当前位置: 仪器信息网 > 行业主题 > >

细叶远志皂苷

仪器信息网细叶远志皂苷专题为您提供2024年最新细叶远志皂苷价格报价、厂家品牌的相关信息, 包括细叶远志皂苷参数、型号等,不管是国产,还是进口品牌的细叶远志皂苷您都可以在这里找到。 除此之外,仪器信息网还免费为您整合细叶远志皂苷相关的耗材配件、试剂标物,还有细叶远志皂苷相关的最新资讯、资料,以及细叶远志皂苷相关的解决方案。

细叶远志皂苷相关的论坛

  • 远志药材含量测定

    远志药材含量测定

    [align=center][font='times new roman'][size=18px]远志药材[/size][/font][font='times new roman'][size=18px]含量[/size][/font][font='times new roman'][size=18px]测定[/size][/font][/align][font='times new roman']1 [/font][font='times new roman']材料与试剂[/font][font='times new roman']甲醇、[/font][font='times new roman']乙腈(色谱级[/font][font='times new roman'] [/font][font='times new roman']上海安谱[/font][font='times new roman'])、[/font][font='times new roman']氢氧化钠、正丁醇、甲醇[/font][font='times new roman']乙醇[/font][font='times new roman'](分析纯[/font][font='times new roman'],北京化工厂[/font][font='times new roman'])、[/font][font='times new roman']细叶远志皂苷[/font][font='times new roman']、[/font][font='times new roman']远志[/font][font='simsun-extb']??[/font][font='times new roman']酮Ⅲ和[/font][font='times new roman']3[/font][font='times new roman'],[/font][font='times new roman']6[/font][font='times new roman']'[/font][font='times new roman']-[/font][font='times new roman']二芥子酰基蔗糖[/font][font='times new roman']标准品[/font][font='times new roman'](购自中检院)、[/font][font='times new roman']远志[/font][font='times new roman']药材[/font][font='times new roman']样品(送检样品)。[/font][font='times new roman']2 [/font][font='times new roman']色谱条件[/font][font='times new roman']LC-20AT[/font][font='times new roman'][url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱仪[/color][/url](日本岛津),色谱柱:[/font][font='times new roman'] [/font][font='times new roman']Eclipse XDB [/font][font='times new roman']C18(250mm*4.6μm*5μm)[/font][font='times new roman'](安捷伦),[/font][font='times new roman']细叶远志皂苷[/font][font='times new roman']流动相[/font][font='times new roman']:[/font][font='times new roman']以甲醇[/font][font='times new roman']-0.05%[/font][font='times new roman']磷酸溶液([/font][font='times new roman']70 : 30[/font][font='times new roman'])[/font][font='times new roman']等度洗脱[/font][font='times new roman'];检测波长为[/font][font='times new roman']210nm[/font][font='times new roman'];[/font][font='times new roman']远志[/font][font='simsun-extb']??[/font][font='times new roman']酮Ⅲ和[/font][font='times new roman']3[/font][font='times new roman'],[/font][font='times new roman']6[/font][font='times new roman']'[/font][font='times new roman']-[/font][font='times new roman']二芥子酰基蔗糖[/font][font='times new roman']流动相:[/font][font='times new roman']以乙腈[/font][font='times new roman']-0.05%[/font][font='times new roman']磷酸溶液([/font][font='times new roman']18 : 82[/font][font='times new roman'])[/font][font='times new roman']等度洗脱[/font][font='times new roman'];检测波长为[/font][font='times new roman']320nm[/font][font='times new roman']。[/font][font='times new roman']3[/font][font='times new roman']溶液制备[/font][font='times new roman'](按照中国药典[/font][font='times new roman']2[/font][font='times new roman']020[/font][font='times new roman']年版一部[/font][font='times new roman']远志项下[/font][font='times new roman']测定)[/font][font='times new roman']([/font][font='times new roman']1[/font][font='times new roman'])[/font][font='times new roman']细叶远志皂苷[/font][font='times new roman']测定[/font][font='times new roman']对照品溶液的制备[/font][font='times new roman'] [/font][font='times new roman']取细叶远志皂苷对照品适量,精密称定,加甲醇制成每[/font][font='times new roman']1ml[/font][font='times new roman']含[/font][font='times new roman']1mg[/font][font='times new roman']的溶液,即得。[/font][font='times new roman'] [/font][align=center][font=&] [/font][img=,550,116]https://ng1.17img.cn/bbsfiles/images/2022/11/202211301655126355_7390_1858223_3.jpg!w550x116.jpg[/img][/align][font='times new roman'][/font][align=center][font='times new roman']细叶远志皂苷[/font][font='times new roman']标准品色谱图[/font][font='times new roman'] [/font][/align][font='times new roman']样[/font][font='times new roman']品溶液的制备[/font][font='times new roman'] [/font][font='times new roman']取本品粉末(过三号筛)约[/font][font='times new roman']1g[/font][font='times new roman'],精密称定,置具塞锥形瓶中,精密加入[/font][font='times new roman']70%[/font][font='times new roman']甲醇[/font][font='times new roman']50m[/font][font='times new roman']L[/font][font='times new roman'],称定重量,超声处理(功率[/font][font='times new roman']400W[/font][font='times new roman'],频率[/font][font='times new roman']40kHz[/font][font='times new roman'])[/font][font='times new roman']1[/font][font='times new roman']小时,放冷,再称定重量,用[/font][font='times new roman']70%[/font][font='times new roman']甲醇补足减失的重量,摇匀,滤过,精密量取续滤液[/font][font='times new roman']25m[/font][font='times new roman']L[/font][font='times new roman'],置圆底烧瓶中,蒸干,残渣加[/font][font='times new roman']10%[/font][font='times new roman']氢氧化钠溶液[/font][font='times new roman']50m[/font][font='times new roman']L[/font][font='times new roman'],加热回流[/font][font='times new roman']2[/font][font='times new roman']小时,放冷,用盐酸调节[/font][font='times new roman']pH[/font][font='times new roman']值为[/font][font='times new roman']4[/font][font='times new roman']~[/font][font='times new roman']5[/font][font='times new roman'],用水饱和的正丁醇振摇提取[/font][font='times new roman']3[/font][font='times new roman']次,每次[/font][font='times new roman']50m[/font][font='times new roman']L[/font][font='times new roman'],合并正丁醇液,回收溶剂至干,残渣加甲醇适量使溶解,转移至[/font][font='times new roman']25m[/font][font='times new roman']L[/font][font='times new roman']量瓶中,加甲醇至刻度,摇匀,即得。[/font][font='times new roman'] [/font][align=center][img=,546,109]https://ng1.17img.cn/bbsfiles/images/2022/11/202211301655297982_7250_1858223_3.jpg!w546x109.jpg[/img][/align][font='times new roman'][/font][align=center][font='times new roman']远志药材中[/font][font='times new roman']细叶远志皂苷[/font][font='times new roman']色谱图[/font][font='times new roman']   [/font][/align][font='times new roman']([/font][font='times new roman']2[/font][font='times new roman'])[/font][font='times new roman']远志[/font][font='simsun-extb']??[/font][font='times new roman']酮Ⅲ和[/font][font='times new roman']3[/font][font='times new roman'],[/font][font='times new roman']6[/font][font='times new roman']'[/font][font='times new roman']-[/font][font='times new roman']二芥子酰基蔗糖[/font][font='times new roman']测定[/font][font='times new roman'] 对照品溶液的制备[/font][font='times new roman'] [/font][font='times new roman']取远志[/font][font='simsun-extb']??[/font][font='times new roman']酮Ⅲ对照品、[/font][font='times new roman']3[/font][font='times new roman'],[/font][font='times new roman']6[/font][font='times new roman']'[/font][font='times new roman']-[/font][font='times new roman']二芥子酰基蔗糖对照品适量,精密称定,加甲醇制成每[/font][font='times new roman']1ml[/font][font='times new roman']含远志[/font][font='simsun-extb']??[/font][font='times new roman']酮Ⅲ[/font][font='times new roman'] 0.15mg[/font][font='times new roman']、含[/font][font='times new roman']3[/font][font='times new roman'],[/font][font='times new roman']6[/font][font='times new roman']'[/font][font='times new roman']-[/font][font='times new roman']二芥子酰基蔗糖[/font][font='times new roman']0.2mg[/font][font='times new roman']的混合溶液,即得。[/font][font='times new roman'] [/font][font='times new roman']  [/font][align=center][img=,566,112]https://ng1.17img.cn/bbsfiles/images/2022/11/202211301655466278_5123_1858223_3.jpg!w566x112.jpg[/img][/align][align=center][font='times new roman']远志[/font][font='simsun-extb']??[/font][font='times new roman']酮Ⅲ[/font][font='times new roman']标准品色谱图[/font][font='times new roman'] [/font][/align][align=center][img=,542,103]https://ng1.17img.cn/bbsfiles/images/2022/11/202211301656081095_7818_1858223_3.jpg!w542x103.jpg[/img][/align][font='times new roman'][/font][align=center][font='times new roman']3[/font][font='times new roman'],[/font][font='times new roman']6[/font][font='times new roman']'[/font][font='times new roman']-[/font][font='times new roman']二芥子酰基蔗糖[/font][font='times new roman']标准品色谱图[/font][font='times new roman'] [/font][/align][font='times new roman']样品[/font][font='times new roman']溶液的制备[/font][font='times new roman'] [/font][font='times new roman']取本品粉末(过三号筛)约[/font][font='times new roman']1g[/font][font='times new roman'],精密称定,置具塞锥形瓶中,精密加入[/font][font='times new roman']70%[/font][font='times new roman']甲醇[/font][font='times new roman']25ml[/font][font='times new roman'],称定重量,加热回流[/font][font='times new roman']1.5[/font][font='times new roman']小时,放冷,再称定重量,用[/font][font='times new roman']70%[/font][font='times new roman']甲醇补足减失的重量,摇匀,滤过,取续滤液,即得。[/font][align=center][img=,564,106]https://ng1.17img.cn/bbsfiles/images/2022/11/202211301656279882_3331_1858223_3.jpg!w564x106.jpg[/img][/align][font='times new roman'][/font][align=center][font='times new roman']远志药材中[/font][font='times new roman']远志[/font][font='simsun-extb']??[/font][font='times new roman']酮Ⅲ和[/font][font='times new roman']3[/font][font='times new roman'],[/font][font='times new roman']6[/font][font='times new roman']'[/font][font='times new roman']-[/font][font='times new roman']二芥子酰基蔗糖[/font][font='times new roman']测定色谱图[/font][font='times new roman'] [/font][font='times new roman']  [/font][/align][font='times new roman']结论:[/font][font='times new roman'] [/font][font='times new roman']送检样品中[/font][font='times new roman']细叶远志皂苷[/font][font='times new roman']含量为[/font][font='times new roman']2.4%[/font][font='times new roman'],远志[/font][font='simsun-extb']??[/font][font='times new roman']酮Ⅲ([/font][font='times new roman']C25H28O15[/font][font='times new roman'])[/font][font='times new roman']含量为[/font][font='times new roman']0.[/font][font='times new roman']22[/font][font='times new roman']%[/font][font='times new roman'],含[/font][font='times new roman']3[/font][font='times new roman'],[/font][font='times new roman']6[/font][font='times new roman']'[/font][font='times new roman']-[/font][font='times new roman']二芥子酰基蔗糖含量为[/font][font='times new roman']0.[/font][font='times new roman']73[/font][font='times new roman']%[/font][font='times new roman']注:[/font][font='times new roman']远志药材测定[/font][font='times new roman']细叶远志皂苷[/font][font='times new roman']时样品前处理过程较为复杂,[/font][font='times new roman']其中氢氧化钠回流结束,用盐酸调节[/font][font='times new roman']pH[/font][font='times new roman']值,建议用[/font][font='times new roman']pH[/font][font='times new roman']计测定,固定一个值,保证样品的平行性和准确性[/font][font='times new roman']。细叶远志皂苷测定波长在低波段,仪器需要多稳定一会儿再进行测样。[/font]

