当前位置: 仪器信息网 > 行业主题 > >

转移核糖核酸

仪器信息网转移核糖核酸专题为您提供2024年最新转移核糖核酸价格报价、厂家品牌的相关信息, 包括转移核糖核酸参数、型号等,不管是国产,还是进口品牌的转移核糖核酸您都可以在这里找到。 除此之外,仪器信息网还免费为您整合转移核糖核酸相关的耗材配件、试剂标物,还有转移核糖核酸相关的最新资讯、资料,以及转移核糖核酸相关的解决方案。

转移核糖核酸相关的资讯

  • 首个新型冠状病毒核糖核酸假病毒弱阳性口腔粘液基质标准物质,重现临检样本全过程
    2021年6月4日中国计量科学研究院发布全球首个新型冠状病毒核糖核酸假病毒弱阳性口腔粘液基质标准物质(高浓度和低浓度)。▲规格:200μL/管(研制单位:中国计量科学研究院)新冠病毒核酸检测最常见的样品为咽拭子,但目前国内外尚未有以口腔粘液为基质的新型冠状病毒核糖核酸检测标准物质。通过模拟临床检验咽拭子样本的基质和病毒浓度,可最大限度地重现新冠病毒核酸临检样本检测过程,对咽拭子样品从RNA提取至核酸扩增检测的全过程进行质控,为新型冠状病毒检测实验室的弱阳性和位于灰区的检测结果提供判定参考,满足了国家卫健委新型冠状病毒肺炎实验室检测技术指南中的新型冠状病毒核酸检测过程质量控制的要求,并可用于新型冠状病毒检测试剂盒性能验证。该标准物质是采用重量法,将NIM-RM5203新型冠状病毒(2019-nCoV)假病毒核糖核酸标准物质添加到人工模拟的口腔粘液基质中制备而得。将重量法配制值作为标准物质ORF1ab基因和N基因的标准值。资源来源于:中国计量科学院。
  • 清华大学重大成果:酵母核糖体组装前体的高分辨冷冻电镜结构
    核糖体是一种广泛存在于细胞中的分子机器。所有生物,包括微小的细菌直至人类个体,都依赖核糖体对各种各样的蛋白质进行生物合成。作为一个分子量巨大的复合物,核糖体本身是如何在细胞中由多条RNA链及超过70种蛋白分子装配而成?这一问题已困扰相关领域科学家近30年。  核糖体自身是一个由核糖核酸(RNA)和蛋白质组成的超大复合物(半径20纳米),其三维结构和分子机制的研究一直是生命科学基础研究中的重要方向。2009年的诺贝尔化学奖即授予了首次解析出细菌核糖体原子分辨率的三位结构生物学家。  真核细胞核糖体装配过程是个高度复杂的动态过程,有超过300种不同功能的辅助装配因子(蛋白质或者RNA)参与其中。然而绝大多数装配因子的结构及其行使功能的分子机理完全未知。此外,核糖体的组装与细胞的生长调控通路密切相关,某些装配因子的遗传突变会导致核糖体生物生成的失调,引起一系列的人类遗传性疾病(称为ribosomopathies)。某些特定的装配因子(例如eIF6)不正常表达也在多种人类癌症细胞中被发现。因此,针对核糖体装配过程的研究不仅具有重要的科学意义,还具有潜在的临床应用潜力。  图1酵母核糖体大亚基组装中间体的3.08埃冷冻电镜结构。a,3.08 埃冷冻电镜密度图,核糖体蛋白颜色为米色,核糖体RNA颜色为灰色。b,19个装配因子的原子模型。  清华大学生命科学学院高宁研究组自2009年一直致力于研究各种生物的核糖体装配过程。2013年,高宁研究组和美国卡内基梅隆大学的约翰伍尔福德(John L. Woolford Jr)教授研究组携手合作,利用清华大学的高端冷冻电镜平台,以真核生物酵母菌为材料,开展真核核糖体的装配研究工作。2015年,合作研究获得重大突破,课题组得到了酵母细胞核内的一系列组成上和结构上不同的核糖体60S亚基前体复合物的冷冻电镜结构。其中一种状态的三维结构分辨率达到3.08埃,其核心部分的分辨率可达2.8埃,是国际在核糖体组装研究领域迄今为止分辨率最高的结构。基于这一冷冻电镜结构,课题组确定了超过20种不同装配因子在核糖体60S前体上的结合位置,并获得了19种装配因子的原子模型。课题组所提供的丰富结构信息为详细阐释真核核糖体装配过程中的多种装配因子功能和分子机制提供了重要基础。  2016年5月25日,报道这一重大突破的研究论文在线发表于《自然》(Nature)期刊,题目为《细胞核内的核糖体组装前体结构揭示了装配熟因子的功能多样性》(Diverse roles of assembly factors revealed by structures of late nuclear pre-60S particles)。高宁研究员和卡内基梅隆大学约翰伍尔福德(John L. Woolford Jr)教授为论文共同通讯作者,清华大学生命学院2013级博士生吴姗为第一作者。北京生命科学研究所董梦秋教授及谭丹博士提供了化学偶联交联质谱数据。论文中冷冻电镜数据收集和处理工作获得了国家蛋白质科学(北京)设施清华大学冷冻电镜平台及高性能计算平台支持。课题组得到了中国科技部、国家自然科学基金委、清华大学自主科研、北京高精尖结构生物学中心的经费支持。  论文链接
  • 借助RNA,海兔之间记忆成功转移
    p style=" text-indent: 2em " 美国加州大学洛杉矶分校研究人员14日在美国神经科学学会在线期刊《eNeuro》上发表研究报告称,他们利用RNA(核糖核酸),成功将一只海兔的记忆转移到另一只海兔身上。研究人员称,这一新研究将有助于开发恢复人类记忆的新疗法。 /p p style=" text-indent: 2em " 海兔,又称海蛞蝓,是螺类的一种。海兔的中枢神经系统有大约2万个神经元,虽然远无法与人类的1000亿个神经元相提并论,但其细胞和分子运行过程与人类神经元非常相似,因此被认为是研究人类大脑和记忆的极佳模型。 /p p style=" text-indent: 2em " 在此项研究中,研究人员通过对海兔进行轻微电击来增强其防御性收缩反射——一种用来保护自己免受潜在伤害的收缩反应。经受电击“训练”后,海兔会在受到触碰时长时间收缩起来,持续时间会长达50秒,而正常海兔的收缩反应持续时间只有1秒钟。 /p p style=" text-indent: 2em " 随后,研究人员分别从“受训”海兔和正常海兔的神经系统中提取RNA,将其分别注射到未曾受过任何电击的海兔体内。他们发现,注射了“受训”海兔RNA的海兔在被碰触时,会表现出长达40秒的防御性收缩反应,而那些注射未受电击海兔RNA的海兔则没有这样的表现。这表明,通过RNA注射,“受训”海兔的电击记忆转移给了新受体。 /p p style=" text-indent: 2em " 研究人员指出,他们的研究对开发恢复人类记忆的新疗法具有重要价值。研究报告资深作者、加州大学洛杉矶分校的神经生物学教授大卫· 格兰兹曼称,在不久的将来,科学家们或许能利用RNA来改善阿尔茨海默病或创伤后应激障碍的影响,恢复这些患者休眠的记忆。 /p
  • 苏州医工所在血液制品细菌污染核酸检测方面取得进展
    目前,核酸筛检系统(Nucleic Acids Testing,NAT)已广泛用于血制品常规病原体(乙肝、丙肝、艾滋、梅毒)的核酸检测,极大降低了相关疾病的输血传播。但是,在输血感染性风险中,血小板的细菌污染及相关败血症性输血反应仍是棘手的问题。将核酸筛检技术用于细菌污染检测还有不少困难,包括:1、细菌污染不像特定病原体,没有统一的标准品 2、缺少合适的内参质控排除假阳性或假阴性结果 3、核酸扩增聚合酶(Taq)大多是细菌来源,带有痕量的细菌核酸成分。  近期,中国科学院苏州生物医学工程技术研究所血液免疫学研究中心提出一种双重荧光定量PCR方法可提高细菌污染检测的可靠性:设计一条人工核酸序列(IRC)作为内参,其特点是IRC与靶基因共用同一对引物进行扩增,分别用不同荧光探针进行检测。通过精确控制IRC分子数达到阳性检出限,以其Ct(i)值作为阈值,只有样本检测的Ct(s)值小于或等于Ct(i)时,检测结果才可认定为阳性。一种双样本混合的t测验(two samples pooled t-test)统计学方法可用于帮助判断两个Ct值的大小。IRC还可以包装成噬菌体,用于监控核酸样本提取过程。  此外,该双重荧光定量PCR方法可通过分别检测细菌的DNA(脱氧核糖核酸)与RNA(核糖核酸),计算不同Ct的比值,能判断细菌是处于生长繁殖期或者已经是死菌,从而帮助判断血制品灭活的效果。该方法不仅能用于血制品细菌污染检测,理论上也能开发成其他外源基因核酸定量检测的有效方法。  图-1、IRC双重荧光定量PCR原理图  图-2、IRC双重荧光定量PCR性能测试
  • 核酸检测四大证件火热?河南今年预计5万人以上取证上岗
    近日,河南省多部门联合下发相关通知,为进一步加强防疫人员队伍建设,扩大掌握核酸检测等技能人员规模储备力量,经研究,决定开展核酸检测相关人员项目制培训,培训计划今年年底前全省完成培训取证5万人以上。其中,核酸采样培训取证2万人以上,核酸检测培训取证1万人以上,环境与物品消毒培训取证1万人以上,公共场所卫生管理员培训取证1万人以上。核酸采样、核酸检测主要针对医疗机构医疗、护理及辅助岗位工作人员,本科院校医学类、技工院校、中高等职业学校医药卫生大类相关专业应届毕业生及离校未就业毕业生。环境与物品消毒、公共场所卫生管理员培训对象为企事业单位、社区相关工作人员、院校学生、志愿者和其他符合条件的人员。早在2020年5月份,核酸检测员这一新兴岗位在国家人力资源和社会保障部进行了公告(点击查看),主要职责如下:核酸检测员(按职业编码排序4-08-05-08)定义:使用仪器和试剂,对核酸样品进行管理、提取、检测并出具相应检测报告的人员。主要工作任务:1.负责样品的入库、存放和出库;2.提取、纯化核糖核酸或脱氧核糖核酸;3.对提取后的核酸进行实时荧光定量聚合酶链式反应检测;4.构建文库,并根据测序标准进行文库质量的检测与鉴定;5.使用高通量测序仪对核酸文库进行碱基序列的测定;6.分析高通量测序仪得出的数据并出具报告;7.对高速冷冻离心机、恒温震荡器、移液器等仪器进行日常清洁、维护和管理;8.配置、存放和管理核酸提取试剂、建库试剂和测序试剂。
  • 宁波试行返岗员工核酸检测 已检测6000余外来员工
