当前位置: 仪器信息网 > 行业主题 > >

氮杂坎帕罗酮

仪器信息网氮杂坎帕罗酮专题为您提供2024年最新氮杂坎帕罗酮价格报价、厂家品牌的相关信息, 包括氮杂坎帕罗酮参数、型号等,不管是国产,还是进口品牌的氮杂坎帕罗酮您都可以在这里找到。 除此之外,仪器信息网还免费为您整合氮杂坎帕罗酮相关的耗材配件、试剂标物,还有氮杂坎帕罗酮相关的最新资讯、资料,以及氮杂坎帕罗酮相关的解决方案。

氮杂坎帕罗酮相关的资讯

  • 罗云波:都吃杂交稻怕啥转基因
    转基因食品是什么东西?不少市民在超市看到转基因食用油时,恐怕都会有如此疑虑,也因此不敢选购。“其实这种恐惧完全没有必要”,中国农业大学食品科学与营养工程学院院长罗云波认为,转基因食品其实和杂交水稻原理一样,“天天都在吃杂交水稻,为啥就不能接受转基因?”   它和杂交水稻差不太多   转基因食品到底是高科技福音?还是健康和环境隐患?罗云波说,其实大可不必把它看得太神秘。和杂交水稻一样,转基因食品也是希望通过基因交换改良品种。不同的是,它的目的性更强,是把某种功能的基因找出来,放进想改造的品种里。   罗云波认为,老百姓之所以不敢吃转基因食品,是因为对它不了解。“大部分人可能连基因是什么都不知道,以为科学家把一个叫基因的东西放到食品里去了,这个食品很危险!实际上所有食品都来自生物体,一口进去,满嘴都是基因。”   标准比任何食品都苛刻未出现过一例安全事故   据了解,多数国家对转基因食品持谨慎态度。“转基因产品要上市,必须经过严格的安全性评价。”   首先要检测转了什么基因,这个基因的功能、来源、有无不良记录,等等。此外,作为食品,还要经受毒理学、致敏学、营养学等方面的评价,建立相关规范。罗云波说,转基因食品的安全性评价极其严格,“比任何一种食品都苛刻”。   由于上市要求严格,目前我国市场上转基因食品相对还比较少。老百姓经常见到的主要为转基因菜籽油、转基因大豆油等产品。   然而,作为一种人造的生物,转基因食品真的安全吗?如果今后人们吃的都是转基因食品,会给人类带来什么影响?   罗云波称,转基因食品发展至今已接近30年,还没有一例因吃了转基因食品生病或是死亡的案例。至于转基因食品对食用者的下一代或者再下一代能否保证安全,专家无法直接断言,但是可以用科学的方法研究,比如正在做的以细胞模型的形式,看10代、20代甚至50代的细胞,看转基因的成分对细胞有没有影响。   对于一些环保组织极力反对转基因食品,罗云波认为,这与他们强调“原生态”、反对一切人为干预的宗旨有关。他认为,这种完全拒绝科学技术的做法比较绝对,有失偏颇。   未来转基因食品可防病   “有转基因和非转基因的食品,我肯定选转基因的。”罗云波说,转基因食品发展的第一阶段是抗虫、抗病,也就意味着农民可以少用农药,少些残留。“农药残留的害处清清楚楚,但转基因的害处还没有发现”。   现在已出现的第二代转基因食品,则会改变食品的品质。比如说强化了某种营养素,国外已经有了转基因赖氨酸的小麦,赖氨酸是人类必需的氨基酸,只能从食物中补充。   而当第三代转基因出现时,“那时老百姓看到‘转基因’的标牌就会抢购了”。通过转基因技术,食物也可以附加治疗、保健作用。   罗云波介绍,科学家正在想办法把胰岛素基因转移到植物或动物中,比如转移到西红柿中或奶牛体内,吃个西红柿、喝杯牛奶就能得到胰岛素的补充,对糖尿病病人来说是一个福音。同样,把乙肝疫苗表面抗原的基因转移到西红柿里去,吃几个西红柿,就有了乙肝的免疫。   面对面   记者:现在市场上出现了生态食品、无公害食品、绿色食品、有机食品,划分的标准是什么?   罗云波:企业推销一个商品,一定要把它的特点和优点说出来,所以就出现了形形色色的各种食品。但目前公认的、比较规范的是有机食品、绿色食品、无公害食品。其中,有机食品标准最高、最苛刻,基本上不用农药、化肥。绿色食品是有限地使用化学物质。而无公害食品可以使用化肥、农药,但是要按照规范使用,对大家的健康有保障。无公害食品可以说是食品最起码的标准。   记者:您提到的有机食品等,老百姓根本没办法鉴别,用普通蔬菜换个包装,贴上标签就可以“变身”,这个问题怎么解决?   罗云波:从外观上确实很难看出来。要让老百姓放心,目前还得靠商家诚信,大的卖场对它的供货商是有要求的,也是知根知底的。今后食品可追溯体系的建立也可以杜绝这方面的问题。只要刷一下条码,就能知道食品的来源和基本信息。
  • 创新进展|单进军、谢彤团队构建模拟谱库快速表征一类特殊复杂脂质——心磷脂及其氧化产物
    创新进展近日,南京中医药大学单进军、谢彤团队在Analytica Chimica Acta(分析化学一区,IF: 6.558)正式发表了题为In-silico-library-based method enables rapid and comprehensive annotation of cardiolipins and cardiolipin oxidation products using high resolution tandem mass spectrometer的研究性论文。该文章基于Orbitrap高分辨质谱平台,创新性的通过计算机模拟方式,建立了心磷脂及其氧化产物的质谱谱库。凭借高分辨质谱平台的超高分辨率、亚ppm级质量精度,及Stepped NCE 高能碎裂模式(HCD)获得的丰富二级碎片信息,使得该方法获得模拟谱图与真实检测样本的谱图匹配一致性高。该创新分析方法的建立,对于解决以心磷脂及其氧化物为代表的、具有结构多样性及低丰度分析挑战的代谢物/脂质,进而研究其在疾病发生发展过程中的生物学效应,都有着广泛而深远的参考与借鉴价值,为探索全新的疾病生物标志物带来可能!(点击查看大图)文章赏析心磷脂(CL)是含有3-4个脂肪酰基侧链的独特磷脂。在真核生物中,它主要分布在线粒体内膜,占线粒体内膜磷脂总量的10-25%。心磷脂独特的锥状结构能稳定线粒体膜结构,参与维持线粒体正常的嵴形态。大量文献报道心磷脂参与细胞色素c、电子呼吸链蛋白的正常功能。异常的心磷脂含量、结构和心磷脂氧化会促使细胞凋亡并触发免疫炎症反应。在非靶向脂质组学研究中,发现并快速注释心磷脂及其氧化产物有助于探索心磷脂代谢在疾病发生发展过程中的生物学效应。然而,由于心磷脂及其氧化物的结构多样性及低丰度特征,给其分析鉴定带来极大的挑战。为了解决这一问题,团队在色谱和质谱条件优化的基础上,基于计算机模拟方法建立了心磷脂及其氧化产物的质谱谱库。谱库中涵盖了31578个单溶血心磷脂、52160个心磷脂以及42180个氧化型心磷脂的质谱谱图(谱图数据基于Q-Exactive-MS/MS质谱方法裂解模拟)。该模拟谱库具有较好的兼容性,且谱库中的模拟谱图与真实检测样本的谱图匹配度好,匹配度得分值高,并成功地运用于线粒体非靶向心磷脂表征以及人工氧化心磷脂的研究中。(点击查看大图)该研究列出了样品与模拟谱库的匹配结果,并附上了谱图相似性评分(所有模拟谱库的二级碎片和丰度均来源于标准品模拟)。在优化的色谱条件下,模拟谱库涵盖了三个常规前体离子[M-2H]2-、[M-H]-和[M+NH4]+的二级谱图,扩充了质谱谱库中心磷脂特异性谱图的数量。三种前体离子的模拟谱库谱图相似性评分较高,均表现出较好的匹配度,体现了该方法的优势。(点击查看大图)运用此方法,该研究对心、肝、脾、肺、肾、大脑、小脑、回肠、结肠、十二指肠以及Hep2、A549两种细胞系中的心磷脂进行了定性定量分析。为了评估匹配结果、验证该数据库的可靠性,对不同谱图相似性得分段的谱图数进行统计,结果显示谱图得分值均较高。在10种动物组织线粒体和细胞系样品中,一共鉴定出392种心磷脂。通过新建的计算机模拟心磷脂谱库,能够很好的区分样本中单溶血心磷脂和心磷脂,实现对复杂生物样本中心磷脂的准确测量。(点击查看大图)该研究还建立了心磷脂氧化产物的模拟谱库,并成功对小鼠心脏和肝脏线粒体中的氧化型心磷脂进行了归属。比较了两种人工氧化方式氧化产物的偏好,发现Fenton反应易于生成+O或者+2O的氧化产物,而过氧化叔丁醇的氧化反应倾向于产生+3O或者+4O的氧化产物。通过对氧化碎片个数的统计,发现占比最多的氧化碎片是C18-OH和C18-OOH,提示含有十八个碳的脂肪酰基更易被氧化。有趣的是,在过氧化叔丁醇的反应中,肝脏线粒体中的心磷脂似乎表现出更高的氧化产率,虽然没有进一步的验证,但是推测这种氧化效率的差异可能源于肝脏和心脏不同的代谢能力。团队介绍单进军,博士,教授南京中医药大学中医儿科学研究所副所长,江苏省儿童呼吸疾病(中医药)重点实验室副主任,南京中医药大学——UC Davis医学代谢组学联合实验室中方负责人。江苏省“333高层次人才培养工程”中青年学术技术带头人,江苏省“六大人才高峰”高层次人才选拔培养对象,NIH West Coast Metabolomics Center访问学者。研究方向:代谢组学与中医药;复杂疾病代谢调控机理及中药防治作用。先后主持国家自然科学基金、江苏省自然科学基金、江苏省“333”工程科研项目和江苏省高校自然科学研究重大项目等课题;以第yi或(共同)通讯作者在Gut Microbes,Pharmacol Res,Anal Chim Acta,Phytomedicine和药学学报等国内外期刊发表学术论文60余篇;获国家发明专利3项;获教育部科学技术进步二等奖、世界中联中医药国际贡献奖-科技进步二等奖和江苏中医药科学技术奖一、二等奖。现为世界中联儿童医药健康产品产业分会常务理事兼副秘书长、世界中联儿科专业委员会常务理事、中华中医药学会中药实验药理分会青年委员, 中国中医药信息研究会儿科分会理事、中国研究型医院学会儿科学专业委员会青年委员,《世界科学技术-中医药现代化》杂志中青年编委。谢彤,博士,副教授研究方向:运用代谢组学/脂质组学技术研究(1)呼吸疾病发病机制及中药干预作用;(2)中药复杂组分的体内外物质基础研究;(3)药物安全性。如需合作转载本文,请文末留言。
  • 岛津英文杂志「MOMENTUM」创刊
    岛津公司为了让世界各地的用户了解公司的经营理念——实现「为了人类和地球健康」的愿望,于近日创刊发行了英文信息杂志「MOMENTUM」。 本杂志将介绍最近与环境、能源、食品及药品、医疗等课题相关的解决方案,以及介绍岛津公司自创业以来,以科学技术贡献于社会的具体实践等。 如果您能通过阅读本杂志加深对岛津公司的了解,我们将荣幸之至。 阅读本杂志,敬请点击 [ MOMENTUMVol. 01] 关于岛津 岛津企业管理(中国)有限公司是(株)岛津制作所于1999年100%出资,在中国设立的现地法人公司,在中国全境拥有13个分公司,事业规模不断扩大。其下设有北京、上海、广州、沈阳、成都分析中心,并拥有覆盖全国30个省的销售代理商网络以及60多个技术服务站,已构筑起为广大用户提供良好服务的完整体系。本公司以“为了人类和地球的健康”为经营理念,始终致力于为用户提供更加先进的产品和更加满意的服务,为中国社会的进步贡献力量。 更多信息请关注岛津公司网站www.shimadzu.com.cn/an/ 。
  • 欧空局砸钱造工具 月球“勘探”采矿包肩负采矿找水重任
    “勘探”钻机将深入月面以下一米深处采矿及找水  据英国广播公司(BBC)网站消息,欧洲空间局(ESA)近日同意大利航空航天业巨头莱昂纳多—芬梅卡尼卡公司,在英国举办的范堡罗航展上签署了一份总额为 800万欧元的合同。欧空局要求该公司研制一套月球采矿工具包“勘探(Prospect)”,其中包括一款钻机模型和一个化学实验室。这一设备包将随着俄罗斯的“月球—资源(Luna-Resurs)”探月任务于2021年前往月球。  砸重金前往月球  科学家们表示,“勘探”工具包能将月球地面之下的物质拉出来,并分析是否存在水和其他物质。不过,研究人员也表示,为了让“勘探”项目完成,欧盟部长还需要在今年年底于瑞士洛桑举办的年终会议上,通过另一项价值为6500万欧元的合同。  欧空局载人航天及机器探索部门负责人戴维帕克说:“我们已经得到资金来开展工作,但我们仍需要来自内阁的支持,年底的支持将使我们能完成这一工作。”据悉,这份合同里的部分资金将用于资助名为“领航员(Pilot)”的自动导航系统,这一系统将为探测器着陆提供导航。  找水乃重中之重  帕克也解释称,月球着陆点目前还没有取得共识。不过,很多科学家心仪于在南极艾托肯盆地着陆。这个盆地是月球上最大的环形山,位于月球的背面,直径约为2500千米。  欧空局负责此项目的首席工程师理查德费萨克里表示,该任务的主要目标是,查看月球上存在何种资源可以支持未来的人类探索,找到水显然是重中之重,但还有可能发现其他挥发物和矿物质。  他说:“月球极地可能是人类探索旅程中的一个绿洲,最近进行的轨道任务等提供的数据表明,月球极地可能存在水和其他挥发物,这些物质或许能被用于支持未来的探索。因为水和氧气可以支持生命,甚至用作推进剂。因此,我们需要派遣‘勘探’工具包到达月球表面,从而能更好地理解这些挥发物的属性、丰度以及分布状况。”  站在前人的肩膀上  当然,“勘探”工具包的硬件并非从头开始研制,而是建立在欧空局以前的探测设备基础上。  “勘探”工具包中的钻机与欧空局为彗星着陆器“菲莱(Philae)”勘探彗星67P时研发的工具,以及欧空局为“2020火星任务(2020 ExoMars)”研发的工具有很多属性相同。不过,莱昂纳多—芬梅卡尼卡公司的诺曼博尼说:“新的‘勘探’钻机真是很尖端的技术,‘勘探’工具包将在一米深的地下以及零下170摄氏度的环境下工作。”  另外,“勘探”工具包中的化学实验室也借鉴了“菲莱”上的化学分析仪器“托勒密(Ptolemy)”的相关技术。“托勒密”由英国开放大学制造,其主要任务是研究彗星的表面和地下,以揭开太阳系形成的奥秘。在最新项目中,开放大学打算将“托勒密”的功能复制到这个新的微型分析工具箱上。  开放大学的西缅巴博说:“我们可能会在月球极地的表面发现一些像霜一样的水冰,但有数据表明,挖得越深,水的浓度越高,我们并不知道是否真是如此,这是设计此类任务的困难之处。我们想知道,那儿有多少水,不同深度的分布如何,以及情况是否会随着时间的流逝而改变。”  欧空局最初曾计划于2018年发送自己的月球着陆探测器,但在以前的大型会议上,面对可能高达5亿欧元的成本,有部长拒绝了这一提议。
  • 杨学明被聘为《科学》杂志新子刊副主编
    9月27日,国际顶级杂志Science(科学)宣布出版自己的数字化开放获取杂志Science Advances(科学进展)。该杂志是一个涵盖所有学术领域包括计算机、工程、环境、生命、数学、物理以及社会科学的综合性科学刊物,旨在提供一个顶级的科学研究出版平台,快速发表在整个科学研究领域的高水平且在相关领域有重要进展的研究工作。Science杂志主编Marcia McNutt亲自担任Science Advances的主编,中科院大连化物所杨学明院士获邀担任该杂志副主编(Associate Editor),负责审阅物理化学、化学物理、光谱、动力学、表面光催化等相关领域的稿件。   据了解,对于副主编人选条件要求非常严格,一方面本人在其研究领域应具有足够的国际声望,另一方面要在推动跨学科国际合作交流上得到广泛认可。 杨学明主要从事气相及表面化学动力学研究。过去二十年,他利用自行研制和原创的一系列国际领先的科学仪器,与理论学家合作,在化学反应动力学研究领域尤其在反应过渡态动力学以及非绝热动力学研究方面取得了系列性的、备受国际瞩目的重要研究成果,解决了化学动力学研究领域长期存在的一些科学难题。其研究成果于2006、2007连续两年被选为&ldquo 中国十大科技进展新闻&rdquo 。在国际学术刊物上发表文章300余篇,其中Science 10篇,Nature 1篇。曾获多项国际奖项及荣誉,如自由基会议Broida 奖,海外华人物理协会亚洲成就奖,德国洪堡研究奖,2006年入选美国物理学会会士。此外,杨学明与国际上多名顶尖科学家有密切的学术合作交流,如曾邀请美国斯坦福大学Richard N. Zare教授和英国牛津大学David C. Clary教授作为中科院爱因斯坦讲席教授访问我所,曾邀请美国威斯康星大学麦迪逊分校F.Fleming Crim教授和美国加州大学伯克利分校Daniel M. Neumark教授分别来所做所庆60周年学术报告和张大煜讲座,还邀请美国科罗拉多大学Rex T. Skodje教授和美国蒙塔纳州立大学Timothy Karl Minton教授作为中科院外籍专家特聘研究员与我所长期合作,现已发表多篇文章,其中含1篇Science和3篇JACS文章。此外,杨学明还和美国加州大学圣芭芭拉分校Alec M. Wodtke教授联合申请&ldquo 电子化学及其在界面上的催化作用&rdquo 的国际科学研究与研究生交流的计划(即PIRE-ECCI),以及与荷兰皇家文理学院联合申请&ldquo Imaging of Molecular Dynamics Processes driven by vacuum ultraviolet radiation&rdquo 项目。今年,杨学明还邀请国际著名的表面化学动力学专家、美国华盛顿大学(西雅图)Daniel Auerbach教授来所为物理化学II的博士生教授&ldquo 表面动力学&rdquo 课程。
  • 喜报!《分析仪器》杂志刊登19篇第十届原创大赛参赛作品!
