当前位置: 仪器信息网 > 行业主题 > >

那格列奈杂质

仪器信息网那格列奈杂质专题为您提供2024年最新那格列奈杂质价格报价、厂家品牌的相关信息, 包括那格列奈杂质参数、型号等,不管是国产,还是进口品牌的那格列奈杂质您都可以在这里找到。 除此之外,仪器信息网还免费为您整合那格列奈杂质相关的耗材配件、试剂标物,还有那格列奈杂质相关的最新资讯、资料,以及那格列奈杂质相关的解决方案。

那格列奈杂质相关的资讯

  • 惠氏营养品在南京铭奥购买德国盖博的牛奶杂质度测定仪/杂质度检测仪/杂质度分析仪SEDILAB-E
    惠氏营养品在南京铭奥购买了德国盖博的牛奶杂质度测定仪/杂质度检测仪/杂质度分析仪SEDILAB-E。 技术参数 全自动杂质度测定仪 → 用于乳品,牛奶杂质度的测试→ 检测速度:800样品/小时→ 每一滤膜可测500ml牛奶溶液→ 杂质度板直径:32mm
  • 飞纳电镜|锂电池全自动杂质分析方案助力锂电子电池工艺优化
    2021 年 7 月 14 日 - 16 日,以“锂电安全”为主题的第四届全国锂离子电池安全性技术研讨会在江苏省苏州市张家港隆重举行。 本次会议由清华大学核研院锂离子电池实验室和清华大学-张家港氢能与先进锂电技术联合研究中心共同发起组织并主办,由清华大学核研院何向明老师当任会议主席,清华大学王莉老师、刘凯老师和冯旭宁老师当任会议副主席。飞纳电镜的应用技术专家与来自全国新能源、汽车、船舶、电子等行业代表展开深入交流,探讨电子显微分析技术在分析检测领域的应用。 无论是正极材料,还是负极材料,一旦在原材料或者生产过程中引入杂质元素,这些杂质不仅会降低其中活性材料的比例,还会催化电极材料与电解液的副反应,甚至穿刺隔膜,严重影响电池的电化学性能,造成安全隐患。因此,严格把控锂电池的清洁度以及对杂质元素进行有效分析,至关重要。就此飞纳电镜针对锂电池行业的这一痛点,会上为大家分享了飞纳全自动锂电池杂质分析方案。 会议采取演讲加讨论的会议形式。来自清华大学、中科院青岛能源所、上海交通大学、中国科技大学、武汉理工大学、华东理工大学、中电院安全技术研究中心、比亚迪、CATL、ATL、莱茵技术有限公司、华为技术有限公司的 330 余位锂电领域的专家、学者和企业研发人员参加了本次会议。会议开幕式由清华大学锂离子电池实验室主任何向明老师主持,彰显了清华大学在锂离子电池安全性研究方面的突出地位和鲜明特色。 清华大学核研院何向明老师 清华大学王莉老师 会议围绕锂离子电池安全性问题根本起因及安全技术研发出发,从电池热失控分析、关键电池材料改进和研发进展、电池安全性设计与制造,安全测试评估以及电池安全使用等多个视角,30 位专家学者分享了他们的最新研究成果与科研理念。在为期一天半的会议中,会场充满了浓郁的学术氛围,参会代表踊跃提问,专家学者细致耐心解答,大家收获到的不只是充分的交流,还有珍贵的友谊和扎实的合作。本次研讨会的成果将推进锂电产业与技术的合作与发展,进一步提升我国安全性锂离子电池的研发与生产水平。
  • 利用数据非依赖质谱技术定量分析化学合成B型利钠肽中的杂质肽
    p style=" text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.75em " 相对于数据依赖质谱(Data-dependent& nbsp acquisition,DDA)技术,在数据非依赖质谱(Data-independent& nbsp acquisition,DIA)采集中,预先设定好的离子采集范围将被切分为若干小窗口,质谱仪可匀速、高频地对每个窗口中的的母、子离子进行选择、碎裂和记录,从而无遗漏、无差异地获得样本中所有离子的全部碎片信息。这样,在前端色谱分离度良好的情况下,便无需使用理化性质相同的同位素标记物作为内标进行定量(Label-free),极大的拓宽了定量灵活度,可以节约成本、减少定量环节,理论上也可以减少结果的不确定度。比较形象的描述是:DIA就像地毯式轰炸,无遗漏地打击全部目标。2015年,《Nature Method》将DIA技术评为未来几年中最值得期待的方法之一[1]。 /p p style=" text-align: center margin-top: 10px margin-bottom: 10px line-height: 1.75em text-indent: 0em " img style=" max-width: 100% max-height: 100% width: 600px height: 588px " src=" https://img1.17img.cn/17img/images/202010/uepic/7e2121df-7505-45b8-9462-425f5998dce0.jpg" title=" 图片1.png" alt=" 图片1.png" width=" 600" height=" 588" border=" 0" vspace=" 0" / /p p style=" text-align: center margin-top: 10px margin-bottom: 10px line-height: 1.75em text-indent: 0em " 图1& nbsp DDA与DIA技术的应用对比示意图[2] /p p style=" text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.75em " B型利钠肽(B-type& nbsp natriuretic& nbsp peptide,BNP)是心衰临床检测和治疗过程中极为重要的多肽分子,其含量水平将直接作为心衰患者心肌功能的分级依据。因此,建立高准确度定量分析方法,研制量值准确可靠的标准物质,为临床检测进行量值传递和校准,不但符合ISO17511的要求,也是目前临床化学界的共识。尽管化学合成多肽已经广泛用于临床诊断、药物研发、化学检测等领域,但其中所含结构类似肽的分离、分析,一直是行业内关注的焦点。因为杂质肽往往与主成分的活性不一致,其他理化性质也存在一定差异。尤其在药物和临床诊断研究中,各国药典、诊疗指南、专家共识等,对结构类似杂质肽的含量及检出能力均有明确要求。 /p p style=" text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.75em " 中国计量科学研究院李红梅团队采用DIA技术,建立了内标肽辅助的MS2-High3定量策略,对化学合成B型利钠肽中的杂质肽进行了定量分析。由于作者在待测BNP样本中加入了已知量的内标肽,且该内标肽的量值可溯源至氨基酸国家标准物质,因此,后续的杂质肽定量结果同样具备计量学溯源性。该方法的最大特点是分析高效与准确,在2小时内,可对合成BNP中的10种含量较高的杂质肽进行平行定量,非常适合对BNP药物(奈西利肽)、标准物质、校准品等开展质量控制与分析。目前,该研究已被“欧洲临床化学与检验医学联合会”的官方期刊《Clinical& nbsp Chemistry& nbsp and& nbsp Laboratory& nbsp Medicine》接收并先期在线发表(图2)。 /p p style=" text-align: center text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.75em " & nbsp /p p style=" text-align: center margin-top: 10px margin-bottom: 10px line-height: 1.75em text-indent: 0em " img style=" max-width: 100% max-height: 100% width: 600px height: 195px " src=" https://img1.17img.cn/17img/images/202010/uepic/e325ef64-df1b-4118-8d4a-7c778606669c.jpg" title=" 图片2.png" alt=" 图片2.png" width=" 600" height=" 195" border=" 0" vspace=" 0" / /p p style=" margin-top: 10px margin-bottom: 10px line-height: 1.75em text-indent: 0em text-align: center " 图2& nbsp 基于Label-free& nbsp DIA质谱技术分析BNP中杂质肽 /p p style=" text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.75em " & nbsp /p p style=" text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.75em " 参考文献 /p p style=" text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.75em " [1] Allison Doerr,& nbsp DIA mass spectrometry. Nature Methods,& nbsp 2015 (12): 35. /p p style=" text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.75em " [2] Jarrett D Egertson, Brendan MacLean, Richard Johnson, Yue Xuan, Michael J MacCoss, Multiplexed peptide analysis using data-independent acquisition and Skyline. Nature Protocols, 2015 (10): 887-903. /p p style=" text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.75em " & nbsp /p p style=" text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.75em " 2020年11月10-12日,中国计量科学研究院和国际计量局拟联合举办 span style=" color: rgb(255, 0, 0) " strong 第三届 “药物及诊断试剂研发与质控——测量与标准,质量与安全(TD-MSQS 2020)” /strong /span 国际研讨会,以期进一步促进该领域的学术交流和技术发展,提升企业的研发水平和产品质量。本次会议将在南京市政府的支持下,在江苏省南京市举行。 /p p style=" text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.75em " 本次会议可通过官方网站http://tdmsqs.ncrm.org.cn注册或扫描二维码注册,注册成功后请填写参会回执发送至会议邮箱pptd@nim.ac.cn。 span style=" text-align: center text-indent: 0em " & nbsp /span /p p style=" text-align: center text-indent: 0em margin-top: 10px margin-bottom: 10px line-height: 1.75em " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202010/uepic/ccf4bd70-dddd-45f4-ba22-f780937c770b.jpg" title=" 图片3.png" alt=" 图片3.png" / /p p style=" text-align: center text-indent: 0em margin-top: 10px margin-bottom: 10px line-height: 1.75em " strong 欢迎各位专家、同仁报名参会! /strong /p p style=" text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.75em " 更多信息请关注会议官方网站: a href=" http://tdmsqs.ncrm.org.cn。" _src=" http://tdmsqs.ncrm.org.cn。" http://tdmsqs.ncrm.org.cn。 /a /p p style=" text-indent: 2em text-align: right margin-top: 10px margin-bottom: 10px line-height: 1.75em " 供稿:中国计量科学研究院化学所 /p p style=" text-indent: 2em text-align: right margin-top: 10px margin-bottom: 10px line-height: 1.75em " 肖鹏 宋德伟 李红梅 /p p style=" text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.75em " & nbsp /p
  • 肝素钠与其类似物杂质的高效分析
    由于肝素钠在分子量分布和电荷差异上的异质性,对其进行有效分析一直是一个挑战。而且,这些杂质通常具有与肝素钠相类似的特性,使得在使用分析方法时很难区分肝素钠与其杂质。为了有效将肝素钠从杂质中(包括生产过程产生的杂质如硫酸皮肤素和非法添加的杂质如多硫酸软骨素)分离出来,美国药典(USP)颁布了一种采用离子交换色谱鉴定肝素钠及其杂质的色谱方法(注:中国药典对肝素钠的检测方法和USP相同)。然而,目前市面上的离子交换色谱柱很少能够满足USP的分离度标准,因此,迫切需要有一种新型填料来对其进行改善。赛分科技近日开发了一种离子交换色谱柱&mdash &mdash Glycomix&trade SAX,可对如肝素钠这样的带多电荷聚糖样品实现高效分离。 图1肝素钠、硫酸皮肤素和多硫酸软骨素在Glycomix&trade SAX上的分离色谱图 色谱条件 Column: Glycomix&trade SAX, 4.6 x 250 mm Guard column: Glycomix, 4.6 x 50 mm Mobile phase: A: 0.04% NaH2PO4, pH 3.0 B: 0.04% NaH2PO4+14% NaClO4, pH 3.0 Flow rate: 0.22 mL/min Gradient: 20% - 90% B in 60 minutes Wavelength: 202 nm Column temp: 25 ℃Injection volume: 10 mL Pressures: 9.5 bar Sample: 20 mg/mL Heparin sodium 1 mg/mL Dermatan sulfate (DS) 1mg/mL Oversulfated chondroitin sulfate (OSCS) in H2O 在Glycomix&trade SAX柱上,肝素钠和硫酸皮肤素的分离度为3.8,肝素钠和多硫酸软骨素之间的分离度为5.8,远远超过USP所要求的1.0和1.5。 图2 肝素钠、硫酸皮肤素和多硫酸软骨素的标准曲线 图3 Glycomix&trade SAX的批次重现性 更多信息:http://www.sepax-tech.com.cn/products/tjpz1/lzjh/Glycomix/13.html 《Glycomix&trade SAX产品手册》 点击下载 关于赛分科技 赛分科技有限公司(Sepax Technologies, Inc)总部位于美国特拉华州高新技术开发区,致力于开发和生产药物与生物大分子分离和纯化领域的技术和产品。赛分科技是集研发、生产和全球销售为一体的实业型企业。公司主要产品为液相色谱柱及耗材、固相萃取柱(SPE)及耗材、液相色谱填料以及分离纯化仪器设备。在液相色谱领域里,赛分科技已开发出了100多种不同型号的液相色谱材料,涵盖了反相、正相、超临界(SFC)、手性(Chiral)、离子交换、体积排阻、亲和、HILIC等各种类别,为世界范围内液相色谱产品最为完善的企业之一。 赛分科技的创新技术使之生产出具有最高分辨率及最高效的生物分离产品,包括体积排阻、离子交换、抗体分离、和糖类化合物分离色谱填料和色谱柱,可广泛地应用于单克隆抗体、各种蛋白、DNA、RNA、多肽、多糖和疫苗等生物样品的分析、分离和纯化。赛分科技先进的技术和完善的产品线已使赛分成为全球生物分离的领航者。 公司网站:www.sepax-tech.com.cn www.sepax-tech.com
  • 浅谈药物质量标准中杂质的确定、限度制定、杂质测定
    一、对于杂质检查,需要有针对性的确定各原料药或辅料中需要测定的杂质,药品标准中的杂质检查项目,应包括以下几点:药物在研究中和稳定性考察中产生的;药物在生产中产生和降解的杂质。综上,药物在整个周期的杂质检查,应研究起始物料、生产工艺、药品稳定性这三个环节把控杂质检出,从而制定严格的内控质量标准,确保药品安全性。尤其是降解杂质和毒性杂质,通常为必检项目,除降解产物和毒性杂质外,在原料药中已控制的杂质,在制剂中一般不再控制。对于对映体药品,与之相关的异构体应作为杂质来检查。对于消旋体药品,质量标准中,除订入异构体标准外,还需定入旋光度。二、讲述杂质限度相关问题首先明确杂质限度中涉及到的以下术语:报告限度:超出此限度的杂质均应在检测报告中报告,并应报告具体的检测数据; 鉴定限度:超出此限度的杂质均应进行定性分析,确定其化学结构; 质控限度:质量标准中一般允许的杂质限度,如制定的限度高于此限度,则应有充分的依据; TDI:药品杂质的每日总摄入量。注:上表摘自2020版中国药典四部9102药品杂质分析指导原则创新药杂质制定:根据已进行的临床安全性数据获得。仿制药杂质制定:根据已有的标准,制定适应自研产品的杂质内控质量标准。研究杂质过程中,必要研究杂质的LOQ,LOQ浓度不得大于该杂质的报告限浓度(容易忽略项)。对于药品中的杂质检查,有薄层色谱法、高效液相色谱、气相色谱法,最常用的就是高效液相色谱方法和薄层色谱法,现介绍如下:对于采用高效液相色谱法测定杂质检出量,有以下几种办法:外标法(也称杂质对照品法)加校正因子的主成分自身对照法不加校正因子的主成分自身对照法面积归一化法下面一一讲述这几个方法,请耐心看完,表格形式汇总,易查看三、对于采用薄层色谱法测定杂质检出量,有以下几种办法:杂质对照品法;供试品溶液自身稀释对照法;杂质对照品法与供试品溶液自身稀释对照法;对照物法。下面一一讲述这几个方法,请耐心看完,表格形式汇总,易查看!