    p style=" text-indent: 2em " span style=" text-indent: 2em " 2月13日,面对疫情防控与复产缺人的现状,制造大市宁波推出新策: span style=" text-indent: 2em color: rgb(0, 112, 192) " 充分利用科技手段,以政府补助形式鼓励和倡导有需求的企业组织开展返岗员工核酸快速检测。 /span /span /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202002/uepic/7373ef92-8ff0-4c68-9be5-f69ab29db246.jpg" title=" 1.jpg" alt=" 1.jpg" / /p p style=" text-indent: 0em text-align: center " span style=" color: rgb(0, 176, 240) text-indent: 2em text-align: center " 待返岗员工参加核酸检测筛查 /span /p p style=" text-indent: 2em " 随着有序复工工作的深入推进,制造业企业积压订单多与复工用工难、用工慢之间的矛盾日益突出。核酸检测能在确保安全的前提下,有效缩短复工企业员工医学观察和居家健康观察时间,消除居民对复工员工健康状况的疑虑,可以更好助推各地“一手抓疫情防控、一手抓复工复产”。 /p p style=" text-indent: 2em " 据悉,此次筛查采用咽拭纸样本检测,针对新型冠状病毒核糖核酸序列,设计了特异性的聚合酶链式反应引物探针,通过逆转录荧光定量聚合酶链式反应,实现对病毒核糖核酸的快速检测,从而发现样本中有无病毒存在。这种方法最快两小时就可测出早期潜伏的病毒感染。 /p p style=" text-indent: 2em " 2月15日,是宁波实施复工企业员工核酸检测的第四天。“前两天不多,每天不到300个样本。这几天排得非常满,每天接受检测的人数都在1000个以上。”在美康生物科技股份有限公司办公室主任李国强说,他们已经做好了打硬仗的准备,“实验室人员三班倒,24小时值守,有样本送来及时检测。” /p p style=" text-indent: 2em " 宁波日前出台通知,指定 span style=" color: rgb(0, 112, 192) " 宁波美康生物科技股份有限公司 /span 和 span style=" color: rgb(0, 112, 192) " 宁波海尔施基因科技有限公司 /span 两家企业负责检测。截至2月14日,全市已累计有6000余位外来员工接受了核酸检测。 /p p style=" text-indent: 2em " “目前,共有39家企业接受检测,高新区和北仑区接受核酸检测的企业数量最多。今天的检测人数在1400人以上,压力挺大,但也很有信心。”海尔施总经理余丁告诉记者,现在最大的困难是前线检测人员数量比较有限,防护服等防疫物资也比较紧张。 /p p style=" text-indent: 2em " 市经信局相关负责人表示,核酸检测可有效缩短复工企业员工医学观察和居家健康观察时间,助推各地“一手抓疫情防控、一手抓复工复产”,减轻企业复工复产的风险隐患和经济负担。 /p p style=" text-indent: 2em " 根据预计,将有250万外来人员陆续返回宁波。 /p p style=" text-indent: 2em " 据悉, strong 企业如果想给返岗员工开展核酸快速检测,需向属地政府申请。 /strong /p
  • 我国科学家解析结核杆菌核糖体大亚基与抗生素结合的三维结构
    由结核杆菌引起的结核病是全球重要的慢性疾病。据世界卫生组织发布的《2019年全球结核病报告》数据,全球结核潜伏感染人群约17亿,占全人群的1/4左右,结核病仍是全球前10位死因之一。目前结核杆菌耐药性问题日益严重,了解结核杆菌耐药机制并研发新的治疗结核病药物对实现“终止结核病策略”意义重大。  近日,复旦大学和北京大学为主的联合团队在《Emerging Microbes & Infections》杂志上发表了题为“Cryo-EM structure of Mycobacterium tuberculosis 50S ribosomal subunit bound with clarithromycin reveals dynamic and specific interactions with macrolides”的文章,该研究解析了结核杆菌核糖体大亚基与大环内酯类抗生素克拉霉素(Clarithromycin,CTY)结合的冷冻电镜三维结构。  研究团队发现抗生素CTY结合位点位于结核杆菌核糖体大亚基新生肽链通道靠近rRNA第2062位腺嘌呤(A2062)的位置,与其他大环内酯抗生素的结合位置基本一致。研究团队基于研究获得的密度图,认为结合CTY的结核杆菌大亚基的A2062存在两种构象;与已发表的核糖体与大环内酯结合的结构比较,认为A2062与特定的大环内酯类抗生素结合的动力学可能调节肽基转移酶向翻译阻滞方向发展。该研究对结核杆菌核糖体大亚基A2062与大环内酯类药物的动力学研究结果,可能有助于合理设计下一代抗结核药物,以对抗日益严重的结核杆菌耐药问题。  论文链接:  https://www.tandfonline.com/doi/full/10.1080/22221751.2021.2022439  注:此研究成果摘自《Emerging Microbes & Infections》杂志,文章内容不代表本网站观点和立场,仅供参考。
  • 上海首个核酸产业园将于本月开工!
    近日,有消息传出,上海首个核酸产业园将于7月中旬在上海杭州湾经济技术开发区正式开工,产业园占地3平方公里,先期将打造720亩核酸产业首发地、先行区。核酸产业园是否指的是“新冠病毒检测”,是否与近期疫情有关?对于部分网友的疑惑,“上海奉贤”公众号7月11日发文称“这是生物医药产业一一‘生命信使产业' ,主要是基于RNA开发各种疫苗及药物,这是未来生物医药产业发展方向,跟疫情毫无关联。”“核酸药物创新技术的应用远不止于新冠病毒检测。”一位沪上医药行业人士对e公司记者表示,疫情以来,mRNA疫苗被大众广泛关注,这也激发了药企对核酸药物的研发热情,同时,核酸药物也逐渐成为生物医药投资的重点领域。核酸产业园7月中旬开工为延长“保质期”,获取“通行证”,如今,新冠病毒核酸检测是市民最熟悉的生活场景之一。“核酸”一词也从市民比较陌生的生物医药领域走进茶余饭后。事实上,核酸药物创新技术的应用远不止在新冠病毒检测。7月9日,据“上海奉贤”公众号文章,聚焦以核酸药物为代表的第三次生物医药产业革命,上海杭州湾经济技术开发区全力打造“东方美谷生命信使”核酸产业生态圈,全市首个核酸产业园将于本月中旬在开发区正式开工。据悉,核酸产业特色园区占地3平方公里,先期将打造720亩核酸产业首发地、先行区。这篇文章还提到,在布局核酸产业园之前,开发区早已在核酸领域下好了“先手棋”。2019年6月,兆维生物43亩寡核苷酸及修饰体、核酸酶研发生产基地在开发区开工建设,并于2021年6月投产,目前占全球核酸原料70%的市场份额,年产值15亿元。开发区大力支持兆维生物向下游产业链延伸发展,组建专班全力协调危险品配建库房设计审批等事项。今年7月,兆维生物投资25亿元的小核酸药物研发生产基地也将开工奠基。在核酸药物方面,除了兆维生物,开发区还集聚了国内核酸检测试剂“芯片”的主力供应商,也是国内核酸引物企业百力格生物。此外,上药集团将利用其在开发区的中西三维基地打造核酸药物技术平台 在蛋白药物领域,美资企业昂博生物的多肽产品、保护氨基酸产品销量全球前十;在CDMO领域,博腾制药在收购开发区凯惠药业后,将打造生物药化合物研发基地,并通过扩建二期,建设核酸蛋白药物生产基地。在核酸技术发展方面,开发区投资18亿元,在产业园的基础上,建设120亩核酸产业技术中心,建设11栋合计11万平米研发孵化楼宇,并提供5万平米地下空间,为核酸生物医药研发企业提供充裕的发展空间。系生物医药产业布局新动作消息发出后,“上海首个核酸产业园开工”的相关词条也登上热搜。7月11日,“上海奉贤”发布澄清说明,表示产业园的建设与疫情无关。“生物医药产业是上海战略性新兴产业的重要支柱,也是上海三大先导产业之一。”上海奉贤方面表示,核酸产业园的开工是生物医药产业一一‘生命信使产业' ,主要是基于RNA开发各种疫苗及药物,这是未来生物医药产业发展方向,跟疫情毫无关联。事实上,上海奉贤方面也早在文章中进行了一番科普:核酸是脱氧核糖核酸(DNA)和核糖核酸(RNA)的总称,是由许多核苷酸单体聚合成的生物大分子化合物,为生命的最基本物质之一。新冠病毒核酸检测就是检测采样拭子中是否含有病毒的核酸,从而确定是否感染新冠病毒。在生物医药领域,信使RNA(mRNA)是一项颠覆性的药物创新技术,将突破肿瘤、传染病等治疗方案局限。另外,核酸类药物又称核苷酸类药物,主要在基因水平上发挥作用。一般认为,核酸药物包括Aptamer、抗基因(Antigene)、核酶(Ribozyme)、反义核酸(Antisencenucleic acid)、RNA干扰剂。由于其具有特异性针对致病基因,也就是说具有特定的靶点和作用机制,因此核酸药物具有广泛的应用前景。上海还有这些特色产业园除了核酸产业园还,上海今年还公布了一批特色产业园的建设情况。今年4月的上海全球投资促进大会上,发布了14个特色产业园区,对上海40个特色产业园区进行了整体推介。此次发布的第二批14个特色产业园区,总规划面积近50平方公里,规划产业用地超过30平方公里,近期可供产业用地超14平方公里,可供物业近1200万方。比如,先导产业中集成电路领域有2个园区,新型显示产业园聚焦以新型显示为主的新一代信息技术领域,围绕龙头企业集聚上游面板材料制造及设备制造企业、下游面板应用企业、产业研究院和产业基金,打造自主创新技术主导的新型显示协同产业链。浦江创芯之城着力建设集成电路研发与总部基地,依托头部企业集聚效应,打造集成电路设计、装备、封测等领域的头部企业集聚基地。生物医药领域2个和人工智能领域1个,分别是G60生物医药产业基地,青浦生命科学园,临港新片区信息飞鱼。重点领域补链强链的5个特色产业园区,包括电子化学品专区,张江机器人谷,临港松江科技城,长兴海洋装备产业园,临港新片区海洋创新园。
  • 人社部发布10个新职业,核酸检测员荣耀登榜
