当前位置: 仪器信息网 > 行业主题 > >

三羟基麦角甾

仪器信息网三羟基麦角甾专题为您提供2024年最新三羟基麦角甾价格报价、厂家品牌的相关信息, 包括三羟基麦角甾参数、型号等,不管是国产,还是进口品牌的三羟基麦角甾您都可以在这里找到。 除此之外,仪器信息网还免费为您整合三羟基麦角甾相关的耗材配件、试剂标物,还有三羟基麦角甾相关的最新资讯、资料,以及三羟基麦角甾相关的解决方案。

三羟基麦角甾相关的资讯

  • 中国生物发酵产业协会发布《发酵液中麦角硫因的测定 高效液相色谱法》行业标准公开征求意见稿
    1. 《发酵液中麦角硫因的测定 高效液相色谱法》行业标准(征求意见稿).pdf2.《发酵液中麦角硫因的测定 高效液相色谱法》行业标准编制说明(征求意见稿).pdf3.《发酵液中麦角硫因的测定 高效液相色谱法》行业标准(征求意见稿)意见反馈表.docx
  • 中国食品药品企业质量安全促进会关于《口服胶原蛋白生物利用度的评价方法》、《化妆品用原料 麦角硫因》两项团体标准征求意见的函
    各有关单位及专家:由广西神冠胶原生物集团有限公司提出,中国保健协会食物营养与安全专业委员会、中国海洋大学等单位参与起草的《口服胶原蛋白生物利用度的评价方法》团体标准;由世卫国华(北京)医疗科技研究院有限公司提出,上海麦角硫因生物科技集团有限公司、默沃智造(上海)生物技术有限公司等单位参与起草的《化妆品用原料 麦角硫因》团体标准,在汇总了标准起草工作组成员单位及有关企业和专家意见的前提下,现已完成征求意见稿,为保证该团标的科学性、实用性及可操作性,现公开征求意见。请各有关单位及专家认真审阅标准文本,对标准的征求意见稿(详见附件1、附件3)提出宝贵意见和建议,并将征求意见反馈表(详见附件5)于2023年04月11日前以信函或邮件的形式反馈至联系人,逾期未反馈意见的单位及个人视为无意见。 联系人:冯斯雯联系方式:010-62484982邮箱:FDSA@fdsa.org.cn 附件1:《口服胶原蛋白生物利用度的评价方法》征求意见稿附件2:《口服胶原蛋白生物利用度的评价方法》征求意见稿 编制说明附件3:《化妆品用原料 麦角硫因》征求意见稿附件4:《化妆品用原料 麦角硫因》征求意见稿 编制说明附件5:团体标准征求意见反馈表 中国食品药品企业质量安全促进会2023年3月7日关于《口服胶原蛋白生物利用度的评价方法》、《化妆品用原料 麦角硫因》两项团体标准征求意见的函.pdf附件1:《口服胶原蛋白生物利用度的评价方法》征求意见稿.docx附件2:《口服胶原蛋白生物利用度的评价方法》征求意见稿 编制说明.docx附件3:《化妆品用原料 麦角硫因》征求意见稿.doc附件4:《化妆品用原料 麦角硫因》编制说明.docx附件5:团体标准征求意见反馈表.docx
  • 浙江省健康产品化妆品行业协会立项《化妆品中麦角硫因含量的测定 高效液相色谱法》团体标准
    各有关单位: 根据《团体标准管理规定》规定,按照《浙江省健康产品化妆品行业协会团体标准管理办法》的相关要求,由珀莱雅化妆品股份有限公司牵头申报的《化妆品中麦角硫因含量的测定 高效液相色谱法》团体标准,经浙江省健康产品化妆品行业协会组织专家进行立项评审,所申报的团体标准符合立项条件,现批准立项并予以公告。 请参与标准起草的单位严格按照浙江省健康产品化妆品行业协会团体标准制定工作要求及专家意见,尽快组织标准编写,强化编制过程中的质量管理,加强组织协调,确保高质按期完成标准编制任务。同时,欢迎与本标准有关的高等院校、科研机构、相关企业、使用单位等加入标准的编制工作,有意参与标准编制的单位请与协会秘书处联系。 联系方式: 潘璐璐 0571-85871052 15957181365 陈莹艳 0571-85871051 18158434007 邮箱:zjcos2015@163.com 地址:浙江省杭州市拱墅区费家塘路新天地商务中心 12 幢 10 楼 浙江省健康产品化妆品行业协会2023年10月26日【2023】55号--《化妆品中麦角硫因含量的测定 高效液相色谱法》立项公告.pdf
  • 新品上市 | 液态发酵食醋中对羟基苯甲酸酯类色谱检测预处理方法包
    对羟基苯甲酸酯类作为食品防腐剂被广泛应用在各类食品中,其中对羟基苯甲酸甲酯(MP)、对羟基苯甲酸乙酯(EP)、对羟基苯甲酸丙酯(PP)和对羟基苯甲酸丁酯(BP)一直是国家食品安全检测抽查的重点项目,并且MP和EP在酱油和醋中的zui大添加限量(以对羟基苯甲酸计)均为250mg/kg。月旭科技之前已推出了酿造酱油和固态发酵食醋中对羟基苯甲酸酯色谱检测预处理方法包,此次针对液态发酵食醋,新研发推出了液态发酵食醋(如白醋、米醋等液态发酵工艺的食醋)中对羟基苯甲酸酯类色谱检测样品预处理方法包,其操作步骤相较前两种食品的方法包更为简单,但净化效果依旧很好,可实现从食醋样品中同时提取、分离、净化这4种对羟基苯甲酸酯类(对羟基苯甲酸甲酯、对羟基苯甲酸乙酯、对羟基苯甲酸丙酯和对羟基苯甲酸丁酯),以用于气相色谱和液相色谱技术对这些防腐剂的检测。样品稀释液:将食醋样品溶解稀释以备上样;净化专用SPE柱:吸附食醋中的杂质;SPE淋洗液:将被SPE柱吸附的杂质淋洗出来;SPE洗脱液:将被SPE柱吸附的目标物洗脱下来;洗脱净化管:进一步吸附残留杂质并除水;萃取液:将洗脱收集液中的目标物萃取出来。1)食醋样品称量:准确称取5g食醋样品;2)稀释溶解:使用“样品稀释液”,稀释溶解食醋样品;3)净化:使用“净化专用SPE柱”,用“SPE淋洗液”和“SPE洗脱液”进行SPE操作,洗脱液收集在“洗脱净化管”内,然后氮吹浓缩;4)萃取:使用“萃取液”,类似于QuEChERS的操作,上清液收集后旋蒸蒸干;5)残留样品用溶剂复溶,过滤后上色谱检测。1) 气相色谱柱分析柱:WM-5色谱柱,柱长30m,内径0.32mm,膜厚0.25μm,月旭科技(货号:03902-32001);2)进样口:温度260℃,分流比1:10,进样量1μL;3)升温程序:4)检测器:氢火焰离子化检测器(FID),温度:280℃;5)载气:氮气,纯度≥99.999%,流速2.0mL/min;6)检测色谱图:1) 液相色谱柱分析柱:Ultimate XB-C18色谱柱,4.6mm×250mm,5μm,月旭科技(货号:00201-31043);保护柱:Ultimate XB-C18,4.6mm×10mm,5μm,月旭科技(货号:00808-04001)(配不锈钢保护柱柱套,月旭科技,货号:00808-01101);2)流动相:A相:含1%乙酸的40%乙腈水溶液;B相:含1%乙酸的乙腈;3)梯度洗脱程序:4) 流速:1.0mL/min;5) 检测波长:260nm;6) 柱温:35℃;7) 进样体积:1~20μL(视目标物浓度而定)。8) 检测色谱图:
  • 新品上市 | 固态发酵食醋中对羟基苯甲酸酯类色谱检测预处理方法包
    对羟基苯甲酸酯类作为食品防腐剂被广泛应用在各类食品中,其中对羟基苯甲酸甲酯(MP)、对羟基苯甲酸乙酯(EP)、对羟基苯甲酸丙酯(PP)和对羟基苯甲酸丁酯(BP)一直是国家食品安全检测抽查的重点项目,并且MP和EP在酱油和醋中的zui大添加限量(以对羟基苯甲酸计)均为250mg/kg。国标中预处理技术存在的问题现行的《食品安全国家标准 食品中对羟基苯甲酸酯类的测定》(GB 5009.31-2016)中,针对气相色谱法检测的样品预处理技术主要是多次液液萃取+液液洗涤的技术,该方法操作繁琐、检测耗时长、有机溶剂消耗量大(其中包括消耗大量的易制毒化学试剂),且回收率较低、稳定性差,另外净化效果也不佳,往往存在着干扰检测的杂质成分。月旭科技针对固态发酵食醋这种复杂基质食品,开发出了固态发酵食醋中对羟基苯甲酸酯类色谱检测预处理专用方法包,这个方法包所采用的双柱SPE法可实现高效、稳定可靠地从各种复杂基质的固态发酵食醋中提取、分离和净化4种对羟基苯甲酸酯类(对羟基苯甲酸甲酯、乙酯、丙酯和丁酯),大幅度减少对色谱柱及色谱管路污染、甚至堵塞情况,可以很好地保护色谱系统。提取液:从食醋样品中提取对羟基苯甲酸酯类;提取吸附剂:吸附食醋样品中的大颗粒杂质;萃取液:使对羟基苯甲酸酯类提取液中的杂质沉淀分离;萃取管:管中的吸附剂可吸附萃取时沉淀的杂质;净化专用SPE柱(双柱):吸附食醋中不同种类的色素;SPE淋洗液:将被SPE柱吸附的杂质淋洗出来;SPE洗脱液:将被SPE柱吸附的目标物洗脱下来。主要操作流程1)食醋样品称量:准确称取5g食醋样品;2)分离提取:使用“提取液”和“提取吸附剂”,振荡分离提取;3)萃取:取试样提取上清液进行萃取,使用“萃取管”和“萃取液”,类似于QuEChERS的操作;4)净化:使用双柱串联的“净化专用SPE柱”,上样用“SPE淋洗液”和“SPE洗脱液”进行SPE操作,洗脱液收集后旋蒸蒸干;5)残留样品用溶剂复溶,过滤后上色谱检测。1) 气相色谱柱分析柱:WM-5色谱柱,柱长30m,内径0.32mm,膜厚0.25μm,月旭科技(货号:03902-32001);2)进样口:温度260℃,分流比1:10,进样量1μL;3)升温程序:4)检测器:氢火焰离子化检测器(FID),温度:280 ℃;5)载气:氮气,纯度≥99.999 %,流速2.0mL/min;6)检测色谱图:1) 液相色谱柱分析柱:Ultimate XB-C18色谱柱,4.6mm×250mm,5μm,月旭科技(货号:00201-31043);保护柱:Ultimate XB-C18,4.6mm×10mm,5μm,月旭科技(货号:00808-04001)(配不锈钢保护柱柱套,月旭科技,货号:00808-01101);2)流动相:A相:含1%乙酸的40%乙腈水溶液;B相:含1%乙酸的乙腈;3)梯度洗脱程序:4) 流速:1.0mL/min;5) 检测波长:260nm;6) 柱温:35℃;7) 进样体积:1~20μL(视目标物浓度而定)。8) 检测色谱图:
  • 基于三维电子衍射技术解析含有序硅羟基纯硅分子筛结构
    近日,大连化物所低碳催化与工程研究部(DNL12)郭鹏研究员、刘中民院士团队与南京工业大学王磊副教授团队合作,在分子筛结构解析研究中取得新进展,利用先进的三维电子衍射技术(cRED)直接解析出含有序硅羟基的纯硅分子筛结构。分子筛是石油化工和煤化工领域重要的催化剂及吸附剂,分子筛的性能与其晶体结构密切相关。分子筛通常为亚微米甚至纳米晶体,传统的X-射线单晶衍射法无法对其结构进行表征。在前期工作中,郭鹏和刘中民团队聚焦先进的电子晶体学(包括三维电子衍射和高分辨成像技术)和X-射线粉末晶体学方法,对工业催化剂等多孔材料进行结构解析,并且在原子层面深入理解构—效关系,为高性能的工业催化剂/吸附剂的设计及合成提供理论依据。团队开展了一系列研究工作,包括针对定向合成SAPO分子筛方法的开发(J. Mater. Chem. A,2018;Small,2019)、酸性位点分布的研究(Chinese J. Catal.,2020;Chinese J. Catal.,2021)、吸附位点的确定(Chem. Sci.,2021)、利用三维电子衍射结合iDPC成像技术解析分子筛结构并观测局部缺陷(Angew. Chem. Int. Ed.,2021)等。本工作中,研究人员利用先进的三维电子衍射技术,从原子层面直接解析出一种含有序硅羟基排布的新型纯硅沸石分子筛的晶体结构,其规则分布的硅羟基与独特的椭圆形八元环孔口结构息息相关。研究人员通过调变焙烧条件,在有效去除有机结构导向剂的同时保留了分子筛中有序硅羟基结构,实现了丙烷/丙烯高效分离,并从结构角度揭示了有序硅羟基和独特的椭圆形八元环孔口对丙烷/丙烯的分离作用机制。相关研究成果以“Pure Silica with Ordered Silanols for Propylene/Propane Adsorptive Separation Unraveled by Three-Dimensional Electron Diffraction”为题,于近日发表在《美国化学会志》(Journal of the American Chemical Society)上。该工作的第一作者是我所DNL1210组博士后王静,该工作得到了国家自然科学基金、中科院前沿科学重点研究等项目的资助。
  • 川宁生物:合成生物学管线稳定推进
