当前位置: 仪器信息网 > 行业主题 > >

全氟壬酸甲酯

仪器信息网全氟壬酸甲酯专题为您提供2024年最新全氟壬酸甲酯价格报价、厂家品牌的相关信息, 包括全氟壬酸甲酯参数、型号等,不管是国产,还是进口品牌的全氟壬酸甲酯您都可以在这里找到。 除此之外,仪器信息网还免费为您整合全氟壬酸甲酯相关的耗材配件、试剂标物,还有全氟壬酸甲酯相关的最新资讯、资料,以及全氟壬酸甲酯相关的解决方案。

全氟壬酸甲酯相关的资讯

  • 广州菲罗门酒类专用柱FB-Wine分析中国三大名酒
    广州菲罗门酒类专用柱fb-wine分析中国三大名酒白酒常见的香型有酱香型、浓香型、清香型等,酱香型味最重(高级酯、高级醇等总含量也最高),浓香居中,清香更低(香型物质总含量也是最低的)。本文所介绍的三种名酒:*台,五*液和泸**窖就分属酱香型和浓香型,并对它们进行成分以及主体香源物质进行分析。本应用采用的是直接进样法,气相色谱仪7890-fid分析。检测方法:仪器:agilent 7890 w/ fid柱型:fb-wine, 30m x 0.32mm x 0.40um(p/n: 30m-l101-040)炉温:50°c 5min 5 °c/min 200°c 2min载气:氢气 @ 1.3ml/min (恒定流量)进样口:分流40ml/min @ 240 °c检测器: fid @ 260 °c样品:*台,五*液,泸**窖进样量:1ul 图一*台(酱香型)样品测试图谱 (a)峰1-7放大图 (b)峰11-17放大图 图二 五*液(浓香型)样品测试图谱 (a)峰1-6放大图 (b)峰10-19放大图 图三 泸**窖(浓香型)样品测试图谱表1 *台、五*液、泸**窖酒的峰鉴定峰号*台min五*液 min泸**窖 min1乙醛2.640乙醛2.597乙醛2.6472丙醛3.292丙醛3.2453异丙醛3.365异丙醛3.3184甲酸乙酯3.5955乙酸乙酯4.043乙酸乙酯3.988乙酸乙酯4.0486乙缩醛4.267乙缩醛4.1997甲醇4.555甲醇4.4988乙醇5.263乙醇5.118乙醇5.3029丙酸乙酯5.41910异丁酸乙酯5.567异丁酸乙酯5.80811仲丁醇7.060仲丁醇6.99012丁酸乙酯7.359丁酸乙酯7.291丁酸乙酯7.37413异戊酸乙酯8.23514正丙醇7.497正丙醇7.42215异戊酸乙酯8.30216异丁醇9.322异丁醇9.21217仲戊醇9.94118戊酸乙酯10.096戊酸乙酯10.10619正丁醇10.811正丁醇10.70220异戊醇12.599异戊醇12.53121己酸乙酯13.138己酸乙酯13.134己酸乙酯13.16622己酸丙酯15.119己酸丙酯15.06023庚酸乙酯15.98024乳酸乙酯16.590乳酸乙酯16.542乳酸乙酯16.60525正己醇16.65126己酸丁酯18.67927辛酸乙酯19.869辛酸乙酯19.84228乙酸19.992乙酸20.021乙酸20.08629壬酸乙酯21.633壬酸乙酯21.60230丙酸22.10731己酸己酯22.94932正丁酸24.141正丁酸24.084丁酸24.17933未知杂质24.50434异戊酸25.02735正戊酸26.473正戊酸26.55036正己酸28.754正己酸28.685正己酸28.75937十四酸乙酯30.80138辛酸29.843辛酸32.81839油酸乙酯35.60040亚油酸乙酯35.829图一是*台酒的分析图谱,此酒属于酱香型白酒。从放大图可以看出峰1-7和11-17分离状况详情:图(a)乙酸乙酯和乙缩醛分辨率为3.69;丙醛和异丙醛分辨率为1.82。甲醇的拖尾因子是1.18。 图(b)几种主要醇类仲丁醇、正丙醇、异丁醇和正丁醇的峰形很好。从成分上分析,酱香酒的各种芳香物质含量高种类多,但其中乙酸乙酯起很大的作用,*台酒中乙酸乙酯的含量高于五*液和泸**窖。它的香味分为前香和后香。*台酒的酸度是其它酒的3至5倍,主要以乳酸和乙酸为主。由于乳酸在fid上没有响应,但可以从乙酸的峰看出其含量是大于五*液和泸**窖的。 图二和图三是浓香型白酒泸**窖和五*液的图谱。这种香型的白酒窖香浓郁,绵甜爽净。图二的放大图可以看出峰1-6和10-19的分离情况:图(a)乙酸乙酯和乙缩醛分辨率为3.72;丙醛和异丙醛分辨率为2.17。甲醇峰形较好,拖尾因子是0.94。图(b)几种主要醇类仲丁醇、正丙醇、异丁醇和正丁醇的峰形很好。它的主体香源成分是己酸乙酯和丁酸乙酯。有机酸以乙酸和己酸为主,从图谱中可以看出己酸的含量比其它香型酒要高出几倍,其中乙酸含量在此酒中是要略高于己酸的,但由于乙酸在fid上响应较弱,所以峰面积小。图三中泸**酒的成分相对简单,相比于五*液中还有其它低沸点的醇、酯、醛,泸州老窖只有几种主要成分乙酸乙酯、己酸乙酯、乳酸乙酯、乙酸和正己酸, 这是浓香型酒几种典型的香味成分。白酒中的成分是很复杂的,由于有些成分的含量低或者在fid上响应低,所以在以上的方法中没有列出。订货信息:货号:30m-l101-040;描述:fb-wine 30m*0.32mm*0.4um
  • 6月4日起,全欧盟限制富马酸二甲酯
    5月15日,欧盟发布政府公报,颁布(EU)No 412/2012指令,将富马酸二甲酯加入REACH法规附件17(对某些危险物质、混合物、物品在制造,投放市场和使用过程中的限制)物质清单第61项,法令在自欧盟公报发布之日20天后执行,并要求成员国将其无条件转化为本国法律。这预示着6月4日起,全欧盟限制富马酸二甲酯。   富马酸二甲酯是一种挥发性化合物,通常用作真菌杀灭剂,也可用于干燥剂袋中,以防止皮革、家具、鞋或皮革配件在储存或运输过程中产生霉菌。人体吸入、摄入或与之接触,会对皮肤、眼睛和上呼吸道造成刺激和伤害。   针对富马酸二甲酯对人体的伤害作用,欧盟发布2009/251/EC规定,2009年5月1日后,欧盟市场上流通的产品或产品零件中富马酸二甲酯的含量不应超过0.1ppm,产品及包装内不得使用含有富马酸二甲酯的干燥剂、防霉剂小袋。欧盟又于2012年1月26日发布了该禁令的修订指令2012/48/EU,将2009/251/EC指令的有效期延至2013年3月15日。2012/48/EU指令明确指出,若富马酸二甲酯列入REACH法规附录17中进行强制管控的提案正式通过的时间早于前者,则富马酸二甲酯禁令即时生效。   根据此次修订,用于物品及物品的任一成分中的富马酸二甲酯含量不得超过0.1mg/kg,物品及物品中任一成分富马酸二甲酯含量超过0.1mg/kg不得置于市场销售。在此,检验检疫部门建议广大出口企业:继续严格遵守欧盟富马酸二甲酯指令,确保出口产品符合进口国的相关要求。
  • 脂肪酸气相色谱分析的故事
    编者注:傅若农教授生于1930年,1953年毕业于北京大学化学系,而后一直在北京理工大学(原北京工业学院)从事教学与科研工作。1958年,傅若农教授开始带领学生初步进入吸附柱色谱和气相色谱的探索 1966到1976年文化大革命的后期,傅若农教授在干校劳动的间隙,系统地阅读并翻译了两本气相色谱启蒙书,从此进入其后半生一直从事的事业——色谱研究。傅若农教授是我国老一辈色谱研究专家,见证了我国气相色谱研究的发展,为我国培养了众多色谱研究人才。 第一讲:傅若农讲述气相色谱技术发展历史及趋势第二讲:傅若农:从三家公司GC产品更迭看气相技术发展第三讲:傅若农:从国产气相产品看国内气相发展脉络及现状第四讲:傅若农:气相色谱固定液的前世今生第五讲:傅若农:气-固色谱的魅力第六讲:傅若农:PLOT气相色谱柱的诱惑力第七讲:傅若农:酒驾判官——顶空气相色谱的前世今生第八讲:傅若农:一扫而光——吹扫捕集-气相色谱的发展第九讲:傅若农:凌空一瞥洞察一切——神通广大的固相微萃取(SPME)第十讲:傅若农:悬“珠”济世——单液滴微萃取(SDME)的妙用第十一讲:傅若农:扭转乾坤——神奇的反应顶空气相色谱分析第十二讲:擒魔序曲——脂质组学研究中的样品处理第十三讲:离子液体柱——脂质组学中分离脂肪酸的气相色谱柱 上一讲我们主要介绍了在脂质组学中对脂肪酸的分析所用的离子液体毛细管色谱柱,但是用气相色谱分析脂肪酸源远流长,有许多故事,了解一些过去的故事对现在的发展理解有好处,温故才可以知新。  先讲一下脂质组学中常常要研究的血浆分析,其中一个重要的项目是分析其中的脂肪酸,下面一个例子,概要介绍了血浆中脂肪酸的主要成分:  “虽然游离脂肪酸只占血浆中脂肪酸的一小部分,但它代表一类高度代谢活性的脂质,脂肪组织是血浆游离脂肪酸的主要来源,其分布与食物的脂肪酸组成密切相关。在正常情况下从脂肪组织中释放脂肪酸与组织对能量的需要紧密相连。但是当代谢失调时,这种平衡被打乱,导致脂解增加,会释放出多于组织所需要脂肪酸的量。健康人经过一夜禁食后血浆中含有214 nmol/ml游离脂肪酸,油酸(18:1)的含量最高,其次是棕榈酸(16:0)和硬脂酸(18:0),这三种酸占全部游离脂肪酸的78%。亚油酸(18:2)和花生四酸(20:4) 是主要的多不饱和脂肪酸(约占8%)。但是有营养作用的α-亚麻酸(18:3ω-3),二十碳五烯酸(20:5, EPA)和二十二碳六烯酸(22:6, DHA)也占有一定比例,约为全部游离脂肪酸的1%。”1 脂肪酸气相色谱分析的历史故事  气相色谱被认为是分析复杂混合物中脂肪酸的可靠方法,这一方法可追述到上世纪50年代,气相色谱的出现于脂肪酸的分析有密切的关系,1952年气相色谱发明人A. T. James 和 A. J. P. Martin就用最为原始的自制气相色谱仪分析小分子脂肪酸(Biochem J,1952,50:679),他们首次阐明气-液分配气相色谱的原理,设计了自动滴定检测脂肪酸的气相色谱仪。实验过程中使用的色谱柱为玻璃柱,其内径为4mm,长度为5英尺,固定相是把DC 550硅油涂渍在硅藻土Celite 545上。分离小分子脂肪酸的色谱如图1所示。 图1 用自动滴定计气相色谱仪分析小分子脂肪酸的色谱图  分离从乙酸到戊酸的色谱如图2所示:图 2 分离从乙酸到戊酸的色谱  此后分析脂肪酸的一个重大进步是把脂肪酸进行甲酯化,1956年James和Martin使用气体密度检测器,并把脂肪酸进行甲酯化,使用阿皮松类高温润滑脂作固定相,可以分离分子量大的脂肪酸。图3 是分离C5-C13直链和支链脂肪酸甲酯的色谱图。图 3 用高沸点润滑脂分离C5-C13直链和支链脂肪酸甲酯的色谱图色谱柱:在硅藻土载体上涂渍高沸点润滑脂;柱温:197℃;载气:氮气 14.1mL/min 色谱峰: (1) 空气, (2) n-戊酸甲酯,(3) n-己酸甲酯, (4) 4-甲基己酸甲酯,(5) 6-甲基庚酸甲酯, (6) n-辛酸甲酯, (7) 6-甲基辛酸甲酯, (8) n-壬酸甲酯,(9) 8-甲基壬酸酯, (10) n-癸酸酯, (11) 8-甲基癸酸酯, (12) 10-甲基十一酸酯 ,(13) n-十二酸酯, (14) 10-甲基十二酸酯2 脂肪酸气相色谱分析的发展  脂肪酸的气相色谱分析由于它的极性和挥发性不好而带来麻烦,所以首先要把它的极性羰基转化成易于挥发的非极性衍生物。有多种烷基化试剂可以进行羰基的衍生化,使用最多的是进行甲基化,特别是使用氢火焰离子化监测器(FID)气相色谱时,尤为方便普及。但是使用FID也有一些不足之处。绝对的定量要依靠内标物的信号强度,经常使用的内标物是十七酸(而不是使用化学和物理性质与所测定脂肪酸相近的同位素标记脂肪酸混合物作内标)。人类体内不能合成奇数碳链的脂肪酸(包括碳17酸),但是人们可以通过食物摄取它们,它们存在于血液的血浆中,增加内标物十七酸的量,从而扰乱定量分析。  进一步讲,FID不能提供分子质量或其他结构特征信息,以便区分不同的脂肪酸,所以色谱和FID只是解决把所有要研究的脂肪酸分子完全分离开,用质谱解决脂肪酸的结构信息。大家应该知道使用电子轰击电离脂肪酸分子很容易被打成碎片,通过这些碎片可以进行脂肪酸的结构分析,但是灵敏度受到限制。弱电离技术比如负化学电离(NCI)可以改善检测限。使用卤代衍生化试剂可以进一步提高检测灵敏度,这种试剂增加了电子亲和力,可改善NCI-MS的灵敏度。Kawahara 使用五氟基苄(PFB) 作衍生化试剂来衍生化有机羧酸,这样的含氟衍生物电子很容易被俘获。此后这一方法扩展到脂肪酸的衍生化为脂肪酸酯,与脂肪酸甲酯相比,它很容易被NCI-MS检测。所以使用五氟基苄进行衍生化有利于提高检测灵敏度。许多研究者使用PFB做衍生化试剂进行脂质组学中的脂肪酸分析,例如Quehenberger等就是用这一方法分析巨噬细胞中的各种脂肪酸(Prostaglandins, Leukotrienesand Essential Fatty Acids,2008,79:123–129)。下图4 是分析巨噬细胞中的各种脂肪酸的色谱图。图 4 巨噬细胞中的各种脂肪酸的色谱图图中色谱峰的脂肪酸如下:(1)12:0 (2)14:0 (3)15:0 (4)16:1 (5)16:0 (6)17:1 (7)17:0 (8) a18:3 (9) 18:4 (10) g18:3 (11)18:2 (12)18:1 (13)18:0 (14)20:4 (15)20:5 (16)11,14,17–20:3 (17)bishomo-20:3 (18)20:2 (19)5,8,11–20:3 (20)20:0 (21)22:6 (22)22:4 (23)22:5 (24)22:2 (25)22:3 (26)22:1 (27)22:0 (28) 23:0 (29)24:1 (30)24:0 3 国内外进行气相色谱分析脂肪酸的一些例证   为了进一步了解进行气相色谱分析脂肪酸的具体情况,下面表1列出近50例分析各种样品中脂肪酸的色谱柱和分离对象。