    p style=" text-align: justify text-indent: 2em " strong 受人社部委托,中国就业培训技术指导中心5月11日发布《关于对拟发布新职业信息进行公示的公告》,拟新增10个新职业,其中核酸检测员上榜。 /strong /p p style=" text-align: justify text-indent: 2em " 10个新的职业:区块链工程技术人员、社区网格员、互联网营销师、信息安全测试员、区块链应用操作员、核酸检测员、在线学习服务师、社群健康助理员、老年健康评估师、增材制造(3D打印)设备操作员。 /p p style=" text-align: justify text-indent: 2em " span style=" color: rgb(192, 0, 0) " strong 核酸检测职业介绍 /strong /span /p p style=" text-align: justify text-indent: 2em " 核酸检测员是使用仪器和试剂,对核酸样品进行管理、提取、检测并出具相应检测报告的人员。 /p p style=" text-align: justify text-indent: 2em " span style=" color: rgb(192, 0, 0) " strong 工作任务 /strong /span /p p style=" text-align: justify text-indent: 2em " 1.负责样品的入库、存放和出库; /p p style=" text-align: justify text-indent: 2em " 2.提取、纯化核糖核酸或脱氧核糖核酸; /p p style=" text-align: justify text-indent: 2em " 3.对提取后的核酸进行实时荧光定量聚合酶链式反应检测; /p p style=" text-align: justify text-indent: 2em " 4.构建文库,并根据测序标准进行文库质量的检测与鉴定; /p p style=" text-align: justify text-indent: 2em " 5.使用高通量测序仪对核酸文库进行碱基序列的测定; /p p style=" text-align: justify text-indent: 2em " 6.分析高通量测序仪得出的数据并出具报告; /p p style=" text-align: justify text-indent: 2em " 7.对高速冷冻离心机、恒温震荡器、移液器等仪器进行日常清洁、维护和管理; /p p style=" text-align: justify text-indent: 2em " 8.配置、存放和管理核酸提取试剂、建库试剂和测序试剂。 /p p style=" text-align: justify text-indent: 2em " br/ /p p style=" text-align: justify text-indent: 2em " 此外,笔者发现互联网营销师也备受热议,网友笑称网红李佳琦终于找到了自己的工种并且“转正”。 /p p & nbsp /p
  • Nature重磅发现:衰老的根源在核糖体?衰老加剧核糖体暂停,破坏蛋白质稳态
    自然生命,有情众生,都难逃衰老的命运。从微观的调度来看,衰老会导致细胞适应性的下降和蛋白质功能的丧失。然而,衰老导致蛋白质聚集的机制还没有被完全理解。实际上,科学家们已经知道,随着年龄增长的蛋白质聚集是一个与许多疾病相关的问题。因此,深入研究这些疾病的基本生物学,了解导致它们的机制,可以帮助我们选择更好的治疗方法。衰老的根源在于核糖体?Nature最新研究发现,衰老加剧核糖体暂停,破坏共翻译蛋白质稳态!近日,斯坦福大学的研究人员在国际顶尖学术期刊 Nature 发表了题为:Ageing exacerbates ribosome pausing to disrupt cotranslational proteostasis 的研究论文。该研究提出,随着细胞衰老,核糖体翻译暂停将不断增加,导致核糖体相关质量控制(RQC)超载和新生多肽聚集,从而在衰老过程中至关重要地促进了蛋白平衡障碍和全身衰退。该论文开辟了一个新的研究方向,将衰老如何导致蛋白质聚集的问题追溯到了核糖体的年龄依赖性损伤。核糖体(Ribosome)是细胞内普遍存在的一种细胞器,主要由rRNA和蛋白质构成,“中心法则”中mRNA翻译成蛋白质这一过程就发生在核糖体。其功能是按照mRNA的指令将遗传密码转换成氨基酸序列并从氨基酸单体构建蛋白质聚合物。因此,核糖体也被称为细胞内蛋白质合成机器。核糖体的结构和功能本研究的第一作者 Kevin C. Stein 博士表示:“衰老伴随着细胞蛋白平衡的失调,这是许多与年龄相关的蛋白质错误折叠疾病的基础。然而,衰老是如何破坏蛋白质平衡的仍不清楚。由于新生多肽对蛋白平衡网络构成了巨大的负担,我们假设,衰老过程中翻译效率的改变可能有助于推动蛋白平衡的崩溃。”在这项最新研究中,研究团队发现衰老改变了秀丽隐杆线虫和酿酒酵母的翻译延伸过程的动力学。在衰老的线虫和酵母的特定位置(例如多碱基区域)核糖体暂停被加剧,导致核糖体碰撞增加,从而触发核糖体相关质量控制(RQC)。事实上,长寿的酵母突变体减少了年龄依赖的核糖体暂停,并且延长了寿命,具体与更大通量的RQC途径相关。研究人员还发现,线虫中显示年龄依赖核糖体暂停的新生多肽在年龄依赖的蛋白聚集体中强烈富集,进一步将核糖体翻译停顿与蛋白平衡崩溃联系起来。研究衰老对翻译动力学和协同翻译的影响通过结合实验和计算数据分析,研究人员发现核糖体的功能会随年龄的增长而退化,与此同时,有缺陷的蛋白质也会不断增加,使得原本会阻止蛋白质聚集的质量控制失效保护机制无法发挥作用。斯坦福大学生物学和遗传学教授、本研究的通讯作者 Judith Frydman 博士说道:“蛋白质在生命中最脆弱和最关键的时刻——也就是它最容易发生错误折叠的时候——恰恰是它形成的时候。”衰老加剧了酵母中核糖体在多碱基区域的暂停研究团队使用了一种称为核糖体图谱的技术,这种技术可以让他们准确地看到在翻译过程中核糖体是如何在mRNA上移动的。他们观察到,在年龄较大的细胞中,核糖体的周期性移动变得更慢,并且核糖体性能的下降与年龄相关的错误折叠蛋白质聚集的增加相一致。核糖体暂停后,被截断的新生多肽的年龄依赖性聚集对此,论文第一作者 Kevin C. Stein 博士解释道:“有两种情况,衰老导致核糖体碰撞的增加和停滞,但细胞失去了处理它的安全网络。”核糖体暂停和截断的新生多肽在衰老过程中的聚集本研究的另一位主要作者 Fabián Morales-Polanco 博士兴奋地表示,这个发现只是一个非常迷人的未来的开端,这开创了一个新的研究方向,也随之而来了无数个等待回答的问题,并可能因此产生数百篇论文。总而言之,这项研究提出,随着细胞衰老,核糖体翻译暂停将不断增加,导致核糖体相关质量控制(RQC)超载和新生多肽聚集,从而在衰老过程中至关重要地促进了蛋白平衡障碍和全身衰退。 论文链接:https://www.nature.com/articles/s41586-021-04295-4
  • 生物技术的抱负与羁绊
    生物科技公司Moderna Therapeutics 雄心勃勃,且资金充沛。图片来源:Paddy Mills   在两年半前的一次早餐会上,英国制药巨头阿斯利康有限公司新任首席执行官Pascal Soriot和一家药物研发公司合作达成他上任后的第一单生意。Soriot的合作对象是美国马萨诸塞州坎布里奇市一家名不见经传的生物技术公司&mdash &mdash Moderna Therapeutics。这单生意的价值达到4.2亿美元,如此高额的投资对于一种刚开始起步的制药技术来说可谓不同寻常,况且这项技术还未经过临床人体测试。   对于Moderna来说,这笔投资仅是大量巨额投资中的一项。仅在今年1月,该公司就宣布从若干投资者处获得5亿美元,如此一来,该公司投资额已超过10亿美元,使其成为迄今为止药物研发领域接受风险投资额最高的私人公司。   &ldquo 这件事可谓口口相传。&rdquo 坎布里奇市一家生物技术孵化器LabCentral公司经营者Johannes Fruehauf说,&ldquo 有这样巨大、惊人的投资额度,人们很难不这么做。&rdquo   投资人对Moderna公司技术的青睐十分明显,然而,尽管该公司商业投资遥遥领先,却仍面临许多棘手难题,如技术专利问题及其他基于信使核糖核酸的药物曾面临的问题等。究竟该公司能否实现其预期产值,对此分析人士也难作定论。   诞生缘由   从研究论文看,信使核糖核酸疗法似乎很容易。如果一些人不能产生某种足够的蛋白或是制造出一种有损伤的蛋白,医生就可以给患者的细胞中注射具有替代性蛋白编码的信使核糖核酸。和其他基因疗法类似,这样做可以避免基因发生永久性混乱。   然而,如果说生长因子、抗体以及其他复杂的&ldquo 生物&rdquo 药物可以通过生物工程细胞安全制造,这种药物却仅局限于分泌分子。另外,基于信使核糖核酸的疗法还可以制作出作用于细胞内部的蛋白。&ldquo 信使核糖核酸的释放可以重新改造人体作为一个加工厂处理许多疾病的方式。&rdquo 马萨诸塞州波士顿RA资本管理公司合作人Peter Kolchinsky说,该公司也是Moderna的投资方之一。   但是信使核糖核酸的释放却有些棘手。上世纪90年代初期,科学家首次证实,注射信使核糖核酸之后,可以在小鼠和大鼠体内产生相应的蛋白。但是蛋白的产量却很低,而且转瞬即逝 另外信使核糖核酸似乎也过于不稳定,不适宜制药。数年后,研究人员还认识到,实验室合成的信使核糖核酸在注射后,容易激发生物体免疫攻击,产生潜在的危险性炎症应答。   Moderna的相关技术可以追溯至波士顿儿童医院干细胞生物学家Derrick Rossi的实验室研究。Rossi与博士后Luigi Warren曾尝试利用信使核糖核酸让细胞&ldquo 多能化&rdquo ,从而产生许多细胞种类。为了避免引起炎症,研究人员用假尿嘧啶核苷和5-甲基胞苷替换了核糖核酸分子的一些构建模块&mdash &mdash 即核苷的尿苷和胞嘧啶核苷。这让核糖核酸变得更像一种可以自我复制的细胞,因为诸如细菌等入侵者通常不能在其自身的信使核糖核酸上产生类似的基因编辑。   这种办法生效了。2010年,Rossi和Warren对其生成干细胞的方法进行了注册,相关成果随后也发表于学术期刊。这项工作引起了麻省理工学院一位卓有声望的生物工程师和企业家Robert Langer以及坎布里奇市科技投资公司旗舰风险公司执行官Noubar Afeyan的注意。随后,Rossi和Langer又拉来了另外一位合作者&mdash &mdash 原哈佛大学医学院心血管生物学家、现在瑞典斯德哥尔摩卡罗林斯卡学院工作的Kenneth Chien。   2010年9月,他们携手创建了Moderna。公司的名字源自Rossi的想法&mdash &mdash 一个由&ldquo 修饰&rdquo (modified)与&ldquo 核糖核酸&rdquo (RNA)构成的混合词。   专利拦路   然而,Moderna头上却仍然悬着一把&ldquo 达摩克利斯之剑&rdquo :专利权的纷争。   费城宾夕法尼亚大学遗传生物学家Katalin Karikó 和Drew Weissman发表的文章和Moderna的技术专利有很大重合性,Karikó 两人也曾利用假尿嘧啶核苷和5-甲基胞苷让试管和小鼠体内的信使核糖核酸在细胞防御系统面前几乎&ldquo 隐形&rdquo 。   Karikó 两人在2005年就申请了用于医疗目的的相关专利,而且还创建了一个叫作RNARx的公司,该公司曾收到美国政府小企业资助经费近90万美元。然而,部分出于研究人员和宾夕法尼亚大学在知识产权方面的争议,该公司的研究被终止,学校最终把知识产权出售给了威斯康星州一家名为Cellscript的企业。   Karikó 和Weissman的专利对Moderna构成了威胁。2010年,来自旗舰风险投资公司&mdash &mdash 当时参与孵化Moderna的公司之一 &mdash &mdash 的一项内部评估称,如果科学家不能研制出假尿嘧啶核苷和5-甲基胞苷的替代物,&ldquo 我们公司的技术可能会受到宾夕法尼亚州立大学的限制&rdquo 。   因此,Moderna需要找到一个回避该专利的方法,任务降临在该公司首个雇员Jason Schrum的头上。作为一名核酸生物化学家,Schrum开始检测同种类的修饰核苷。