    川宁生物(301301) 2023 上半年实现营收24.2 亿元(+21.8%,括号内为同比数据,下同);归母净利润3.91 亿元(+64.8%);扣非归母净利润3.93 亿元(+65.5%),经营性现金流净额10.4 亿元(+1636%),业绩略超预期。Q2 业绩环比再加速,盈利能力加强:单季度看,公司Q2 实现营收11.5亿元(+16.3%),归母净利润2.15 亿元(+57.8%),归母净利润环比+22.8%。业绩快速增长主要因为疫情放开后需求端的快速恢复。盈利能力方面,由于规模效应的体现叠加原材料成本下降,公司Q2 毛利率环比提升4.7pct 至30.9%。期间费用率随着收入增长而下滑,其中管理费用率同比下滑4.3pct 至3.0%,财务费用率同比下滑2.0pct 至1.2%。综合来看,2023 上半年销售净利率同比提升4.2pct 至16.2%,盈利能力不断加强。抗生素中间体疫后恢复良好:分品种看,公司2023 上半年硫红收入7.3亿元(-2.4%);头孢中间体收入5.3 亿元(+16.3%),青霉素类中间体9.8亿元(+54.7%);疫情放开后,头孢和青霉素类中间体需求恢复良好;其中,6-APA 平均价格同比涨价6.7%,销售量同比增加50.8%,青霉素G 钾盐平均价格同比涨价3.4%,销售量同比增加16.4%。合成生物学研发管线丰富,产能丰富,项目落地在即:公司在上海建立合成生物学研究院,依托强大的研发团队、4 大底盘菌研发平台等,已有十数个项目管线,且部分管线有望短期落地。川宁生物首个合成生物学产品红没药醇预计在下半年形成收入。随着下半年公司全资子公司疆宁生物绿色循环经济产业园一期投产,公司将完成合成生物学从选品—研发—大生产的全产业链布局。红没药醇、5-羟色氨酸、依克多因、红景天苷等合成生物学系列产品的商业化生产将标志着公司从资源要素驱动向技术创新驱动的成功转变,从而实现公司效益的稳步提升。合成生物学巩留新基地一期有望在2023 年年底前建成,新基地设计产能包括红没药醇 300吨、5-羟基色氨酸 300 吨、麦角硫因 0.5 吨、依克多因 10 吨、红景天苷 5 吨、诺卡酮 10 吨、褪黑素 50 吨、植物鞘氨醇 500 吨及其他原料的柔性生产车间;其中红没药醇已进入动销;5-羟基色氨酸通过合成生物学技术来生产,其工艺达到业内最高的发酵水平和提取收率,该产品通过微生物发酵法生产,故产品天然度为100%,且生产成本低于植物提取,目前该产品仍在中试验证;麦角硫因公司利用合成生物学技术来进行生产,该技术和用蘑菇菌丝体发酵相比具有工艺简单、发酵周期短、产物浓度和糖转化率高等特点,具有显著的竞争优势,目前该产品也在中试验证。两项产品均在中试阶段,即将为公司提供业绩。
  • 欧盟科学委员或将对羟基苯甲酸酯修改意见
    2012年11月1日消息,欧盟消费者安全科学委员会(Scientific Committee for Consumer Safety ,SCCS)被要求就潜在的内分泌干扰物羟基苯甲酸丙酯(propylparaben)和羟苯丁酯(butylparaben)提供建议,这两种物质作为防腐剂被用于个人护理产品中。  2011年3月,SCCS认为一种产品中羟苯丁酯和对羟基苯甲酸丙酯的单独的浓度总量不超过0.19%,那么这两种物质都是安全的。与此同时,丹麦通知委员会,该国已禁止在三岁以下儿童用化妆品中使用对羟基苯甲酸丙酯和羟苯丁酯。2011年10月,SCCS在其之前的意见上添加了一项说明,结论为六个月以下婴幼儿尿布中的“风险不能排除”。  SCCA被要求考虑其对羟基苯甲酸的意见是否需要更新。
  • 文献速递| SFC-MS/MS法同时测定血清中多种维生素D代谢物(上)
    文献速递引言中国疾病预防控制中心营养与健康研究所、宁波大学食品与药学院中国食品科学与技术系、岛津企业管理(中国)有限公司联合研究,成功建立并验证了适用于血清中多种维生素D代谢物的高通量、高灵敏度SFC-MS/MS分析方法。 由于研究内容较多,故分为上、下两期来进行详细介绍。本期主要介绍内容为:研发背景、样品前处理、如何建立及优化SFC-MS方法等。 文章出处Journal of Chromatography B 1120 (2019) 16-23 岛津Nexera UC全相系统之SFC-MS系统 本研究采用岛津超临界流体色谱仪Nexera UC、岛津三重四极杆液质联用仪LCMS-8060 ● 超临界流体与改性剂配合使用,可在更大范围内满足不同极性化合物的检测需要;● 低死体积和背压控制单元有效降低脉动,提高灵敏度;● 溶剂使用量少且分析时间短,是一种绿色环保、高效的分析手段。 研究背景维生素D(VD)作为一种脂溶性类固醇,在钙稳态和骨骼健康中起着重要作用,其主要以麦角钙化醇(VD2)和胆钙化醇(VD3)两种形式存在,多通过皮肤光照和食物或膳食补充剂来获取。VD进入体内参与生物调控,须在肝脏及肾脏内进行羟基化等复杂的代谢途径反应,因此其代谢产物结果是VD临床评价的主要挑战之一。 对于正常人血清或血浆中含有痕量1,25-(OH)2 VD2和1,25-(OH)2 VD3,分析时应考虑进一步改进定量限(如衍生化)。与LC-MS/MS法相比,采用超临界流体色谱仪(SFC)作为质谱前端,不仅降低了有机溶剂成本,还有具有更快分析速度及更高灵敏度。 样品前处理采用3.5 mL真空血管采集空腹血样,凝固后1500 ×g离心30 min。上层血清移入无菌管,-80℃保存后用于分析。 建立及优化SFC-MS分析方法 1. SFC色谱柱的选择考察了10种VD代谢物分别在Diol、CN、NH2、PFP和C18 5根色谱柱上的洗脱性能,并评价了不同固定相的选择性。如图1,除C18柱外,其他4根色谱柱上VD代谢产物色谱峰均为正常的洗脱顺序,保留时间随羟基数量的增加而增加。其中PFP柱能够分离所有VD代谢产物,分离效果最佳,特别是25-OH VD2/VD3及其对映体的分离,并被选择用于进一步开发。 图1:A) Diol, B) CN, C) NH2, D) PFP, E) C18色谱柱上VD代谢产物的固定相化学结构和洗脱顺序。 1: 25-OH VD3和3-epi-25-OH VD3 2: 25-OH VD2和3-epi-25-OH VD2 3: VD3 4: VD2 5: 1,25-(OH)2 VD3 6: 1,25-(OH)2 VD2 7: 24,25-(OH)2 VD3 8: 24,25-(OH)2 VD2。 2. 梯度洗脱条件优化纯CO2是VD代谢物的弱洗脱溶剂,与固定相相互作用强。因此,为提高流动相的洗脱强度,加入甲醇作为改性剂。图2显示了四种不同梯度下VD代谢物的分离情况。 在Gradient 4条件下,二羟基代谢物的峰形明显改善,这可能是由于甲醇比例的急剧增加(1.5 min内从8%增加到40%)改善分离效果,由此减少二羟基代谢物的扩散。因此,选择Gradient 4进行进一步优化。 图2:四种梯度洗脱程序(流动相A: CO2 流动相B:甲醇,色谱柱:PFP)虚线(-):流动相B的百分比;USP:分离度。(1-8序号对应VD代谢物名称同图1) 3. 流速的选择虽然超临界流体黏度较低,但扩散系数较高。因此,在柱前压力和洗脱液密度较高,设定较高流速时,梯度有望提高峰之间分离度。图3(A)为不同流速下VD代谢物的洗脱。当流速从1.0 mL/min增加到1.5 mL/min时,25-OH VD2/ VD3及其表异构体的分离明显改善,但当流速增加到2.0 mL/min时,分离度降低。因此后续研究设定流速为1.5 mL/min。 4. 柱温的选择色谱柱温度影响流动相粘度和界面分布。如图3(B)所示,温度从30℃升高到40℃,25-OH VD2/VD3及其同位异构体的分离得到改善,但温度再升高到50℃,分离效果较差。因此后续研究采用柱温40℃。 图3 A)流速和B)温度对PFP柱上VD代谢物分离的影响。 5. MS系统优化为提高VD代谢物的电离效率,对离子源类型和补偿剂缓冲液浓度进行了优化。对于离子源的选择,测试了电喷雾电离(ESI)和大气压化学电离(APCI),两者都是在正离子模式下。如表1,浓度为1 ng/mL的所有VD代谢物,ESI+模式下的信噪比(S/N)比APCI+模式下的高4~6倍。因此, 在ESI+模式下评估不同浓度缓冲液,当甲酸铵浓度从1 mM增加到5 mM, S/N较好;将甲酸浓度从0.5‰(v/v)提高到1% (v/v)可进一步优化灵敏度,但甲酸浓度为2‰ (v/v)则没有进一步提高灵敏度。因此,采用ESI+进行电离,选择5 mM甲酸铵和1‰ (v/v)甲酸作为补偿剂。 表1 离子源类型和缓冲液对维生素D代谢物信噪比(S/N)的影响(1 ng/mL)FA: 甲酸 AmFc: 甲酸铵 本期小结本研究建立了适用于血清中多种维生素D代谢物的SFC-MS方法,并通过优化分析条件,确定最佳分析条件为:PFP色谱柱、梯度程序4、流速1.5mL/min、柱温40℃,离子源类型为ESI+,补偿剂为 5 mM甲酸铵和1‰ (v/v)甲酸。基于此分析条件下,可实现PFP柱可在10 min内10种VD代谢物的基线分离 在正电喷雾电离模式下进行检测,允许对血清基质中的多种VD代谢物进行定量分析。 下一期将介绍方法验证 、 SFC-MS/MS法与LC-MS/MS法的方法比较,敬请期待! 本文内容非商业广告,仅供专业人士参考。
  • 喜讯,金域质谱维生素D项目再次通过英国维生素D室间质量评价
    近日,英国维生素 D 室间质量评价计划(vitamin D external quality assessment scheme,DEQAS)结果公布。金域质谱维生素D项目再次100%通过。自2011年开始,金域质谱维生素D项目至今已连续11年满分通过DEQAS室间质评计划,彰显出金域质谱在维生素D检测项目上具有良好的结果溯源性和严格的质量管理,检验结果受国际认可。为解决25-羟基维生素D检测结果互通性的问题,2010年,美国健康研究署膳食摄入部成立了维生素D标准化项目(Vitamin D Standardization Program,VDSP),通过美国国家标准与技术研究院(National Institute of Standards and Technology,NIST)和参考测量体系,促进全球所有相关实验室检测方法的标准化。其中英国维生素 D 室间质量评价计划(vitamin D external quality assessment scheme,DEQAS)会将参加此室间质量评价(EQA)计划的实验室检测结果,与NIST结果进行比较,从而帮助实验室发现并纠正方法中存在的问题,在推进维生素D标准化检测过程中发挥重要作用。维生素D是类固醇衍生物,主要包括维生素 D2(麦角钙化醇)和维生素 D3(胆钙化醇),在人体钙磷代谢和骨质钙化中起着重要作用,维生素D缺乏可能导致佝偻病、软骨病和骨质疏松等疾病。有多项研究表明,维生素D的营养水平若不能维持在最佳范围内,有增加患糖尿病、高血压、乳腺癌等疾病的风险。25-羟基维生素D[25(OH)D]作为维生素D在体内的主要代谢形式之一,其半衰期长,存在形式稳定,成为人体维生素D营养评估的最佳检测指标。金域质谱自2011年起使用LC-MS/MS平台,开展血清25-羟基维生素D检测,连续多年零缺陷通过CAP和ISO15189质量体系评审,可为临床提供25-羟基维生素D的精准检测服务。其使用LC-MS/MS平台,开展血清25-羟基维生素D检测,具有灵敏度高,特异性好等优点,能同时准确测定25(OH)D2和25(OH)D3的浓度,并实现25(OH)D3和 3-epi-25(OH)D3的分离,结果更精准。多年来,金域质谱25-羟基维生素D项目参加DEQAS的检测结果一直与NIST靶值高度吻合,呈高度相关性,检测结果准确可靠,具有良好的室间可比性。金域质谱25(OH)D项目参加DEQAS的检测结果与NIST靶值相关性(以2022年结果为例)此外,金域质谱25-羟基维生素D项目还参与了国家卫生健康委临床检验中心(NCCL)、美国病理家学院(CAP)等国内外多个权威机构的室间质量评价计划,其结果均以优异的成绩通过。
  • 福建省食用菌行业协会关于《灵芝及其相关产品中β-葡聚糖的测定》等三项团体标准的发布公告
    各相关单位:根据《福建省食用菌行业协会团体标准管理办法(试行)》规定,经福建省食用菌行业协会秘书处组织专家审查通过,报经福建省食用菌行业协会秘书处办公会审核通过,现批准发布T/FJHX 0003-2023《灵芝及其相关产品中β-葡聚糖的测定》、T/FJHX 0004-2023《灵芝提取物中性三萜及麦角甾醇的测定 高效液相色谱法》、T/FJHX 0005-2023《灵芝菌种繁育技术规程》三项团体标准。标准自2023年3月1日发布,2023年4月1日起实施,现予以公告。 福建省食用菌行业协会2023年3月1日福建省食用菌行业协会关于《灵芝及其相关产品中β-葡聚糖的测定》等三项团体标准的发布公告.pdf
  • 新型毒饮料伪装上市,“合法”“非法”仅在“氨基”“羟基”一字之差