    p style=" text-align: justify line-height: 1.5em "   喜报!由仪器信息网、我要测网主办的“第十届科学仪器网络原创作品大赛(以下简称:第十届原创大赛)”的19篇年度获奖原创作品被大赛合作期刊《分析仪器》收录。其中,《分析仪器》杂志分四期刊登参赛作品,版面费由原创大赛主办方承担!目前已刊登16篇,剩余3篇作品将于2018年7月份刊登,敬请期待! /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201806/insimg/0daf4d9f-865f-49de-b309-71bcb5adf5fe.jpg" title=" 未命名_meitu_0.jpg" / /p p style=" text-align: justify line-height: 1.5em "    span style=" color: rgb(255, 0, 0) " strong 注: /strong /span 《分析仪器》杂志是中国科技核心期刊,主办单位为中国仪器仪表行业协会和北京市北分仪器技术有限责任公司(原北京分析仪器研究所),被美国《化学文摘》收录。 /p p style=" line-height: 1.5em text-align: center " img src=" http://img1.17img.cn/17img/images/201806/insimg/52efde1b-2dca-4f77-a6e1-7ec9ea211c3e.jpg" title=" 112.jpg" / /p p style=" line-height: 1.5em "   祝贺以上版友! /p p style=" line-height: 1.5em text-align: justify "   另外,第11届原创大赛即将于2018年7月1日正式开赛,大赛惊喜不断( a href=" http://www.instrument.com.cn/activity/2018yc/" target=" _self" title=" " style=" color: rgb(0, 112, 192) text-decoration: underline " span style=" color: rgb(0, 112, 192) " 点击进入大赛专题页面 /span /a )。本届大赛继续为大家提供投稿“绿色通道”,与《分析化学》、《色谱》、《分析试验室》、《分析科学学报》、《分析仪器》等多家核心期刊合作,欢迎广大版友积极参赛投稿。 /p p style=" line-height: 1.5em "    span style=" color: rgb(255, 0, 0) " strong 活动介绍: /strong /span /p p style=" line-height: 1.5em text-align: justify "   科学仪器网络原创作品大赛简称原创大赛,以“促进产业技术交流,提高仪器应用水平”为宗旨,为行业内规模最大、参与用户最多的大型网络原创征文比赛。自2008年以来,原创大赛已经连续成功举办十届,历届参赛人数近5000人,参赛作品8500多篇,合作厂商近50家,原创大赛曝光量近750万次,合作期刊/展会/媒体共计100余家。 /p p style=" line-height: 1.5em text-align: justify "   本次大赛共分色谱、质谱、光谱及X射线、样品前处理、材料测试、食品检测、药物分析、环境监测、实验室建设及采购、综合、视频及人在职场共十二个赛区。 /p p style=" line-height: 1.5em text-align: justify "   征集作品类别:仪器维护维修、仪器使用经验、图谱解析、分析方法开发与应用、实验室管理方法与建设、仪器选型、采购交流、个人从业经历分享等多方面。 /p p style=" line-height: 1.5em "   strong  组团参赛(强烈推荐): /strong /p p style=" line-height: 1.5em text-align: justify "   企业团队:为单位荣誉而战,原创作品可以充分展现企业形象、实力及优势,有助于用户更多了解贵单位。检测单位、科研院所、仪器厂商均可参与,团队名可以以企业、实验室名称等命名(注:仪器厂商组队需付费)。目前已有14支实力战队加入第11届原创大赛企业团队。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201806/insimg/fdcb4cdf-89f7-4d31-91c7-cbecc09d6d05.jpg" title=" 201806221729441322_3724_3237657_3.jpg!w690x350.jpg" / /p p style=" text-align: justify "   用户团队:用户可自由组合成立团队,充分展示自己,结交业内专业人士,相互交流,相互促进,共同提高。 所有仪器信息网用户均可参与,用户团队名自拟。现有10支用户团队加入第11届原创大赛。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201806/insimg/75742e92-399e-45ab-bd60-399baa4e9b63.jpg" title=" 201806221729300612_4504_3237657_3.jpg!w690x229.jpg" / /p p style=" text-align: center "   第11届原创大赛,邀您一同来组团! /p p style=" text-align: center "   组团热线:010-51654077-8143 仪器猫 /p p style=" text-align: center "   邮箱:yangcf@instrument.com.cn /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201806/insimg/1aa3d832-f6a3-4a4e-ace3-b1776e93c811.jpg" title=" 11.jpg" / /p p style=" text-align: center "    span style=" color: rgb(255, 0, 0) " strong 报名组团,就找仪器猫 /strong /span /p p br/ /p
  • 检测药物杂质,保障药品安全——“化学药物杂质研究及检测技术”网络会议,7月27日开播!
    众所周知,青霉素类注射剂使用前需要进行皮试。由于批次不同,使用前需要严格进行确认时候过敏。否则会导致严重的超敏反应,重则危及生命。资料表明,青霉素过敏中有90%都是由于其中的杂质过敏。由于药物化学和提纯工艺的发展完善,制剂的质量也在不断提高,因此过敏反应发生的概率降低。那么危及生命安全的杂质究竟是何物呢?在药品中都有哪些类型的“杂质”呢?药物杂质的分类和相关政策 药物杂质是指无治疗作用或影响药物的稳定性以及疗效的物质。由于杂质检测和含量控制对药品质量控制以及安全用药密切相关,国家药品监督管理局(NMPA)对药物临床前研究中的杂质分析越来越重视。因此,在已经实施的2020年版《中国药典》中对于药品安全性的监管更加严格。尤其是在化学药品杂质检测方面,相对2015版有较大程度的增修。在二部化学药部分,直接指出需要加强杂质检测的力度:“进一步完善杂质和有关物质的分析方法,推广先进检测技术的应用,强化对有毒有害杂质的控制;加强对药品安全性相关控制项目和限度标准的研究制定”。四部通则中新增《遗传毒性杂质控制指导原则审核稿》,对药物遗传毒性杂质的危害评估、分类、定性和限值制定进行了指导。我国早在2017年6月14日正式加入ICH (人用药品注册技术要求国际协调会),成为全球第8个监管机构成员,此次,化学药部分对元素杂质的控制要求引入了ICH(Q3D)部分,与ICH的规定几乎一致。可见,2020 年版《中国药典》编制大纲要求化学药基本达到国际标准。因此,从“杂质限量”这个维度来看,药物的规格只有两种,即“合格”与“不合格”。药物的杂质有哪些类型呢?应用什么样的分析方法可以进行检测呢?化学药物杂质的分类与检测方法化药中的杂质可分为有机杂质、无机杂质、残留溶剂。对于新药及其制剂来说分为:有活性组分的降解产物、活性组分与赋形剂和(或)内包装/密封系统的反应产物、遗传毒性杂质以及药包材杂质。关于杂质的分析方法,对于有机杂质的分析(起始物、副产物、中间体、降解产物等),使用色谱法分析居多;对于无机杂质(重金属,无机盐等),通常采用ICP/AA/ICPMS等仪器分析;对于残留溶剂杂质,则以GC分析为主。贯穿于药品研发的整个过程的理念就是保证安全。选择合适的分析方法,准确地测定杂质的含量,综合毒理及临床研究的结果可以更好地研究药物杂质。基于此,7月27日,仪器信息网(instrument.com.cn)与天津市分析测试协会共同举办“化学药物杂质研究及检测技术”网络主题研讨会,以期为广大生命科学、制药工作者们提供交流平台,促进相关技术的发展。本次会议特邀报告嘉宾:天津医科大学刘照胜教授、天津大学药学院陈磊副教授、天津市药品检验研究院抗生素室杨倩药师以及河北省药品医疗器械检验研究院化学药品室副主任徐艳梅工程师。同时邀请到来自赛默飞世尔科技的刘钊工程师、岛津企业管理(中国)有限公司的孟海涛工程师以及沃特世科技的陆金金工程师为我们解读药典相关的政策变化和最新的仪器应用案例。(会议详情请您报名或点击阅读原文获取)【报名二维码】小惊喜:成功报名会议+转发会议页面至朋友圈或专业群+截图后—可加专业交流群、会议预告、资料获取、会议回看… … 关注微服务,参会不迷路微信搜索“仪器信息网微服务”,获取百场会议信息,做仪器行业学习的领航者。
  • 2019年影响因子新鲜出炉,光化学领域期刊杂志影响因子涨了吗?
    2020年6月29日,科研圈公布了一条重磅消息——2019年SCI影响因子正式发布了!各类期刊影响因子的高低宛如股市价格的涨跌,从一个侧面反映了当前科技发展动态与学科未来潜力,是指导科研工作者未来科研工作方向的重要参考指标。对大家如此重要的数据,泊菲莱科技的小编们当然不敢怠慢,经过三个昼夜的日夜奋战,终于为大家整理出了光催化相关研究领域杂志的影响因子列表,希望对大家在查阅文献和投稿时可以提供一些帮助。首先,备受关注的综合性期刊。其次是阵容庞大的Nature子刊系列,其中Nature Catalysis今年首次出影响因子。传统材料/化学类顶刊三巨头JACS,Angew.Chem.Int.Ed和Advanced Materials中,除了Advanced Materials的影响因子略有上涨外,其他基本保持不变,Energy & Environmental Science出现小幅度跌落,翘首以盼的Joule首次出影响因子即为27.054,可谓是前途无量!近几年在各科研工作者的不懈努力下,国产期刊投稿的文章不论是数量还是质量都有着跨越式的提升,多数国产期刊的影响因子在2019年都呈现出了不同程度的涨幅,相信在如此众多的科研工作者的共同努力下,国产期刊的影响力必将迎来飞跃式的发展。以下是2019年度新鲜出炉的光催化相关研究领域期刊的影响因子,大家在评论区留言一起来讨论你发表过的杂志吧!以上内容为泊菲莱小编整理排版,如有错误、遗漏请您及时指出。转载请注明出处。
  • 国外知名学术期刊改审稿机制:网络公开审稿
    学术期刊审稿机制的完善与否对提升学术期刊的办刊水平及促进学术繁荣具有重要意义。学术期刊的审稿机制包括两个方面:其一,高水平审稿专家的遴选机制 其二,专家公正审稿的保障机制。从实际的操作层面来看,后一机制更为重要,因为审稿工作是对学术成果内容和形式的全面审查和评价,专家在审稿过程中是否能够秉持客观公正的立场是保障审稿质量的关键。   当前中国学术期刊的审稿机制   当前中国的学术期刊多实行&ldquo 三审制&rdquo ,即编辑初审、专家二审、主编(或编委会)三审的审稿机制。&ldquo 学术乃天下之公器&rdquo ,对学术论文的权威评价自然应该由全球各领域最优秀的专家担任审稿人,但由于语言、专业及办刊条件等方面的限制,中国的学术期刊很难做到在全球范围内遴选审稿人。自然科学的学术期刊一般会把待审稿件送至全国或全省范围内的同行专家审阅。为了使科技期刊的编辑更方便地遴选审稿专家,相关机构曾专门编撰有《中国高等学校自然科学学报审稿人名录》《中国科学技术论文评审专家名典》《西北地区高校审稿专家名录》(自然科学类)《上海市高校科技论文评审专家名录》等工具书。另外,各自然科学学术期刊的编辑还经常通过相关专业学会的推荐、作者推荐以及在&ldquo 中国知网&rdquo &ldquo 万方数据库&rdquo 等大型数据库中通过主题词、关键词查询等手段获得审稿专家的信息。为保障专家的公正审稿,当前中国的学术期刊采取的措施主要有:单向或双向匿名审稿、在审稿单上设计具体的论文评价指标、在期刊上登载审稿专家名录等。   相比自然科学类的学术期刊,由于学科边界的相对模糊及学科之间更多的相通性,人文社会科学类的学术期刊更多地由办刊单位的学者担任审稿专家,尤其是对于具有较强学术实力的单位来说,更是如此。当然,目前也有不少人文社会科学类的学术期刊通过外聘编委委员等方法来实现审稿专家的高层次化、多样化。同时,人文社会科学类学术期刊的编辑在稿件的初审环节对稿件的筛选能力也更强一些。   国外学术期刊的审稿机制   国外知名的学术期刊在审稿专家的遴选方面更为灵活,如《科学》杂志有一个专门的审稿委员会,由来自全世界各地100多名顶尖科学家组成,他们负责审定提交到《科学》的各类论文的重要性和可信度。投稿论文通过编委会的审查之后再交由外部专家进行匿名评议。这些外部专家则分布在全世界数十个国家,人数达万名,其中不乏诺贝尔奖获得者。英国《自然》杂志的审稿人60%在美国,30%在西欧,10%在其他地区。《英国医学杂志》的审稿人有2500多人,也遍布世界各国。   至于专家的审稿方式,除了当前普遍实行的单向匿名审稿和双向匿名审稿之外,值得注意的是随着信息化的发展,发达国家近来出现了一种新的审稿方式:公开审稿。如《英国医学杂志》在调查研究的基础上, 对过去实行的双向匿名审稿进行重新思考并开始实行公开审稿。即编辑部将来稿在网上公开,同时将审稿人的姓名告诉作者, 作者和读者都能在网上看到审稿人的评审意见,并与审稿人对话和交流。论文最后发表时将审稿人的名单列在文章之后。在这种审稿机制下,不只是审稿人和作者之间互相知道彼此的身份,可以平等地互相探讨学术问题,社会上任何对此问题有研究专长的学者都可以就此发表自己的学术见解。公开审稿的实质是编辑部借助网络信息技术为作者、审稿人及广大学者搭建了平等对话的平台,使大家在科学面前完全平等。这种审稿机制的优点在于面对全球无数双专业人士的挑剔眼光,审稿人会更谨慎、负责、具体、客观地提出自己的观点或意见。在此过程中,投稿人也能由此得到帮助和提高。   中国学术期刊审稿机制的发展趋势   当前中国的学术期刊有几千种。相比发达国家,在整体办刊水平较为落后的背景下,不断改进审稿机制是提高学术期刊的办刊水平和促进学术进步的重要举措。在审稿专家的遴选方面,当前中国的学术期刊基本上能够依据自身的办刊条件选择合适的审稿专家。