表2列出国外文献中分析人体组织中脂肪酸的例证。表 1 国内气相色谱分析脂肪酸的色谱柱和分析对象 表 2 国外文献中有关分析人体组织中脂肪酸的衍生化方法和所用色谱柱4 脂肪酸气相色谱分析所用色谱柱  从已发表的文献看分析整体脂肪酸需用非极性的聚硅氧烷毛细管色谱柱,如聚二甲基硅氧烷,分离多不饱和脂肪酸需用极性强的色谱柱,如OV-275,OV-275(这是聚硅氧烷固定相中极性最强的色谱柱)和CP-Sil 88(HP-88)。 据安捷伦公司一份研究报告(5989-3760 EN),他们对最重要的一些脂肪酸(甲酯)(见表3)进行研究,研究总结认为:聚乙二醇柱对不太复杂的样品可以得到很好的分离 而中等极性的氰丙基聚硅氧烷柱(DB 23)对复杂的 FAMEs 样品可以得到很好的分离,对一些顺反异构体也可以得到分离 要使顺反异构体分离的更好,就要使用更高极性的 HP-88 氰丙基色谱柱。表3 重要的一些脂肪酸  三种主要色谱柱分离脂肪酸的特点如下:  使用DB-Wax柱,DB-23 柱和HP-88 柱上分离37种脂肪酸混合物的色谱见图5-图7.图 5 FAMEs在30 m 0.25 mm ID, 0.25 μm DB-Wax 色谱柱上的色谱图 6 FAMEs混合物在 60 m 0.25 mm ID, 0.15 μm DB-23 柱上的色谱图 7 FAMEs 混合物 在 100 m 0.25 mm ID, 0.2 μm HP-88 柱上 的色谱  其中HP-88 柱的极性最强,是含88%氰丙基甲基聚硅氧烷,其结构如下图8:图8 HP-88 的分子结构  HP-88 对一些异构体的分离能力由于DB-23如下图9所示  图 8 HP-88和HP-23分离能力的差别  (此图来自Walter Jennings博士2008年在北京大学作报告时的ppt文稿)  吴惠勤等使用P-88毛细管色谱柱分离了39种脂肪酸得到的质谱基峰离子和特征离子如表4中的数据。表4 39种脂肪酸在HP-88毛细管色谱柱上出峰次序( 吴惠勤等,分析化学,2007,35(7):998-1003)
  • 欧盟正式就批准的农药向世贸组织通报
    2013年7月4日消息,欧盟委员会已经向世界贸易组织技术性贸易壁垒委员会(the World Trade Organization’s Committee on Technical Barriers to Trade)通报其拟批准的一系列现有用于某些农药产品中的活性物质。   这些活性物质包括:苯甲酸(benzoic acid),磷化铝(aluminium phosphide),醚菊酯(etofenprox),壬酸(nonanoic acid),溴乙酸(bromoacetic acid),碘代丙炔基氨基甲酸丁酯(IPBC),五水硫酸铜(copper sulfate pentahydrat),和戊唑醇(tebuconazole)。   委员会实施细则草案拟议的实施日期为2013年9月。
  • 欧盟可能限制使用全氟辛酸及相关物质
    德国与挪威合作,计划于2014年10月17日就全氟辛酸提交一份文件,称为《附件XV限制资料文件》。该份文件根据《化学品註册、评估、授权和限制法规》(REACH法规)附件XV内的相关资料规定匯编而成。   2014年3月5日,欧洲化学品管理局(ECHA)宣布,德国与挪威政府已展开一项资料收集工作,以确定全氟辛酸及全氟辛酸相关物质的使用、数量和供应情况,以及技术上和经济上可行的替代品。   这些资料将会用于评估替代品以及匯编「限制资料文件」。该份文件最终可能会导至限制含有全氟辛酸的物品及混合物在市场贩售。如当局採用限制措施,欧洲委员会将会把有关措施纳入REACH法规附件XVII内。   附件XVII现已载有一份禁止在欧盟市场贩售的产品清单,包括含有若干类邻苯二甲酸盐的玩具和儿童护理物品,以及含偶氮染料的纺织品。   多项产品会含有全氟辛酸,包括纺织品、地毯、家具布料、纸张、皮革、碳粉、清洁剂和地毯护理剂、密封剂、地板蜡及油漆。全氟辛酸会残留在若干物件上,包括电线绝缘体、专用电路板、用于衣服的防水膜(如Gore-Tex)、外科植入物、牙线和不粘涂层。此外,瑞典化学品管理局(KEMI)在一份报告中特别指出,进口产品(如户外衣服)是全氟辛酸的主要来源。   德国及挪威正制订限制全氟辛酸及相关物质(可以分解为全氟辛酸的前体物质)的建议。建议将涉及全氟辛酸、相关物质、其混合物、製品以及其他物质成份的製造、使用及市场贩售。含有全氟辛酸及相关物质的进口货亦包括在内。   德国及挪威展开资料收集工作的目的,在于尽量鼓励更多相关人士回答问卷,就全氟辛酸及相关物质的使用、供应以及技术上和经济上可行的替代品等问题提供资料。   收集资料的对象包括全氟辛酸、全氟辛酸盐和全氟辛酸相关物质的生产商、替代品生产商、消防泡沫生产商,以及纺织品整理加工业、摄影成像业及半导体业等下游使用者。   德国及挪威邀请可能受限制措施影响或持有相关资料的人士,于2014年4月30日提出意见。相关人士可以通过以下网址填写问卷及提交资料:http://goo.gl/yqWbFq   若德国及/或挪威提出限制措施的建议,欧洲化学品管理局亦会进行公众谘询。
  • 挪威将限制消费品中的全氟辛酸
    挪威近日宣布将限制消费品中的全氟辛酸化合物(perfluorinated compound ,PFOA)。生效日期将根据产品属性从2014年6月开始生效。   2013年6月28日,挪威环保局宣布了一项消费品中PFOA及其盐类和酯类的国家禁令。限制令适用于固体和液体产品,也包括纺织品。   PFOA被用于一系列消费品。它可被用于制造含氟聚合物,转而用于防水夹克。还可被用于制造地板蜡、蜡纸以及电线中的绝缘体。   该公告修订了《挪威产品法》第2-32节。禁令的生效日期根据产品属性从2014年6月1日开始。   新法律的重点图表格一所示:   表格一 管辖范围 法规 物质 范围 要求 生效日期 挪威 产品法规第2-32节“含有全氟辛酸铵的消费品” PFOA及其盐类和酯类 纯物质 混合物 ≤10毫克/千克 2014年6月1日 2016年1月1日 (半导体的粘合剂以及胶卷、相纸或屏幕的摄影涂层) 纺织品 地毯 表面有涂层的消费品 ≤1.0微克/平方米 2014年6月1日 消费品 ≤0.1% 2014年6月1日 2016年1月1日 (半导体中的箔或磁带) 豁免 食品包装和食品接触材料 医疗设备 2014年6月1日之前销售的消费品备用零件
  • GB 5749-2022 生活饮用水卫生标准解读
    GB 5749-2022 生活饮用水卫生标准将于2023年4月1日正式实行,代替GB 5749-2006生活饮用水卫生标准。标准规定了生活饮用水水质要求、生活饮用水水源水质要求、集中式供水单位卫生要求、二次供水卫生要求、涉及饮用水卫生安全的产品卫生要求、水质检验方法。本标准适用于各类生活饮用水。GB5749-2022版相比2006版的变化新标准的水质指标由原来的106项调整为97项,包括常规指标43项和扩展指标54项,将高氯酸盐、乙草胺、2-二甲基异茨醇、土臭素正式作为扩展指标加入到新标准中。另外参考指标由之前的28项调整为55项,其中主要增加项目为有机磷农药及全氟化合物(全氟辛酸、全氟辛烷磺酸)、臭味化合物如二甲基二硫醚、二甲基三硫醚、硫化物等。相应的2022版《生活饮用水标准检验方法》GB/T 5750意见稿变动很大,其中有机污染物的部分尤为明显。其中的第八部分主要规定了饮用水中常见的有机污染物,如微囊藻毒素,烷基酚,环烷酸,PPCPs等的检测方法,第九部分则明确了饮用水中痕量农残的检测项目,方法及指标,此外意见稿的第十及第五部分则为主要针对饮用水中消毒副产物残留,如氯酸盐,高氯酸盐等的检测方法。 GERSTEL饮用水检测解决方案GERSTEL饮用水检测解决方案可实现的方法和技术包括:在线SPE-LC/MS/MS直接液体进样搅拌棒吸附萃取SBSE-GC/MS(/MS)在线固相微萃取SPME-GC/MS(/MS)气相色谱-嗅闻技术 GC-O-MS可以实现对以下污染物和臭味物质超痕量的监测,一网打尽GB5749-2022标准中的目标分析物:臭味化合物:2-二甲基异茨醇、土臭素、二甲基二硫醚、二甲基三硫醚、硫化物全氟化合物:如全氟辛酸、全氟辛烷磺酸消毒副产物残留:氯酸盐、高氯酸盐邻苯二甲酸盐农药残留激素、药物残留有机污染物:如微囊藻毒素、烷基酚、丙烯酰胺等应用案列01水中痕量土臭素和2-甲基异崁醇的测定GB 5749《生活饮用水卫生标准》征求意见稿和GB/T 5750《生活饮用水标准检验方法》征求意见稿均规定采用固相微萃取技术(SPME)对水体中痕量土臭素和2-甲基异崁醇进行测定,该方法具有无需有机溶剂、灵敏度高等特点,集采样、萃取、浓缩、进样于一体,能直接应用于气相色谱、气质联用、液相色谱等仪器。能够分析40mL/60mL的水质样品,标配24位样品盘,无需减少取样量,符合GB/T 5750《生活饮用水标准检验方法》标准要求(40mL水样),检出限更低、灵敏度更高。对2种目标物5ng/L,10ng/L,20ng/L,50ng/L,100ng/L进行线性研究,2-甲基异莰醇R2为0.998,土臭素R2为0.997,线性良好。2-甲基异莰醇、土臭素两种目标物具有更低的方法检出限,分别达到2.7ng/L、0.47ng/L,符合标准要求,并且结果稳定RSD 4% (n=6)。 02水中全氟化合物,草甘膦的检测GB5750.8 有机物指标增加检测项目:全氟辛酸&全氟辛烷磺酸原理:水样经混合型弱阴离子交换反相吸附剂(WAX)固相萃取小柱富集浓缩后氮吹至近干,复溶后上机测定;以超高效液相色谱串联质谱的多反应监测(MRM)模式检测,根据保留时间以及特征峰离子定性,采用同位素内标法定量分析。GERSTEL推出在线SPE-LC-MS/MS的自动化方法测定全氟碳酸和全氟磺酸。此方法在0.2– 2.0 ng/L的线性范围内最低检测质量浓度LOD远低于1 ng/L,完全符合标准中3 ng/L 和 5ng/L的要求 。通过对不同来源的加标水样进行分析,证明了该方法的准确性。相对标准偏差RSD10%,正确度在80% -110% 之间。 分析前无需过滤水样或用甲醇稀释。对不同来源的水样验证了方法的加标回收率和精密度。目标待测物英文缩写LOD (ng/L)全氟丁酸PFBA0.14全氟戊酸PFPA0.27全氟己酸PFHxA0.13全氟庚酸PFHpA0.19全氟辛酸PFOA0.22全氟壬酸PFNA0.13全氟癸酸PFDA0.20全氟丁烷磺酸PFBS0.20全氟己烷磺酸PFHxS0.18全氟庚烷磺酸PFHpS0.24全氟辛烷磺酸PFOS0.23对不同来源的水样饮用水,河水,山泉水,矿泉水验证了方法的加标回收率和精密度,以下是生活饮用水进行加标回收率测定举例,分别添加低(5 ng/L)、高(50 ng/L)2个浓度水平,按照所建立的方法进行样品处理及测定,每个浓度重复5份平行样品,计算平均加标回收率和精密度。 组分低浓度高浓度回收率%RSD%回收率%RSD%PFBA1137952PFPA748767PFHxA941923PFHpA953921PFOA1173972PFNA954932PFDA921923PFBS925814PFHxS919922PFHpS799913PFOS886973标准溶液 (50 ng/L) 水溶液的示例色谱图在线SPE-GC-MS/MS应用详情请见:根据欧盟饮用水指令和DIN38407标准使用在线SPE-LC-MS/MS测定饮用水中的PFAS同样的配置被成功应用于草甘膦及其主要代谢物氨基甲基膦酸(AMPA)的检测,对于水中草甘膦和AMPA的测定,结果达到了10 ng/L的最佳定量限(LOQ)并达到0.999的显著线性系数。使用FMOC-Cl衍生化,随后进行自动固相萃取SPE步骤。自动样品制备过程在25分钟内完成。LC-MS/MS循环时间小于20分钟。使用GERSTEL的重叠样品制备功能PrepAhead,使样品制备和分析完全同步,以最大限度地提高生产率和通量。0.1、0.5、1.0 和5.0 ng/ml草甘膦标准品色谱图031水中消毒副产物检测GB5750征求意见稿第10部分消毒副产物指标中,要求适用液液萃取衍生气相色谱法, 要求使用MTBE进行液-液萃取,然后衍生化(甲基化),然后带有电子捕获检测器的气相色谱分析测定水中的一氯乙酸 MCAA,二氯乙酸DCAA,三氯乙酸TCAA。若取水样25 mL水样测定,本方法最低检测质量浓度分别为:5.0 μg/L、2.0 μg/L、1.0 μg/L。使用离子色谱-电导检测法最低检测质量浓度分别为:一氯乙酸(MCAA)1.9 μg/L、二氯乙酸(DCAA)3.7 μg/L、三氯乙酸(TCAA)4.4 μg/L、一溴乙酸(MBAA)3.0 μg/L、二溴乙酸(DBAA)8.3 μg/L。GERSTEL解决方案自动化液液萃取和在线衍生,完全自动化标准中的手动制样过程:如调整PH值至5,使用甲基叔丁醚萃取,加入硫酸甲溶液在50 ℃加热块上衍生2小时,加入碳酸氢钠溶液中和,取上清液注入GC。使复杂繁琐的液液萃取和衍生步骤变得简单。节省人力和物力。 该系统每天可以分析32个样品,技术人员仅需1小时的时间来进行样品加载、制备和进一步处理。小型化的方案需要消耗的溶剂少得多,从而节省了成本并改善了实验室的整体工作环境。