大多数修饰核苷都不适用,但最终Schrum仍然找到了一种假尿嘧啶核苷的变体:1-甲基假尿嘧啶核苷。去年美国专利商标局向Moderna授予了使用1-甲基假尿嘧啶核苷的专利,然而宾夕法尼亚大学同样获准了一项包括许多同样核苷在内的专利。   尽管如此,知识产权的不确定性并未冲击到Moderna的投资人。Kolchinsky表示,专利纷争可能是一个痛苦且昂贵的过程,但问题最终一定会被解决,Moderna也有充足的时间做这一切。另外,该公司银行账户中的经费也很充足&mdash &mdash 据推测达9亿美元,因此它可以继续签约制药合作伙伴,同时在科学投资上比其竞争对手花费更多钱。单说今年,Moderna计划在研究和开发领域分别投资1.5亿美元和1.8亿美元,远超其他信使核糖核酸制药公司。   &ldquo 引资之王&rdquo   Moderna蓬勃的发展动力离不开一个人:董事长Sté phane Bancel。&ldquo 他是一个销售天才。&rdquo 2012年前一直在该公司工作的科研人员Justin Quinn说。   在担任法国诊断技术公司bioMé rieux执行官5年之后,Bancel在2011年7月加入该公司,Afeyan曾反复邀请他经营旗舰风险投资旗下的公司,但是Bancel对大多数项目&mdash &mdash 聚焦某一疾病领域的新公司&mdash &mdash 都不感兴趣。   而Moderna有所不同:它具有重建制药行业的前景。对于能说会道、衣着时尚的Bancel来说,&ldquo 如果一家新公司具有真正的发展潜力,就很值得迎接职业挑战、面对薪资减少的风险。&rdquo Afeyan说。   Bancel很快就开始集资,并且获得极大成功,尽管一些人质疑他的策略。此前在Moderna公司工作的一名不愿具名的科研人员表示,Bancel利用他的领袖气质和人际关系以及公司合作者的影响力让投资人和合作方相信Moderna平台的独特之处,但同时却会掩饰公司面临的任何知识产权威胁。&ldquo 他做了大量的工作说服投资人向公司投资,但是其中的技术可以说100%都不是该公司自有的。&rdquo 这位前员工说。   作为回应,Bancel表示,Moderna的投资者在开支票之前当然作过考察:&ldquo 现在的投资公司都很精明。&rdquo 他表示,通过自主研发以及合作研究,Moderna正在探索若干项技术,但是他并未透露具体细节。&ldquo 18个月后,人们看到我们的专利后,就会知道我们现在在做什么。&rdquo 他颇有些神秘地说。   &ldquo 猛兽&rdquo 之志   在井然有序的坎布里奇总部,Moderna正在从头到脚购置最佳仪器武装自己的实验室。在其三楼的一个实验室中坐落着一套Bancel称之为&ldquo 猛兽&rdquo 的设备:一套每天可以在非人灵长类动物中进行50例信使核糖核酸检测的自动化设备。Moderna还计划今年晚些时候购置一套可以检测人类信使核糖核酸的设备。   目前,Moderna的资源可以使该公司启动50多项药物研发项目,其中大多数是和外部制药合作者共同进行,但是该公司也有3个资助经营的研发公司: Onkaido、Valera和Elpidera,分别聚焦于肿瘤、传染病和罕见病。Bancel表示,Valera将首先进行临床转移转化。&ldquo 到2016年,我们将会拥有现存所有治疗领域的试点。&rdquo 他说。   但是并不能保证临床上的成功。&ldquo 它可能会像此前信使核糖核酸研究领域遇到的问题一样。&rdquo 一位独立的生物技术咨询师James McSwiggen说,他曾与Moderna作过合作。其他基于核糖核酸的药物,如反义疗法、核糖核酸干预以及近来的微型核糖核酸技术等均达到了产业繁荣期,但是在展示其真正的临床效用之前,它们也曾经历过许多艰难困境。   Bancel对Moderna的期望是,让该公司迅速成长壮大,使其他任何对手都不足以与其抗衡。&ldquo 我们希望的公司是,如果你想从现在开始在5年之内研制出一种信使核糖核酸类的药物,你一定会拿起电话打给Moderna。&rdquo Bancel说,对于批评人士的观点,他表示:&ldquo 我知道一些人不高兴,我了解一些人很妒忌,我明白这一切,但这就是生活。&rdquo
  • 芯片式恒温扩增核酸检测技术|苏州医工所获授全国科技系统抗疫先进集体
    近期,科技部印发了《关于表彰全国科技系统抗击新冠肺炎疫情先进集体和先进个人的决定》,授予全国163个集体“全国科技系统抗击新冠肺炎疫情先进集体”称号,314人“全国科技系统抗击新冠肺炎疫情先进个人”称号。中国科学院苏州生物医学工程技术研究所生物医学检验技术重点实验室(以下简称苏州医工所医学检验室)被授予先进集体称号。苏州医工所医学检验室在其高灵敏传感器及分子诊断核心技术基础上,开展相关技术攻关,研制出基于芯片式恒温扩增技术(LAMP)核酸即时检验(POCT)仪器。这款手持式核酸即时检验仪能够在芯片封闭的通道里迅速提取出冠状病毒核糖核酸(RNA)标的物,15分钟便能出检测结果,成本低,适用于急诊、ICU、救护车、社区、家庭、火车站等环境下快速识别感染人群,产品交付给一线检测机构和国际合作医院。针对新冠核酸检测工作样本量大、工作繁琐、接触易感染等问题,苏州医工所团队结合海关、口岸、“应检尽检”等场景,开展“超高通量全自动核酸检测系统”研制工作。该系统可以实现从“核酸样品管”至“检验报告”全流程、全自动化、生物安全型检测,单个小时内完成1000个样本的超高通量检测,超过国外相关公司产品指标。在团队的不懈努力下,各单元技术模块均打磨成熟,他们研发出的全自动开盖分杯、全自动核酸提取(96样本、16样本)以及6色qPCR检测仪等系列仪器真正实现了“分可独立作战,聚可联合攻关”。目前,该项目正申报医疗器械注册证进行产业化,为疫情防控提供创新技术支撑,助力苏州打赢疫情防控阻击战。
  • 用于确定真菌核糖体结构的冷冻电镜
    大多数人身上携带真菌白色念珠菌,没有它会引起很多问题。然而,这种真菌的全身感染是危险的并且难以治疗。很少有抗菌剂是有效的,而且它的耐药性正在增加。包括格罗宁根大学副教授 Albert Guskov 在内的一个国际科学家小组已经使用单粒子冷冻电镜来确定真菌核糖体的结构。他们的研究结果近日发表在《科学进展》上,揭示了新药的潜在目标。白色念珠菌通常不会引起任何问题,或者只是容易治疗的皮肤瘙痒感染。然而,在极少数情况下,它可能会导致可能致命的全身感染。现有的抗真菌药物会引起很多副作用并且价格昂贵。此外,白色念珠菌的耐药性越来越强,因此确实需要新的药物靶点。“我们注意到没有抗真菌药物针对蛋白质合成,而一半的抗菌药物会干扰这个系统,”Guskov说。造成这种情况的一个原因是真菌核糖体,即将遗传密码转化为蛋白质的细胞机器,在人类和真菌中非常相似。所以,你需要一种非常有选择性的药物来避免杀死我们自己的细胞。——Albert Guskov,格罗宁根大学副教授原子分辨率因此,Guskov 和他的合作者推断,获得白色念珠菌核糖体的结构对于寻找药物靶点很有价值。经典的方法是从纯化的核糖体中生长晶体,并使用 X 射线晶体学确定它们的结构;然而,这是一项费力的技术。相反,他们使用单粒子冷冻电镜,其中大量单粒子在电子显微镜中在非常低的温度下成像。从不同角度看到的单个粒子的图像随后被组合以产生原子分辨率的结构。突变' 通过这种方式,我们解决了空缺和抑制剂结合的真菌核糖体的结构,并将它们的功能与酵母和兔子的核糖体进行了比较——后者作为人类核糖体的模型——并重复了与不同核糖体结合的核糖体抑制剂,”Guskov 解释道。其中一种抑制剂是抗微生物放线菌酮 (CHX),已知白色念珠菌对其具有抗药性。通过比较这些结构,科学家们注意到在蛋白质合成中起关键作用的 E 位点的单个突变阻止了 CHX 与白色念珠菌核糖体结合。 ' 突变将这个E位点结构中的一个氨基酸从脯氨酸改变为谷氨酰胺。这种替代减少了结合位点的大小,因此抑制剂不能附着,因此无效。另一种抑制剂叶花苷不会被突变阻断。威胁' 通过比较白色念珠菌和人类空缺核糖体中 E 位点的结构以及不同抑制剂与该位点结合方式的信息,我们可以开发出一种特异性抑制剂,它可以阻断真菌核糖体,但不能阻断人类的核糖体。这将成为治疗真菌感染的选择性药物。科学家们目前正在筛选分子库以寻找药物先导物。 “开发针对白色念珠菌的疫苗极具挑战性,就像我们针对冠状病毒所做的那样。因此,我们需要药物来治疗全身感染,”Guskov解释道。 “这种真菌日益增加的耐药性是一个真正的威胁。如果这种情况继续下去,除非开发出新药,否则我们可能会遇到严重的麻烦。Source:University of GroningenJournal reference:Zgadzay, Y., et al. (2022) E-site drug specificity of the human pathogen Candida albicans ribosome. Science Advances. doi.org/10.1126/sciadv.abn1062.
  • 直播倒计时!核酸药物研发与分析检测技术会议全日程公布
    核酸类药物又称为核苷酸类药物,是各种具有不同功能的寡聚核糖核酸与寡聚脱氧核糖核酸。能够直接作用于靶基点或者靶基因,能够在基因治疗发挥较好疗效的药物。核苷酸类药物种类比较多,包括抗病毒类、抗肿瘤类、干扰素诱导剂类、免疫增强类、功能剂类。近年来,核酸药物因其独特技术优势以及治疗领域广泛已成为各种疾病最有前景的治疗手段之一。为加强相关领域技术交流,仪器信息网将于2023年7月19日举办“核酸药物研发与分析检测技术”主题网络研讨会,会议为期1天,为广大用户搭建一个即时、高效的学习和交流平台。点击报名会议日程09:30--10:00非天然核酸化学生物学于涵洋南京大学 教授10:00--10:30基因治疗及疫苗相关的DNA质粒和mRNA的色谱层析技术张琳东曹生物 技术中心应用开发部部长10:30--11:00核酸化学中的苏糖核酸TNA陈锦森药物开发股份有限公司 核酸化学高级总监/高级工程师11:00--11:30寡核苷酸药物的质量控制孔素东苏州贝信生物技术有限公司 执行总监12:00--14:00午休中午休息全体参会人员14:00--14:30自复制mRNA疫苗的分子设计与评价王友如宁波君健生物科技有限公司 首席科学家14:30--15:00新一代色谱质谱技术平台应用于核酸药物的研发和表征分析罗宇文沃特世科技(上海)有限公司 市场开发经理15:00--15:30triVac功能性mRNA修饰肿瘤疫苗的临床应用探索蒋俊启辰生生物科技有限公司 核酸平台首席科学家15:30--16:00寡核苷酸药物和mRNA关键质量属性分析李思明岛津企业管理(中国)有限公司 应用工程师16:00--16:30针对细菌的mRNA疫苗与药物王鹏南方科技大学 讲席教授/教授会议嘉宾于涵洋,南京大学现代工程与应用科学学院教授,实验室从事核酸化学生物学的研究,主要关注非天然核酸。先后在北京大学和美国亚利桑那州立大学获得学士和博士学位,在耶鲁大学完成博士后训练后,2015年加入南京大学开展独立研究工作。入选国家级高层次人才和江苏省双创人才计划。