  • 【“仪”起享奥运】中药远志

    [font=宋体]中药远志为远志科植物远志或卵叶远志的干燥根。春、秋二季采挖,除去须根和泥沙,晒干,生用或炙用。远志味苦、辛,性温,归心、肾、肺经,有安神益智,交通心肾,祛痰开窍,消散痈肿的功效。[/font][b][font=宋体]安神益智、交通心肾[/font][/b][font=宋体][/font][font=宋体]《药性论》云远志:“治心神健忘,安魂魄,令人不迷,坚壮阳道,主梦邪。”远志苦辛性温,善于宣泄通达,既能开心气而宁心安神、又能通肾气而强志不忘,为交通心肾、安定神志、益智强识之佳品。《三因极一病证方论》“远志丸”以远志配伍茯神、龙齿、山药等治疗心肾不交引起的心神不宁,失眠多梦,健忘惊悸,神志恍惚;《备急千金要方》“开心散”以远志与人参、茯苓、石菖蒲同用治疗健忘证,若方中再加茯神,即《证治准绳》“不忘散”。[/font][b][font=宋体]祛痰开窍[/font][/b][font=宋体]《本草再新》说远志:“行气散郁,并善豁痰。”远志苦温性燥,入肺经,能祛痰止咳,常与苦杏仁、川贝母、桔梗等化痰止咳平喘药同用治疗痰多粘稠、咳吐不爽。[/font][b][font=宋体]消散痈肿[/font][/b][font=宋体][/font][font=宋体]《本草纲目》言远志:“治一切痈疽。”远志辛行苦泄温通,可疏通气血之壅滞而消散痈肿,常用于治疗疮疡肿毒,乳房肿痛,内服、外用均有疗效,内服可单用为末,黄酒送服;外用可隔水蒸软,加少量黄酒捣烂敷患处。[/font][b][font=宋体]治癫痫惊狂[/font][/b][font=宋体]远志味辛通利,能利心窍、逐痰涎,可用治痰阻心窍之癫痫抽搐,惊风发狂。《药品化义》:“远志,味辛重大雄,入心开窍,宣散之药。凡痰涎伏心,壅塞心窍,致心气实热,为昏聩神呆、语言謇涩,为睡卧不宁,为恍惚惊怖,为健忘,为梦魇,为小儿客忤,暂以豁痰利窍,使心气开通,则神魂自宁也。”[/font][font=宋体]综上,远志为安神与开窍双向调节心神之妙品,功用奇特,既能“安魂魄”,又能“利九窍”,而先贤也是认识到失眠与嗜睡两种心神紊乱常相伴出现。《得配本草》:“唯心气郁结,痰涎壅塞心窍,致有神呆健忘,寤寐不宁等症。”其中“寤寐不宁”即属于痰涎壅塞所致的“醒不了又睡不安”的睡眠紊乱病证。远志心神双调,可达到“安神不闭窍,开窍不动神”的疗效。[/font][font=宋体]凡实热或痰火内盛者,以及有胃溃疡或胃炎者慎用。[/font]

  • 【“仪”起享奥运】基于UPLC-Q-TOF-MS/MS和分子网络技术的远志木心成分定性分析

    [size=16px][font=Arial, &][color=#333333]目的[/color][/font][font=Arial, &][color=#333333] 本研究采用超高效[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]-四极杆飞行时间串联质谱(UPLC-Q-TOF-MS/MS)和分子网络技术,结合高效[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url](HPLC)技术对远志木心进行定性、定量分析。 [/color][/font][font=Arial, &][color=#333333]方法[/color][/font][font=Arial, &][color=#333333] 参照2020年版《中国药典》对细叶远志皂苷、远志??酮Ⅲ和3,6'-二芥子酰基蔗糖的含量进行测定。根据MS/MS碎片结合SCIEX中药数据库、Lipidomics数据库、对照品、文献数据对木心中的化学成分进行鉴定 并结合MS/MS碎片的相似性创建分子网络。 [/color][/font][font=Arial, &][color=#333333]结果[/color][/font][font=Arial, &][color=#333333] 不同产地远志木心中的细叶远志皂苷、远志??酮Ⅲ和3,6'-二芥子酰基蔗糖含量均不符合2020年版《中国药典》规定。在远志木心中共鉴定出化合物188个,其中包括三萜皂苷类26个、??酮类12个、糖酯类69个,黄酮类12个,脂质类37个,糖类3个,核苷(酸)类3个,有机酸类8个,氨基酸类11个,其他类化合物7个。 [/color][/font][font=Arial, &][color=#333333]结论[/color][/font][font=Arial, &][color=#333333] 阐明了远志木心中的化学成分,该结果为远志木心资源的综合开发以及进一步解析远志木心“致闷”的物质基础提供依据。[/color][/font][/size]