    这两天,一条关于某种“新毒品”在各大酒吧流行的“预警”信息,在记者朋友圈掀起了一阵转发热潮。相关信息称,这种“新毒品”是一款含有“γ-氨基丁酸”成分的饮料——咔哇,多地有人喝了这个东西可以连续嗨三个晚上,据说之前吸k粉的人很多都嗨这种东西了。 据了解,咔哇是生长在南太平洋岛国、海拔500-1000英尺地区的一种植物,系胡椒科多年生灌木。当地民间医生广泛应用咔哇改善睡眠、缓解焦虑、战胜抑郁、松弛肌肉、消除疲劳。咔哇可榨制一种饮料,即咔哇酒。2015年,国内一旅途探秘综艺真人秀节目中,节目嘉宾率领的旅行达人,曾在瓦努阿图制作饮用所谓“最幸福的饮料”——咔哇酒,从而引起国内关注,并在年轻人、时尚人士中流行。 但是仔细阅读配料表后我们发现,我国出现的这种含有“γ-氨基丁酸”成分的饮料,并非来自太平洋岛国的“最幸福的饮料——咔哇”。在太平洋岛国流行的咔哇饮料,是由卡瓦胡椒制成的,卡瓦胡椒当中含有的卡瓦内脂和二氢醉椒素,是“γ-氨基丁酸”的激动剂,能够调节人体内“γ-氨基丁酸”的传输,所以能够起到安神、镇定的作用。 饮料中标示的“γ-氨基丁酸”(gamma aminobutyric acid, gaba),是一种天然存在的功能性氨基酸,广泛分布于动植物体内,如豆属、参属、中草药等的种子、根茎和组织液中都含有,2009年9月27日由卫生部批准使用γ-氨基丁酸为新食品原料,并不是毒品。参见卫生部网站http://www.moh.gov.cn/mohbgt/s9513/200910/43090.shtml 这批咔哇饮料之所以引起关注,是因为经公安机关毒品实验室对其进行检验和分析,发现其中含该饮料含有 γ-羟基丁酸(我国一类精神药品)和 γ-丁内酯( γ-羟基丁酸的前体),并不是商品介绍的γ-氨基丁酸,这两种物质虽然只有一字之差,却有天壤之别。 γ-羟基丁酸(gamma hydroxybutyrate, ghb),是属于中枢神经抑制剂,它曾被用来当做全身麻醉剂,后由于有报导其可导致癫痫发作或昏迷使得使用率降低。滥用“γ-羟基丁酸”会造成暂时性记忆丧失、恶心、呕吐、头痛、反射作用丧失,甚至很快失去意识、昏迷及死亡,与酒精并用更会加剧其危险性。在过去的十几年,美国、东南亚国家以及中国港台地区γ-羟基丁酸的滥用呈快速增长趋势,ghb及其相关物质γ-丁内酯(gamma-butyrolactone, gbl)和1,4-丁二醇(1,4-butanediol, 1,4-bd)常被用作迷奸药,因此,2005年我国就将“γ-羟基丁酸”列入二类精神药物予以管制,并于2007年变更为一类。 据了解,目前夜场各种打着咔哇旗号的所谓潮饮数不胜数,不排除部分饮料“挂羊头卖狗肉”,打着合法成分的旗号使用违禁药物。文中提到的“毒饮料”已被勒令全面下架,但是我们仍要保持警惕,尤其在酒吧、ktv这样的地方,建议青少年朋友不要因为好奇去尝试一些“小众”“特色”的饮品。相关检测标准品
  • FDA食品添加剂法规允许直接添加维生素D2酵母
    美国食品药物管理局(FDA)近日修订了美国食品添加剂法规,允许安全使用维生素D2面包酵母(vitamin D2 bakers yeast),并将其作为维生素D2的来源和膨松剂,但必须满足以下条件:(1)维生素D2面包酵母是由面包酵母(酿酒酵母Saccharomyces cerevisiae)暴露于紫外线下产生的物质,是面包酵母中内源性麦角脂醇(ergosterol)经过光化学反应转化成维生素D2(也被称为麦角钙化甾醇(ergocalciferol)或(9,10-seco(5Z,7E,22E)-5,7,10(19),22-ergostatetraen-3-ol)) (2)维生素D2面包酵母可单独作为一种活性干酵母浓缩物,或与传统的面包酵母进行组合 (3)这种添加剂可用于酵母发酵的烘焙食品和烘焙混合以及酵母发酵的烘焙小吃食品,但在每100克成品食品中维生素D2的含量不得超过400国际单位(International Units) (4)为了确保添加剂的安全使用,除了《联邦食品药品和化妆品法规》所要求的其他信息外,食品添加剂容器标签必须要有适当的使用说明,以确保所生产的最终产品符合上述第(3)点描述的限制要求 (5)含有该添加剂的加工食品标签必须按照成品食品中含量递减的合适顺序,在成分声明中标注添加剂名称:“维生素D2面包酵母”。  为了合理确立在预期使用条件下某种食品添加剂的无危害性,FDA考虑了该添加剂的人类饮食预期的摄入量、添加剂的毒理学数据和其他提供给该局的相关信息。FDA还将个人来自所有食品源的添加剂的预计每日摄入量(estimated daily intake,EDI)与根据毒性数据建立的可接受摄入量水平进行了对比。EDI由基于拟议用于特定食品中的添加剂数量预测和来自所有食品源的添加剂数量决定。该机构通常将百分之九十消费者使用的食品添加剂的EDI来衡量高慢性饮食的摄入量。
  • 三项食品安全国家标准征求意见
    近日,卫生部办公厅公布《坚果炒货食品》、《粮食》、《巧克力及其制品》三项食品安全国家标准(征求意见稿),向社会公开征求意见。  坚果炒货  删除无霉变无虫蛀指标  征求意见稿对生干类坚果与籽类细化了感官指标要求,将原标准中的“无异物”改为“无正常视力可见外来异物” 在霉变指标要求上,将“无霉变”改为“霉变粒小于等于2%(带壳),去壳产品不得检出”。  据卫生部有关人士介绍,征求意见稿对坚果炒货的感官要求、理化指标和微生物限量做了修改,并增加了农药残留限量。征求意见稿删除了熟制坚果与籽类感官无霉变、无虫蛀指标要求,原因有两个,一是虫蛀不属于食品安全指标范围 二是生干坚果与籽类,以及产品原料标准中均有霉变要求,故在熟制坚果与籽类标准中将此要求删除。征求意见稿还调高了代表部分炒货被氧化程度的过氧化值指标。  粮食  有害菌类植物种子限量范围扩大  征求意见稿扩大了对有毒有害菌类、植物种子限量的适用范围,增加了玉米、高粱米、小麦、燕麦等农作物中的曼陀罗属及其他有毒植物的种子限量,增加燕麦、莜麦、米大麦中的麦角限量。  据卫生部有关人士介绍,曼陀罗属植物种子均含有一定的毒性,本次修订将原标准中的“曼陀罗籽及其他有毒植物的种子”修改为“曼陀罗属及其他有毒植物的种子”,范围从原来的单一豆类(1粒/千克)扩大到玉米、高粱米、豆类、小麦、燕麦、莜麦、大麦、米大麦(1粒/千克)。此外,另一种有毒有害种子麦角的限量范围,也从大麦和小麦(0.01%)扩大到小麦、燕麦、莜麦、大麦、米大麦(0.01%)。征求意见稿还对霉变粒、有毒有害化学成分限量(氢氰酸、单宁)等指标进行了调整。  巧克力  对铜不再作限量要求  征求意见稿删除了现行标准中关于铜的限量要求。据介绍,2003年版的巧克力卫生标准和老版国际标准中对铜作限量的一个重要原因,是因为当时的熬糖工艺中用铜锅熬糖,而如今的工艺中已不再用铜锅熬糖,铜污染的一个重要途径不存在了。国际食品法规委员会制定的最新版标准中的重金属污染物也没有包括铜。2011年1月10日,卫生部和国家标准化管理委员会公告废止了《食品中铜限量卫生标准》(GB 15199-1994)。在《食品中污染物限量》食品安全国家标准(GB 2762征求意见稿)中也未包括铜在食品中的限量要求。  征求意见稿还对“不允许出现的异物”进行了细化,对原有的“无肉眼可见的杂质”细化为“无玻璃屑、金属屑及硬塑料屑等硬质异物”。
  • 欧盟限制化妆品中对羟基苯甲酸酯类的使用
    4月10日,欧盟委员会发布官方公报(EU) No 358/2014,修订了欧洲化妆品法规No 1223/2009附件Ⅱ,限制物质清单新增尼泊金异丙酯、羟苯异丁酯、羟苯苄酯、4-羟基苯甲酸苯酯、戊烷基对羟苯甲酸酯5种对羟基苯甲酸酯类物质。  此外,修订案还规定二氯苯氧氯酚在漱口水中使用最大浓度为0.2%,在其他化妆品如牙膏、手皂、扑面粉中使用最大浓度为0.3%。羟基苯甲酸及其盐和酯类作为单酯中的酸用于制作配制品中的最大浓度为0.4%,作为混合酯中的酸最大允许浓度为0.8%。2014年10月30日前,不符合新规的化妆品仍可在市场上正常销售,2015年6月30日起,所有市场上流通的化妆品必须符合新规。  对此,检验检疫部门提醒相关企业:一是密切关注欧盟化妆品修订案,及时掌握法规变化动态 二是强化同进口商的沟通,做好过渡期期间的合同评审,避免因法规认识偏差导致的退运风险 三是加强产品质量管控,通过优化升级生产工艺、第三方检测,确保降低对羟基苯甲酸酯类限制物质含量,确保平稳过渡。
  • 药物分析进展和应用专栏|植物甾醇分析技术介绍
    植物甾醇是常见的植物活性成分,同时也是人类饮食中的主要脂类成分组成部分。其结构与胆固醇类似,均具有环戊烷多氢菲母核,图1中的β-谷甾醇、菜油甾醇、和豆甾醇为较为常见的植物甾醇。由于植物甾醇与胆固醇具有相似的结构,二者均需溶于胶束后才能被人体吸收,植物甾醇能与膳食来源的胆固醇竞争进入混合胶束从而减少肠道对于胆固醇的吸收,因此有助于控制血液中的总胆固醇、低密度脂蛋白和甘油三酯水平,从而减少心血管疾病的风险(图2)[1]。近年来,随着人们对健康饮食的日益重视,越来越多的科研人员开始关注到含植物甾醇的食品及植物的分析技术的开发与运用,本文将重点介绍基于气相色谱-氢火焰离子化检测器联用技术及液相色谱-大气压化学电离质谱联用技术的植物甾醇分析方法。图1. 常见的三种植物甾醇结构图2. 植物甾醇降低血清胆固醇的示意图[1]1. 植物甾醇的分析技术食物与植物中的甾醇类成分经过前处理并富集后,可采用不同的分析技术与手段开展分析与鉴定。目前最常用于植物甾醇定量分析的技术为气相色谱法(Gas Chromatography,GC)。液相色谱法(Liquid chromatography,LC)、薄层扫描法(Thin Layer Chromatography Scanning,TLCS)等也可以进行植物甾醇组分的分离与定量分析。1.1 气相色谱-氢火焰离子化检测器联用技术(GC-FID)技术原理:氢火焰离子化检测器(Flame Ionization Detector,FID)的工作原理是基于有机化合物能够在火焰中发生自由基反应而被电离从而对待测物进行分析[2]。如图3所示,FID离子室中火焰分为A层预热层;B层点燃火焰;C层温度最高,为热裂解区,有机化合物CnHm在此发生裂解而产生含碳自由基CH:CnHm→CH含碳自由基进入反应层D层,与外面扩散进来的激发态原子或分子氧发生反应,生成CHO+及e-:CH+O→CHO++e-形成的CHO+与火焰中大量水蒸气碰撞发生分子-离子反应,产生H3O+离子:CHO++H2O→H3O++CO化学电离产生的正离子(CHO+,H3O+)和电子(e-)在外加直流电场作用下向两极移动而产生微电流,收集极与基流补偿电路间的电流作为微电流放大器的输入,微电流放大器输出的电流信号(或电压信号)经A/D转换器,将模拟信号转换成数字信号,由计算机记录下来并进行数据处理从而获得色谱峰。图3. 氢火焰离子化检测器(FID)的示意图技术特点:火焰离子化检测器(FID)是气相色谱常用的检测器,它对几乎所有有机物均有响应,特别是对于烃类化合物灵敏度高且其响应与碳原子数成正比。与此同时,它对于气体流速、压力、温度变化的细微差异相对不敏感,不易受到外界环境改变影响。通过该法对植物甾醇进行分析时,需要对样品进行衍生化处理,将游离的植物甾醇转化为适合GC分析的疏水性衍生物,如生成三甲基硅醚(TMS)衍生物。目前广泛使用于植物甾醇分析的衍生化试剂包括有:含N-甲基-N-三甲基硅烷基三氟乙酰胺(N-methyl-N-trimethylsilylfluoroacetamide,MSTFA)无水吡啶溶液、含1%的三甲基氯硅烷(Trimethylchlorosilane,TMCS)的双三甲基硅基三氟乙酰胺(Bis-trimethylsilyltrifluoroacetamide,BSTFA)等。通过GC-FID对植物甾醇进行定量时,常使用的内标包括有白桦脂醇(Betuline)、5α-胆甾烷醇和5α-胆甾烷-3β-醇等。分析仪器:1957年,澳(大利亚)新(西兰)帝国化学工业公司(Imperial Chemical Industries of Australia and New Zealand,ICIANZ)中央研究实验室的McWilliam和Dewar开发了第一台FID。目前FID检测器已经成为应用最广泛的气相色谱检测器之一,其获取、操作成本、维护要求均相对较低。市面上的气相色谱仪基本上均可配置FID检测器,包括安捷伦9000、8890、8860和7890气相色谱系列,赛默飞 TRACE 1300、1100系列,岛津Nexis GC-2030,珀金埃尔默 2400等进口气相色谱系统以及福立 GC9790、GC 9720,常州磐诺GC1949,上海仪电分析GC 128、北分瑞利 GC3500系列等国产气相色谱仪。1.2 液相色谱-大气压化学电离质谱联用技术(LC-APCI-MS)技术原理:大气压化学电离化(Atmospheric Pressure Chemical Ionization,APCI)原理与化学离子化相同,但离子化在大气压下进行。流动相在热及氮气流的作用下雾化成气态,经由带有几千伏高压的放电电极时离子化,产生的试剂气离子与待测化合物分子发生离子-分子反应,形成单电荷离子,正离子通常是(M+H)+,负离子则是(M-H)-。大气压化学离子化能在流速高达2 ml/min下进行,常用于分析分子质量小于1500道尔顿的小分子或弱极性化合物,主要产生的是(M+H)+或(M-H)-离子,很少有碎片离子,是液相色谱-质谱联用的重要接口之一。图4. 大气压化学电离源(APCI)的示意图技术特点:植物甾醇的发色团数量少,因此不适合通过紫外检测器检测;同时植物甾醇质子亲和力较小、酸性较弱、不宜在溶液中形成质子化的离子或去质子化生成阴离子,因此通过电喷雾电离(Electron Spray Ionization,ESI)的电离效率相对较差。由于植物甾醇亲脂性较强,分子量一般小于1000 Da,采用APCI离子源可以提供更高的植物甾醇检测灵敏度,且无需对样品进行衍生化,极大地缩短了分析所需的时间。研究人员还发现植物甾醇分析过程中,采用正离子模式能够提供了比负离子模式更高的灵敏度,且易于生成准分子离子峰[M+H]+、[M+H-H2O]+ [4]。