为保障专家的公正审稿,中国的学术期刊界近年来普遍推行了单向或双向匿名审稿。这是为克服人情因素对公平审稿的影响而推行的有效举措。通常情况下,匿名审稿可以使专家抛却诸多顾虑,在较为平静的心态下公正地对待审稿件作出专业的评判。但任何事物都有其两面性,匿名审稿也同时有其难以克服的局限:   其一,在某些学科领域(如史学),部分专家长期从事某项研究,且该项研究除他之外学界很少有人涉足。对于这类专家的投稿,审稿人甚至单凭题目就可以猜到作者的身份。还有一些稿件,审稿人可以通过文中透露的一些信息猜测到作者的身份。在此情况下,匿名审稿就没有太多实质意义。   其二,匿名审稿其实质是赋予了审稿人在秘密状态下对别人的研究工作作出专业判断的权利。有学者认为这就好比是一个制度不全的法庭,&ldquo 被告&rdquo 在无法辩解的情况下,法官就作出了不明不白的判决。这话虽然刺耳,但学术研究应该是学界共同参与、共同提高的过程,这种审稿专家单向性的评判对于学术的提升意义确实有限。   其三,在匿名审稿机制下,审稿专家主要依靠其专业能力和道德自觉对待审稿件作出评判。审稿专家是否能够公平地评审稿件并作出专业判断缺乏外部的监督制约机制。比如当审稿专家时间有限时,他就有可能会为完成审稿任务而仓促给出结论。个别审稿人甚至有可能会出于私利,剽窃、压制作者的研究。有权利就有责任,审稿专家是否能秉公行事,社会应对其行为有相应的激励或制约措施。   相比匿名审稿,前述发达国家近期出现的公开审稿则可以在相当程度上避免这些弊端。在公开审稿的机制下,审稿过程的三大主体&mdash &mdash 编辑、审稿人与作者同时处于社会的全程监督之下,这些学术共同体的成员自然会珍惜自己的荣誉和公信力。例如,对编辑来说,会在选择审稿专家及编排稿件的过程中更为谨慎、负责和自律 对于作者来说,在学术期刊联网的条件下,他们若有一稿多投或其他学术不端行为,在其文章正式发表之前,广大网民就有可能发现并及时处理 秉公审稿的专家也能在更广的范围内扩大其学术影响力。当然,在此过程中,审稿专家、作者及广大读者平等的沟通交流也会促进学术的进步。   公开审稿的推行需要一定的条件。最基础的技术条件是建立一个网络平台,编辑、作者和读者均能根据各自的角色充分利用这一平台。另外,在公开审稿机制下,编辑、作者与审稿专家是否能自觉遵守学术规范及学术公德,除了社会监督这个无形的压力之外,还需要社会信用体系中的奖惩机制发挥应有的作用。审稿环节中相关各方是否遵守了学术诚信的规范,这是一个学者诚信记录的重要组成部分。正像学者在一般社会生活中的诚信表现一样,社会相关各方将会依据其审稿过程中的诚信行为给予其相应的激励或制约。因此,社会信用体系的建立与完善也是公开审稿制度运行的重要保障。   笔者认为,不论是匿名审稿还是公开审稿,其目的都是为了保障审稿的公正。当前,中国的学术期刊界普遍实行匿名审稿自然有其合理性。但从未来的发展趋势看,在中国社会信用(含科研信用)体系逐步建立完善、学术共同体成员更为重视自身信誉的时候,公开审稿当是促进学术进步的更佳选择。
  • 氨基酸衍生法数据大PK:OPA or 茚三酮,原来选它
    氨基酸是构建生物机体的众多生物活性大分子之一,是构建细胞、修复组织的基础材料。它被人体用于制造抗体蛋白、血红蛋白、酶和激素以维持和调节新陈代谢,是一切生命之源。 由于氨基酸的重要性,合适可靠的检测方案将成为评估食品、饲料、药物及生理样品中氨基酸指标的重要选择。 HPLC—柱后衍生法,50多年来作为氨基酸领域的重要检测手段,因为其高效的测试准确性和重现性,深受广大用户的信赖。氨基酸检测在药物、食品、饲料中的主要应用有 ● 通过分析氨基酸组鉴定多肤和蛋白质;● 原料药和中间体中的杂质和有关物质的测定;● 药物中单个或总氨基酸的定量, 包括复杂基质中标记物的测定;● 重组蛋白生产过程的控制;● 确定氨基酸组成也是保证食品和饲料营养价值的必要条件;● 用于产品质量及过程监测。 衍生方法介绍Pickering Laboratories根据上述应用的检测对象的不同,将衍生方法分为OPA衍生法和茚三酮衍生法,两种方法都可以与任何氨基酸阳离子交换柱和洗脱液组合使用。其中我们称为Trione ® 的*茚三酮试剂,也广泛应用于氨基酸分析仪中。 OPA法与茚三酮法区别见下表:氨基酸衍生法 _Trione® 试剂(*)分析法OPA试剂分析法衍生试剂TlOO-预混试剂 ;自生产日期起计算, 4个月保质期(950 ml/瓶) TlOOC -预混试剂;自生产日期起计算, 4个月保质期(950 mL/瓶) T200 - 2部分试剂,混合后使用,从生产之日起12个月保质期;4组/箱(900mL/瓶)OD104-氨基酸分析用OPA稀释液; O120-OPA试剂(5g/瓶) 3700-2000 -疏基化合物。(10g/瓶) 这三种产品都是用于氨基酸OPA分析法适用样品一级和二级氨基酸一级氨基酸 在与OPA反应之前需要检测二级氨基酸氧化步骤。使用氧化步骤时,一级氨基酸的检测灵敏度会有所降低。检测器UV/VISFLD仪器灵敏度10 pmole (在色谱柱上)2 pmole (在色谱柱上)色谱柱&洗脱液适用于任何阳离子交换柱氨基酸分析法与任何用于氨基酸分析的阳离子交换柱配合使用配置单泵Ony×PCXI vector PCX+ 0.5 m L反应器单泵Ony×PCX/ vector PCX+ 0.15 ml反应器。 *需要带有0.5 mL和0.1 mL反应器的双泵OnyxPCX来检测二级氨基酸。 在此模式下, 初级氨基酸的灵敏度会降低。 色谱柱的选择图1:钠柱氨基酸分析选择 图2:锂柱氨基酸分析选择 图3:氨基酸标品 图4:豆粕样品 图5:水解单克隆样品 Pickering产品 完整解决方案欧洲药典8.0对于氨基酸的柱后衍生茚三酮法做了详细的要求,药典对于包括化学、 动物、 人或草药来源的活性物质、赋形剂和制剂,顺势疗法制剂,抗生素,制剂和容器等都有所要求。 Pickering Laboratories 将欧洲药典作为测试依据,为客户提供完整的氨基酸分析解决方案。 Pickering 柱后衍生仪 解决方案包括Onyx PCX/Vector PCX 柱后衍生仪器、分析柱、保护柱、缓冲液和Trione ® 茚三酮试剂。并且对方法进行了优化, 在符合药典各项体系适宜性要求的同时,提高了分析的灵敏度及分析效率。 Pickering全套试剂包 图6:依据欧洲药典8.0法测试氨基酸 关于Pickering Laboratories 美国Pickering Laboratories公司是全球仅有的专业提供人工测试体液和柱后衍生化学试剂、色谱柱、分析方法等柱后衍生分析整体解决方案的机构,其不断创新及良好的信誉被众多的美国政府机构如EPA、ATF、FDA、AOAC和世界知名的厂商所认可。
  • 会议看点:质谱前沿技术及应用趋势——第十四届质谱网络会议报告提前看
    随着生命科学的蓬勃发展,质谱技术作为重要的分析方法在科研各领域的应用日益广泛。在12月12-15日即将召开的”第十四届质谱网络会议(iCMS 2023)“会议上,汇聚了众多顶尖科研机构的专家学者,就质谱技术的最新进展与应用趋势进行交流探讨。会议首日的”质谱前沿技术应用趋势“主题专场报告,多位行业权威专家将围绕蛋白质组学、代谢组学、单细胞代谢组学以及质谱成像技术的创新与应用展开讨论。部分报告预告如下,点击报名  》》》报告人:北京蛋白质组研究中心 主任/研究员 秦钧报告题目:蛋白质组学离临床落地还有多远?秦钧教授是国家特聘专家,北京市特聘专家。是世界上少数几位将质谱仪设计、蛋白质组学方法开发、生物信息学、生物学及临床应用纳入同一个研究项目的学者之一。近年来主持开发建设了国际上第一个一站式蛋白质组学数据分析云平台;绘制了首个弥漫型胃癌的蛋白质组地形图,并将弥漫型胃癌分为与生存预后和化疗敏感性密切相关的三个分子亚型;绘制了首个解剖区域分辨率的健康人胃黏膜蛋白质组参考图谱,并建立了胃粘膜在生理条件下的蛋白质组的定量参考范围;率先开展并建立覆盖个体内及个体间差异和生理性波动的人尿蛋白质组定量参考范围,并开展重大疾病尿蛋白相关研究。主持和参与多项国家和省部级项目,包括国家国际科学合作项目(项目首席)、973计划(项目首席)、国家重点研发计划、国家自然科学基金面上项目、北京市科委项目等。以责任作者身份在Cell、Nature Biotechnology、Nature Communications和PNAS等期刊发表系列文章。北京蛋白质组研究中心主任秦钧教授的报告“蛋白质组学离临床落地还有多远?”揭开了本次论坛的序幕。报告重点探讨了当前蛋白质组学技术在体液检测、组织病理学等方面的应用现状及存在的挑战。报告人:复旦大学 教授、中国生物物理学会代谢组学分会 会长 唐惠儒报告题目:代谢组学的新进展与挑战复旦大学特聘教授、国家杰青、 “精准医学”及“前沿生物技术”国家重点研发计划项目首席科学家、英国皇家化学会会士、伦敦大学博士 曾任英国BBSRC食品研究所及帝国理工学院生物医学部Senior Scientist、“中科院生物磁共振分析重点实验室”创建主任、科技部973与蛋白质科学重大计划等项目评审专家。 研究代谢物功能及代谢组学30余年,在Nature、Nat Microbiol、PNAS等上发表SCI论文210余篇,被引1万余次(h指数~64)。获批国内外发明专利多项。 现任中国生物物理学会代谢组学分会会长、中国抗癌协会肿瘤代谢分会常务理事、中国营养学会基础营养分会常务理事、国际实验磁共振大会(ENC)执委(大中华地区唯一)、中国生物化学与分子生物学会脂质与脂蛋白委员会委员,Metabolomics、Arch Pharm、《基础医学与临床》等编委,Nutrition Metabolism及Phenomics等副主编。除蛋白质组学外,代谢组学作为”小分子“层面的组学技术,也在本次会议的内容设置中得到高度关注。复旦大学教授唐惠儒的报告将新颖地阐述了代谢组学技术的新进展及应用面临的难题。报告人:中国科学技术大学 教授 朱洪影报告题目:从单细胞到空间的多尺度代谢组学及其在神经科学中的应用 中国科学技术大学生命科学与医学部教授、综合性国家科学中心人工智能研究院分子成像平台主任、国家自然基金委优青获得者、微尺度物质科学国家研究中心青年女科学家、贝时璋青年生物物理学家奖获得者、中国科学院青年促进会会员。在Cell、Nature Methods、Nature Machine Intelligence、PNAS等国际知名期刊杂志发表多篇文章。主持国家优秀青年科学基金、国自然重大研究计划培育项目、国家自然科学基金面上项目、国家自然基金委青年基金等项目。参与科技部重点研发计划一项、获得国家专利三项。研究方向:聚焦于从微观到介观尺度的新型代谢组学分析技术研发及其在神经科学研究中的应用。已经开发出单细胞代谢组学、单溶酶体代谢组学、基于人工智能的快速超分辨空间代谢组学等多个国际首创技术,为神经系统细胞代谢调控研究提供了重要的技术支撑。基于单细胞质谱技术的神经科学领域的新突破也是本主题专场的一大亮点。中国科学技术大学朱洪影教授将从代谢组学技术出发,详述其在探索神经系统中物质运动与功能关联方面取得的最新进展。报告人:中央民族大学原副校长,现任药学院院长、中央民族大学生物成像与系统生物学研究中心负责人、中国医学科学院&北京协和医学院药物研究所研究员、博士生导师,天然药物活性物质与功能国家重点实验室副主任,北京协和医学院药物分析学系主任 再帕尔阿不力孜报告题目:敞开式质谱成像技术与应用进展中央民族大学原副校长,现任药学院院长、中央民族大学生物成像与系统生物学研究中心负责人,二级教授。中国医学科学院&北京协和医学院药物研究所研究员、博士生导师,天然药物活性物质与功能国家重点实验室副主任,北京协和医学院药物分析学系主任。北京市政协常委,国务院学位委员会第七届药学学科评议组成员,教育部第七届科学技术委员会委员和第八届科技委药学与中医药学部委员;中国分析测试协会副理事长,中国化学会质谱分析专业委员会副主任委员等。“新世纪百千万人才工程”国家级人选,享受国务院政府特殊津贴专家,国家民委领军人才。APSB、RCM、JANPR以及分析化学、药学学报、化学进展、分析测试学报、质谱学报和分析仪器等国内外学术期刊编委。长期从事基于质谱技术的分析方法、新技术及其生物医药的应用研究。曾担任国家“863”计划项目首席专家,现任国家重点研发计划项目负责人。作为主要作者已发表学术论文110篇以上。获得教育部自然科学奖一等奖(第3完成人);以第一完成人分别获得北京市科技进步二等奖1项,中国分析测试协会科学技术奖二等奖3项、一等奖1项、特等奖1项等。除质谱新技术之外,本主题专场更会涉及一些颠覆性的新兴焦点。中央民族大学/中国医学科学院药物研究所再帕尔阿不力孜教授将做关于敞开式质谱成像技术的报告,这是目前质谱领域蓬勃发展的最新技术方向。本次论坛汇聚了当今质谱前沿技术的顶级专家与资深应用科学家,涵盖了从基础平台技术到转化应用各个维度的技术和理论前沿。本次主题专场的一个重要议程,赛默飞公司科学家带来赛默飞Orbitrap Astral高分辨质谱全球最新真实数据展示的主题报告。Orbitrap Astral高分辨质谱是为解决蛋白质组学分析瓶颈的创新产品,其最适合的应用场景有:1. 高灵敏度检测与Astral非对称轨道无损质量分析器低样品上样,包括单细胞实验;2.精准的非标定量(LFQ)和串联质量标签(TMT)的定量分析;3.在更广泛的动态范围可用于生物制药选择天然蛋白复合物的综合分析。作为质谱巨头之一的沃特世也携最新一代产品亮相本次会议,为科学家提供更加精准稳健的技术支持。为了分享质谱技术及应用的最新进展,促进各相关单位的交流与合作, 仪器信息网与北美华人质谱学会(CASMS)将于2023年12月12-15日联合举办第十四届质谱网络会议(iCMS2023)    。以上仅是部分报告嘉宾的分享预告,更多精彩内容请参加会议页面:https://www.instrument.com.cn/webinar/meetings/iCMS2023/ (点击下图去报名)》》》更多第十四届质谱网络会议报告提前看:1.这场质谱盛会透露了哪些信息?第十四届质谱网络会议专家阵容揭晓 》》》去报名  2.当单细胞携手质谱,生命科学研究有哪些新突破? 》》》去报名  3.临床质谱狂飙,如何把握行业机遇? 》》》去报名  4.点击超15W!2023年质谱话题汇总! 》》》去报名  5.年度巨制!质谱主题月火热开启! 》》》去报名
  • Pall免费讲座:膜层析技术——快速去除杂质的灵活解决方案