  • 前沿合作 | 2D-LCMS-QTOF法对注射用头孢美唑钠的未知杂质进行结构解析
    岛津中国创新中心与北京阳光诺和药物研究股份有限公司和中国食品药品检验研究院合作,采用岛津二维高效液相色谱串联四极杆飞行时间质谱法(2D-LC-QTOF),对头孢美唑钠热降解的未知杂质进行了定性鉴定。 背景介绍β-内酰胺类抗生素,主要包括头孢菌素类、青霉素类和碳青霉烯类。头孢美唑是第二代半合成的头孢类抗生素。2020版《中国药典》,美国药典(USP43)和日本药典(JP17)都收录了注射用头孢美唑钠。在注射用头孢美唑钠的质量研究中,发现其对热比较敏感,头孢美唑内酯(cefmetazole lactone)和1-甲基-5-巯基四氮唑(1-methyl-5-mercaptotetrazolium)在高温条件下均有明显增加,主峰后出现3个明显的未知杂质。 某仿制药和参比制剂样品中实际检出的未知杂质含量超过了ICH Q3B规定的鉴定阈值(头孢美唑日用最大剂量为4g,对应的杂质鉴定阈值为0.10%;部分样品中如图1所示杂质3的量超过0.10%),故尝试对注射用头孢美唑钠检出的未知杂质进行结构分析。图1给出了注射用头孢美唑钠热解样品的一维(图1A)和3种目标杂质(杂质1-3)的二维(图1B)紫外色谱图。图1 注射用头孢美唑钠热解样品的一维(1A)和3种目标杂质(杂质1-3)的二维(1B)色谱图 解决方案岛津液相系统Nexera LC-40 +高分辨质谱仪LCMS-9030 基于二维液相色谱-高分辨质谱系统,采用中心切割技术将在一维中采用含非挥发性盐的流动相中分离得到的目标未知物导入二维色谱,在二维色谱中采用质谱兼容的挥发性流动相,进而采用高分辨质谱对未知物进行定性鉴定。一维色谱采用《中国药典》中注射用头孢美唑钠的有关物质检查方法,流动相中含不挥发的磷酸盐和离子对试剂(四丁基氢氧化铵,TBAH)。二维色谱采用C18色谱柱,利用磷酸盐在色谱柱上不保留,TBAH在高比例水相下不易洗脱等性质,通过阀切换技术和改变流动向比例等方法洗脱导入废液,避免质谱污染。 表1 头孢美唑钠中杂质的分子式、加和离子和误差 在结构解析中,通过比较头孢美唑钠和未知降解杂质的母离子及特征碎片离子的相关性,结合文献报道的头孢类抗生素及杂质的裂解规律,对头孢美唑钠中的三种未知杂质进行科学合理的定性分析。表1列出了三种未知杂质的分子结构和误差。以杂质2为例,在正模式下的一级质谱图(见图2A):主要离子为m/z 488.0320,m/z 372.0160,m/z 505.0586。m/z 488.0320与m/z 505.0586相差17,可推断m/z 505.0586为m/z 488.0320的[M+NH4]+峰。m/z 488.0320的二级产物离子质谱图(见图2B)。推测杂质2的结构和裂解规律(见图3),杂质2可能为7-甲巯基头孢美唑。同时,7-甲巯基头孢美唑也是一种常见的头孢美唑杂质。 图2 杂质2在正模式下的扫描离子(2A)和m/z 488.0320的产物离子质谱图(2B) 图3 杂质2可能的结构和质谱裂解规律 结论本研究对头孢美唑中的3种未知杂质进行了科学合理的定性分析,对于头孢美唑的质量控制及安全性评价具有重要意义。本分析方法适用于β-内酰胺类抗生素中未知杂质的分离和定性,具有很强的通用性,同时可对化学药物、天然产物、多组分生化药等复杂组成体系进行定性鉴别,从而提供可靠的质量控制分析方法。 本工作基于创新中心搭建的专属性中心切割二维反相色质谱联用分析平台(2D-LC-QTOF)和开发的《抗生素杂质数字化标准品数据库》,该数据库收录了β-内酰胺类抗生素的一般杂质和聚合物杂质的色谱和高分辨质谱数据,还登录了抗生素相关杂质的液相色谱-三重四极杆质谱分析方法。该分析平台不仅为企业客户大大降低了企业研发成本,同时也为企业的工艺改进、剂型研发、品质提升等方面提供技术参考。 参考文献:《采用二维高效色谱-串联四级杆飞行时间质谱法对注射用头孢美唑钠的未知杂质进行结构解析》《中国药学杂志》中图分类号:R917 文献标识码:A 文章编号:1001-2494(2022) 08-0645-06 doi: 10.11669/cpj.2022.08.009
  • 2020药典 |化药杂质检测有大变化:与国际接轨,监管更加严格
    p style=" text-indent: 2em text-align: justify " span style=" font-family: 楷体, 楷体_GB2312, SimKai " 化学药品的质量直接关联用药安全。而化药中的杂质是影响药品质量的关键原因。这些检测杂质所应用的仪器在药品质量控制环节中发挥了举足轻重的作用。2020年是新版药典颁布的年份。关于化学药品杂质检测技术有哪些新变化?安捷伦可以提供哪些解决方案呢?仪器信息网邀请安捷伦市场与应用团队来介绍有关化药杂质的相关内容。 /span /p p style=" text-indent: 2em margin-top: 20px " span style=" color: rgb(0, 112, 192) " strong 仪器信息网: /strong /span 2020新版药典中关于化学药品杂质检测技术的内容有哪些新变化? /p p style=" text-indent: 2em text-align: justify " span style=" color: rgb(255, 0, 0) " strong 安捷伦市场与应用团队: /strong /span 我们注意到2020版药典相对于2015版在化学药品杂质检测这一部分有了较大的程度的修订和增加,总体上来说体现为与国际标准更加接近、更适应行业发展需求以及对于药品安全性的监管更加严格。 /p p style=" text-align: justify text-indent: 2em " 本次涉及到的变动主要体现为以下几方面: /p p style=" text-align: justify text-indent: 2em " 1. strong 《9102药品杂质分析指导原则》 /strong 的修订:杂质的确定、研究和检查分析增加了参考ICH Q3A、Q3B、Q3D、Q2A、Q2B部分,体现了我国加入ICH之后积极与国际标准接轨的意愿,也为本土药企更好的开拓海外市场奠定基础。另外,确定了原料药和制剂质量标准应包括已鉴定杂质外、未鉴定杂质、非特定杂质以及杂质总量,对整体药品杂质的质量控制非常严格,这同时也要求药企建立完善的杂质全面检测控制方案,保障药品的安全性。 /p p style=" text-align: justify text-indent: 2em " 2. strong 《0861 残留溶剂测定法》 /strong 的修订:主要体现为对药品常见的残留溶剂列表及其限度进行了增加和修改,增加了三乙胺、异丙基苯和甲基异丁基酮及其限度,降低了乙二醇的限度;同时,增加了使用“中等极性色谱柱”时常见有机溶剂在等温法测定时相对于丁酮的保留参考值,充分适应行业发展的趋势。 /p p style=" text-align: justify text-indent: 2em " 3.增加了 strong 《遗传毒性杂质控制指导原则》 /strong :本指导原则弥补了我国药品安全检测指导文件方面的缺失。原则中包含遗传毒性杂质的分类及限度制定方法,以及危害评估方法,包括数据库文献检索评估、(Q)SAR评估以及AMES实验评估等。 /p p style=" text-align: justify text-indent: 2em " 4. 增加了 strong 《元素杂质限度和测定指导原则》 /strong :本原则明确了需要检测的金属元素杂质以及其不同机型允许的元素杂质浓度和每日允许暴露量。是对药物安全检测管理的进一步完善,为行业质控提供了指导意见。 /p p style=" text-indent: 2em text-align: justify margin-top: 20px " span style=" color: rgb(0, 112, 192) " strong 仪器信息网: /strong /span 关于化学药品中杂质的检测项主要有哪些? 对于这些检测项,目前药典中规定的检测方法是什么? /p p style=" text-indent: 2em text-align: justify " span style=" color: rgb(255, 0, 0) " strong 安捷伦市场与应用团队: /strong /span 药物杂质是活性药物成分(API,原料药)或药物制剂中不希望存在的化学成分。原料药物中的杂质可能源于合成过程或起始物料、中间体、溶剂、催化剂,以及反应副产物等其它来源。在药品开发过程中,杂质可能由于原料药物成分不稳定、与辅料不兼容,或者是与包装材料发生反应而产生。药物中各种杂质的数量将影响最终药品的安全性。因此,杂质的鉴别、定量、定性和控制已成为药物开发过程的关键组成部分。 /p p style=" text-indent: 2em text-align: justify " span style=" background-color: rgb(255, 192, 0) " strong 许多监管机构都在关注杂质的控制: /strong /span 如国际协调会议(ICH)、美国食品药品管理局(USFDA)、欧盟药管局(EMA)、加拿大药品与健康管理局、日本药物和医疗器械管理局(PMDA),和澳大利亚健康和老龄化的治疗用品部。除此之外,很多官方药典,如英国药典(BP)、美国药典(USP)、日本药典(JP)和欧洲药典(EP)也越来越多地加入了对原料药和药品制剂中杂质限量水平的规定。 /p p style=" text-align: justify text-indent: 2em " 化学药品中杂质的主要检测项为有机杂质、无机(元素)杂质以及残留溶剂如原料药、辅料检测相关项目,基因毒性杂质检测等。 span style=" color: rgb(255, 0, 0) " 药典中描述对于残留溶剂一般采用色谱法,对于其他杂质并未明确规定或建议用那种检测方法。 /span 目前根据我们国外和国内研发和应用团队的经验总结,大致如下: /p p style=" text-align: justify text-indent: 2em " 1. span style=" color: rgb(0, 112, 192) " strong HPLC /strong /span : 非挥发性杂质分析,安捷伦 1200 Infinity系列,其中1290 Infinity可以进行二维液相分析,对于复杂的难分离的成分有很好的分析作用; /p p style=" text-align: justify text-indent: 2em " 2. span style=" color: rgb(0, 112, 192) " strong LC-MS /strong /span : 对已知杂质的确认和未知杂质初步结构评估的有效分析工具。如安捷伦 6100系列,6500系列Q-TOF,6400三重四级杆系列。 /p p style=" text-align: justify text-indent: 2em " 3. strong span style=" color: rgb(0, 112, 192) " GC & amp GC-MS /span /strong : 试分析大量杂质的首选技术,如卤化物、磺酸盐和环氧化合物。如安捷伦 7690 GC系列等。 /p p style=" text-align: justify text-indent: 2em " 4. span style=" color: rgb(0, 112, 192) " strong ICP-OES & amp ICP-MS /strong : /span 强大的多元素分析技术,用于分析金属杂质。如安捷伦 700系列ICP-OES以及7700系列ICP-MS。 /p p style=" text-align: justify text-indent: 2em margin-top: 15px " span style=" color: rgb(255, 0, 0) " 对于遗传毒性物质不同的检定限,有以下方法: /span /p p style=" text-align: center margin-top: 10px " img style=" max-width: 100% max-height: 100% width: 450px height: 309px " src=" https://img1.17img.cn/17img/images/202006/uepic/6a57d1be-d421-48b9-a115-275a5a6e3c0e.jpg" title=" 1-基因毒性药物的检测方案.png" alt=" 1-基因毒性药物的检测方案.png" width=" 450" vspace=" 0" height=" 309" border=" 0" / /p p style=" text-align: center " span style=" font-family: 楷体, 楷体_GB2312, SimKai font-size: 14px " (注:主要综合参考目前药典委公布的征求意见稿。) /span /p p style=" text-indent: 2em margin-top: 20px " span style=" color: rgb(0, 112, 192) " strong 仪器信息网: /strong /span 安捷伦在化药杂质检测方面可提供哪些仪器产品和解决方案? /p p style=" text-align: justify text-indent: 2em " span style=" color: rgb(255, 0, 0) " strong 安捷伦市场与应用团队: /strong /span 安捷伦是生命科学、诊断和应用化学市场领域的领导者,为全世界的实验室提供仪器、服务、消耗品、应用与专业知识,以帮助客户获得他们所寻求的深入见解。作为能够为医药行业提供最广泛解决方案产品组合的公司之一,从疾病研究和药物发现到药物开发、制造和质量管理,安捷伦的解决方案为医药行业的各个环节提供了精确的分析结果。贯穿整个流程的完整解决方案意味着客户可以让产品更快进入市场,同时确保客户的仪器和流程符合最严格的法规要求。 /p p style=" text-align: justify text-indent: 2em " ICH 指南将原料药物相关杂质分为三个大类:有机杂质,无机杂质和溶剂残留。安捷伦现有产品线可完美覆盖上述主要的杂质检测需求,例如: /p p style=" text-align: justify text-indent: 2em margin-top: 10px " strong 1.顶空+气相色谱检测器(FID),顶空+气相色谱检测器和质谱检测器组 /strong strong 合。 /strong 后者可以更好地对溶剂残留相关化合物定性。安捷伦公司最新一代智能化GC产品提供了更加可靠便利的分析平台,顶空自动进样器独特的背压控制技术可精确控制顶空加压和充满定量环压力至0.001 psi,二者合体为化学药物的溶剂残留分析提供完美的解决方案。 /p p style=" text-align: justify text-indent: 2em margin-top: 15px " strong 2.化药无机元素检测仪器方案有:方案一ICP-MS;方案二ICP-OES+GFAAS的组合。 /strong /p p style=" text-align: justify text-indent: 2em " 相比于同类产品,安捷伦ICP-MS的优势在于: /p p style=" text-align: justify text-indent: 2em " 1)标配耐高盐进样系统,可以耐受各类化药的盐度,包括NaCl注射液直接进样; /p p style=" text-align: justify text-indent: 2em " 2)可以实现一个碰撞模式完成ChP/USP元素杂质测试要求,方法简单快速,干扰去除彻底; /p p style=" text-align: justify text-indent: 2em " 3)100%有机溶剂溶解化药直接进样,前处理方法简单,分析稳定。 /p p style=" text-align: justify text-indent: 2em margin-top: 10px " 安捷伦ICP-OES+GFAAS组合的优势在于: /p p style=" text-align: justify text-indent: 2em margin-top: 5px " 1)全新一代ICP-OES对于化药中限量较低的Pb,Cd等元素具有高灵敏度,可以满足口服类药物全元素分析; /p p style=" text-align: justify text-indent: 2em margin-top: 5px " 2)安捷伦 GFAAS(石墨炉原子吸收)化药分析具有单个样品分析速度快,分析成本低(石墨炉损坏小),灵敏度高等特点。 /p p style=" text-align: justify text-indent: 2em margin-top: 15px " 3.以目前热门的 strong 基因毒性杂质检测 /strong 为例,国内外权威监管部门如中检院、FDA、EMA同时采用安捷伦GCMS与LCMS进行了二甲双胍、沙坦类药物、雷尼替丁等相关基因毒性杂质的检测。 /p p style=" text-align: justify text-indent: 2em margin-top: 15px " 4.此外, strong 安捷伦具备完善的信息学、色谱柱与耗材、售后服务与培训支持体系 /strong ,可帮助用户有效面对复杂的药品杂质分析挑战。 /p p style=" text-align: justify " & nbsp /p table style=" border-collapse:collapse " width=" 648" align=" center" tbody tr class=" firstRow" td style=" border: 1px solid rgb(255, 255, 255) word-break: break-all " width=" 324" valign=" middle" align=" center" p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 293px height: 414px " src=" https://img1.17img.cn/17img/images/202006/uepic/c452a724-363f-4d28-9469-a3353fff1a3c.jpg" title=" 2A.png" alt=" 2A.png" width=" 293" vspace=" 0" height=" 414" border=" 0" / /p /td td style=" border: 1px solid rgb(255, 255, 255) " width=" 324" valign=" middle" align=" center" p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 293px height: 413px " src=" https://img1.17img.cn/17img/images/202006/uepic/79bebd34-4573-4dae-b0e2-bcf003f09b59.jpg" title=" 2B.png" alt=" 2B.png" width=" 293" vspace=" 0" height=" 413" border=" 0" / /p /td /tr /tbody /table p style=" text-align: justify text-indent: 2em margin-top: 15px " span style=" color: rgb(255, 0, 0) " 基于安捷伦GC产品平台和色谱柱等消耗品产线,提供预调试的药物残留溶剂分析仪系统和详实的应用资料可供参考: /span /p p style=" text-align: justify text-indent: 2em " 1. 5990-7625CHCN 使用安捷伦 7697A 顶空进样器进行 USP& lt 467& gt 溶剂残留的高精度分析 !--467-- !--467-- !--467-- !--467-- !--467-- !--467-- !--467-- !--467-- /p p style=" text-align: justify text-indent: 2em " 2. 5991-0616CHCN 使用安捷伦特殊设计和测试的针对USP& lt 467& gt 的J& amp W DB-Select 色谱柱进行溶剂残留分析 !--467-- !--467-- !--467-- !--467-- !--467-- !--467-- !--467-- !--467-- /p p style=" text-align: justify text-indent: 2em " 3. 5991-1834CHCN 采用配有 安捷伦 7697A 顶空进样器的 安捷伦 7890B 气相色谱仪分析 USP& lt 467& gt 残留溶剂 !--467-- !--467-- !--467-- !--467-- !--467-- !--467-- !--467-- !--467-- /p p style=" text-align: justify text-indent: 2em " 4. 5991-9029ZHCN 使用 安捷伦 Intuvo 9000 气相色谱系统进行残留溶剂分析 /p p style=" text-align: center margin-top: 15px " br/ /p table style=" border-collapse: collapse " data-sort=" sortDisabled" align=" center" tbody tr class=" firstRow" td rowspan=" 1" colspan=" 2" style=" border-color: rgb(255, 255, 255) border-left-width: 1px border-top-width: 1px word-break: break-all " width=" 77" valign=" middle" align=" center" strong [Aglient] Gas Chromagraphy br/ /strong /td /tr tr td style=" border: 1px solid rgb(255, 255, 255) word-break: break-all " rowspan=" 1" colspan=" 2" width=" 578" valign=" top" p style=" text-align: center" strong img style=" max-width: 100% max-height: 100% width: 518px height: 389px " src=" https://img1.17img.cn/17img/images/202006/uepic/14fcdde2-00f1-4c19-90d2-1868efb9d91b.jpg" title=" 3.jpg" alt=" 3.jpg" width=" 518" vspace=" 0" height=" 389" border=" 0" / /strong /p /td /tr tr td rowspan=" 1" colspan=" 1" style=" border-left-color: rgb(255, 255, 255) border-left-width: 1px border-top-color: rgb(255, 255, 255) border-top-width: 1px word-break: break-all " width=" 266" valign=" middle" align=" center" a href=" https://www.instrument.com.cn/netshow/SH100320/C170097.htm" target=" _blank" textvalue=" Aglient 7890B气相色谱仪" style=" color: rgb(255, 0, 0) font-size: 14px text-decoration: underline " span style=" color: rgb(255, 0, 0) font-size: 14px " strong Aglient 7890B气相色谱仪 /strong /span /a span style=" color: rgb(255, 0, 0) font-size: 14px " strong br/ /strong /span /td td rowspan=" 1" colspan=" 1" style=" border-left-color: rgb(255, 255, 255) border-left-width: 1px border-top-color: rgb(255, 255, 255) border-top-width: 1px word-break: break-all " width=" 296" valign=" middle" align=" center" a href=" https://www.instrument.com.cn/netshow/SH100320/C122881.htm" target=" _blank" style=" color: rgb(255, 0, 0) font-size: 14px text-decoration: underline " span style=" color: rgb(255, 0, 0) font-size: 14px " strong Aglient 7697A顶空自动进样器 /strong /span /a span style=" color: rgb(255, 0, 0) font-size: 14px " strong br/ /strong /span /td /tr /tbody /table p style=" text-align: center" br/ /p p style=" text-indent: 2em " 欲了解更多相关信息,请点击进入 span style=" color: rgb(255, 255, 0) font-size: 18px background-color: rgb(255, 255, 255) " strong /strong /span span style=" font-size: 18px background-color: rgb(255, 255, 255) color: rgb(0, 112, 192) " strong 专题页面《化学药物杂质与检测》 /strong /span 浏览。 /p p style=" text-align: center " img style=" max-width: 100% max-height: 100% width: 95px height: 39px " src=" https://img1.17img.cn/17img/images/202006/noimg/1779e9c9-3b79-4d88-ab7c-b723c1fbceba.gif" title=" 箭头分割线.gif" alt=" 箭头分割线.gif" width=" 95" height=" 39" / /p p style=" text-align: center margin-top: 15px " a href=" https://www.instrument.com.cn/zt/chemmed-impurity" target=" _blank" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/53e42e2e-6a23-4911-89b4-90bed3d5fc35.jpg" title=" w640h110impurity.jpg" alt=" w640h110impurity.jpg" / /a /p
  • MS标记LC紫外色谱图,药物杂质一目了然
    岛津的工程师在新发布的模块化单四极杆液质上开了一种新型数据处理算法“Mass-it”,可生成MS标记的紫外色谱图,以方便使用单四极杆LC-MS进行药物杂质分析。 在制药CMC中,化学家通常使用LC和或LC-MS来鉴定和定量合成产品中的组分,其中许多组分仅使用LC的紫外检测器进行分析。LC-MS的优点包括灵敏度高和定性能力好。然而,数据分析的复杂性,低耐用性以及电离方法对目标化合物的限制阻碍了LC-MS的引入。 岛津开发的新型质谱,从三个方面提升质谱仪器的性能:1)“Mass-it”新型解卷积算法辅助对MS数据进行解析,2)更好的耐用性,以及3)应用范围更广的离子源。 本次研究的对象是阿托伐他汀、普萘洛尔、西草净、五氯硝基苯,使用岛津Nexera LC-40 XR液相色谱系统进行分析,该系统配置SPD-M40二极管阵列检测器和LCMS-2050模块化质谱仪(图1),该质谱仪与液相色谱仪的自动进样器模块大小相当。 图1 岛津LCMS-2050集成到HPLC/UHPLC中 实验使用ESI / APCI双离子源(DUIS),扫描质量范围(m/z 100-1000)并以正负离子同时扫描模式进行分析。Mass-it处理TIC色谱图峰并生成检测到的质量信号列表,其保留时间通过提取的离子色谱图确定。XIC保留时间使算法能够区分多个共洗脱成分信号和来自单个成分的一组相关离子信号。 图2 阿托伐他汀的紫外色谱图 按Mass-it列出的组分的m / z被标记在UV 色谱图上。图2所示的示例是高纯度阿托伐他汀样品的代表性数据,显示为单一组分。对于实际样品,算法会在检测到多个杂质组分时对其进行标记,图3展示了Mass-it在阿托伐他汀杂质检测中的应用(图3)。 图3 用Mass-it标记的阿托伐他汀多个杂质 那么该系统的耐用性究竟如何呢?工程师做了系统性实验,10000次连续进样中引入30mg化合物来测试(一次注入1μL的3种药物的混合物,每种药物的浓度为1000 ng/μL)。在MS扫描模式下的进行实验,每隔一段时间检查LC-MS的性能,图4数据显示普萘洛尔的峰面积重复性为8.5%RSD。结果表明,即使重复分析高浓度样品,也可以获得稳定的结果。 图4 LCMS-2050的长期稳定性研究显示了对高浓度样品的耐用性 LCMS-2050配备了DUIS离子源, 可通过ESI和APCI组合方式生成离子,扩大了可离子化的化合物的范围。图5展示了使用由ESI和APCI特征电离的化合物评估DUIS离子源的电离能力。DUIS(+)对西草净(Simetryn)的离子化效率与单独使用ESI(+)相当,表明APCI功能的添加仅略微影响了DUIS配置中的ESI功能。而五氯硝基苯(Quintozene)的ESI(-)离子化效果不佳,但在使用DUIS(-)离子化时,灵敏度显著得到提升(10倍)。因此,DUIS是一种多功能且通用的离子源,可以在单次分析中兼顾ESI和APCI离子化方式。 图5 西草净(上)和五氯硝基苯(下)的ESI和DUIS离子化效率对比 LCMS-2050非常坚固耐用,并配备了强大的软件功能,即使对于首次使用MS的用户,LC-MS数据也更易于理解。这些功能有望增加更多的LC-MS用于药物杂质分析。 本文内容非商业广告,仅供专业人士参考。
  • 又是杂质?岛津药物杂质综合分析方案来了!