主持和参与基金委和科技部多个项目。研究成果在Nature Chemistry和Journal of the American Chemical Society等学术期刊上发表。陈锦森,理学博士,高级工程师。成都先导药物开发股份有限公司核酸化学高级总监,四川先东制药有限公司董事,总经理。目前主要负责成都先导集团的核酸化学业务,包含修饰核苷类小分子,核酸递送相关小分子合成,及从高通量微克、毫克到百克级寡核苷酸合成,涵盖从核酸药早期发现,到IND临床申报的寡核苷酸的生产。在此之前2018-2021年,陈锦森博士就职于南京金斯瑞生物科技有限公司从事寡核苷酸合成生产与研发工作。孔素东,主要从事寡核苷酸药物(包括siRNA, ASO, Aptamer等)的合成与质量研究工作。在寡核苷酸及其偶联物合成工艺开发、分析方法开发与验证、质量研究等方面有深入的研究,参与完成了国内第一个siRNA药物的临床申报和多个相关国家科技重大专项。2017年创立了苏州贝信生物技术有限公司,公司秉承“追求高质量,把握新技术”的理念,提供核酸药物设计与合成、筛选与修饰、验证与评价、CMC研究等一站式服务。王友如,宁波君健生物科技有限公司mRNA疫苗首席科学家,中科院武汉病毒研究所博士,教授。长期从事病毒疫苗研究,以人源化表达系统为载体,开展疫苗的分子设计、人源化表达、纯化、有效性与安全性评价研究,擅长mRNA疫苗的分子设计、有效性与安全性评价。蒋俊,具有15年药物研发工作经,自2016年起担任启辰生生物科技有限公司核酸平台负责人,主要负责公司树突细胞疫苗优化、核酸序列设计优化、核酸平台建设等工作,参与三个DC疫苗免疫治疗临床项目。2018年至今担任启辰生生物科技(珠海)有限公司研发负责人,带领团队开展核酸工艺开发、IND申报和工业化生产等工作,已经申请相关专利19项。王鹏,南方科技大学医学院讲席教授,博士生导师,中国生物物理学会糖生物学分会会长,南方科技大学坪山生物医药研究院中国肝素研究中心主任,深圳市小分子药物发现与合成重点实验室学术委员会副主任。1984年获南开大学化学理学学士学位,1990年获美国加州大学伯克利分校化学博士学位。国家首批千人计划特聘专家,教育部长江学者特聘教授,深圳市国家级领军人才。获美国科学促进会(AAAS)会士,俄亥俄州杰出学者,佐治亚州研究联盟杰出学者荣誉称号。2021年美国糖化学界最高奖Claude S. Hudson奖获得者,是第一位获此奖的在中国大陆出生的学者;2021年第四届张树政糖科学奖杰出成就奖获得者;2002年美国化学会糖化学部Horace S. Isbell奖获得者(美国化学学会每年只颁发给一位在糖化学/糖生物学领域有杰出贡献且不超过41岁的科学家);2000年与C.-H. Wong 教授共同获得美国总统绿色化学奖。历任美国迈阿密大学化学系助理教授,美国韦恩州立大学化学系正教授、终生教授,美国俄亥俄州立大学生物化学与化学系讲席教授,美国佐治亚州立大学化学系讲席教授、系主任。曾兼任南开大学药学院院长(半职),建立山东大学国家糖工程技术研究中心并担任中心主任。主持美国NIH、NSF和EPA等20余项研究项目,国自然面上项目8项,国家科技部重点研发计划1项,国家重大新药创制专项1项,国家重大培育计划1项,中国科学技术部973重点项目2项、重点研发计划1项,深圳市海外高层次人才孔雀团队计划项目1项。研究领域包含:1.搭建mRNA药物生产和递送平台,主要包括mRNA序列设计,mRNA原料生产,mRNA体外转录制备、纯化、质控,mRNA工艺放大,mRNA-LNP递送系统开发,涉及癌症免疫治疗,个体化癌症疫苗、感染性疾病疫苗、过敏耐受疗法/疫苗、蛋白质替代疗法、遗传性疾病、基因组工程和基因编辑、细胞重编程和组织工程;2.搭建siRNA药物生产平台和GalNAc肝靶向递送平台;3.糖科学,基于糖芯片探索疾病潜在生物标记物以及建立临床评价体系。带领团队在糖化学、糖生物学、糖蛋白质组学等基础科学研究上取得了多项令人瞩目的成果,在Nat. Commun J. Am. Chem. Soc. Angew. Chem.等国际学术刊物上发表学术论著450余篇,专利19篇,参与7部学术专著的编写,H-index 57 (Google Scholar) and 47 (Web of Science)。东曹(上海)生物科技有限公司技术中心应用开发部部长罗宇文,沃特世科技(上海)有限公司大中华区生物制药市场开发经理,负责沃特世生物大分子制药领域解决方案整合及市场推广,具有多年抗体药物及CGT市场开发及技术支持经验。硕士毕业于复旦大学生命科学学院,曾于多家跨国生物科技企业从事应用技术及市场工作。李思明,医学博士,2015年加入岛津企业管理(中国)有限公司,担任LC/LCMS应用工程师,具有多年LCMS应用开发经验,主要侧重生物样品分析等DMPK研究领域,在生物医药行业具有较为丰富的应用经验。点击报名链接:https://www.instrument.com.cn/webinar/meetings/hsyw230719/
  • 华大基因快速研制出猴痘病毒核酸检测试剂盒
    华大基因近日宣布,紧急研制成功猴痘病毒核酸检测试剂盒(荧光PCR法),采用荧光PCR法,检测猴痘病毒的特异性保守区域MPV-1基因和MPV-2基因基因片段,最低检测限可达300 copies/ml,在采用快速PCR扩增的模式下,40分钟即可得到检测结果,具有检测敏感性高、特异性强、稳定性好、结果快速等特点。该试剂盒将助力猴痘病毒快速检测,及时发现猴痘感染病例。据华大基因介绍,猴痘是一种病毒性人畜共患病,其病原体猴痘病毒是一种DNA(脱氧核糖核酸)病毒,属于痘病毒科正痘病毒属,与在人类历史上曾肆虐数千年的天花病毒是“近亲”。  猴痘成为天花灭绝以来,现存于今的正痘病毒感染相关疾病中最重要的传染病。  该疾病的潜伏期(从接触到发病的时间)为5至21天。感染者最初会患上轻微的流感样疾病——头痛、发烧、发疹和淋巴结肿大。但几天后,就会出现皮疹,通常从面部开始。皮疹通常会扩散到身体的其他部位,主要是四肢。猴痘的病变与天花感染的病变相似。该病毒主要是通过被感染动物的皮肤、呼吸道或眼睛周围或鼻子和口腔粘膜的创面传播给人类。  华大基因研制的猴痘病毒核酸检测试剂盒为猴痘病毒感染的诊治和防控提供检测依据,帮助感染患者及时诊断,大大提高救治成功率。采用快速PCR扩增模式下,检测时间短,40分钟即可得到检测结果。特异性和灵敏度高,可检出样本中低浓度病毒,且猴痘病毒检测与天花病毒、牛痘病毒、痘苗病毒等无交叉。华大PMseq病原高通量基因检测具有自主研发的强大的PMDB数据库,涵盖了猴痘病毒等17500种病原体,该检测项目与猴痘病毒核酸检测试剂盒联合使用,可发现潜在新病原,助力精准诊断。
  • 无感染核酸提取—非接触超声破碎
    超声波一般是指频率大于20kHz的声波,其应用动力主要来源于超声波空化效应。高频发生器能够把50Hz 的低频电压转换成20kHz 的高频电压,然后通过超声波转换器把从发生器中产生的电压转变成20kHz 的机械振动。伴随着强烈的冲击波和速度高于100m/s的微射流,冲击波和微射流的高梯度剪切可水溶液中产生羟基自由基,相应产生的物理学效应主要是机械效应(冲击波,微射流等)、热效应(局部高温高压,整体升温)、光效应(声致发光)和活化效应(水溶液中产生羟基自由基),超声科技四种效应并不是孤立的,而是相互作用、相互促进,加快反应进程变幅杆加强了超声能量,其在液体产生的空化效应。强大的冲击波能使生物细胞壁瞬间破裂,以至于使得生物细胞释放出其中的内容物,如蛋白质、糖类、生物碱、氨基酸、遗传物质DNA,核糖核酸RNA等,以便进行科学研究和利用。正常的超声波破碎,在使用过程中超声波分散头不断地在样品中进行高频振荡,因此会出现不同程度的磨损,且破碎时破碎头会直接接触样品,所以样品的交叉感染情况,也是使用中需要考虑的问题。因此非接触超声波破碎方法应运而生。非接触超声波的处理方法是分散头作用到媒介(水),而不直接接触到样品,解除了交叉感染的风险,因此可用于无菌破碎。增加适配器,一次可进行多样品的破碎,提高实验效率。不直接接触实验样品,延缓了变幅杆探头长期使用出现磨损的情况。WIGGENS非接触式超声破碎套件一次性可以处理6个样品带外循环水流循环接口可进行温度控制
  • 医药卫生领域国家科技重大专项最新成果发布 两款IVD产品获肯定
    p & nbsp & nbsp 日前,国家卫计委网站发布了医药卫生领域国家科技重大专项最新进展与动态,共涉及“艾滋病和病毒性肝炎等重大传染病防治”科技重大专项(以下简称“传染病专项”) 和““重大新药创制”科技重大专项(以下简称“新药专项”),其中传染病专项的最新成果——两款由复旦大学附属医院中山医药承担研发的两款IVD产品被认可为重大创新和技术突破。 /p p & nbsp & nbsp & nbsp & nbsp 公告显示,复旦大学附属中山医院在肝癌早诊早治、预测复发转移技术上获得重大突破,两项全球首创且具有完全自主知识产权的技术,已分别实现上市或签约转化。其研发的“7种微小核糖核酸肝癌检测试剂盒”仅需采集0.2ml的血浆即可准确诊断肝癌,并且填补了临床尚无有效监测甲胎蛋白阴性肝癌方法的空白,其灵敏度和特异性均达80%以上。 /p p & nbsp & nbsp & nbsp & nbsp 另一项“全自动循环肿瘤细胞分选检测系统”以国际上首次检测到的“外周血中干细胞样循环肝癌细胞”为基础,成功研制了全球首台原型机和检测试剂盒,并与企业合作实现成果转化。 /p p & nbsp & nbsp 据悉,肝癌是世界上最常见的恶性肿瘤之一,我国每年新诊断肝癌占全世界55%,死亡率在所有恶性肿瘤中位列第二位。晚期肝癌5年生存率接近0,早期肝癌经根治性手术治疗后,5年生存率可达60%以上。可怕的是,肝癌起病隐匿,早期无特异性症状,约8成患者首诊已进入晚期,失去根治性手术机会;即便实施根治性手术治疗,5年内仍有60%至70%患者出现转移复发;肝癌患者5年总体生存率仅为7%左右。 /p p & nbsp & nbsp & nbsp & nbsp 中山医院院长樊嘉教授领衔的团队,历经9年研制,开发的“7种微小核糖核酸肝癌检测试剂盒”诊断肝癌,灵敏度和特异性均达80%以上。据悉,目前该试剂盒已经完成多中心临床实验,去年8月,获得CFDA三类器械注册证和生产许可证。 /p p br/ /p
  • 生物物理所重大进展:90S核糖体前体冷冻电镜结构获解析