    Pall免费在线讲座   上游工艺技术的持续改善已经使蛋白表达水平越来越高,从而使下游产量超过1g/L,甚至达到10g/L。这些前提将直接影响到下游工艺,直至遇到技术瓶颈。然而,目前的趋势,比如使用更高载量、选择性更广的层析填料,以及更多使用一次性技术如膜层析等,将会突破这些瓶颈,使制药行业的快速发展获得强大动力。   如何有效去除杂质是制药工艺中一个很大的挑战,这也是膜层析技术应用最受欢迎和流行的应用点。膜层析的操作非常简便,其高速以及高效的特性有效降低了工艺时间和成本,提高总产量。本次网络讲座将会阐述膜层析的基本原理,并举例客户应用,说明如何将该技术整合到工艺中,以节约时间和成本。   参会者将有机会学习:   如何使用Mustang® 膜层析产品有效去除杂质,提高工艺经济性?   如何将膜层析产品纳入到一次性系统的设计中?   如何使用膜层析技术解决当前以及未来的工艺挑战?   谁应该参加?   ● 致力于高效、高质药物研发和生产的行业领导者   ●下游工艺研发专家、工程师和组长   ●早期制药工艺开发相关的科学家   ● 产品工程师   ● 验证专员   ● 层析专员   ● 生产人员   ● 关注 cGMP 临床试验产品的质量经理   ● 工程咨询   讲座专家:   Russell M. H. Jones   Mustang膜层析全球产品经理   Pall Life Sciences   John M. Jenco, Ph.D   高级首席科学家   技术服务部   Pall Life Sciences   Dr Iann Rancé   工艺开发总监   Cytheris公司下游工艺及分析部门   讲座信息   讲座时间:2012年2月16日, 23:00pm(北京时间)   注册网址:https://event.webcasts.com/starthere.jsp?ei=1003510&sti=S   (本次讲座全部免费,但是请务必提前登陆注册,收到确认邮件后即可顺利参会。)   颇尔公司及Mustang层析技术简介   作为全球过滤、分离、纯化技术的领导者,颇尔公司(Pall Corporation)提供经济、高效、创新的层析纯化平台,帮助制药用户满足日益严格的应用需求,实现高产量目标。Pall层析产品提供极佳的独特选择性,完美解决当下的工艺挑战,具从实验室到生产规模的真实放大性,独特的平台可提高工艺经济性,应用于制药工艺下游多个步骤。产品系列包括:层析填料,PRC预装柱,LRC层析空柱,Mustang离子交换膜产品,Resolute层析柱,PKP层析系统,PK层析系统等。   Mustang离子交换层析产品为生物工艺提供了灵活的解决方案,包含一次性和重复使用两大类产品,均可放大。高流速,高通量,操作简便,紧凑设计等特性显著降低缓冲液的消耗,提高整体工艺的经济性。   Mustang膜层析技术是目前高效去除杂质、捕获大目标分子(质粒DNA,病毒载体等)的首选技术。
  • 安东帕《用户期刊》创刊号发布
    在安东帕公司即将步入四周年之际,全体安东帕人寄以厚望的《用户期刊》创刊号终于在同仁的辛勤努力与统筹合作之下在这个夏天如期发布,以崭新的面貌呈现给各位用户。   安东帕用户期刊的发布,意味着我们从更高的层面实现了与广大客户的交流,也是对安东帕公司文化的最有说服力的宣传。   走过了迅速发展的最初三年,公司的规模迅速扩张,规模逐渐扩大,吸纳了来自各行业的精英加入我们的团队。公司的成长由大家所见证,安东帕的业绩突飞猛进,都是我们引以自豪的历史。我们同样也需要一份这样的刊物来展示艰苦创业的历程以及企业文化的提升。   在仪器行业快速和激烈竞争的今天,安东帕一直凭借自身独特的技术赢得了更多的产品市场,以安全应用和产品质量得到更多不同行业客户的支持。值此创刊之际,《安东帕用户期刊》特向全体员工、广大客户及所有关心和支持安东帕企业的朋友,致以最诚挚的问候!祝大家工作愉快、万事如意!   创刊号的内容包括了安东帕最新的科技产品,公司新闻,产品应用报告等,可以让用户定期收到最新资讯,带来更多优质服务与契机!   我们期待《用户期刊》在我们的努力和各位朋友的支持下,办出特色与水平。成为未来发展战略的重要媒介与桥梁!     安东帕用户期刊下载页面:http://www.instrument.com.cn/netshow/SH101011/down_134939.htm
  • 2021年“蛋白质组学技术与应用进展”网络会议通知
    仪器信息网讯 随着人类基因组计划的实施和推进,生命科学研究进入了后基因组时代,蛋白质组学随之成为重大热点研究领域之一。在应用研究上,蛋白质组学已成为发现新型生物标志物、新药物靶标的重要途径,已成为生物医药产业及其相关产业发展的新生长点,此外,蛋白质组学通过研究疾病不同阶段相关蛋白质变化、对疾病诊断和治疗领域具有应用价值和指导意义。而蛋白质组的研究实质上是在细胞水平上对蛋白质进行大规模的平行分离和分析,往往要同时处理成千上万种蛋白质。因此,发展高通量、高灵敏度、高准确性的研究技术平台对于蛋白质组学研究至关重要。质谱技术是目前蛋白质组研究中发展最快,也最具潜力的技术。  为帮助从事相关研究的用户学习蛋白质组学研究技术及方法,仪器信息网将于2021年3月18日举办“蛋白质组学技术与应用进展”主题网络研讨会,会议将邀请多位业内专家做精彩报告,为广大用户搭建一个即时、高效的交流和学习的平台。报名链接:https://www.instrument.com.cn/webinar/meetings/PROTEOMIC2021/  会议日程:  报告嘉宾一览:北京蛋白质组研究中心主任/研究员 秦钧  秦钧博士,男,1965年2月出生。国家特聘专家,北京市特聘专家。秦钧教授是世界上少数几位将质谱仪设计、蛋白质组学方法开发、生物信息学、生物学及临床应用纳入同一个研究项目的学者之一。在蛋白质复合体研究方面,建立了国际领先的蛋白质复合体纯化和鉴定方法 在蛋白质网络研究方面,建立了世界上最大的内源性人蛋白质复合体数据集 在DNA损伤修复开展了大量卓有成效的研究工作 成功建立了国际上最高效的蛋白质组扫描平台 利用转录因子可与其特异性DNA序列结合的特点,设计研发catTFRE用来富集细胞/组织中内源性转录因子和转录调控复合物 主持开发建设了国际上第一个一站式蛋白质组学数据分析云平台 绘制了首个弥漫型胃癌的蛋白质组地形图,并将弥漫型胃癌分为与生存预后和化疗敏感性密切相关的三个分子亚型 绘制了首个解剖区域分辨率的健康人胃黏膜蛋白质组参考图谱,并建立了胃粘膜在生理条件下的蛋白质组的定量参考范围。以责任作者身份在Cell、Nature Biotechnology、Nature Communications、Molecular Cell、Genes & Developments和PNAS等期刊发表系列文章。西湖大学特聘研究员 郭天南  2006年毕业于华中科技大学同济医学院临床医学七年制,同时获得武汉大学生物科学双学位。2012年获得新加坡南洋理工大学博士学位。2012-2017年在瑞士苏黎世联邦理工大学Ruedi Aebersold教授实验室从事博士后研究。2017年初在澳大利亚悉尼大学儿童医学研究所ProCan任Scientific Director,肿瘤蛋白质组Group Leader,悉尼大学医学院兼聘高级讲师。2017年8月加入西湖高等研究院任特聘研究员。长期从事蛋白质组学相关研究,并将其应用于大量的临床样本(包括甲状腺癌、前列腺癌等),结合人工智能探索生物标志物。中山大学教授 李惠琳  中山大学药学院教授,博士生导师。主要从事生物质谱新技术的开发及应用,侧重于(1)开发整合结构质谱技术(包括native top-down MS, HDX-MS, CX-MS等),用于药物作用分子机制及蛋白复合物结构研究 (2)Middle-down/top-down蛋白质组学新技术的开发及应用。共发表SCI收录论文40篇,其中第一作者或通讯作者15篇,主要发表在Nat. Chem.、Anal. Chem.等期刊 2014年获得American Society of Mass Spectrometry Postdoctoral Career Development Award 2019年入选“珠江人才计划”青年拔尖人才 主持国家自然科学基金项目3项。南方科技大学终身教授 田瑞军  南方科技大学终身教授,加拿大渥太华大学及深圳市人民医院兼职教授,中国蛋白质组组织CNHUPO常务理事、中国化学会色谱专业委员会理事、中国质谱学会理事和中国分子系统生物学学会理事,科技部“国家重点研发计划”子课题负责人。2008年在中国科学院大连化学物理研究所获得分析化学博士学位,师从邹汉法研究员,并获得中国科学院院长优秀奖和中国科学院优秀毕业生奖励。在加拿大先后师从Daniel Figeys教授和Tony Pawson院士完成博士后研究,并获得加拿大国立卫生研究院(CIHR)博士后基金资助。2014年起受聘南方科技大学化学系,致力于蛋白质组学的方法学和技术研究,并强调其在细胞信号转导和肿瘤微环境等生物医学研究方向的应用。已在国际主流学术期刊上发表论文70余篇,其中以通讯作者在Nature、PNAS、Anal. Chem.等上发表文章近30篇。曾荣获由国际蛋白质结构分析和蛋白质组学协会(IAPSAP)颁发的2012 Young Investigator Award、深圳市鹏城学者特聘教授和广东杰出青年基金等。曾担任第五届中加系统生物学研讨会等国内外会议共同主席。目前担任色谱杂志青年编委和Frontiers in Endocrinology编委。
  • 知无涯丨国际质谱学杂志为刘淑莹教授增发特刊
    2018年12月15日,由中科院长春应用化学研究所和长春中医药大学主办,中山大学药学院承办的“2018国际质谱学杂志(IJMS)特刊学术研讨会”在广州隆重举行。此次特刊,是为表彰刘淑莹教授四十多年来对中国质谱事业的发展所做出的突出贡献。据悉,这是国际质谱学杂志(IJMS)首次为中国学者增发特刊以示敬意。该特刊共收录来自8个国家及地区的质谱学相关研究论文35篇,其内容涵盖了质谱学基础及其应用研究的多个方面。中山大学陈新滋院士主持会议开幕式并致欢迎词。刘淑莹教授的博士导师、80 岁高龄的美国加利福尼亚大学 Michael T. Bowers 教授携夫人出席,并作学术报告。会议期间,14 位国内外知名的质谱专家从生命科学、环境、药学等领域展现了最新的质谱研究成果,以促进各学科间合作与交流,共同推动中国质谱的发展。出席报告会的还有来自美国、韩国、中国大陆以及台湾、澳门等多个国家地区的 100 余位质谱界同仁。其中,不乏刘老师指导过的学生,绝大多数已经成为质谱学界的中坚力量。刘淑莹教授于 1965-2013 年间就职于中国科学院长春应用化学研究所;2008 年至今就职于长春中医药大学。该特刊的发行及其学术研讨会彰显了刘淑莹教授在国内外质谱研究领域的重要学术影响力。嘉宾致词会议报告:Seung-Koo SHIN 教授,韩国浦项科技大学Intramolecular Hydrogen Bonds in Protonated Tryptic Peptide Ions and Their Effects on Peptide Dissociation李茂荣 教授,台湾中兴大学Dispersive micro solid phase extraction coupled to liquid chromatography-tandem mass spectrometry with magnetic molecularly imprinted polymers for determination of estrogens in environmental aqueous samples潘远江 教授,浙江大学Study of Gas-phase Organic Reaction in Mass Spectrometry李绍平 教授,澳门大学Application of Mass Spectrometry in Quality Control of Chinese MedicinesBrian Musselman 博士,IonSense, IncSub-microliter Sample Presentation: The Impact of Small Volume and Speed on DART-based Experiments瑕瑜 教授,清华大学Acetone as Photo-initiator for Disulfide Reduction–Reaction Mechanism and Applications栾天罡 教授,中山大学Coupling microextraction with ambient mass spectrometry for lipidomics investigation郭寅龙 研究员,中科院上海有机所Quantitative Analysis of Picoliter Samples by Hydrogen Flame Desorption Ionization Mass Spectrometry李智立 教授,中国医学科学院基础医学院 北京协和医学院基础医学院In situ detection of lipid metabolism in tumor microenvironment using mass spectrometry imaging万翠红 教授,华中师范大学Strategies to boost Archaea Sulfolobus solfataricus P2 proteome coverage and predict new genes王融 教授,华大基因Mass Spectrometry and Health Management周振 教授,暨南大学Development History of Hexin Mass Spectrometry李惠琳 教授,中山大学Integrated Structural Mass Spectrometry for the characterization of noncovalent protein complexesMichael T. Bowers 教授,美国加州大学圣芭芭拉分校The assembly of Amyloid Systems: The Latest NewsIJMS 特刊赠送仪式International Journal of Mass Spectrometry (IJMS)是由 Elsevier Science 出版的质谱研究期刊。华质泰科作为独家赞助商鼎力支持会议
  • 这些研究为拉曼光谱实际应用提供新思路 ——第五届拉曼光谱网络会议报告提前看