    导读NDMA杂质超标下架雷尼替丁?因叠氮杂质召回厄贝沙坦?包材有溶剂残留导致生产企业被监管部门处罚数万元?药用辅料不当导致患者死亡?近几年连续发生多起因药物含有不合规杂质,而被要求市场召回的案例。因药物杂质超标而导致不合格问题,时刻触碰着分析行业老师们的神经:又是杂质?不同杂质参照哪种法规进行检测?杂质如何控制限度?使用哪种仪器进行检测?有没有成熟的方案可参考?药物杂质种类多:包括有机杂质、无机杂质、残留溶剂,涉及到仪器种类广、分析方法和前处理技术复杂多样。今天,我们带来了岛津药物杂质综合分析方案《药物杂质分析综合应用文集》,涵盖色谱、质谱、光谱产品仪器方面的杂质分析案例,快来一起随小编看看吧。药物杂质分析法规指南药物杂质一直是药品研发生产中风险控制的重要内容,药物杂质影响到药物的质量和临床疗效。人用药品注册技术要求国际协调会(ICH)按照杂质理化性质将其分为三大类:有机杂质、无机杂质及残留溶剂。不同杂质参考法规不同,具体如下表所示。杂质类型及法规参考依据《药物杂质分析综合应用文集》密切关注相关药典、法规、标准的更新和发布,聚焦时事热点,如沙坦类物质中亚硝胺类基因毒性杂质事件、溶剂残留检测要求、元素杂质分析国际标准等。针对药物杂质不同理化性质,开发契合标准和法规的药物杂质分析应用报告。形成一份包含多种类型杂质分析的综合应用文集,为相关科研和分析工作人员提供一定的参考。更多应用详情,请关注岛津官网,下载《药物杂质分析综合应用文集 》。典型案例分享案例分享1在线体积排阻反相液相色谱-飞行时间质谱鉴定注射用头孢哌酮钠舒巴坦钠中聚合物杂质建立在线体积排阻-反相液相色谱-飞行时间质谱法(SEC-RPLC-QTOFMS)用于注射用头孢哌酮钠舒巴坦钠中的聚合物杂质的鉴定。一维采用SEC分离条件,将头孢哌酮和聚合物杂质进行分离,分离所得聚合物杂质通过中心切割技术收集到二维RPLC中脱盐和进一步分离,采用Q-TOF为检测器,采集分离所得杂质一级和二级质谱信息后对其进行结构鉴定。推测出9个杂质的结构,其中有4个为闭环二聚物。二维SEC-RPLC-QTOFMS杂质鉴定系统流路图头孢哌酮聚合物峰液相色谱图及空白溶剂二维色谱图案例分享2超临界流体色谱系统在原料药杂质分析中的应用二乙酰鸟嘌呤是重要的医药中间体,杂质检测是其质量控制的关键。该化合物在常用溶剂中溶解性差,并且遇水分解,使得常规的RP-HPLC分析不能实现。使用的岛津Nexera UC SFC-UV系统,对药物中间体二乙酰鸟嘌呤中的杂质进行分析,有效避免使用反相色谱分析中该药物不稳定遇水分解的可能,并且SFC系统分析速度快、重现性好、灵敏度高。甲醇和乙醇作为改性剂时分离效果对比(检测波长:264 nm)1.OD-H-甲醇,2.OD-H-乙醇,3.SFC-A-甲醇,4.SFC-A-乙醇案例分享3电感耦合等离子体质谱法测定喷雾剂中的元素杂质含量参考美国药典USP对元素杂质的限量要求及USP对元素杂质的测定方法,利用电感耦合等离子体质谱法(ICP-MS)测定了吸附给药样品中的重金属元素和其它元素杂质的含量。结果全符合USP规定每种目标元素的线性、加标回收率的要求,该方法操作简便、快速,样品前处理简单,可以满足美国药典对口服药中杂质元素限量值的测定要求。样品分析结果及加标回收率《药物杂质分析综合应用文集》目录有机杂质分析1、工艺及降解杂质高效液相色谱法分析盐酸多西环素中的有关物质高效液相色谱法结合Co-injection功能测定双氯芬酸钠肠溶片有关物质采用加校正因子主成分自身对照法测定马来酸依那普利片有关物质二维液相色谱法用于碘帕醇对映异构体杂质的定量分析液相色谱-四极杆飞行时间质谱联用分析头孢替唑钠及其杂质在线体积排阻反相液相色谱-飞行时间质谱鉴定注射用头孢哌酮钠舒巴坦钠中2、聚合物杂质在线二维液相色谱-四极杆飞行时间质谱法鉴定盐酸氟西汀的杂质超临界流体色谱系统在原料药杂质分析中的应用3、遗传毒性杂质三重四极杆气质联用法同时测定药品中八种磺酸酯类基因毒性杂质三重四极杆气质联用法测定沙坦类药物中六种N-亚硝胺含量高效液相色谱应用于沙坦类原料药中NDMA和NDEA的检测三重四极杆液质联用法检测缬沙坦原料药中六种亚硝胺类杂质厄贝沙坦原料中叠氮类遗传毒性杂质AZBC的分析厄贝沙坦原料中叠氮基遗传毒性杂质MB-X的分析三重四极杆气质联用法测定丁酸氯维地平中基因毒性杂质丁酸氯甲酯和2,3-二氯苯甲醛含量三重四极杆液质联用系统测定甲磺酸伊马替尼中芳香胺类遗传毒性杂质含量药品中无机(元素)杂质分析ICH Q3D X-射线荧光光谱法分析原料药的元素杂质电感耦合等离子体光谱法测定原料药样品中的元素杂质含量利用电感耦合等离子体质谱测定药物中间体中Pd催化剂残留量电感耦合等离子体质谱法测定喷雾剂中的元素杂质含量利用电感耦合等离子体质谱测定葡萄糖注射液中重金属元素含量残留溶剂检测气相色谱结合顶空进样器测定药品中微量环氧氯丙烷残留顶空-气相色谱法测定化学药品中三种溶剂残留气相色谱法测定药用辅料聚山梨酯80中六种杂质含量气质联用仪结合顶空进样器测定药品中溶剂残留顶空-气质联用法测定药物中水合肼含量了解更多应用,敬请下载《药物杂质分析综合应用文集》撰稿人:孟海涛本文内容非商业广告,仅供专业人士参考。
  • 戴安公司提供检测肝素钠中杂质的方法
    去年发生的美国百特公司使用美国SPL公司在中国控股的常州SPL公司提供的 &ldquo 肝素钠&rdquo 原料生产的&ldquo 肝素钠注射液&rdquo 在美国集中出现不良反应,美国食品药物管理局(FDA)随后公布检验结果,在药物原料中验出&ldquo 多硫酸软骨素&rdquo 的成分。 硫酸软骨素是一种从动物关节、软骨等组织中提取出来的生物衍生产品,可作为食品添加剂。在问题&ldquo 肝素钠&rdquo 里检测出来的是发生过化学变化的类似肝素钠分子的多硫酸软骨素,故美国对肝素钠原料中杂质的含量给予限定,并将新的检测方法纳入美国药典,对中国肝素钠出口厂进行限制。中国国家食品药品监管局针对此事件于去年4月要求国内肝素钠药品生产企业必须在现行的肝素钠药品质量检测标准的基础上,增加多硫酸软骨素检测项目,以确保产品质量安全。 目前美国药典中针对肝素钠杂质的检测方法有两种:液相法和离子色谱法。两种方法均涉及到了戴安公司的技术。 液相色谱或离子色谱法:该方法使用常规液相色谱仪或离子色谱仪,戴安的IonPac AS11离子色谱柱,紫外检测器。该方法能够直接分离样品中的硫酸皮肤素、多硫酸软骨素以及肝素钠,主要用于检测肝素钠中的多硫酸软骨素。 离子色谱法:该方法使用带有脉冲安培检测器的离子色谱仪。将肝素钠样品水解,肝素钠中有机杂质会水解为半乳糖胺,用戴安公司的氨基酸捕获柱、保护柱、CarboPac PA20分析柱进行分析,通过脉冲安培检测,得到半乳糖胺的含量,水解样品溶液中的半乳糖胺在总氨基己糖中的含量不得超过1%。主要用于检测肝素钠中的有机杂质。 戴安中国有限公司应用中心现可提供以上分析方法,如大家对上述分析方法感兴趣,请与戴安公司应用中心联系:010-62849182 戴安中国市场部 2009年4月10号
  • 原料药中杂质分离和特征描述战略性方法
    原料药中杂质的分离和特征描述的战略性方法 迈克尔 道. 琼斯, 玛丽安 特渥辛, 罗布 Plumb,宋相晋, 约翰 Shockcor, 乔斯 卡斯特罗 佩雷斯 和 安德鲁 奥宾 沃特世公司, 米尔福德市, 马萨诸塞州, 美国, 01757 简介 监测化合物中的杂质对于生产制剂和原料药的公司来说是有既得利益的,除了法规要求外,还有其它很多原因。杂质的鉴定可以帮助发现潜在未知的降解途径,虚假的过程/专利保护侵害,和/或遗传毒性影响。杂质的分析是劳动密集型的工作,包括方法开发,杂质分离技术和各种各样的分析方法,以得出所感兴趣杂质的真实结构。 这篇文章介绍了一种战略性的方法,该方法应用了高分离液相色谱理论和强制降解研究,以最大化生产原料药喹硫平中的杂质。高分离液质联用和核磁被用来解释结构。 方法学 分析 仪器: ACQUITY 超高效液相 色谱柱: ACQUITY UPLC™ BEH C18 规格: 100 x 2.1mm, 1.7µ m 流动相: A: 20mM Ammonium 碳酸氢铵, pH10 B: 乙腈 梯度: 见图 1 和 2 柱温: 650C 进样量: 3 µ L 检测器: ACQUITY PDA @ 250 nm ACQUITY SQD 扫描范围 100-1000amu 质谱条件 仪器: Waters® SYNAPT™ 软件: Masslynx™ 4.1 离子源: ES+ 毛细管电压 (kV): 3.2 提取电压 (V): 4.0 脱溶剂气温度 (0C): 350.0 源温度 (0C): 120.0 脱溶剂气流速 (L/Hr): 650.0 锁定质量: 300pg/µ L白氨酸/脑啡肽@ 50µ L/min 质谱/质谱参数设置 飞行时间 椎孔电压 (V): 15 碰撞能 (V): 变化从15到30 采集范围: 质谱 100 - 1000Da 质谱/质谱 50—600 Da 制备 沃特世质谱引导的纯化系统 泵 2454二元溶剂管理器 进样/收集器 2767 检测器 2998 光电二极管阵列 质谱 3100 色谱柱 100X19mm XBridge, 5 um 溶剂 A = 10 mm 碳酸氢铵 pH 10 溶剂 B = 乙腈 流速 25/mL/min 梯度 B 经过10分钟 从5% 到60% 95% 有机相保持5分钟 核磁 仪器参数见图9 观察,制备和分离 喹硫平的酸解 该杂质鉴定方法(以前建立的)被用来鉴定喹硫平原料药在0.1mol/L盐酸中降解的主要杂质。 图1: pH 9 的碳酸氢铵, ACQUITY BEH C18 2.1x100 mm 1.7um, 乙腈, 0.8mL/min. 650C, 20 分钟, 15-39%B到10.5分钟, 39-43%B到14.4分钟, 43-95%B到18分钟, 保持95%B到20分钟. 制备分离的准备 此方法为了更快的速度、更低的温度和更短的色谱柱,而进行了再优化,同时又能保持主要杂质和喹硫平间足够的分辨率 . 为什么呢? 在从超高效液相方法转换到制备型高效液相时,有些因素必须要考虑: 保持分离效率: L/dP (柱长度/颗粒度) 例如: 50 mm、1.7 um色谱柱的L/Dp为29,411,和具有30,000 L/Dp 值的150mm、5um制备柱等效 能使用更短的制备柱吗?在杂质402的分离中,100 mm的制备柱仍能提供足够的柱效以完全分离杂质。 在放大制备梯度中,对于制备流速,柱体积数必须保持合适的数值。如果这些因素都被考虑到,从超高效液相方法转换到制备型高效液相是能保证相似的选择性的。 从超高效液相放大到制备色谱 传统上, 从分析型高效液相放大到制备型高效液相使用同样的色谱柱长度和颗粒度,并运用下面的公式: Fp= Fa [(Dp)2]/[Da2] 注: Fp=制备柱的流速 Fa=分析柱的流速 Dp=制备柱的内径 Da=分析柱的内径 其它工具: Waters 制备放大计算器可以计算每个梯度段的时间,柱长度的变化和进样量。 聚焦梯度 *克利里等. 纯化过程中聚焦梯度的影响, Waters 应用文献 720002284EN 质谱引导的自动纯化 主要杂质m/z =402的分离在分析和化学上都很容易。 最大化产出: 8g/mL 喹硫平的储备液在 600C、0.1mol/L的盐酸中加热回流8小时, 以增加m/z=402 杂质的 产量 制备上样研究允许色谱柱进样20uL。 图3: 强制降解样品的制备色谱 仪器优势: 分离是通过Masslynx™ Fractionlynx™ 软件中的自动质量触发进行的。 ACQUITY BEH C18的方法可以无缝转换到XBridge C18 制备柱 通过超高效液相对感兴趣杂质的再优化可提供快速方法,以通过UPLC-SQD, UPLC-oaTof, 和/或UPLC MS/MS进一步确认分析 鉴定,确认和特征描述 分离的确认 通过质谱引导的纯化系统收集的m/z = 402的馏分被收集并挥干。该分离步骤得到了28.6mg m/z = 402的杂质。用甲醇稀释得到浓度为286µ g/mL和2.86µ g/mL的溶液,并用3分钟的UPLC-SQD方法进样以确认分离的质量 . 图4: 被分离杂质m/z=402的UPLC UV/SQD 确认 质量精度的重要性 杂质的质荷比为402,等于喹硫平(m/z = 384)加合了18 amu。样品进样到Waters SYNAPT™ MS可得到精确质量数以确认元素组成 . 图5: m/z = 402杂质的元素组成. 双键等价值(DBE) 、低的同位素匹配度(low i-Fit)、毫道(mDa)和结果都支持第一个分子式 加合可以在喹硫平结构中氧化一个点,同时减少一个双键 . 图6: 建议的结构. A.) 硫代氧化物 或 B.氮代氧化物 )? 氮代氧化物为基础的结构的确认 通常, 在低PH流动相的反相液相中,含有氮代氧化物杂质的化合物在原料药后被洗脱出来。超高效液相是在pH=9.0下进行的,所以使用pH=3.0的甲酸铵和乙腈的梯度检测速度变快 。 图7: 酸性流动相条件下进样时,酸降解喹硫平的洗脱顺序。因为感兴趣的峰在喹硫平原料药前被洗脱出来,所以氮代氧化物的可能性不大 . 质谱/质谱分析 精确质量数质谱/质谱分析是为了确认任何碎片数据的存在已进一步支持喹硫平的硫代氧化物降解形式。指示性的碎片最有可能是分子量很低的碎片,在那里所发生的裂解可以区分硫代氧化物和氮代氧化物。 图 8: 裂解分析显示了硫代氧化物/裂解为基础的结构。 通过分析m/z = 137.0063的碎片可得出: -元素组成是 C7 H5 O S -质量精度为 0.2毫道尔顿 -双键等价值(DBE) = 5.5, 对于环结构转换为4.5,而对于硫代氧化物为1.0。 如果N=C是完整的,由于四价碳缺少质子,所以不可能得到228.0480和175.1428的碎片 NMR 支持的数据 核磁数据和建议的结构是一致的 图 9: 被分离的喹硫平中m/z = 402杂质的C13-NMR and H-NMR 结论 从超高效液相转换到制备色谱 -保持L/Dp不变被证明是放大可能性的关键因素 -相容的化学性质可最小化分离度差异 -利用强制降解研究可增加最大化产出的潜能 -质谱引导的馏分收集可保证正确的杂质收集 杂质确认和说明 -ACQUITY UV/SQD 为很多的馏分组成提供快速确认 -高分辨率 SYNAPT MS为母离子和产物离子的元素组成确认提供很好的质量精度 -对于有显著不同色谱行为的结构,高/低PH值流动相测试可以帮助确定建议的结构 -尽管采集了核磁数据(不是决定性的),但它的精确质量质谱/质谱数据证明了杂质是硫代氧 化物而不是遗传毒性结构。
  • 岛津二维液相色谱新应用|流动相含离子对试剂的化药杂质质谱鉴定方法
    离子对试剂:极性药物分析绕不开的话题 液相色谱是药物杂质含量测定和有关物质分离分析最常用的技术手段。对一个陌生的化合物,ODS反相色谱柱通常方法开发条件会选择酸性pH流动相。然而,总有些化合物,它们或含氨基、或含羧基、磺酸基团、磷酸基团,极性较强在反相色谱柱上没有保留。打开2020版《中国药典》第二部,不难发现这些品种,名称中常含有“马拉酸”、“盐酸”、“碱”、“酸”等关键词。对于这类强极性化合物的分析,药典给出的答案是:流动相中添加离子对试剂。例如丁溴东莨菪碱、贝敏伪麻的有关物质流动相条件中含有十二烷基硫酸钠;马来酸曲美布汀的流动相含有戊烷磺酸钠;盐酸头孢吡肟的流动相含有辛烷磺酸钠;叶酸、头孢美唑和对氨基水杨酸钠的流动相含有四丁基氢氧化铵。离子对试剂的添加,增强了极性化合物的保留,改善了药物与杂质的分离,是极性药物分析的杀手锏。 离子对试剂:“质谱不能承受之重” 辛烷磺酸钠和四丁基硫酸氢铵等常用离子对试剂,属于不挥发盐类,质谱响应强且信号经久不衰,持续抑制目标化合物的电离。一旦误操作进入质谱端,需要清洗整个离子通路才能恢复质谱的正常状态。常规二维液相在线除盐系统仅能去除无机盐,无法去除离子对试剂。这是因为无机盐(如磷酸盐)在二维反相色谱柱上无保留,在死时间将其切至废液从而实现在线除盐。然而离子对试剂具有较强的疏水性,在常规ODS色谱柱上强烈吸附显著拖尾,因此不能被常规二维液相系统去除。 上图是辛烷磺酸钠在ESI离子源上的响应。可生成簇离子,质谱响应强且持久,对ESI正负模式均可产生抑制。 上图是四丁基硫酸氢铵在ESI离子源正模式的响应,质谱响应强且持久。四丁基硫酸氢铵与固定相强烈作用,色谱上呈现显著拖尾。 ReDual:一款可以同时分离无机、有机、阴、阳离子的“神柱” ReDual系列色谱柱,是岛津公司最新推出的离子交换反相混合键合相色谱柱,共分为三款: ReDual™ SCX-C18 强阳离子交换+反相ReDual™ CX-C18 弱阳离子交换+反相ReDual™ AX-C18 强阴离子交换+反相 下图是采用ReDual AX-C18 (4.6 mm I. D. × 150 mm L., 5 µm,货号426-45415)分析磷酸二氢钠、四丁基硫酸氢铵和卡络磺钠混合样品的色谱图。该款色谱柱表面键合叔胺基团,在pH 2-7范围内色谱柱表面带阳离子。除疏水作用外,其对阴离子具有离子交换作用,对阳离子具有离子排斥作用。为分离极性类似的阳离子和阴离子型化合物提供了条件。下图中四丁基氨根离子峰型对称,不拖尾无残留,可以通过阀切换导入废液实现在线去除。 ReDual AX-C18色谱柱NQAD检测器同时分离无机有机阴阳离子(1:Na+ 2:四丁基氨根离子;3:H2PO3- 4:卡络磺酸根离子) 应用案例:卡络磺钠参比制剂中杂质结构鉴定 本应用采用常规中心切割二维液相系统,无需改造仪器;馏分转移过程配有紫外检测器监控,不存在检测盲区;离子对试剂的去除未使用强酸或强碱性试剂;方法耐用性好。一维使用C18反相色谱柱,流动相添加磷酸二氢钠(含四丁基硫酸氢铵,pH 3.0);二维使用ReDual AX-C18色谱柱,在线去除四丁基硫酸氢铵和磷酸二氢钠,实现目标化合物的质谱鉴定。 卡络磺钠杂质2的质谱鉴定结果 总结岛津中国创新中心搭载的特色中心切割二维色谱杂质鉴定系统,二维使用岛津公司最新推出的ReDual™ AX-C18强阴离子交换反相混合键合相色谱柱,成功实现一维流动相中离子对试剂和无机盐的在线去除,并对卡络磺钠参比制剂中未知杂质进行了质谱鉴定。
  • β-内酰胺类抗生素高分子杂质的检测
