并且污染已严重到肉眼可见的程度,那么村民就甘愿一直喝这样的水,而没有反映过吗?对于这个问题,村民在回答时都略显激动。“怎么可能没反映过,这些年都反映了不知多少次了,有什么用啊?”村民井先生说。   在采访中,一些村民向记者证实,他们怀疑饮用水有问题已经多年了,也曾向有关部门汇报过。前几年,村里曾一度不再喝皇上岭井里的水,改喝从外面调来的自来水。“当时,感觉口感和水质明显改善,与村里的井水很不一样。”井先生说。   然而过了一段时间,一些村民反映,外来自来水费用太高,就又换回了原来的井水。据介绍,喝自己村里的井水,村民只要交一些电费就可以了,花费并不大。   也有村民向记者表示,当时村里改喝外部自来水,与村里井水水质没有关系,“只是因为当时井水压力太低,不足以供应村民饮用”。   水质检测合格,村民仍有疑虑   “那你们反映怀疑水质有问题的事,相关部门就不管吗?”记者追问村民。一位村民笑了笑,指着井家沟村的一个公告栏说:“管,当然管。这不是贴出了告示嘛,找的次数多了就会贴这个,都已经贴了四五次了。”   在村民所指的公告栏上记者看到,上面贴了一份检测报告书,出具单位为济南市市中区疾病预防控制中心,检品名称为生活饮用水,委托单位为济南市市中区井家沟村,报告日期为今年7月31日。   记者细读检测报告书内容发现,本次检测为送样检测,样品采集时间和送检时间均为今年7月18日。当时一共送检了2份饮用水样品,分别为500毫升瓶装水和5升桶装水。共检测了13个项目、26项次,检测项目分别为色度、浑浊度、臭和味、肉眼可见物、pH、总硬度、硝酸盐、砷、铅、铁、铜、总大肠菌群以及细菌总数。   检测及评价依据也一条条罗列其中,除了常见的生活饮用水卫生标准外,还有生活饮用水标准检验方法,感官性状和物理指标,无机非金属指标,金属指标及微生物指标。   这些检测依据非专业人士可能并不了解,但下面所写的结论却是很多人都能看懂的。结论及评价上这样写着:“根据GB5749-2006生活饮用水卫生标准,2份样品所检项目符合卫生要求。”   检测报告书的最底部还有相关负责人的签字,以及济南市市中区疾病预防控制中心所盖的公章。   当记者仔细阅读检测报告书时,一位村民指着报告书说:“虽然我不知道什么检测标准,可我们的饮用水颜色发绿,   还有杂质,用肉眼都能看出来,那么高级的仪器检测出来的结果竟然是合格的,我不相信。”   在井家沟村,记者随机调查了10位村民,问他们是否认为检测结果能证明其整天饮用的水就是合格的,不少人都表示怀疑。   检测部门:样品为送检,采样过程无法控制   针对一些井家沟村村民的疑虑,22日,记者联系到水质检测报告书的出具方——— 济南市市中区疾病预防控制中心,就相关问题采访了质量科相关负责人程先生,以下是记者与他的一段对话。   记者:有井家沟村民反映该村饮用水是绿的,有异味,但你们出具的检测报告书证明,水是合格的,实际情况是怎样的?   程先生:他们当时是送样检测,我们只对送来的样品负责,样品的检测结果绝对是符合要求的。至于这些样品是从哪里采集来的,我们就不知道了。采样的中间过程我们监督不了,我们也不负责采样。   记者:村民反映水是绿的,有异味,你们没有发现吗?   程先生:送到我们这里检测的水是用小瓶装着的,水很少,我们看不出颜色,也没有仔细品尝味道,只能是闻一闻。   记者:据我所知,新的饮用水卫生标准中有106项水质指标,你们给井家沟村检测的怎么才13项?   程先生:对,国家饮用水标准是106个指标,常规的40多个,常做的20多个。农村用水一般要求20多个指标,但井家沟村这次是委托我们检测,是需要花钱的,检测项目越多花费越多,我们检测也需要付出大量劳动,一份样品,不是一两天就能检测出来的,一个人做20多个项目需要10多天的时间。   记者:你们平时对井家沟村的饮用水做过抽样检测吗?不是送检,就是你们自己采集样品然后检测。   程先生:饮用水抽检,国家有固定安排,每年在几个固定地点轮流抽样,费用由国家财政出。我们作为第三方检测机构,去年接受委托抽检了几个村,今年抽检了5个,我不记得有井家沟村,具体有没有抽查还得再查。至于村里打的井,在打井之前,水务部门有要求我们才会去检测。再说,村里的井,水质变化很快,枯水期或许是合格的,涨水期一下雨,井边的垃圾被冲进去,可能又不合格了。
  • 北京博赛德科技有限公司汽车用燃料氢气痕量杂质分析解决方案上市了!