    核糖体是由RNA和大量蛋白质构成的大型分子机器,负责地球上所有生物的蛋白质合成。在真核生物中,核糖体组装是个非常复杂的过程。核糖体在成熟过程中需要和大量的组装因子暂时结合,形成了一系列核糖体前体复合物。小亚基核糖体在组装过程中形成两个主要的中间体:早期的90S和晚期的pre-40S前体。90S前体是个巨大的复合物,除了含有核糖体RNA和蛋白质组分,还含有约50个非核糖体蛋白质和U3 snoRNA,分子量高达5百万道尔顿。  中国科学院生物物理研究所叶克穷实验室利用冷冻电镜和单颗粒重构技术获得了出芽酵母90S核糖体前体的3个电子密度图,其中最好的密度图的整体分辨率达到4.5埃。研究人员利用已知的晶体结构、从头建模和化学交联质谱数据构建了接近完整的90S结构模型。  90S的结构显示新生核糖体小亚基折叠形成多个分离的亚结构,并和大量组装因子结合。核糖体前体RNA的5' 间隔区域、U3 snoRNA和大量组装因子形成巨大的基座,支撑新生核糖体的结构。结构还揭示了U3 snoRNA和核糖体前体RNA结合的新颖方式。该结构对理解核糖体小亚基的早期组装原理和组装因子的功能具有里程碑的意义。  报道该工作的论文Molecular architecture of the 90S small subunit pre-ribosome 于2月28日在eLife 杂志在线发表。  叶克穷是该论文的通信作者,孙奇、朱星、奇佳和安卫东是共同第一作者。合作者董梦秋和谭丹以及叶克穷课题组多位研究人员对该研究也有重要的贡献。中科院生物成像中心为该研究提供关键的冷冻电镜研究设备和技术支持。该研究得到了国家自然科学基金委、中科院战略性先导科技专项(B类)、科技部和北京市政府的资助。  文章链接 90S核糖体前体的冷冻电镜结构
  • 只需30分钟!国内最快的核酸新冠检测设备上市,适用于医院、出入境等场所
    上海伯杰医疗科技有限公司研发的恒温核酸扩增检测分析仪、新冠病毒核酸检测试剂盒(恒温CRISPR法)本周获国家药监局批准上市,成为国内最快的新冠核酸检测自动化设备。从拭子或痰液取样到出检测结果,这套设备只需30分钟,适用于医院发热门诊、出入境检验检疫等场所。 为何能成为国内最快?伯杰医疗创始人赵百慧博士说,公司采用的恒温CRISPR法与传统的核酸检测技术不同,不需要几十次升降温,所以大幅缩短了核酸扩增环节的时间。CRISPR是一种基因编辑技术工具,具有广阔的应用前景,在核酸检测中也可以应用。将核酸靶标加入CRISPR/Cas反应体系,活性蛋白Cas的剪切活性会被激活,从而剪切反应体系中带有荧光基团的引物探针,如果样本呈阳性,就会因Cas蛋白剪切发出荧光。 这款仪器的核酸扩增环节为何能保持42摄氏度恒温?公司研发部经理李春燕解释,传统的核酸检测仪器需要通过升温将DNA(脱氧核糖核酸)的双链打开,再通过降温进行核酸扩增。伯杰医疗则采用重组酶聚合酶扩增技术,重组酶能参与基因定位重组过程,识别、切割特异的重组位点,从而在恒温条件下打开DNA双链。据介绍,升降温核酸扩增需要1.5小时左右,而恒温核酸扩增只需20分钟,实现了核酸检测的大幅提速。  自动化也是这款仪器的一大特点。工作人员收到样本后,只需做一步人工操作——将样本管放入仪器,仅耗时1分钟。接下来的核酸提取、核酸扩增等环节都由机器自动完成,直至出具检测结果。 据了解,核酸检测可分为常规检测和快速检测。常规检测技术成熟,单次检测量大,但用时较长。快检产品用时短,手段更便捷,但是单次检测量较小,适用于小批量的随到随检场景。去年5月,国务院要求加快提高核酸检测能力,推进检测时间短、手段更便捷、无需实验室环境的核酸快速检测设备研发工作。  在市科委支持下,伯杰医疗研发的快检产品入选了国家重点研发计划应急项目,还获得上海张江国家自主创新示范区专项发展资金重大项目支持。经过一年多自主研发,这款刷新“全国纪录”的快检设备和配套试剂盒终于获批上市,可同时检测24份样本。  它们将应用于医院门急诊,实现院内病人快速检测,不必转运样本,让病人耗费半天时间等待检测结果。它们还有望应用于出入境检验检疫、疾控中心筛查、政府部门市场巡查等场景,使核酸检测更快、更便捷。
  • 通微公司推出世界首创新一代BIOCLASS 2.7μm HALO核壳型糖柱
    通微公司HALO核壳型色谱柱又出新品啦!您还在为分离速度太慢而苦等吗,您还在为分离效果不佳而掀桌吗,您还在为没有合适的分离糖类物质的色谱柱而烦恼吗?世界首创新一代BIOCLASS 2.7μm核壳型糖柱,解决您的问题!HALO 糖柱用于PNGase 释放及标记的N-聚糖的HILIC模式分离测试条件:色谱柱:2.1 x 150 mm, HALO 2.7 糖柱流动相 A:50 mM 甲酸铵,pH 4.45流动相 B:乙腈梯度洗脱:80-55% B,25 min流速:0.6 mL/min.温度:60°C压力:190 bar检测波长:UV 300 nm进样体积:3 μL样品溶剂:70/30 乙腈/水时间常数:0.5 s采样频率:3.3 Hz检测池:2.5 μL 半微量检测池仪器:Shimadzu Nexera采用HALO 糖柱实现了核糖核酸酶B中PNGase释放及普鲁卡因胺标记的N-聚糖的快速分离!测试条件:色谱柱:2.1 x 150 mm, HALO 2.7 糖柱流动相 A:50 mM 甲酸铵,pH 4.45流动相 B:乙腈梯度洗脱:80-55% B,25 min流速:0.6 mL/min.温度:60°C压力:190 bar检测波长:UV 300 nm进样体积:3 μL样品溶剂:70/30 乙腈/水时间常数:0.5 s采样频率:3.3 Hz检测池:2.5 μL 半微量检测池仪器:Shimadzu NexeraHALO 糖柱用于10种普鲁卡因胺标记的葡聚糖标准品(Sigma-Aldrich 1:1 (w/w) of Part numbers 00268 and 00269)(0.5 μg/μL,70/30乙腈/水)的高效分离!每个批次的HALO糖柱均进行此样品分离检测,保证了不同批次之间的重复性及色谱柱性能!现有填料类型:HALO Peptide ES-C18HALO Peptide ES-CNHALO Protein C4HALO Protein ES-C18HALO Gycan更多的HALO核壳型2.7μm BIOCLASS填料请点击下载:http://www.instrument.com.cn/netshow/sh100522/down_503914.htm通微公司通微公司,是国际色谱分析领域值得信赖的集研发、制造、销售为一体的『一站式』液相色谱解决方案提供商。通微公司为您提供从微分离、常规分析到半制备分析的系列产品及服务,包括液相色谱仪、蒸发光散射检测器、加压毛细管电色谱、液相色谱柱、毛细管色谱柱、液相色谱耗材、应用检测方法包、分析方法定制等。同时也代理国内外优秀的色谱仪器、色谱柱及相关耗材配件。
  • 核酸降解知多少
    导语在实验过程中,最心累的莫过于好不容易提取的核酸却降解了。那么核酸为什么会发生降解呢,我们又该如何预防呢?关于核酸降解,你了解多少呢?让我们一起对核酸降解一探究竟吧。 什么是核酸 核酸是一种高分子化合物,核苷酸是构成核酸的基本单位。核酸水解后得到许多核苷酸,核苷酸是组成核酸的基本单位,即组成核酸分子的单体。一个核苷酸分子是由一分子含氮的碱基、一分子五碳糖和一分子磷酸组成的。根据五碳糖的不同可以将核苷酸分为脱氧核糖核苷酸和核糖核苷酸。如果5-碳糖是核糖,则形成的聚合物是RNA;如果5-碳糖是脱氧核糖,则形成的聚合物是DNA。 核酸降解本质 核酸降解是DNA/RNA分子中的碱基和戊糖间的氮糖苷键,或磷酸二酯键在物理因素、化学因素和生物因素等作用下发生水解,使DNA/RNA链发生断裂。核苷磷酸化酶:能分解核苷生成含氨碱基和戊糖的磷酸酯酶。广泛存在于生物体内,催化的反应可逆。可在核苷水解酶作用下继续分解核苷成嘌呤碱、嘧啶碱和戊糖。核苷水解酶:主要存在于植物和微生物体内,只水解核糖核苷。 核酸降解原因 DNA降解的因素很多,主要分为物理因素,化学因素和生物因素。一、物理因素:温度,机械剪切力、核酸的反复冻融、高温煮沸及辐射等。二、化学因素:PH值,水解反应,氧化反应等。三、生物因素:酶解及微生物侵染等作用。一、物理因素的影响★ 温度:高温条件下,RNA不稳定,易加速磷酸二酯键的水解,使核酸降解;★ 机械剪切力:包括剧烈震荡、搅拌、细胞突然至于低渗溶液中,以及让溶液快速通过狭长的孔道;★ 核酸的反复冻融、高温煮沸及辐射等,均会导致核酸的降解。二、化学因素影响水解★ PH值:氢离子参与催化磷酸二酯键、糖苷键的水解,但糖苷键比磷酸二酯键更易被酸水解。过高或过低的PH值都易破坏复键。核酸(特别是RNA)在碱性溶液中十分容易降解;★ 氧化反应:会氧化碱基中的含氨杂环,使其变性,从而改变一级与二级的核酸构象;★ 苯酚在空气中被氧化生成醌,它能够产生自由基,直接用于DNA的分离,会使磷酸酯键断裂,造成DNA的降解。三、生物因素影响★ 酶解:核酸酶可以催化水解多聚核苷酸链中的磷酸二酯键,直接破坏核酸的一级结构,使其降解。1.核酸酶(磷酸二酯酶)核酸内切酶:在环境或生物体内具有识别双链DNA分子中特定核苷酸序列,并由此切割DNA双链的核酸内切酶统称为限制性核酸内切酶。作用方式从多聚核苷酸链中间开始,在某一个位点切断磷酸二酯键。如DNase,RNase等。核酸外切酶:核酸外切酶的作用方式是从多聚核苷酸链的一端(3' -端或5' -端)开始,逐个水解切除核苷酸。如蛇毒磷酸二酯酶,牛脾磷酸二酯酶等。2.核苷酸酶(磷酸单酯酶)专一性的磷酸单酯酶:3' -核苷酸酶,5' -核苷酸酶非专一性磷酸单酯酶。★ 微生物侵染:微生物会将DNA作为营养物质或是其分泌的化学物质含酶。 预防降解的方法 预防RNA降解的方法:★ 去除环境中RNase酶的污染或强有力地抑制其活性。★ 获取样品后最好立即提取RNA,若无条件立即实验,应于-80℃液氮中保存样品,提取时取出样品后立即在低温下研磨裂解细胞,以防RNA降解。★ 在总RNA提取分离的最初阶段,联合使用Rnase的特异抑制剂,尽可能的灭活胞内的Rnase的活性。★ 避免样品的反复冻融。★ 保证裂解液的质量,裂解液的用量不足,也会导致RNA降解。★ RNA提取后,放入-80℃保存,防止降解。预防DNA降解的方法:★ 简化操作步骤,缩短提取过程,以减少各种有害因素对核酸的破坏;★ 减少化学物质对DNA的降解,为避免过酸、过碱对DNA双链中磷酸二酯键的破坏;★ 防止基因组DNA的生物降解,主要是DNase降解基因组DNA,Dnase需要二价金属阳离子Mg2+等的激活,可用EDTA等金属离子整合剂整合Mg2+以抑制Dnase的活性;★ 减少物理因素对DNA的降解,物理降解因素主要包括机械剪切力(如剧烈震荡、搅拌等);★ 避免样品的反复冻融,可将DNA分装保存于缓存液中;★ 所有试剂应用无菌水配制,耗材经高温灭菌;★ 避免DNA的过高温处理等。
  • 离子色谱-积分脉冲安培法检测黄酒中的阿拉伯糖、半乳糖、甘露糖、葡萄糖、核糖、乳糖
    目的:建立了离子色谱-积分脉冲安培法同时检测黄酒中的阿拉伯糖、半乳糖、甘露糖、葡萄糖、核糖、乳糖,并对这几种糖的含量进行探讨。方法:色谱分离选用CarboPacTM10(250 mm×4 mm)分析柱,以氢氧化钠和无水乙酸钠为淋洗液进行梯度洗脱,流速为 1.0 mLmin-1,柱温为30℃的色谱条件,在20 min内实现6种糖的分离,利用建立的方法对26个黄酒样品中的单糖含量进行了测定。结果:该方法的重现性(RSD)≤3.70%,相关系数R2≥0.9990,加标回收率为91.6%~109.1%,最低检出限为2.99×10-3 ~1.38×10-3 μgmL-1。结论:黄酒中主要存在的单糖是葡萄糖,阿拉伯糖、半乳糖、甘露糖、核糖和乳糖的含量较低;半甜型黄酒中单糖的含量高于加饭酒,其含量的差异可能与酿造工艺有关。 离子色谱_积分脉冲安培法检测黄酒_省略_乳糖_甘露糖_葡萄糖_核糖_乳糖_徐诺.pdf