方法的测定限为1 ppb;对所有测定的卤代酸进行了验证,在0.5 -50 μg/L的线性很好R² 0.999。1μg/L 和 40 μg/L的重复性高 (RSD 4.8%)(n=3)卤代酸HAAsR² (0.5 - 50 ppb)LODμg/LRSD % (n=3)1 μg/L40 μg/L一氯乙酸0.9990.14.10.8二氯乙酸1.0000.11.51.8三氯乙酸1.0000.23.70.8一溴乙酸1.0000.14.81.4二溴乙酸0.9990.051.40.6法国威立雅环境在巴黎用于自动测定水中卤代酸(HAAs)的系统同时这套解决方案还可以实现对三氯甲烷,三溴甲烷、二氯一溴甲烷、一氯二溴甲烷、二氯甲烷、二溴甲烷、氯溴甲烷的检测,使用顶空气相色谱法。对2,4,6-三氯酚(TCP)的检测可以使用自动化顶空固相微萃取HS-SPME标准方法来实现,或者对更低浓度的痕量化合物,使用搅拌棒吸附萃取SBSE来实现。04感官气相色谱对臭味物质的测定通过化学分析与感官评价方法结合,可对水中未知嗅味物质进行鉴定。主要采用气相色谱-嗅闻技术(gas chromatography-olfactometry,GC-O) 的方法,通过GC分离混合物中的组分,部分样品分流至闻测杯后,测试人员对不同时间流出的气体样品进行嗅闻,协助从大量色谱峰中寻找相应物质。此技术也可以帮助改善饮用水处理工艺。成功案例:中国科学院生态环境研究中心:感官气相色谱对水中不同化合物嗅味特征的同步测定感官闻测耦合仪器分析: 水务部门给臭气”定罪”的黑科技去除土臭素和 2-MIB的整体饮用水处理工艺研究05水中多环芳烃和多氯联苯的检测GB5750 检测多环芳烃使用固相萃取SPE-高效液相色谱HPLC:水中多环芳烃经苯乙烯二苯乙烯聚合物柱富集后,甲醇水溶液淋洗杂质,二氯甲烷洗脱,浓缩后用乙腈水溶液复溶,经高效液相色谱分离,紫外串联荧光检测器检测,保留时间定性,峰面积外标法定量。GERSTEL提供绿色高效的检测方法,使用搅拌棒吸附萃取SBSE-气相色谱串联质谱GC-MS/MS,样品无需复杂的前处理,直接通过搅拌棒萃取,大大节省了溶剂的使用量,并且提高了检测的灵敏度。下表是标准中的16种多环芳烃化合物使用两种方法可以达到的最低检测质量浓度LOD, 只需100ml的水样,SBSE的检测下限提高了数十倍。 对加标浓度接近各自LOQ的水样品进行重复分析 (n=6),显示所有化合物的相对标准偏差RSD在1%到15%之间,平均RSD为6.9%。大多数分析物的加标回收率在90到110%之间。16种多环芳烃化合物组分GERSTELSBSE-GC-MS/MS LOD(ng/L)GB5750SPE-HPLCLOD (ng/L)SBSE加标回收率 %SBSE精密度 %100 mL水样500 mL水样 n=6萘5.020.01022.5苊烯0.108.01134.5苊1.08.09615芴0.4516.0926.5菲2.520.0935.2蒽0.06112.0816.2荧蒽0.4516.0 9211芘0.4512.0855.8苯并(a)蒽0.0764.61055.2䓛 0.0278.01163.6苯并(b)荧蒽 0.0788.0873.8苯并(k)荧蒽0.0818.0922.3 苯并(a)芘0.0334.610212二苯并(a,h)蒽0.0738.01163.6苯并(g,h,i)苝0.0497.71067.3茚并(1,2,3-cd)芘0.0445.81044.6GB5750 检测多氯联苯使用固相萃取SPE-气相色谱质谱法GC-MS:水样中多氯联苯被C18固相萃取柱吸附,用二氯甲烷和乙酸乙酯洗脱,洗脱液经浓缩,用气相色谱毛细管柱分离各组分后,以质谱作为检测器,进行测定。GERSTEL的搅拌棒吸附萃取SBSE-气相色谱串联质谱GC-MS/MS,使用共一个方法检测多氯联苯化合物。样品无需复杂的前处理,直接通过搅拌棒萃取,大大节省了溶剂的使用量,并且提高了检测的灵敏度。下表是标准中的12种多氯联苯化合物使用两种方法可以达到的最低检测质量浓度LOD, 只需100ml的水样而非1L,SBSE的检测下限提高了数十倍。 对加标浓度接近各自LOQ的水样品进行重复分析 (n=6),显示所有化合物的相对标准偏差RSD 5 %。分析物的加标回收率在96到109%之间。12种多氯联苯化合物组分GERSTELSBSE-GC-MS/MSLOD (ng/L)GB5750SPE-GC-MSLOD (ng/L)SBSE加标回收率 %SBSE精密度 %100 mL水样1000 mL水样n=6PCB810.0397 983.2PCB770.0416 994.2PCB1230.03710 983.6PCB1180.012101014.3PCB1140.03612 1084.7PCB1050.043111094.1PCB1260.05014982.8PCB1670.04412 1002.5PCB1560.04691021.6PCB1570.04712 1032.7PCB1690.05481021.2PCB1890.05417 961.5GERSTEL的搅拌棒吸附萃取SBSE-气相色谱串联质谱GC-MS/MS被成功应用于欧盟水框架指令,能够在一次分析运行中从仅仅100mL的地表水样品中测定约100种相关污染物,如塑化剂(DEHP),各种农残,包括颗粒吸附化合物,绝大多数分析物的检测限在ng/L甚至到pg/L范围内。详情请见:欧盟水框架指令使用SBSE技术轻松搞定食品中400多种农残分析
  • 生态环境部关于公开征求《水质 全氟辛基磺酸和全氟辛基羧酸的测定 固相萃取/液相色谱-三重四极杆质谱法》等四项国家生态环境标准意见
    各有关单位:为贯彻《中华人民共和国环境保护法》,规范生态环境监测工作,我部组织编制了《生态遥感地面观测与验证技术导则》等四项国家生态环境标准征求意见稿,现征求各有关单位意见。标准征求意见稿及其编制说明,可登录我部网站(http://www.mee.gov.cn)“意见征集”栏目检索查阅。其他各有关单位和个人也可提出意见和建议。请于2022年1月10日前将意见建议书面反馈我部,并注明联系人及联系方式,电子文档同时发送至联系人邮箱。联系人:生态环境部监测司 曹 宇电话:(010)65646228传真:(010)65646236邮箱:zhiguanchu@mee.gov.cn地址:北京市东城区东安门大街82号邮编:100006附件:1.征求意见单位名单2.生态遥感地面观测与验证技术导则(征求意见稿)3.《生态遥感地面观测与验证技术导则(征求意见稿)》编制说明4.固定污染源废气 烟气黑度的测定 林格曼望远镜法(征求意见稿)5.《固定污染源废气 烟气黑度的测定 林格曼望远镜法(征求意见稿)》编制说明6.水质 全氟辛基磺酸和全氟辛基羧酸的测定 固相萃取/液相色谱-三重四极杆质谱法(征求意见稿)7.《水质 全氟辛基磺酸和全氟辛基羧酸的测定 固相萃取/液相色谱-三重四极杆质谱法(征求意见稿)》编制说明8.土壤和沉积物 全氟辛基磺酸和全氟辛基羧酸的测定 液相色谱-三重四极杆质谱法(征求意见稿)9.《土壤和沉积物 全氟辛基磺酸和全氟辛基羧酸的测定 液相色谱-三重四极杆质谱法(征求意见稿)》编制说明生态环境部办公厅2021年12月9日(此件社会公开)附件1征求意见单位名单生态环境部各流域海域生态环境监督管理局监测与科研中心各省、自治区、直辖市生态环境监测站(中心)新疆生产建设兵团生态环境第一监测站各环境保护重点城市生态环境监测站(中心)中国科学院生态环境研究中心中国环境科学研究院中国环境监测总站生态环境部环境发展中心生态环境部南京环境科学研究所生态环境部华南环境科学研究所国家环境分析测试中心河北环境工程学院
  • PH试纸被指太“忽悠” 农夫山泉再遭“不测”
    桶装水的卫生,已成为社会关注的焦点问题之一。   媒体质疑水质的声音尚未绝耳,农夫山泉或将再次遭遇“不测”。农夫山泉免费提供的PH试纸,被指“忽悠”成都消费者。   事实上,早在本月6日,农夫山泉召开新闻发布会时,董事长钟睒睒表示,农夫山泉瓶装水标准一定比自来水标准更高,因此消费者可以放心饮用。此后,为了应对质疑,农夫山泉在超市以及宣传DM单中免费赠送PH试纸,以此应证农夫山泉确实为“天然弱碱性水”,以此说明“弱碱性水有益身体健康”。   不过,这项原本意在挽救消费者信心的举措,却遭遇成都消费者质疑。27日,《金融投资报》热心读者张先生一大早就打来电话称,他用农夫山泉免费赠送的PH试纸测试了多种水质,结果发现不同类型、不同生产厂家的水源测试结果都为“弱碱性”,他告诉记者:“我怀疑农夫山泉赠送的PH试纸有问题,很像是一个忽悠。”   记者调查:   自来水测试也为“弱碱性”   接到读者的反映后,记者随机从超市买来五瓶不同牌子、不同种类的水,这其中既有“XX时代”牌矿泉水,也有“X宝”“X露”牌纯净水,还有农夫山泉的“天然水”。最后,记者接了一杯自来水。   测试开始,记者先将农夫山泉的“天然水”滴到其PH试纸上,只见试纸颜色迅速从原本的黄色变为了淡绿色,而按照农夫山泉DM单对比测试图,变为淡绿色乃至绿色就是弱碱性,变为黄色为弱酸性。   接着,记者将“X宝”和“X露”牌纯净水滴在农夫山泉赠送的PH试纸上,按照农夫山泉之前在媒体的宣传报道称,纯净水之所以“纯净”,是因为它最大限度地除去了水中杂质和各种人体必须的矿物元素,它的PH值一般在5.0-7.0之间,偏酸性,有的甚至比酸雨还低。长年累月喝这种水,人会越喝越老。不过,用农夫山泉免费赠送的PH试纸并没有测试出酸性的现象,虽然变为淡绿色的时间比农夫山泉测试的“淡绿色”要晚,但只用了3分钟,试纸还是呈现出非常明显的“弱碱性”淡绿色。   然后,记者又将“XX时代”“X苏”牌矿泉水滴在了新的PH试纸上,按照农夫山泉此前的宣传,加了矿物质的纯净水,通过在纯净水里人工添加矿物质的方法,已经被许多饮用水产家使用。但有些产家通过添加氢氧化钠等化学品来释放钠钾阳离子,这样的水,其PH值甚至会比纯净水还低。不过,矿泉水的“淡绿色化”来得比纯净水更快,水滴刚刚接触试纸就迅速起了变化。又在3分钟后,当记者拿出完全被水润湿的PH试纸观察时发现,试纸不仅起了变化,还呈现出浓厚的深绿色。   最后,记者将从水管中接出的自来水滴到了PH试纸上,试纸立马变为淡绿色,和之前农夫山泉自身的“天然水”并无区别。   除了水,饮料、食用醋等明显为酸性的液体测试结果会怎样?记者买了一瓶醋和一瓶果汁饮料滴在PH试纸上,结果没有意外试纸统统变为了淡绿色!而在记者另外购买的测试的PH试纸上,以上两种液体表现出明显的黄色“强酸性”。   上述“实验”完成后,记者试图联系农夫山泉,但公司工作人员拒绝了记者的采访要求。而在农夫山泉的官方微博上记者发现,已不是张先生一个消费者发现农夫山泉免费赠送的PH试纸有问题,农夫山泉官方微博对此解释,赠送的PH试纸测试范围为5.5-5.9的PH精密试纸,同时测试PH值在3.5以下的果汁,结果一致,说明PH测试范围为5.5-9.0的试纸都无法准确测试强酸液体,而非附赠的试纸有问题。   专家说法:   商家炒起来的认识误区   记者发现,现在成都各大超市、商店中所出售的农夫山泉水皆用“PH7.3,天然的弱碱性水”用醒目大字标注出来。不过,看到记者亲身测试,不少同事也表示“不再相信农夫山泉赠送的PH试纸了。”   按照自来水的生产流程,生产过程中会加氯以达到杀菌目的,为此,记者联系到成都自来水有限责任公司负责人,询问自来水究竟应该属于“弱碱性”还是“弱酸性”的问题。不过,截至记者发稿,成都自来水有限责任公司也没给出一个明确的答复。   “农夫山泉从天然水到PH值的炒作,应该是有其原因的。”一位不愿意透露姓名的业内人士认为,农夫山泉在天然水领域已经奠定了其龙头地位,且天然水的概念已经获得消费者的广泛认可,但这几年从PH值进行炒作,说明其内部可能存在某些问题。“或者是农夫山泉已经从这个炒作中获利,否则不可能接连几年都在做。”   中山大学营养学系教授蒋卓勤表示,人体的酸碱度在7.35-7.45之间,很稳定,而且会进行自我调节,若不是医生判定酸碱度失衡,不需要去改变。他表示,人体的酸碱度超过正常范围就属于酸中毒或碱中毒,是病态而不是简单的通过饮食就能调节的。   蒋卓勤还表示,喝水只是起到补充水分的作用,不管是酸性水还是碱性水,无助于改变人体的酸碱度。当一个人体内的pH值可以通过喝水改变的时候,表示他的身体已经失去了自我调节能力,已经到了病入膏肓的地步。“所以"弱碱性水有益身体健康"的说法,完全是商家炒作起来的认识误区。”
  • 光伏企业争抢国家实验室 欲夺标准制定权