    &beta -内酰胺类抗生素中的高分子杂质是引发速发型过敏反应的过敏原,是药物质量控制过程中的重点检测项目。目前药典中关于&beta -内酰胺类抗生素中高分子杂质的测定多采用葡聚糖凝胶Sephadex G-10自填装玻璃管柱,存在柱效低、分离时间长、分离度差、批间重现性差、操作不便等缺点,为了解决这些问题,采用小粒径、高分辨率的体积排阻色谱成品柱已成为&beta -内酰胺类抗生素中高分子杂质检测的必然趋势。 赛分科技体积排阻色谱柱 SRT® (5 &mu m)、 Zenix&trade (3 &mu m)&mdash &mdash 水溶性体积排阻色谱柱 SRT和Zenix色谱柱固定相采用专利的表面修饰技术(专利US 7,247,387B1和US 7,303,821B1),通过在高纯度具有良好机械稳定性的硅胶基质上,键合一层均匀的纳米厚度中性亲水薄膜而制备得到。 ● 采用可控的化学修饰技术,能确保柱与柱之间有着可靠的重现性; ● 精心设计的大孔体积可保证高的分离容量以及优异的分辨率; ● 表面亲水涂层覆盖完全,使之具有优异的色谱柱稳定性,延长色谱柱寿命; ● 低盐浓度洗脱,适合LC-MS分析; ● 专利的表面修饰层,确保对样品的最大回收率; ● 广泛适用于生物分子及水溶性聚合物的分离和检测。 SRT和Zenix色谱柱对于水溶性&beta -内酰胺类抗生素中高分子杂质的检测具有良好的效果。 Mono GPC &mdash &mdash 油溶性体积排阻色谱柱 Mono GPC以具有极窄粒径和孔径分布的高交联度聚苯乙烯/二乙烯苯(PS/DVB)颗粒为基质,孔径分布均一,使分析中保留时间与分子量具有准确的线性关系。高交联度的多孔颗粒具有优异的化学和物理稳定性,因此在更换有机溶剂时可以使分子量校正曲线的形状及色谱柱的柱效几乎保持不变。Mono GPC填料具有大的孔体积,可确保对聚合物分离有着高的分辨率。 Mono GPC对于脂溶性&beta -内酰胺类抗生素中高分子杂质的检测具有良好的效果。 Zenix-150对头孢地嗪钠高分子杂质的检测注:分离度按照2010版《中国药典》附录VH计算。 &mdash &mdash 样品来源于某制药公司 良好的批间重现性 &mdash &mdash 色谱条件同上 Zenix SEC-150 材料 表面键合亲水薄膜的硅胶颗粒大小 3 &mu m 孔径 (Å ) ~ 150 蛋白分子量范围 500 - 150,000 水溶性聚合物 分子量范围 500 - 25,000 pH 稳定性 2 &ndash 8.5,短时可耐pH 8.5-9.5 反压 (7.8x300 mm) ~ 1,500 psi 最大耐受压力 (psi) ~ 4,500 盐浓度范围 20 mM - 2.0 M 最高使用温度 (oC) ~ 80 流动相的兼容性 常规水相及有机相溶剂应用实例 头孢地嗪钠 头孢西丁 头孢米诺钠 头孢拉定 头孢呋辛酯头孢地尼 头孢泊肟酯 美洛西林钠 磺苄西林钠 头孢尼西 头孢噻肟钠 头孢噻吩钠 比阿培南 阿莫西林 头孢噻利 头孢丙烯 泰比培南酯 磺苄西林钠破坏物 盐酸头孢替安 头孢硫脒 头孢特仑新戊酯 头孢哌酮钠 注:点击链接可见图谱。 优质服务 ● 提供免费的产品试用 ● 提供实际样品的色谱柱筛选和方法确认 促销公告 即日起至8月30日,凡购买一支体积排阻色谱柱,第二支体积排阻色谱柱享受五折优惠或赠送一支高端C18柱。 注:第二支体积排阻色谱柱市场价不得高于第一支。 订货信息 产品名称 粒度 孔径 规格 订货号 SRT SEC-100 5 &mu m 100 Å 7.8x300 mm 215100-7830 SRT SEC-1505 &mu m 150 Å 7.8x300 mm 215150-7830 Zenix SEC-100 3 &mu m 100 Å 7.8x300 mm 213100-7830 Zenix SEC-150 3 &mu m 150 Å 7.8x300 mm 213150-7830 Mono GPC-100 5 &mu m 100 Å 7.8x300 mm 230100-7830 关于赛分科技 赛分科技有限公司(Sepax Technologies, Inc)总部位于美国特拉华州高新技术开发区,致力于开发和生产药物与生物大分子分离和纯化领域的技术和产品。赛分科技是集研发、生产和全球销售为一体的实业型企业。公司主要产品为液相色谱柱及耗材、固相萃取柱(SPE)及耗材、液相色谱填料以及分离纯化仪器设备。在液相色谱领域里,赛分科技已开发出了100多种不同型号的液相色谱材料,涵盖了反相、正相、超临界(SFC)、手性(Chiral)、离子交换、体积排阻、亲和、HILIC等各种类别,为世界范围内液相色谱产品最为完善的企业之一。 赛分科技的创新技术使之生产出具有最高分辨率及最高效的生物分离产品,包括体积排阻、离子交换、抗体分离、和糖类化合物分离色谱填料和色谱柱,可广泛地应用于单克隆抗体、各种蛋白、DNA、RNA、多肽、多糖和疫苗等生物样品的分析、分离和纯化。赛分科技先进的技术和完善的产品线已使赛分成为全球生物分离的领航者。 公司网站: www.sepax-tech.com.cn www.sepax-tech.com
  • 8月22日 Nature 杂志精选
    癌症突变具有不同特征   尽管所有癌症都被认为是由体细胞突变(身体中除生殖细胞以外的任何细胞的突变)造成的,但我们对所涉及的突变过程相对来说却知之甚少。这项研究分析了来自超过7000例癌症的近500万种突变,发现了超过20个与癌症相关的不同突变特征。这些特征中有些存在于很多癌症中,其中一个特征属于APOBEC家族的胞苷脱氨酶,而其他特征则是个别肿瘤类型特有的。有些特征与年龄、已知诱变因素或DNA维护中的缺陷有关,但很多的来源却很神秘。这些发现对于了解癌症病因、预防和治疗有潜在意义。   研究证实植物能用电传递受伤信号   动物通过神经系统对受伤快速作出反应。本杂志1992年发表的一篇论文提出了当时有争议的观点:植物也利用远距离电信号对受伤作出反应。此后人们已经清楚有些植物用电信号来控制它们的运动,尽管这一现象背后的基因并不知道。现在有了可靠实验和遗传证据来支持早先关于伤口信号作用的发现,同时说明与介导脊椎动物突触传递的谷氨酸盐受体相关的蛋白也参与其中。Edward Farmer及同事发现,弄伤拟南芥的一片叶子,会导致刺激&ldquo 茉莉酮酸酯&rdquo (使拟南芥对食草动物和病原体产生抵抗力的植物激素)的电活动在与伤口有一定距离的未受损处传播。这一过程是由被GLR基因编码的阳离子通道介导的。   测量太阳类恒星表面引力新方法   太阳类恒星亮度的变化是由很多因素驱动的,包括&ldquo 颗粒化&rdquo ,它是由光球下的热对流造成的。而由于&ldquo 颗粒化&rdquo 与表面引力相关,所以亮度变化可被用作表面引力的一个度量。Fabienne Bastien等人分析了来自美国国家航空航天局&ldquo 开普勒&rdquo 探测任务的档案数据,发现在小于8小时的时间尺度上发生的亮度波动与处在各种不同演化阶段的太阳类恒星的表面引力相关。利用这种类型的直接测量,将有可能确定由&ldquo 开普勒&rdquo 观测到的很多恒星的表面引力。   嵌套生态网络中的结构   物种之间的合作倾向于导致形成具有一个嵌套结构的互助网络。虽然嵌套性可能会增加生物多样性和持久性,但理论工作表明,嵌套网络往往没有非结构化网络稳定。这篇论文通过分析表明,嵌套网络是由一个能使互助群落中物种丰富度最大化的机制形成的,嵌套物种的丰富度与群落的可塑性直接相关。这项工作为研究生态因素和演化历史怎样形成生态网络提供了一个模型。   &ldquo 蛭形轮虫&rdquo 无性生殖假说被证实   &ldquo 蛭形轮虫&rdquo 被认为已经以无性方式存在和分化了数百万年,这很奇怪,因为有性生殖的丧失对后生动物来说被普遍认为是走进了一条演化上的死胡同。此前人们仍怀疑它们也许偶尔会进行有性生殖。但在这项研究中,Olivier Jaillon及同事对一种名叫&ldquo Adineta vaga&rdquo 的&ldquo 蛭形轮虫&rdquo 的基因组进行了测序,发现其结构与传统减数分裂(与有性生殖相关的细胞分裂类型)不匹配。其基因组已经历了丰富的基因转换,这可能限制了在没有减数分裂时有害突变的积累。多达8%的基因可能来自非后生动物,可能是通过横向基因转移获得的。这些发现为无性演化提供了肯定证据,支持关于&ldquo 蛭形轮虫&rdquo 从古以来进行无性生殖的假说。   具有生物活性的信号作用脂质&ldquo 神经酰胺-1-磷酸盐&rdquo (C1P) 调控从生长和生存到&ldquo 促炎反应&rdquo 在内的各种不同过程。在这项研究中,Dinshaw Patel及同事研究了C1P是怎样被输送到细胞中的特定点的。他们识别出被称为&ldquo 神经酰胺-1-磷酸盐转移蛋白&rdquo (CPTP)的一种新颖的脂质转移蛋白,同时结构和功能研究也显示了C1P被从其在&ldquo 高尔基&rdquo 复合体中的合成点输送到胞质膜上的机制。   LITE杂合系统在光遗传学中的应用   Feng Zhang及同事将可定制的TALE DNA结合域与光敏&ldquo 隐花色素-2&rdquo 蛋白及其来自拟南芥的相互作用伙伴CIB1结合在了一起,从而生成了一个光遗传&ldquo 双杂合&rdquo 系统(他们将其称为LITEs,即&ldquo 光可诱导的转录效应物&rdquo )。LITEs不需要其他辅因子,容易被定制来以很多位点为目标,并且还能快速地、可逆地被激活。它们还可被打包到病毒载体内,定向输送到特定细胞类群中。作者将这一系统应用到了小鼠的原代神经元中和清醒小鼠的脑中,来调制内源基因表达和定位表观染色质修饰。这一LITE系统为内源细胞过程的光遗传控制建立了一个新颖模型。   (田天/编译 更多信息请访问www.naturechina.com/st)
  • 知名专家聚姑苏,热议药物杂质研究新动向
    杂质控制是药品质量控制的核心内容之一,杂质研究及控制是药品安全保证的关键要素。我国药物杂质研究水平仍处于起步阶段,与国际前沿杂质研究相比呈现相对滞后的态势。国际上杂质研究不断吸纳分析科学成熟的新成就,分析仪器越来越专业化,联用技术越来越成熟,各类数据库越来越丰富,联机智能化解析系统越来越普及,为杂质研究提供了更为完善的利器。为助力我国药物杂质研究水平的快速提升,为期两天的“2017药物杂质研讨会苏州论坛”于11月2日在苏州市吴宫泛太平洋酒店开幕,多位业界权威专家与超过百位的与会者就药物杂质的研究方法与策略、申报和案例展开了深入探讨。本论坛由中国药学会制药工程专委会、美中药协中国分会 (SAPA - China)联合主办。岛津公司倾情赞助并承办了此次论坛。“2017药物杂质研讨会苏州论坛” 于11月2日在苏州市吴宫泛太平洋酒店开幕 论坛现场传真在论坛开幕上,中国药学会制药工程专委会主任委员俞雄先生首先发表致辞为论坛的召开送上祝福。他在致辞中详细介绍并解读了近期国家重磅出台的一系列医药领域相关新政,指出这些新政的推出令我国医药领域迎来了创新发展的大好局面。他在致辞中强调为进一步提升药物杂质分析水平,先进的分析方法与分析工具必不可少,期待通过此次论坛的举办能够促进药物分析技术的发展。在致辞的最后,他特别感谢岛津公司对会议举办的赞助支持。 随后,岛津公司分析仪器事业部吴彤彬事业部长发表致辞。他在致辞中谈到,岛津公司与医药行业专家用户密切沟通,倾听用户声音,开发出一系列具有世界领先水平、独具特色的药物分析工具与应用方法。当今,药物杂质分析重要性日益增加,好的分析工具与方法已成为推进医药行业发展的重要因素。在致辞的最后他预祝论坛获得圆满成功。华海药业副总裁、中国药学会制药工程专委会委员李敏博士介绍了美中药协创建发展的历程和近年来为促进医药和生物技术的发展、促进美中生物医药科技和商业领域的合作与交流以及协助会员事业发展而开展的卓有成效的活动。他特别感谢岛津公司为美中药协举办的多个活动所给予的大力度支持。 中国药学会制药工程专委会主任委员俞雄先生发表致辞岛津公司分析仪器事业部吴彤彬事业部长发表致辞华海药业副总裁、中国药学会制药工程专委会委员李敏博士介绍美中药协简短的开幕式结束后,论坛进入大会报告环节。首先由浙江大学求是特聘教授、博士生导师潘远江先生做了题为《现代分离分析技术在药物研究中的应用》的演讲。潘教授在演讲中首先介绍了现代质谱技术的发展与应用成果,其中涉及到了诺贝尔化学奖获得者岛津公司职员田中耕一先生的研究成就以及岛津公司先进的高端质谱仪的优异性能。潘教授在演讲中基于其长期从事有机分析、药物分析与质谱分析等领域的研究所获得的丰富科研成果为与会者详尽介绍了液质联用技术、现代逆流色谱技术等在药物杂质研究中的最新应用和发展趋势。潘教授的演讲引起与会者的热烈反响,双方召开了深入探讨。浙江大学求是特聘教授、博士生导师潘远江先生做演讲潘教授的演讲引起与会者的热烈反响大会报告环节,岛津分析应用支持中心姚劲挺经理做了题为《现代色谱及其联用技术在药物杂质分析中的应用》的演讲。他在演讲中详细介绍了岛津多种先进的药物杂质分析技术与应用。演讲内容包括:LC/LCMS在药物杂质分析领域的新技术:方法开发系统,用于SFC/LC杂质分析方法快速开发,兼容超临界色谱和液相色谱;高效能制备纯化系统,提高杂质制备效率;鬼峰捕集柱,解决流动相本底干扰,确保得到准确的杂质定量分析结果;二维杂质鉴定系统,用于实现不挥发性缓冲液流动相条件下直接进样进行杂质液质联用分析;三重四极杆液质联用仪进行基因毒性杂质定量分析技术等。岛津分析应用支持中心姚劲挺经理做演讲 与会者和姚劲挺经理探讨技术细节问题随后,华海药业副总裁、中国药学会制药工程专委会委员李敏博士做了题为《药物杂质结构快速解析的策略:运用LC-MSn分子指纹谱技术与合理的药物强降解研究的组合策略得到高可信度的杂质结构》的演讲。他在演讲中指出,当前各国药政部门对药物杂质研究的要求越来越高,如何开展好这项研究尤其是降解杂质的研究是本讲座的重点所在。如何将强降解研究做好还存在很多误区,对此,他结合其丰富的研究成果详尽讲述了运用LC-MSn分子指纹谱技术与合理的药物强降解研究的组合策略,快速得到高可信度的杂质结构和杂质的形成机理。华海药业副总裁、中国药学会制药工程专委会委员李敏博士做演讲在论坛首日的最后一个演讲是华海药业高等分析技术中心副主任、公司原料药分析总监助理朱文泉先生做的题为《药物杂质研究的申报要求与基本思路》的演讲。在演讲中,他剖析了当前药物申报在杂质研究中遇到的一些常见问题以及结合丰富的案例说明了如何满足注册申报的要求。他指出有效、全面、系统的开展药物的杂质研究变的尤为重要,为保证药品质量安全性,杂质研究也正发挥着越来越重要的作用。华海药业高等分析技术中心副主任、公司原料药分析总监助理朱文泉先生做演讲 论坛报告环节结束后,组委会特别安排了与参会者互动时间。演讲嘉宾和与会者就药物杂质的研究方法与策略、申报和案例展开了深入探讨。现场气氛非常热烈。演讲嘉宾和与会者展开了深入探讨,现场气氛非常热烈李敏博士和岛津公司分析仪器事业部刘兵经理(左)主持了今天的论坛论坛次日将有如下演讲,敬请继续关注后续报道。 王玉博士,江苏省药检院原副院长, 国家药典委员会理化专业委员会委员 演讲题目:有关物质分析方法建立和验证 李敏博士,华海药业副总裁, 中国药学会制药工程专委会委员 演讲题目:药物降解化学与药物降解杂质的研究 黄伟新博士,资深药物分析专家, CMC和CGMP法规独立顾问 演讲题目:如何确保分析实验室的数据完整性 张袁超博士,前FDA临床药理高级审评员 演讲题目:从新药临床试验申请(IND)到新药报批(NDA):美国新药申报中FDA对药物有关物质的要求 关于岛津 岛津企业管理(中国)有限公司是(株)岛津制作所于1999年100%出资,在中国设立的现地法人公司,在中国全境拥有13个分公司,事业规模不断扩大。其下设有北京、上海、广州、沈阳、成都分析中心,并拥有覆盖全国30个省的销售代理商网络以及60多个技术服务站,已构筑起为广大用户提供良好服务的完整体系。本公司以“为了人类和地球的健康”为经营理念,始终致力于为用户提供更加先进的产品和更加满意的服务,为中国社会的进步贡献力量。
  • 国家纳米中心携手《科学》杂志发布十大前沿纳米科技难题
    11月24日,国家纳米科学中心携手《科学》杂志向全球发布了十大前沿纳米科技难题,分别是:1.是否可以构建涵盖量子和宏观物理特性的纳米理论,进而能可靠地预测材料在纳米尺度的特性?2.纳米材料的安全性与哪些特性有关?在不同的环境中如何实现对其安全性的有效调节?3.纳米科学如何助力生物学发展?4.纳米技术将为医疗技术带来怎样的变革?5.如何借助可视化技术研究纳米材料的表面和界面?6.纳米技术如何影响不同类型催化剂的制备?7.如何实现原子精度制造的大尺寸化?8.纳米技术将如何提升算力进而助推光电器件的发展?9.纳米技术会对电子行业发展产生哪些影响,未来电子器件的能耗极限在哪里?10. 纳米技术如何助力全球可持续发展?十大前沿纳米科技难题旨在为全球纳米科技领域的科学研究提供指引,为探索纳米科技的知识边界、挖掘纳米科技潜能带来新的启迪;涵盖了从基础理论到前沿应用的纳米理论、纳米安全性、纳米催化、纳米生物、纳米医药、原子精准制造、极限测量及纳米科技对光电技术、电子器件和全球可持续发展的支撑与推动作用等十个纳米科技研究领域。 2023年4月底,国家纳米中心联合《科学》杂志开启了前沿纳米科技难题的全球征集工作。该项工作的目的是深入研究和分析目前纳米科技发展面对的关键问题,国内外纳米科技的发展现状及其在学科支撑、科技进步、社会发展和人类生活改善等方面产生的影响,进一步推动纳米科技的发展,得到了来自中国、美国、加拿大、德国、澳大利亚、新加坡、韩国等二十多个国家从事纳米科技研究的知名科学家和青年学者的积极反馈与响应。本次发布的十大前沿纳米科技问题结合当前国际前沿研究、未来科技发展和人类共同需求,对进一步激发纳米科技工作者的好奇心和自由探索的热情,引领未来纳米科技创新发展新趋势,集中力量攻克纳米科技难题,推动人类进步与社会的可持续发展具有重要意义。《科学》杂志曾于2005年和2021年两次面向全球发布“125个科学问题”,激发了全球科研工作者对未来科技发展的热烈讨论与思考。2022年,“纳米科学与工程”被国务院学位委员会和教育部列为一级学科,人才培养体系和职业教育体系更加完善。纳米科技已成为集交叉性、引领性和支撑性为一体的前沿研究领域。