  • 【金秋计划】远志bZIP基因家族的鉴定及表达分析

    远志系陕西道地药材,是“秦药”大宗道地药材品种之一[1]。《中国药典》2020年版所收载的远志为远志科(Polygalaceae)植物远志Polygala tenuifolia Willd.或卵叶远志P. sbirica L.的干燥根[2],具有镇静安神、祛痰开窍、解毒消肿等功效[3]。现代研究表明,远志的主要活性成分有皂苷类、寡糖酯类、酮类等,具有抗记忆障碍、保护中枢神经系统、抗抑郁、抗心肌缺血和抗肿瘤等作用[4]。目前,关于远志的研究多集中于含量研究[5]、活性测定[6]、遗传多样性分析等[7]。随着分子生药学的发展,对药用植物相关活性成分生物合成途径相关调控基因、转录因子的挖掘已成为研究热点,基因组学、转录组学等技术在远志上的成功应用,也为远志基因家族的筛选、鉴定与分析提供了技术支撑和数据基础[8]。 碱性亮氨酸拉链(bZIP)基因家族作为真核生物中转录网络的重要开关,是植物中最大的转录因子家族之一。bZIP结构域由两个区域组成,即DNA结合基本区和亮氨酸拉链区[9]。bZIP基因家族成员通过差异基因网络或生物过程,在调节植物发育、生长以及盐胁迫响应等方面发挥着重要作用[10]。研究表明,拟南芥Arabidopsis thaliana L.、番茄Solanum lycopersicum L.、黄瓜Cucumis sativus L.、李子Prunus salicina L.和蓖麻Ricinus communisL.等多种植物中的bZIP参与调控组织分化、细胞生长、糖代谢、生物和非生物胁迫等多个生物学过程[11-12]。bZIP基因家族成员还参与多种药用植物次生代谢产物合成调控,如丹参Salvia miltiorrhiza Bunge.的SmbZIP1基因可抑制丹参酮的积累,大豆Glycine max (Linn.) Merr.的GmbZIP123基因则参与大豆种子脂质积累的调控[13]。同时,bZIP表达受外源激素和胁迫诱导,壳聚糖处理葡萄Vitis vinifera L.12 h下,其VvLysM8和VvLysM9基因表达量显著提高[14],糜子Panicum miliaceum L.中的PmbZIP97不仅受到脱落酸(abscisic acid,ABA)、盐和干旱胁迫强烈诱导且参与调控萌发后的根系生长[15]。 本实验利用远志三代转录组数据,以bZIP基因家族为研究对象,对其基因家族进行成员鉴定和生物信息学分析,并确定其在远志中的结构特点与进化特征,进一步通过实时荧光定量分析其在不同组织、不同处理条件下的表达模式,为后续深入研究bZIP的生物学功能奠定基础,同时为bZIP家族可能参与远志次生代谢成分生物合成途径研究提供思路。 1 材料及仪器1.1 材料2021年10月于陕西中医药大学药用植物园(陕西咸阳)采集3年生远志Polygala tenuifolia Willd.及其成熟种子,经陕西中医药大学杨新杰副教授鉴定。选取5株三年生长势均匀的远志植株,将根、茎、叶等量混合后进行全长转录组测序分析。1.2 试剂及仪器ABA、壳聚糖(chitosan,CHT)均购自上海源叶生物科技有限公司,Trizol总RNA提取试剂盒、dd H2O均购自生工生物工程(上海)股份有限公司,TB Green® Premix ExTaqTM Ⅱ (TliRNaseH Plus)、PrimeScriptTM Ⅱ 1st strand cDNA Synthesis Kit购自TaKaRa公司(日本),所用引物由武汉金开瑞生物公司合成。StepOnePlusTM Real-Time PCR(qPCR)仪(美国Applied Biosystems公司),NanoDropTM 2000分光光度计(美国Thermo-fisher公司),K5800自动检测超微量分光光度计(凯奥公司),?80 ℃超低温冰箱(中科美菱公司)。 2 方法2.1 样品的处理选择大小均一,颗粒饱满的远志种子,用自来水冲洗1 d,10%双氧水消毒,播种于装有泥炭土的花盆中,在光周期16/8 h,光照强度9 000 Lx条件培养[16]。选取长势均一的2月幼苗,喷200 μmol/L ABA、200 μmol/L CTS,干旱(10% PEG 6000)、盐(100 mmol/L NaCl)20 mL,以无菌水作为对照组;以0 h为空白对照,重复3次,6、12、24和48 h取样处理(3株),于?80 ℃冰箱储存,采用PacBio Seque Ⅲ进行上机测序,获得远志全长转录组学文库[17]。2.2 远志bZIP家族基因鉴定及理化性质分析基于远志转录组数据库,筛选出注释结果为bZIP的序列,将序列gene id对应的fasta结果输入editseq软件,进一步获得具有完整开放阅读框(open reading frame,ORF)的基因,通过NCBI中的BlastX进行比对与鉴定。Protparam分析目标蛋白的理化性质,ProtScale预测不同氨基酸中的蛋白亲疏水性[18]。2.3 远志bZIP家族基因二级结构、信号肽、跨膜结构及亚细胞定位分析用ExPASy分析基因编码蛋白质的结构域,CDD验证;ProtParam和SOPMA分析远志bZIP转录因子的二级结构;SignalP-5.0和TMHMM预测信号肽和跨膜区域;WoLF PSORT预测亚细胞定位[19]。2.4 远志bZIP家族基因进化树构建从Tair网站下载拟南芥蛋白序列,通过MEGA软件对远志、拟南芥bZIP氨基酸序列进行多序列比对,利用MEGA的最大自然法构建系统发育树,重复次数设置为1 000次[20]。2.5 远志bZIP家族基因密码子偏好性分析及蛋白互作预测分析采用CodonW、CUSP和Chips分析密码子偏好性。蛋白互作预测分析利用STRING进行,并以拟南芥筛选其同源基因后,通过Cytoscape 3.9.0软件作图。2.6 远志bZIP家族基因蛋白特征、保守基序分析及不同组织表达量热图通过chiplot分析bZIP蛋白的结构域,MEME获得bZIP蛋白的保守氨基酸基序,并用TBtools进行可视化,Weblogo分析蛋白序列位点。利用诺禾云平台将转录组数据库中27个PtbZIP基因在远志根、茎、叶3个部位的差异表达数据进行层级聚类分析。2.7 远志bZIP家族基因表达模式验证与分析Trizol法提取各样品总RNA,凝胶电泳检测后测定总RNA浓度。使用Prime Script TM II 1st strand cDNA Synthesis Kit合成cDNA,检测浓度后于?20 ℃保存备用。设计荧光定量引物,并送生工生物工程(上海)股份有限公司合成。以甘油醛-3-磷酸脱氢酶(F:5’-ACAGCAACGTGCTTCTCACC-3’,R:5’-CCCTTCATCCACCACCGACTA-3’)为内参基因,验证PtbZIP26(F:5’-GCACTGATGG- GAAGGCTGAA-3’,R:5’-GATTGCCCAACAC- TTGAGGG-3’)、PtbZIP27(F:5’-GTCGGATGGT- AGTGAACGGG-3’,R:5’-CACCATTTCCCGAAC- CCTGA-3’)在不同部位样本中的表达量。选择表达量较高的PtbZIP26进行不同激素、胁迫处理下的表达量分析。qRT-PCR反应体系为TB Green Premix Ex Taq Ⅱ(2×)5.0 μL;上下游引物各0.4 μL;50×ROX Reference Dye 0.2 μL,cDNA 1.0 μL;ddH2O 3.0 μL。PCR反应程序参照TB Green Premix Ex Taq Ⅱ试剂说明书进行,每个反应重复3次。基因相对表达量采用2?ΔΔCt法计算,SPSS 27.0统计分析。 3 结果与分析3.1 远志bZIP基因家族成员的鉴定和蛋白理化性质分析基于远志全长转录组数据库,共筛选得到63个注释为bZIP基因的序列ID,进一步分析后获得39个包含完整ORF的序列。整理ORF差异位点并合并重复,最终得到27个全长bZIP转录因子,编号PtbZIP1~PtbZIP27(表1)。该转录因子的氨基酸个数143~846,相对分子质量介于16 201.52~92 932.3,等电点4.59~9.69。除PtbZIP1和PtbZIP22的不稳定指数小于40,系稳定蛋白质外,其余PtbZIP均为不稳定蛋白。bZIP基因家族脂肪系数介于48.31~92.66,所有bZIP蛋白的平均亲水性数值是负值,为亲水性蛋白。图片3.2 远志bZIP基因家族成员的二级结构、信号肽、跨膜结构及亚细胞定位分析二级结构分析结果(表2)表明,远志bZIP家族蛋白均具有α螺旋、延伸链、β转角和无规卷曲,主要由α螺旋和无规卷曲构成,延伸链和β-折叠所占比例较小,散布于整个蛋白中。SignalP-5.0和TMHMM在线分析结果一致,所有远志bZIP蛋白信号肽分值都低于0.5,说明其均无信号肽,不属于分泌蛋白。跨膜结构域分析则显示,仅PtbZIP9和PtbZIP13有跨膜结构域。亚细胞定位结果表明,远志bZIP家族成员主要定位在细胞核。图片3.3 远志bZIP基因家族成员系统进化分析利用MEGA7.0构建远志与拟南芥bZIP转录因子家族系统进化树。结果表明,27个PtbZIP蛋白分为A、B、C、D、F、G、I、S 8个组,没有bZIP蛋白分到E和K组中。其中G是最大的1个亚组,含有PtbZIP家族成员共8个,占总数的29.63%;A、F、I和S组均含3个PtbZIP家族成员,B组含2个PtbZIP家族成员,C组含1个PtbZIP家族成员,D组含4个PtbZIP家族成员(图1)。图片3.4 远志bZIP基因家族成员蛋白结构域分析BRLZ、MFMR和DOG1为bZIP蛋白中的常见结构域,BRLZ参与调控果生炭疽菌的营养生长,MFMR涉及蛋白与蛋白之间的相互作用,DOG1则与种子休眠相关[21-22]。远志bZIP的结构域分析结果表明:10个蛋白存在BRLZ结构域,9个蛋白存在MFMR结构,6个蛋白存在DOG1结构域(图2)。PtbZIP3和PtbZIP13含有大小相近的CCDC 158 superfamily,PtbZIP26、PtbZIP21和PtbZIP5则均含有BRLZ、MFMR及homeobox结构,结合进化树结果可知PtbZIP3和PtbZIP13聚在一起,PtbZIP26、PtbZIP21和PtbZIP5三者亲缘关系较近。图片3.5 远志bZIP基因家族成员保守基序分析利用MEME对远志27个bZIP蛋白序列进行保守基序分析的结果显示,不同bZIP转录因子基因包含的保守元件数量及种类存在差异,其中bZIP14基因包含的保守元件数量最少(2个),bZIP18/25基因包含的保守元件数量最多(11个),说明bZIP成员具有功能冗余现象,也具有功能差异性(图3)。图片bZIP蛋白结合位点序列分析结果表明,bZIP转录因子的每个重复结构域约为65 aa,均含有1个保守的bZIP结构域,其中N端一般具有高度保守的N-X7-R蛋白基序和碱性亮氨酸区域(图4)。图片3.6 远志bZIP基因家族成员密码子偏好性分析密码子可用来推断基因组内部或基因组之间的进化关系,而不同种类或同一种类的基因对密码子使用有不同的偏好模式[23]。由bZIP基因家族中的27条核苷酸序列中密码子GC的总含量(GC)以及同义密码子第1位(GC1s)、第2位(GC2s)、第3位的(GC3s)的GC含量分析结果可知:27条PtbZIP基因序列的GC1s、GC2s和GC3s的均值分别为52.24%、44.90%和40.93%,不同位置的GC含量存在差异;它们的GC平均值为46.11%,小于50%,表明其更偏向于A或U结尾的密码子[24](表3)。图片有效密码子(effective number of codon,ENC)反映了密码子偏离随机选择的结果,它是对同义密码子非均衡使用偏好程度的一个重要指标[25],ENC数值一般在20~61范围内,当ENC>35则表示密码子偏好性较弱。密码子适应指数(codon adaption index,CAI)是指编码该蛋白的所有密码子相对于这条基因都使用最优密码子的情况下的适应系数[24]。由表3可知,远志bZIP家族成员的ENC数值为43.088~57.195个,平均值为51.13个,密码子偏好性较弱。CBI值较低说明其外源基因在目的宿主中表达较弱。CAI值较低,则说明其适应性较弱。3.7 远志bZIP基因家族成员蛋白互作网络分析为深入了解远志bZIP蛋白的潜在功能和家族成员之间的相互作用,利用STRING软件,基于拟南芥数据库,对远志的27个bZIPs蛋白进行了互作网络分析。由图5可知,调控网络中共有27个节点(代表bZIPs蛋白),104条边(代表蛋白质之间的相互作用),表明远志的bZIPs蛋白存在多种互作现象,且26个bZIPs成员之间存在潜在的互作关系,为进一步验证远志bZIP的功能提供了重要依据。图片3.8 远志bZIP基因家族成员不同组织表达量热图和验证根据远志转录组数据,对27个PtbZIP基因在远志根、茎、叶中的FPKM差异表达数据进行了双向聚类分析。通过表达量热图分析可知,绝大部分基因的表达不恒定,在不同组织具有相对较高的表达量,根、茎和叶中表达量较高的基因数分别为23、2和2。PtbZIP4/15在叶中的表达量最高,茎和根次之;PtbZIP8/24在茎中的表达量最高,叶和根次之;剩下23个除PtbZIP1/17的表达量为根>叶>茎,其余表达模式为根>茎>叶(图6-A)。基于RT-qPCR验证转录组数据结果显示,PtbZIP26、PtbZIP27在根中的表达量最高,茎、叶次之,与转录组结果一致(图6-B)。图片3.9 PtbZIP26不同处理下的表达模式为了探究bZIP家族基因在远志不同处理条件下的表达模式,以PtbZIP26为代表,对其进行了激素和干旱、盐胁迫处理条件下的表达模式分析。结果发现,以0 h为空白对照(CK),PtbZIP26的表达量在ABA处理6 h内迅速上升,在24 h达到峰值;CTS处理分别持续上调至峰值为CK的5.3倍(24 h)后逐渐下调(图7-A)。PEG处理6 h迅速下降后又随着处理时间增加缓慢恢复上调,NaCl处理6 h后上调明显(图7-B)。 图片4 讨论bZIP基因家族在植物中广泛分布,参与植物的多个生长过程,如生长发育、应激反应以及次生代谢物的生物合成[26]。现阶段,bZIP基因家族已在多个物种有过相关的鉴定和研究,使得对bZIP的生物功能了解更透彻。本实验基于远志三代全长转录组数据库,找到39个bZIP isoforms,通过完整开放阅读框与BlastX分析找出具有完整ORF的基因,去除重复的isoforms,筛选并鉴定得到27个PtbZIP基因家族成员。理化性质分析显示,27个成员均为亲水性蛋白,且除PtbZIP1和PtbZIP22外均为不稳定蛋白;理论等电点小于7的蛋白有16个,属酸性蛋白,其余均为碱性蛋白。PtbZIP蛋白信号肽分值都低于0.5,说明其均无信号肽,信号肽是分泌蛋白的决定因子,推测PtbZIP蛋白不属于分泌蛋白。亚细胞定位结果显示,远志bZIP蛋白主要定位于细胞核,这与转录因子主要在细胞核中发挥作用一致。PtbZIP家族成员的蛋白二级结构也有明显的特点,主要有α-螺旋、无规卷曲。系统进化分析显示,27个PtbZIP蛋白分为A、B、C、D、F、G、I、S 8个组,其中含有8个PtbZIP家族成员的G亚组系最大亚组。PtbZIP11/18/25与拟南芥At1g32150.1、At2g35530.1高度同源,且包含的保守元件数量最多,推测PtbZIP11/18/25可能在远志干旱应答的分子机制中起重要作用[27]。研究表明,A类别的大多数功能信息提示在ABA或应激信号中的作用,PtbZIP6/12/16被分在A组,推测该基因可能参与到远志ABA信号转导途径[28]。S类别是拟南芥最大的bZIP类别之一,在胁迫处理后也被转录激活或在花的特定部分特异表达。研究证实,拟南芥bZIP家族中的S类别的基因在响应干旱有重要作用,本研究中共有3个PtbZIP基因被分到S类别下,其中PtbZIP15在叶中表达量高,PtbZIP24在茎中表达量高,可能参与调控远志对干旱的响应。同时,27个PtbZIP基因家族成员的蛋白二级结构预测结果十分相似,但序列间同源性相对较低,表明PtbZIP基因可能在远志生长发育方面发挥广泛的生物功能。表达模式分析发现,大部分PtbZIP在根中表达最高,qPCR结果验证与转录组数据一致,推测它们主要在远志地下部分发挥作用。植物中转录因子的表达与激素密切相关,研究发现葡萄VvLysM8和VvLysM9在壳聚糖处理12 h、脱落酸处理3 h时相对表达量最高[14]。马铃薯StHXK家族基因在ABA诱导下表达均显著上调,且在10%PEG胁迫处理下也呈不同程度的上调表达[29]。陆地棉GhKIN基因家族的鉴定和分析发现,干旱和盐胁迫处理后GhKIN14和GhKIN27表达出现下调,而GhKIN18等在一定时间点表现为表达上调[30]。本研究选择一个在根中高表达的PtbZIP26基因,通过不同激素、胁迫处理探讨了其是否受到相关激素和胁迫调控,结表明激素处理(ABA和CTS)远志幼苗后,PtbZIP26表达水平显著提高;同时,盐胁迫和干旱胁迫处理也可诱导PtbZIP26基因的表达发生改变且随胁迫时间的变化呈现出差异性,说明PtbZIP26可能通过不同信号通路参与远志应对逆境胁迫的表达,具体作用机制有待深入研究。本实验基于远志三代转录组数据,以远志bZIP基因家族为研究对象,对其家族成员进行鉴定和生物信息学预测分析,明确了相关结构特点与进化特征,进一步通过qPCR分析其在不同组织、不同处理下的表达模式,为探究PtbZIP参与生长发育、代谢过程及非生物胁迫的调控机制提供参考依据,为后期的基因功能研究奠定了基础。