    17家光伏企业和科研院所为争夺太阳能光伏发电技术国家重点实验室的较量尘埃落定。1月18日,科技部基础司卞松保博士对《每日经济新闻》透露,科技部已通过了英利集团和江苏常州天合光能有限公司申报建立光伏发电技术国家重点实验室的材料,这也是我国首批获得通过的光伏发电技术领域重点实验室。   去年开始,科技部启动了首批太阳能光伏发电技术国家重点实验室申请工作。英利集团首席技术官宋登元在接受《每日经济新闻》采访时称,此次全国共有17家光伏企业和科研院所参入了竞争,每个省份只有一个申请名额,最后只有两家获得通过。   上述两家获批公司都已在美国纽交所上市。“只有在研发基础、实验室设备、人才队伍等硬性条件达到国家规定的条件下才能获批。”宋登元介绍,这些硬性指标包括要有5年的前沿和核心技术研发实践 近3年来的研发投入不能低于销售额的5% 实验基地面积不低于3000平方米 设备不低于1500万元等。   在这一系列的硬性指标下,很多企业的首批申请都没有通过。宋登元说,该公司规划的实验室总建筑面积为60800平方米,总投资5.4亿元(由企业和政府部门各出一部分资金),建设周期为两年,建成后有关部门还将审定验收,通过后就能挂牌。   对此,江西赛维LDK公共关系部的廖淑艳认为,大的光伏企业都想争取到国家重点实验室和国家研究中心这样的项目,让自己的公司成为依托单位,这也是公司技术实力的象征。   在光伏企业纷纷争抢国家实验室的背后,则是对行业标准制定主动权的争夺。   据宋登元称,由于光伏行业还是一个新兴产业,目前一直没有统一的国家行业标准,也缺乏涵盖产业整体的行业技术标准,而重点实验室的获批通过,标志着我国太阳能光伏行业有了集光伏技术研发、基础研究等于一体的综合公共服务平台,将加快推动国内光伏行业标准的制定进程,包括制定规范准入、性能、环保、安全等行业标准。这对于提升国内产业的整体水平和规范发展,保证我国在新能源领域的国际地位与竞争力来说极其重要。“哪家企业建立了实验室,在技术上就会抢先,所研发的新成果就会成为企业的专利。”宋登元说道,“一旦新技术上升为国家标准就有一个门槛作用,可以对落后的产能进行淘汰。”   不过无锡尚德公关经理张建敏认为,目前两公司的实验室只是拿到了建设批文,现在谈制定行业标准为时尚早。“任何行业标准的制定都是以技术为支撑的,需要通过行业讨论后再由国家来制定。”
  • 农夫山泉和统一果汁被检“含砒霜”(图)
    郑州部分超市仍在销售的不同批次的统一蜜桃多汁 农夫山泉和统一果汁被查出“总砷超标” 业内称,虽是同一品牌,但产地不同结果也不尽相同   这两天,农夫山泉和统一企业被海口市工商局推向消费者的关注中——两家公司生产的部分批次果汁饮品近日被该工商局检测出“含砒霜”。   【新闻事件】   农夫山泉和统一果汁被检出“含砒霜”   海口市工商局上周发布消费警示称,农夫山泉广东万绿湖有限公司生产的农夫果园30%混合果蔬(生产日期:2009-6-27,规格:500毫升/瓶)、水溶C100西柚汁饮料(生产日期:2009-8-16,规格:445毫升/瓶),以及统一企业(中国)投资有限公司生产的蜜桃多汁(生产日期:2009-8-22,规格:250毫升/瓶),总砷超标。   据了解,总砷,就是指该产品中砷的总量。而砷就是常说的砒霜,有毒。长期低剂量摄入砷化物达一定程度,会导致慢性砷中毒,引起神经衰弱症候群,皮肤色素异常,多发性末梢神经炎,支气管、肺部疾患以及末梢血管循环障碍等。   其实,在海口市的检测中,还检测到另外7种产品中苯甲酸、山梨酸、糖精钠、甜蜜素超标或二氧化硫超标,但未能像农夫山泉和统一企业的果汁总砷超标一样,引起轩然之波。   【郑州落地】   同一品种但不同批次果汁仍在销售   昨日,商报记者在郑州多家超市进行了采访。发现部分超市仍在销售农夫果园30%混合果蔬、农夫山泉水溶C100西柚汁饮料和统一蜜桃多汁。   在人民路一家超市里,500毫升的农夫果园30%混合果蔬和445毫升的农夫山泉水溶C100西柚汁饮料仍然在货架上销售。不过,这两种饮品均非农夫山泉广东万绿湖有限公司生产,而是由农夫山泉湖北丹江口有限公司生产。   虽然有的超市正在促销统一鲜橙多汁和葡萄多汁,但其销售的250毫升装“多汁”系列饮品,却未见到蜜桃多汁。“是该超市原本就没有该规格的蜜桃多汁,还是已经下架?”面对记者的询问,促销人员称不知情。   不过,在紫荆山附近一家超市,商报记者见到统一250毫升蜜桃多汁仍在销售,但生产日期为2009年8月9日,而非海口市工商局检测到的8月22日。超市负责质检工作的业务经理称:“我昨天晚上在网上看到了相关新闻,今天一早上班就首先做了检查,发现我们的产品和被检查出有问题的产品并非同一批次。”   【厂家反应】   统一力证清白,农夫山泉提出质疑   在得知海口市工商局公布相关检测结果后,农夫山泉和统一均发表了声明。   统一企业在其官网上贴出“回应稿”称,因之前生产饮料类产品,在送检第三方检测机构和政府监督抽样检测过程中,均未出现类似不良状况。统一在接到通知后非常重视,立即将同一产程产品送广州市质量监督检测研究院(国家加工食品质量监督检验中心)检测以追查原因,11月26日报告结果为:含砷量符合国家标准要求。该公司称“目前正在和海南省工商单位协调处理,有结果后再向媒体说明”。   农夫山泉则在上周末召开新闻发布会,对海口市工商局发布的2009第8号商品质量监督消费警示表示质疑。同时称农夫果园和水溶C100在最近的国家、上海和广东等地组织的产品监督抽查中均合格,且报道出来后,委托相关检测机构对同批次留样产品的检测结果也为合格。   业内人士介绍,饮料企业在各地销售的产品,一般由当地或附近地区的生产商生产,比如郑州本地销售农夫山泉果汁,基本上都是湖北工厂生产的,故海口工商部门检测到广东工厂生产的饮料有问题,则郑州本地销售的饮料就不一定也有问题。
  • 水质49种全氟和多氟化合物,一针进样全搞定
    导读全氟和多氟烷基化合物(per-and polyfluoroalkyl substances, PFAS)是一类新型持久性有机污染物(POPs),广泛应用于日常生活和工业用品中。研究表明这些化合物易于生物累积,且可能导致肝毒性、致癌性、生殖毒性以及干扰内分泌等特性。如今,天然环境中化学抗性PFAS的排放量不断增加,同时这些人为污染物在天然和处理水域、人类和动物生物体中的存在都构成了巨大的环境挑战。 全氟辛酸小档案中文名:全氟辛酸英文名:Perfluorooctanoic AcidCAS号:335-67-1分子式:C8HF15O2分子量:414.07 PFAS法规要求及分析特点PFAS含有几乎无法被破坏的C-F键,被称为“永生的分子”,由于其没有显示出任何被生物降解的迹象,因此也被称为“永久性化学品”。 斯德哥尔摩公约于2009年通过了全氟辛烷磺酸及其盐类和全氟辛烷磺酰氟成为持久性有机污染物(POPs)的一个重要检测项目。2010年3月17日,欧盟委员会发布2010/161/EU号议案,建议对食品中全氟烷基化合物进行监控。 PFAS的检测面临诸多挑战,一是来源于玻璃器皿和实验器材的本底污染,这对前处理耗材、检测仪器纯净的要求极高,简单的前处理步骤也更有利于降低干扰;二是浓度低,美国EPA于2016年发布的水质安全建议中,要求水质中PFOA和PFOS的限量是70 ppt,因此要求仪器具备较高灵敏度。 岛津解决方案岛津超高效液相色谱-质谱联用仪LCMS-8050 参考美国ASTM D7979标准水质PFAS的分析方法,采用岛津超高速LC-MS/MS(UFMSTM)技术,建立了快速、稳定、高灵敏度的49种PFAS(30种目标物和19种内标)分析方法,为客户提供环境中PFAS痕量分析的全方位解决方案。 表 1 PFAS检测标准比较 样品前处理分析条件 表2 梯度条件干扰的消除PFAS可能存在于溶剂、玻璃器皿、移液管、导管、脱气机和LC-MS/MS仪器的其它部件中。为了避免来自系统的干扰,在溶剂和样品阀之间放置一个延迟柱,延迟来自系统的PFAS出峰时间,从而消除系统的干扰。图1 PFOA色谱图:(a)无延迟柱(b)使用延迟柱 绘制9点校准曲线对PFAS目标物进行校准,线性范围5 ppt-200 ppt,所有化合物线性回归系数R20.99。各标准品校准误差均在±30%以内。 图2 49种混标溶液(100 ppt)TIC图(黑色)和MRM图(其它颜色) 表3 保留时间、检出限、线性范围、准确度、精密度*FHEA, FOEA ,FDEA使用400 ng/L计算准确度和精密度 结语 随着PFAS的不断向全球扩散,或许我们已经找不到一片极净之境。在你所不知道的隐秘角落,这种 “永生的分子”正在威胁着人类赖以生存的水源安全。淘汰有害PFAS制品的活动正在一步一步推进,在这个过程中,岛津公司愿与所有致力于地球和人类健康的人们一道,利用科学、高效、灵敏的分析手段共同守护我们的生命之泉。 *数据来源于岛津科学仪器-美国 参考资料: 1.U.S. Environmental Protection Agency, "US EPA Method 537: Determination of Selected Perfluorinated Alkyl Acids in Drinking Water by Solid Phase Extraction and Liquid Chromatography / Tandem Mass Spectrometry (LC/MS/MS)," Washington D.C., 2009.2.ASTM International, "ASTM D7979-17: Standard Test Method for Determination of Perfluorinated Compounds in Water, Sludge, Influent, Effluent and Wastewater by Liquid Chromatography Tandem Mass Spectrometry (LC/MS/MS)," West Conshohocken, 2017.3.ASTM International, "ASTM D7968-17a: Standard Test Method for Determination of Perfluorinated Compounds in Soil by LIquid Chromatography Tandem Mass Spectrometry (LC/MS/MS)," West Conshohocken, 2017.United States Environmental Protection Agency, "US EPA - PFAS Research and Development," 14 August 2018.
  • 食品中全氟和多氟烷基化合物测定的国标方法修订进展
    PFAS,即全氟和多氟烷基物质,是一组多样化的人造化学品。PFAS结构稳定、不易降解,具有优良的表面活性功能,因此广泛的应用到包装、表面处理、灭火器、卫生用品等各种消费品和工业产品中。传统PFAS的代表性化合物、以及研究最热门的PFAS,为全氟烷基羧酸类化合物(PFOA)及全氟烷基磺酸类化合物(PFOS)两大类。目前,全球许多国家或地区都已经对PFAS进行限制,此前小编已将PFAS相关管控要求概况成文:管控再升级!2024年全球PFAS管控法规大盘点 2019年3月11日中国生态环境部发布《关于禁止生产、流通、使用和进出口林丹等持久性有机污染物的公告》自2019年3月26日起,禁止 PFOS及其盐类和 PFOSF 除可接受用途外的生产、流通、使用和进出口。PFAS国内外风险评估及膳食暴露2022年12月8日,欧盟委员会法规(EU)2022/2388 发布,修订了关于某些食品中全氟烷基物质最高含量的法规,该条例自2023年1月1日起施行。目前国内未制定食品中PFAS的限量值。欧盟2022/2388指导限量要求在中国 66 个城市中的调查表明,近 1 亿人的饮用水中 PFAS 浓度高于安全水平。多国的暴露评估数据表明,膳食摄入是人体PFAS暴露的最主要途径。在第六次中国总膳食研究(TDS)中,水产类、蛋类、肉类中PFAS污染水平较高,乳类膳食中未检出PFAS,植物性膳食中检出率浓度水平较低。PFAS国标方法修订进展GB 5009.253-2016《食品安全国家标准 动物源性食品中全氟辛烷磺酸(PFOS)和全氟辛酸(PFOA)的测定》是现行的食品PFAS检测标准。但该标准食品基质适用范围窄,规定了动物源性食品中全烷基化合物的分析方法,未包含植物源性食品。并且标准中检测化合物覆盖少,仅规定了PFOS和PFOA含量的测定方法,未包含其他碳链长度的全氟磺酸和全氟烷酸、同分异构体和替代物,不再适用国际现行标准和我国国情。正在制定中的食品中全氟和多氟烷基化合物测定标准,将适用于食品中11种C4~C14的全氟烷酸7种C4~C12全氟磺酸、8种全氟辛酸和全氟辛烷磺酸同分异构体、4种全氟烷基化合物替代物,共计30种全氟/多氟烷基化合物的测定。标准方法基于碱消解提取和固相萃取柱净化的原理,采用同位素稀释-超高效液相色谱-串联质谱法,适用于动物源性和植物源性的食品基质,有助于我国准确开展PFAS和新污染物的膳食暴露评估。标准制定进展相关专家表示,标准标准中样品前处理方法、仪器分析方法已制定完成。并完成菠菜、大米、香干、猪肉、猪肝、草鱼、扇贝、酸奶、鸡蛋、婴儿配方粉、蜂蜜实验室内验证;大米、猪肉、草鱼、鸡蛋、婴儿配方粉实验室间验证。修订中的国标方法操作的关键点和注意事项仪器本底水平:液相系统中存在各种聚四氟乙烯材料的管路和密封圈,除更换相关管路外,同时需要在液相泵和进样阀之间加两根串联的预柱,以分开仪器污染峰与样品峰,对样品进行准确定量。部分仪器不存在全氟烷基化合物的污染,在确定后可以不再额外添加预柱。试剂空白:不同品牌试剂中全氟烷基化合物的本底水平均不同,特别是PFOA、PFNA和PFDA在试剂中存在一定的本底水平,因此在使用前需要将试剂浓缩50倍以上,进样测定其本底水平,选择不含有全氟烷基化合物的试剂进行前处理。近两年,试剂中PFBA的本底水平较高。SPE柱空白:不同批次的SPE柱中全氣烷基化合物的本底水平均不同,因此需要在甲醇活化步骤前采用氨水甲醇活化,去除SPE柱中全氟烷基化合物的污染。方法空白:每批样品均需做两个方法空白,控制整个前处理过程中的本底水平,方法空白要求小于LOD。上机前去除杂质方式:采用高速离心的方式去除杂质,不要使用滤膜,各种类型的滤膜中均存在全氟烷基化合物的污染,且存在吸附现象。点击进入相关话题点击图片 免费参会
  • 国家卫健委:医疗卫生机构实现县乡村全覆盖!