    北京博赛德依据《质子交换膜燃料电池汽车用燃料氢气》(GB/T37244-2018)的要求及氢气中杂质实际分析中的难点和常见问题,推出了《汽车用燃料氢气痕量杂质分析解决方案》,该解决方案主要内容包括:BCT9700D动态稀释仪、BCT9900H氢能源杂质分析仪及后续分离检测系统。方案可实现单针进样分析汽车用燃料氢气中的硫化物、甲醛、甲酸等各目标组分检出限均低于其标准限值1个数量级以上。检出限低、性能稳定、准确度高精密度均小于10%,准确度均在90%-110%之间,优秀的检出限、精密度、准确度水平可以准确反映氢气中杂质的含量,有利于评估杂质对燃料电池的影响。BCT9900H氢能源电池杂质预浓缩仪北京博赛德基于近二十年VOCs检测分析经验,和中国石化石油化工科学研究院强强合作,共同开发了BCT9900H氢能源电池杂质分析仪。整套系统结合了EPATO15和HJ759标准方法对浓缩系统硬件及质控要求,同时针对氢气中杂质组分的特点和氢燃料电池行业的特有要求,在常规预浓缩仪的基础上进行了硬件升级改造,让捕集系统更加适合杂质的痕量分析,并结合开发优化后的专用氢杂质分析方法,可实现12种杂质组分的样品检测分析。产品特点专用捕集阱专用的捕集阱设计,克服了填料阱易残留、解析速度慢、载气流速大(需要分流进样)、被测物质易分解(如甲酸)等问题体积计量准确通过EVC电子体积控制,进样精度≤1ml,且可实现不同基质的样品体积测量,如氢气基质等,体积计量准确,精密度高系统无吸附样品流路全部经过惰性化处理,并经过严格的惰性测试,可避免吸附目标物质,保证高回收率避免交叉污染数控阀设计可实现将阀芯旋转到任意位置,能完全隔离捕集阱和样品,更好的避免了交叉污染适用性强测试浓度范围可达0.01ppb-ppm级别,适用于氢气成品中痕量杂质分析、氢气半成品中杂质分析应用范围:分析汽车用燃料氢气中的硫化物、甲醛、甲酸等组分检出限低:检出限低于国家标准中最大允许浓度限值的1个数量级以上BCT9700D动态稀释仪BCT9700D动态稀释仪基于理想气体状态方程的原理,采用限流器结合电子压力控制器(EPC)的方式,对气体流量进行控制和调节,实现对样品/标气的稀释。BCT9700D动态稀释仪BCT9700D可实现标气/样品稀释后直接进样分析,为气体质量检测、现场样品检测、仪器标定与质控等工作的准确性提供保障。产品特点采用动态稀释的原理,稀释后的样品/标气可直接进行分析,无需存储容器,降低目标组分的反应机会;采用限流器结合EPC进行流量控制,不使用质量流量计,避免交叉污染,稀释精度高,结果更准确;稀释倍数范围大,单次最大稀释倍数可达2000倍,可显著增加被测样品的浓度范围;整个稀释系统无需庞大的混合腔体,且气体经过的所有管线均经过惰性涂覆,避免目标组分在稀释过程中产生吸附和交叉污染;仪器内置加热单元和温度控制器,系统温度稳定,仪器稳定性更高。应用案例更多详情,欢迎来电垂询!
  • 【飞诺美色谱】当减肥遇上“魔法”|GLP-1受体激动剂的杂质分析方法
    // 随着我国经济的飞速发展,使得大众生活水平显著提高的同时,也带来了一些不良的饮食和生活习惯,加上运动的匮乏及遗传和环境因素,肥胖症呈现逐年升高的趋势,预计2025年中国超重及肥胖人数将突破2.65亿。肥胖症作为一种慢性代谢疾病,引起相关并发症的同时还会带来形体焦虑等心理障碍。无论是出于健康管理还是形体控制的考虑,抗肥胖药物都呈现出巨大的市场需求。“管住嘴,迈开腿”,这曾经的减肥金科玉律正越来越受到“魔法”药物的冲击。2021年6月,司美格鲁肽的减肥适应症(商品名:Wegovy)获FDA批准上市,成为首个也是唯一用于体重管理的GLP-1受体激动剂,每周只需注射一次。以司美格鲁肽为代表,凭借其显著的抗肥胖效果成为近期互联网的热门话题,也同时使得GLP-1相关药物正逐渐从糖尿病治疗领域跨界减肥领域。目前全球范围内已经批准上市的GLP-1类药物有8款,每周注射1次的长效制剂有5款。市场上最主流的GLP-1药物是Victoza(利拉鲁肽,每日注射1次)、Trulicity(度拉糖肽,每周注射1次)、Ozempic (司美格鲁肽,每周注射1次)、Bydureon(艾塞那肽微球,每周注射1次)。这8款产品2022年全球市场规模大约为218亿美元,诺和诺德和礼来合计占比98.7%。礼来Trulicity和诺和诺德Ozempic和Rybelsus目前处于快速增长期。图表:GLP-1受体激动剂类降糖药全球销售收入(亿美元)资料来源:医药魔方,民生证券研究院诺和诺德作为GLP-1药物在减肥适应症领域的领跑者,在其2020年发表的文献:Influence of Production Process and Scale on Quality of Polypeptide Drugs: a Case Study on GLP-1 Analogs一文中也展示了反相条件下分别使用飞诺美的Synergi Max-RP和Kinetex C18对利拉鲁肽和司美格鲁肽进行杂质分析研究的示例;这给后续GLP-1相关药物的杂质分析方法提供了一个很好的借鉴。Synergi Max-RPC12 TMS封尾适用于中性pH下分析碱性化合物Fig. 9 Overlay of high-performance liquid chromatography quality control chromatograms of (a) Originator liraglutide (black) and Supplier 3 liraglutide (red) and (b) Originator semaglutide (black) and Supplier A (red). Impurities marked were obtained by liquid chromatography with mass spectrometry (LC-MS). For liraglutide, impurities marked were also collected by 2-dimensional LC-MS and fraction collection. AU, arbitrary unit LC-MS, liquid chromatography with mass spectrometry.参考文献:Influence of Production Process and Scale on Quality of Polypeptide Drugs: a Case Study on GLP-1 Analogs, Pharm Res. (2020) 37:120.