  • 基于HPLC与化学计量法的不同年限林下参茎、叶中皂苷类成分比较分析

    [size=16px][font=宋体]人参首载于《神农本草经》,性味甘、微苦、微温,归脾、肺、心、肾经,具有大补元气、复脉固脱、补脾益肺、生津养血、安神益智的功效。人参为五加科植物人参[/font][i]Panax ginseng[/i] C. A. Mey.[font=宋体]的干燥根及根茎[/font][sup][1][/sup][font=宋体]。栽培人参俗称[/font][font=宋体]“[/font][font=宋体]园参[/font][font=宋体]”[/font][font=宋体],播种在山林野生状态下自然生长的称林下山参,习称[/font][font=宋体]“[/font][font=宋体]籽海[/font][font=宋体]”[/font][sup][2][/sup][font=宋体],林下参有人为干扰少、生长周期长和绿色安全的优点。[/font] [font=宋体]人参皂苷有多种生物学活性,为人参中主要有效成分,同时也被认为是人参的药效物质基础[/font][sup][3-4][/sup][font=宋体]。人参皂苷根据皂苷元的结构分为原人参二醇型、原人参三醇型、齐墩果酸型[/font]3[font=宋体]类。原人参二醇型包括人参皂苷[/font]Rb[sub]1[/sub][font=宋体]、[/font]Rc[font=宋体]、[/font]Rb[sub]2[/sub][font=宋体]、[/font]Rb[sub]3[/sub][font=宋体]、[/font]Rd[font=宋体],人参三醇型包括人参皂苷[/font]Rg[sub]1[/sub][font=宋体]、[/font]Re[font=宋体]、[/font]Rf[font=宋体]、[/font]Rg[sub]2[/sub][font=宋体],齐墩果酸型包括人参皂苷[/font]Ro[sup][5-10][/sup][font=宋体]。近年来,国内外学者对于人参化学成分的[/font][font=宋体]研究逐渐向非药用部位发展[/font][sup][11][/sup][font=宋体]。有研究表明,人参花蕾和人参茎叶中的部分皂苷含量远远高于人参根中[/font][sup][6-8][/sup][font=宋体]。[/font][font=宋体]据统计,我国每年人参茎叶总产量可达人参产量的[/font]40%[font=宋体]~[/font]48%[font=宋体],且近年来产量逐年增加,市场价格却只有人参的[/font]1/50[font=宋体]。研究发现,林下山参茎叶中含有更为丰富的化学成分[/font][sup][7,10,12-13][/sup][/size][font=宋体][size=16px],其药用价值优于园参茎叶。因此,深度开发林下参茎叶对人参资源的综合开发具有十分重要意义. [font=宋体]结果显示,在林下参茎中未检测到人参皂苷[/font]Rb[sub]2[/sub][font=宋体]、[/font]Rb[sub]3[/sub][font=宋体],林下参叶中[/font]10[font=宋体]种皂苷含量远高于林下参茎中。在[/font]4[font=宋体]种年限林下参叶中,[/font]10[font=宋体]种人参皂苷总量在[/font]60[font=宋体]~[/font]100 mg/g[font=宋体],[/font]20[font=宋体]年时含量最高;在[/font]4[font=宋体]中年限林下参茎中,除人参皂苷[/font]Rb[sub]2[/sub][font=宋体]、[/font]Rb[sub]3[/sub][font=宋体]外的[/font]8[font=宋体]中人参皂苷总量在[/font]20[font=宋体]年最高;原人参二醇型皂苷[/font]20[font=宋体]年林下参中最高。原人参三醇型皂苷在[/font]15[font=宋体]年林下参叶中皂苷含量最高;[/font]4[font=宋体]种年限林下参茎、叶中差异性成分为人参皂苷[/font]Re[font=宋体]、[/font]Rd[font=宋体]、[/font]Rg[sub]1[/sub][font=宋体]和[/font]Rc[font=宋体]。林下参茎叶总皂苷可通过促进免疫低下小鼠的细胞免疫、体液免疫来增强免疫抑制小鼠的免疫功能,林下参茎叶总皂苷还可通过增强免疫发挥抗肿瘤活性[/font][sup][13,16][/sup][font=宋体]。本研究发现,林下参茎叶中皂苷类成分主要集中在叶,不同年限的林下参叶中皂苷含量不同可能会导致药效的不同,因此不同年限林下参叶间的药效差异仍需进一步探讨。[/font][font=宋体]生长年限对林下山参茎、叶皂苷含量影响显著,同时,[/font]10[font=宋体]种皂苷、原人参二醇型、原人参三醇型、齐墩果酸型皂苷含量随生长年限变化规律差异很大,皂苷增加的量并不是与年生长量呈等比关系,原因可能是人参生长到一定年限,其活性物质的累计率会降低[/font][sup][17][/sup][font=宋体]。我国的人参种植面积、总产量均居世界首位,每年用于出口、医药健康领域及功能性食品开发方面逐年加大,药用植物资源需求明显增多[/font][sup][14][/sup][font=宋体]。由于人参产量的大幅增加,人参茎叶等非药用部位的产量逐年增加,现代工业生产人参单体皂苷多选择以人参茎叶为原料,提取总皂苷,再进一步纯化、结构修饰得到人参单体皂苷[/font][sup][18-19][/sup][font=宋体]。研究发现,人参叶质量占人参茎叶质量的[/font]25%[font=宋体],其中总皂苷含量远高于人参茎中皂苷含量[/font][sup][20][/sup][font=宋体]。[/font][font=宋体]由此可推断,可根据提取的皂苷成分不同,有针对性的选择不同生长年限的林下参茎、叶,可有效提高提取效率。人参非药用部位的开发与利用势在必行。本研究从不同生长年限林下参茎、叶出发,考察其中[/font]10[font=宋体]种皂苷含量及其变化规律。为林下参非药用部位资源的开发与利用提供理论依据。[/font][/size][/font]

  • 2015中国药典检测方案有奖问答02.23(已完结)——启脾口服液中人参皂苷Rg1、人参皂苷Re的检测

    2015中国药典检测方案有奖问答02.23(已完结)——启脾口服液中人参皂苷Rg1、人参皂苷Re的检测

    问题:启脾口服液中人参皂苷Rg1、人参皂苷Re的检测:对照品中人参皂苷Rg1、人参皂苷Re的分离度是多少?答案:2.467获奖名单:吕梁山(ID:shih20j07)dahua1981(ID:dahua1981)m3071659(ID:m3071659)http://ng1.17img.cn/bbsfiles/images/2016/02/201602231542_584931_708_3.jpghttp://ng1.17img.cn/bbsfiles/images/2016/02/201602231543_584932_708_3.jpghttp://ng1.17img.cn/bbsfiles/images/2016/02/201602231543_584933_708_3.jpg【活动奖励】幸运奖(2钻石币):抽奖软件,当天随机抽取3个回答正确的版友ID号(最后一个ID号,截止至下午3:00),每人奖励2个钻石币积分奖励:所有回答正确的版友奖励10个积分(幸运奖获得者除外)。【注意事项】同样的答案,每人只能发一次PS:该贴浏览权限为“回贴仅作者和自己可见”,回复的版友仅能看到版主的题目及自己的回答内容,无法看到其他版友的回复内容。下午3点之后解除,即可看到正确答案、获奖情况及所有版友的回复内容。启脾口服液中人参皂苷Rg1、人参皂苷Re的检测样品制备 制备方法1. 对照品:取人参皂苷Rg1对照品、人参皂苷Re对照品适量,精密称定,加甲醇制成每1 mL各含0.25 mg的混合溶液,摇匀,即得。2. 供试品:精密量取本品50 mL,加三氯甲烷振摇提取3次,每次30 mL,弃去三氯甲烷提取液,水液加水饱和正丁醇振摇提取5次(50 mL、30 mL、30 mL、20 mL、20 mL),合并正丁醇提取液,加氨试液洗涤4次,每次50 mL,弃去氨试液,再加正丁醇饱和的水轻轻振摇洗涤2次,每次50 mL,弃去水洗液,正丁醇液回收溶剂至干,残渣加甲醇溶解并转移至5 mL量瓶中,加甲醇稀释至刻度,摇匀,滤过,取续滤液,即得。分析条件 色谱柱Diamonsil C18(2) 250 × 4.6 mm,5 μm (Cat#:99603) 流动相A:水 B:乙腈 梯度流速1.0 mL/min 柱温35 ℃ 检测器UV 203 nm 进样量5 μL 色谱图对照品http://ng1.17img.cn/bbsfiles/images/2016/02/201602231201_584890_708_3.png 峰号 保留时间 min 峰面积 μV*s 峰高 μV 理论塔板数* N USP拖尾因子 分离度 1 52.603 387347 6585 18460.678 1.019 -- 2 56.668 262702 4169 16820.782 0.971 2.467 *药典要求理论板数按人参皂苷Re峰计算应不低于2500 供试品http://ng1.17img.cn/bbsfiles/images/2016/02/201602231202_584891_708_3.png 峰号 保留时间 min 峰面积 μV*s 峰高 μV 理论塔板数* N USP拖尾因子 分离度 1 52.664 117855 2108 18875.714 0.982 -- 2 56.654 291453 4502 18266.289 1.019 2.486 *药典要求理论板数按人参皂苷Re峰计算应不低于2500本品种同时使用了Leapsil C18色谱柱,在药典规定条件下进行人参皂苷Rg1[/sub