    党的十八大以来,我国全面实现农村贫困人口基本医疗有保障。截至2021年底,全国已有县级医疗卫生机构2.3万个,乡镇卫生院3.5万个,村卫生室59.9万个,实现县乡村全覆盖。在24日举行的国家卫生健康委新闻发布会上,国家卫生健康委乡村振兴办主任、财务司司长何锦国介绍,党的十八大以来,从消除乡村医疗卫生机构和人员“空白点”、提升县级医院服务能力、因户因人因病精准施策、重点地区重点疾病防控四个方面着手,我国深入实施健康扶贫工程,农村医疗卫生服务网络更加健全,群众就近看病就医更加方便。健康扶贫是打赢脱贫攻坚战的关键战役。何锦国介绍,脱贫攻坚期间,中央财政累计投入资金1.4万亿元,支持脱贫任务重的25个省份卫生健康事业发展。十年来,我国历史性解决了部分地区基层缺机构、缺医生问题。国家卫生健康委公布信息显示,我国已实现每个脱贫县至少有1家公立医院、消除了6903个村卫生室无村医“空白点”、累计帮助近1000万个因病致贫家庭摆脱贫困。增强医疗卫生服务供给的同时,预防因病致贫返贫、实施大病集中救治十分关键。全国健康扶贫动态管理系统数据显示,近年来,我国已对290余万患大病家庭进行专项救治,对1216万因患慢病致贫的贫困家庭进行慢病管理。“帮扶措施落实到人、精准到病,对贫困患者实行精准分类救治。”何锦国说,截至2020年底,健康扶贫工程已累计救治2000多万人,曾经被病魔困扰的许多家庭挺起了生活的脊梁。行百里者半九十,人民健康是社会主义现代化的重要标志。按照《关于巩固拓展健康扶贫成果同乡村振兴有效衔接的实施意见》,我国将进一步巩固拓展健康扶贫成果,为乡村振兴提供更加坚实的健康保障,包括守住防止规模性因病返贫的底线、守住保持乡村医疗卫生服务全覆盖的底线、全面提升农村医疗卫生服务水平等。
  • 加研制出全光谱太阳能电池
    据美国物理学家组织网6月27日(北京时间)报道,加拿大科学家表示,他们研发出了一款新式的全光谱太阳能电池,其不但可以吸收太阳发出的可见光,也可以吸收不可见光,从理论上讲,转化效率可高达42%,超过现有普通太阳能电池31%的理论转化率。研究发表在最新一期的《自然光子学》杂志上。   此款基于胶体量子点(CQD)的高效串接太阳能电池由加拿大首席纳米技术科学家、多伦多大学电子与计算机工程系教授泰德萨金特领导的科研团队研制而成。论文主要作者王希华(音译)表示,该太阳能电池由两个吸光层组成:一层被调制用于捕捉太阳发出的可见光 而另外一层则可以捕捉太阳发出的不可见光。   萨金特介绍说,为了做到这一点,该团队用纳米材料串联成一个名为分级重组层的设备,能往返运输可见光层和不可见光层之间的电子,有效地将捕捉可见光的吸光层和捕捉不可见光的吸光层结合在一起,这样,两个吸光层都不需要妥协。   该研究团队在使用CQD制造太阳能电池方面一马当先,CQD这种纳米材料很容易被调制来对特定波长的可见光和不可见光作出反应。新式串联CQD太阳能电池捕捉光波的波长范围比普通太阳能电池更加宽泛,因此,从理论上讲,其转化率可达42% 相比之下,最好的单结太阳能电池的最大转化率仅为31%,而一般位于屋顶或日常消费产品中的太阳能电池的转化率仅为18%。   研制高效的、成本合理的太阳能电池是全球共同面临的巨大挑战。萨金特说:“全球都需要转化效率超过10%的太阳能电池,并希望能显著降低现有光伏组件的零售价。最新进展提供了一条切实可行的道路,其能最大限度地捕捉太阳发出的各种光线,有望提高转化率并降低成本。”   萨金特希望,在5年内,将这款新的分级重组层太阳能电池整合入建筑材料、手机和汽车零件中。
  • “一种用于选择吸附六价铬的吸附剂”获国家发明专利授权
    中国科学院兰州化学物理研究所发明了一种用于选择吸附六价铬的吸附剂,近日获得国家发明专利授权(一种用于选择吸附六价铬的吸附剂,专利号:ZL 201110212531.3,发明人:郑易安 王爱勤)。   铬及其化合物广泛应用于工业生产的各个领域,是冶金工业、金属加工、电镀、制革、油漆、印染、颜料等行业中必不可少的原料。铬在水中的存在形式有两种:铬(VI)和 铬(III)。毒性大的铬(VI) 是重金属中有毒有害污染物的代表,常用的处理方法有沉淀法、氧化还原法、电解法、吸附法、离子交换法等。每种方法各有优劣,其中吸附法因操作简单、见效快、吸附剂可以设计及循环使用等优点在含铬废水处理中得以广泛应用。然而,目前国内常用的吸附法均存在一定缺陷,如材料价格昂贵、再生困难 吸附容量小,容易造成二次污染 选择吸附性有待提高等。   该发明以洋车前子壳粉和苯胺为原料,经过氧化聚合制备了用于选择吸附六价铬的吸附剂。吸附剂可在保持聚苯胺原有吸附性能基础上,进一步降低制备成本,赋予环境友好性,用于工业含铬废水的处理。   与现有技术相比,该发明中吸附剂合成原料廉价易得 吸附剂的制备过程简单,反应条件温和 吸附剂对水中的六价铬具有高的选择吸附性 在不降低聚苯胺原有吸附性能基础上,引入洋车前子壳粉,从理论上讲赋予吸附剂良好的生物可降解性,同时可拓展洋车前子壳粉的应用领域。
  • 张家港口岸实现门式放射性检测仪全覆盖
    进口废物原料,特别是进口废金属、废五金的放射性超标问题一直是危及我国核安全和人民安全健康的重要隐患,为有效预防、控制和减少核与辐射对口岸出入境人员、国家财产所造成的危害、破坏,保障口岸公共安全,加强进口废物原料核与辐射监测显得尤为重要。 张家港检验检疫局认真执行国家质检总局《进口可用作原料的固体废物检验检疫监督管理办法》(119号令)要求,积极推进废物原料检验检疫监管场地门式放射性监测仪建设。目前张家港口岸5家进口废钢码头和2家进口废物原料的集装箱码头均安置了门式放射性检测仪,总数达到了11台。通过使用门式监测仪和便携式监测仪监测,张家港口岸实现了对进口废物原料放射性监测的全覆盖。 放射性物质对人和周围环境都有重要影响,人被放射性物质辐射后,轻则表现为恶心、头痛、腹泻,重则导致恶性癌变、脱发、呕吐不止。因放射性物质不受物理、化学影响,对空气、土壤、水源污染都很大。门式放射性探测仪能快速识别γ辐射超标情况,效率高工作强度低,不存在检验盲区,是口岸较好的放射性污染预警系统。目前,张家港检验检疫局正着手利用网络将门式放射性检测仪实施远程实时监控,以保证检验检疫部门即时调取门式放射性监测仪监测结果,在节约人力的同时,确保工作质量,加快通关速度。
  • 我国科学家率先研制出24T全超导磁体
    日前,记者从中科院电工研究所获悉,该所王秋良研究组采用自主研发的高温内插磁体技术,将YBCO内插磁体在15T超导背场下的中心磁场提高到了24@4.2K,使得我国成为继美国、日本、韩国之后实现24T全超导磁体的国家。  与Bi2223内插超导磁体相比,YBCO超导磁体具有更高的上临界磁场和临界电流,运行稳定性更高,更易获取极高磁场。目前仅有美国国家高场实验室、日本东北大学高场实验室以及韩国的一家超导公司能够实现24T以上全超导磁体。  王秋良研究组采用YBCO带材研制高场内插磁体。研究人员采用分级设计的方式提高了整个线圈的安全裕度,并通过特殊设计的焊接装置制作了性能优良的磁体接头,制作的内插磁体在液氮测试条件下当运行电流为32A时,中心磁体达到了1.62T@77K。而在液氦测试条件下,内插磁体在运行电流为167A时,在15T的超导背场中产生了9T的中心磁场,从而实现了中心场为24T的全超导磁体,其最高场为24.3T。  24T极高场全超导磁场的实现,标志着我国在研制高场内插磁体方面走在了世界前列,也标志着我国逐步吸收和掌握了极高场磁体的制作技术并积累了丰富的经验,为实现GHz级别的谱仪磁体和极高场大科学装置奠定了基础。
  • 我国将新增8个国家大气本底站 实现气候系统关键观测区全覆盖
    近日,从中国气象局获悉,“十四五”期间,我国将在现有7个国家大气本底站和即将建成的广东新丰国家大气本底站基础上,在胶东半岛、黄淮、四川盆地等区域选址新建8个国家大气本底站,实现16个气候系统关键观测区国家大气本底站全覆盖。此举旨在贯彻落实党中央、国务院关于实现碳达峰、碳中和重大战略决策,增强大气本底观测能力和温室气体本底浓度联网观测能力,加快完善国家大气本底观测站网,提升关键大气成分长期观测能力,助力应对气候变化。大气本底站观测温室气体和大气臭氧等反应性气体、气溶胶、太阳辐射等数十个要素,其观测结果体现较大尺度大气不直接受人为污染影响且混合均匀之后的平均状况。作为较早开展该项观测业务的国家之一,目前,我国建立了“1(青海瓦里关全球大气本底站)+6(北京上甸子、黑龙江龙凤山、浙江临安、湖北金沙、云南香格里拉和新疆阿克达拉区域大气本底站)”共7个国家大气本底站,形成国家级大气本底观测网络。“十四五”是碳达峰的关键期、窗口期,结合气候系统关键观测区的观测要求,中国气象局将在环渤海陆海气、黄淮农田生态、四川盆地环境、锡林郭勒草原、敦煌沙漠陆面过程、青藏高原陆面与大气过程等8个综合观测区新增国家大气本底站。在这8个尚未开展大气本底观测的气候系统关键观测区内新建国家大气本底站,将实现每个气候系统关键观测区至少有一个国家大气本底站。这样的新增选址布局,由中国气象局依据中国气候观测系统(CCOS)实施方案布局要求,按照需求牵引、科学合理、着眼长远、统筹节约的原则展开。大气本底站站址选定工作要求严苛,一般选择在远离人类活动和污染源的地区,以最大限度“还原”大气的本来面目。中国气象局对站址气流三维轨迹计算分析、环境场遥感情况、站址周边地区经济发展和规划、土地使用及基础设施等明确了具体要求,组建了由气象探测中心和中国气象科学研究院专家构成的实施组,并将邀请部分专家指导选址工作,以确保站址筛选、可行性观测试验等工作的科学性、严谨性。
  • 《厦门土壤污染防治计划方案》:将实现监测点位全覆盖
    近日,厦门市人民政府印发《厦门市土壤污染防治行动计划实施方案》,对土壤污染防治的总体要求、目标、主要任务、保障措施进行了详细规定。《方案》原文如下:厦门市人民政府关于印发厦门市土壤污染防治行动计划实施方案的通知  各区人民政府,市直各委、办、局,各开发区管委会,各相关单位:  现将《厦门市土壤污染防治行动计划实施方案》印发给你们,请认真组织实施。  厦门市人民政府  2016年12月29日  (此件主动公开)  厦门市土壤污染防治行动计划  实施方案  厦门市土地资源相对紧缺,土壤环境质量总体良好,但局部地区仍存在不同类型和程度的土壤污染,保护和改善土壤环境刻不容缓。为切实加大土壤污染防治力度,逐步改善土壤环境质量,根据《土壤污染防治行动计划》(国发〔2016〕31号)、《福建省土壤污染防治行动计划实施方案》(闽政〔2016〕 45 号),结合厦门实际,制定本实施方案。  一、总体要求  全面贯彻党的十八大和十八届三中、四中、五中全会精神,按照“五位一体”总体布局和“四个全面”战略布局,牢固树立创新、协调、绿色、开放、共享的新发展理念,认真落实我市关于健全生态文明体制机制,加大生态建设和环境保护力度的决策部署,以改善土壤环境质量为核心,以保障农产品质量和人居环境安全为出发点,坚持预防为主、保护优先、风险管控、突出重点,实施分类别、分用途、分阶段管理,强化源头严防、过程严管、后果严惩,形成政府主导、企业担责、公众参与、社会监督的多元化土壤污染防治体系,促进土壤资源永续利用,为率先建成国家生态文明试验区而奋斗。  二、土壤环境保护目标  总体目标:到2020年,全市土壤环境质量总体保持稳定,农用地和建设用地土壤环境安全得到基本保障,土壤环境风险得到基本管控,土壤环境管理机制基本健全。到2030年,全市土壤环境质量稳中向好,农用地和建设用地土壤环境安全得到有效保障,土壤环境风险得到全面管控。  主要指标:到2020年,受污染耕地安全利用率达到91%以上,污染地块安全利用率达到90%以上。到2030年,受污染耕地安全利用率达到95%以上,污染地块安全利用率达到95%以上。  三、主要任务  (一)全面开展土壤环境质量调查,建立信息化管理平台  1.开展土壤环境质量调查  2017年6月底前,完成全市土壤污染状况详查实施方案编制。在现有的调查和监测基础上,以农用地和重点行业企业用地为重点,开展土壤污染状况详查。2018年底前,查明耕地、园地等农用地的土壤污染面积、分布及其对农产品质量的影响。2020年底前掌握化工、有色金属冶炼、涉重金属、制革、铅酸蓄电池、制药、光电、生活垃圾处置、危险废物处置、危化品仓储等重点行业企业(含已停产、搬迁及关闭企业,以下简称“重点行业企业”)用地中的污染地块分布及其环境风险情况。按照国家和省有关要求,建立每10年1次的全市土壤环境质量状况定期调查制度,并对调查数据加以综合分析(市环保局牵头,市农业局、国土房产局、财政局、经信局、市政园林局等参与,各区人民政府负责落实。