  • 浅谈小核酸的固相合成
    近年来由于核酸修饰和递送载体的突破,带来了变革性疗法的创新浪潮,其中被认为是继小分子药物、抗体药物之后第三代创新药物核酸药物迎来了爆发式增长,其优势在于广泛的可成药靶点、特异性强、安全性高、效果持久、开发成功率高和制造成本低等。寡核苷酸药物,即小核酸药物,是由十几个到几十个核苷酸串联组成的短链核酸,目前小核酸药物主要包括 RNAi 药物和 ASO 药物,作用于pre-mRNA或mRNA,通过干预靶标基因表达实现疾病治疗目的。目前小核酸药物大多通过亚磷酰胺三酯合成法进行合成。化学合成按照3'-5'的方向进行。常用的固相载体为可控微孔玻璃珠(CPG)或者聚苯乙烯微珠(PS beads),固相载体通过linker与初始核苷酸核糖的3'-OH共价结合,而核糖的2'-OH用诸如叔丁基二甲基硅基(TBDMS)的保护试剂进行保护,或是核糖的2端有甲氧基、F代、甲氧乙基等修饰,5'-OH则用双甲氧基三苯甲基(DMT)保护。此外,由于腺嘌呤、鸟嘌呤和胞嘧啶存在伯氨基团,也需要用酰基试剂(例如苯甲酰基)进行保护。固相合成每个循环主要包括四个步骤:脱保护、偶联、氧化和加帽。第一步 脱保护(Detritylation)使用溶解在二氯甲烷/甲苯中的二氯乙酸(DCA)或三氯乙酸(TCA)移除核糖5端的DMT基团,暴露5'-OH,以供下一步偶联。脱保护时间取决于流速和柱子尺寸,反应时间不够/脱保护剂酸性太弱会产生n-1杂质(与完整长度为n的寡核苷酸相比仅相差一个核苷酸);反应时间太长/脱保护剂酸性太强则导致序列中脱嘌呤的产生。反应完成后,用乙腈洗涤去除残留的脱保护剂,此步骤中乙腈含水量一般小于20ppm,乙腈需要使用较高流速去冲洗合成柱,脱保护试剂冲洗不干净导致n+杂质的产生。第二步 偶联(Coupling)合成目标的原料,亚磷酰胺保护核苷酸单体,与活化剂四氮唑混合,得到核苷亚磷酸活化中间体,它的3端被活化,5端羟基仍然被DMT保护,与溶液中游离的5端羟基发生偶联反应。为了保证较高的总产率,每个循环中都需要有较高的偶联效率。n-1杂质是偶联中最常见的杂质,它们是偶联效率低于100%的结果。与FLP相比,更高分子量的杂质(例如n+1)也存在于偶联步骤中,n+杂质的形成归因于活化剂四氮唑的弱酸性能移除一部分亚磷酰胺溶液中的DMT基团。第三步 氧化(Oxidation)偶联反应后新加上的核苷酸通过亚磷酯键(三价磷)与固相载体上的寡核苷酸链相连。亚磷酯键不稳定,易被酸、碱水解,在下一个循环的脱保护酸性环境中不稳定,因此需要被氧化成稳定的五价的磷。磷酸二酯键中的2-氰乙基保护基团可以使其在后续合成中更稳定。常用碘溶液将亚磷酰转化为磷酸三酯,得到稳定的寡核苷酸。此外通过将一个硫原子转移到P(三价)上也可以将其转化为P(五价),从而形成硫代磷酸酯键。氧化剂与固相载体的接触时间通常为1-4分钟。第四步 加帽(Capping)由于不可能达到100%的偶联效率,仍存在脱保护后没有反应的5'-OH活性基团(一般少于2%),如果不加处理,那这些基团在下一个循环中仍能发生偶联,产生n-1杂质。通常使用两种试剂(通常使用醋酸酐和N-甲基咪唑的混合液作为加帽试剂)来酰化5'-OH。经过以上四个步骤,一个核苷酸碱基被连接到固相载体的核苷酸上,再以酸脱去它的5'-羟基上的保护基团DMT,重复以上步骤,直到所有要求合成的碱基被接上去。核酸合成系统就是将上述一系列化学合成过程进行自动化,精准化可控制的设备。仪器主要由柱塞系统泵、试剂阀、单体阀、试剂循环阀、紫外检测器、电导率、惰性气体控制盒、压力监测器、合成柱及软件控制系统等多个部分组成。大规模寡核苷酸合成系统采用流穿合成技术,泵精度高,规模广泛,滞留体积低,适用于不同规模和类型的寡核苷酸。其以灵活简便的方式创建和转移方法,为工艺开发和优化提供支持,同时系统先进的数据处理能力和分析工具可高效监测和控制合成。英赛斯大规模核酸合成系统
  • 吉因加国产测序平台获准RNA预期用途
    近日,国家药品监督管理局(NMPA)官网公开信息显示,已批准吉因加自主品牌国产基因测序仪Gene+Seq-2000和Gene+Seq-200的适用范围变更申请。两款仪器分别于4月14日和4月27日通过审批,新增了“对核糖核酸(RNA)进行测序”的适用范围。在基因检测应用场景不断扩展的今天,单纯的DNA测序无法满足迅猛增长的临床需求,而RNA测序扮演者越发重要的角色,国产测序平台在该领域获批应用,为临床提供了更加丰富的选择,必将更好地支撑起相关产业的发展,推动NGS技术在临床合规落地。 吉因加表示:根据《医疗器械监督管理条例》、《医疗器械注册管理办法》等相关法律法规的要求,应用于临床的医疗器械产品应具备相应的适用范围并获得国家药品监督管理局批准。但是,目前市面上的测序仪大多是“在临床上用于对来源于人体样本的人的脱氧核糖核酸(DNA)进行测序”,例如聚焦生育领域DNA检测、肿瘤DNA检测以及遗传病DNA检测等,不包含人的RNA,也不包含来源于人体样本的病原的DNA和RNA检测等应用,不能够完全满足目前临床合规开展各类基因检测的需求。 本次Gene+Seq-2000和Gene+Seq-200获批 “可用于人体样本的不仅限人的DNA和RNA测序”,可以检测包括肿瘤融合基因、病原RNA、全转录组等多种需求,可以真正实现DNA和RNA基因检测需求的全覆盖。测序仪适用范围/预期用途Gene+Seq-200该产品采用联合探针锚定聚合测序技术,在临床上用于对来源于人体样本的脱氧核糖核酸(DNA)和核糖核酸(RNA)进行测序Gene+Seq-2000该产品采用联合探针锚定聚合测序技术,在临床上用于对来源于人体样本的脱氧核糖核酸(DNA)和核糖核酸(RNA)进行测序测序仪A该产品用于对来源于福尔马林固定石蜡包埋(FFPE)组织的人基因DNA测序测序仪B该产品用于人脱氧核糖核酸(DNA)测序测序仪C该产品基于边合成边测序技术,在临床上用于对来源于人体样本的人的脱氧核糖核酸(DNA)进行测序在临床应用方面,其实已经有较为成熟的RNA应用场景,比如对肿瘤融合基因的检测。DNA测序在检测融合基因时,对于仅发生在RNA或DNA层面融合丰度低的情况,以及对于存在长内含子或重复序列融合的情况均存在局限性,而RNA测序除了能够有效检出这些融合之外,还能发现更多未知融合,为未来的药物研发提供更丰富的信息。目前,已有多项研究证明,将DNA检测与RNA检测相结合,可以实现核心治疗靶点及罕见、有效的融合变异的同时测定,弥补常规检测方法可能出现的漏检、融合基因不明确等不足,有效提高融合基因检出率,更好地帮助医生进行临床诊断及治疗。因此,多项指南都在推荐将DNA检测与RNA检测相结合,以更全面覆盖基因融合/重排,更大程度地提高临床获益。
  • 汤森路透报告预测2025年十大科技创新
    2014年7月7日,中国&ndash 全球领先的专业信息提供商汤森路透旗下的知识产权与科技事业部近日发布了一份题为《2025年世界十大创新预测》的新报告。该报告通过分析全球专利数据和科学文献,预测了2025年的科技发展趋势。   在这项研究中,研究人员用汤森路透的Web of ScienceTM平台对引文排名进行分析,划定了10大新兴科研前沿。随后,他们分析了德温特世界专利索引(Derwent World Patents Index® )中的全球专利数据,找到从2012年迄今发明数量最多的10大专利领域。最后,研究人员对这10个最受商业和科研领域关注的技术进行评估,确定了将会推动未来科技重大突破的创新热点。   以下是该研究中对2025年创新预测的部分内容:   太阳能将成为地球上的主要能源:根据最近两年的高被引科研论文统计,在光伏技术、化学键合及光催化剂使用等领域所取得的进步,正使太阳能的收集和转换从环保的新事物变为可服务于普通大众的现实科技。   量子传输的测试将广泛开展:用于大型强子对撞机所产生的希格斯玻色子测量技术具有突破性进展,有望于2025年实现量子传输的测试。目前,该领域的研究呈现出了爆炸性增长,仅2012年一年的研究引用就超过400次。在有关希格斯玻色子的最新专利申请中提到:&ldquo 一个物体以光速加速,而且速度可以增至光速的平方&rdquo 。   任何地方的任何事物都将数字化:从最小的个人物品到最大的大陆,任何地方的任何事物都将因为半导体、石墨烯-碳纳米管电容器、基于非基站架构的天线网络和5G技术的进步而实现数字化的连接。   I型糖尿病将可预防:核糖核酸引导(RNA引导)工程的进步将发展到有可能创造出人类基因组工程通用平台,该平台为修饰致病基因并防止某些代谢疾病的发生奠定了基础。目前,该领域已在科学文献研究中成为前沿,且引领着基因工程的各类专利发展。   出生时进行DNA测绘将成为常规检测:人类基因组分析仍然是最热门的科研领域之一,其中一篇新近的论文被引用了超过1,000次。随着纳米技术的进步以及大数据技术的进一步普及,开展体内测量并进行精确的细胞层面筛查以帮助诊断已经成为可能。   其他预测包括:癌症治疗的毒副作用将变得非常小 衍生的纤维素包装将取代基于石油的包装 电动空中运输工具将问世 粮食短缺和粮食价格波动的时代将一去不复返 以及痴呆症将减少。   汤森路透知识产权与科技事业部总裁Basil Moftah表示:&ldquo 尽管没有可预见未来的水晶球,但我们却有个仅次于水晶球的工具:科学文献引文数据及专利数据。通过对这些数据进行综合分析,我们可以打开一个精彩纷呈的窗口,洞悉那些将会改变人类未来生活的创新。通过分析当前研发活动和商业渠道,我们看到了一些将在未来十年出现的最激动人心的进展。&rdquo   完整的《2025年世界十大创新预测》报告提供了每个技术领域的科研引文及专利申请度量指标的简介,以及定义这些新兴技术重要发展趋势的评注。该报告使用了汤森路透的Web of ScienceTM科研平台、InCites® 研究分析平台、Derwent World Patents Index® 和Thomson Innovation科技创新解决方案平台进行数据整理汇编。
  • 食品添加剂d-核糖液相检测解决方案
    食品添加剂d-核糖准确定量仪器配置 ● P230高压恒流泵 ● Shodex RI-201H示差折光检测器 ● DG230在线脱气机 ● Rheodyne 7725i手动进样阀orAS1201自动进样器 ● ZWⅡ色谱柱恒温箱 ● EC2000色谱数据工作站 ● Shodex KS-801色谱柱 色谱条件 ● 流动相:水 ● 流速:0.5 mL/min ● 柱温:80℃ ● 检测池温度:40℃ ● 进样量:10µ L
  • 院士领衔 全球首个肝癌诊断试剂盒在沪问世