    作为分子光谱领域最为活跃的仪器类别之一,拉曼光谱的发展一直在吸引业界的目光。一方面,科研级拉曼光谱仪性能不断提升以探索科学前沿;另一方面为了解决实际应用问题,相关仪器及解决方案也在不断提升和完善中。从实用的角度出发,拉曼光谱一直彰显着极具诱惑的发展前景,高灵敏、低成本、快速检测一直都是大家努力的方向。食品农产品、生物医药、环境、材料、石油化工、毒品……甚至是最近比较热门的无创血糖检测等相关的拓展一直都在进行中。当然,从科研走向应用的道路总是充满着挑战,比如SERS体系的可靠性、普适性,分子之间的相互作用,复杂基质的检测等,各位科研专家正在为解决这些问题不遗余力地努力着。第五届拉曼光谱网络会议(iCRS2023)期间,多位专家将现场分享,就拉曼光谱在环境、食品、消费品等多个领域的应用拓展及技术突破等展开探讨,为下一步的工作开展和应用推进提供新思路,点击报名》》》部分报告提前看:西南交通大学 范美坤教授《SERS,从单一化合物的高灵敏度分析到复杂体系的区分和识别》(点击报名 )西南交通大学范美坤教授长期从事环境监测检测技术研究,已主持承担国家级课题6项,获授权发明专利10余项,在国际期刊上发表论文80余篇,2021和2022年度两次荣登斯坦福大学发布的年度科学影响力全球前2%顶尖科学家榜单。本次会议中,范美坤教授将给大家分享《SERS,从单一化合物的高灵敏度分析到复杂体系的区分和识别》的主题报告。华中师范大学 高婷娟教授《土壤重金属与石油类污染物的界面微传感成像》(点击报名 )华中师范大学高婷娟教授研究领域涉及分子内增强拉曼散射、高灵敏快速多色拉曼成像、超容量拉曼编码,以及分子间相互作用、表界面化学反应、细胞生理过程的原位光电测量等。近三年以通讯作者在JACS、ACS Central Science、Chemical Science、Analytical Chemistry、Water Research等化学、环境类期刊发表系列研究论文。重金属和石油烃是典型土壤污染物,严重影响土壤环境质量。研究重金属与石油烃的土水界面微传感成像,有望提供土壤重金属与石油烃的现场快速检测方法,是土壤分析与污染控制领域的迫切需求。本次会议中,高婷娟教授将分享《土壤重金属与石油类污染物的界面微传感成像》主题报告。针对土壤六价铬和土壤铅的研究对象,她提出固相微传感探针的策略,这种策略集土壤六价铬和土壤铅的提取、富集、分离和后续检测于一体;针对土壤石油烃的研究对象,她采用共聚焦显微拉曼成像,观察石油烃污染的土壤地下水界面原位修复动力学过程。中国检验检疫科学研究院、工业与消费品安全研究所 席广成研究员《基于准金属纳米结构的表面增强拉曼光谱分析研究》(点击报名 )中国检科院首席专家席广成研究员,长期从事消费品安全相关研究,在Nat. Commun., J. Am. Chem. Soc., Angew. Chem. Int. Ed.,等国际期刊发表论文100余篇(其中SCI一区论文40余篇),授权发明专利12件(转化2件),制定国家标准9项,主持应对“真假珍珠粉”、“化妆品纳米粒子”等消费品重大安全事件的技术研发。本次会议中,席广成研究员将分享《基于准金属纳米结构的表面增强拉曼光谱分析研究》。表面增强拉曼光谱(SERS) 具有高灵敏和现场检测等优点,在痕量测定、真伪鉴别等领域具有广泛的应用前景,但仍然存在瓶颈问题束缚了其大规模应用。针对以上问题,席广成研究员研究团队以公共安全检测领域国家重大需求为导向,以发展 SERS 新原理和新方法为目标,开创了准金属 SERS 研究,并取得了系列成果。浙江大学刘湘江教授《柔性SERS传感器》(点击报名 )浙江大学刘湘江教授的工作围绕农业信息智能感知技术与装备的薄弱环节,聚焦研发柔性传感器,突破了作物生理信息的长期活体无损感知(茎流、叶温等)、农产品安全信息的原位快速检测(化学残留、重金属、亚硝酸盐等)的难题,在Science Advances、Advanced Science(IF=17.521)、Advanced Functional Materials、Advanced Optical Materials发表论文多篇。本次会议中,刘湘江教授将围绕《柔性SERS传感器》给大家做分享。 瑞士万通中国有限公司 产品经理 王睿《用于农残检测的表面增强技术》(点击报名 )瑞士万通中国有限公司拉曼光谱产品线产品经理王睿,从事分子光谱技术的产品开发,仪器销售和应用推广工作十余年。在农业、食品、化工、高分子等行业有丰富的产品应用开发和实测经验。从2014年入职瑞士万通中国有限公司,王睿一直负责近红外光谱和拉曼光谱产品的推广工作。 快速检测农药残留一直是政府和企业关心的应用方向。瑞士万通公司在2018年就推出了基于SERS技术的可以稳定分析农药残留的表面增强试剂和试纸。本报告王睿将介绍基于该技术的几项成熟应用,以及相关的光谱仪发展现状。为了分享拉曼光谱技术及应用的最新进展,促进各相关单位的交流与合作,仪器信息网与上海师范大学将于2023年10月24-25日联合举办第五届拉曼光谱网络会议(iCRS2023)。以上仅是部分报告嘉宾的分享预告,更多精彩内容请参加会议页面:https://www.instrument.com.cn/webinar/meetings/icrs2023/
  • 蛋白质结构预测哪家强?两大国际团队同日在顶刊开源代码
    蛋白质是生命的物质基础,每个蛋白质的氨基酸链扭曲、折叠、缠绕成复杂的结构,想要破解这种结构通常需要花很长的时间,甚至难以完成。截至目前,约有10万个蛋白质的结构已经用实验方法得到了解析,但这在已经测序的数10亿计的蛋白质中只占了很小一部分。  但“看清”蛋白的结构和人类的很多疾病机理、药物研发等等息息相关。在蛋白质结构解析的几十年历史中,X射线晶体学、核磁共振波谱学(NMR)、冷冻电镜(Cryo-SEM)技术纷纷发挥了巨大的贡献,但这些技术在科学界看来,都有着劳心劳力又价格高昂的缺点。  如何简单地通过蛋白质的氨基酸序列来预测其形状?如何能解答这一问题,了解生命运作方式的将打开截然不同的一扇窗。这种设想提出的50多年后,谷歌旗下人工智能公司DeepMind在去年12月的国际蛋白质结构预测竞赛CASP上投下重磅,他们开发的基于神经网络的新模型AlphaFold2击败了其他选手,在预测准确性方面达到接近人类实验结果,让整个结构生物学界震惊。北京时间7月15日,DeepMind团队在顶级学术期刊《自然》(Nature)以“加快评审文章”(Accelerated Article Preview)形式在线发表了一篇题为“Highly accurate protein structure prediction with AlphaFold”的论文,全面详述了半年前造成轰动的这一模型,并首次对外分享开源代码。该论文于今年5月11日提交,7月12日被接收。  DeepMind团队提供了一份声明,公司创始人兼首席执行官Demis Hassabis在声明中表示,去年在CASP14大会上我们揭晓了一个可以将蛋白质3D结构预测精确到原子水平的全新AlphaFold系统,此后我们承诺会分享我们的方法,并为科学共同体提供广泛、免费的获取途径。  “今天我们迈出了承诺的第一步,在《自然》期刊上分享AlphaFold的开源代码,并发表了系统的完整方法论,详尽细致说明AlphaFold是如何做到精确预测蛋白质3D结构的。作为一家致力于推动科学进步的公司,我们期待看到我们的方法将为科学界启发出什么其他新的研究方法,也期待很快能和大家分享更多我们的新进展。”Hassabis表示。值得一提的是,就在同一天,另一顶级期刊《科学》(Science)也在线发表了另一预测蛋白质结构的研究文章,题为“Accurate prediction of protein structures and interactions using a three-track neural network”。  来自华盛顿大学、哈佛大学、德克萨斯大学西南医学中心等团队的研究人员开发了新的深度学习工具RoseTTAFold,其拥有媲美AlphaFold2的蛋白质结构预测超高准确度,而且更快、所需计算机处理能力更低。同样,研究团队也对外分享了开源代码。该论文提交于6月7日,7月7日被接收。  清华大学生命科学学院院长、高精尖中心执行主任王宏伟表示,“高质量结构预测的源代码开放对整个科学界尤其是结构生物学领域的促进作用必然是巨大的。”他评价道,对于DeepMind这样一家商业公司来说,“团队愿意向公众分享代码,是一个新型科研范式的突破,将整体上有利于人类更好地探索未知。”  预测蛋白质结构,接近实验室测量  50多年前,科学家们就设想用计算机预测蛋白质结构。近年来,共同演化、接触图预测、深度机器学习等技术的引入,一些实验室的算法精度有了很大程度的提高。  曾经开发出Alphago、战胜人类顶尖棋手的DeepMind团队是其中的佼佼者,其团队的强大和资源雄厚是一般实验室无法企及的。2020年12月1日,他们在生物领域展现出实力,在两年一度的权威蛋白质结构预测评估竞赛(CASP)中用AlphaFold2击败其他参赛团队。  CASP是由马里兰大学John Moult教授等人于1994年组织。竞赛使用的是最新解决且尚未在蛋白质数据库(PDB)中存放或公开披露的结构,结构生物学家们利用X射线晶体学、核磁共振波谱学、冷冻电镜的方法,把这些蛋白质的结构解析出来。做蛋白质结构预测的团队则利用计算机程序来预测它们的结构。最后由独立的科学家团队则把计算机预测的模型和实验室的结构对照,分析不同计算机算法的预测结果。这是一种“双盲”测试,长期以来一直是评价结构预测准确性的金标准。  去年的CASP14共有84个常规题目,其中有14题因为生物实验没给出确定结构等原因被取消或延缓,其他70个题目的单体和复合物蛋白质所含有的氨基酸个数从73到2180不等。  19个国家的215个小组参加了CASP14。DeepMind公司的AlphaFold2预测的大部分结构达到了空前的准确度,不仅与实验方法不相上下,还远超解析新蛋白质结构的其他方法。将实验方法得到的蛋白质结构叠加在AlphaFold2的结构上,组成蛋白质主链骨架的叠加原子之间的距离中位数(95%的覆盖率)为0.96埃(0.096纳米)。成绩排第二的方法只能达到2.8埃的准确度。  AlphaFold2的神经网络能在几分钟内预测出一个典型蛋白质的结构,还能预测较大蛋白质(比如一个含有2180个氨基酸、无同源结构的蛋白质)的结构。该模型能根据每个氨基酸对其预测可靠性进行精确预估,方便研究人员使用其预测结果。  AlphaFold2最终被Moult评价道,“在某种意义上,问题已经解决了”。  值得一提的是,在最新发布的论文中,DeepMind还简化了AlphaFold2。AlphaFold的首席研究员John Jumper说,“这个网络需要几天的计算时间来生成CASP的一些蛋白质的结构,而开源版本的速度要快16倍。根据蛋白质的大小,它可以在几分钟到几小时内生成结构。”  受AlphaFold2的启发,华盛顿大学医学院生物化学家、蛋白质设计研究所所长David Baker等人开发了RoseTTaFold。华盛顿大学医学院官网对该研究的介绍称,在高精度的蛋白质结构预测方面,Baker等人“在很大程度上重现了DeepMind团队的表现。”  相较于AlphaFold2只解决了单个蛋白质的结构,RoseTTaFold不仅适用于简单的蛋白质,也适用于蛋白质复合物。据介绍,RoseTTaFold利用深度学习技术,根据有限信息准确、快速地预测蛋白质结构。从结构上来看,RoseTTAFold 是一个三轨(three-track)神经网络,它可以兼顾蛋白质序列的模式、氨基酸如何相互作用以及蛋白质可能的三维结构。在这种结构中,一维、二维、三维信息来回流动,使得网络能够集中推理蛋白质的化学部分与它的折叠结构。巴塞尔大学的计算结构生物学家Torsten Schwede对《科学》杂志说,许多生物功能依赖于蛋白质之间的相互作用。“直接从序列信息中处理蛋白质-蛋白质复合物的能力使其对生物医学研究中的许多问题极具吸引力。”  Baker同时坦言,AlphaFold2的结构更加准确。但是根特大学的结构生物学家Savvas Savvides说,Bake实验室的方法更好地捕捉到了“蛋白质结构的本质和特性”,比如识别从蛋白质侧面伸出的原子串,这些特征是蛋白质之间相互作用的关键。  纽约大学医学院的细胞和结构生物学家Gira Bhabha说,两种方法都很有效。她表示,“DeepMind和Baker实验室的进展都是惊人的,将改变我们利用蛋白质结构预测推进生物学的方式。”  开源代码,如何促进整个科学界?  相比于去年年底带来的震撼,这次外界更感兴趣的是上述两支团队开源代码这一动作。  此前的6月中旬,在Baker实验室发布RoseTTAFold预印本三天之后,DeepMind的Hassabis在推特上表示,AlphaFold2的细节正在接受一份出版物的审查,公司将“为科学界提供广泛的免费访问”。  而从6月1日开始,Baker等人已经开始挑战他们的方法,让研究人员发送来他们最令人困惑的蛋白质序列。加州大学旧金山分校的结构生物物理学家David Agard的研究小组发送了一组没有已知类似蛋白质的氨基酸序列,几个小时内,他的团队就得到了一个蛋白质模型,“这可能为我们节省了一年的工作。”Agard说。  除了免费提供RoseTTaFold的代码外,Baker团队还建立了一个服务器,研究人员可以插入蛋白质序列并得到预测的结构。贝克说,自从上个月推出以来,该服务器已经预测了大约500人提交的5000多种蛋白质的结构。  不过,上述两支团队的源代码都是免费的,但也有观点认为,对于没有技术专长的研究人员来说,它可能还不是特别有用。不过,DeepMind的科学人工智能负责人Pushmeet Kohli表示,DeepMind已经与一些选定的研究人员和组织合作,以预测特定的目标,其中包括总部位于瑞士日内瓦的非营利组织“Drugs for ignored Diseases”。“在这个领域,我们还有很多想做的事情。”  Hassabis提到,去年在CASP14大会上我们揭晓了一个可以将蛋白质3D结构预测精确到原子水平的全新AlphaFold系统,此后我们承诺会分享我们的方法,并为科学共同体提供广泛、免费的获取途径。“今天我们迈出了承诺的第一步,在《自然》期刊上分享AlphaFold的开源代码,并发表了系统的完整方法论,详尽细致说明AlphaFold是如何做到精确预测蛋白质3D结构的。作为一家致力于推动科学进步的公司,我们期待看到我们的方法将为科学界启发出什么其他新的研究方法,也期待很快能和大家分享更多我们的新进展。”  DeepMind团队认为,这一精准的预测算法可以让蛋白质结构解析技术跟上基因组革命的发展步伐。  Baker团队也提到,“我们希望这个新工具将继续造福整个研究界。”  中国科学院合肥物质科学研究院强磁场科学中心研究员谢灿对澎湃新闻(www.thepaper.cn)记者表示,“总的来说,对学术界来肯定是好事,肯定会促进结构生物学和相关领域的发展。在承认学术贡献的基础上的开放和共享,本来就应该是学术研究最基本的要求。”  结构生物学是谢灿的“老本行”,“我当年花了8年的时间去解析一个蛋白的晶体结构,我能切身体会如果有一个精准预测蛋白结构的算法出现,对结构生物学家意味着什么。”  但他认为,不必要担忧这些算法的出现会让结构生物学家失业,在技术迭代之下,结构生物学这些年受到的冲击太多了,“而事实上,只不过是某一个领域某一个技术在某一个历史阶段更容易出工作出成绩。”谢灿认为,无论再精准的预测,终究也只是预测,“AlphaFold2不是实验,同样也需要实验去证实。”  王宏伟在AlphaFold2刚出现之时也曾评价道,对于复杂的结构生物学问题,预测手段本身还不能号称完全解决了问题。实验结构生物学领域接下来需要做的一个事情是要拥抱变化,更好地与预测方法结合以及共同发展。
  • 波通公司签订降落数值仪最大订单
    波通公司宣布正在与澳大利亚阿德莱德市的维特拉公司签订降落数值仪的大订单,根据合同波通公司将在澳大利亚维特拉谷物处理系统中发货安装78台降落数值仪。 全套系统包括主机、冷却塔(节水)和振荡器(提高重复性),同时还购买了波通公司的实验室粉碎磨(带喂料器)来确保正确的样品制备。 波通公司CEO, Sven Holmlund说&ldquo 我们很荣幸获得这次很可能是降落数值仪全球最大的合同&rdquo 这次订单进一步证实我们优秀的产品和服务质量,加强了我们在谷物行业作为最佳供应商的地位。
  • 基于Cytek光谱流式,罗氏公布21色20混1的复杂混样检测技术最新进展