以下均需各区人民政府落实,不再列出)。  2.推进土壤环境监测体系建设  全面建设土壤环境监测网络。由市环保局会同各相关部门统一规划、整合优化土壤环境质量监测点位。重点在耕地、饮用水源地保护区、蔬菜基地、畜禽养殖基地、重点行业企业等地布设市控点位,并按照国家规范开展监测和评价。逐步完善全市土壤环境质量监测点位网络,2017年底前完成国控监测点位设置,2020年底前实现国控、省控、市控监测点位全市各区全覆盖(市环保局牵头,市国土房产局、农业局、经信局等参与)。  建立土壤环境例行监测制度。在耕地、林地等布设土壤环境监测基础点位,每5年开展1次监测,掌握全市农用地土壤环境质量状况及其变化。在饮用水源地保护区、蔬菜基地、重点行业企业用地及其影响区域,布设土壤环境监测风险点位,每2年开展1次监测,掌握重点区域土壤环境质量状况变化(市环保局、国土房产局、市政园林局牵头,市农业局、发改委、经信局参与)。  提升土壤环境监测能力。依托我市各类环境监测机构,按照国家相关标准配齐土壤和地下水环境质量监测所需仪器设备和人员,提升我市土壤环境监测综合能力。建立健全培训制度,每年至少开展1次土壤环境监测技术人员培训。市、区两级政府要加大土壤环境监测等基础能力建设投入,所需经费纳入各级财政预算(市环保局牵头,市财政局、国土房产局、农业局、水利局等参与)。  3.构建土壤环境信息管理平台  建立土壤环境信息管理系统。2017年底前,整合环保、国土、农业、市政园林、科技等部门现有土壤相关监测数据,依托“多规合一”、“智慧环保”系统,基本建成全市土壤环境信息管理系统,统筹土壤环境监测数据采集网络,实现数据信息化、动态化。加强数据共享,发挥土壤环境大数据在项目建设、污染防治、城乡规划、土地利用、农业生产中的作用。 2018年底前,与省生态环境大数据平台实现对接(市环保局牵头,市农业局、国土房产局、市政园林局、经信局、发改委、规划委、科技局、海洋渔业局、卫计委等参与)。  (二)实施农用地分类管理,保障农产品质量安全  4.划定农用地土壤环境质量类别  2017年底前,依据国家和省有关技术指南,按污染程度将农用地划分为优先保护类、安全利用类、严格管控类,以耕地、园地为重点,分别采取相应管理措施,保障农产品质量安全。以土壤环境质量详查结果为依据,开展耕地、园地土壤和农产品协同监测与评价。2017年起,以蔬菜、水果生产基地为试点,逐步建立分类清单。2020年底前完成所有类别划定。划定结果作为农用地土壤环境质量分类管理的依据(市环保局牵头,市农业局、国土房产局参与)。根据土地利用变更和土壤环境质量变化情况,各区每3年对各类别耕地、园地面积及分布等信息进行更新(市国土房产局负责)。逐步开展林地等其他农用地土壤环境质量类别划定工作(市市政园林局负责)。  5.优先保护质量较好耕地和园地  将符合条件的优先保护类耕地划为永久基本农田,实行严格保护,确保其面积不减少、土壤环境质量不下降,除法律规定的重点建设项目选址确实无法避让外,其他任何建设不得占用(市国土房产局牵头,市规划委、发改委、农业局、环保局等参与)。2017年起,对确需占用的优先保护类耕地和园地,鼓励建设项目业主实施耕作层土壤剥离再利用。高标准农田建设项目要向优先保护类耕地集中的地区倾斜(市国土房产局牵头,市农业局参与)。对因监管不力、措施不到位导致优先保护类耕地总面积减少的区进行预警提醒并依法采取环评限批等限制性措施(市环保局牵头,市国土房产局、农业局等参与)。  严控企业污染。禁止在优先保护类耕地和园地集中区域周边新建可能影响耕地土壤质量的重点行业企业,现有相关行业企业不得扩建,并实施提标升级改造或适时引导搬迁(市环保局牵头,市经信局参与)。  6.安全利用质量较差耕地和园地  根据土壤环境和农产品质量状况,对确定为安全利用类的耕地和园地,要建立防护隔离带、阻控污染源,采取农艺调控以及替代种植等措施降低农产品超标的风险。强化农产品质量检测。到2020年,完成省下达的受污染耕地安全利用任务(市农业局牵头,市国土房产局、环保局等参与)。  7.严格管控重度污染耕地和园地  严格管控类耕地和园地禁止种植食用农产品(市农业局负责)。对威胁地下水、饮用水源地安全的,要制定并落实环境风险管控方案(市环保局、水利局负责)。制定实施重度污染耕地种植结构调整或退耕还林计划。探索实行耕地轮作休耕制度试点。到2020年,完成省下达的重度污染耕地种植结构调整或退耕还林任务(市农业局、市政园林局牵头,市国土房产局、环保局等参与)。  8.加强林地土壤环境管理  严格控制林地的农药使用量,鼓励使用低毒低残留易降解的农药,完善并推广生态控制、生物防治、物理防治等林业有害生物防控措施。对林地土壤污染问题突出的区域,应开展土壤环境质量调查评估与治理修复(市市政园林局牵头,市市场监督管理局参与)。  (三)实施建设用地准入管理,保障人居环境安全  9.建立强制调查评估制度  自2017年起,对本市拟变更土地所有权人的工业企业用地,以及用途拟变更为居住和商业、学校、医疗、养老机构等公共设施的上述企业用地,由土地使用权人委托第三方机构对其土壤环境(含地下水)实施调查评估。自2018年起,重度污染农用地转为城镇建设用地的,由政府或土地储备机构委托第三方负责开展调查评估。评估结果报送市环境保护、城乡规划、国土资源与房产主管部门备案(市国土房产局、环保局牵头,市经信局、农业局等参与)。  10.明确风险管控要求  自2017年起,国土资源与房产管理部门要结合土壤污染状况详查情况,根据建设用地土壤环境调查评估结果,逐步建立污染地块名录及其开发利用的负面清单,并进行动态更新(市国土房产局、环保局负责)。符合相应规划用地土壤环境质量要求的地块,方可进入用地程序。不符合相应规划用地土壤环境质量要求的地块,须进行修复合格或规划调整后方可进入用地程序(市经信局、发改委、规划委、国土房产局、建设局、环保局负责)。暂不开发利用或现阶段不具备治理修复条件的污染地块,由所在地区级人民政府组织划定管控区域,设立标识,发布公告,限制人员进入、禁止土壤扰动,制定周边影响区域环境保护方案,每年至少开展1次土壤、地表水、地下水、空气环境监测 发现污染扩散的,责令相关责任方清理残留污染,有关责任主体要制定环境风险管控方案,封闭污染区域,采取污染物隔离、阻断等工程和管理措施,防止污染扩散(市国土房产局牵头,市环保局、建设局、水利局等参与)。  11.实施重点行业企业建设用地全周期管理  自2017年起,对本市重点行业企业建设用地实施全周期管理。本市重点行业企业建设用地进入各使用环节(储备、转让、收回以及改变用途)之前,土地使用权人(含土地储备机构)应委托具相应资质的第三方开展土壤环境状况调查评估,调查评估结果报国土房产、环境保护、规划、经信、建设等主管部门备案(市国土房产局、环保局牵头,市经信局、规划委、建设局等参与)。经环保主管部门认定符合相应规划用地土壤环境质量要求的地块,可进入下一个用地程序(市环保局负责)。经环保部门认定存在污染并需要治理修复的地块,土地使用权人(含土地储备机构)必须组织实施修复并达到相应规划用地土壤环境质量要求后,才可进入下一个用地程序(市国土房产局、环保局牵头,市经信局、规划委、建设局等参与)。  12.落实建设用地监管责任  全市要将建设用地土壤环境管理要求纳入城市规划和供地管理,土地开发利用必须符合土壤环境质量要求。市国土资源与房产、规划等部门在编制土地利用总体规划、城市总体规划、控制性详细规划等相关规划时,应充分考虑污染地块的环境风险,合理确定土地用途。市规划部门要结合土壤环境质量状况,加强规划论证和审批管理。市国土资源与房产部门要依据土地利用总体规划、城乡规划和地块土壤环境质量状况,加强土地征收、收回、收购以及转让、改变用途等环节的监管。市环保部门要加强对建设用地土壤环境状况调查、风险评估和污染地块治理与修复活动的监管。建立规划、国土、环保等部门间的信息沟通机制,实行联动监管(市规划委、市经信局、国土房产局、环保局、建设局负责)。  (四)强化未污染土壤保护,严控新增土壤污染  13.优化空间布局管控  深化“多规合一”管控。以土壤环境等资源环境承载能力为依据,发挥“多规合一”和城市开发边界试点城市优势,完善“多规合一”业务协同机制,优化发展目标、用地指标、空间坐标、环境目标、生态指标等“多标衔接”的规划体系,防止新增建设项目造成新的土壤污染。加强未利用地的土壤保护管控,禁止在生态控制线范围内,新建任何可能影响耕地土壤质量的工业企业。严守生态保护红线,在红线区域实施最严格的土地用途管制和产业退出制度(市发改委、规划委牵头,市国土房产局、经信局、环保局、水利局、农业局、市政园林局等参与)。  合理规划土地利用。实施建设用地总量控制和减量化管理,完善用地控制指标和定额标准,建立节约集约激励和约束机制,实行城乡建设用地“三界四区”(规模边界、扩展边界、禁建边界,允许建设区、有条件建设区、限制建设区、禁止建设区)管理,落实土地用途管制。鼓励工业企业集聚发展,建立完善节约集约用地评价体系,修订完善各行业用地标准和控制指标,提高土地节约集约利用水平。结合厦门市城市总体规划、产业结构调整等,有序搬迁或依法关闭对土壤造成严重污染的现有企业。科学布局生活垃圾处理、一般工业固废、危险废物处置、废旧资源再生利用等设施和场所(市规划委、国土房产局、经信局牵头,市发改委、环保局、水利局、农业局、市政园林局等参与)。  14.加强海岸带环境保护  加强码头周边及渔港渔船污染防治监管,依法严查船舶及相关作业活动等向滩涂非法排放油类及油性混合物、含油污水、船舶垃圾、废弃物、倾倒有毒有害物质等环境违法行为。加强岸线资源保护与优化利用,制定科学的港口发展规划,保护滨海湿地,有效控制主要排海污染物,同时加强入海排污口主要污染物浓度达标监督。无居民海岛要以保护和生态修复为主,适度开发利用,避免破坏性过度利用(市海洋渔业局牵头,市国土房产局、环保局、港口局、海事局、公安局、市政园林局等参与)。  15.防范建设用地新增污染  建设项目开展环境影响评价时,要有明确的防范土壤污染具体措施,排放镉、汞、砷、铅、铬等重金属和多环芳烃、石油烃等有机污染物(以下简称“重点污染物”)的建设项目,环评文件要设有土壤环境影响评价专章。需要建设的土壤污染防治设施,要与主体工程同时设计、同时施工、同时投产使用(市环保局牵头,市经信局、发改委等参与)。自2017年起,各区人民政府要与重点行业企业签订土壤污染防治责任书,明确相关措施和责任,责任书向社会公开(各区人民政府牵头,市经信局、环保局等参与)。  (五)全面加强污染源监管,明确各区工作重点  16.加强工矿企业污染源监管  加强日常环境监管。在2017年底前,确定土壤环境重点监管企业名单,实行动态更新。列入名单的企业每年要自行对其用地进行土壤环境监测,结果报环保部门备案并向社会公开。各区至少每3年对重点监管企业行业周边区域开展1次土壤环境监测,数据及时上传市土壤环境信息化管理平台,结果作为环境执法和风险预警的重要依据。环保部门要定期开展重点行业企业环境污染治理设施运行情况巡查,督促企业及时采取措施应对非正常运行情况(市环保局牵头,市经信局参与)。  加强重金属污染防治。积极推进重金属生产企业产业结构调整、风险防控和提标升级改造,集美区重金属污染防治国控区加强污染整治,2020年底前达到退出标准。提高制革、涉重金属、铅酸蓄电池等行业准入门槛。所有新改扩建制革、涉重金属、铅酸蓄电池企业原则应选址在规范设立的工业集中区内。以电镀集控区、制革企业和铅酸蓄电池企业等为重点,鼓励企业优先选用先进的材料、设备、技术和工艺,推动企业在稳定达标排放的基础上,实施清洁化改造。开展循环经济,鼓励对重金属污泥等工业固废、危废的资源综合利用,强化安全处理处置(市环保局牵头,市经信局参与)。  强化有机污染物监管。加强持久性有机污染物、挥发性有机物排放企业环境监管。经营储油库、加油站、洗染店、从事机动车船保养、清洗等活动的单位和个人,应当严格按要求建设、维护储油设备,采取措施防止因储油设备油品泄漏、废弃机油的倾倒以及加油和洗染活动中油品或者干洗溶剂的挥发、遗撒、泄漏造成土壤污染(市环保局、经信局牵头,市市场监督管理局、交通运输局等参与)。  规范企业拆除活动。自2018年起,对转产、搬迁、关闭的重点行业企业,需要拆除生产设施设备、构筑物和污染治理设施活动的,要严格按照国家有关技术规定,事先制定残留污染物清理和安全处置方案,并报市环保、经济和信息化部门备案。要严格按照有关规定实施安全处理处置,防范拆除活动污染土壤(市环保局牵头,市经信局等参与)。  加强矿产资源开发监管。在返还采矿权人生态环境恢复治理保证金和采矿权许可证续约时,采矿权人按照现行国家有关技术规定,委托具有相应资质的第三方机构开展土壤污染治理情况调查评估,调查评估结果向所在区环境保护、国土资源部门备案(市国土房产局、环保局负责)。