分析仪器:目前国内外均有大量厂商生产搭配有APCI离子源的液相色谱质谱联用系统,已运用于药物研究、食品安全检测、生命科学和分子生物学等多个领域。Agilent 6470、6490系列三重四极杆液质联用系统,Bruker EVOQ LC-TQ液相色谱质谱联用系统,PerkinElmer QSight 400系列三重四极杆质谱仪,SHIMADZU LCMS-2020、LCMS-2050液相色谱质谱联用系统以及国产的江苏天瑞LC-MS 2000液质联用系统,杭州谱育科技EXPEC 5310LC-MS/MS、EXPEC 5250 气相/液相色谱-三重四极杆质谱联用仪、EXPEC5510LC-MS/MS、禾信仪器LC-TQ5100等均配置有APCI离子源。国产的江苏天瑞LC-MS 2000液质联用系统,杭州谱育科技EXPEC 5310系列质谱仪等均配置有APCI离子源。2. 应用实例2.1 基于GC-FID快速分析橄榄油中的植物甾醇在对特级初榨橄榄油样本进行皂化处理后,国际橄榄理事会(International Olive Council,IOC)方法采用乙醚对皂化样本多次液液萃取以提取植物甾醇;研究人员优化后前处理方法采用反相聚合物基质固相萃取柱对皂化样品中的植物甾醇进行提取。同时研究人员基于GC-FID建立了同时快速定量17种脂质(含内标胆甾烷醇)的分析方法,其中包括16种植物甾醇,这17种脂质的GC-FID色谱图如图4所示[5]。通过分析比对不同前处理方法结果,研究人员发现优化后前处理方法简单、省时,并减少了溶剂的使用量,但是与IOC官方方法获得的结果较为一致。通过GC-FID快速定量17种脂质的分析方法也有助于评估高价值且容易掺假的特级初榨橄榄油的真实性。图5. 特级初榨橄榄油样品采用IOC方法(A)及优化前处理方法(B)处理后,分别经由GC-FID分析得到色谱图。(1)胆固醇;(2)菜籽甾醇;(3)24-亚甲基胆固醇;(4)菜油甾醇;(5)菜油烷甾醇;(6)豆甾醇;(7)Δ7-菜油甾醇;(8)赪桐甾醇; (9)β-谷甾醇;(10)谷甾烷醇;(11)Δ5-燕麦甾醇;(12)Δ5,24-豆甾二烯醇;(13)Δ7-豆甾醇;(14)Δ7-燕麦甾醇;(15)高根二醇;(16)熊果醇;(IS)胆甾烷醇。2.2 基于LC-APCI-MS/MS快速分析饲料中的植物甾醇相较于GC-FID或GC-MS,LC-APCI-MS/MS无需进行样品衍生化即可完成植物甾醇的定量分析,极大地缩短了样品前处理时间。研究人员建立了基于LC-APCI-MS/MS的植物甾醇分析方法,并可在8分钟内快速定量6种目标植物甾醇[6],图6为胆固醇与6种植物甾醇混合标准溶液(500 ng/mL)的MRM提取离子流色谱图。该方法提供了一种适用于大豆、向日葵、草料、犊牛成品饲料和上述饲料混合物在内的不同类型饲料中的植物甾醇定量的方法。同时将实验结果与其他相关研究结果进行比较,显示出良好的一致性。该方法简单、快速,可以将其应用于其他饲料和食品中的植物甾醇分析。图6. 不同研究化合物混合标准溶液的MRM提取离子流色谱图。①麦角甾醇;②胆固醇;③岩藻甾醇;④Δ5-燕麦甾醇;⑤菜油甾醇;⑥豆甾醇;⑦β-谷甾醇3.小结与展望植物甾醇是植物中的生物活性化合物,同时因其在降低血液胆固醇水平方面有着重要意义,植物甾醇可作为保健食品中的功效成分用于调节人体机能。在这种情况下,有必要建立适合于保健食品中植物甾醇类化合物的分析方法,以评估保健食品质量。同时随着分析技术的发展和相关研究的不断深入,更多快捷、灵敏的分析技术也将成为植物甾醇分析的有力工具,并为更多不同的植物甾醇类化合物在降低血脂、预防心血管疾病等健康领域的运用提供支持与保障。参考文献:[1] Zhang R, Han Y, McClements D J, et al. Production, characterization, delivery, and cholesterol-lowering mechanism of phytosterols: A review[J]. Journal of Agricultural and Food Chemistry, 2022, 70(8): 2483-2494.[2] 胡坪, 王氢. 仪器分析(第五版)[M]. 北京:高等教育出版社,2019.[3] 国家药典委员会. 中华人民共和国药典(2020版):四部[M]. 北京:中国医药科技出版社,2020.[4] Mo S, Dong L, Hurst W J, et al. Quantitative analysis of phytosterols in edible oils using APCI liquid chromatography–tandem mass spectrometry[J]. Lipids, 2013, 48: 949-956.[5] Gorassini A, Verardo G, Bortolomeazzi R. Polymeric reversed phase and small particle size silica gel solid phase extractions for rapid analysis of sterols and triterpene dialcohols in olive oils by GC-FID[J]. Food chemistry, 2019, 283: 177-182.[6] Simonetti G, Di Filippo P, Pomata D, et al. Characterization of seven sterols in five different types of cattle feedstuffs[J]. Food Chemistry, 2021, 340: 127926.
  • 欧盟批准硒代蛋氨酸羟基类似物用作饲料添加剂
    5月15日,欧盟委员会发布(EU)No445/2013号条例,批准硒代蛋氨酸羟基类似物用作动物饲料添加剂。硒代蛋氨酸羟基类似物添加于饲料时,分属的添加剂类型为“营养添加剂”,功能组为“微量元素化合物”,需保证硒元素在12%含水量的饲料成品中的含量不超过0.5mg/kg,有机硒不超过0.2mg/kg。  硒代蛋氨酸羟基类似物用作饲料添加剂时,可作为蛋氨酸营养补充剂,促进动物生长发育。但该物对皮肤和眼睛有刺激作用,在使用该产品后,必须用水冲净皮肤。对此,检验检疫部门提醒相关企业:一是根据欧盟委员会发布的法规,严格按照相关要求来用作动物饲料添加剂。二是与相关部门合作,加大检测力度,确保出口产品符合欧盟标准。三是推进生产工序升级和优化,并建立自检自控体系,分析关键控制点并予以重点关注,确保其含量符合法规要求,避免退运或召回。
  • 真迈生物发布基因测序仪新品SURFSeq 5000 称可打破“不可能三角”
    9月20日上午,真迈生物举办2023年度新品发布会,正式发布其第一款Tb级桌面型基因测序仪——SURFSeq 5000。发布会上,主讲人介绍,SURFSeq 5000汇集多项技术创新,拥有应用场景多、测序速度快、数据质量好、运行成本省的特点,打破了基因测序仪 仪器成本低、开机成本低、单Gb成本低的“不可能三角”,以一台桌面机的仪器成本,小样本数量的开机成本,实现了与大型机满载运转相当的单Gb测序价格,全面助力用户的科学发现和生产交付。SURFSeq 5000全新的测序芯片采用多边形微阵列式设计,亚微米级制程工艺,在相同单位面积下,有效信号点数量比原有设计提升了2倍,单次测序的最大数据通量可以达到1.2 Tb以上。在表面扩增技术上,新型HyEND技术在保证扩增精准快速的同时,突破泊松分布限制,发挥出微阵列芯片的强大效能,芯片有效率稳定达到了80%以上。结合新一代SFCS碱基识别算法,SURFSeq 5000 PE150读长下的实测数据质量Q3090%。发布会上,真迈生物COO周志良博士表示:作为专注于基因测序上游平台研发的企业,真迈生物一直以来致力于为行业提供更好的基因组学工具,持续技术创新与进步,不断推动产品向用户期待的应用场景多、测序速度快、数据质量好、运行成本省的方向迈进,全力赋能前沿科研探索和精准医疗,为生命健康保驾护航。SURFSeq 5000将用它全能的表现为基因测序技术的应用以及基因组学的发展赋能,让技术加速惠及万千百姓健康。多种通量组合按需搭配,主流应用领域全面覆盖SURFSeq 5000提供FCM(500 M)和FCH(2000 M)双规格的微阵列芯片,每种规格均采用四流道设计,可支持不同应用文库分流道加载。SURFSeq 5000双芯片平台支持单芯片独立和双芯片同步或异步上机测序,从最小500 M reads到最大4000 M reads的通量组合可满足用户不同应用场景下的检测需求。以全外显子组测序为例:单FCM芯片满负荷运行可完成12个样本的检测,双FCH芯片满负荷运行可满足100个以上的样本检测。PE150测序快至24小时,数据分批输出周转快SURFSeq 5000双FCM芯片PE150测序快至24小时,双FCH芯片可以在47小时内完成1.2 Tb的高质量数据输出。用户可直接在SURFSeq 5000的操作界面设定Read和Index的读取顺序,配合WriteFastQ软件支持自定义生成节点来实现同张芯片单次运行、分批输出不同应用的下机数据,结果分析快人一步。PE150读长下实测数据质量Q30>90%为全面评估SURFSeq 5000的综合性能,真迈生物针对SURFSeq 5000进行了跨平台、多应用的对比测试,在创新生化和新一代算法的双保障下,SURFSeq 5000的实测性能表现优异。3台机器、30张FCH芯片PE150测序数据的核心指标统计显示,SURFSeq 5000 Q30%平均值达到92.3%,双FCH芯片的单次测序数据产量均值达到了1.3 Tb以上,测序数据全部超过标称性能参数。在全基因组测序、基因组靶向测序、转录组测序、宏基因组测序、基因组甲基化测序等多个主流应用性能对比测试中, SURFSeq 5000相比于NovaSeq 6000表现出了更佳的综合性能,尤其是在特定基因组区域的测序噪音控制、碱基不平衡的容忍度等方面,有明显优势 。多场景、多领域下优异的表现表明,SURFSeq 5000达到了测序仪领域的顶尖性能水平,未来应用前景广阔。运行成本省!打破仪器成本低、开机成本低、单Gb成本低“不可能三角”基因测序技术的发展和测序成本降低,推动着该技术的快速应用普及。然而,仪器成本低、开机成本低、单Gb成本低构成了一个测序仪领域的“不可能三角”。通常情况下,低廉的单Gb成本,往往要依托于高昂的大型机仪器成本和大样本量的开机成本来实现。SURFSeq 5000的发布,将这个“不可能三角”打破了,它以一台桌面机的仪器成本,小样本量的开机成本,实现与大型机满载运转相当的单Gb测序价格!SURFSeq 5000的发布,标志着真迈生物测序仪产品阵列完成了从Gb到Tb级通量的全覆盖。当前真迈的产品矩阵已经来到了四个系列:图片来源于真迈生物官网
  • 欧盟拟放宽番茄中8-羟基喹啉的最大残留限量
    近日,欧洲食品安全局就放宽番茄中8-羟基喹啉(8-hydroxyquinoline)的最大残留限量发布意见。  依据欧盟委员会(EC)No396/2005法规第6章的规定,西班牙收到一家公司要求修订番茄中8-羟基喹啉的最大残留限量的申请。为协调8-羟基喹啉的最大残留限量(MRL),西班牙建议对其残留限量进行修订。  依据欧盟委员会(EC)No396/2005法规第8章的规定,西班牙起草了一份评估报告,并提交至欧委会,之后转至欧洲食品安全局。  欧洲食品安全局对评估报告进行评审后,做出如下决定:建议将番茄(商品代码:0231010)中8-羟基喹啉的最大残留限量放宽至0.1mg/kg(现行标准是:0.01mg/kg)。
  • 透过红外光谱法,洞察石英玻璃羟基含量的秘密
    玻璃中的羟基会严重影响玻璃的性能,即使羟基重量含量低于1%,它也会明显地影响玻璃的粘度、密度、折射率和热膨胀系数。同时,由于玻璃中羟基的存在,它将对某种波长的红外光波形成强烈的吸收,这对于光纤通讯中光学材料的选择是一个十分重要的问题。在电光源行业中,玻璃中羟基含量的高低是直接影响气体放电灯的质量。因此,需要严格监控玻璃中的羟基含量。此外,为了研究羟基含量与玻璃性能之间的关系,以便为设计与制造具有一定特性的玻璃提供必要的数据,这也需要定量地测定玻璃中羟基的含量。你知道吗?利用红外光谱仪可以快速、准确地检测石英玻璃中的羟基含量!这是怎么做到的呢?让我们一起来揭开这个谜底。红外光谱仪是一种神奇的科学仪器,它能够通过测量样品对红外光的吸收情况,分析出样品的化学成分和结构信息。测定玻璃中羟基含量的方法有两类:一、水的热除气法 二、光谱法。比较这两类方法,光谱法更具有其优越性,该法在测试过程中,玻璃内所有羟基都将被探测,但该法需要已知羟基含量的校准标准。对于石英玻璃来说,其中的羟基会在特定的红外波长范围内产生吸收峰。通过检测这些吸收峰的强度和位置,我们就能分析出石英玻璃中羟基的含量。在水晶或者石英玻璃行业做相关分析的老师如何需要了解具体方案可以联系能谱科技,我们将给您一套完整的解决方案!