  • 解密“N-二甲基亚硝胺”,浅谈基因毒性杂质
    2018年中旬,长春长生的疫苗案还未彻底了结,缬沙坦原料药事件让N-二甲基亚硝胺(NDMA)又一次上了热搜。 时至今日,风波犹存,欧盟范围内对所有沙坦类药物进行审查。之后EMA通报,分别在印度药企Hetero Labs和Aurobindo Pharma生产的氯沙坦及厄贝沙坦原料药中,同样发现了含量极低的亚硝胺类化合物。美国FDA 仍在继续评估含缬沙坦的药物,并将获得的新信息持续更新「召回范围内的药物清单」和「不在召回范围内的药物清单」。 “治病”?“致病”!众所周知,药品是特殊的商品,它可以预防、治疗、诊断人的疾病。近年来,多种新药例如PD1/PD-L1免疫抑制剂的问世,让攻克癌症不再是梦想。 同时,药品的副作用及其安全性很大程度上决定其使用效果,有时不仅不能“治病”,还可能“致病”,甚至危及生命安全,所以药品生产商和监管部门对药品追溯和管理承担着不可或缺的责任。 揭开“基因毒性杂质”真面目NDMA是亚硝胺化合物的一种,而亚硝胺化合物、甲基磺酸酯、烷基-氧化偶氮等又均为常见的基因毒性杂质。基因毒性杂质(或遗传毒性杂质, Genotoxic Impurity, GTI)一般指能直接或间接损伤细胞DNA,产生致突变和致癌作用的物质,具有致癌可能或者倾向。 基因毒性杂质向来受到了严格的监控,2006年爆发甲磺酸奈非那非(维拉赛特锭)事件后,欧洲药品管理局( EMA)随即颁布了《基因毒性杂质限度指南》,人用药品注册技术要求国际协调会议(ICH)与美国食品与药品监督管理局( FDA)出台了相应的法规,中国国家食品药品监督管理总局也密切跟踪国际药品质量控制技术要求,不断完善现有药典收载技术指南,包括方法学验证、药品稳定性评价指导原则以及药品基因毒性杂质评价技术指南等。 药物合成、纯化和储存运输(与包装物接触)等过程中,多个环节均有产生或有可能产生基因毒性杂质。在工艺研究中采用“避免-控制-清除(ACP)”的策略能够最大限度减少基因毒性杂质对原料药物的影响,从而快速灵敏的监测分析手段变得尤为重要。 这时候,飞飞在此!今天赛默飞借助全新一代LC-QQQ技术,让我们一起助力“解密N-二甲基亚硝胺”。 赛默飞针对药品中基因毒性杂质液质检测解决方案 飞飞芳基磺酸酯类基因毒性解决方案Thermo Scientific™ 全新液相色谱三重四极杆质谱TSQ Fortis™ 平台建立了检测8种磺酸酯类的方法(苯磺酸酯类3个、对甲苯磺酸酯类3个、1,5-戊二醇单苯磺酸酯、 1,5-戊二醇二苯磺酸酯)。本方法灵敏度高、专属性强、稳定性好,可以满足各药企对此类基因毒性杂质的检测要求,可为基因毒性杂质风险监控提供有效的技术支持。结果如下:图1. 8种芳基磺酸酯提取离子流图(点击查看大图) 图2. 部分化合物标准曲线图(点击查看大图) 可以看出实验建立了三重四极杆液质联用仪(TSQ Fortis)分析8种芳基磺酸酯类的检测方法。实验结果表明,基于Thermo Scientific™ TSQ Fortis™ 建立的检测方法不仅具有优异的灵敏度和线性范围,同时具备良好的重现性。本方法可用于芳基磺酸酯类基因毒性化合物的日常分析检测。 飞飞N-亚硝基类基因毒性解决方案Thermo Scientific™ TSQ Fortis™ 针对基因毒性物质10个N-亚硝基化合物建立了稳定灵敏的分析方法。该方法在电喷雾离子化(ESI)条件下即可进行有效检测分析,试验结果优异,该方法稳定,快速,满足日常微量基因毒性物质N-亚硝胺类化合物的分析要求。图3. 10个N-亚硝基化合物的色谱图(5ng/mL)(点击查看大图) 图4. 部分化合物标准曲线图(点击查看大图) 从上图中可以看出建立的方法灵敏,快速和稳定性,色谱峰形良好,同时具备优异的重现性,可以满足药品中日常分析N-亚硝基类基因毒性杂质的检测要求。 飞飞总结语此次的应用案例就分享到这里了,不过难道只有这些?不!后续赛默飞更会带来应对基因毒性杂质的多平台解决方案,令“NDMA们” 无所遁形,敬请期待!扫描下方二维码即可获取赛默飞全行业解决方案,或关注“赛默飞色谱与质谱中国”公众号,了解更多资讯
  • 非手性杂质的超高效合相色谱分析方法开发
    Michael D. Jones、Andrew Aubin、Paula Hong和Warren Potts 沃特世公司(美国马萨诸塞州米尔福德市) 应用优势 1.正交法进行药物杂质分析 2.用于药物杂质分析的 UPC2 方法 3.对杂质采用超临界流体色谱分析符合 ICH 指南和法规要求 沃特世解决方案 ACQUITY UPC2&trade 系统 ACQUITY UPC2色谱柱套装 Empower® 3软件 ACQUITY® SQD质谱仪 关键词 UPC2,药物杂质,稳定性指示方法,降解分析,方法开发,甲氧氯普胺,合相色谱 简介 超高效合相色谱 (UPC2&trade )以亚2 µ m颗粒为固定相,采用超临界流体二氧化碳作为主要流动相成分。合相色谱是一种使用少量溶剂即可实现高速分析的分析工具,尤其是在分析杂质时,相比于反向液相色谱(LC),合相色谱的正交方法更有利于发现未知杂质。合相色谱的方法开发不同于液相和气相色谱的方法开发策略,后者已经基本成熟。为了简化这个过程,我们需要研究一种系统的方法,用于开发非手性物质的合相色谱方法。 了解药品和药物材料中的杂质分布是一个重要步骤,样品纯度的评估可帮助制药公司在药物开发过程中做出决策,推进药物上市进程。杂质分布将确定供应商所提供原材料的质量、成品的保质期、合成途径和防止伪造的知识产权保护。色谱图的正交对比有助于生产商作出最明智的决策。在本应用纪要中,实验采用ACQUITY UPC2系统分析甲氧氯普胺及其相关杂质。如图1所示,甲氧氯普胺(胃复安)是一种止吐药,可以治疗胃灼热、胃溃疡以及由化疗导致的恶心。方法开发研究了色谱柱和溶剂,以确定优化特异性和峰形的合适方法条件。 图1. 甲氧氯普胺的化学结构。 实验 UPC2条件 系统:配备PDA和SQD检测器的ACQUITY UPC2系统 色谱柱:ACQUITY UPC2 BEH 2-EP 3.0 × 100 mm,1.7 µ m 流动相A:CO2 流动相B:含1 g/L甲酸铵的甲醇/乙腈(50:50)溶液,加2%的甲酸 清洗溶剂: 70:30的甲醇/异丙醇 分离模式:梯度;溶剂B在5.0 min内由2%增加至30%;达到30%后,保持1 min 流速:2.0 mL/min CCM 反压:1500 psi 柱温:50 ℃ 样品温度:10 ℃ 进样体积: 1.0 µ L 运行时间: 6.0 min 检测条件: PDA 3D通道:PDA,200到410 nm;20Hz PDA 2D通道:270 nm,4.8 nm分辨率(补偿500到600 nm)SQD MS:150到1200 Da;ESi+和ESi- 补液流速:不需要 数据管理: Empower 3软件 样品描述 分离度溶液由甲氧氯普胺和八种相关杂质制备而成,将其置于TruView&trade 最大回收样品瓶中等待进样,如表1所示。杂质的浓度为甲氧氯普胺标准品浓度的0.1% w/w。分离度溶液用于色谱分析方法开发。 表1. 甲氧氯普胺杂质标准品、峰的名称、质量数和欧洲药典分类列表。 结果与讨论 系统筛选 方法开发过程对色谱柱、改性剂和改性添加剂进行了系统筛选,以获得最佳分离结果。初始的配置通过四种改性剂对四种UPC2色谱柱进行了筛选。&ldquo 改性剂&rdquo 是强溶剂流动相,有利于洗脱极性较强的分析物。所使用的四种溶剂分别是甲醇、含0.5%甲酸的甲醇、含2 g/L甲酸铵的甲醇和含0.5%三乙胺的甲醇。筛选过程采用溶剂B在5 min内从5%增加至30%,达到30%时保持1 min的常用梯度。总筛选时间仅两个多小时。对比各色谱柱所得峰可以发现,含有甲酸铵的甲醇总体上可提供最好的峰形,如图2所示。方法筛选过程中通过查看ACQUITY SQD提供的质谱图实现峰跟踪。对于极性较强的分析物,选择性(&alpha )有很大不同。在这些对比实验中,流动相保持恒定,因而不断变化的&alpha 是由[固定相 &ndash 溶质]相互作用所导致。 图2. 色谱柱筛选结果。改性剂(B)是含有2 g/L甲酸铵的甲醇。溶剂B在5 min内从5%增加至30%,达到30%时保持1 min。 基于这些结果,UPC2 2-EP固定相是最佳的色谱柱选择,可以为大多数分析物提供更好的峰形和分离度。UPC2 CSH Flouro-Phenyl色谱柱可以提供较好的选择性和峰形;但是,杂质C未能按预期分离成两个峰。这种未知现象将在未包括在本应用纪要中的另一组实验中进一步考察。1 梯度斜率的影响 在反相LC中,梯度斜率是控制选择性和分离度的常用工具。使用UPC2 2-EP固定相,延长总的梯度运行时间可以降低梯度斜率。斜率的改变对色谱图基本没有影响,仅使峰6和7之间的选择性发生改变,如图3所示。 图3. 归一化的x轴叠加显示甲氧氯普胺,采用延长的12 min和35 min梯度运行时间,其斜率较6 min的筛选实验更小。使用原始梯度;溶剂B由5%增加至30%。 不同洗脱溶剂的影响 使用变化率较平缓的梯度并未增加峰与峰之间的分离度。为提高分离度,将低极性非质子有机溶剂(乙腈)与甲醇(极性较强的洗脱溶剂)以不同比例混合。乙腈的添加提高了分离度,扩展了峰之间的分离间隔。这些现象证明本方法可在方法开发中发挥重要作用,如之前发表的结果所示。1 图4. 如叠加图中突出部分所示,在改性剂成分中添加乙腈后,后部洗脱分析物的分离度明显提高。 在添加剂筛选过程中,我们也考察了每种杂质各自的标准品。甲酸可以优化杂质H的峰形;但是,它会影响其它相关物质的色谱分析性能。添加剂的浓度也会对峰形产生影响。为了得到更理想的峰形,浓度需要高于反向LC的常用浓度。增加甲酸的浓度可以进一步改善杂质H的峰形,如图5所示。但是,杂质F的峰形受到了影响,如图6所示。组合使用甲酸和甲酸铵可同时获得两种添加剂的优势,使全部的分离均获得最佳峰形。在改性剂中使用添加剂甲酸和/或甲酸铵对过期样品进行分析所得结果如图7所示。在此对比实验中使用过期样品使我们能够更好地评估已知杂质在存在未知杂质条件下的选择性和峰形。如图7所示,解决峰形问题最终会影响色谱分离的效率、分离度和灵敏度。 图7. 过期甲氧氯普胺样品的分析,改性剂中分别添加不同的添加剂成分。将甲酸铵和甲酸组合,称之为&ldquo 类缓冲液&rdquo 系统,此系统可使样品中的所有分析物均获得最佳峰形。所使用的改性剂为50:50的甲醇/乙腈。 评估特异性 在确定可对选择性、分离度和峰形产生积极影响的方法条件后,各变量同时获得了优化。实验使用甲氧氯普胺和杂质(对照)的标准混合物和过期的样品混合物对最终方法进行了评估,如图8所示。有关未知杂质的进一步考察,请参阅沃特世(Waters® )应用纪要。2 图8. 采用&ldquo 实验&rdquo 部分中列出的最终方法条件对甲氧氯普胺对照混合物和降解混合物进行的对比分析。 结论 本实验使用ACQUITY UPC2系统成功对甲氧氯普胺及其相关物质进行了非手性分析。了解杂质结构的特性有利于方法开发。实验中分析的多种杂质包括胺类、羟基、酯类和羧酸。能够影响选择性、分离度和峰完整性的主要方法变量分别是固定相、改性剂的洗脱强度和添加剂的组成。最后甲氧氯普胺相关物质的分析方法展示了此方法对过期甲氧氯普胺样品的特异性。 本方法开发过程通过色谱柱筛选处理中的对比实验揭示了多种[固定相 &ndash 分析物]相互作用。更多的相互作用需要在已发表的研究基础3-6上进行进一步的探索。了解这些方法变量相互作用的影响将有助于创建一种更加适用的方法开发技术。 参考文献 1. Jones MD, et al.Analysis of Organic Light Emitting Diode Materials by UltraPerformance Convergence C hromatography Coupled with Mass Spectrometry (UPC2 /MS).Waters Application Note 720004305EN.2012 April. 2. Jones MD, et al.Impurity Profiling Using UPC2 /MS. Waters Application Note 720004575EN.2013 Jan. 3. West C, Lesellier E. A unified classification of stationary phases for packed column supercritical fluid c hromatography.J Chromatogr A. 2008 May 1191(1-2):21-39. 4. West C, K hater S, Lesellier E. C haracterization and use of hydrophilic interaction liquid c hromatography type stationary phases in supercritical fluid c hromatography.J Chromatogr A. 2012 Aug 1250:182-95. 5. Lesellier E. Retention mec hanisms in super/subcritical fluid c hromatography on packed columns.J Chromatogr A. 2009 Mar 1216(10):1881-90. 6. Zou W, Dorsey JG, C hester T L. Modifier effects on column efficiency in packed-column supercritical fluid c hromatography.Anal Chem.2000 Aug 72(15):3620-6.
  • 赛默飞发布药物杂质鉴定新流程
    2015年8月18日,上海——科学服务领域的世界领导者赛默飞世尔科技(以下简称:赛默飞)近日发布基于Thermo ScientificTM Q ExactiveTM Focus串联四极杆高分辨质谱仪(产品详情:www.thermoscientific.cn/product/q-exactive-focus-hybrid-quadrupole-orbitrap-mass-spectrometer.html)和新一代的智能小分子化合物鉴定软件Thermo ScientificTM Compound DiscovererTM的药物杂质鉴定的新流程,实现了对泮托拉唑杂质谱的分析。无论是优质数据的有效获取,还是获取后对已知和未知杂质的分析鉴定,该工作流程都可以完美实现。药物杂质是药物活性成分(原料药)或药物制剂中不希望存在的化学成分,会对用药的安全性和有效性带来隐患,因此杂质的检测是保证药物质量至关重要的部分,FDA、EMEA、PMDA、CFDA等各国药品监管部门均制定了相应的指导原则对其进行严格管控。赛默飞独有的四极杆静电场轨道阱高分辨液质联用技术,凭其高灵敏度、高专属性和高准确性的分析能力,可对样品中药物杂质进行全面的信息采集。结合小分子化合物鉴定软件Compound Discoverer以高度灵活的自定义方式制定分析工作流程,对数据中的目标和非目标杂质进行提取、比对及鉴定,工作流程如下:通过软件对样品数据的分析和提取,在Compound Discoverer中可以直观、便捷的查看和筛选预期和未知的杂质分析结果,从结果界面中可获得不同条件下样品杂质的变化情况,获得所有杂质保留时间、一级质谱、同位素和二级质谱等丰富信息。在获得母药和杂质的一级和二级质谱信息后,软件将调用碎裂数据库(Fragmentation Library)快速的对泮托拉唑的碎片结构进行归属,该数据库几乎涵盖了所有已发表的文献,保证了碎片解析的准确性。在此研究结果之上,通过软件对杂质与母药二级质谱信息之间的比对,进一步对杂质变化位点进行推测。在本例中,共鉴定到泮托拉唑杂质15个,其中可能的降解杂质9个,可能的工艺杂质6个,为药物杂质的质量控制、安全性评估提供了富有价值的信息。相关资料下载地址:www.thermoscientific.cn/content/dam/tfs/Country%20Specific%20Assets/zh-ch/CMD/MS/LSMS/documents/analysis%20drug%20impurity%20in%20pantoprazole.pdf -------------------------------------------------关于赛默飞世尔科技赛默飞世尔科技(纽约证交所代码:TMO)是科学服务领域的世界领导者。公司年销售额170亿美元,在50个国家拥有约50,000名员工。我们的使命是帮助客户使世界更健康、更清洁、更安全。我们的产品和服务帮助客户加速生命科学领域的研究、解决在分析领域所遇到的复杂问题与挑战,促进医疗诊断发展、提高实验室生产力。借助于首要品牌Thermo Scientific、Applied Biosystems、Invitrogen、Fisher Scientific和Unity Lab Services,我们将创新技术、便捷采购方案和实验室运营管理的整体解决方案相结合,为客户、股东和员工创造价值。欲了解更多信息,请浏览公司网站:www.thermofisher.com 赛默飞世尔科技中国赛默飞世尔科技进入中国已超过30年,在中国的总部设于上海,并在北京、广州、香港、台湾、成都、沈阳、西安、南京、武汉等地设立了分公司,员工人数约3700名。为了满足中国市场的需求,现有8家工厂分别在上海、北京和苏州运营。我们在北京和上海共设立了9个应用开发中心,将世界级的前沿技术和产品带给国内客户,并提供应用开发与培训等多项服务;位于上海的中国创新中心结合国内市场的需求和国外先进技术,研发适合中国的技术和产品;我们拥有遍布全国的维修服务网点和特别成立的中国技术培训团队,在全国有超过2000 名工程师提供售后服务。我们致力于帮助客户使世界更健康、更清洁、更安全。欲了解更多信息,请登录www.thermofisher.cn
  • 新规发布,疫苗杂质分析有难题?