  • 介绍中药材—远志

    药材知识分享—远志远志,又名葽绕、蕀蒬等。产东北、华北、西北和华中以及四川。[玫瑰]具有安神益智、祛痰、消肿的功能,用于心肾不交引起的失眠多梦、健忘惊悸,神志恍惚,咳痰不爽,疮疡肿毒,乳房肿痛。

  • 【金秋计划】绞股蓝皂苷提取实例

    [font=MuseoSans, Georgia, &][size=16px][color=#282828]绞股蓝为葫芦科植物绞股蓝的根状茎或全草,多年生草质藤本植物,叶片为鸟足状复叶互生,小叶7枚,俗称“七叶胆”,分布于我国南方。我国明代已作为荒年充饥、镇咳、清热解毒中草药使用,最早可见于1525年明嘉靖四年朱棣编的《救荒本草》以及《农政全书》。绞股蓝含绞股蓝皂苷、黄酮类、多糖三大类物质,经结构测定,绞股蓝含有多种皂苷,具有特殊的生理活性,含铁、锌、硒及维生素等多种人体必需的有益成分,对人体的保健作用既等同于人参,又优于人参。中外学术界誉其为“绿色的金子”、“第二人参”、“人参宝草”。从绞股蓝中已分离鉴定了83种与人参皂苷有类似骨架的达玛烷型绞股蓝皂苷,将这 83种皂苷统称为绞股蓝皂苷(gypenoside),其中6种为人参皂苷,其余为人参皂苷的异构体。[/color][/size][/font] [font=MuseoSans, Georgia, &][size=16px][color=#282828]绞股蓝皂苷之所以“神奇”,是因为其人参皂苷类成分超过人参的数倍,其对治疗和预防高血压等心血管疾病、糖尿病、便秘、痔疮、哮喘、偏头痛、痤疮、色斑等有显著功效并有较为明显的镇静、催眠、消除疲劳、增进食欲、抗衰老的作用,对肿瘤、肝炎、胃炎、胃及十二指肠溃疡、胃下垂、口腔炎、冠心病、动脉硬化、胆结石、肢体麻木、皮肤粗糙、男性不育、性功能衰退、肥胖及白发秃顶等具有较佳疗效。绞股蓝皂苷还可能成为21世纪人类征服心血管疾病、糖尿病、紧张症、癌症和艾滋病的主要生理活性物质。[/color][/size][/font] [font=MuseoSans, Georgia, &][size=16px][color=#282828](1)热水浸提 选取新鲜无霉烂的绞股蓝干茎叶,用75~80°C的热水反复浸提三次,每次用水量为茎叶质量的7~8倍,每次浸提后过滤,滤液进入下一流程,残渣弃去。[/color][/size][/font] [font=MuseoSans, Georgia, &][size=16px][color=#282828](2)沉淀除杂在充分搅拌的同时向浸提液中加石灰乳至pH10.0~10.5,静置沉淀,吸取上清液,下层沉渣进行过滤,滤渣弃去,将上清液与滤液合并,用10%的盐酸调pH至中性,即得淡黄色粗提液,此步骤的作用主要是除去鞣质、蛋白质等杂质。[/color][/size][/font] [font=MuseoSans, Georgia, &][size=16px][color=#282828](3)树脂吸附 将粗提液通过DA型大孔吸附树脂,则皂苷和部分色素被吸附于树脂上,而无机盐类及其他一些杂质则随水通过树脂弃去,再用相当于树脂体积5~6倍的水淋洗树脂,淋洗液弃去。[/color][/size][/font] [font=MuseoSans, Georgia, &][size=16px][color=#282828](4) 乙醇解吸 依次用50%和70%的乙醇缓缓通过树脂,皂苷即被解吸,收集洗脱液。[/color][/size][/font] [font=MuseoSans, Georgia, &][size=16px][color=#282828](5)脱色 将洗脱液缓缓通过DB型树脂,色素被吸附于树脂上,通过树脂的溶液即为皂苷精提液,颜色为微黄色。[/color][/size][/font] [font=MuseoSans, Georgia, &][size=16px][color=#282828](6)浓缩干燥 将精提液减压浓缩,回收乙醇,然后真空干燥粉碎后即得产品。[/color][/size][/font] [font=MuseoSans, Georgia, &][size=16px][color=#282828](7)包装 由于绞股蓝皂苷具有一定的吸湿性,须用双层聚乙烯塑料袋或复合塑料袋包发产品为微黄色或淡黄色松散粉末,口感微苦,无异味。[/color][/size][/font] 预览时标签不可点 [i][/i]技术案例3 [i][/i]植物提取8 技术案例 目录[i][/i] #技术案例 上一篇【技术科普】:黄芩中黄芩苷的提取下一篇【技术科普】:提取物相关标准汇总

  • 独圣活血片中三七皂苷R1和人参皂苷Rg1、Re的分析2010版解决方法

    独圣活血片中三七皂苷R1和人参皂苷Rg1、Re的分析2010版药典解决方法独圣活血片中三七皂苷R1、人参皂苷Rg1、Re的分析本方法来源于2010版药典P940中“独圣活血片”的分析l 前言虽然药典中只要求分析三七皂苷R1和人参皂苷Rg1,但实际上是需要有效分离人参皂苷Rg1和人参皂苷Re的,因为作为独圣活血片原料的三七中或多或少总会含有Re,如果不将Rg1和Re分开,将会对Rg1的定量产生极大的干扰; l 样品分子结构中文名英文名结构式三七皂苷R1Notoginsenoside R1见附页人参皂苷Rg1Ginsenoside Rg1见附页人参皂苷ReGinsenoside Re见附页 l 样品来源记录

  • 药材皂苷含量的提取方法

    药材皂苷的含量药典方法总是先用索氏提取器提取若干小时,再正丁醇萃取几次,再水洗几次,然后再上大孔吸附树脂柱,最后定容上液相,整个过程做下来前处理都得2-3天,很耗时间。能不能将索氏提取器这一步用超声提取的方法代替呢?有谁尝试过,做出的结果也能将皂苷完全提出来?

  • 人参皂苷高效液相

    人参皂苷高效液相

    人参皂苷标准品,用葡萄糖苷酶和鼠李糖苷酶反应完之后高效[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相[/color][/url]图谱都差不多,有没有人解释是没出峰还是没反应呀[img]https://ng1.17img.cn/bbsfiles/images/2023/04/202304261454313898_1401_5986128_3.jpg[/img]

  • 2015中国药典检测方案有奖问答01.29(已完结)——颈痛颗粒中三七皂苷、人参皂苷的检测

    2015中国药典检测方案有奖问答01.29(已完结)——颈痛颗粒中三七皂苷、人参皂苷的检测

    问题:颈痛颗粒中三七皂苷、人参皂苷的检测使用了哪几款液相色谱柱?答案:Platisil ODS、Leapsil C18、Spursil C18-EP【活动奖励】幸运奖(2钻石币):抽奖软件,当天随机抽取3个回答正确的版友ID号(最后一个ID号,截止至下午3:00),每人奖励2个钻石币mengzhaocheng(ID:mengzhaocheng)999youran(注册ID:999youran)WUYUWUQIU(注册ID:wulin321)http://ng1.17img.cn/bbsfiles/images/2016/01/201601291556_583923_1610895_3.pnghttp://ng1.17img.cn/bbsfiles/images/2016/01/201601291556_583924_1610895_3.png积分奖励:所有回答正确的版友奖励10个积分(幸运奖获得者除外)。【注意事项】同样的答案,每人只能发一次PS:该贴浏览权限为“回贴仅作者和自己可见”,回复的版友仅能看到版主的题目及自己的回答内容,无法看到其他版友的回复内容。下午3点之后解除,即可看到正确答案、获奖情况及所有版友的回复内容。=======================================================================颈痛颗粒中三七皂苷、人参皂苷的检测样品制备制备方法1. 对照品:取人参皂苷Rg1对照品、人参皂苷Rb1对照品和三七皂苷R1对照品适量,精密称定,加甲醇制成每 1 mL含人参皂苷Rg1 0.5 mg、人参皂苷Rb1 0.5 mg、三七皂苷R1 0.1 mg的混合溶液,即得。2. 供试品:取装量差异项下的本品适量,研细,取约1.3 g,精密称定,加乙醚40 mL,加热回流30分钟,滤过,弃去乙醚液,药渣及滤纸挥尽乙醚,再精密加入甲醇40 mL,称定重量,加热回流1小时,放冷,再称定重量,用甲醇补足减失的重量,摇匀,滤过,精密量取续滤液20 mL,回收溶剂至干,残渣加水10 mL使溶解,用水饱和的正丁醇振摇提取5次,每次10 mL,合并正丁醇提取液,用2%碳酸钠溶液洗涤2次,每次20 mL,再用正丁醇饱和的水洗涤2次,每次20 mL,取正丁醇液回收溶剂至干,残渣用甲醇溶解,转移至10 mL量瓶中,加甲醇稀释至刻度,摇匀,即得。分析条件色谱柱Platisil ODS 250 x 4.6 mm,5 μm (Cat#:99503)流动相A:水 B:乙腈 梯度流速1.0 mL/min柱温30 ℃检测器UV 203 nm进样量10 μL色谱图对照品 http://ng1.17img.cn/bbsfiles/images/2016/01/201601290942_583886_1610895_3.jpg 峰号 保留时间 min 峰面积 μV*s 峰高 μV 理论塔板数* N USP拖尾因子 分离度 1 36.408 264983 25847 265850.102 1.018 -- 2 38.915 1775914 178004 318998.439 0.998 8.983 3 54.506 1316933 127848 597818.242 0.870 55.926 *药典要求理论板数按三七皂苷 R1峰计算应不低于3000供试品http://ng1.17img.cn/bbsfiles/images/2016/01/201601290943_583887_1610895_3.jpg 峰号 保留时间 min 峰面积 μV*s 峰高 μV 理论塔板数* N USP拖尾因子 分离度 1 36.344 250230 25147 274216.739 0.996 --

  • 高效液相测人参皂苷含量

    测人参、红参、西洋参中人参皂苷的含量、三七中人参皂苷、三七皂苷的含量大家公司一般用哪个品牌的高效液相来测呢?检测效果怎么样?