  • 拉曼光谱分析法在古陶瓷真伪的应用-羟基无损科学检测(二)
    文物是文化的产物,是人类社会发展过程中的珍贵历史遗存物。它从不同的领域和侧面反映出历史上人们改造世界的状况,是研究人类社会历史的实物资料。我国古陶瓷源远流长,不仅种类繁多、风格各异,而且工艺精湛,文化、科技内涵丰富。由于不法者在仿制过程中借用高科技手段,使一些高仿赝品几乎达到了乱真的程度。  拉曼光谱技术是一种分析技术,由于它能够获得物质的分子信息而被应用于文物的鉴定分析中。  我们主要依据是否在陶瓷釉面发现“羟基”这种化学分子结构去判断陶瓷是不是老的,因为“羟基”是天然生成, 而且生长速度非常缓慢,大概在100年左右的时间,如果在陶瓷釉面发现“羟基”,说明是古董,最起码是清未、民国早期的瓷器。“羟基”和年代成正比,“羟基”峰值越高,年份越老。  检测陶瓷样品的拉曼特征峰,通过3700cm-1附近的羟基峰判断古陶瓷真伪。图1:拉曼光谱图,没有检测到羟基峰图2:拉曼光谱图,可以检测到3632cm-1的羟基峰图3:拉曼光谱图,可以检测到微弱的3601cm-1的羟基峰  拉曼光谱——羟基古陶瓷真伪检测鉴定法的依据和原理是现代仿品和古代真品的成岩过程有着本质区别,而时间是造成的这种区别的根本原因,造假者无法跨越时间所产生的鸿沟。时间所造成的古陶瓷的物理、化学变化是造假者无法仿制的。基于此,古陶瓷真伪拉曼光谱——羟基鉴定法的技术研发者把古陶瓷真品在地表环境下其釉面所产生的化学反应中生成的羟基作为古陶瓷鉴定的定性及定量物质,从而做出准确而科学的鉴定结论。
  • 首届“闵恩泽能源化工奖”获奖人员名单公布
    闵恩泽院士是我国德高望重的著名科学家,中国石油石化科技界的泰斗,是我国炼油催化技术的奠基者、石油化工技术自主创新的先行者、绿色化学的开拓者,曾获2007年度国家最高科学技术奖。  2013年4月3日,中国石油化工集团公司和中国工程院联合设立&ldquo 闵恩泽能源化工奖&rdquo 奖励基金,用于奖励在能源化工领域从事研发和产业化过程中作出突出贡献的优秀科技人员,激励高端领军人物奋发创新,吸引优秀青年人才积极投入,大胆创新,培养国际一流的能源化工科技人才。该奖励基金由闵恩泽院士创议并发起。奖励基金包括闵恩泽院士个人捐资和中国石油化工集团公司捐资,本金运作和保值增值部分用于奖励。&ldquo 闵恩泽能源化工奖&rdquo 设&ldquo 杰出贡献奖&rdquo 和&ldquo 青年进步奖&rdquo 两类奖项,每两年评选一次。  奖励基金设立理事会和评审委员会。基金理事会设在中国石油化工集团公司,理事长由中国石油化工集团公司董事长傅成玉担任,常务副理事长由中国石油化工股份有限公司高级副总裁戴厚良担任,副理事长由中国工程院副院长谢克昌院士担任。评审委员会设在中国工程院,主要由教育部、中国科学院、中国工程院、国家自然科学基金委员会、中国石油化工集团公司、相关高等院校等单位在相关领域具有较高造诣的院士及专家学者组成。评审委员会分设提名委员会和专家委员会,第一届提名委员会和专家委员会主任分别由闵恩泽院士和王基铭院士担任。  依据《闵恩泽能源化工奖基金章程》和《闵恩泽能源化工奖评选办法》等相关规定,经&ldquo 闵恩泽能源化工奖&rdquo 提名委员会提名、专家委员会评选和基金理事会审批,决定授予清华大学陈国强、中国石油化工股份有限公司石油化工科学研究院杜泽学、北京大学刘海超、北京化工大学谭天伟等4人&ldquo 杰出贡献奖&rdquo 授予南京工业大学郭凯、中国科学院大连化学物理研究所李昌志、中国科学院青岛生物能源与过程研究所牟新东、中国科学院过程工程研究所王岚、中国石油化工股份有限公司北京化工研究院许宁、中国石油化工股份有限公司石油化工科学研究院曾建立、北京化工大学范立海等7人&ldquo 青年进步奖&rdquo 。  上述获奖者在生物质燃料和生物基有机化工科技前沿领域取得了优异成果,主要包括:微流场技术在生物基材料应用研究、离子液体介导的纤维素水解等国际领先的制备技术 催化选择一步氢解和近临界水条件下水解耦合加氢转化纤维素的绿色新途径、纤维素联合生物加工等合成工艺 生物基聚氨酯、生物基尼龙、生物基无毒增塑剂以及采用秸秆、藻渣合成生物基异戊二烯等生物基有机化工产品开发。  获奖人主要贡献如下:  一、杰出贡献奖  陈国强 男,50岁,奥地利格拉茨(Graz)工业大学博士毕业,微生物和生物材料专业,清华大学教授。陈国强博士推动了我国生物塑料聚羟基脂肪酸酯产业的发展,使我国在该领域产业化和学术研究的水平处于世界前沿。其有关学术成果达200多篇,论文被他人引用超过4900次(H指数为39) 获得有关聚羟基脂肪酸酯授权专利20余件。先后获国家技术发明奖二等奖(第一完成人)、纽伦堡国际发明奖等奖励,是国家杰出青年科学基金获得者、教育部长江学者特聘教授和973&ldquo 合成生物学&rdquo 项目的首席科学家。  杜泽学 男,49岁,中国石化石油化工科学研究院工学博士毕业,有机化工(生物柴油)专业,中国石化石油化工科学研究院教授级高工。杜泽学博士提出了利用近/超临界甲醇醇解技术,开发地沟油等废弃油脂生产生物柴油的新工艺 组织开展探索研究,找到了降低反应温度和压力的办法,解决了原料深度转化、产品分离与质量达标等问题 组织开展新工艺的中试,攻克了工艺放大面临的诸多工程化难题,开发成功了适应多种原料、生产过程清洁的SRCA生物柴油绿色工艺 在生物柴油及相关领域申请国内外发明专利57件,其中获得国外专利授权4件、中国专利授权33件 发表论文22篇。  刘海超 男,45岁,中国石化石油化工科学研究院博士毕业,催化化学专业,北京大学化学与分子工程学院教授。刘海超博士主要从事分子催化与能源化学研究,在生物质选择催化转化等基础研究方面取得了原创性成果,揭示了催化剂构&mdash 效关系和反应机理,发明了选择氢解、近临界水条件下水解耦合加氢等纤维素绿色解聚转化为多元醇的新方法,发展了从纤维素直接合成丙二醇、甘油催化氧化合成乳酸等生物质化学品合成的新途径。获得授权发明专利20余件,发表学术论文80余篇,荣获&ldquo 中国催化青年奖&rdquo 等奖励。  谭天伟 男,49岁,清华大学博士毕业,生物化工专业,中国工程院院士,北京化工大学教授。谭天伟博士通过多年选育筛选出具有新基因的亚罗解脂酵母脂肪酶,并研究成功酶膜固定化新方法,实现了生物柴油、维生素A棕榈酸酯等产品的工业生产 创建了基于中间代谢物控制发酵过程优化的方法 利用发酵废弃物中的废菌丝体,提取麦角固醇和壳聚糖,显著地降低了麦角固醇生产成本 开发了喷射法制备壳聚糖吸附剂工艺,并采用分子印迹技术提高吸附容量1倍。已申请国内外发明专利37件 发表论文300余篇,其中SCI收录200余篇、 EI收录210余篇。以第一完成人先后获得国家技术发明奖二等奖2项,省部级一等奖4项、二等奖4项 是国家杰出青年基金获得者、中国青年科技奖获得者、何梁何利创新奖获得者。  二、青年进步奖  郭凯 男,31岁,英国谢菲尔德大学博士毕业,生物化工专业,南京工业大学教授。郭凯博士针对生物化工过程效率偏低和生物产业链偏短的问题,开展了微流场技术在生物基材料及精细化工品领域的应用研究,逐步形成了以微流场技术为核心的技术平台、以生物基材料为核心的产品体系。其从尺度效应对反应本征的影响研究入手,通过流体场结构设计,有效拓展流场边界,推进了微流场技术的工程化应用,并成功将微流场技术应用于生物基无毒增塑剂、生物基尼龙单体、生物基聚氨酯单体的制造过程中 创新了3D打印技术和粉末冶金技术等微流场反应装备的快速制造模式,开发了针对生物化工和化学化工工艺特异性微流场反应装备。累计发表论文30余篇 申请及授权专利近20件 参与编写书籍1部 获省部级科技进步一等奖1项。  李昌志 男,34岁,中国科学院大连化学物理研究所博士毕业,有机化学专业,中科院大连化学物理研究所副研究员。李昌志博士针对纤维素利用中的两个科学难题,在国际上率先提出离子液体介导的纤维素水解技术,并将其成功应用于天然生物质原料水解 实现由纤维素高选择性转化制备生物质关键平台化合物5-羟甲基糠醛,尤其是进一步开发了高浓度反应过程,对工业放大生产5-羟甲基糠醛具有重要科学意义和应用价值 发展了天然生物质原料全组分催化氢解制二元醇和单酚类化合物的催化过程,该过程亦表现出潜在的工业应用价值。共发表SCI论文19篇,申请发明专利11件,获得专利授权3件。  牟新东 男,34岁,北京大学博士毕业,生物质绿色转化专业,中国科学院青岛生物能源与过程研究所研究员。牟新东博士及其带领的绿色化学催化团队针对木质纤维素生物质利用中的瓶颈问题,设计开发了节能省水的动态挤压预处理工艺,并建成千吨级/年预处理量的中试系统 完成了由单糖制备呋喃二甲醇、呋喃二甲酸的公斤级小试生产与下游呋喃二甲醚产品的开发 开发了由单糖制备混合二元醇,和经糠醛和羟甲基糠醛制备高附加值&alpha ,&omega -二元醇和1,2-二元醇的催化体系,具备一定的工业化潜力。他先后主持国家863计划、国家自然科学基金、山东省及青岛市重大科学研究计划等项目。作为第一或通讯作者,已在SCI期刊上发表论文20余篇,其中第一作者论文单篇最高引用次数达160余次,申请专利30余件,其中国际专利2件,获得专利授权4件。  王岚 女,32岁,中国科学院研究生院博士毕业,生化工程专业,中国科学院过程工程研究所助理研究员。王岚博士建立了汽爆和水流筛分组合处理新方法,使汽爆秸秆酶解效率提高1倍,提出了提高纤维素酶解效率的秸秆组分分级思路。发现了秸秆降解物中的可溶性木质素是抑制丁醇发酵的主要抑制物,建立了活性炭去除汽爆秸秆酶解液中的抑制物用于发酵丁醇的新方法。首次提出了采用秸秆中易于降解的半纤维素为发酵原料,建立了汽爆秸秆半纤维素水解液发酵丁醇的方法。采用与其技术配套的自主加工的工业化装置系统,完成了年产600吨秸秆丁醇中试试验,并建成了年产5万吨丁醇以及联产乙醇、丙酮、聚醚多元醇和纸浆的生产线。在国内外学术期刊上发表论文10余篇 申请中国发明专利7件、国际PCT专利1件,获得中国专利授权4件 出版中英文专著2部。  许宁 女,33岁,北京大学博士毕业,高分子化学专业,中国石化北京化工研究院高级工程师。许宁博士进行了生物可降解聚酯的改性工作,设计并合成了多种结构新颖、性能独特的聚酯 开展了含糖聚酯研究,合成了一系列结构精细可控的侧链含糖聚己内酯,构筑了国际上首个可降解的胰岛素控制释放体系模型 在聚乳酸合成与改性领域进行了研究,制备了增韧聚乳酸材料。作为第一作者发表论文5篇 申请专利21件,获得专利授权9件。  曾建立 男,32岁,中国科学院过程工程研究所博士毕业,生物化工专业,中国石化石油化工科学研究院高级工程师。曾建立博士针对废弃油脂生产的生物柴油酸值容易超标的问题开展研究,确定了影响产物酸值的关键因素,并完成了亚临界两段醇解反应制备生物柴油的小试实验 在此基础上,提出了第二代生物柴油新工艺(SRCA-Ⅱ),并完成了2000吨/年中试试验,为第二代生物柴油工艺开发作出了突出贡献。发表文章12篇,申请专利6件。  范立海 男,31岁,浙江大学博士毕业,生物化工专业,北京化工大学副教授。范立海博士成功实现了单株酵母以纤维素为唯一碳源直接转化燃料乙醇技术路线 首次解决了结晶型纤维素无法被酵母直接降解利用的国际性难题。已发表SCI论文10余篇,其中作为第一作者在《美国科学院院刊》(PNAS)1篇,申请国内发明专利3件。  特此公告。  &ldquo 闵恩泽能源化工奖&rdquo 基金理事会  2013年12月20日
  • 【瑞士步琦】近红外光谱法定量测定多元醇中羟基值和浊点