    图片来源:药监局官网2023年10月12日,国家药监局、国家卫生健康委发布实施《中华人民共和国药典》(2020年版)第一增补本的公告。《公告》指出,《中华人民共和国药典》(2020年版)第一增补本,自2024年3月12日起施行。其中,在三部新增通则和指导原则中发布了“9403 人用疫苗杂质控制技术指导原则”,“人用疫苗杂质控制技术指导原则”公示稿曾于2021年9月在药典委官网发布。该指导原则是对人用疫苗产品杂质控制的基本考虑,旨在指导疫苗生产和研发过程中对杂质成分的分析、评估并制定相应的控制策略,以尽可能减少或消除杂质对疫苗安全性和有效性的影响,保证疫苗产品质量。该指导原则应基于具体疫苗品种的特点及相关知识参考使用。指导原则主要分为三部分内容,分别为:1)疫苗杂质来源。阐述了工艺相关杂质和产品相关杂质两大疫苗杂质来源,并提到要重点关注宿主细胞蛋白和核酸、所用生物/化学材料的残留物以及包材相容性研究。2)疫苗杂质控制的原则及策略。疫苗杂质控制应基于“质量源于设计”的原则,对疫苗中杂质进行风险评估、全过程控制和全生命周期管理,并列举了不同类型疫苗杂质的控制要点(如下图所示)。同时在文中提到有机溶剂的使用应符合“残留溶剂测定法”(通则0861)以及参照“分析方法验证指导原则”(指导原则9101)对检测方法进行验证,并重点关注方法的专属性和灵敏度。3)变更事项对疫苗杂质控制的影响。应定期评估上市疫苗的生产工艺性能和杂质控制策略的有效性,持续优化产品杂质控制策略,如发生变更应参照相关要求开展变更前后的可比性研究等。指导原则9403 全文可概括如下方表格所示:疫苗接种每年可拯救数百万人的生命,其通过与身体的天然防御系统协同作用来建立保护网,从而降低感染疾病的风险。据统计迄今拥有的疫苗可以预防20多种危及生命的疾病,帮助所有年龄段的人活得更长、更健康。目前,疫苗接种每年可防止350万至500万人死于白喉、破伤风、百日咳、流感和麻疹等疾病。疫苗接种是初级卫生保健的一个关键组成部分,也是一项无可争议的人权。它也是钱能买到的最好的健康投资之一。疫苗对预防和控制传染病暴发至关重要,疫苗支撑着全球卫生安全,并将成为抗击抗微生物药物耐药性斗争的重要工具。(摘自WHO官网)然而直到今天,全球疫苗安全事件仍层出不穷。不规范的管理、不合法的添加、不合规的质量控制都是疫苗安全事件频发的原因,进而导致疫苗这一本用于预防/治疗疾病的工具却成为了加速疾病和死亡的利器。在疫苗的质量控制中,杂质的分析和控制至关重要,疫苗中杂质种类繁杂,来源多样,同时在指导原则9403中强调了要重点关注分析方法的专属性和灵敏度,这使得杂质分析难度进一步提升。岛津于2017年起先后与权威机构和知名疫苗企业开展合作,有着非常丰富的经验和专业的团队,在本篇中小编将和您分享岛津的疫苗杂质分析方案,助力广大用户应对新规发布及实施。01液相色谱法检测疫苗中四种常见防腐剂残留● 分析条件分析仪器:岛津超高效液相色谱仪LC-40色谱柱:Shimadzu Shim-pack GIST 100 mm x 2.1 mm I.D., 2.0 μm P/N: 227-3001-04 岛津(上海)实验器材有限公司流动相:A-水,B-乙腈流速:0.4 mL/min柱温:40 ℃进样体积:5 μL洗脱方式:梯度洗脱,B相初始浓度为10%。时间程序见表1。表1:梯度洗脱时间程序● 专属性及加标回收实验图1:对照品(0.5 ppm)和空白溶剂270 nm和220 nm色谱图表2:样品加标回收率(n=3)注:N.D.表示未检出结果显示,方法专属性良好,符合9403要求,且加标回收率在96.8~101.30%之间,RSD在0.05~0.28%之间,方法可靠,可为疫苗中防腐剂残留分析提供参考。02 LCMSMS检测疫苗中卡那霉素残留生物制品中卡那霉素的检测常用免疫法,但前处理复杂、灵敏度和专一性受限;LCMSMS方法前处理简单、专一性强、灵敏度高、分析速度快,因此本应用采用LCMSMS方法检测卡那霉素。● 分析条件分析仪器:岛津超高效液相色谱仪LC-40与三重四极杆质谱仪LCMS-8045联用系统色谱柱:Shimadzu Shim-pack GIST Amide 150 mm x 2.1 mm I.D., 3.0 μm P/N: 227-30818-06 岛津(上海)实验器材有限公司流动相:A-250 mM甲酸铵+0.1% 甲酸水溶液,B-乙腈流速:0.8 mL/min柱温:50 ℃进样体积:10 μL洗脱方式:梯度洗脱,B相初始浓度为75%。时间程序见表3。表3:梯度洗脱时间程序● 专属性及加标回收实验图2:对照品(0.5 ppm)和空白溶剂270 nm和220 nm色谱图表4:样品加标回收率(n=3)注:N.D.表示未检出结果显示,方法专属性良好,符合9403要求,且加标回收率在90.10~101.50%之间,RSD在0.65~2.38%之间,方法可靠,可为疫苗中抗生素残留分析提供参考。岛津始终关注大家的用药安全,并积极应对法规要求和变化,更多第一增补本增修订应用方案将持续推出,敬请期待!本文内容非商业广告,仅供专业人士参考。
  • 9月12日 Nature杂志精选
    封面故事:社会奖赏编码的神经机制   Social reward requires coordinated activity of nucleus accumbens oxytocin and serotonin   本期封面所示为进行社会性游戏的巢鼠(禾鼠)。人们此前一直不知道社会奖赏编码背后的神经机制,尽管需要增强适应性社会互动来在整个演化过程中始终保持这样的行为。Robert Malenka及同事在本文中报告说,在小鼠伏隔核中,肽激素&ldquo 后叶催产素&rdquo 对于向&ldquo 中等多棘神经元&rdquo 上的激发性传输的社会性增强和一种形式的突触前长期抑制来说都是所必需的。如果&ldquo 后叶催产素&rdquo 受体被特意从来自&ldquo 背缝神经核&rdquo (脑中5-羟色胺的主要来源)的输入中删除的话,这种社会性增强就会被中断 通过阻断伏隔核中的5-羟色胺受体,这种社会性增强也会被中断。&ldquo 后叶催产素&rdquo 和5-羟色胺系统之间这种协调的活性,为编码社会性增强提供了一个可能的机制,也为进一步研究社会功能失调的神经机制提供了目标。(doi: 10.1038/nature12518)   癌症生长调控因子的筛选   RNAi screens in mice identify physiological regulators of oncogenic growth   这篇论文报告了在一个完好的哺乳动物生理系统(小鼠皮肤)中所完成的首次全基因组活体&ldquo RNA干涉&rdquo (RNAi)筛选。以前在哺乳动物细胞中进行的RNAi扫描都限于培养的细胞。作者将在胚胎表皮正常生长中所涉及的基因与由Hras致癌基因驱动的异常细胞增殖所必需的基因进行了比较。他们所获得的值得注意的发现包括&beta -catenin在正常细胞生长中所起的一个负面作用,这与在由致癌基因驱动的生长中需要&beta -catenin形成对比。从这次筛选中所产生的表皮生长潜在生理调控因子的列表,为未来研究提供了一个丰富资源,也为皮肤癌治疗提供了可能的目标。(doi: 10.1038/nature12464)   丙肝病毒感染的人化小鼠模型   Completion of the entire hepatitis C virus life cycle in genetically humanized mice   在Nature杂志2009年发表的一篇文章中,Alexander Ploss及同事发现,人类基因CD81 和occludin (OCLN)的短时间表达,构成丙肝病毒(HCV)向具有免疫力的小鼠细胞中吸收所需的最小数量的细胞因子。现在,他们报告说,稳定表达CD81 和 OCLN的转基因免疫缺陷小鼠能够维持具有可以测定出的病毒血症的完整HCV复制周期。这一通过遗传手段人化的小鼠模型的获得,为在活体中更深入地研究HCV感染开辟了道路,应能为验证潜在的治疗方法提供一个有价值的平台。(doi: 10.1038/nature12427)   Treg细胞的抗肿瘤效应与促免疫效应   Stability and function of regulatory T cells is maintained by a neuropilin-1&ndash semaphorin-4a axis   &ldquo 调控性T细胞&rdquo (Treg) 构成有效抗肿瘤免疫的一道屏障。它们的删除能诱导很多肿瘤的减小和清除,但由于这些细胞在免疫系统中发挥重要的平衡作用,所以其删除也会导致失控的自体免疫和死亡。这篇论文描述了semaphorin-4a(T-细胞介导的免疫的一个活化剂)和neuropilin受体Nrp1在Treg细胞上的一种相互作用,该相互作用是Treg细胞限制抗肿瘤免疫反应和治疗已发生的炎性结肠炎所必需的,但对自体免疫的抑制和免疫自稳的维持来说却是可有可无的。至于是否可以通过以Treg细胞为目标来限制肿瘤生长而又不会引发自体免疫,其可行性仍有待确定。两种生物活性也许是不可分开的,但这项工作指出了可以对这一重要系统进一步定性的方向。(doi: 10.1038/nature12428)   细菌效应物NleB的毒性机制   Pathogen blocks host death receptor signalling by arginine GlcNAcylation of death domains   A type III effector antagonizes death receptor signalling during bacterial gut infection   以前的研究工作从肠道致病性大肠杆菌识别出一组效应物,它们能抑制宿主&ldquo 核因子-?B&rdquo (NF-?B) 信号作用,而它们当中只有一个,即NleB,是活体中细菌毒性所需的。本期Nature上发表的两篇论文演示了NleB作用的独特机制。它直接以死亡受体信号复合物为作用目标,结合到包括TNF受体、FAS、RIPK1、TRADD 和FADD在内的多种含DD的蛋白的&ldquo 死亡域&rdquo (DD) 上。DD被发现起一个N-acetylglucosamine (GlcNAc) 转移酶的作用,后者修饰一个保守的DD精氨酸,阻断&ldquo 受体-适配体&rdquo 相互作用。这些发现表明,GlcNAc修饰是细菌毒性所必需的,能够调控死亡受体信号作用。(doi: 10.1038/nature12436 & doi: 10.1038/nature12524)   设计目标蛋白分子的优化新途径   Computational design of ligand-binding proteins with high affinity and selectivity   当前设计用于医学或生物技术应用的方法,涉及在免疫的动物体内产生针对某一目标抗原的抗体,和/或在对所期望的配体具有预先存在的低亲和性的蛋白上进行直接的演化实验。这篇论文描述了用于小分子结合蛋白的计算设计的一种通用方法,作者用该方法为类固醇&ldquo 洋地黄毒&rdquo (用来治疗心脏病的一种强心苷)设计高亲和性、高选择性结合点。采用该方法,应有可能为合成生物学应用迅速生成小分子受体,为有毒化合物迅速生成活体清除剂,以及为诊断设备迅速生成可靠的配体结合域。(doi: 10.1038/nature12443)     新的一类磷脂酰丝氨酸运输蛋白   Interactome map uncovers phosphatidylserine transport by oxysterol-binding proteins   真核细胞被一系列具有独特类脂组成的、在功能上专门化的、与膜结合在一起的细胞器在内部分成不同部分。在这项研究中,Anne-Claude Gavin及同事确定了芽殖酵母中所有类脂转移蛋白的类脂结合特征,发现了一个亚类的以前没有被识别出的&ldquo 氧甾酮结合蛋白&rdquo (OSBPs),后者在磷脂酰丝氨酸的自稳中发挥功能,运输而不是转移固醇。系统发生分析显示,类似的OSPBs具有广泛保守性,包括在人体中&mdash &mdash 在人体中它们与包括癌症和代谢综合症在内的病理相关。(doi: 10.1038/nature12430)   固氮作用受北大西洋环流支配   Changes in North Atlantic nitrogen fixation controlled by ocean circulation   可以被生物利用的或&ldquo 被固定的&rdquo 氮驱动着浮游植物的生产力及向深海的碳输出。但关于控制固氮的全球速度和空间分布的因素,仍有很多问题有待回答。现在,古生物地球化学数据显示,在过去160000年北大西洋所存在的一个23000年的固氮周期,也许可以通过过量磷的可获得性响应于区域海洋环流由轨道驱动的变化所发生的变化得到最好的解释。(doi: 10.1038/nature12397)   来自凝聚态物质的受激X-射线发射   Stimulated X-ray emission for materials science   &ldquo 共振非弹性X-射线散射&rdquo 等方法,是研究材料的基础性电子和振动激发的强大工具,但需要非常高的光子密度来提取相对较弱的有用信号 所需光子密度是如此之高,以至于会损害样品。现在,Martin Beye及同事介绍了利用X-射线自由电子激光在原理上何以能够通过诱导来自样品的受激X-射线发射而绕过这个问题。以硅作为样品,他们发现,这样的激光能从一个固体样品中诱导受激X-射线发射,从而为低能激发及它们在物质中的扩散提供了一个性能卓越的探测工具。受激X-射线发射以前曾在气体中演示过,但其在一个固体系统中的实现应能在实验中提供很多新的可能性。(doi: 10.1038/nature12449)   对地幔中硫同位素比的解释   Non-chondritic sulphur isotope composition of the terrestrial mantle   早期地球地表下物质向地核和地幔层的分化应能反映在残留地幔组成中,因为(否则的话)大部分&ldquo 喜铁元素&rdquo (假设硫也包括在内)早就被液态的地核吸收了。然而,以前对地幔所做的分析显示,稳定硫同位素比与在球粒陨石中所看到的相似,这也许是由于地幔物质来源于陨石的一种&ldquo 晚期虚饰&rdquo (late veneer)作用。但Jabrane Labidi等人在本文中提供的证据表明,地幔的异质硫同位素比与锶和钕同位素比直接相关。作者得出结论认为,这些结果可以通过在&ldquo 地核-地幔&rdquo 分化过程中的分馏作用来调和。(doi: 10.1038/nature12490)
  • 【知识分享】有关物质超标了,是不是杂质峰被误判了?
    结论分析工作者在药物的有关物质高效液相色谱法的方法开发和检查,应对检验过程中出现的杂质峰予以重视,以免出现误判。结果易被误认为是有关物质的峰包括溶剂峰、有机酸盐峰、无机酸盐峰和辅料峰,本次将举例说明并对这些峰的形成原因进行简单分析。根据药品注册的国际技术要求中杂质的含义,杂质分为有机杂质、无机杂质和残留溶剂。有关物质是杂质的一种,主要是指有机杂质,它可能是原料药合成过程中带入的原料药前体、中间体、试剂、分解物、副产物、聚合体、异构体以及不同晶型、旋光异构的物质,也可能是制剂过程或是在贮藏、运输、使用过程中产生的降解物。有关物质的检查方法很多,主要有薄层色谱法、高效液相色谱法(HPLC法)、气相色谱法和紫外分光光度法等。其中,HPLC法由于分离效果好、专属性强、灵敏度高,在有关物质检查中最为常用。在采用HPLC法对药物进行有关物质分析时,一般要求考察最大杂质峰面积或各杂质峰面积的和,将其与对照溶液的主峰面积(主成分自身对照品法)或总峰面积(面积归一化法)比较,规定应不超过某一特定的数值。但在实际检验过程中,排除配样引进或者是柱子没冲干净这些因素外,色谱图上仍然会出现保留时间较弱的峰,易被误认为是杂质峰,从而造成结果的误判。笔者结合日常检验工作和相关文献,选取了几个具有代表性的品种,将这些易被误认为是杂质峰的峰归纳为溶剂峰、有机酸盐峰、无机酸盐峰和辅料峰,并对这些峰的形成原因进行分析,以期对药物的有关物质HPLC方法的研究和常规检查提供参考。1. 溶剂峰在HPLC法中,由于溶解对照品或供试品的溶剂和流动相在某一波长的吸光值不一样,因此产生了吸光值的变化,表现为出现溶剂峰。溶剂峰可能是正常形状的峰,也可能是倒峰,还有可能是一组奇形怪状的峰。减小该类溶剂峰最有效的方法是使用流动相作为溶剂溶解样品,这样既可以避免样品溶剂和流动相之间任何强度或黏度的不匹配,也可以减少样品分析时基线的漂移。此外,值得注意的是,在进行有关物质分析时,要等基线平稳后,再进空白溶剂。一般进样2次,计算供试品溶液的杂质峰时,溶剂峰位置的峰是不参与计算的。2. 有机酸盐峰《中华人民共和国药典》(以下简称《中国药典》)2020年版(二部)采用HPLC法对苯磺酸氨氯地平的有关物质Ⅱ进行控制。以甲醇-乙腈-0.7%三乙胺溶液(取三乙胺7.0 mL,加水至1000 mL,用磷酸调节pH值至3.0±0.1)(35:15:50)为流动相,色谱柱为十八烷基硅烷键合硅胶柱,检测波长为237nm。标准规定:氨氯地平杂质I峰的峰面积乘以2与其他各杂质峰面积的和应不得大于对照溶液主峰面积的(0.3%)。实际检测时,氨氯地平的出峰时间为17.5min,但是在溶剂峰出峰的位置有响应较高的峰(保留时间3.0min),色谱图见下图。若将该峰判定为杂质峰,则会出现有关物质超标的情况。将苯磺酸配制成一定浓度进样后最终确定该峰为苯磺酸的峰。也有研究采用液相色谱-四级杆飞行时间质谱联用对苯磺酸的出峰予以确证。苯磺酸为一元有机酸,其pKa为0.7,在通常的流动相pH范围内,苯磺酸氨氯地平主要解离为氨氯地平阳离子(被质子化)和苯磺酸阴离子(C6H5SO3-),因此,苯磺酸氨氯地平会出现两个峰,一个是苯磺酸(保留时间较短),一个是氨氯地平。同时,研究表明,采用反相HPLC法同时测定复方感冒药中的多种成分时,对马来酸氯苯那敏色谱峰的识别易出现判断错误,将马来酸的峰误认为是马来酸氯苯那敏。马来酸为二元有机酸,其pKa分别为2.00和6.26,在通常的流动相pH范围内,马来酸氯苯那敏主要解离为氯苯那敏阳离子(被质子化)和马来酸阴离子(HOOCCH=CHCOO-),因此,马来酸氯苯那敏也会出现两个峰。在色谱系统开发过程中,一般会调节流动相pH,与目标化合物pKa相差2个单位以上,使药物全部解离或结合,这样才能准确定量。对于带有机酸根的化合物的液相检测,比如马来酸氯苯那敏、富马酸喹硫平、苯磺酸氨氯地平,在选择的流动相pH条件下,若目标化合物以离子型存在,则马来酸、苯磺酸和富马酸等有机酸也会以盐的形式存在,这些有机酸因含有共轭结构均有紫外吸收,从而在液相条件下也会出现一个色谱峰。因此,做此类物质的有关物质和含量测定时就应注意,不应将有机酸的峰误认为是杂质峰,或者是将有机酸的峰误认为是目标化合物的峰,造成结果的误判。3.无机酸盐峰《中国药品标准》采用HPLC法检测盐酸左氧氟沙星氯化钠注射液的有关物质。以硫酸铜D-苯丙氨酸溶液(取D-苯丙氨酸1.32g与硫酸铜1g,加水1000mL溶解后,用氢氧化钠试液调节pH值至3.5)-甲醇(82:18)为流动相,检测波长为293nm。标准规定,供试品溶液色谱图中如有杂质峰,各杂质峰面积的和不得大于对照溶液主峰面积。实际分析时,在3.3min出现一个很大的峰,色谱图见下图 。经过分析,认为与盐酸稀释后进样的峰位相同,因而在计算有关物质时不应将该峰误认为是杂质峰。笔者在参与针对新版药典用的氢溴酸右美沙芬化学对照品的标化工作中,参照《中国药典》 中氢溴酸右美沙芬胶囊含量测定的方法,对氢溴酸右美沙芬进行有关物质检查,流动相为乙腈-磷酸盐缓冲液(取磷酸和三乙胺各5mL,加水至1000mL)(28:72),检测波长220nm,实际检测时发现在2.5min出了一个很大的色谱峰。为了验证该峰,用溴水稀释后直接进样分析,结果在同样位置出峰。见下图。因此,在结果判定时,应注意不要误将该峰归纳入杂质峰。类似于含有有机酸的药物,含有无机酸的药物在通常的流动相pH条件下也均会发生解离,以盐形式存在的化合物进入液相系统后会以游离碱的形式存在,盐酸和氢溴酸是强酸,也在流动相里解离形成氯离子和溴离子。在对不同水中氯离子含量的比对分析中,用1cm的石英比色皿,取一定浓度的氯化钠标准溶液作为待测液,采用紫外-可见分光光度计,扫描范围280~350nm,确定了氯离子在波长为308.7nm左右处有最大吸收。研究也验证了溴离子在200~220nm波长范围内有较强的紫外吸收。分析原因,可能是氯离子和溴离子有8电子的稳定结构而导致紫外吸收,具体原因还有待进一步分析。
  • 锂电池正极材料中杂质元素的准确测定,很难吗?