    随着全光谱流式的成功商业化以及染料技术的更新与发展,多色流式细胞术在近年来取得长足进展。众多复杂(超过20色)免疫表型分析方案已在流式方法学、新冠感染免疫、肿瘤微环境等领域研究工作中得到充分的设计与验证,并在血液病检测、免疫监控、细胞治疗等方面展现出独特优势。为了进一步提升多色流式细胞术的检测通量,罗氏公司研发团队开发了基于Cytek® ️全光谱流式的荧光编码混样技术,报道了一管样本中同时检测20个21色PBMC样本的研究进展,除效率提升外,该技术能够在批量分析中大幅降低试剂用量,有效避免人为因素引起的实验误差,并可用于混样多路分选。相关研究工作与2022年发表于Cytometry Part A。图1. CD45多色编码混样技术示意图该方法通过对CD45的多色标记实现多个样本的荧光编码,例如“5选2”的编码方案中(图2上),从5种标记不同染料的CD45单抗库中选取2种进行标记样本,最多可产生10种编码组合。数据分析时,仅通过简单的散点图圈门即可快速解码(图2下)。经实验对比,研究人员验证了“5选2”编码混样方案检测与常规单管检测结果具有较强的可比性,并证实了Anti-CD45编码混样方案不会为实验引入明显的批次效应(实验数据请参考文献原文)。图2. 5选2型编码模式(多至10样本混样)及解码圈门策略方案可靠性验证后,研究人员进一步将编码方案扩展为“6选3”模式,并开发了可用于免疫调节剂作用模式研究的21色表型分析方案,以区分T、B、M、NK细胞丰度以及不同发育阶段T细胞亚群的活化状态,该方案使用20混1的高容量混样模式评估PBMC在葡萄球菌肠毒素B(SEB)刺激下的免疫应答。Anti-CD45编码方式与多色方案如图3所示。图3. SEB刺激实验21色方案及编码混样模式解码后的流式检测数据经FlowSOM聚类区分为17个类群,并通过optSNE降维展示。结果显示,SEB刺激下,样本中各免疫细胞亚群丰度发生显著变化:活化T细胞比例大幅上升;CD4+与CD8+效应记忆T细胞(Tem)、CD4+中央记忆T细胞(Tcm)丰度发生不同程度的下降;CD14hi单核细胞几乎消失。此外,在SEB刺激样本中,研究人员通过CD279、CD134、CD137即CD154的表达区分出两种特有的活化CD4+T细胞亚群,而在对照组中并不存在。相关结果符合实验预期,进一步验证了编码混样方案的可靠性。图4. SEB刺激试验结果展示基于Anti-CD45的编码混样技术因向实验体系引入更多染料,无疑提升了多色方案的复杂性。得益于Cytek® ️全光谱流式强大的多色分析性能,荧光溢漏带来的扩散误差(SE)被有效控制,即便在21色20混1的复杂混样方案中依然得到可靠的数据表现。该编码技术在高容量混样的同时可维持细胞活性,为后续的混样流式分选创造了可能。Cytek® ️ Aurora CS新一代全光谱流式分选平台,最高支持64荧光通道6路光谱分选。Cytek® ️ Aurora CS全光谱流式分选平台(点击查看)参考文献:Junker F, Camillo Teixeira P. Barcoding of live PBMCs to assess immune cell phenotypes using full spectrum flow cytometry[J]. Cytometry Part A, 2022.关于CytekCytek® Biosciences, Inc.(Nasdaq: CTKB)作为一家全球技术领先的生命科学技术公司,通过其受专利保护的全光谱分析(Full Spectrum Profiling,FSP™ )技术,提供高分辨率、高参数和高灵敏度的新一代细胞分析工具。Cytek的创新技术通过检测荧光信号的完整光谱信息,以实现更高水平更高灵敏度的多参数检测。Cytek的FSP™ 平台包括其核心仪器—Aurora和Northern Lights™ 分析系统、Aurora CS分选系统、试剂、软件和服务,为客户提供全面和完整的解决方案。Cytek总部位于美国加利福尼亚州Fremont,在全球设有分部和分销渠道。注:Cytek® , Tonbo Biosciences, cFluor® , Full Spectrum Profiling™ , FSP™ 和Northern Lights™ 是Cytek Biosciences, Inc. 的商标或注册商标。Cytek® 全光谱检测技术相关专利包括但不限于:US10739245B2,US11169076B2,US10788411B2。
  • JCP“期刊亮点”:MALDI-TOF用于帕金森突变人类皮肤成纤维细胞的脂质分析
    p style=" text-indent: 2em " 最新一期的细胞生理学杂志(Journalof Cellular Physiology)期刊登载“期刊亮点”文章,介绍了研究者结合薄层色谱和MALDI TOF用于帕金森突变人类皮肤成纤维细胞的脂质分析的成果。 /p p style=" text-align: center " img title=" 1.jpg" src=" http://img1.17img.cn/17img/images/201711/insimg/039a6bcf-8a77-418d-b5c3-a60306d87ad8.jpg" / /p p   Parkin蛋白突变是早发性帕金森病(PD)的主要病因。蛋白质质量控制系统的损害以及线粒体和自噬过程的缺陷是导致神经退行性变的Parkin蛋白缺乏的结果。关于脂质在这些细胞功能改变中的作用知之甚少。在本研究中,parkin突变人皮肤原代成纤维细胞已被认为是PD的细胞模型,以研究与缺乏parkin蛋白相关的可能的脂质改变。皮肤成纤维细胞来自两个不同帕金酶突变的无关帕金森病患者,并将其脂质组成与两个对照成纤维细胞的脂质组成进行比较。通过组合基质辅助激光解吸/电离飞行时间质谱(MALDI-TOF / MS)和薄层色谱(TLC)分析成纤维细胞的脂质提取物。同时,研究者通过跳过脂质提取步骤对完整的成纤维细胞进行了直接的MALDI-TOF / MS脂质分析。结果表明,帕金森突变体成纤维细胞脂质谱中一些磷脂和糖鞘脂的比例发生了改变。检测到的较高水平的神经节苷脂,磷脂酰肌醇和磷脂酰丝氨酸可能与自噬和线粒体转换功能障碍有关 此外,溶血症的增加可能是神经炎症状态的标志,这是PD的一个众所周知的组成部分。 /p
  • 《自然》杂志子刊声明将调查韩春雨论文争议
    对于近来引起巨大关注的韩春雨论文争议事件,刊登该论文的英国《自然》杂志子刊《自然生物技术》发言人2日向新华社记者发来邮件,表示已了解一些研究者的相关疑虑,将按照既定流程来调查此事。  这位发言人在邮件中说:“《自然生物技术》对于人们提出的任何关于论文的疑虑都会认真对待,并加以慎重考虑。已有若干研究者联系本刊,表示无法重复这项研究。本刊将按照既定流程来调查此事。”  中国河北科技大学的韩春雨及其团队5月份在全球著名学术刊物《自然》的子刊《自然生物技术》上报告说,发明了一种新的基因编辑技术NgAgo-gDNA。论文一发表便引起全球生物学界巨大关注,因为基因编辑是当前的热门领域,主流技术是美国科研人员的CRISPR-Cas9技术。而根据论文,NgAgo-gDNA技术与CRISPR-Cas9技术相比在一些方面具有优势。  近来一些国际同行对韩春雨论文表示质疑,如澳大利亚国立大学的研究人员加埃唐布尔焦在网上公开发文表示,他不能重复韩春雨论文中描述的实验,并且在与许多同行的讨论中得知他们也无法重复该实验。布尔焦表示,“我对NgAgo技术有严重的怀疑”,他呼吁《自然生物技术》要求韩春雨公布更多原始数据和实验细节。  《自然生物技术》发言人说:“作为在‘自然科研’旗下期刊发表论文的条件之一,作者须将材料、数据、代码和相关的实验流程及时向读者提供,不可加以不当限制。”  韩春雨近日在接受记者采访时表示,自己的论文是真实的,“我们实验室已经重复了很多次”。
  • 罗氏将推临床第三代测序 终止与PacBio的合作开发协议
    根据罗氏公司向美国证券交易委员会提交的文件,它已经终止了与Pacific Biosciences的开发、商业化和许可协议。终止将在2017年2月10日生效。  消息一出,对PacBio的股票是个重创。周四一开盘,PacBio的股价从6.90美元跌至4.22美元,并以3.89美元收盘,跌幅达到43.62%。  2013年9月,PacBio与罗氏签订协议,以它的单分子实时测序技术(SMRT)技术为基础开发一款诊断用的测序系统。包括前期、里程碑和供应付款在内,罗氏向PacBio支付7500万美元。同时,罗氏保留了以任何理由退出的选择权,只要提前60天通知。  去年,PacBio向科研市场推出了Sequel测序系统。这款仪器是由PacBio与罗氏合作开发的。当时罗氏测序部门的负责人Dan Zabrowski表示,这款测序平台将作为罗氏测序仪器的基础,最初用于临床研究,之后才用于体外诊断。  在一项声明中,PacBio的CEO Mike Hunkapiller表示,尽管公司对罗氏决定终止协议感到失望,但是“我们对这个市场已经很熟悉,罗氏的决定不会明显改变我们近期的业务扩张计划,以满足临床市场”。  “我们准备立即在临床研究和测序市场寻求机会,这不需要供应分析特异的试剂盒,而我们已经看到了这个领域的客户有很大兴趣。”Hunkapiller补充道。“我们与罗氏合作期间开发的质量框架以及我们现有的ISO 13485和ISO 9001认证让我们能很好地立足于这个市场。”  罗氏当然还有另外的选择。它在2014年收购了纳米孔测序公司Genia。今年4月,Genia与哥伦比亚大学的车靖岳(Jingyue Ju)和哈佛大学的George Church合作,在《PNAS》杂志上发表了纳米孔测序的原理论证研究。  罗氏测序解决方案部门的主管Neil Gunn表示,罗氏将更加专注于其内部的研发工作,以“推动我们的长期战略,也就是成为临床诊断测序的领导者“。”我们正积极地从内部和外部寻求多种技术和商业战略,以确保我们能够满足临床诊断测序市场上客户的特定需求,“他说。  另据消息,罗氏将在近期推出新的面向临床应用的第三代测序。不过,这对于PacBio来说也是一个好的机会,因为PacBio原来受制于协议而不能开发临床市场,如今也因协议被终结重新获得进军临床市场的权利。  由于NGS的短序列读长在大量的染色体变异疾病检测上无能为力,长片段测序在临床应用已经拉开帷幕,最近由奥巴马精准医疗计划的军师之一Euan Ashley发的一篇文章里介绍了PacBio首例临床应用,对用Illumina的Hiseq测序深度达36x也无法找出病因的临床病例,用PacBio找到了答案。在遗传疾病中,一般看法染色体结构变异占至少5成以上,用NGS也无法找出病因(RNAseq也不能解决的问题)。如今随着三代测序价格的不断下降以及开始对临床市场的争夺,想必很快会有更多精彩的研究结果涌现。
  • 光催化N-杂螺环的多组分直接组装
    你能想象有*化学也能玩成“乐高积木”吗?2022年10月5日,2022年诺贝尔化学奖授予了三位科学家:Carolyn R. Bertozzi、K. Barry Sharpless和Morten Meldal,奖励他们在发展“点击化学”和“生物正交化学”中的贡献。 问:什么是点击化学?“点击化学(Click chemistry)”是指一类能够高效生成“碳原子-杂原子链”的化学反应。点击化学有以下优势:1.区域特异性和立体特异性;2.对溶剂参数不敏感;3.反应得率高、副反应少,且原料充分反应4.实验条件简单;5.大的热力学驱动力。与点击化学的优势类似,流动化学也具有高效混合、简便*的温度控制、收率高、减少副产物等优势。 图1:发表在JOC杂志上的文章“可见光驱动光催化促进的N-异质螺环的多组分直接组装”今天为大家介绍在2022年9月,Steven V.Ley教授在JOC上一篇题为《可见光驱动光催化促进n杂螺环的多组分直接组装》的文章,演示了在温和条件下使用Vapourtec UV-150光化学反应器合成复杂的螺环化合物。1、螺环化合物20世纪六十年代起,生物学家和药物学家逐渐发现,从自然界分离得到的具有生物活性的化合物中拥有螺环结构的化合物占有很大的比例。随着研究的深入,螺环化合物的性质使他在药物研发中占据非常重要的地位。螺环化合物是指两个单环共用一个碳原子的多环化合物;共用的碳原子称为螺原子。杂环螺环结构在一定程度上改变药物分子的水溶性、亲脂性、优势构象等,使优化后的药物分子更容易成药。不同的螺环具有丰富的三维立体结构,从而提供了改善药效的可能性和药物*的创新性;既可以突破现有药物的*,又能设计全新结构或者骨架的小分子化合物。 图2:螺旋内酯固醇 图3:灰黄霉素已上市药物中,也有很多含有螺环结构的小分子药物,比如利尿剂螺旋内酯固醇(Spironolactone)(如图2所示)和抗真菌药物灰黄霉素(Griseofulvin)(如图3所示)。N-异螺旋环是在天然产物和药物中发现的有趣的结构单元,但其合成的可靠方法相对较少。传统合成方式 图4:获取螺旋环吡咯烷的策略 图5:从N-烯丙磺酰胺和烯烃中构建β-螺旋吡咯啶现有的方法通常需要几个步骤,并使用昂贵的催化剂,如钌或铑,以获得所需的产品。在过去,靠传统的办法合成目标分子,往往需要绕很多弯路。步骤越多,意味着产率越低,浪费越大。2、更高效的合成方式使用Vapourtec UV-150光反应器放大合成N-异象螺旋循环 图6:使用Vapourtec UV-150光化学反应器合成复杂的螺环化合物Steven V. Ley教授是世界*的有机化学家,剑桥化学系研究主任,皇家化学会RSC的前任会长,教授在有机合成方法学和全合成领域中的成就斐然。Ley教授在“可见光驱动光催化促进n杂螺环的多组分直接组装”一文中,演示了在温和条件下使用Vapourtec UV-150光化学反应器合成复杂的螺环化合物。在近年来发展的叠杂杂螺环的大多数制备方法中都需要多步步骤。然而,光催化的最新应用可以使合成步骤大大减少。作者利用光催化生成N-中心自由基,可构建多种β-螺环吡咯烷,包括药物衍生物。利用流动化学技术,还证明了产品的进一步衍生化具有可行的放大程序。光催化能够在温和的条件下通过高度反应的中间体以模块化的方式构建复杂的分子结构。在开发的螺环吡咯烷的制备方法中,大多数都能够制备α-螺环吡咯烷,克服了制备α-三级胺的一些困难。简化合成路线的解决方案之一是采用无试剂化学方法。从光化学上讲,以氮为中心的自由基的产生相对简单,并被证明可以激活N-H和N-X键。通过在合成螺旋环化合物时使用这种方法,可以避免四元碳中心引起的立体问题,从而改善整体过程。使用VapourtecE系列进行流动反应和放大实验,该系列由三个蠕动泵和一个光反应器组成,BPR输出为8bar。使用的光源是Vapourtec 61W(辐射功率)365 nm(峰值强度)LED灯光,辐射带范围为350&minus 400nm。利用在线监测,大大的缩短了研究时间,提高研究效率。作者使用配有365nm高功率LED灯的E-photochem演示了一系列螺环吡啶的合成。在合成双叠氮杂螺环的过程中,该方法使用光化学反应器UV-150进行了放大,产量达到了100克/天。3、实验总结1、相比传统的的反应,该反应具有操作简便、条件温和、反应时间短等优势;2、利用在线监测,大大的缩短了研究时间,提高研究效率;3、在温和的条件下通过高度反应的中间体以模块化的方式构建复杂的分子结构;4、利用流动化学技术,还证明了产品的进一步衍生化具有可行的放大程序。4、关于Vapourtec Vapourtec是一家专业设计和制造流动化学设备的公司。Vapourtec公司的连续流动化学系统质量可靠、性能成熟、高效能模块系统可随您的流动化学生产能力的扩大而拓展。反应器可进行组合,实现多步合成。无需使用任何工具数秒内即可完成反应器更换。UV-150反应器UV-150反应器消除了传统批次光化学的问题,可以充分发挥光化学的潜力。在连续流动操作下,它提供了安全、精确、高效、一致和可扩展的光化学。 图7:vapourtec UV-150光化学反应器● UV-150光化学反应器与Vapourtec R系列和E系列流化学系统兼容,操作简便;● Vapourtec提供3种不同的光源,提供220纳米至650纳米之间的精确波长;● 可以在-20°C到80°C之间设置反应温度。参考文献[1] Multicomponent Direct Assembly of N-Heterospirocycles Facilitated by Visible-Light-Driven PhotocatalysisOliver M. Griffiths and Steven V. LeyThe Journal of Organic Chemistry 2022 87 (19), 13204-13223 DOI:10.1021/acs.joc.2c01684[2] Total Synthesis of Phytotoxic Radulanin A Facilitated by the Photochemical Ring Expansion of a 2,2-Dimethylchromene in FlowBruce Lockett-Walters, Simon Thuillier, Emmanuel Baudouin, and Bastien NayOrganic Letters 2022 24 (22), 4029-4033 DOI: 10.1021/acs.orglett.2c01462