2017年底前完成历史遗留废弃矿山排查工作。根据排查结果,制定综合整治方案,完善隐患治理和闭库措施(市国土房产局牵头,市安监局、经信局、环保局等参与)。优先开展集中式饮用水水源地上游和永久基本农田周边的矿山整治工作(市国土房产局、水利局、环保局负责)。  17.规范废物处理处置  加强固废处置监管。各区开展粉煤灰、冶炼废渣、脱硫、脱硝、除尘产生固体废物的堆存场所排查和整治,完善防扬散、防流失、防渗漏等设施,2017年底前完成整治工作。进一步健全危险废物源头管控、规范化管理和处置等工作机制,科学规划和建设危险废物处置设施。2017年底前,运用现代物联网技术,建成全市危险废物电子信息化监管平台,实现收集、贮存、转移、运输和处置全过程监管(市环保局、经信局牵头,市发改委、国土房产局、商务局等参与)。  规范废物再生利用活动。以电器电子废物拆解、废汽车及轮船拆解、废轮胎、废塑料收回利用企业为重点开展整治,引导企业采用先进适用加工工艺、集聚发展,集中建设和运营污染治理设施,不得采用可能造成土壤污染的工艺或者使用国家禁止使用的有毒有害物质,防止污染土壤和地下水(市环保局、经信局牵头,市国土房产局、商务局等参与)。开展利用建筑垃圾生产建材产品等资源化利用示范工作(市建设局负责)。  18.控制农业污染源  引导农业向绿色生态化发展。鼓励农民增施有机肥,减少化肥使用量,完成测土配方施肥技术推广面积年度任务,建立以绿色生态为导向的农业补贴制度,自2017年起,选取市级以上农业产业化龙头企业、列入省级规范社名录的农民合作社等,开展绿色生态农业补贴试点。到2020年,全市主要农作物化肥、农药使用量实现零增长,利用率提高到40%以上,有机肥养分还田率达到60%,测土配方施肥技术推广覆盖率达90%以上。加强商品有机肥生产环节监控,严禁未经检测或检测不合格的有机肥进入市场。示范推广农作物病虫害绿色防控技术。全面启动农药、兽药平台监管,加强平台线上巡查,掌握农药、兽药产品特别是高毒、高残留农药流向动态,及时调查处理购销异常情况。严格落实农业生产企业、农民合作社等新型生产经营主体实名购买农药、兽药制度(市农业局牵头,市财政局、商务局、市场监督管理局等参与)。  加强农药包装和废弃农膜回收处置管理。建设农村定点有偿回收农药包装废弃物和农膜站点,建立健全贮运和综合利用网络,自2017年起,重点在同安、翔安区的蔬菜基地开展试点工作。到2020年,实现蔬菜基地废弃农膜回收率达到80%以上。推行农业清洁生产,开展农业废弃物资源化利用试点(市农业局牵头,市商务局牵头,市环保局参与)。  强化畜禽养殖污染防治。落实“以奖代补”政策,推进规模化生猪养殖场的标准化改造(市环保局牵头,市财政局参与)。2017年底前,全面完成限养区内规模化生猪养殖场的标准化升级改造,逾期未完成的,由各区人民政府负责组织拆除(各区人民政府牵头,市执法局、环保局等参与)。到2020年,规模化养殖场配套建设废弃物处理设施比例达到75%以上(市环保局负责)。严格规范兽药、饲料添加剂的生产和使用,防止过量使用,促进源头减量(市农业局负责)。  加强灌溉水水质管理。每年至少开展1次主要灌溉水水质监测,灌溉用水应符合农田灌溉水水质标准。对因长期使用污水灌溉导致土壤污染严重、威胁农产品质量安全的,要及时调整种植结构(市水利局、农业局负责)。  19.加强生活污染控制  加快实施生活垃圾分类和减量管理,完善城乡回收站点、分拣中心、集散市场“三位一体”的再生资源回收利用体系。落实限制一次性用品使用制度(市市政园林局牵头,市商务局、建设局等参与)。按照国家相关技术规范,对我市在用、停用和已封场的生活垃圾填埋场周边土壤环境状况进行调查评估,2018年底前,完成全市垃圾填埋场所(含非正规的垃圾堆放场)的排查,摸清数量、分布及其对土壤环境的影响(市建设局、市政园林局、环保局负责)。严格规范垃圾处理设施运行管理,坚决查处渗滤液直排和超标排放行为,完善垃圾填埋场防渗漏、防扬散等措施(市环保局牵头,市市政园林局参与)。深入实施“以奖促治”政策,扩大农村环境整治范围,推进农村生活垃圾和生活污水治理,2020年底前完成国家、省下达的村庄环境综合整治任务(市建设局牵头,市市政园林局参与)。规范污泥处置,到2020年,全市生活污水处理厂污泥全部实现无害化处置(市市政园林局牵头,市财政局、建设局、环保局等参与)。配合建立全市有毒有害生活垃圾的收集贮存网络和安全处置体系。减少过度包装,鼓励使用环境标志产品(市环保局牵头,市经信局、商务局等参与)。  20.明确各区工作重点  思明区、湖里区:加快现有的涉及重点行业企业的关停工作,对关闭搬迁的涉及重点行业企业原址地块进行环境排查与土壤调查评估等 加强已封场的生活垃圾填埋场(含非正规)排查摸底,并对其周边土壤环境状况进行调查评估。  海沧区:加强对化工、有色金属冶炼、涉重金属、铅酸蓄电池、制药、生活垃圾处置、危化品仓储及涉汞排放等行业企业周边土壤进行环境监测评估,掌握污染地块分布及其环境风险情况,并进行风险管控 开展搬迁或关停企业潜在污染地块排查 加强已封场的生活垃圾填埋场(含非正规)排查摸底,并对其周边土壤环境状况进行调查评估 开展重石油烃类有机物污染修复。  集美区:加强对化工、涉重金属、光电、危险废物处置、涉汞排放等行业企业的周边土壤进行环境监测评估,掌握污染地块分布及其环境风险情况,并进行风险管控 开展搬迁或关停企业潜在污染地块排查 加强落后产业淘汰力度,推进重金属生产企业产业结构调整、风险防控和提标升级改造 开展重金属污染地块修复工程示范 加强已封场的生活垃圾填埋场(含非正规)排查摸底,并对其周边土壤环境状况进行调查评估 推广无公害农产品、绿色食品和有机农产品。  同安区:加强对涉重金属、制革、化
  • 全省首家覆盖全领域 厦门成立检验检测认证协会
    2022年12月22日,福建省首家覆盖全领域的检验检测认证协会——厦门市检验检测认证协会正式成立。市市场监管局党组书记、局长许国华表示,协会搭建了政府和企业的桥梁,有利于规范行业秩序,提高检验检测认证工作的有效性和公信力。   检验检测是国家质量基础设施的重要组成部分,在提升产品质量、推动产业升级等方面发挥着重要作用。近几年,国家连续出台多项政策,推动检验检测行业市场化改革。据国家市场监督管理总局统计,截止2021年年底,我国共有检验检测机构48,919家,较上年增长11.2%。全年实现营业收入亿元,较上年增长11.2%。   在2022年1月召开的2022年全国认证认可检验检测工作会议上,国家市场监管总局党组成员、副局长唐军表示,2022年全国认证认可检验检测工作要以深化改革为动力,以主动服务经济社会发展为主线,为构建新发展格局、推动高质量发展做出新贡献。   近年来,厦门市检验检测行业快速发展,发展潜力大,集约化趋势明显。数据显示,厦门共有认证认可获证组织8000余家,证书3万多张,居全省第一,处于全国第一方阵。厦门检验检测认证行业发展态势良好,以占全省10%的机构数量,创造了全省23%的收入;过去三年,全市检验检测认证行业年均复合增长率达11%,高于厦门GDP增速,全省最快。   成立检验检测认证协会,有助于发挥检验检测引领作用,规范检验检测认证市场,为实现检验检测认证行业高质量发展提供支撑。   据介绍,厦门市检验检测认证协会由厦门各检验检测机构、认证机构、企事业单位及质量管理和检验工作者自愿组成。协会主要业务包括:开展检验检测认证等技术咨询和服务工作;组织会员参加检验检测认证领域相关的学术理论研究;为会员提供有效的国家标准、行业标准、地方标准、团体标准信息服务;承担政府有关部门或企事业单位委托的相关工作等。
  • 农夫山泉被指标准不如自来水 曾参与新标制定
    [导读]生活饮用水“就是指平常所说的自来水,这是饮用水最基础的标准,企业生产瓶装水的标准最起码应该相当于或严于该标准。   农夫山泉最近有点烦,今年3月其被曝喝出黑色不明物、棕色漂浮物以及“水源地垃圾围城”等消息,近日,又有消息称农夫山泉生产产品标准倒退。昨天,有业内人士接受记者采访时表示,农夫山泉瓶装水的生产标准还不如自来水。   标准不及自来水   “关于饮用水,我国的各项标准中,国标GB5749《生活饮用水标准》应该是门槛最低的”,一位饮用水领域的专家告诉记者,生活饮用水“就是指平常所说的自来水,这是饮用水最基础的标准,企业生产瓶装水的标准最起码应该相当于或严于该标准,尤其是在重金属和有害物质的指标上”。   然而记者昨天发现,农夫山泉饮用天然水执行的是浙江“DB33/383-2005瓶装饮用天然水”,对比两个标准发现,农夫山泉执行的标准中关于有害物质的限量甚至宽松于自来水。如国家《生活饮用水卫生标准》要求,砷、硒含量需小于(或等于)0.01mg/L,而浙江瓶装饮用天然水标准则为小于(或等于)0.05mg/L即可。而镉的限量,前者要求小于(或等于)0.005mg/L,后者为小于(或等于)0.01mg/L,要求放宽了一倍。   浙江标准广东用   其实,农夫山泉生产标准问题近日已遭到媒体质疑。昨天有消息称,广东饮用天然水的地方标准为DB44/116-2000,而在原产地为广东省河源万绿湖的农夫山泉外包装上,显示的产品标准为DB33/383,仍为浙江地方标准。根据2011年卫生部颁布的《食品安全地方标准管理办法》,食品生产经营者应当依照生产企业所在地的食品安全地方标准组织生产经营。因此,农夫山泉的这一做法当属违规行为。   若仔细对比粤、浙两省标准不难发现,在镉、砷、铬、菌落总数等多项重要水质标准上,浙江标准的容忍含量都比广东标准高出至少一倍。而霉菌、酵母菌等真菌类,浙江标准容忍其存在,而广东标准则是“不得检出”。   曾参与新标制定   值得一提的是,目前农夫山泉执行的浙江“DB33/383-2005”标准的起草单位仅有农夫山泉一家饮用水生产企业参与。据该标准显示,起草单位为浙江方圆检测集团股份有限公司、浙江省疾病预防控制中心、浙江公正检验中心有限公司、农夫山泉股份有限公司。而在广东“DB44/116-2000”标准中,一共有3家饮用水和饮料企业参与制定。   事实上,这份现行的浙江地方标准,不仅远远不及国家生活饮用水标准,且即使与浙江过去的标准相比,也略显逊色。如2002年标准中,镉指标为≤0.005mg/L,现行标准比旧标准要放宽一倍。而在微生物检测方面,2002年标准中对成品水中的霉菌和酵母菌的检测要求为“不得检出”,而在2005年标准中,该要求被改为“霉菌≤10cfu/ml,酵母≤10cfu/ml”。   对于以上质疑,记者昨天联系到农夫山泉方面,但直至截稿,农夫山泉未对发过去的采访提纲做出回复。
  • 国家汞污染防治中心建立 将健全政策标准
    国家环境保护汞污染防治工程技术中心建设启动会日前在北京召开。会议研究成立了工程中心管理委员会和技术委员会,明确了工程中心的建设目标、建设任务、发展战略及发展规划。   记者了解到,国家汞污染防治工程技术中心由环境保护部批准建设,依托中国科学院高能物理研究所,是自国家环境保护工程技术中心设立以来,首次落户中国科学院的环境保护技术支撑单位。工程技术中心将围绕国家环境保护重点工作,推进涉汞行业关键问题剖析,健全汞污染防治政策标准及技术管理体系,推进核心技术在汞污染控制领域的应用,建设汞污染防治成果转化平台,并为国家培养汞污染防治技术领域所急需的工程技术和管理人才。   环境保护部科技标准司有关负责人表示,2013年中国政府代表团签署了《关于汞的水俣公约》,汞也是《重金属污染综合防治&ldquo 十二五&rdquo 规划》中确定的重金属防控重点之一。   据国家环境保护汞污染防治工程技术中心负责人介绍,国家汞污染防治工程技术中心将结合我国汞公约履约和加强汞污染防治工作特定背景,从全过程污染控制的角度出发,推进汞矿开采、有色金属冶炼、废物处置等典型涉汞行业履约关键技术提升。全力打造五大平台,即履约及政策研究平台、技术研发平台、工程及成果转化平台、基础科学研究平台、国际交流及人才培养平台,为国家汞履约及污染防治提供技术支撑。
  • 欧盟将全面禁用全氟己烷磺酸
    近日,欧盟委员会在其官方公报上发布法规(EU)2023/1608,对关于持久性有机污染物法规(EU)2019/1021进行修订,正式将全氟己烷磺酸和盐类及其相关物质列入欧盟持久性有机污染物法规禁用物质清单。新法规于官方公报发布后的第20天起生效。全氟己烷磺酸及其盐此前已经于2017年7月7日列入SVHC候选物质清单。现在此类物质被加入《斯德哥尔摩公约》,日后将在全球范围内淘汰。2023年3月,欧洲化学品管理局已经公布了针对超过1万种全氟或多氟烷基类物质的REACH法规限制提案,相关企业必须做好市场评估和化学品替代的准备。全氟和多氟烷基化合物由数千种物质组成,由于其含有极其稳定的碳氟键,使得此类物质具有很强的化学稳定性和表面活性、优良的热稳定性和疏水疏油性,被广泛应用于工业生产和生活消费领域。但此类物质具有蓄积性、生殖毒性、诱变毒性、发育毒性、神经毒性、免疫毒性等多种毒性,是一类具有全身多脏器毒性的环境污染物,目前各国已经在逐步管控此类化合物。