    近红外光谱法定量测定多元醇中羟基值和浊点 近红外应用”1 简介多元醇见图1是用于生产各种最终用途的聚合物和塑料的基本组成部分。例如,我们日常使用的聚氨酯产品就是用多元醇来制造的。多元醇是从多功能醇或胺开始,通常与环氧乙烷(EO)或环氧丙烷(PO)反应制成的。 ▲ 图1. 多元醇 真正的多元醇是复杂的,具有混合和不同的链长和末端。羟基值(OH值)是有机化合物质量的快速评价指标。它是可用于反应的活性羟基数量的量度,并提供有关链长分布和范围的信息。羟值既是衡量多元醇分子量及质量的主要参数之一,又是聚氨酯制品生产厂家在配方设计时决定各原料投用量的重要参考依据。 因此羟值测定的准确性非常重要。目前,检测羟值的方法主要有化学分析法和仪器分析法。化学分析法中最常用的是滴定法,基于滴加试剂与被测溶液中物质的反应,利用滴加滴定试剂的量来推测被测物质的浓度。该方法中使用吡啶作为溶剂,吡啶易挥发且有恶臭气味,被世界卫生组织国际癌症研究机构列入2B 类致癌物清单,对实验人员的身体健康有一定的危害,且该方法反应时间较长( 需回流加热 1h),操作复杂,分析时间较长,测试效率低,测试准确性受人为因素影响较大。仪器分析法主要有核磁共振法和近红外光谱法。核磁共振法操作简单,测试快速且准确度较高。但是该方法所需要的设施昂贵,且实验室环境要求高,在企业中并未得到广泛推广。近红外光谱法是近红外光源照射下分子发生能级跃迁时产生的,记录的是分子中单个化学键的基频振动的倍频和合频信息,受含氢基团 X-H(X 为C,N,O)的倍频和合频的重叠主导,其光谱信息与样品的结构和成分组成相关。 多元醇在近红外光谱区的吸收主要包括 C-H、N-H,O-H 个含氢基团基频振动的合频和倍频振动吸收,通过这些含氢基团分子振动从基态到高能级跃迁的过程中记录的羟基的合频和倍频吸收信息,从而进行羟值的定量分析。 该方法在测试过程中无需对样品进行稀释、分散处理,因其操作简单、检测快速、绿色安全的特点而被广泛应用。浊点是当混合物从足够高的温度缓慢冷却以使混合物成为单相时,多元醇混合物中形成薄雾或云状的温度。浊点随着多元醇分子量的增加而减小,随着 EO 的加入而增大。这一分析被用来衡量多元醇的水溶性、表面活性剂性质和反应性。浊点控制反应系统中多元醇的相行为,这种行为对最终产品质量有极其重要的影响。由于多元醇在水中具有反溶解度,较高的浊点表明这些重要性能属性的增加。 2 应用设备及附件本文重点介绍步琦近红外光谱 N-500 用于快速测定多元醇的 OH 值和浊点。它可以应用于:最终产品或来料的检测和过程的监控支持。使用的仪器介绍如下:N-500 是市面上第一台商业化偏振干涉仪的傅里叶变换近红外光谱仪。 ▲步琦近红外光谱仪 N-500多至 6 通道同时检测0.5, 1, 2, 4, 5,8, 10mm 的比色皿控温,室温至 65 度 3 实验仪器配置:液体样品 NIRFlex Liquids,配备样品腔用于液体透射分析,可控温(室温~65℃),可自动切换背景测量通道,同时容纳 6 个比色皿。测量参数:波长:4500-10000;分辨率:8cm-1;温度设定 60°C,扫描次数:液体样品 64 次。测量要求:多元醇样品装入比色皿 8mm 后测量,每个样品测量三次光谱,每条光谱采集前都进行相同的混匀、取样。测量多元醇的样品光谱谱图:如图2 ▲图2. 测量多元醇的样品光谱谱图 从光谱本身来看,样品的信号加强,反射率在 0.3 以上可以满足近红外分析。模型参数如下表:从表中可以看出:模型的相关系数均大于 0.99,样品羟值和浊点的准确度较高完全符合国家标准《塑料 聚氨酯生产用多元醇近红外光谱法测定羟值》的误差要求,分析方法重复性较好,可以用于实验室日常检测。4结论 结果表明,近红外光谱技术可以成功地监测 OH 值和浊点,并具有良好的精度。该技术不需要样品制备用于测定 OH 值的标准湿化学方法可以被更快,更便宜和更简单的近红外分析所取代,以更快的批 QA 审核通过。近红外法具有分析效率高、制样简单、环保等优势,测试成本低,被实验室和企业广泛应用。
  • 助力精准诊断!药明奥测质谱法“25-羟基维生素D测定试剂盒”获批
    维生素D是人体内重要的微量元素之一,可调节钙、磷代谢、促进骨骼生长、调节细胞生长分化、调节免疫功能,但据不完全统计,目前有50%以上的中国人群存在维生素D缺乏的现象。维生素D在体内转化成25-羟基维生素D2/D3,因其半衰期长、含量高、易于检测,已成为评估VD含量的最佳指标。传统VD测定试剂盒多采用免疫分析法,因抗体特异性差异等因素影响,常存在干扰,影响了定量的准确度。为助力精准诊断,近日,上海药明奥测医疗科技有限公司(以下简称“药明奥测”)自主开发推出了“25-羟基维生素D测定试剂盒(液相色谱-串联质谱法)”,且该试剂盒已获批二类医疗器械注册证。据了解,药明奥测是中国第一家践行整合诊断的赋能平台公司,公司依托Mayo Clinic的整合诊疗理念与经验,凭借融合多平台、多组学及临床数据驱动的开放式赋能平台,通过算法整合升级,不断推出创新诊断服务和产品,同时加速诊疗创新者从研发到应用的技术转化,创造共赢共享的产业新生态。值得关注的是,为打造领先的临床质谱平台,药明奥测独家引进Mayo Clinic的400余项质谱项目,提供肿瘤、个体化用药、人体营养和代谢、激素、金属元素检测等服务,其质谱法25-羟基维生素D测定试剂盒,更是经过严格质量体系验证,可溯源至美国国家标准与技术研究院(NIST)Standard Reference Material 2972a。液相色谱-串联质谱法(LC-MS/MS)检测特异性及灵敏度高,可对25-羟基维生素D2、25-羟基维生素D3分别测定,保证了测试准确度。同时,作为一家高新技术企业,药明奥测始终坚持国际高标准自主创新,在试剂盒的开发过程中,药明奥测秉承以客户为中心的理念,积极提出差异化的解决方案并落实到产品性能优化中。在前处理阶段,采用“蛋白沉淀一步法”,显著减少了前处理步骤,操作方便快捷,有效地提高通量。此外,鉴于25-羟基稳定性差,目前市场上诸多解决方案采用-20℃冷冻保存或冻干粉基质,增加了客户使用成本,影响了用户体验。奥测试剂盒创新的采用独特配方新基质,产品为液体剂型,2-8℃稳定保存。据悉,截至目前,公司已累计申请体外诊断(IVD)专利近200项,涉及免疫、分子及质谱技术平台。目前,国内疫情仍处于不平静阶段,疫情常态化推动了诊疗场景拓展,在社区、在第三方检测机构、在家庭,方便快捷地采集、检测,已成为广大人民群众的需求,药明奥测国际高标准的试剂开发与整体解决方案创新,不仅大大提高了维生素D检测准确性与便捷性,实现了应用场景拓宽,也让更多人获益于高质量的医疗服务。此后,药明奥测将持续凭借强大的医疗及商业资源整合能力,基于临床需求布局丰富的研发管线,通过算法整合升级,不断创新整合诊断服务和产品,以“自主研发+授权合作”双模式,推动诊疗药险全新生态,促进诊疗场景的融合与拓展,让更多人在医院、在社区、在家庭中,都能获得高品质的医疗服务。
  • 卫生部发布97项食品安全国家标准
    据卫生部网站报道,根据《中华人民共和国食品安全法》和《食品安全国家标准管理办法》的规定,经食品安全国家标准审评委员会审查,现发布《食品添加剂琼脂(琼胶)》(GB1975-2010)等97项食品安全国家标准。  97项食品安全国家标准目录GB 1975-2010食品添加剂 琼脂(琼胶)GB 1900-2010食品添加剂 二丁基羟基甲苯(BHT)GB 3150-2010食品添加剂 硫磺GB 4479.1-2010食品添加剂 苋菜红GB 4481.1-2010食品添加剂 柠檬黄GB 4481.2-2010食品添加剂 柠檬黄铝色淀GB 6227.1-2010食品添加剂 日落黄GB 7912-2010食品添加剂 栀子黄GB 8820-2010食品添加剂 葡萄糖酸锌GB 8821-2010食品添加剂 β-胡萝卜素GB 12487-2010食品添加剂 乙基麦芽酚GB 12489-2010食品添加剂 吗啉脂肪酸盐果蜡GB 13481-2010食品添加剂 山梨醇酐单硬脂酸酯(司盘60)GB 13482-2010食品添加剂 山梨醇酐单油酸酯(司盘80)GB 14750-2010食品添加剂 维生素AGB 14751-2010食品添加剂 维生素B1(盐酸硫胺)GB 14752-2010食品添加剂 维生素B2(核黄素)GB 14753-2010食品添加剂 维生素B6(盐酸吡哆醇)GB 14754-2010食品添加剂 维生素C(抗坏血酸)GB 14755-2010食品添加剂 维生素D2(麦角钙化醇)GB 14756-2010食品添加剂 维生素E(dl-α-醋酸生育酚)GB 14757-2010食品添加剂 烟酸GB 14758-2010食品添加剂 咖啡因GB 14759-2010食品添加剂 牛磺酸GB 14888.1-2010食品添加剂 新红GB 14888.2-2010食品添加剂 新红铝色淀GB 15570-2010食品添加剂 叶酸GB 15571-2010食品添加剂 葡萄糖酸钙GB 17512.1-2010食品添加剂 赤藓红GB 17512.2-2010食品添加剂 赤藓红铝色淀GB 17779-2010食品添加剂 L-苏糖酸钙GB 25531-2010食品添加剂 三氯蔗糖GB 25532-2010食品添加剂 纳他霉素GB 25533-2010食品添加剂 果胶GB 25534-2010食品添加剂 红米红GB 25535-2010食品添加剂 结冷胶GB 25536-2010食品添加剂 萝卜红GB 25537-2010食品添加剂 乳酸纳(溶液)GB 25538-2010食品添加剂 双乙酸钠GB 25539-2010食品添加剂 双乙酰酒石酸单双甘油酯GB 25540-2010食品添加剂 乙酰磺胺酸钾GB 25541-2010食品添加剂 聚葡萄糖GB 25542-2010食品添加剂 甘氨酸(氨基乙酸)GB 25543-2010食品添加剂 L-丙氨酸GB 25544-2010食品添加剂DL-苹果酸GB 25545-2010食品添加剂 L(+)-酒石酸GB 25546-2010食品添加剂 富马酸GB 25547-2010食品添加剂 脱氢乙酸钠GB 25548-2010食品添加剂 丙酸钙GB 25549-2010食品添加剂 丙酸钠GB 25550-2010食品添加剂 L-肉碱酒石酸盐GB 25551-2010食品添加剂 山梨醇酐单月桂酸酯(司盘20)GB 25552-2010食品添加剂 山梨醇酐单棕榈酸酯(司盘40)GB 25553-2010食品添加剂 聚氧乙烯(20)山梨醇酐单硬脂酸酯(吐温 60)GB 25554-2010食品添加剂 聚氧乙烯(20)山梨醇酐单油酸酯(吐温 80)GB 25555-2010食品添加剂 L-乳酸钙GB 25556-2010食品添加剂 酒石酸氢钾GB 25557-2010食品添加剂 焦磷酸钠GB 25558-2010食品添加剂 磷酸三钙GB 25559-2010食品添加剂 磷酸二氢钙GB 25560-2010食品添加剂 磷酸二氢钾GB 25561-2010食品添加剂 磷酸氢二钾GB 25562-2010食品添加剂 焦磷酸四钾GB 25563-2010食品添加剂 磷酸三钾GB 25564-2010食品添加剂 磷酸二氢钠GB 25565-2010食品添加剂 磷酸三钠GB 25566-2010食品添加剂 三聚磷酸钠GB 25567-2010食品添加剂 焦磷酸二氢二钠GB 25568-2010食品添加剂 磷酸氢二钠GB 25569-2010食品添加剂 磷酸二氢铵GB 25570-2010食品添加剂 焦亚硫酸钾GB 25571-2010食品添加剂 活性白土GB 25572-2010食品添加剂 氢氧化钙GB 25573-2010食品添加剂 过氧化钙GB 25574-2010食品添加剂 次氯酸钠GB 25575-2010食品添加剂 氢氧化钾GB 25576-2010食品添加剂 二氧化硅GB 25577-2010食品添加剂 二氧化钛GB 25578-2010食品添加剂 滑石粉GB 25579-2010食品添加剂 硫酸锌GB 25580-2010食品添加剂 稳定态二氧化氯溶液GB 25581-2010食品添加剂 亚铁氰化钾(黄血盐钾)GB 25582-2010食品添加剂 硅酸钙铝GB 25583-2010食品添加剂 硅铝酸钠GB 25584-2010食品添加剂 氯化镁GB 25585-2010食品添加剂 氯化钾GB 25586-2010食品添加剂 碳酸氢三钠(倍半碳酸钠)GB 25587-2010食品添加剂 碳酸镁GB 25588-2010食品添加剂 碳酸钾GB 25589-2010食品添加剂 碳酸氢钾GB 25590-2010食品添加剂 亚硫酸氢钠GB 25591-2010食品添加剂 复合膨松剂GB 25592-2010食品添加剂 硫酸铝铵GB 25593-2010食品添加剂 N,2,3-三甲基-2-异丙基丁酰胺GB 25594-2010食品工业用酶制剂GB 25595-2010乳糖GB 25596-2010特殊医学用途婴儿配方食品通则
  • 可口可乐澄清防腐剂事件 用于麦当劳等杯装饮料