    锂电池的正极质量影响着电池的充放电性能,其中正极的主量元素配比以及杂质元素的浓度尤为重要。当正极材料中存在铁 (Fe)、铜 (Cu)、铬 (Cr)、镍 (Ni)、锌 (Zn)、铅 (Pb) 等金属杂质时,电池化成阶段电压达到这些金属元素的氧化还原电位后,它们就会先在正极氧化,然后再到负极还原成单质。当负极处的金属单质累积到一定程度,其沉积金属坚硬的棱角就会刺穿隔膜,造成电池自放电,对电池造成损害,甚至致命影响。因此,从正极源头上保证其纯度,防止金属杂质异物的引入,对电池生产质控就显得格外重要。目前的锂电池企业通常采用电感耦合等离子体发射光谱法 (ICP-OES) 测定主量元素配比以及杂质元素含量。ICP-OES仪器相对较低的购买和使用成本,使之在相关企业有着广泛的使用。随着锂电池产业升级加速,生产质控愈发严格,对正极材料中元素杂质含量限度要求越来越苛刻。ICP-OES由于其自身原理的局限性,在部分含量较低的杂质元素如Cr、Cu、Fe、Zn、Pb的准确检出方面出现瓶颈。例如,在某些生产工艺控制严格的企业,上述5个元素的控制浓度在1ppm左右(个别厂家Fe含量在10ppm以内),在日常检测中,经过100倍固液稀释比的样品前处理后,样品上机测定时的浓度低至10ppb以下。由于在主要检测观测区的谱线干扰严重,能否实现上述杂质元素浓度的准确分析,对ICP-OES的性能提出了非常大的挑战。与ICP-OES相比,电感耦合等离子体质谱(ICP-MS)的测定灵敏度更高,检出能力更强,检测下限更低,更加符合锂电池企业高效率准确检测低含量杂质元素的需求。ICP-MS的工作原理决定了其受到的干扰与ICP-OES有较大的区别。ICP-MS受到的干扰主要分为基体干扰和质谱干扰。通常情况下,锂电池正极样品前处理的固液稀释比例在100~200倍,而且前处理时使用较多的酸,使得样品中的固溶含量和酸度都很高,造成ICP-MS的空间电荷效应和电离抑制,待测元素受到基体干扰;对于正极材料样品来说,较高浓度的主量元素会与O、Cl、N等元素结合,形成分子量为M+16、M+35、M+14等质谱干扰。另外,主量元素的高浓度还会产生拖尾,影响分子量M±1元素的测定。如何帮助锂电池企业使用ICP-MS有效克服上述诸多干扰,提高生产效率以及产品质量和性能,成为ICP-MS供应商面临的重要任务。标配全基体进样系统 (AMS) 的珀金埃尔默NexION系列ICP-MS,配合大锥孔三锥设计,QID四极杆离子偏转器,以及具备标准、碰撞和反应三种模式的UCT通用池,可以获得优异的基体耐受性、仪器稳定性和更低的记忆效应。通过进行简单易行的仪器参数优化、干扰消除模式选择和同位素质量数选择,有效消除基体和质谱干扰,准确测定锂电池正极样品中的低含量杂质元素。下述表格显示了NexION 1000G ICP-MS对来自锂电池生产企业的正极材料样品中Cr、Cu、Fe、Zn、Pb杂质元素含量的测定结果,以及仪器方法的优异性能。表1.锂电池正极样品测定结果表2.锂电池正极样品加标回收率测定结果** Cu、Pb、Cr加标5μg/L;Zn、Fe加标50μg/L如何简单有效地做到准确测定锂电池正极材料中低含量杂质元素?请扫描下方二维码即刻获取《ICP-MS测定锂电池正极材料中Cr,Cu,Fe,Zn,Pb杂质元素含量》。扫描上方二维码即可下载右侧资料➡
  • TOP 科学杂志报道:与飞纳电镜一起探索地球最年轻洞穴的炙热深处
    《史密森尼(Smithsonian)》杂志,隶属于美国史密森尼学会,该学会 1846 年成立。《史密森尼(Smithsonian)》杂志是美国华盛顿特区的史密森学会官方发行刊物,于 1970 年出版第一期杂志。 索罗,一位专注洞穴研究的洞穴学家,同时担任La Venta 地理探险协会的领军人物,他跨越国界与美国宇航局和欧洲航天局携手合作,致力于宇航员的行星探索训练工作。他每天花数小时查看现场的照片和视频,这些丰富的信息,不仅让研究人员得以追踪洞穴的形成过程与具体位置,也提供了一个难得的机会,使科学家有机会深入探究未经生命物质触碰的洞穴深处:在前所未有的细节层面,观察冷却过程、矿物生成以及这些环境中早期微生物群落的诞生。 穿着冶金用“冷却服”的洞穴学家 1994 年,洞穴学家研究了意大利埃特纳火山喷发后形成的熔岩管。研究人员在火山喷发停止近一年后进入熔岩管,发现里面尽管余温高达 158℃,却存在着罕见的晶体与矿物。然而,六个月后回到实验室时,这些亚稳态的矿物已经因为温度的降低分解消失,错失了详细研究的机会。这次经历深刻体现了在极端环境中进行快速样本采集并及时表征的重要性。 为了准备进入冰岛的新洞穴,索罗及其团队需要掌握洞穴形成的具体位置,以及哪些通道最为简单安全。在国家地理学会的资助下,于 2021 年 9 月,即在火山停止喷发大约一周后,索罗团队接近这座火山。他们运用精心绘制的地图,成功确定了地表的“天窗点”——这些点极有可能是新形成的洞穴入口。研究团队在该区域放置一架搭载热成像摄像机的无人机,细致地记录下火山不同区域的温度数据。 1.研究人员操作一架配备有激光雷达扫描仪的无人机,对熔岩管网络进行精细的三维绘图 鉴于一些矿物会随着时间改变或消失,这一次在冰岛法格拉达尔火山,为了避免出现类似情况,研究人员携带飞纳台式扫描电镜大样品室卓越版 Phenom XL G2,将其安置在火山旁边的帐篷内,使用发电机以维持扫描电镜正常运行。“环境条件非常恶劣,记得有一次突如其来的降雨,帐篷内积流成河。我把电源设备放置在地板上,所幸水流绕过了它,”工作人员回忆道。 2.在火山旁,研究人员依靠这台飞纳台式扫描电镜进行矿物分析,这对火山口生态系统和生命起源的研究具有重要的价值。 2022 年 5 月,通过热成像摄像机传回的数据显示,里面的温度仍然高达 900℃。索罗描述了他们所遇到的情景:“空气仿佛在燃烧,一股热浪扑面而来。而外面的风却寒冷刺骨,这种内外温差所形成的鲜明对比,简直令人难以置信。” 研究人员穿过一条 1000 英尺长的熔岩管(地球上最年轻的洞穴之一) “空气温度在一米之内就能从 100℃ 骤升至 200℃,”索罗描述道。索罗进入的管道中,洞穴墙壁在发光,温度接近 600℃(1100华氏度)。“这是我见过的最为震撼的景象之一,”他感慨道。 索罗团队的研究主要集中在两个领域:首先,他们热衷于探索洞穴内所发现的矿物,尤其是那些在洞壁及其他岩石表面逐渐形成的独特矿物。其次,他们期待揭示这些极端环境何时成为微生物群落的领地,并鉴定出哪些微生物在此类环境中能够繁衍生息。深入探究这些新生洞穴如何逐步孕育生命,不仅有助于科研人员对地球生命发展过程的认知更加完善,而且对于科研人员在其他行星,如火星上寻找生命迹象的工作具有重要的指导意义。 研究人员发现,这些微生物通常能够通过氧化无机物质(如硫、铁和铜)来获取能量。在考察现场,Phenom XL 飞纳台式扫描电镜对于快速识别和分析矿物样本起到了非常重要的作用: 研究人员在洞穴表面的裂隙与凹槽中发现了各种矿物。“我们发现了这种美丽的矿物,有白色的、绿色的、蓝色的等等。”南佛罗里达大学的矿物学家博格丹奥纳克回忆道。研究人员用无菌刮刀刮下样本,并将其放置在真空密封袋中。收集样本后,索罗及其同事们便回到帐篷中,利用飞纳台式电镜的图像来确定样本的化学构成,他们通常能在半小时内识别出矿物,极大地提高了样本采集和分析的效率。 研究人员在飞纳台式扫描电镜下发现几种稀有矿物 追寻微生物的繁殖路径,将帮助科学家在宇宙中寻找生命。索罗提问:“既然地球上一些特定的微生物能在熔岩管道中迅速繁衍,那么在火星上为何不能上演同样的生命奇迹呢?” 从内部观察一个已经坍塌的熔岩管 美国宇航局艾姆斯研究中心 NASA 天体生物学研究所所长佩内洛普博斯顿博士将熔岩管形容为“太阳系其他天体可能存在现象的缩影”。火山活动并不仅限于地球和火星,即便是在木星的卫星之一IO上,也能观察到活跃的火山活动。这表明,太阳系外的行星和卫星同样可能存在火山以及熔岩管。因此,博斯顿博士认为索罗正在研究的洞穴具有很高的参考价值。 01洞穴内一个已经凝固的小熔岩湖 02.绳状熔岩(熔岩流表面构造) 03.洞穴入口附近的墙壁细节 法格拉达尔火山的喷发虽然已经平息,索罗对冰岛其他火山的动态依然保持着浓厚的兴趣。今年 3 月,雷克雅内斯半岛上的 Hagafell 山,距离法格拉达尔仅几英里之遥,突然开始了新的喷发。索罗望着那片火山喷发的壮丽景象,心中沉思:“新的熔岩管道正在形成。”这些神秘莫测的洞穴,或许将成为他下一次探险的目的地。
  • 机械杂质测定仪|石油产品机械杂质测定的作用及意义
    得利特(北京)科技有限公司专注油品分析仪器领域的开发研制销售,致力于为国内企业提供高性能的自动化油品分析仪器。公司推出系列精品润滑油分析检测仪器、燃料油分析检测仪器、润滑脂分析检测仪器等。垂询电话:010-80764046,807640561、什么叫做试油的机械杂质?答:试油中的机械杂质是指存在于油品中所有不溶于溶剂(汽油,苯)的沉淀状或悬浮状物质。这些杂质多由砂子,粘土、铁屑粒子等组成。现行方法测出的杂质也包括了一些不溶于溶剂的有机成份,如碳青质和碳化物等。2、油品中机械杂质对机组运行以下危害:(1)可引起调速系统卡涩和机组的转动部分磨损等潜在故障。(2)引起绝缘油的绝缘强度、介质损耗因数及体积电阻率等电气性 能下降。(3)影响汽轮机油的乳化性能和分离空气的性能。(4)堵塞滤油器和滤网,影响油箱油位的显示,磨损油泵齿轮。(5)影响变压器散热,引起局部过热故障。相关仪器ENDENDA1280机械杂质测定仪符合GB/T511标准,适用于测定石油产品中的各类轻、重质油、润滑油及添加剂的机械杂质的含量。可广泛应用于电力、石油、化工、商检及科研等部门。仪器特点1.数码显示,智能温控表控温2.外观美观,测试方便,性能稳定可靠3.实现按标准要求的升温速率4.仪器主要由玻璃器皿、恒温水浴、真空 泵、电子控温箱组成技术参数• 工作电源: AC 220V±10%,50Hz• 水浴加热功率: 1000W• 水浴控温范围: 室温~90℃内可调• 水浴温度显示: LED数字显示• 水浴控温精度: ±1℃• 漏斗控温范围: 室温∼90℃内可调• 漏斗控温显示: LED数字显示• 漏斗控温精度: ±2℃• 环境温度: 5℃∼45℃• 相对湿度: ≤85%• 整机功耗: ≤1200W• 外形尺寸: 400*380*600• 重 量: 7.5KG
  • 又出遗传毒性杂质?莫慌,岛津叠氮杂质分析方案来帮忙
    导读2021年欧洲药品质量管理局(EDQM)发布:四氮唑环的沙坦活性物质中存在致突变性叠氮杂质的风险,并根据ICH M7的要求对数据进行审核,确保叠氮杂质的水平低于毒理学关注阈值(TTC)。其后某国际医药公司因叠氮杂质而被召回多批厄贝沙坦药物。沙坦中叠氮类杂质,是继亚硝胺类杂质后又一类需重点关注的基因毒性杂质。 叠氮杂质的由来叠氮化合物是医药行业中常见的化工原料,通常作为起始物料、反应试剂或中间体存在于药物合成过程中,在厄贝沙坦的合成中,通常需要使用三丁基叠氮化锡或叠氮化钠以形成药物结构中的四唑环,如厄贝沙坦原料药中的4’-(叠氮甲基)[1,1-联苯]-2-氰基(AZBC)、5-[4’-(叠氮甲基)[1,1-联苯]-2-基]-2H-四氮唑(MB-X),见下图。 分析方案l 两种叠氮化合物分析采用岛津超高速LC-MS/MS技术,可分别建立快速、稳定、高灵敏度的叠氮化合物AZBC、MB-X的分析方法。 超高效液相色谱-质谱联用仪 AZBC和MB-X的线性范围分别为0.25ng/mL-25 ng/mL和1 ng/mL-75 ng/mL,且线性回归系数R20.999,各标准点校准误差均在±5%以内。 空白厄贝沙坦样品分别加入低、中、高三种不同浓度的标准溶液,AZBC的回收率在95.97%~100.55%之间,MB-X的回收率在103.53%~111.82%之间。 AZBC和MB-X加标回收率 l 岛津遗传毒性杂质解决方案近年来,随着药物杂质分析研究的不断深入,新遗传毒性杂质不断发现,已上市药品中因痕量遗传毒性杂质残留而发生大范围的召回事故,如N-亚硝胺类、磺酸酯类等基因毒性杂质给制药企业带来巨大经济损失。岛津紧跟法规动态,在相关遗传毒性杂质分析检测方面积累了丰富的经验,目前已发布多份关于遗传毒性杂质的解决方案,具体内容可关注“岛津应用云”—方案下载—应用文集,敬请下载。 结语在化学药物研发和生产过程中,杂质分析一直是重要而关键的检测领域,岛津一直积极响应和应对行业最新动态,积极参与新化合物、新药物杂质、新法规指南等分析方法的开发和研究,及时为客户提供完整、准确的应对解决方案,助力客户掌握行业最新的检测技术。 撰稿人:孟海涛 本文内容非商业广告,仅供专业人士参考。
  • 药品研发中杂质与杂质对照品研究监控、新理念新技术研讨会召开
    p   由天津市滨海新区科学技术协会和中国蛋白药物质量联盟主办,北京医恒健康科技有限公司和天津市滨海新区蛋白药物质量和产业技术创新研究会承办的“药品研发中杂质与杂质对照品研究监控、新理念新技术研讨会”于12月10日在天津巨川百合酒店胜利召开。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201712/insimg/bc2519d0-e110-45f9-a4b9-a587227c56be.jpg" title=" 培训现场.jpg" / /p p style=" text-align: center " strong span style=" color: rgb(0, 112, 192) " 培训现场 /span /strong /p p   本次研讨会来自全国各地的医药企事业单位及科研院所的药品研发人员、注册申报人员、质量控制人员、项目负责人等有关人员参加了本次研讨会。10日上午,研讨会开幕式由中国蛋白药物质量联盟秘书长史晋海博士主持,介绍了出席此次会议开幕式的嘉宾,包括天津市滨海新区科学技术协会学会处侯立群处长,三位演讲专家余立老师、周立春老师,山广志老师。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201712/insimg/3ed2bb10-7c99-43a4-a149-f4b53818d3c8.jpg" title=" 史晋海博士主持.jpg" / /p p style=" text-align: center " strong span style=" color: rgb(0, 112, 192) " 史晋海博士主持 /span /strong /p p strong span style=" color: rgb(0, 112, 192) " /span /strong /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201712/insimg/d08b2e76-4772-4265-a184-7061d03658ea.jpg" title=" 余立老师2 .jpg" / br/ /p p style=" text-align: center " strong span style=" color: rgb(0, 112, 192) " 余立老师 /span /strong /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201712/insimg/b04550f4-a0d4-4b49-96d8-975893232c64.jpg" style=" " title=" 周立春老师.jpg" / /p p style=" text-align: center " strong span style=" color: rgb(0, 112, 192) " 周立春老师 /span /strong /p p strong span style=" color: rgb(0, 112, 192) " /span /strong /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201712/insimg/94d80e5c-6b2f-49ab-8f61-a6f64f658cb3.jpg" title=" 山广志老师.jpg" / /p p style=" text-align: center " strong span style=" color: rgb(0, 112, 192) " 山广志老师 /span /strong /p p   无论是创新药研发还是仿制药一致性评价,无论是原料药还是制剂产品,无论是药品临床前开发还是上市后质量监控,杂质的研究无疑都是重头戏。也是药品申报资料中出现问题最多的模块。由于药品中杂质含量的水平比较活性成分而言大多都是百分之几、千分之几、甚至更低数量级的,一种药品中含有几种、十几种、乃至几十种杂质,所以药品杂质的定性定量都远比活性成分难度要大的多。余立老师就杂质研究与控制思路为与会人员进行的讲解。 br/ /p p   杂质定向控制越来越细,质量标准中特定杂质越规定越多,定位,定量,测定响应因子,哪个也少不了杂质对照品。类杂质对照品的制备、纯化、结构确证,特别是赋值方法都有哪些要求,还有杂质对照品分装、保存时的注意事项的相关细节,山广志老师就在这次研讨会中介绍了这方面的常见问题与案例分析。 /p p   微信群中常有问杂质研究与杂质检测方法学验证方面的的问题。但微信交流信息局限大,讨论不方便也不具有系统性,解决一两个问题其他问题还是不明白。周立春老师用她30多年的一线审评与实验室工作经验为与会人员讲解了杂质研究与杂质检测的方法学验证。 /p p   会后问答环节讨论热烈。与会者意犹未尽,期待更多交流机会。 /p p   生物医药产业是天津市八大优势支柱产业之一,更是滨海新区重点发展产业。本次研讨会将创造机会,促进天津市滨海新区与顶级生物制药企业和专业人才的合作,极大地推动相关领域健康快速发展。此次会议搭建了具有国内影响力的生物医药专业交流平台,既利于增强新区医药企业实施创新发展及国际化战略的信心,又扩大新区医药企业在生物医药领域中的影响力,大力促进新区医药产业的健康发展。 /p p   /p
  • 引领高精度制造业变革的先锋!摩方精密荣登《财富》杂志
    12月8日,重庆摩方精密科技股份有限公司(以下简称“摩方精密”)荣登《财富》,这不仅是对摩方精密在高精度制造业领域引领变革的肯定,也是对其在全球经济中举足轻重地位的认可。此前,摩方精密凭借在超高精度微纳3D打印技术、超高精密制造解决方案的绝对创新优势和商业模式,已入选《财富》“2023年中国最具社会影响力的创业公司”榜单。摩方精密荣登《财富》原文《引领高精度制造业变革的先锋》“摩方精密凭借颠覆性的微纳3D打印技术,以其降本增效的独特优势,助力基础工业制造出精密微小型的零部件。”全球对微纳米级零部件的需求不断增长,涵盖了从电子元件到医疗植入物等多个领域。然而,传统制造方式往往难以完成这些精密加工需求。随着终端产品的日益精密化、精细化和小型化的趋势,模具制作、机械加工以及冲压等工艺制造难题日益凸显,成本也更加昂贵。在此背景下,摩方精密为市场提供了一种独特的解决方案。摩方精密欧美区总裁John Kawola阐述道:“我们的微纳3D打印技术能支持生产微米级的零部件,并且在生产量及生产效率方面,非常具有竞争力和成本效益。”他进一步强调:“在当前制造规模上,尚无其他公司能同时兼具这两点优势。”摩方精密研发的微纳3D打印机,采用了面投影微立体光刻(Pµ SL)技术,可快速制作出原型,并能更高效地生产出高公差控制且高分辨率的零部件。例如,厚度仅为传统产品三分之一的牙贴面,以及能够模拟活体组织的生物芯片。凭借雄厚的资金实力和庞大的全球客户体系,摩方精密立足中国、布局全球,目前已在美国、英国、德国和日本等地设立海外分公司。摩方精密正在从设备、服务、技术创新、终端应用四方面同步推进,致力于研发和生产前所未有的超高精密零部件,以创新为动力,不断探索微纳3D打印技术的边界,用高精密制造为技术赋能,为行业未来发展注入无限可能。自2018年底全球平台启动以来,摩方精密已与世界35个国家,近2000家工业企业和科研机构建立起紧密的合作关系。在全球范围内,公司已安装超过400套打印系统,并为1,800多位客户提供设备及打印服务。摩方精密在2022年3亿元人民币C轮融资的基础上,于今年7月,成功完成了1.7亿元人民币的D轮融资,近12个月的融资总额已达到4.7亿元人民币。JohnKawola表示:“这些融资成果充分展示了投资界对摩方精密的高度信任与支持。”摩方精密的成功,很大程度上得益于其自创立之初便秉持的全球视野。JohnKawola表示:“早在公司创立初期,我们就确定了构建全球业务网络的战略目标,以期加速企业的蓬勃发展。”为实现这一目标,摩方精密在全球各地设立了区域办事处,雇佣当地优秀人才,并为进入每一个新市场量身定制了独特的品牌传播策略。满足医疗保健领域不断增长的需求摩方精密独特的微纳加工技术,因其助力基础工业发展的优势,吸引了众多客户。在电子和光学领域,随着无线电频率的不断增加,减小天线尺寸已成为提高处理能力的关键。与此同时,在医疗器械行业,减少无创手术和药物输送方法的影响也已成为社会大众关注的焦点。JohnKawola表示:“在众多领域,我们都看到了对微型零部件加工的迫切需求。”以药物研究为例,传统方法通常通过昂贵、耗时且颇具争议的动物实验,以评估潜在药物与活组织的相互作用。为了寻求更为高效和安全的研究方法,研究人员不断尝试其他途径,如在体外培养组织,或模拟重建组织和器官的芯片。然而,这些替代方法存在一个根本性问题:细胞仅在类似人体环境的条件下才能茁壮成长,这需要细胞周围提供充足的营养物质,并确保废物的有效排出。这就不得不提及摩方精密的生物芯片。这款芯片内部设计了微孔,模拟了毛细血管壁的物质传输,能够更精确地模拟真实的生物过程,有助于生长活组织,从而为拯救生命创造更多机会,并显著缩短药物筛选、测试和验证新药所需的时间。JohnKawola表示:“我们坚信这个创新概念以及这一系列的终端应用,将有助于细胞和组织生长及相关药物测试的未来发展。”他强调。摩方精密还在微创手术设备领域取得了重要突破。通过与北京同仁医院的持续合作,波士顿分部的中国团队成功设计并生产了一种用于治疗青光眼的眼内支架。据美国疾病控制与预防中心(CDC)数据显示,青光眼是全球第二大致盲原因。这款长度不到3毫米的装置,已在五项一期临床试验中展现了令人满意的效果。它不仅减少了青光眼手术的复杂步骤,还将原本可能需耗时45分钟的过程缩短至仅需3到5分钟。此外,摩方精密还生产了一种厚度仅为传统牙贴面三分之一的极薄强韧氧化锆牙齿贴面,能使患者保留更多牙釉质。对于许多追求牙齿矫正和美白的人来说,这款产品简化了矫正过程,带来了无痛的治疗体验。拓展新市场持续关注各关键行业的创新机遇已成为摩方精密企业文化的一部分。JohnKawola表示:“微电子机械系统(MEMS)传感器、半导体测试与封装,以及微机器人等领域正日益受到广泛关注。”他强调,“摩方精密的每位成员每天都在积极学习了解新技术和新应用。”未来十年,3D打印行业将不断拓展和改进其硬件、软件和材料领域,实现更广泛的应用。当然,摩方精密对自身在下一代产品设计及制造中所发挥的作用充满信心。“我们注重应用开发和技术创新,”JohnKawola表示,“摩方精密将引领这一领域。”摩方精密的中国团队与北京一家医院携手合作,成功设计并生产出一种颠覆性的支架,大大缩短了治疗青光眼的手术过程。摩方精密的牙贴面厚度仅为传统牙贴面的三分之一,能够更大程度地保留患者牙釉质。摩方精密的生物芯片设计了微孔,模拟了毛细血管壁的物质传输过程。相较于其他药物研究方法,这种设计能够更精确地模拟真实生物过程。关于《财富》FORTUNE《财富》杂志(Fortune)是一本全球知名的商业杂志,创刊于1930年,由美国时代华纳公司出版。该杂志以深入报道和权威分析全球商业、财经和经济领域的新闻和趋势而闻名,被誉为“商业圣经”。《财富》杂志每年发布多个重量级榜单,如“世界500强企业”、“美国500强企业”等,这些榜单在全球范围内具有极高的知名度和影响力。它是商界人士了解全球市场动态、把握商机、提升企业管理水平的重要参考资料。
  • 2020药典 |《9306 遗传毒性杂质控制指导原则》解读与对策