  • 重磅成果:再帕尔阿不力孜、贺玖明研究团队利用空间代谢组学技术绘制大鼠脑代谢网络图
    2021年4月,中国医学科学院药物研究所天然药物活性物质与功能国家重点实验室再帕尔阿不力孜、贺玖明团队在分析化学一区《Analytical Chemistry》期刊发表封面文章,题为“Mapping metabolic networks in the brain by using ambient mass spectrometry imaging and metabolomics”的研究成果,采用自主研发的质谱成像空间代谢组学技术,全面绘制了大鼠脑代谢网络,深入解析了东莨菪碱致大鼠记忆功能障碍模型脑的代谢变化。  封面文章  研究背景  大脑是结构最复杂的器官之一,主要功能与其微区的分子相互作用密切相关。大脑的小分子调节机制对理解中枢神经功能、精神疾病机理和药物研发有很大的帮助。动物的认知过程和行为控制均依赖于脑部强大的中枢神经网络——神经连接体。科学家进行了很多研究,但是对脑部小分子网络的研究仍有不足。  分子成像技术是研究大脑中DNA、RNA、蛋白质和代谢产物的强大工具。质谱成像技术(MSI)是一种检测大脑中蛋白质、代谢物和脂质物质的高灵敏度和高通量分子成像技术,在肿瘤边缘诊断、肿瘤生物标志物发现、药物分布和机理阐述等领域有广泛的应用。  本文作者开发了一种基于敞开式空气动力辅助解吸电喷雾离子化质谱成像(AFADESI-MSI)技术的代谢网络映射方法,对大鼠脑不同极性的小分子代谢物(m/z 50-500 Da)进行微区分布研究,不仅鉴定出脑部几乎所有重要的代谢物,还绘制了包含神经递质、嘌呤,有机酸,多胺,胆碱、碳水化合物和脂类等20条通路的代谢网络,并使用这种代谢网络映射质谱成像方法解析了东莨菪碱致大鼠记忆功能障碍模型脑的代谢变化,为中枢神经系统疾病的治疗提供新的信息和见解。研究思路  研究方法  1.样本准备  Sprague-Dawley大鼠模型腹腔注射东莨菪碱后被杀死(处理组,3只),对照组大鼠(3只)也用同样方法杀死。获取大鼠整个大脑,在低温下将大脑切成连续的矢状切片(暴露出海马和纹状体),用于Nissl 染色、H&E染色和质谱成像检测。  2.空间代谢组实验  使用AFADESI-MSI分析,代谢物质量数范围50-500 Da,质谱分辨率70,000。  3.数据处理和代谢网络分析  原始数据经过转化,再使用自建MassImager软件获取成像结果 在获取差异代谢物的高分辨率质谱信息后,使用Metaboanalys在线数据挖掘软件以褐家鼠(rattus norvegicus)为参考完成代谢物高通量定性,并输出代谢网络信息。大脑中复杂网络可视化使用Cyctoscope软件完成。  4.统计分析  两组大脑样本选择相同的微区,并将组织学和特征离子图像叠加进行确认。数据处理结果使用t检验(n = 3)进一步验证。大脑微区包括松果体、中脑导水管、脑桥、梨状皮质、延髓、丘脑、纹状体、海马、胼胝体、嗅球、大脑皮层、小脑皮层、穹窿、小脑延髓和丘脑。  研究结果  1.AFADESI-MSI用于大脑中极性代谢物的定位  如图1所示,将大鼠大脑连续矢状切面通过ESI探针对逐个像素进行扫描,并将解吸的代谢物离子传输到高分辨率质量分析仪进行分析。图1E是大鼠脑部某个像素点的一个代表性质谱图,在该图中可以观察到数千个代谢物的峰。AFADESI-MSI图像还表明脑部不同功能性区域中代谢物浓度的变化。图1A-D显示了代表性代谢产物图像,在松果体、纹状体、海马、胼胝体和嗅球等亚区域具有特定分布。这些异质代谢分布与大鼠脑的功能和结构复杂性高度一致。  实验结果表明,AFADESI-MSI的空间分辨率小于100μm,代谢物质量最大差异为0.001Da,同一物质的检测动态范围高达1000倍。如图1所示,通过AFADESI-MSI可在大鼠脑部检测到一些呈特征性分布有代表性的极性代谢物,其强度范围从0到104甚至到106。  图1 (A-E)使用AFADESI-MSI获得的用于构建大鼠大脑代谢网络图的代表性极性内源性代谢物   (F)AFADESI-MSI数据采集过程   2.在大鼠脑绘制特定区域分布的极性代谢物图谱  使用AFADESI-MSI在正离子和负离子模式下分别获得298个和372个微区轮廓清晰的代谢物离子图像。使用精确分子量并结合同位素丰度,通过人类代谢组数据库(HMDB)对离子图像进行识别,鉴定出多种内源极性代谢物,包括氨基酸、核苷酸或核苷、碳水化合物、脂肪酸和神经递质等。  中枢神经系统(CNS)的特定功能和特定解剖区域相关。例如,乙酰胆碱在大脑皮层中高度表达 γ-氨基丁酸是一种抑制性神经递质,其在大脑皮层的信号强度较低,在中脑、嗅球和下丘脑中的浓度较高 多巴胺在纹状体含量较高 组胺(一种兴奋性神经递质)主要分布于丘脑和下丘脑。松果体在睡眠和光周期调节中起着重要的作用,并且由于其体积小容易被忽视。在松果体区域中,作者检测到106种极性代谢物,例如吲哚乙醛、吲哚、5' -甲硫基腺苷和褪黑激素,它们在该微结构的表达最高。褪黑激素由松果体分泌,起到调节昼夜节律的作用。质谱成像结果表明褪黑激素只能在松果体检测到。褪黑激素的上游代谢物血清素(5-HT)在松果体中也有特定的分布。此外一些未知的代谢物也仅在大鼠大脑的某个很小但特定的区域中。以上结果表明,AFADESI-MSI方法可以直接检测极性代谢产物,并具有高特异性,能呈现其在大脑微区分布的图像。  3.在大鼠脑中绘制微区代谢网络图  要了解大脑的结构区域发生的复杂代谢过程,不仅应准确表征代谢物,还要研究其相关性。从大鼠脑微区中提取代谢谱进行代谢网络重建。从15个微区提取的MSI数据进行峰挑选和峰对齐(图1F),包括松果体、中脑导水管、脑桥、梨状皮质、延髓、丘脑、纹状体、海马、胼胝体、嗅球、大脑皮层、小脑皮层、穹窿、小脑延髓和丘脑,然后使用基于KEGG数据库的Metaboanalyst软件进行代谢网络分析。共找到20条KEGG代谢通路,包含126个具有微区信息的代谢物,图2显示了涉及丙氨酸-天冬氨酸和谷氨酸代谢、花生四烯酸代谢、精氨酸和脯氨酸代谢、肌酸途径、GABA能突触、葡萄糖代谢、谷胱甘肽代谢、甘油磷脂代谢、甘氨酸-丝氨酸和苏氨酸的代谢、组氨酸代谢、赖氨酸代谢、苯丙氨酸代谢、多胺代谢途径、嘌呤代谢、嘧啶代谢和TCA循环、色氨酸代谢、酪氨酸代谢、缬氨酸-亮氨酸和异亮氨酸代谢和类固醇激素合成途径。质谱成像方法提供了一种直接获取代谢网络信息的途径,以系统地深入了解大脑的代谢活动。  图2 通过AFADESI-MSI和Metaboanalyst获得的大鼠脑中的代谢网络  图3A展示了嘌呤代谢的分布和代谢途径,共包含17个核苷酸及相关代谢产物,饼图代表了某种代谢物在不同大脑微区的相对含量和分布,图3A中显示出不同代谢物的不同局部特征。例如腺嘌呤核糖核苷酸(AMP)和鸟苷酸(GMP)在大脑皮层和松果体中高表达,但在胼胝体和穹窿中含量较低。图3B显示了大脑不同区域的AMP分布,AMP在大脑皮层和松果体中含量很高,而在胼胝体和穹窿中含量较低。这些结果表明,大脑中代谢物分布呈现出功能性区域的差异性。这些空间和代谢途径的上游-下游转换过程为大脑局部代谢活动提供丰富信息。也证明质谱成像方法能够提供直接获取代谢网络信息的方法。  图3 (A)通过AFADESI-MSI获得的大鼠脑中嘌呤代谢途径和相关代谢产物分布   (B)腺嘌呤核糖核苷酸(AMP)在大鼠脑不同区域的分布   4.神经递质的代谢网络解析  神经递质在大脑不同区域具有极为复杂的代谢调节网络,使这些区域的中枢神经能够从事复杂的活动。作者分析了关键神经递质的代谢调控网络,分别为多巴胺、γ-氨基丁酸、腺苷、组胺、乙酰胆碱、5-羟色胺、谷氨酸和谷氨酰胺。图4A显示了神经递质以及相关代谢产物在大鼠脑的分布特征,它们联系非常紧密(图4B),这些神经元彼此相互作用并形成复杂的调节网络。  图4 |(A)大鼠脑中神经递质及其相关代谢产物的分布   (B)神经递质调节和代谢网络   5.从大鼠脑的代谢网络映射中发掘空间变化  东莨菪碱治疗的大鼠是一种学习和记忆障碍模型,通常用于研究抗遗忘药疗效。本文作者使用AFADESI-MSI分析了对照组和东莨菪碱治疗的大鼠矢状脑切片,将发现的代谢物全面映射代谢网络,并通过代谢组学分析发现空间代谢变化。不仅可以对药物准确定量,还可以检测代谢网络相关的数百种内源性代谢物在大脑特定区域的分布。图5显示了代谢网络中检测到的各种代谢物,以及在不同大脑微区代谢物的明显改变。如图5A所示,找到三种代谢物(N-甲酰基尿氨酸、L-色氨酸和5-羟色氨酸),属于色氨酸代谢途径,意味着东莨菪碱会干扰色氨酸的代谢过程。作者分析了东莨菪碱治疗组大鼠脑的十个微区,发现脑桥中有16种表达异常的代谢产物,而在大脑皮层中发现了7种。表明在东莨菪碱治疗下,脑桥和大脑皮层可能是受影响最严重的区域。  图5 东莨菪碱模型大脑中极性代谢网络的变化  图6显示了其中几种异常表达的代谢产物的分布,例如腺嘌呤在小脑皮层被下调 组胺在中脑导水管中下调 桥脑中的磷酸乙醇胺、大脑皮层中的2-氧戊二酸、纹状体中的多巴胺、胼胝体中的抗坏血酸、下丘脑中的谷胱甘肽、小脑皮层中的L-天冬氨酸和L-天冬氨酸也有所变化,这些代谢物的质谱成像结果(图6A-H)和相对定量结果(图6I1-18)进一步表明,大脑中药物作用后代谢物的多样性和区域特异性。这些代谢物不分区分析、含量进行全脑平均后,代谢物的微区含量差异很容易被削减。在空间上的代谢变化表明,在东莨菪碱治疗后,大鼠脑微区的代谢网络发生紊乱。但是代谢物和代谢酶是代谢网络的关键因素,基于空间分辨的代谢组学信息为发现酶或基因异常提供了线索,但若要完成完整的代谢网络分析必须进一步验证蛋白质和基因表达水平。  图6 在东莨菪碱治疗后大鼠模型的脑部质谱成像结果和代谢产物的统计结果  研究结论  本文作者开发了一种空间分辨代谢网络作图方法,通过无需衍生化、特定标记或复杂样品预处理的高通量AFADESI-MSI方法和代谢组学策略,在具有复杂结构化脑组织中发现代谢分子变化。能检测出多种极性内源性代谢物,并绘制相关代谢网络,提供组织微区分布的图谱。还将多种功能性小分子(例如核苷酸、多胺、肌酸、神经酰胺代谢物)含量分布可视化。这些代谢物构成大鼠脑关键代谢网络,为理解大鼠脑的作用机制和功能探索提供新的见解。在本文中,该方法被用于东莨菪碱处理的大鼠模型脑部的代谢研究。结合微区统计数据,该方法可以绘制代谢网络图、发现某些途径代谢产物的明显失调,而且还能描绘与神经疾病直接相关微区中发生的代谢变化。
  • 探索寡核苷酸杂质分离|Shim-pack Scepter Claris液相色谱柱
    探索寡核苷酸杂质分离 Shim-pack Scepter Claris色谱柱具有治疗潜力的核酸和mRNA疫苗在制药工业成为新的增长点。其中寡核苷酸发展迅猛,寡核苷酸是由20到60个碱基组成的单链或双链核酸片段。包括反义寡核苷酸(ASOs)、小干扰RNA (siRNA)、microRNA以及适配体。在生物化学、分子生物学和遗传学中有着广泛的应用。寡核苷酸由于细胞外稳定性低,溶剂被核酸酶解,同时难以进入细胞等因素的影响发展缓慢,近些年,由于核酸修饰(磷酸骨架,碱基以及糖环的修饰)以及递送介质(脂质体等)等相关技术的突破,使其成为继小分子药物、抗体蛋白质药物之后,出现的一类新模式药物,是近年药物开发的热点之一。寡核苷酸的结构决定了它极性非常强,在常规的反相色谱柱上很难保留,可以使用HILIC模式、离子交换模式或者借助于离了对试剂在反相柱上实现保留,不同分离模式各自有自己的局限性。IP-RP作为其中最常用的一种,应用范围最广,今天我们从方法开发的角度一探究竟。Part 1方法初筛不同离子对试剂的选择对于物质的保留差异较大。此次分析的样品是20个碱基的寡核苷酸,优先选择TEA作为离子对试剂,后期因为涉及进质谱进行质量确认,所以加入了100mmol的HFIP增加灵敏度。采用不同比例的有机相、结合不同浓度的缓冲盐浓度,优化色谱方法,得到24张色谱图,叠加如下文图1所示。整体色谱柱峰形优异,惰性化柱管对于因柱管导致的峰形拖尾等问题,改善明显。从②⑤⑧可以看出,随着离子对试剂浓度的增加,保留提升,分离得到进一步的改善。HFIP浓度以及有机相的比例会影响基线,200mmol/L的HFIP中有100%纯乙腈流动相会引起基线的抬升,比如⑬ , ⑯ , ⑲ 和㉒ 的实验结果。对比结果⑧和结果⑳ ,可以看出HFIP的提升,对于分离展现出不同的效果。此外,在一些文章中也提到需要在流动相中加入一定比例的HFIP,这样使得TEA的溶解度变小, 因而TEA更容易绑缚在固定相上形成更稳定的离子对试剂层 。这促使离子相互作用的分离机制非常显著,尤其针对于硫代寡核苷酸。从②③的实验结果可以看出,不同的有机试剂含量对于杂质分离展现不同的选择性。不同流动相HFIP和TEA中的浓度、以及有机溶剂乙腈与甲醇的混合比例对FLP和FLP相关杂质分离影响较大。最终,通过矩阵设计,考察分离效果,结果表明实验条件⑤的分离效果最佳,采用的流动相条件为:100mM HFIP 10mM TEA/ACN 50%_MeOH 50%。Part 2方法优化文献中提到升高的柱温通常减小峰宽,从而一定程度上改善了杂质分离,因此也是主要的一个影响因素。Scepter Claris C18色谱柱采用杂化硅胶,不仅具有杂化硅胶可以耐受高柱温的特性,而且Scepter Claris色谱柱采用生物惰性涂层,相比于其他柱管的惰性化程度,惰性更优,峰形改善更明显。所以,进一步优化如图3所示,柱温65℃的峰展宽更弱,峰形更窄。完整实验结果请查看“岛津实验器材”微信公众号或直接访问:https://mp.weixin.qq.com/s/NIT32ALeXXVa0t17JJ66uw 采用岛津Nexera XS inert 系统,配套岛津全新卓越惰性杂化硅胶色谱柱——Shim-pack Scepter Claris C18,从流动相比例、梯度、柱温等方面优化方法,避免了不锈钢柱管吸附导致的峰形问题,有效实现寡核苷酸的分离分析。结合LabSolutions MD可实现整个工作流程优化自动化,包括生成分析进度表、如自动峰值跟踪具体的数据处理功能、色谱的评价值和设计空间等,有效提升方法开发的效率。立即询价产品目录《岛津Shim-pack Scepter系列液相色谱柱》点击立即查看最新药斯卡排行榜