  • 人参皂苷检测

    人参皂苷检测

    人参皂苷检测 人参大家都知道,是好东西,是一种大补的药材。它的功效非常神奇,具有抗癌奇效,增强机体免疫力,快速增强或恢复体质,兴奋中枢神经,缓解或抗疲劳,改善或提高记忆力,延迟衰老,镇定、安神、解热、放松、催眠等多种功效,是一种非常昂贵和神奇的药材。 人参的主要营养成分是人参皂苷,然而人参皂苷也分很多种,有人参皂苷Rh2、Rg、Rg1、Rg2、Rg3、Rb1、Rb2、Rc、Rb3、Rh、Rh1、Ro、Rbt等。 大家可能也知道人参皂苷不好检测,一是检测时间长,一般都需一个多小时,二是准确度、精密度很难保证,三是有几种不好分离,四是检测波长低,一般都采用203nm,五是对流动相、色谱柱要求高等难题。 下面我们就看看该方法,该色谱柱检测人参皂苷Rg1、Re、Rb1的效果吧。http://ng1.17img.cn/bbsfiles/images/2014/03/201403302025_494728_2369266_3.png色谱条件:色谱柱:Welchrom-C18 ( 250 mm ×4.6 mm 5μ )Serial Number:W13212255流动相:以乙腈为流动相A,水为流动相B,按下表中的规定进行梯度洗脱: 时间(min)流动相A(%)流动相B(%)0~35198135~5519→2981→7155~70297170~10029→4071→60流速:1 mL/min进样量:10 μL检测波长:203 nm柱温:30℃色谱图:对照品色谱图:http://ng1.17img.cn/bbsfiles/images/2014/03/201403301542_494709_2369266_3.png供试品色谱图:http://ng1

  • 【求助】皂苷的hplc含量测定

    小弟在测甾体皂苷,用的是已腈-磷酸水(酸万分之一),梯度洗脱,DAD检测。待测样品用普通分析纯的甲醇溶解,微孔滤膜过滤,进样分析。做了好几次,发现皂苷的峰不明显,并且更要人命的是,谱图中有很多溶剂峰,强度很大很高,现在才意识到,以前都当成皂苷的吸收峰,因为不像溶剂峰,都是末端吸收,没办法区分。今天,在进对照品时,发现对照品进入液相后,有好几个末端吸收峰,发现问题比较严重,对照品纯度没问题的。我怀疑:1、普通分析甲醇溶解对照品和样品后,才导致出现谱图中不同位置出现大小不一样的溶剂峰。我马上做了空白对照,确实甲醇单独进入液相分析,有很多溶剂峰,末端吸收,真是无语。2、考虑到溶剂问题,我又做了已腈空白对照,发现还是有溶剂峰,只不过少了很多,只有两个看起来比较高的峰。一个出峰在10分钟,一个在很靠后。接下来,我想做下面尝试:1、用流动相来溶解样品,就是已腈-磷酸水,同时,先做溶剂空白。2、考虑用已腈溶解样品紫外检测,感觉皂苷的峰不灵敏,但是比较实用,所以还是选择用紫外检测。对以上问题,请各位朋友多多指导。十分感谢!!![em09508]

  • 45.7 伪人参皂苷GQ的排泄试验研究

    45.7 伪人参皂苷GQ的排泄试验研究

    【作者中文名】赵春芳; 刘金平; 赵岩; 李平亚;【作者英文名】ZHAO Chun-fang1; LIU Jin-ping2; ZHAO Yan2; LI Ping-ya2(1.Pharmaceutical Academy of Jilin University; Changchun 130021; China; 2.Institute of Frontier Medical Science of Jilin University; China);【作者单位】吉林大学药学院药物分析; 吉林大学再生医学科学研究所; 吉林大学再生医学科学研究所 吉林长春; 吉林长春;【摘要】目的:研究大鼠舌下静脉给药伪人参皂苷GQ后,其在胆汁、粪和尿中的排泄情况。方法:采用高效液相-蒸发光散射色谱(HPLC-ELSD)法测定大鼠胆汁、粪和尿中伪人参皂苷GQ,Diamonsil C18色谱柱(4.6 mm×250mm,5μm),以甲醇-水(24∶7)为流动相,流速1.0 mL.min-1,检测温度为50℃,灵敏度为10,以氮气为载气,压力为303 975 Pa。结果:HPLC-ELSD测定方法的标准曲线线性关系、样品回收率和日内、日间精密度均符合要求。伪人参皂苷GQ大鼠舌下静脉给药后,主要以胆汁排泄为主,占总药量的41.60%;其次为粪排泄,占总药量的9.97%;尿液中仅检出少量伪人参皂苷GQ。结论:大鼠胆汁、粪和尿中主要以伪人参皂苷GQ原形药物排泄。http://ng1.17img.cn/bbsfiles/images/2012/08/201208131711_383575_2379123_3.jpg

  • 测三七皂苷的疑问!谢谢大家!

    测三七皂苷的疑问!谢谢大家!

    各位大侠你们好,小弟正在学习用液相,我们用的岛津LC-15, 我今天测了一下三七皂苷(三七皂苷R1、人参皂苷Rg1、人参皂苷Rb1)。发现了一些问题想跟各位请教一下。http://ng1.17img.cn/bbsfiles/images/2013/04/201304100014_434700_2652395_3.jpghttp://ng1.17img.cn/bbsfiles/images/2013/04/201304100016_434701_2652395_3.jpg我是按照这个药典里面的方法测的,出峰顺序分别为(三七皂苷R1、人参皂苷Rg1、人参皂苷Rb1)。发现几个问题,第一个就是我的出峰时间和别人文献上的有较大差别,另外就是基线不是太稳。其他的问题我暂时也不清楚,还劳烦各位给我指出。另外我还试了下用34乙腈等度洗脱,发现三七皂苷R1、人参皂苷Rg1,也就是前面两个峰分不开~但是这个时间就很快~不知道各位有没有好的建议,再次谢谢各位!http://ng1.17img.cn/bbsfiles/images/2013/04/201304100020_434702_2652395_3.jpg

  • 23.3 人参皂苷Rg_2的排泄试验研究

    【作者】 杨秀伟; 桂方晋; 宋燕; 张尉清; 田建明; 李龙云;【Author】 YANG Xiuwei1,GUI Fangjin1,SONG Yan1,ZHANG Weiqing1,TIAN Jianming2,LI Longyun2 (1.School of Pharmaceutical Sciences,Peking University Health Science Center,Beijing 100191,China;2.Jilin Institute of Chinese Materia Medica,Changchun 130021,China)【机构】 北京大学医学部药学院; 吉林省中医药科学院;【摘要】 目的:研究静脉给予大鼠人参皂苷Rg2后,其在胆汁、粪便和尿液中的排泄。方法:采用反相高效液相色谱(HPLC)-紫外检测器(UVD)法测定大鼠胆汁、粪便和尿液中的人参皂苷Rg2;Dikma Diamonsil TMC18色谱柱(4.6 mm×250 mm,5μm),以甲醇-4%磷酸水溶液(65∶35)为流动相,检测波长为203 nm。结果:HPLC-UVD测定方法的标准曲线线性关系、样品回收率和日内、日间精密度均符合生物样品分析要求。给大鼠静脉注射人参皂苷Rg2后,5.5 h内胆汁中原形人参皂苷Rg2累积排泄量为给予剂量的27.2%,24 h内粪便中原形人参皂苷Rg2累积排泄量为给予剂量的22.6%;尿液中未检出人参皂苷Rg2。结论:静脉给予大鼠人参皂苷Rg2,原形药物主要通过胆汁和粪便途径排出体外。