  • 日日更新 月月不同 | 更多的全氟和阻燃剂筛查方案它来了
    日日更新 月月不同 | 更多的全氟和阻燃剂筛查方案它来了原创 飞飞 赛默飞色谱与质谱中国 关注我们,更多干货和惊喜好礼牛夏梦由于新污染物本身具有的生物毒性、环境持久性、生物累积性以及对人体健康存在的潜在风险引起大家的广泛关注。目前国际上广泛关注的新污染物包括全氟化合物(per-and polyfluoroalkyl substances,PFAS)、抗生素(Antibiotic)、阻燃剂(Flame Retardant,FR)、持久性有机污染物(Persistent Organic Pollutants,POPs)、内分泌干扰物(Endocrine-Disrupting Chemicals,EDCs)、微塑料(Microplastics),药物与个人护理品(Pharmaceuticals and personal care products,PPCP)等。健康风险有毒物质和疾病登记局(ATSDR)显示根据全氟化合物的动物试验研究发现PFAS 会对肝脏和免疫系统造成损害,还会导致实验动物出生体重低、出生缺陷、发育迟缓以及新生儿死亡;复旦大学医学研究院比较了全球范围内不同人群经呼吸道和胃肠道暴露于OPFRs的水平以及其在体内的负荷水平;归纳和总结了长期低水平的OPFRs暴露对儿童神经发育、成年人的生殖系统以及甲状腺功能等方面的潜在危害;抗生素的耐药性则是全球需要面对的公共卫生挑战,抗菌素耐药性增加是导致严重感染、并发症、住院时间延长和死亡率增加的原因。赛默飞新污染物解决方案新污染物覆盖种类较为广泛,目前除了主要关注的新污染物除了抗生素以外,热度比较高的新污染物还有全氟化合物PFAS以及阻燃剂,其中阻燃剂中添加型阻燃剂中的有机磷阻燃剂则是目前使用较多的一种,也是目前污染较为广泛的一类。赛默飞为了满足客户检测筛查更多种类的全氟化合物以及更广泛新型有机污染物的需求,进行了新污染物种类的扩项。本次方案更新亮点:更多的全氟化合物,赛默飞推出市面覆盖最多的全氟化合物的谱图库(Library)以及数据库(Database),100多种全氟化合物可供筛选,其中包括磺酸类、羧酸类、酰胺类及醇类;新类别的有机磷阻燃剂的筛查方案,增加了40多种有机磷阻燃剂,扩大大家对于新污染物的发现范畴,覆盖更广更全面;同一个的方法,有效数据级别up,新添加的化合物均存在出峰时间、分子式以及碎片的全部信息,方便大家实现更高级别的鉴定;当前最新方法包的新污染物类别组成如下:图1 数据库中新污染物类别分布(点击查看大图)有机磷阻燃剂存在较多的异构体,该方法包可以实现异构体的有效分离:图2 磷酸三(1-氯-2-丙基)酯和三(3-氯丙基)磷酸酯(上)、磷酸三丙酯和磷酸三异丙基酯(下)(点击查看大图)该方案基于赛默飞高分辨仪器平台Orbitrap Exploris系列静电场轨道阱质谱,Orbitrap超高的分辨率(12W以上)尽可能的实现分子量相近化合物的分离分析;精确的质量精度,在标配的Easy-IC功能下,可以做到小于1ppm的质量偏差,最大程度的解析未知物的元素组成;正负切换,得到的更多方向的二级碎片以及更多种类的化合物,更有利于目标物质的高通量筛查。赛默飞高分辨新污染物筛查数据库目前已更新400多种,之后也会进一步持续更新,助力更广度的新污染物筛查工作持续有效进行。赛默飞依托完整的产品线以及优异的质谱性能,助力新污染筛查分析,致力于世界更健康、更清洁、更安全。赛默飞推出的全新高分辨新污染物筛查方法包已上线,该方法包种包括仪器进样方法、数据处理方法、报告模板以及新污染物的具体信息,如需该方案致电联系相关销售即可免费获得。推荐阅读:● 重磅来袭|赛默飞新污染监测高通量方案再升级 ► 点击阅读 ● 磨砺以须 倍道而进|新污染物高分辨液质筛查方案就现在! ► 点击阅读 ● 简单上手 快速落地 | 新污染物液质解决方案看这里 ► 点击阅读 如需合作转载本文,请文末留言。
  • 农夫山泉频出质量问题 网友:农夫山泉有点悬
    中新网3月26日电 综合报道,最近,农夫山泉“有点烦”,在不到20天的时间里,农夫山泉先后被曝出喝出黑色不明物、棕色漂浮物以及“水源地垃圾围城”等消息。号称“大自然的搬运工”的农夫山泉接二连三地陷入“质量门”,令消费者心头上蒙上了一层阴影。   农夫山泉水中现黑色不明物   315前期,有消费者投诉农夫山泉水中现黑色不明物。媒体报道指出,2013年3月8日,消费者李女士投诉称,其公司购买的多瓶未开封农夫山泉380ml饮用天然水中出现很多黑色的不明物。发现这些水中的黑色不明物后,消费者李女士曾与农夫山泉联系,但是农夫山泉坚称产品合格的做法让其很气愤,也并未解答其黑色不明物究竟是何物的疑问。   对此,农夫山泉3月15日通过其官方微博发表声明表示,近期有消费者反应农夫山泉丹江口工厂生产的部分瓶装水中有细小沉淀物。获悉后,农夫山泉将产品送至第三方权威检测机构,检测结果显示,其符合国家标准的各项安全指标。   农夫山泉强调,含有天然矿物元素的瓶装水在运输储存过程中,有时会受到温差等影响而析出矿物盐,并不影响饮用,亦无安全问题。农夫山泉还称,若消费者仍对此有疑虑,将予免费更换。   农夫山泉中现棕红色漂浮物   一波未平一波又起,315过后,媒体又曝出农夫山泉一起“质量门”。据中国广播网3月22日报道,宁夏消费者王先生今年3月11号购买了一瓶550ml装的农夫山泉,第二天正要打开喝时,突然发现瓶中有不少棕红色的漂浮物,水看着还有些浑浊。   于是,王先生找到经销商投诉,经销商在未取走问题样品的情况下回复表示,自己是从湖北丹江口工厂进的货,经过厂家检测得出的结果是,棕红色的不明物质为矿物质析出所致,水可以正常饮用。农夫山泉总裁办主任钟晓晓在接受采访时也坚称,农夫山泉在生产工艺肯定没有问题。   对此,经济之声特约评论员、资深媒体人张立栋表示,由于近年来居民对于普通水质的担忧,农夫山泉的产量、销售确实得到了很大的提升。但张立栋称,农夫山泉的产量、人力、物力的投入应该成正比,不能因为市场需求大,“萝卜快了不洗泥”。针对消费者投诉的问题,农夫山泉没有作出一个科学合理的解释,而是比较武断的回复,这不太负责任。   丹江口水源地“垃圾围城”?   值得注意的是,先后发生的这两起“质量门”中的水均产自农夫山泉的水源地之一:湖北丹江口。那么湖北丹江口的水源地到底是怎么样呢?   据21世纪网3月25日报道,经过实地调查发现,在风景秀丽的丹江口水库背后,掩藏的是农夫山泉水源惊人的污染。在农夫山泉取水点周边水域岸上,遍是各种各样的生活垃圾,其中不乏大量疑似医用废弃药瓶,俨然“垃圾围城”之势,让人产生误入垃圾掩埋场的感觉。而农夫山泉用焚烧的方式来处理这些垃圾,其焚化后渗入水中对水质的影响不免令人担忧。然而,农夫山泉厂区人员却表示,生活垃圾对水质影响不大,犹如“米饭中的沙粒”。   对此,农夫山泉25日晚通过其官方微博发表了“关于丹江口岸边杂物的说明”,说明中表示,媒体所报道的不整洁区域距离其公司取水口下游约1.4公里,对取水质量并无影响。声明表示,农夫山泉取水口源水符合DB33/383-2005《瓶装饮用天然水》天然水源水质量要求。   网友:农夫山泉,有点悬   虽然一再澄清,但屡屡发生的质量事件,让部分网友对其失望。网友“8千与千寻8”说,“我们不生产水,我们只是大自然的搬运工。原来就是搬运点垃圾水!” 网友“左岸华叔”则评论称““农夫山泉,有点悬”。   中新网财经频道了解到,农夫山泉目前拥有四个主要水源基地,分别位于浙江千岛湖、湖北丹江口、广东万绿湖和吉林长白山。除了此次被曝光的湖北丹江口外,其余三个水源地是否被污染尚未可知。
  • 泉州鞋服企业积极申报国家实验室
    昨日,众多纺织服装企业负责人云集泉州,一起探讨提高纺织服装供应链管理的质量和效率。当日,由中国纺织信息中心、中国纺织工业协会检测中心主办的2009全国纺织服装企业质量管理和实验室建设论坛在九牧王公司召开。   论坛还特邀已获得国家实验室认可(CNAS)的国内知名品牌企业的实验室代表,介绍企业实验室国际化、标准化建设和质量管理的成功经验,探索企业健康发展的道路,为行业提供范例加以借鉴。   据了解,目前,国内的纺织服装企业越来越重视产品的研发和产品质量检测水平的提升,各个产业集群及产业聚集度较高的地方政府机构也在大力推动质量检测体系的建设,同时,企业也纷纷建立自己的产品检验实验室、培训企业自己的专业人才。   中国纺织工业协会检测中心副主任张翠竹介绍:“自2004年福建凤竹集团作为泉州第一家获得国家实验室认可之后,泉州很多企业都纷纷开展国家实验室认可申报,如九牧王、安踏、七匹狼、劲霸、特步等企业都在积极申报中。”
  • 全哲洙部长莅临上海复享
    中共中央统战部副部长,全国工商联党组书记、第一副主席全哲洙带领调研组到江苏、广西、广东、浙江四省区开展调研工作。在上海经过我杨浦区创业区实习基地。在领导的陪同下,全部长了解我公司在光谱测量领域的运营情况,并对复享的光纤光谱仪、微型光谱仪赞不绝口。 复享仪器经理向部长汇报光谱测量的发展 全哲洙认为目前我国的中小企业已经超过1000多万家,占企业总数的99%,提供了近80%的城镇就业岗位,完成了75%以上的企业技术创新,创造的最终产品和附加值相当于国内生产总值的60%,纳税额为国家税收总额的接近50%,已经成为保持国民经济平稳较快发展的重要基础,在我国经济社会发展中具有重要的战略地位。 全部长给大家鼓劲,在全球经济环境不景气的情况下,说信念特别重要。 一定要挺住,一定要顽强的活着。 享有光谱领域权威的上海复享仪器在全部长的鼓励下,一定在光谱应用领域不断追求发展,将光纤光谱仪、微型光谱仪发展壮大。
  • 中国科学家创制全波段相位匹配晶体
    激光是20世纪人类最重大的发明之一,60多年来,13项诺贝尔奖与激光技术密切相关。非线性光学晶体可用来对激光波长进行变频,从而扩展激光器的可调谐范围。近期,我国科学家成功创制了一种新型非线性光学晶体——全波段相位匹配晶体,为整个透光范围内实现双折射相位匹配提供了新思路。   该研究由中国科学院新疆理化技术研究所晶体材料研究中心潘世烈团队完成,相关成果于近期在国际学术期刊《自然-光子学》在线发表。   非线性光学晶体是获得不同波长激光的物质条件和源头。在晶体中实现应用波段相位匹配被普遍认为是重要的技术挑战之一,决定最终激光输出的功率和效率。目前有多种技术方案可供选择,其中利用晶体各向异性的双折射相位匹配技术是应用最广泛的弥补相位失配的有效途径。该方案转换效率高,但现有晶体均存在相位匹配波长损失,即可用晶体紫外截止边和最短相位匹配波长的差值表征。   团队前期在特邀综述(Angew. Chem. Int. Ed. 2020, 59, 20302-20317)中提出关于非线性光学晶体一种理想状态的假设,即在基于双折射相位匹配的非线性光学晶体中,是否可以实现“紫外截止边等于最短匹配波长”的理想状态?近期,该团队创制了一类新非线性光学晶体,即全波段相位匹配晶体。该类晶体基于应用广泛的双折射相位匹配技术,且可以实现对晶体材料透过范围内任意波长的相位匹配。该研究揭示了全波段相位匹配晶体的物理机制,并以此为指导获得一例非线性光学晶体(GFB)。基于晶体器件实现了193.2-266 nm紫外/深紫外激光输出,该材料193.2 nm处晶体透过率
  • 山西:推动氢能制储运加用全产业链发展,加快形成新质生产力
    为推动《山西省氢能产业发展中长期规划(2022-2035年)》实施,促进氢能产业高质量发展,2月18日,山西省发展改革委、省工信厅联合出台《山西省氢能产业链2024年行动方案》(以下简称《行动方案》)。《行动方案》提出了开展氢能关键核心技术攻关、推进氢能创新平台建设、建立多元氢能供应体系、有序推进加氢站建设、有序开展氢能在交通领域示范应用、探索开展氢能在工业领域示范应用、打造氢能产业集聚区、推进氢能产业重大项目、开展氢能产业链招商、强化氢能行业交流合作、加强氢能全产业链安全管理等11项重点任务,明确3项保障措施,推动氢能制储运加用全产业链发展,加快形成新质生产力。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制