    近日据媒体报道,一批来自上海可口可乐饮料公司的零度可口可乐原液主剂配料被台湾"卫生署食品药物管理局"检验出防腐剂"对羟基苯甲酸甲酯",每千克含2.062克,为当地禁止掺入碳酸饮料内的物质。对此,可口可乐大中华区方面作出回应。该公司公共事务及传讯部在7月18日的声明中表示:"此次台湾涉及的防腐剂是许多国家和地区(包括中国内地、香港和美国)的食品法律法规所认可的安全添加剂之一,并被广泛接受可安全使用于食品及饮料类,但是台湾地方法律规定不容许使用在汽水中。 "  对于这批添加了"对羟基苯甲酸甲酯"可乐原液的用途,可口可乐方面表示将用于现调机,即麦当劳等快餐店所销售的杯装饮料产品,不过必须在现调制机器内经过稀释后才能对外销售,稀释后的对羟基苯甲酸甲酯浓度非常小,仅为每千克0.015毫克。据可口可乐方面声称,被检出的对羟基苯甲酸甲酯是现调机浓缩液的一些制造原料中自然带入的,并非刻意添加。据悉,这些含有对羟基苯甲酸甲酯的现调制零度可口可乐除了在麦当劳等快餐店销售外,也在一些商场、卖场有售。可口可乐方面还强调,市场上所销售的采用预包装方式的易拉罐和塑瓶零度可乐并不含对羟基苯甲酸甲酯。  涉及此事的麦当劳公司昨天也发来声明表示,麦当劳对选用食品原料进行适时监控及验证,以确保进入餐厅销售的产品符合安全标准。麦当劳餐厅现调机销售的杯装零度可乐符合国家相关食品标准。  微量添加对羟基苯甲酸甲酯,不会造成危害。国家认证委食品安全管理体系认可评审员喻雨琴表示,对羟基苯甲酸甲酯是一种国际认可的广谱型高效食品防腐剂,在PH值3至8的溶液中,对细菌、霉菌、酵母菌等都能起到较好的杀菌作用,且较为安全。据悉,我国食品工业早在2001年就已开始使用该类防腐剂,欧美、日本等国则已广泛用于食品、饮料、化妆品、药品和纺织品等领域。目前,根据我国《食品添加剂使用卫生标准》,对羟基苯甲酸甲酯可添加在碳酸饮料中,最大使用量为0.2克/千克。台湾检测的样本是未稀释的浓缩原液,但市民喝的是稀释后产品,稀释后的对羟基苯甲酸甲酯含量符合相关标准。不过,喻雨琴表示,近年有国外研究表明,对羟基苯甲酸甲酯类具有潜在的雌激素活性,可能是一类环境内分泌干扰物。  记者7月18日在南京东路上的超市随机购买了几瓶易拉罐装和瓶装的 "零度可口可乐"汽水,这些产品标明的配料有"焦糖色、磷酸、苯甲酸钠、阿斯巴甜、安塞蜜、柠檬酸钠、咖啡因、蔗糖素"等,未出现台湾方面检出的对羟基苯甲酸甲酯。记者此后又走访了一些使用现调机售卖杯装可口可乐的餐饮服务单位,发现现调机调出的杯装饮料未标识所含成分。一家火锅店的店长告诉记者,现调机使用的原浆都由可口可乐单方面提供,只知道原浆进入机器后会与纯净水按一定比例调制,才能做出对外售卖的杯状饮料,但原浆与水的配比、原浆中是否含添加剂都不清楚,"平时一按就是一杯,没原浆了就打供应商电话再续上,其他的没考虑那么多。"可口可乐方面对此表示,国家规定只有预包装饮料才需要标明成分,现调机调出的杯装饮料并不在规定之列。
  • 【瑞士步琦】干货!聚醚多元醇羟基含量分析,BUCHI FT-NIR 快速检测技术助您一臂之力!
    聚醚多元醇羟基含量分析 聚醚(又称聚醚多元醇)主要是由环氧丙烷、环氧乙烷等为原料,以碱金属氢氧化物为催化剂,按阴离子机理开环聚合,可以是均聚或共聚而制得分子末端带有羟基基团的线型聚合物, 聚醚在聚氨酯以及合成润滑材料上得到广泛的应用,对聚醚多元醇羟基含量的测定是监测反应程度和产品质量的主要手段。传统的聚醚羟值分析一般采用化学法,其原理是:样品中羟基与酸酐定量地进行反应,生成酯或酸。过量的酸酐水解成酸。 用已知浓度的碱标准溶液滴定酸。同量的酰化剂,不加样品,其他条件与样品滴定相同,做空白滴定。空白滴定和样品滴定两者所耗用碱标准溶液的体积差就是样品中的羟基所相当于耗用碱标准溶液的体积。由于这种方法反应时间长需要 3-4h, 操作比较复杂, 已不能适应工业分析的需要。近红外光是介于可见光与中红外光之间的电磁波, 波长为 780~2500nm。 有机物分子中 C-H , O-H , C=O 等基团振动频率的合频与倍频吸收在近红外区。 光谱中 OH 伸缩振动所引起的吸收峰的强弱决定于羟值的高低, 即单位质量聚醚羟值含量的多少。羟值高则吸收峰强度大, 反之则强度小。 所以可以应用此关系来测量聚醚羟值。BUCHI FT-NIR 的优点1无损利用近红外光以透射或透反射的方式采集被照样品的近红外光谱,对样品没有破坏性。2快速平均 1-2min 可以完成 1 个样品的检测,采集一次样品光谱,可以同时分析多组分含量。3利润高,成本低无需化学试剂消耗,实现零成本,可以大大提高检测效率。4绿色环保无需样品前处理,避免使用有毒,有害的化学试剂,从而对环境造成污染。▲ 建模样品集的近红外吸收光谱▲ 羟值含量的化学值与模型校正值、模型预测值的相关关系图▲ 羟值含量检测的液体附件配置多至6个孔位, 0.5,1,2,5,8,10mm 比色皿根据样品可选,控温室温到 65 度。用近红外光谱法,克服了化学方法测定羟值费时费力且大量使用有害试剂的缺点,此外,使用比色皿作样品吸收池,省去了每次测试后需要花费大量时间清洗吸收池的麻烦。这种方法不仅在聚醚多元醇生产中具有很大实用价值,而且在其他类似黏度较大、清洗不便的样品测试中也具有很大推广价值。步琦近红外光谱仪可以提供各种型号的光谱,以适用于实验室检测、旁线检测和在线检测的应用过程设备。如您对以上应用产品感兴趣,欢迎咨询了解!
  • 辽宁省分析测试协会批准发布 《绿色检测实验室评价 化学检测实验室》等3项团体标准
    各有关单位: 根据《辽宁省分析测试协会团体标准管理办法》的规定, 辽宁省分析测试协会批准发布《绿色检测实验室评价 化学 检测实验室》(T/LAIA 0001-2024)、《蛹虫草中麦角甾醇 的测定 液相色谱法》(T/LAIA 0002-2024)、《土壤阳离 子交换量的测定(EDTA-乙酸铵交换-凯氏定氮法)》(T/LAIA 0003-2024)等 3 项团体标准,上述标准自 2024 年 3 月 12 日起正式实施。 特此公告。辽宁省分析测试协会关于发布《绿色检测实验室评价 化学检测实验室》等3项团体标准的公告.pdf
  • 工业和信息化部办公厅关于印发2023年《贝类罐头》等第一批行业标准制修订和外文版项目计划的通知
    各有关单位:根据工业和信息化标准制修订工作总体安排,工业和信息化部编制完成了2023年第一批行业标准制修订和外文版项目计划。现印发给你们,请认真组织落实。具体要求如下:一、标准起草单位要注意做好标准制定与技术创新、试验验证、知识产权处置、产业化推进、应用推广的统筹协调。二、有关行业协会(联合会)、标准化技术组织、标准化专业机构等主管单位要尽早安排,将文件及时转发至主要起草单位,并做好标准组织起草、征求意见和技术审查等工作,把好技术审查关。三、部机关相关司局、相关地方行业主管部门要做好行业标准制修订、外文版研制过程的管理工作,确保标准的质量和水平。四、计划执行过程中,如需对标准项目进行调整,按有关规定办理。工业和信息化部办公厅2023年4月17日(联系电话:010-68205240)附件下载相关标准如下:序号计划编号项目名称标准类别制修订代替标准项目周期(月)1.2023-0202T-HG工业用乙酸钴产品修订HG/T 2032-1999182.2023-0203T-HG工业用乙酸锰产品修订HG/T 2034-1999183.2023-0205T-HG纤维素材质深层过滤滤芯产品制定244.2023-0206T-HG邻苯二胺产品修订HG/T 3310-2017185.2023-0207T-HG塑料 阻燃聚苯醚专用料产品修订HG/T 2232-1991186.2023-0211T-HG抗菌和抗病毒涂料产品修订HG/T 3950-2007187.2023-0214T-HG抗氧剂 2-甲基-4,6-二[(辛基硫基)甲基]苯酚(1520)产品制定188.2023-0215T-HG硫化剂 N,N'-间苯撑双马来酰亚胺(MPBM)产品制定189.2023-0216T-HG塑料屏蔽料用导电炭黑产品制定2410.2023-0242T-YS铝及铝合金彩色涂层板、带材产品修订YS/T 431-20091811.2023-0243T-YS铝塑复合管用铝及铝合金带、箔材产品修订YS/T 434-20091812.2023-0246T-YS熔融态铝及铝合金产品修订YS/T 1004-20141813.2023-0250T-YS选矿药剂 仲辛基黄药产品修订YS/T 355-19941814.2023-0281T-QB母婴用品质量追溯体系规范管理制定2415.2023-0282T-QB轻工业企业数字化供应链管理通则管理制定2416.2023-0283T-QB轻工智慧园区评价通则管理制定2417.2023-0284T-QB日用化学用品质量追溯体系规范管理制定2418.2023-0285T-QB食用植物油产品质量追溯体系规范管理制定2419.2023-0292T-QB厨房家具产品修订QB/T 2531-20101820.2023-0294T-QB储水式电热水器内胆产品修订QB/T 4101-20101821.2023-0296T-QB家用和类似用途净饮机产品修订QB/T 4991-20161822.2023-0297T-QB家用和类似用途前置过滤器产品修订QB/T 4695-20141823.2023-0298T-QB家用和类似用途嵌入式制冷器具产品修订QB/T 4683-20141824.2023-0299T-QB家用和类似用途软水机产品修订QB/T 4698-20141825.2023-0301T-QB使用环保天然制冷剂生产家用和类似用途房间空调器的特殊要求产品修订QB/T 4975-20161826.2023-0302T-QB使用可燃性制冷剂房间空调器运输的特殊要求产品修订QB/T 4976-20161827.2023-0307T-QB异麦芽酮糖醇产品修订QB/T 4486-20131828.2023-0308T-QB贝类罐头产品修订QB/T 1374-20151829.2023-0309T-QB混合水果罐头产品修订QB/T 1117-20141830.2023-0310T-QB炊饭机产品修订QB/T 4027-20101831.2023-0312T-QB食品包装纸产品修订QB/T 1014-20101832.2023-0313T-QB金属管切割器产品修订QB/T 2350-19971833.2023-0316T-QB工业氯化镁产品修订QB/T 2605-20031834.2023-0317T-QB食盐用水质量控制技术规范管理制定2435.2023-0318T-QB植脂末产品修订QB/T 4791-20151836.2023-0320T-QB黑糖产品修订QB/T 4567-20131837.2023-0321T-QB黄方糖产品修订QB/T 4566-20131838.2023-0322T-QB黄砂糖产品修订QB/T 4095-20101839.2023-0323T-QB金砂糖产品修订QB/T 4563-20131840.2023-0324T-QB精幼砂糖产品修订QB/T 4564-20131841.2023-0325T-QB块糖产品修订QB/T 4562-20131842.2023-0326T-QB全糖粉产品修订QB/T 4565-20131843.2023-0327T-QB糖霜产品修订QB/T 4092-20101844.2023-0328T-QB制糖综合利用加工助剂 固定化酵母产品修订QB/T 4568-20131845.2023-0329T-QB非接触食物搪瓷制品 通用要求产品修订QB/T 1855-19931846.2023-0333T-BB包装容器 聚对苯二甲酸乙二醇酯(PET)瓶坯产品修订BB/T 0060-20121847.2023-0334T-BB纸管产品修订BB/T 0032-20061848.2023-0363T-HG工业溴化钙产品制定2449.2023-0364T-HG工业溴化锌产品制定2450.2023-0365T-HG工业用钴锰复合水溶液产品制定2451.2023-0366T-HG分子筛对挥发性有机物(VOCs)动态吸附容量测定方法方法制定2452.2023-0371T-HG化工研发中试安全风险管控指南管理制定2453.2023-0372T-HG硫化促进剂 二异丙基黄原四硫醚(DIPT)产品制定1854.2023-0373T-HG紫外线吸收剂 2-(2'-羟基-5'-叔辛基苯基)苯并三氮唑(UV-329)产品制定1855.2023-0374T-HG胶乳伸缩管产品制定1856.2023-0375T-HG橡胶胶丝 试验方法方法修订HG/T 2487-20111857.2023-0376T-HG橡胶配合剂 沉淀水合二氧化硅 干燥样品灼烧减量的测定方法修订HG/T 3066-20081858.2023-0377T-HG橡胶配合剂 沉淀水合二氧化硅 