  • 《科学》杂志评出今年十大科学进展
    美国《科学》杂志18日公布了该刊评选出的2008年十大科学进展,其中在对细胞重新编程“定制”细胞系方面的进展名列第一位。   《科学》杂志说,这些细胞系以及“定制”它们的有关方法,为科研人员理解甚至未来治愈一些医学上的顽疾提供了工具,比如帕金森氏症、Ⅰ型糖尿病等。   《科学》杂志负责评选的编辑罗伯特孔茨说:“当《科学》杂志的作者和编辑们着手挑选今年最大的科学进展时,我们关注的是那些能够解答一些重大问题的科学研究,比如宇宙如何运作,以及那些为未来新发现奠定基础的科学研究。我们的首选——细胞重新编程技术,几乎是在一夜之间开启了一个生物学研究新领域,而且有希望促成一些能够挽救生命的新的医学进展。”   《科学》杂志评选出的其他9项进展包括:   ——系外行星,眼见为实:今年,天文学家们利用特殊的望远镜技术将行星微弱的光线与恒星明亮炫目的光芒区分开来,第一次直接观测到了太阳系外围绕其他恒星运转的行星。   ——癌症基因名单扩充:通过对来自不同癌症(包括胰腺癌和胶质母细胞瘤这两种最致命的癌症)细胞基因进行测序,科研人员发现了数十种与癌症有关的基因突变,这些变异使得细胞分裂失去控制,导致细胞一步步发生癌变。   ——神秘的新型材料:高温超导体是在某个相对较高的临界温度下电阻突降至零的材料。在2008年,科研人员制造了一场“高温超导轰动”,因为他们发现了一类全新的以铁化合物为基础的高温超导材料,这是继“铜-氧”化合物高温材料之后高温超导领域的最重大进展。   ——观察蛋白质的工作:生物化学家今年取得了令人惊讶的新进展:他们“看”到了蛋白质如何与目标结合,然后转换细胞的代谢状态,起到促成某一组织特性的作用。   ——迈向可再生能源:今年,科研人员发现了一种非常有应用前景的新工具,能够把风能、太阳能发电等所产生的过剩电能进行规模化存储。这种新工具就是并不难获取的钴磷催化剂,在其作用下,电能把水裂解,将氢分离,然后就可以把氢填充到燃料电池中进行发电。   ——胚胎视频:2008年,研究人员对发育中的胚胎内部细胞进行了史无前例的细致观察,他们对组成斑马鱼胚胎的大约1.6万个细胞的运动进行追踪,并对追踪的影像进行了分析。   ——“好脂肪”工作过程:“好的”褐色脂肪可以燃烧“坏的”白色脂肪,为身体产生热量。科学家的研究发现,他们可以将“好脂肪”转变为肌肉,反之亦然。这一研究将来可能会为治疗肥胖症提供新方法。   ——计算物质世界的重量:物理学家最新的计算数据表明,标准模型(即描述大多数可见宇宙中的粒子及其相互作用的标准模型)非常准确地预测了质子和中子的质量。   ——更快、更廉价的基因组测序:从长毛猛犸象到癌症患者,科研人员今年又报告了一批新的基因组测序成果。这些研究借助了多种测序技术,这些先进的测序技术比当年用于第一次人类基因组测序的技术要快速、便宜得多。
  • 罗氏诊断在华推广KAPA NGS新一代测序系列产品
    (2016年10月1日,上海)全球体外诊断市场领导者——罗氏诊断正式宣布完成对Kapa Biosystems(简称Kapa)公司KAPA Next Generation Sequencing(NGS,新一代测序)系列产品的全面整合。自今日起,罗氏诊断中国将直接出售、分销和支持KAPA NGS和HiFi系列产品,为科研机构、临床研究中心、检测实验室和生物科技公司提供完整的基因检测解决方案。 基于开发差异化新一代代测序产品线的承诺,罗氏诊断于2015年收购了新一代测序上游工作流程的核心试剂品牌领导者——美国Kapa公司。Kapa率先采用定向进化技术平台(Directed EvolutionPlatform)这一在实验室中模拟自然筛选的蛋白质工程技术,针对特定应用的特殊要求,在巨大的人工突变库中大通量、快速地筛选出性能优异的定制酶,加快了开发高性能分子生物学试剂的进程,对DNA和RNA的新一代测序、DNA扩增和分子诊断,提供性能卓越的酶制剂。 Kapa的专利技术和KAPA NGS系列产品进一步丰富和完善了罗氏现有的基因测序产品线,成为罗氏基因检测解决方案的完美补充。在新一代测序全流程中,KAPA NGS系列产品将提供每个样本制备步骤的对应产品,涵盖基因组、转录组、表观遗传组学等当前新一代测序可及的全部实验流程,不仅能满足DNA和RNA文库构建、文库扩增、文库定量和人基因组DNA样本质量控制的全流程要求,并且能够提供磁珠、建库接头、核糖体RNA去除、DNA片段化等模块,为用户提供出色的建库性能,快速精简的实验流程,具有多种应用的适用性和模块组合灵活性,并能对接多种自动化平台,轻松实现自动化。 罗氏诊断中国总经理黄柏兴教授表示:“罗氏诊断始终致力于推动基因组学和测序领域的发展。经过了一年的整合,KAPA NGS系列产品的正式加入,将进一步丰富罗氏现有的专业技术和测序产品线。凭借专业和效率,罗氏诊断中国将一如既往为客户提供最优质的产品和服务。相信Kapa简化的工作流程和专业的技术支持将为国内用户带来极大的便利和极高的价值,全面满足客户需求。”关于罗氏诊断 罗氏诊断致力于开发和提供从疾病的早期发现、预防到诊断、监测的创新、高性价比、及时和可靠的诊断系统和解决方案,从而帮助医务人员提高患者的治疗效果,改善人们生活质量,并减少社会医疗成本。 罗氏集团拥有医疗行业唯一一个涵盖诊断和制药领域创新领导者的独特地位。这一结合使我们能够应用突破性的疾病知识来开发创新产品、发现和监测疾病,并引导治疗方案的选择。2000年8月,罗氏诊断产品(上海)有限公司作为外商独资公司在上海外高桥保税区成立,开展中国大陆的业务。 公司自成立以来业务不断增长,规模也不断壮大,是中国体外诊断市场的领导者。至今,公司拥有2,000多名员工,分布在全国70多个城市。公司总部位于上海,在北京、广州、南京和杭州均设立了分公司。 公司产品销售及服务网络遍布全国各地,以其一流的技术产品,配以完善的服务赢得了广泛的市场及信誉。罗氏诊断对中国市场作出坚定的承诺,将以提高检测效率和医学价值来为中国的医疗健康事业和人民生活质量的提高作出卓越贡献。关于Kapa Biosystems Kapa Biosystems由Trey Foskett、Paul McEwan、Ron McEwan和Chris McGuinness共同创建于2006年,公司率先采用定向进化技术开发出一系列高性能试剂广泛应用于生命科学领域。全世界成千上万的科学家使用Kapa Biosystems的产品,并在4,000多期同行查阅出版物中被引用。KapaBiosystems将继续致力于开发创新型的解决方案,用以加速基因组研究,推动癌症以及复杂遗传性和传染性疾病的诊断、监测和治疗。 Kapa Biosystems总部位于马萨诸塞州的威尔明顿,在南非开普敦建有研发和生产基地。欲了解更多,点击进入:罗氏诊断产品中心http://www.instrument.com.cn/netshow/SH101698/product.htm
  • 第四届拉曼光谱网络会议视频上线!假期看它来充电
    仪器信息网讯 2022年9月23日,由仪器信息网与上海师范大学联合举办的第四届拉曼光谱网络会议(iCRS2022)顺利于线上闭幕。22日与23日两日,会议共邀请27位各个领域专家,分别围绕SERS与TERS,拉曼光谱在物理与材料领域的应用,拉曼光谱在环境与食品领域的应用,拉曼光谱在生物与医药领域的应用四个主题进行演讲。本次会议邀请拉曼光谱技术及应用领域的专家,以在线网络报告交流的形式,针对当下拉曼光谱相关研究热点进行了探讨。会议回放》》》第四届拉曼光谱网络会议(iCRS2022)08:50-8:55大会致辞(观看回放)姚建林苏州大学 教授9月22日上午 专场一:SERS与TERS 主持人李剑锋 厦门大学 教授09:00--09:30毒物毒品表面增强拉曼光谱检测方法应用研究(观看回放)杨良保 中科院合肥物质科学研究院 研究员09:30--10:00基于针尖增强拉曼光谱的纳米分辨表界面研究(观看回放)王翔厦门大学 副教授10:00--10:30表面增强拉曼散射技术用于食品安全检测(观看回放)王睿瑞士万通中国有限公司 产品经理10:30--11:00溶液中构建单热点表面增强拉曼散射技术在单分子测序上的应用(观看回放) 黄建安芬兰奥卢大学 (University of Oulu) 助理教授 11:00--11:30Side illumination AFM-TERS measurements in liquid environment using HORIBA NanoRaman(观看回放)Ana Isabel Perez JimenezHORIBA Scientific Senior Application Specialist11:30--12:00表面增强拉曼光谱(SERS)传感器的仿生学构建(观看回放)杨士宽 浙江大学 研究员 9月22日下午 专场二: 拉曼光谱在物理与材料领域的应用主持人谭平恒 中国半导体所 研究员14:00--14:30拉曼光谱在高压下低维碳及相关材料研究中的应用刘冰冰 吉林大学14:30--15:00安东帕拉曼光谱原位检测解决方案(观看回放)史芸奥地利安东帕 应用工程师15:00--15:30光镊受激拉曼研究单液滴化学反应动力学张韫宏 北京理工大学 教授15:30--16:00雷尼绍拉曼光谱技术发展及其在锂电材料领域的应用(观看回放)王志芳雷尼绍(上海)贸易有限公司 应用经理16:00--16:30二维材料的圆偏振拉曼散射研究(观看回放)童廉明 北京大学 副研究员16:30--17:00爱丁堡仪器全新显微共聚焦拉曼光谱技术与应用(观看回放)李朝霞天美仪拓实验室设备(上海)有限公司 市场部应用工程师17:00--17:30金属的拉曼光谱(观看回放)雷力 四川大学 研究员9月23日上午 专场三:拉曼光谱在环境与食品领域的应用主持人韩鹤友 华中农业大学 教授09:00--09:30表面增强拉曼光谱快速检测复杂样品方法研究李攻科 中山大学 化学学院 教授/所长09:30--10:00拉曼光谱技术创新:可持续食品生产的新机遇(观看回放)杨天溪 The University of British Columbia Assistant Professor10:00--10:30赛默飞显微拉曼光谱技术表征微塑料(观看回放)吕歆玥赛默飞世尔科技(中国)有限公司 拉曼应用科学家10:30--11:00等离子体膜与环境微纳米颗粒分析(观看回放)占金华 山东大学 教授11:00--11:30基于拉曼光谱的微观结构解析与定量研究(观看回放)刘睿 中科院生态环境研究中心环境化学与生态毒理学国家重点实验 研究员11:30--11:40拉曼光谱——仪器选型如何实现降本增效王利影仪器信息网导购平台 运营经理9月23日下午 专场四:拉曼光谱在生物与医药领域的应用主持人:杨海峰 上海师范大学 处长/所长/教授13:30--14:00叁键拉曼散射:新一代光学标记技术(观看回放)沈爱国 武汉大学 教授14:00--14:30HORIBA 光谱技术在药物分析领域的应用(观看回放)王春阳HORIBA科学仪器事业部 拉曼应用工程师14:30--15:00药物递送中的活体时空拉曼光谱成像肖泽宇 上海交通大学医学院 教授15:00--15:30海洋光学拉曼解决方案及其在生物医药行业的应用(观看回放)晏彬彬海洋光学 应用工程师15:30--16:00新冠病毒快速高灵敏SERS检测研究进展杨勇 中国科学院上海硅酸盐研究所 研究员16:00--16:30拉曼光谱技术在制药领域的应用(观看回放)陈敏璠北京鉴知技术有限公司 产品经理16:30--17:00ReactRaman在反应分析和转晶监控方面的应用(观看回放)谢端鹏梅特勒托利多 技术应用顾问17:00--17:30零背景拉曼光谱传感、成像与医学检测研究(观看回放)刘定斌 刘定斌南开大学 分析科学中心副主任17:30--17:40闭幕致辞陈建 中山大学 研究员
  • 安东帕2012年台历、用户期刊 免费索取
    2012年台历/ 用户期刊 免费索取 为了答谢用户对我们的长期关注和支持,我们特别制定了2012年的台历供客户使用,台历中有安东帕2012年度最新的培训计划与安排,方便用户提前获悉市场讯息,也可方便您提前安排日常工作! (注:数量有限,送完即止) 另外2011年12月份的用户期刊已经出版,本次期刊中的内容有安东帕流变仪新产品讯息,应用报告,用户使用心得和仪器维护保养等方面,也有各项仪器保养维护的常见问题与回答。 当中收录了我们延安石油化工厂质量监督科的客户为我们投稿的微波消解应用方面的使用心得,非常有参考价值。 我们期待更多的用户向我们期刊投稿,并积极支持我们的线上线下互动活动,为我们更全面了解客户需求提供一个便捷的渠道。 尊敬的先生/女士,您好 感谢您在过去一年来对我们的支持。 今年,我们预留了300份台历和用户期刊供客户免费索取,领用完毕,活动即截止,请详细填写您的信息,如邮编地址等。我们将在活动结束后的15个工作日内为您邮寄,还请注意查收。 在此,也诚挚邀请您用1分钟为安东帕公司做一些小小的建议,您的建议会有助于我们今后的市场活动与工作方式,谢谢! 注:您所提供的信息,将仅作为邮寄及统计使用,我们将予以保密,并不会泄露第三方及其他任何商业用途 。 姓名:_______________________ 电话:_______________________ 单位名称:_______________________________________________ 地址:_______________________________________________ 邮编:____________________ 仪器型号: ___________________________(必填) 产品序列号:___________________________(必填) 您对我们公司的建议:____________________ 索取方式:将以上信息发邮件到info.cn@anton-paar.com
  • 安东帕2013年用户期刊首期发布
    《安东帕用户期刊》2013年第一期已经于6月发布,近期将向各位用户邮寄。 新的一年,安东帕将积极加强与用户的信息共享,更多的应用方案选择以及全面的市场活动、展会信息介绍等。 重点摘要: 安东帕全面接手Petrotest中国区业务,并于2013年1月1日起终止对前代理商德祥科技有限公司在大中华区的授权协议。 安东帕公司对省市出入境检验检疫局葡萄酒检测实验室的采访 格瓦斯发酵液酒精度在线检测 安东帕公司为USP方法提供样品制备解决方案 新产品信息及下半年交流会、培训会信息 作为一家以研制工业及科研专用高品质测量和分析仪器为主导的企业,安东帕在测量技术方面的多个领域处于世界领先地位。我们会将用户的实际需求作为我们研发的基础,为不同需求,特殊应用的用户提供优质的服务。 用户期刊也是一个给用户提供更高质量服务和高水平交流的窗口。用户可以通过线上线下的方式与我们交流实际应用中发生的问题以及对我们产品的反馈。 如果您需要预定我们的刊物,请与安东帕市场部联系。如有建议,也请邮件或来电告知,欢迎赐教,谢谢!
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制