    p style=" text-indent: 2em " 不同的药物的生产工艺决定了来源各异、种类众多的杂质类型。杂质的成份复杂且含量较低,难以检测。然而,药品的安全关系到千千万万人的生命安全,必须制定严格的要求来控制药品的质量。 /p p style=" text-indent: 2em margin-top: 15px " span style=" color: rgb(0, 112, 192) " strong 相关政策 /strong /span br/ /p p style=" text-indent: 2em text-align: justify margin-top: 10px " 为控制药物中遗传毒性杂质潜在的致癌风险, span style=" color: rgb(255, 0, 0) " strong 2020版中国药典 /strong /span 四部通则部分,添加了 span style=" color: rgb(255, 192, 0) " strong 《9306 遗传毒性杂质控制指导原则》 /strong /span 。这个新的指导原则为药品标准制修订、上市药品安全性再评估提供参考。 br/ /p p style=" text-indent: 2em " 药物杂质包括有机杂质、无机杂质以及残留溶剂等等。其中,2006年提出的基因毒性杂质是近两年关注的热门。该杂质又叫遗传毒性杂质(genotoxic impurities, GTIs),是指能引起遗传毒性的杂质。包括直接或间接损伤细胞DNA产生致突变和致癌作用的物质,也包括其他类型无致突变性杂质。 /p p style=" text-align: justify text-indent: 2em " EMEA和FDA发布了相应的指南。2007年欧洲药品局EMEA实施了关于基因毒性杂质的解决方案。2008美国FDA发布了《Guidance for industry—Genotoxic and Carcinogenic Impurities in Drug Substances and Products: Recommended Approaches》 /p p style=" text-indent: 2em text-align: justify " 对于未知数据的基因毒性杂质,制定了 span style=" color: rgb(255, 0, 0) " strong 相关摄入阈值TCC /strong /span ( span style=" color: rgb(255, 192, 0) " strong Threshold of Toxicological Concern,毒性物质限量 /strong /span ),也叫做毒理学关注阈值。其意义在于最大程度上保证服药的安全,使致突变的风险低于相关限度。 span style=" color: rgb(255, 0, 0) " strong TTC的限度为1.5 μg/d /strong /span 。 /p p style=" text-indent: 2em text-align: justify margin-top: 20px " span style=" color: rgb(0, 112, 192) " strong 基因毒性杂质来源与分类 /strong /span /p p style=" text-indent: 2em text-align: justify margin-top: 10px " 基因毒性杂质可能产生的环节包括:1)新药合成;2)原料纯化;3)存储运输(与包装物接触)等。其主要来源有:原料药合成过程中的起始物料、中间体、试剂、反应副产物;药物在合成、储存或者制剂过程中的降解产物;部分药物通过激活正常细胞而产生基因毒性物质。常见类型有卤代烷烃、磺酸酯/烷基磺酸酯/芳基磺酸酯、氮亚硝胺类化合物、硫酸二甲酯和硫酸二乙酯、双烷基硫酸酯、氨基甲酸乙酯、环氧化合物、四甲基哌啶氧化物、肼类、芳香胺、硼酸以及乙酰胺等,在列表中的种类有1,574种。这些结构在药物中就是“警示结构”。(如下图) /p p style=" text-align: center margin-top: 15px " img style=" max-width: 100% max-height: 100% width: 505px height: 423px " src=" https://img1.17img.cn/17img/images/202007/uepic/8020e615-ec50-477a-954a-243f7067ac87.jpg" title=" 种类.jpg" alt=" 种类.jpg" width=" 505" height=" 423" / /p p style=" text-align: justify text-indent: 2em margin-top: 15px " 化药中基因毒性杂质的案例有很多报道,比如沙坦类药物中的叠氮化物、亚硝胺类化合物,美罗培南中的318BP、M9、S5,抗艾滋药物Viracept (nelfinavir mesylate)中的甲基磺酸乙酯,以及阿瑞匹坦中的对甲苯磺酸甲酯、对甲苯磺酸异丙酯等等。 /p p style=" text-align: justify text-indent: 2em margin-top: 20px " span style=" color: rgb(0, 112, 192) " strong 基因毒性作用原理 /strong /span /p p style=" text-align: justify text-indent: 2em margin-top: 15px " 根据Miller理论,基因毒性试剂是亲电试剂或者可以代谢成亲电试剂,与DNA上的亲核基团反应生造成基因毒性。 /p p style=" text-align: justify text-indent: 2em margin-top: 10px " span style=" color: rgb(255, 0, 0) " strong 酰基卤化物: /strong /span 由于卤原子电负性较大,吸引电子,导致羰基碳非常缺电子,一旦和DNA接触,会和腺嘌呤的羰基氧发生酯化反应。二甲氨基甲酰氯和二乙氨基甲酰氯被IARC归为致癌物2A类。 /p p style=" text-align: justify text-indent: 2em margin-top: 10px " span style=" color: rgb(255, 0, 0) " strong 甲醛: /strong /span 高活性致癌物,与DNA发生多种反应。 /p p style=" text-align: justify text-indent: 2em margin-top: 10px " span style=" color: rgb(255, 0, 0) " strong 卤代脂肪族类: /strong /span 毒性取决于卤素的性质、数量和位置以及化合物的分子大小。 /p p style=" text-align: justify text-indent: 2em " 一卤甲烷的肝脏代谢的第一步是与谷胱甘肽(GSH)结合,导致S-甲基谷胱甘肽的形成。最终可能转化为甲硫醇(有毒的代谢物)。甲醛产生也可能导致细胞损伤。甲醛来源于细胞色素P450直接氧化母体化合物或甲硫醇的代谢。 /p p style=" text-align: justify text-indent: 2em " 二卤代烷烃通常通过谷胱甘肽或者细胞色素P450代谢后活化,产生遗传毒性。 /p p style=" text-align: justify text-indent: 2em " 三卤代烷烃容易被P450氧化活化,产生光气,光气是一种高活性的亲电中间体。完全卤代烷烃倾向于自由基机理反应。 /p p style=" text-align: justify text-indent: 2em " 四氯化碳在P450中被还原成三氯甲基自由基,该自由基和DNA之间的加合物是导致肝癌的主要原因。 /p p style=" text-align: justify text-indent: 2em margin-top: 10px " span style=" color: rgb(255, 0, 0) " strong 亚硝酸烷基酯亚硝酸酯: /strong /span 亚硝酸酯和DNA上的氮发生酯交换反应。 /p p style=" text-align: justify text-indent: 2em margin-top: 10px " span style=" color: rgb(255, 0, 0) " strong α,β-不饱和羰基: /strong /span 活泼的迈克尔受体,容易被亲核试剂进攻β碳或者羰基碳。 /p p style=" text-align: justify text-indent: 2em margin-top: 10px " span style=" color: rgb(255, 0, 0) " strong 醌: /strong /span 亲核剂的烷基化。易于被亲核试剂进攻,可以和蛋白质上GSH、半胱氨酸烷基化。氧化还原反应。它们可以与相应的半醌自由基进行酶促(即细胞色素P450/P450还原酶)和非酶氧化还原循环,导致ROS的形成,包括超氧阴离子,过氧化氢,并最终形成羟基自由基。ROS是造成衰老和癌变的主要元凶。 /p p style=" text-align: justify text-indent: 2em margin-top: 10px " span style=" color: rgb(255, 0, 0) " strong 烷基化间接作用试剂: /strong /span 单卤代烯烃卤代烯烃经过P450代谢后会被氧化成环氧化合物,然和和DNA反应诱导癌变。多卤代烯烃的反应更为复杂,三氯代乙烯进过P450代谢可以生成酰氯、环氧、氯代醛,这些物质均会诱导癌变。 /p p style=" text-align: justify text-indent: 2em margin-top: 10px " span style=" color: rgb(255, 0, 0) " strong 肼类: /strong /span 该类物质通过P450中氧化酶的催化,肼被氧化成偶氮类化合物。然后反应生成一系列碳正离子、自由基等活性物质,最终导致DNA烷基化,诱导癌变。脂肪族偶氮化合物该系列化合物是肼的氧化中间体。 /p p style=" text-align: justify text-indent: 2em margin-top: 10px " span style=" color: rgb(255, 0, 0) " strong N-亚硝胺化合物: /strong /span 一类非常稳定的化学致癌物。代谢得到活性烷基和大分子(DNA或者蛋白质)烷基化是产生遗传毒性和致癌性的主要原因。得到的小分子醛会进一步和DNA结合造成额外的损伤。NDMA在缬沙坦中的限度被要求限制到<0.3 ppm。 /p p style=" text-align: justify text-indent: 2em margin-top: 10px " span style=" color: rgb(255, 0, 0) " strong 芳香胺: /strong /span 必须代谢为反应性亲电试剂,才发挥致癌作用。对于芳香胺和酰胺,这通常涉及N-羟基芳胺和N-羟基芳酰胺的初始N-氧化。这是由细胞色素P450介导的。在通过酶的酯化作用进一步活化,形成活性亲电物种。最终造成DNA损伤。 /p p style=" text-align: justify text-indent: 2em margin-top: 20px " span style=" color: rgb(0, 112, 192) " strong 检测方案 /strong /span /p p style=" text-align: justify text-indent: 2em margin-top: 15px " 对于基因毒性杂质,只有高灵敏度、高选择性的分析方法才能为更好地选择和建立基因毒性杂质的检测方法提供重要参考。分析方法包括 span style=" color: rgb(255, 0, 0) " strong GC、LC、GC-MS和LC-MS法 /strong /span 等,还有相关的前处理技术包括 span style=" color: rgb(255, 0, 0) " strong 顶空分析法、固相萃取法和衍生化法 /strong /span 等。下图所示为,不同的基因毒性杂质的检测策略。 /p p style=" text-align: center " span style=" font-size: 14px " strong 表1 /strong 不同类型杂质的检测方法和前处理办法 /span /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 443px height: 475px " src=" https://img1.17img.cn/17img/images/202007/uepic/09a28c14-95da-4f42-8d1f-76fe5f0190fc.jpg" title=" 不同杂质的解决方案.png" alt=" 不同杂质的解决方案.png" width=" 443" vspace=" 0" height=" 475" border=" 0" / /p p style=" text-align: center margin-top: 20px " span style=" font-size: 14px " strong 表2 /strong 常用分析方法的特点 /span /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 461px height: 303px " src=" https://img1.17img.cn/17img/images/202007/noimg/7c9ec587-73dc-4805-9637-bff9c8d74d87.gif" title=" 分析方法特点.gif" alt=" 分析方法特点.gif" width=" 461" height=" 303" / /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 525px height: 428px " src=" https://img1.17img.cn/17img/images/202007/uepic/3c20ff8e-079b-469e-ba13-e1236aea38f9.jpg" title=" 决策树.png" alt=" 决策树.png" width=" 525" height=" 428" / br/ /p p style=" text-align: justify text-indent: 2em margin-top: 15px " span style=" color: rgb(0, 112, 192) " strong 具体解决方案【附连接】 /strong /span /p p style=" text-align: justify text-indent: 2em margin-top: 10px " span style=" color: rgb(255, 0, 0) " (杂质:卤代烷) /span /p p style=" text-align: justify text-indent: 2em " 【Agilent GC-MS】N,N-二甲基-3-氯丙胺盐酸盐(1,3-溴氯丙烷) br/ & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp Intuvo 9000 气相色谱系统+5977B单四极杆质谱检测器 /p p style=" text-align: justify text-indent: 2em margin-top: 10px " span style=" color: rgb(255, 0, 0) " (杂质:N-亚硝基二甲胺,NDMA) /span /p p style=" text-align: justify text-indent: 2em " a href=" https://www.instrument.com.cn/application/Solution-928363.html#advant" target=" _blank" 【Thermo】缬沙坦及雷尼替丁 /a /p p style=" text-align: justify text-indent: 2em " a href=" https://www.instrument.com.cn/application/Solution-924963.html" target=" _blank" 【岛津】氯沙坦: LCMS-8050 高效液相色谱-三重四极杆质谱 /a /p p style=" text-align: justify text-indent: 2em " a href=" https://www.instrument.com.cn/application/Solution-912288.html" target=" _blank" 【WATERS】缬沙坦——UPLC I-Class,Xevo TQ-S micro /a /p p style=" text-align: justify text-indent: 2em margin-top: 10px " span style=" color: rgb(255, 0, 0) " (杂质:环氧化物/醚) /span /p p style=" text-align: justify text-indent: 2em " a href=" https://www.instrument.com.cn/application/Solution-911034.html" target=" _blank" 【Thermo】盐酸普萘洛尔:高分辨液质Q Exactive Focus+ESI和APCI /a /p p style=" text-align: justify text-indent: 2em margin-top: 10px " span style=" color: rgb(255, 0, 0) " (杂质:磺酸类、磺酸酯、氨基酯类) /span /p p style=" text-align: justify text-indent: 2em " a href=" https://www.instrument.com.cn/application/Solution-871218.html" target=" _blank" 【Thermo】Triplus 300 顶空自动进样器+1300GC+ISQ-MS /a /p p style=" text-align: justify text-indent: 2em " a href=" https://www.instrument.com.cn/application/Solution-912519.html" target=" _blank" 【SHIMADZU】维格列汀:GCMS-TQ8050 NX /a /p p style=" text-align: justify text-indent: 2em " a href=" https://www.instrument.com.cn/application/Solution-926017.html" target=" _blank" 【SHIMADZU】酸肌酸钠 /a /p p style=" text-align: justify text-indent: 2em " a href=" https://www.instrument.com.cn/application/Solution-532949.html" target=" _blank" 【WATERS】——Waters Xevo TQD 三重四极杆质谱:快速正负切换的模式 /a /p p style=" text-align: justify text-indent: 2em " a href=" https://www.instrument.com.cn/application/Solution-813258.html" target=" _blank" 【Gs-Tek】(毛细管柱)气相柱GSBP-INOWAX 30m-0.25mm-0.25um液体直接进样法 /a br/ /p p style=" text-align: justify text-indent: 2em margin-top: 10px " span style=" color: rgb(255, 0, 0) " (杂质:4-硝基卞醇) /span /p p style=" text-align: justify text-indent: 2em " a href=" https://www.instrument.com.cn/application/Solution-912413.html" target=" _blank" 【Thermo】 TSQ 8000 Evo+Unknown Screening 插件 /a br/ /p p style=" text-align: justify text-indent: 2em margin-top: 10px " span style=" color: rgb(255, 0, 0) " (杂质:氯苯胺) /span /p p style=" text-align: justify text-indent: 2em " a href=" https://www.instrument.com.cn/application/Solution-822564.html" target=" _self" 【SHIMADZU】 /a span style=" color: rgb(255, 0, 0) " br/ /span /p p style=" text-align: justify text-indent: 2em margin-top: 10px " span style=" color: rgb(255, 0, 0) " (杂质:丁酸氯甲酯和2,3-二氯苯甲醛) /span br/ /p p style=" text-align: justify text-indent: 2em " a href=" https://www.instrument.com.cn/application/Solution-910495.html" target=" _blank" 【SHIMADZU】丁酸氯维地平 /a /p p br/ /p p (文中图片来自文献:汪生, 杭太俊. 药物中基因毒性杂质检测策略的研究[J]. 中国新药杂志, 2019(23).) /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 151px height: 46px " src=" https://img1.17img.cn/17img/images/202007/noimg/857572b4-04e8-4c23-8b52-b8b57dd8fb2c.gif" title=" 箭头分割线.gif" alt=" 箭头分割线.gif" width=" 151" height=" 46" / /p p style=" text-align: center" a href=" https://www.instrument.com.cn/zt/chemmed-impurity" target=" _blank" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202007/uepic/e377c5b6-1a94-40a2-b0ba-868cd2c52f62.jpg" title=" w640h110impurity.jpg" alt=" w640h110impurity.jpg" / /a /p p span style=" color: rgb(255, 0, 0) " strong & nbsp span style=" color: rgb(0, 0, 0) " 欲了解更多”药典与化药杂质“相关内容,请点击 span style=" background-color: rgb(255, 192, 0) color: rgb(255, 0, 0) " 图片 /span 进入以上专题~ /span /strong /span /p p style=" text-align: center margin-top: 10px " a href=" https://www.instrument.com.cn/webinar/meetings/yoloChemDrug2020/" target=" _blank" img style=" max-width: 100% max-height: 100% width: 640px height: 110px " src=" https://img1.17img.cn/17img/images/202007/uepic/ab578eb9-cc5b-4578-a6d9-26c3d27e426d.jpg" title=" 2020 banner.jpg" alt=" 2020 banner.jpg" width=" 640" vspace=" 0" height=" 110" border=" 0" / /a /p p & nbsp strong 2020年“化药杂质研究与技术”WEBINAR【戳链接,看回放】 /strong span style=" color: rgb(255, 0, 0) " strong /strong /span br/ /p
  • 前沿应用∣岛津高分辨质谱助力合成多肽药物杂质结构鉴定
    截至2020年,全球共有76个多肽类药物被批准上市,7000多个活性多肽被发现,约150个多肽药物进入临床试验,在过去20多年中,平均每年被批准的多肽药物约3个。微球、脂质体、聚乙二醇(PEG)修饰等方法的深入应用解决了多肽药物稳定性差、体内易降解、半衰期短等成药性差的问题,促进了多肽药物的开发利用。多肽药物药效广泛,临床上以慢性病治疗为主,例如罕见病、肿瘤、糖尿病、胃肠道、骨科、免疫、心血管疾病等。国内外药典将合成多肽类药物列入化药的范畴进行杂质的控制。欧洲药典规定合成多肽含量在0.5%以上的相关杂质需进行定性分析,对含量在1%以上的相关杂质进行定量分析并考察其毒副作用。2007年国家食品药品监督管理局发布了《合成多肽药物药学研究技术指导原则》,指出合成多肽原料药中工艺杂质的来源和一般化学药物有所不同,其可能的工艺杂质如:缺失肽、断裂肽、去酰胺多肽、氨基酸侧链的不完全脱保护所形成的副产物、氧化肽、二硫键交换的产物、非对映异构的多肽、低聚物和/或聚合物及合成中所用的毒性试剂和溶剂等。 多肽含有二硫键、裸露的氨基和羧基,容易因分子间二硫键或氨基羧基间脱水形成共价聚合物。共价键形成的聚合物杂质可能存在较大免疫原性风险,在多肽类药物制剂质量研究和新药申报中应予以重点关注。质谱分析、氨基酸组成分析和氨基酸序列测定是合成多肽药物及杂质结构确证最常用的技术手段。 岛津解决方案 ● 分析仪器岛津液相系统Nexera LC-40 +高分辨质谱仪LCMS-9030 ● 分析条件流动相为水:乙腈:TFA=60:40:0.2流速:0.5 mL/min等度洗脱柱温:25℃质谱:离子源:ESI(+)扫描范围:m/z 100 ~5000 多肽药物应用案例一STN聚合物杂质结构鉴定图1. 注射用STN破坏样品HPLC色谱图(UV 210 nm)图2. STN聚合物杂质可能的聚合方式 通过STN聚合物杂质精确质量数预测其分子式,结合多肽的质谱峰归属对STN聚合物杂质进行结构推测(如图2)。STN结构中含有一对二硫键,综合判断其聚合位点为分子间二硫键。 多肽药物应用案例二TJN聚合物杂质结构鉴定图3. 注射用TJN破坏样品HPLC色谱图(UV 214 nm) 图4. TJN聚合物杂质MS2质谱图 使用岛津精确分子式预测工具Formula Predictor对TJN聚合物杂质进行分子式预测,其分子式预测结果恰好相当于两分子TJN脱水,因此推测其聚合位点为两分子TJN的氨基端和羧基端缩合生成肽键。TJN为20肽,其游离氨基端为苯丙氨酸,游离羧基端为亮氨酸。结合TJN二聚体的推定氨基酸序列进行二级质谱碎片归属,TJN聚合物MS2质谱图中识别出多种特征碎片。特别是y19和b21碎片的存在证明聚合位点为亮氨酸(L)和苯丙氨酸(F)缩合而成的肽键。 结论随着我国成为国际人用药品注册技术协调会(ICH)成员国,药品的技术标准逐步与国际接轨。同时随着我国药品一致性评价工作的全面开展,合成多肽药物杂质结构鉴定将面临巨大的技术挑战。岛津公司采用尺寸排阻色谱法建立合成多肽药物的聚合物分析方法,并通过高分辨质谱LCMS-9030测定聚合物的准确质量数推测其分子式,同时结合MS/MS特征碎片推测聚合物杂质的结构。本文展示LCMS-9030在多肽药物的两种主要聚合方式(二硫键和肽键)鉴定中的应用。岛津液相色谱四极杆飞行时间串联质谱LCMS-9030具有高质量准确度,高分辨率的性能优势,是合成多肽药物杂质一级结构鉴定的强有力工具。 本文内容非商业广告,仅供专业人士参考。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制