  • 【金秋计划】基于Akt/mTOR通路研究地榆皂苷II诱导肝癌细胞凋亡和自噬作用机制

    肝癌是全球第3大癌症死亡原因,其中肝细胞癌约占所有肝癌类型的80%[1]。据世界卫生组织统计,每年因肝细胞癌死亡的人数高达83万例,且其发病率和死亡率仍呈现上升趋势,严重损害人类生命健康[2]。在慢性肝病的基础上,基因突变、表观遗传变化、信号通路失调和血管生成异常等分子机制相互作用,共同推动慢性肝病向肝细胞癌过程的发展[3]。目前肝细胞癌治疗的一线药物主要是索拉菲尼、仑伐替尼等靶向药及阿替利珠单抗、贝伐珠单抗等免疫治疗药物[4]。然而,靶向药及免疫治疗药的耐药性和不良反应导致肝细胞癌的5年生存率仍然不高。因此,亟需寻找安全性高、不良反应少的治疗药物,为肝细胞癌患者提供更有效、安全的治疗选择。 近年来,随着对肝细胞癌研究的不断深入,自噬在肝细胞癌中的作用逐渐被关注。在肝细胞癌的发展过程中,自噬一方面通过维持细胞内稳态来抑制肿瘤起始,另一方面通过影响信号通路的效应因子来抑制早期肝细胞癌的进程[5]。自噬受到多种机制的严格调控和影响,涉及自噬的几条重要信号通路有Wnt/β-catenin、丝裂原活化蛋白激酶(mitogen-activated protein kinase,MAPK)、磷脂酰肌醇3-激酶(phosphatidylinositol 3-kinase,PI3K)/蛋白激酶B(protein kinase B,Akt)/哺乳动物雷帕霉素靶蛋白(mammalian target of rapamycin,mTOR)、p53通路等[6],这些通路在肝细胞癌中异常激活,参与肝癌细胞的增殖、凋亡和自噬等生物学行为。研究表明,mTOR通路在自噬调控机制中发挥至关重要的作用[7],mTOR是自噬的负性调控因子,可以与UNC-51样激酶1(Unc-51 like autophagy activating kinase 1,ULK1)的丝氨酸结合抑制自噬的启动过程,也可以通过磷酸化使自噬调节复合物失活影响自噬小体的发生,磷酸化自噬相关蛋白14(autophagy-related protein 14,Atg14)、自噬和Beclin-1调节器1(activating molecule in beclin-1 regulated autophagy protein 1,AMBRA1)和核受体结合因子2(nuclear receptor binding factor 2,NRBF2)直接调节自噬的成核步骤[8]。因此,针对自噬及其机制开展治疗可能是肝细胞癌的有效对抗策略。 地榆为蔷薇科植物地榆Sanguisorba officinalis L.的干燥根,具有凉血止血、解毒敛疮的功效。地榆皂苷II是从地榆中提取的一种三萜皂苷类化合物,现代药理学研究发现,地榆皂苷II不仅具有抗炎、抗氧化、免疫调节的药理作用,同时具有广泛的抗肿瘤活性[9-11],能通过多种途径抑制多种癌症的发生和发展,其机制可能与阻滞细胞周期、促进细胞凋亡和细胞自噬有关[12-15]。课题组前期研究发现,地榆皂苷II能够抑制小鼠肝细胞癌的发展[15]。然而,地榆皂苷II是否能通过影响Akt/mTOR通路诱导凋亡和自噬抑制肝细胞癌尚不明确。本研究中选择人肝癌HepG2细胞和小鼠肝癌Hepa1-6细胞作为研究对象,探究地榆皂苷II对肝癌细胞增殖、自噬和凋亡的影响,探讨地榆皂苷II在抗肝细胞癌方面的潜在作用机制,为将来用于临床治疗提供数据支持。 1 材料 1.1 细胞 HepG2细胞购自中国科学院上海细胞生物学研究所,Hepa1-6细胞购自上海富衡生物科技有限公司。 1.2 药品与试剂 地榆皂苷II(批号MUST-11051204,质量分数≥98%)购自上海源叶生物科技有限公司;PVDF膜(批号IPVH00010)购自美国Sigma公司;青霉素-链霉素(批号S11JV)购自上海源培生物科技股份有限公司;DMEM培养基(批号C11995500BT)、胎牛血清(批号A3160801)购自美国Gibco公司;PBS(批号WHB823K091)购自武汉普诺赛生命科技有限公司;0.25%胰酶消化液(批号C0203)、RIPA组织/细胞裂解液(批号P0013C)、蛋白酶抑制剂混合物(批号P1050-1)、磷酸酶抑制剂混合物(批号P1050-2)、EdU-555细胞增殖检测试剂盒(批号C0075S)购自上海碧云天生物技术有限公司;CCK-8试剂盒(批号A311-02)、BCA蛋白浓度测定试剂盒(批号E112-01)、高敏型ECL化学发光检测试剂盒(批号E412-01)、相对分子质量为1.8×105的蛋白marker(批号MP-102AA)购自南京诺唯赞生物科技股份有限公司;一抗稀释液(批号G2025)、二抗稀释液(批号G2009)、高相对分子质量marker(批号26625)购自武汉赛维尔生物科技有限公司;7.5% PAGE凝胶快速制备试剂盒(批号PG111)、10% PAGE凝胶快速制备试剂盒(批号PG112)、12.5% PAGE凝胶快速制备试剂盒(批号PG113)购自上海雅酶生物医药科技有限公司;β-actin、Beclin1抗体(批号分别为20536-1-AP、11306-1-AP)购自美国Proteintech公司;B淋巴细胞瘤-2(B-cell lymphoma-2,Bcl-2)、p62抗体(批号分别为ab196495、ab56416)购自英国Abcam公司;Bcl-2相关X蛋白(Bcl-2 associated X protein,Bax)、半胱氨酸天冬氨酸蛋白酶-3(cystein-asparate protease-3,Caspase-3)、Caspase-8、cleaved Caspase-3、Akt、p-Akt、mTOR、p-mTOR抗体(批号分别为5023T、9662S、4790T、9664T、4685S、4060T、2972S、5536T)购自美国CST公司;甲醇(批号10014118)购自国药集团化学试剂有限公司;山羊抗兔二抗(批号RS0002)购自美国ImmunoWay公司;Annexin V-FITC染色液(批号E-CK-A211)购自武汉伊莱瑞特生物科技股份有限公司。 1.3 仪器 AL104型电子分析天平(瑞士梅特勒-托利多有限公司);HH-S型恒温水浴锅(北京市永光明医疗仪器厂);CKX53型倒置生物显微镜、IX73倒置荧光显微镜(日本Olympus公司);3111型CO2培养箱、Multiskan Go-1510型全波长酶标仪(美国Thermo Fisher Scientific公司);Centrifuge 5424R型微量离心机(德国Eppendorf公司);SDS PAGE凝胶电泳及转膜电泳仪(美国Bio-Rad公司);BETS-M5型转移微型翘板摇床(海门市其林贝尔仪器制造有限公司);XH-C型涡旋混合器(金坛市医疗仪器厂);MINI-4K型微型离心机(杭州米欧仪器有限公司);5200型全自动化学发光图像分析系统(上海天能科技有限公司);CytoFLEX流式细胞仪(美国贝克曼库尔特有限公司);ThermoCell恒温金属浴(杭州博日科技股份有限公司)。 2 方法 2.1 CCK-8实验 将HepG2和Hepa1-6细胞分别以1×105个/mL接种于96孔板中,贴壁生长24 h,设置对照组、不同剂量地榆皂苷II组,对照组仅加入培养基,其余各组分别加入5、10、15、20、30、40、60、80、100 μmol/L相应药物,继续培养24 h,用CCK-8试剂盒测定各组吸光度(A)值,计算细胞存活率。 细胞存活率=(A实验-A空白)/(A对照-A空白) 2.2 EdU实验 将HepG2和Hepa1-6细胞分别以1×105个/mL接种于96孔板中,贴壁生长24 h,设置对照组和地榆皂苷II(10、20、40 μmol/L)组,给药组给予相应药物,对照组仅加入培养基,继续培养24 h。将EdU稀释到2×EdU工作液(20 μmol/L),预热后等体积加入96孔板中,孵育细胞2 h后去除培养液,加入100 μL固定液(4%多聚甲醛),孵育10 min后去除固定液,用100 μL洗涤液洗涤细胞3次后每孔加入100 μL通透液(含0.3% Triton X-100的PBS),室温孵育15 min。去除通透液,每孔用1 mL洗涤液洗涤细胞2次,每次5 min。参考说明书配制Click反应液。每孔加入50 μL Click反应液,轻轻摇晃培养板后室温避光孵育30 min。洗涤液洗涤3次,吸除洗涤液后,每孔加Hoechst 33342溶液100 μL,室温避光孵育10 min。用洗涤液洗涤3次,每次3~5 min,随后进行荧光检测。 2.3 细胞凋亡检测 将HepG2和Hepa1-6细胞分别以1×105个/mL接种于6孔板中,贴壁生长24 h,设置对照组和地榆皂苷II(10、20、40 μmol/L)组,给药组给予相应药物,对照组仅加入培养基,继续培养24 h。用胰酶消化细胞,300×g离心5 min,弃上清,收集细胞,PBS洗涤,轻轻重悬细胞,300×g离心5 min,弃上清。用PBS洗涤细胞,离心后弃上清,加入Annexin V Binding Buffer重悬细胞。细胞悬液中加入Annexin V-FITC Reagent和5 μL的碘化丙啶(PI),轻柔涡旋混匀后,室温避光孵育15~20 min,立即上机检测。 2.4 Western blotting检测相关蛋白表达 将HepG2和Hepa1-6细胞分别以1×105个/mL接种于6孔板中,贴壁生长24 h,设置对照组和地榆皂苷II(10、20、40 μmol/L)组,给药组给予相应药物,对照组仅加入培养基,继续培养24 h。加入RIPA中强度缓冲液裂解后收集细胞,使用BCA蛋白定量试剂盒检测蛋白浓度。蛋白样品经凝胶电泳,转至PVDF膜,加入5%脱脂奶粉,封闭1.5 h,加入一抗,4 ℃孵育过夜;洗膜3次后加入二抗,4 ℃孵育1.5 h;最后使用ECL化学发光检测试剂盒,用化学发光图像分析系统显影。 2.5 统计学分析 采用GraphPad Prism 9统计软件对实验数据进统计学分析,计量资料以表示,多组间比较采用单因素方差分析(One-way ANOVA)。 3 结果 3.1 地榆皂苷II对HepG2和Hepa1-6肝癌细胞增殖的影响 如图1所示,与对照组比较,随着地榆皂苷II浓度的升高,HepG2和Hepa1-6肝癌细胞的存活率明显降低,且呈剂量相关性。经GraphPad Prism 9软件分析,地榆皂苷II对HepG2、Hepa1-6细胞的IC50值分别为26.94、26.18 μmol/L,因此以10、20、40 μmol/L作为后续地榆皂苷II的给药剂量。 图片 3.2 地榆皂苷II对HepG2和Hepa1-6肝癌细胞增殖的影响 EdU-555阳性表示细胞正处于增殖状态,Hoechst33342阳性指示细胞为活细胞,EdU-555/Hoechst33342表示细胞的增殖率。如图2所示,与对照组比较,地榆皂苷II给药后HepG2和Hepa1-6细胞的EdU-555/Hoechst33342值明显降低(P<0.05、0.001),表明地榆皂苷II能够抑制肝癌细胞的增殖。 图片 3.3 地榆皂苷II对HepG2和Hepa1-6肝癌细胞凋亡的影响 如图3所示,与对照组比较,地榆皂苷II给药组HepG2和Hepa1-6细胞凋亡率显著升高(P<0.01、0.001)。凋亡蛋白(包括调控凋亡的激活因子和执行凋亡的效应因子)参与细胞凋亡的过程。采用Western blotting检测地榆皂苷II对HepG2细胞和Hepa1-6细胞凋亡相关蛋白表达的影响,如图4所示,与对照组比较,地榆皂苷II给药组Caspase-3、Caspase-8、Caspase-9、Bcl-2蛋白表达量显著降低(P<0.05、0.01、0.001),cleaved Caspase-3、Bax蛋白表达量显著升高(P<0.05、0.01)。以上结果说明地榆皂苷II促进HepG2和Hepa1-6细胞的凋亡。 图片 图片 3.4 地榆皂苷II对HepG2和Hepa1-6肝癌细胞自噬的影响 采用Western blotting检测细胞中代表自噬的核心蛋白LC3II、LC3Ⅰ、Beclin1、p62表达量,如图5所示,与对照组比较,地榆皂苷II给药组LC3Ⅱ/LC3Ⅰ值明显升高(P<0.05、0.01、0.001),Beclin1蛋白表达量上升(P<0.05、0.01),p62蛋白表达量明显下降(P<0.05、0.01),表明地榆皂苷II促进HepG2和Hepa1-6肝癌细胞的自噬。 图片 3.5 地榆皂苷II对HepG2和Hepa1-6细胞中Akt/mTOR信号通路蛋白表达的影响 采用Western blotting检测地榆皂苷II给药后Akt/mTOR信号通路蛋白表达量,如图6所示,与对照组比较,地榆皂苷II给药组p-Akt/Akt、p-mTOR/mTOR值明显下降(P<0.05、0.01、0.001),表明地榆皂苷II能够抑制Akt/mTOR信号通路。 图片 4 讨论 肝细胞癌具有高发病率、高病死率的特点,虽然目前肝细胞癌研究备受关注,但其5年生存率仍为14.1%[16]。因此,迫切需要发现新的治疗策略和候选药物。近年来,地榆皂苷II在抗肿瘤方面的研究不断深入,研究发现地榆皂苷II抑制肿瘤与细胞自噬和凋亡存在紧密的关联,地榆皂苷II可通过诱导细胞凋亡来显著抑制乳腺癌MDA-MB-435细胞和胃癌BGC-823细胞的增殖[14-15],诱导自噬显著抑制结直肠癌细胞增殖[17]。课题组既往研究证明,地榆皂苷II可在体内抑制肝细胞癌,其机制可能与抑制表皮生长因子受体(epidermal growth factor receptor,EGFR)信号通路有关[15]。然而,目前关于地榆皂苷II是否通过自噬和凋亡抑制肝细胞癌及其机制尚不明确。因此,本研究利用体外实验对地榆皂苷II刺激后肝癌细胞的增殖、自噬、凋亡及相关机制进行探究,结果表明,地榆皂苷II能抑制肝癌细胞的增殖,促进肝癌细胞的凋亡和自噬,其机制与抑制Akt/mTOR通路有关。 自噬又被称为II型程序性死亡,负责真核生物细胞质中细胞器、蛋白质和大分子的降解和回收。细胞中降解和回收的底物被吞噬后形成自噬体,自噬体与溶酶体结合形成自噬酶体最后降解。本研究检测了自噬中具有代表性的LC3、p62和Beclin1蛋白。Beclin1蛋白是一种自噬启动子,帮助自噬过程中囊泡的形成[18],地榆皂苷II作用于肝癌细胞后,Beclin1蛋白表达量上升,促进自噬启动,囊泡形成增多,从而自噬水平升高。在自噬形成时,LC3I通过泛素激活酶E1和泛素结合酶E2与磷脂酰乙醇胺偶联,生成LC3II,LC3II存在于自噬体的表面,负责膜的融合和选择性降解过程[19],p62在自噬体表面与LC3II相互作用后包裹进自噬体降解,与LC3II共同调节选择性降解过程[20]。地榆皂苷II给药后LC3II/LC3I值增高,p62蛋白表达量下降,促进自噬过程中自噬囊泡的融合和降解,进而促进自噬。Beclin1是自噬过程中的核心因子,已有研究证明Beclin1可以与抗凋亡因子Bcl-2相互作用,从而对凋亡过程产生影响[21]。细胞凋亡是一种生理性或病理性的程序性的死亡过程,近年来通过诱导促进癌细胞的凋亡来控制癌症一直是抗肿瘤的热点。Caspase级联反应是细胞凋亡过程的关键步骤,其启动受到抗凋亡因子和促凋亡因子Bcl-2和Bax的调节。在Caspase级联反应中,启动性Caspase包括Caspase-8、Caspase-9被激活后调控下游执行性Caspase如Caspase-3进而引起凋亡反应[22-24]。地榆皂苷II作用于肝癌细胞后,细胞中的Bcl-2蛋白表达量减少,Bax蛋白表达量增多,Bax蛋白在线粒体表面形成孔道,释放细胞色素C,引发Caspase级联反应,Caspase-8、Caspase-9激活进而诱导下游的Caspase-3活化为cleaved Caspase-3,切割下游多种底物,促进细胞凋亡典型形态变化。 Akt/mTOR信号通路在正常细胞生理过程中发挥关键作用,同时在多种癌症中,该通路的异常激活对自噬、细胞凋亡、化疗耐药性及转移过程产生重要影响[25]。诸多研究证据表明,Akt/mTOR途径是调控癌症细胞自噬反应的核心通路[26-28]。地榆皂苷II作用于肝癌细胞后,Akt和mTOR蛋白的磷酸化水平显著下降,Akt/mTOR信号通路被抑制,激活肝癌细胞凋亡和自噬,抑制肝癌细胞的增殖(图7,由Figdraw绘制)。 图片 上述体外研究结果初步解析了地榆皂苷II抑制肝细胞癌的机制,即地榆皂苷II通过抑制Akt/mTOR信号通路诱导肝癌细胞的凋亡和自噬,抑制肝癌细胞增殖,为地榆皂苷II在肝细胞癌治疗的药物研究开发中提供了药理学证据。