水悬浮液pH 值的测定方法修订HG/T 3067-20081859.2023-0449T-QB家用和类似用途馒头机产品制定2460.2023-0453T-QB家用和类似用途自动炒菜机产品制定2461.2023-0455T-QB商用电动洗碗机产品制定2462.2023-0462T-QB瓦楞纸箱生产线产品制定2463.2023-0474T-QB食盐中 pH 值的测定方法制定2464.2023-0475T-QB制盐工业通用检测方法 色度的测定方法制定2465.2023-0476T-QB制盐工业通用检测方法 锶的测定方法制定2466.2023-0477T-QB制盐工业通用检测方法 碳酸盐、碳酸氢盐、氢氧化物的测定方法制定2467.2023-0478T-QB制盐工业通用检测方法 微量溴的测定方法制定2468.2023-0479T-QB制盐工业通用检测方法 硒的测定方法制定2469.2023-0480T-QB单一溶剂型凹版通用塑料复合油墨产品制定2470.2023-0481T-QB油墨剥离力的测定方法方法制定2471.2023-0482T-QB蔗渣浆产品制定2472.2023-0484T-QB焙烤食品用糖浆产品制定2473.2023-0485T-QB焙烤食品预拌(混)粉产品制定2474.2023-0486T-QB焙烤用植物蛋白上色液产品制定2475.2023-0487T-QB蛋黄酥产品制定2476.2023-0488T-QB绿豆糕产品制定2477.2023-0489T-QB杏仁饼产品制定2478.2023-0490T-QB杂粮谷物糕团产品制定2479.2023-0491T-QB氨基酸、氨基酸盐及其类似物 第13部分:β-丙氨酸产品制定2480.2023-0492T-QB氨基酸、氨基酸盐及其类似物 第14部分:L-谷氨酸产品制定2481.2023-0493T-QB氨基酸、氨基酸盐及其类似物 第15部分:L-盐酸鸟氨酸产品制定2482.2023-0494T-QB氨基酸、氨基酸盐及其类似物 第16部分:L-瓜氨酸产品制定2483.2023-0495T-QB包埋型 益生菌产品制定2484.2023-0496T-QB蛋黄球蛋白粉产品制定2485.2023-0497T-QB冻干食品通则基础制定2486.2023-0498T-QB发酵法丁二酸产品制定2487.2023-0499T-QB发酵液中麦角硫因的测定方法制定2488.2023-0500T-QB非变性 II 型胶原蛋白产品制定2489.2023-0501T-QB胍基丁胺产品制定2490.2023-0502T-QB核苷(酸)及其衍生物 第1部分:尿嘧啶核苷产品制定2491.2023-0503T-QB褐藻胶裂解酶制剂产品制定2492.2023-0504T-QB麦芽糖淀粉酶制剂产品制定2493.2023-0505T-QB膜过滤乳(膜分离乳)产品制定2494.2023-0506T-QB葡萄糖氧化酶制剂产品制定2495.2023-0507T-QB漆酶制剂产品制定2496.2023-0508T-QB食品中 2'-岩藻糖基乳糖的测定 离子色谱法方法制定2497.2023-0509T-QB食品中茶多糖分子量及其分布的测定 凝胶色谱法方法制定2498.2023-0510T-QB食品中茶褐素的测定-分光光度法方法制定2499.2023-0511T-QB食品中壳寡糖的测定 离子色谱法方法制定24100.2023-0512T-QB食品中乳铁蛋白的测定 酶联免疫吸附法方法制定24101.2023-0513T-QB食品中透明质酸钠的测定高效液相色谱法方法制定24102.2023-0514T-QB食品中维生素 B12 的测定预包被微孔板式微生物法方法制定24103.2023-0515T-QB熟制与生干山龙眼果(夏威夷果、澳洲坚果)和仁产品制定24104.2023-0516T-QB速溶支链氨基酸粉产品制定24105.2023-0517T-QB脱油蛋黄粉产品制定24106.2023-0518T-QB预制菜 第1部分:预制凉菜产品制定24107.2023-0519T-QB预制菜 第2部分:食用高汤产品制定24108.2023-0520T-QB预制菜 第3部分:佛跳墙产品制定24109.2023-0521T-QB植物基食品通则基础制定24110.2023-0522T-QB自热火锅产品制定24111.2023-0523T-QB自热米饭产品制定24112.2023-0524T-QBα-乳白蛋白产品制定24113.2023-0525T-QB风味面团产品制定24114.2023-0526T-QB聚葡萄糖产品制定24115.2023-0527T-QB醪糟产品制定24116.2023-0528T-QB乳清蛋白肽(水解乳清蛋白)产品制定24117.2023-0529T-QB乳酸菌发酵葡萄糖制品产品制定24118.2023-0530T-QB食品中低聚糖的测定 第1部分:母乳低聚糖含量的测定方法制定24119.2023-0531T-QB食用发酵微藻 第1部分:蛋白核小球藻产品制定24120.2023-0532T-QB食用菌剂体外模拟消化道的活菌率检验方法方法制定24121.2023-0533T-QB微生态制剂术语和分类基础制定24122.2023-0534T-QB玉米发酵核苷酸酱产品制定24123.2023-0535T-QB番茄调味类罐头产品制定24124.2023-0536T-QB鱼胶罐头产品制定24125.2023-0537T-QB坚果与籽类食品设备 术语基础制定24126.2023-0538T-QB坚果与籽类食品设备 型号编制方法基础制定24127.2023-0539T-QB可微波食品接触用复合膜、袋产品制定24128.2023-0540T-QB食品包装用聚烯烃阻隔复合膜、袋产品制定24129.2023-0541T-QB食品包装用流延聚苯乙烯多层复合片产品制定24130.2023-0542T-QB鱼松产品制定24131.2023-0543T-AH高分子复合板桩产品制定24132.2023-0552T-BB包装制品中淀粉粘合剂含量的测定(酶化-重量法和酶化-比色法)方法制定24133.2023-0553T-BB热收缩标签产品制定24
  • 常见的饲料霉菌毒素对猪的影响
    在猪场上中,仔猪的多系统衰竭综合征、各种呼吸道疾病和种猪的繁殖与呼吸综合征的发病率极高。虽然免疫程序一步不缺、常规消毒按规定进行,用药也很到位,但是猪的各种疾病依然是层出不穷。其原因主要是猪场上存在着隐形杀手——霉菌毒素。不管过去对霉菌污染下过多大功夫及防患措施,霉菌毒素的产生至今仍是全世界养猪业无时不存在的自然威协,给饲养者*大的危害与损失。本文主要针对各种霉菌毒素对猪只的影响及预防措施作一一的阐述。 霉菌毒素是某些霉菌在基质上生长繁殖过程中产生的有毒二次代谢产物。毒素在谷物的生产过程、饲料制造、贮存及运输过程中都会产生。畜禽食入这些毒素污染的饲料后可导致急性或慢性中毒,称为霉菌毒素中毒。霉菌毒素产生的临床症状会因饲料中毒素的含量、饲喂的时间、其他霉菌毒素的存在与否、动物本身的物种、年龄及健康状况而有所不同。 一、黄***素黄***素主要是黄曲霉和寄生曲霉产生的。其他曲菌、青霉菌、镰孢霉菌和链霉菌属的放线菌也能产生黄***素。所有的动物对黄***素敏感,然而不同动物的敏感性差异较大。在家禽中以雏鸭尤其敏感,在家畜中以仔猪*为敏感。依污染的严重程度,造成的损失包括饲料效率下降、生长延迟、屠体品质不佳、死亡。在20~200ppb的低浓度时,黄***素减少饲料摄入量、降低饲料利用率和免疫抑制。泌乳母猪的饲粮中若出现500ppb以上含量时,则会因乳汁中的黄***素而造成仔猪迟缓和死亡。即使离乳后不再饲喂含黄***素饲粮,但是仔猪生长受阻,饲养效果下降的情况一直至上市。而且低浓度的黄***素还会造成微血管脆弱而容易引起皮下出血及挫伤等。长期饲喂含有黄***素的动物,其肝脏、免疫系统及造血功能都会受损。黄***素通过干扰肝脏中脂肪向其它组织的输送,使脂肪大量堆积在肝脏而产生斑点,同时还会干扰肝脏的合成维生素和解毒的其他功能。 而黄***素对免疫系统所造成的伤害比肝脏要严重,即使是在较低剂量下的黄***素也会伤及免疫系统。黄***素通过与DNA和RNA结合并抑制其合成,引起胸腺发育不良和萎缩,淋巴细胞减少,影响肝脏和巨噬细胞的功能,抑制补体(C4)的产生和T淋巴细胞产生白细胞介素及其他淋巴因子。黄***素还能通过胎盘影响胎儿组织的发育。而且黄***素还能危害通过接种疫苗的获得性免疫,如黄***素B1会干扰猪丹毒免疫所获得的免疫力。 二、呕吐毒素直到最近,呕吐毒素已被作为梭霉菌属的霉菌毒素污染的“标记”,故即使在饲料中发现含量很低的呕吐毒素,但仍会有梭霉菌属霉菌毒素中毒症的出现。对生长肥育猪而言,含有14ppm呕吐毒素的饲料饲喂后10~20分钟内即会出现呕吐、不正常的焦虑和磨牙现象。呕吐现象仅发生*一天(Williams et al.,1988)。持续低剂量饲喂会导致皮肤温度下降、胃食管部增生和血浆中α-球蛋白含量降低(Rotter et al.,1994)。呕吐毒素会强力抑制猪的采食量和生长速度,在呕吐毒素的含量在0~14ppm的试验中,Williams et al(1998)发现饲粮中每增加1ppm呕吐毒素,生长肥育猪的采食量即减少6%,在含毒量10ppm以上即完全拒食。而且呕吐毒素是潜在的蛋白质合成抑制剂,主要对快速生长的组织(如皮肤和粘膜)和免疫器官产生影响,导致对传染病的易感性。 三、玉米赤霉烯酮玉米赤霉烯酮也称为F2毒素,是由禾谷镰孢霉菌产生,具有雌激素作用的霉菌毒素,其临床症状随接触剂量和猪年龄不同而异。在所有的圈养动物中,猪对玉米赤霉烯酮*为敏感,而受影响最大的部位主要是其生殖系统。较低浓度会诱发女性化现象,较高浓度会干扰排卵、受孕、植入及胚胎的发育。后备母猪*为敏感,0.5~1.0ppm低含量下即可造成假发情和阴道脱垂或脱肛(Blaney和 Williams,1991)。玉米赤霉烯酮会增加怀孕母猪发生流产及死产的几率、初生仔猪的存活率较差、出现八字腿及外阴*肿胀(Vanyi,1994)。Golhl(1990)指出饲粮中10ppm的F-2毒素会延长母猪自离乳至配种的间隔时间,降低窝仔数和增加畸形猪的数量。F-2毒素使年轻公猪*欲下降、睾丸变小、睾丸生精细胞上皮细胞变性最后形成精子发育不良和不孕、生精细管周围组织的炎症反应等。 四、T-2毒素T-2毒素是由念珠球菌属产生的新月毒素中的一种,新月毒素已超过100种,饲粮中的含量超过0.4ppm的毒素就会对动物产生中毒症状。T-2毒素属于组织刺激因子和致炎物质,直接损伤皮肤和粘膜。表现为厌食,呕吐,瘦弱,生长停滞,皮肤、粘膜坏死,胃肠机能紊乱,繁殖和神经机能障碍,血凝不良,肝功能下降,白细胞减少和免疫机能降低。T-2毒素通过影响DNA和RNA的合成及其通过阻断翻译的启动而影响蛋白质合成,而且T-2毒素还会引起胸腺萎缩,肠道淋巴腺坏死;破坏皮肤粘膜的完整性。抑制白细胞和补体C3的生成,从而影响机体免疫机能。 五、麦角毒素麦角毒素是麦角霉产生的一种毒素,它对所有的猪都会产生危害。其中毒的症状在数天内或数周内出现,包括精神沉郁,采食量减少,脉搏和呼吸加快,全身状况不佳,后腿常发生跛行,严重者尾巴、耳朵和蹄坏死及腐肉脱落,寒冷气候可使病情加重。麦角毒素还会通过引发无乳症而间接影响猪的繁殖。在妊娠期给怀孕青年母猪饲喂含0.3%麦角毒素的饲料,可导致新生仔猪出生体重下降,存活率降低和增重缓慢。日粮中含有0.1%的麦角毒素会使肥育猪生长缓慢。 六、赭曲霉毒素赭曲霉毒素是由赭曲霉(Asp.ochraceus)及鲜绿青霉(P.viridicatum)等所产生的一种霉菌肾毒素,它分为A、B两种类型。赭曲霉毒素A的毒性较大,且在自然污染的饲料中常见。猪摄入1ppm的赭曲霉毒素A可在5~6天致死。饲喂养含1ppm浓度的赭曲霉毒素的日粮,3个月后可引起烦渴、尿频、生长迟缓和饲料利用率降低;对于受霉菌毒素污染的饲料预防很重要,需要借助专业的仪器对以上多种霉菌毒素进行检测筛查,如果发现饲料中含量超标,及时处理预防后续引发的相应疾病的产生,给养猪户少一分危险多一份保障。 深芬仪器生产的霉菌毒素快速检测仪能够快速定量检测粮食、饲料、谷物、食用油、调味品等食品中黄***素、T2毒素、呕吐毒素、赭曲霉毒素、伏马毒素、玉米赤霉烯酮含量。霉菌毒素快速检测仪适用于粮油监测中心、粮油饲料生产加工、食品加工贸易、畜禽养殖户自查、工商质监部门用于市场快速筛查等。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制