  • MS标记LC紫外色谱图,药物杂质一目了然
    岛津的工程师在新发布的模块化单四极杆液质上开了一种新型数据处理算法“Mass-it”,可生成MS标记的紫外色谱图,以方便使用单四极杆LC-MS进行药物杂质分析。 在制药CMC中,化学家通常使用LC和或LC-MS来鉴定和定量合成产品中的组分,其中许多组分仅使用LC的紫外检测器进行分析。LC-MS的优点包括灵敏度高和定性能力好。然而,数据分析的复杂性,低耐用性以及电离方法对目标化合物的限制阻碍了LC-MS的引入。 岛津开发的新型质谱,从三个方面提升质谱仪器的性能:1)“Mass-it”新型解卷积算法辅助对MS数据进行解析,2)更好的耐用性,以及3)应用范围更广的离子源。 本次研究的对象是阿托伐他汀、普萘洛尔、西草净、五氯硝基苯,使用岛津Nexera LC-40 XR液相色谱系统进行分析,该系统配置SPD-M40二极管阵列检测器和LCMS-2050模块化质谱仪(图1),该质谱仪与液相色谱仪的自动进样器模块大小相当。 图1 岛津LCMS-2050集成到HPLC/UHPLC中 实验使用ESI / APCI双离子源(DUIS),扫描质量范围(m/z 100-1000)并以正负离子同时扫描模式进行分析。Mass-it处理TIC色谱图峰并生成检测到的质量信号列表,其保留时间通过提取的离子色谱图确定。XIC保留时间使算法能够区分多个共洗脱成分信号和来自单个成分的一组相关离子信号。 图2 阿托伐他汀的紫外色谱图 按Mass-it列出的组分的m / z被标记在UV 色谱图上。图2所示的示例是高纯度阿托伐他汀样品的代表性数据,显示为单一组分。对于实际样品,算法会在检测到多个杂质组分时对其进行标记,图3展示了Mass-it在阿托伐他汀杂质检测中的应用(图3)。 图3 用Mass-it标记的阿托伐他汀多个杂质 那么该系统的耐用性究竟如何呢?工程师做了系统性实验,10000次连续进样中引入30mg化合物来测试(一次注入1μL的3种药物的混合物,每种药物的浓度为1000 ng/μL)。在MS扫描模式下的进行实验,每隔一段时间检查LC-MS的性能,图4数据显示普萘洛尔的峰面积重复性为8.5%RSD。结果表明,即使重复分析高浓度样品,也可以获得稳定的结果。 图4 LCMS-2050的长期稳定性研究显示了对高浓度样品的耐用性 LCMS-2050配备了DUIS离子源, 可通过ESI和APCI组合方式生成离子,扩大了可离子化的化合物的范围。图5展示了使用由ESI和APCI特征电离的化合物评估DUIS离子源的电离能力。DUIS(+)对西草净(Simetryn)的离子化效率与单独使用ESI(+)相当,表明APCI功能的添加仅略微影响了DUIS配置中的ESI功能。而五氯硝基苯(Quintozene)的ESI(-)离子化效果不佳,但在使用DUIS(-)离子化时,灵敏度显著得到提升(10倍)。因此,DUIS是一种多功能且通用的离子源,可以在单次分析中兼顾ESI和APCI离子化方式。 图5 西草净(上)和五氯硝基苯(下)的ESI和DUIS离子化效率对比 LCMS-2050非常坚固耐用,并配备了强大的软件功能,即使对于首次使用MS的用户,LC-MS数据也更易于理解。这些功能有望增加更多的LC-MS用于药物杂质分析。 本文内容非商业广告,仅供专业人士参考。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制