  • 【资料】高效液相色谱法测定麝香接骨胶囊中三七皂苷R1的含量

    目的:建立麝香接骨胶囊的含量测定方法。方法:采用高效液相色谱法。色谱柱:Agilent Technologies ZORBAX Extend-C18 4.6×250mm, 5μm,流动相:乙腈-水(21:79 V/V),流速:1.0mlmin-1,检测波长:203nm,柱温:30℃。结果:三七皂苷R1在0.005~0.25mgml-1范围内线性关系良好(r=0.9998);平均加样回收率为97.6%, RSD=1.0%(n=6)。结论:该方法简便易行,结果准确可靠,可适用于麝香接骨胶囊的质量控制。 【关键词】高效液相色谱法 麝香接骨胶囊 三七皂苷R1 含量测定  Determination of Forsythin content in Shexiang Jiegu Jiaonang by HPLC  【Abstract】 OBJECTIVE:To set up a method for quality control of Shexiang Jiegu Jiaonang METHOD HPLC method was developed to quantitative determination. COLUMN Agilent Technologies ZORBAX Extend-C18 4.6×250mm, 5μm.The mobilic phase was acetonifrile-water (21:79V/V).The column temperature was 30℃,the wavelength for detection was 203nm,flow rate was 1.0mlmin-1. RESULTS The paeonol average of recovery rate was 97.6%, and RSD was 1.0%(n=6). CONCLUSION The method is simple, accurate and suitable for its assaying.  【Key word】 HPLC Shexiang Jiegu Jiaonang Notoginsenoside R1 determination  麝香接骨胶囊为《卫生部药品标准》第五册(中药成方制剂)收载的品种,由赤芍、三七、当归、续断、苏木、麝香等22味中药组成,具有散瘀止痛,续筋接骨之功效。临床用于跌打损伤,筋伤骨折,瘀血凝结,闪腰岔气[1]。处方中三七为主药之一,三七皂苷R1为其主要有效成分,原标准中无含量测定方法。为了更好地控制制剂的内在质量,本文采用高效液相色谱法测定麝香接骨胶囊中三七皂苷R1的含量,以期为该制剂的质量提供快速、准确的测定方法,现报告如下。  1 仪器与试药  LC-2010A 高效液相色谱仪,CLASS-VP 色谱工作站,紫外检测器;三七皂苷R1对照品(批号:110745-200312),由中国药品生物制品检定所提供,供含量测定用;麝香接骨胶囊为市售样品(辽源市亚东中药有限责任公司,规格0.3g粒-1,批号:060801,061102,060912)。乙腈为色谱纯;水为超纯水;其他试剂均为分析纯。  2 方法与结果  2.1 色谱条件与系统适用性试验 色谱柱:Agilent Technologies ZORBAX Extend-C18 4.6×250mm, 5μm;流动相:乙腈-水(21:79, V/V);检测波长:203nm;流速:1.0mlmin-1;柱温:30℃。理论板数按三七皂苷R1峰计应不低于4000。  2.2 溶液制备  2.2.1 对照品溶液的制备 精密称取经五氧化二磷减压干燥12小时以上的三七皂苷R1对照品适量,加甲醇制成0.25 mgml-1的对照品贮备液;再精密量取对照品贮备液适量,加甲醇制成0.05mgml-1的对照品溶液,即得。  2.2.2 供试品溶液的制备 取装量差异项下的麝香接骨胶囊内容物,研细,取约1g,精密称定,置具塞锥形瓶中,精密加入甲醇50ml,密塞,称定重量,超声处理(功率250W,频率50 kHz)1小时,取出,放冷,再称定重量,用甲醇补足减失的重量,摇匀,滤过,精密量取续滤液25ml,置蒸发皿中,蒸干,残渣加水饱和的正丁醇30ml使溶解,加氨试液振摇提取3次,每次15ml,合并氨试液提取液,再用水饱和的正丁醇振摇提取2次,每次15ml,与上述正丁醇液合并,蒸干,残渣加甲醇适量使溶解,转移置10ml量瓶中,加甲醇稀释置刻度,摇匀,用微孔滤膜(0.22μm)滤过,取续滤液,即得[2]。  2.2.3 阴性对照溶液的制备  取除三七皂苷R1以外的处方中其余药材的十分之一量,按法制成胶囊,再按供试品溶液制备方法,制成阴性对照溶液。  2.3 专属性试验  分别精密吸取供试品溶液、阴性对照溶液和对照品溶液各10μl注入液相色谱仪,记录色谱图(图1)。由图1可见,供试品色谱中,在与对照品色谱相应的位置上,有相同保留时间(三七皂苷R110.971min)的色谱峰,阴性试验无干扰,证明本法可行。2.4 线性关系考察  精密吸取三七皂苷R1对照品贮备液(浓度:0.25mg.ml-1)适量,加甲醇配成浓度分别为0.005、0.01、0.05、0.10、0.15、0.25mgml-1的溶液6份,摇匀,用0.22μm微孔滤膜过滤。精密吸取续滤液各10μl,注入液相色谱仪,测得峰面积。以峰面积(A)为纵坐标,其浓度(C)为横坐标,得三七皂苷R1的回归方程为:A=392250.2 C +8620.1,r =0.9998(n=6)。结果表明,三七皂苷R1在0.005~0.25mgml-1范围内峰面积与其浓度呈良好线性关系。  2.5 精密度试验  精密吸取三七皂苷R1对照品溶液(0.05mgml-1)10μl,在上述色谱条件下重复进样6次,求得三七皂苷R1溶液峰面积的相对标准偏差(RSD)为0.3%(n=6),表明精密度较好。  2.6 稳定性试验  精密吸取三七皂苷R1对照品溶液(0.05mgml-1)10μl,在0、4、8、12、24、48h分别进行测定,结果表明三七皂苷R1对照品溶液在48h内稳定, RSD为0.4%(n=6)。  2.7 重复性试验  取供试品(批号061101),共6份,分别按“2.2.2供试品溶液的制备”方法制备供试品溶液,进行测定,求得三七皂苷R1含量的RSD为1.6%(n=6),表明重现性较好。  2.8 加样回收率试验  精密称取已知含量的样品(批号061101,三七皂苷R1含量0.93mgg-1,平均装量0.2996g粒-1)适量,共6份,分别置具塞锥形瓶中,分别精密加入三七皂苷R1对照品贮备液(0.25mgml-1)各3ml,按“2.2.2供试品溶液的制备”方法操作,得回收率试验溶液,依法测定,结果见表1。表1 三七皂苷R1加样回收率试验(略)  2.9 样品含量测定  分别精密吸取供试品溶液与对照品溶液各10μl,注入液相色谱仪,测定三批样品中三七皂苷R1峰面积,按外标法计算其含量(n=5),结果见表2。表2 3批样品含量测定结果(略)   3 讨论  3.1 通过对3批样品中三七皂苷R1的测定,结果表明最高含量为0.31mg粒-1,最低为0.27mg粒-1,综合考虑确定限量每粒含三七皂苷R1不得低于0.20mg。  3.2 流动相的选择 试验中采用不同的流动相甲醇-水(25︰75),乙腈-水-冰醋酸(25︰75︰0.5),结果表明采用流动相乙腈-水(21︰79)的色谱图基线较稳。  3.3 本方法结果准确,方法简便,重现性及回收率均理想,可以作为该制剂的质量控制方法。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制