    p style=" text-align: center " img title=" 002.jpg" src=" http://img1.17img.cn/17img/images/201801/noimg/95c08ff1-ec58-45b5-8879-8c51883632e9.jpg" / /p p   1月26日,在复旦大学附属中山医院举行的“中山-顿慧诊疗新技术转化中心‘医-研-产’创新模式论坛”上传出消息:中科院院士、中山医院院长樊嘉教授,副院长周俭教授领衔团队,在肝癌诊治领域实现两项重大研发成果。团队研发“7种微小核糖核酸肝癌检测试剂盒”,采集0.2毫升血浆可提升肝癌早期诊断率;团队研制“全自动循环肿瘤细胞分选检测系统”,可提升肝癌复发转移、诊治疗效预测效果。据悉,这两项成果均拥有完全自主知识产权,实现技术转让,或将有望开创肝癌诊治新篇章。 /p p   肝细胞癌(简称肝癌)是世界上最常见的恶性肿瘤之一,我国每年新诊断肝癌占全世界55%,死亡率在所有恶性肿瘤中位列第二位。现有数据统计显示:晚期肝癌5年生存率接近0,早期肝癌经根治性手术治疗后,5年生存率可达60%以上。可现实非常残酷:肝癌起病隐匿,早期无特异性症状,约8成患者首诊已进入晚期,失去根治性手术机会 即便实施根治性手术治疗,5年内仍有60%至70%患者出现转移复发 肝癌患者5年总体生存率仅为7%左右。 /p p style=" text-align: center " img title=" 001.jpg" src=" http://img1.17img.cn/17img/images/201801/noimg/29c732d7-783f-4403-8309-5262516871ce.jpg" / /p p   突破早期诊断大关,对肝癌诊治的提升有着非同寻常的意义。樊嘉领衔团队历经9年攻关,在患者血浆中筛选到由7个miRNA组成的早期肝癌诊断分子标记物(目前分子标记物模型已获中、日、韩专利)。试剂盒仅需采集0.2ml血浆,通过对其中7个肝癌相关微小核糖核酸检测结果的综合评估,可准确诊断肝癌,灵敏度和特异性均达80%以上。 /p p   樊嘉告诉记者,临床约30%至40%的甲胎蛋白阴性(简称“AFP”)患者,很难通过常规手段发现肝内肿瘤。试剂盒突破了这一盲区,用84%的灵敏度、88%的特异性,可筛查出AFP阴性肝癌患者。应用试剂盒,进行血液检测同时配合影像学检查,还能显著提高对包括小于2厘米小肝癌在内的各种临床分型肝癌诊断效能,以此降低漏诊率和误诊率。试剂盒实时动态监测肝癌治疗效果,及时预警肿瘤复发和进展的发生,性能超出传统甲胎蛋白检测约35%。至于便捷的采集方式,将在患者整个治疗随访过程中发挥重要作用,临床可通过多次血液检测及时反映治疗效果、预警肿瘤进展,减少患者对传统影像学检查的依赖。 /p p   据悉,应用试剂盒已完成多中心临床验证,并通过国家食药监总局的认证。2017年8月获得CFDA的三类器械注册证和生产许可证。今年起将通过全国20个省多中心临床使用推广,成为临床医生肝癌诊断、患者预后疗效监测更有效的工具。 /p p   专家表示,随着试剂盒的普及,我国肝癌患者5年总体生存率或可提升至20%至30%,切实降低死亡率。 /p p   肝癌病人之所以生存率低,复发率高是关键症结。近年来,众多国内外学者一致认为外周血中游离的循环肿瘤细胞(CTC)是肿瘤转移复发的“种子”,扮演极其重要的角色。樊嘉院士、周俭教授团队在国际上首次检测“外周血中干细胞样循环肝癌细胞”,发现循环干细胞样肝癌细胞可作为肝癌切除术后复发预测新指标。团队自主研发了多种CTC分选检测技术,同时成功研制了全球首台 “全自动循环肿瘤细胞分选检测系统”原型机和检测试剂盒,相关核心技术已获3项发明专利,并申请发明专利5项。该系统可实现从全血标本→CTC的一站式全自动样本处理,包括血液离心,液体处理,CTC捕获,细胞染色等步骤 捕获CTC的灵敏度可达到90%以上,8小时可处理24个样本,捕获的CTC细胞还可用于下游的单细胞测序分析,揭示每一个CTC的基因突变和表达谱。这为临床实现肝癌早诊早治、有效预测复发、疗效监测以及干细胞研究建立了良好平台。 /p p   在当天的论坛上,复旦大学附属中山医院与上海顿慧医疗科技发展有限公司签署了《技术专利转让协议》和《技术专利许可协议》,以3000万人民币将研发过程中产生的8项核心发明专利授权转让或许可。该系统衍生产品“ChimeraX-120TM 循环肿瘤细胞全自动样本处理和检测系统”正在作CFDA注册申报准备工作。据悉,目前仅有美国CellSearchTM系统获得监管部门注册上市许可,是CTC检测的国际金标准。本系统与CellSearchTM系统相比,具有更高的自动化程度、更高的检测灵敏度、更多的CTC分选模式以及更好的CTC下游分析兼容性等优势。 /p p   樊嘉院士在论坛上介绍了打通“医-研-产”创新链和产业链实现“中山智造”的经验。据了解,中山医院通过与创新医疗企业上海顿慧医疗科技发展有限公司合作,成立中山-顿慧诊疗新技术转化中心,实现了从医院-转化平台研发-企业生产-实验室应用四点一线高度统一的协作模式,研发出了一系列具有自主知识产权的诊疗新技术。通过创立“医-研-产”新模式,打通医学创新、转化和产业化的关键环节,实现了创新链与产业链的无缝整合。这一新模式不仅将加快我国先进科研成果的临床转化,更能有效提升我国国产诊疗新技术核心竞争力至国际先进行列。“医-研-产”的中山创新模式,为将最先进的生物医学技术应用于疾病本质的研究,探索诊断和治疗新方法,并与企业合作将科研成果“落地”转化为可应用于临床、服务广大病人的医疗产品提供了有益经验。 /p
  • 268万!南宁市第一人民医院二代测序仪采购项目
    项目编号:NNZC2022-G1-991943-JGJD项目名称:二代测序仪采购项目预算金额:268.0000000 万元(人民币)最高限价(如有):268.0000000 万元(人民币)采购需求:序号货物名称单位数量简要技术需求或者货物要求1二代测序仪台1一、基因测序仪参数1证书:需具有NMPA认证,可以用于临床的应用。2在临床上用于对来源于人体样本的脱氧核糖核酸(DNA)和核糖核酸(RNA)进行测序,以检测基因序列。3可开展全基因组测序、全外显子测序、表观基因组测序、转录组测序、宏基因组测序、单细胞测序等科研应用,可开展胎儿染色体异常无创产前基因检测、胚胎植入前染色体异常检测、单基因遗传病基因检测、遗传性肿瘤基因检测、遗传性乳腺癌基因检测、肺癌个体化诊疗基因检测、未知病原微生物基因检测等临床应用。具体详见招标文件《货物需求一览表》合同履行期限:自签订合同之日起30日内交货完毕。本项目( 不接受 )联合体投标。
  • 泰州创新牛奶成分检测新技术
    南京大学、泰州国家医药高新技术产业开发区近日联合在北京发布乳制品中微小核糖核酸的研究成果,该成果创新了牛奶营养成分常规检测技术,有利于建立国家初乳标准,在国际学术界具有突破性意义。   南京大学生命科学院院长张辰宇说,从功能上来看,微小核糖核酸是一种能全面反映牛乳质量,且难以操控的新标记物,甚至在不同泌乳期分泌的牛奶,微小核糖核酸也能检测出来。所以,一旦添加水或三聚氰胺等其他物质,其标值就会发生明显变化,从而杜绝劣质牛乳或“加工牛乳”。
  • 冷冻电镜揭示RNA质量控制背后的机制
    前言细胞中的RNA质量控制,如RNA的降解及RNA总量稳定的调控,被细胞内的多种蛋白质机器精确调控,比如被称为细胞监视器的RNA外切体(exosome),RNA外切体激活子NEXT复合物(Nuclear exosome targeting complex),从而维持机体的正常生理功能。NEXT在剪切体上游行使功能,招募RNA外切体对新转录出来的RNA进行降解。很长一段时间里,结构生物学手段利用晶体学手段尝试解析NEXT的结构,以期了解NEXT调控RNA质量稳定的作用机制,但由于复杂的结构组成和高度动态的特征结构解析一直未果。近日,冷冻电镜让NEXT复合物的结构得以呈现,RNA质量稳定背后的详细机制得以窥见。在生物学中,清理机体产生的“废物”与制造物质同等重要。生物体产生的不再需要的细胞、蛋白质或其他分子的聚集,如不及时处理,会导致机体产生一些问题。不过,生物已经进化了出多种方法来完成清理多余物质的清理。一个典型的例子是RNA外切体。RNA分子在细胞中扮演许多角色。其中一些被翻译成蛋白质,一些则与细胞的蛋白质一起形成蛋白质-RNA机器。RNA外切体是一种细胞机器,可以降解有缺陷、有害或不再需要的RNA分子。如果不依靠外切体进行修剪,我们的细胞就会变成功能失调的囤积者,进而无法正常行驶功能。“RNA的监测和降解途径存在于所有形式的生命中,”斯隆凯特林研究所结构生物学项目主席Christopher Lima解释说。“从细菌到人类,所有生物都有监测RNA的状态并靶向降解RNA的机制。Lima博士说,在很长一段时间里,这些降解通路被认为像家务一样,是重复且枯燥的。但事实证明,这些降解通路受到高度调控,并控制着从胚胎发育到细胞周期的许多过程。更重要的是,通路一旦发生失调,从癌症到神经系统退化的许多类型疾病便会产生。在2022年6月9日发表在Cell上的一篇新论文中,Lima博士和实验室的博士后研究员Puno提出了有助于解释RNA外切体如何定位需要降解的RNA的研究结果。在冷冻电镜的帮助下,科学家们解析了一种RNA降解机制的关键部分,名为细胞核外切体靶向复合物( Nuclear Exosome Targeting ,NEXT)的蛋白质组装体的结构。“我们知道NEXT将RNA靶向递送到RNA外切体,但在生物化学和结构上,我们不知道它是什么样子,也不知道它是如何工作的。”—Puno 结构生物学家现在,通过冷冻电镜,科学家们首次获得了获得了NEXT与RNA结合的第一张清晰图片。这些图片及相关的生化和生物实验揭示了RNA分子被传递到RNA外切体并进行降解的过程。逐渐了解结构几年前,Puno博士开始使用当时的金标准X射线晶体学方法研究NEXT的结构。在这种方法中,蛋白质首先首先进行晶体生长,它们以相同的方式排列并形成晶体。然后,X射线穿过晶体并击中探测器,所形成的图案被用来确定蛋白质的结构。虽然Puno博士能够结晶NEXT蛋白,但由此产生的X射线衍射图像不足以看到结构的细节。“不过,随后出现了冷冻电镜革命,”他说。“冷冻电镜帮助我们可视化这种蛋白质的样子以及它如何结合其RNA底物。动态蛋白质的可视化冷冻电镜的工作原理是捕获冷冻但非结晶的蛋白质样品的许多不同图像,然后使用计算方法将它们校准成最终的清晰图像。“这几乎就像捕捉一堆飞行中的鸟的照片,”Lima博士说:“鸟在飞行过程中又多种动作,导致鸟的翅膀看起来很模糊。但是,如果我们能在所有这些不同的图片中找到翅膀的部分,那么我们就可以通过对齐这些图片来重建鸟的翅膀的样子,并确定它们是如何工作的。”从冷冻电镜图片中,科学家们能够看到NEXT蛋白形成了一个非常灵活的二聚体:这意味着NEXT蛋白的两个单体在一起形成一个功能单元。Puno博士说:“这真的非常非常令人费解”,并指出这些类型的蛋白质以前没有可视化过二聚体的形成。“这几乎就像捕捉一堆飞行中的鸟的照片”—Lima 结构生物学家“从我们进行的生化实验中,我们知道二聚化对降解很重要,”他继续说道。“但对我们来说,尚不清楚二聚体在引导RNA到RNA外切体的过程中起了什么作用。为了解开这个谜团,研究小组希望在降解的不同步骤中捕获相互作用的NEXT复合物,然后用冷冻电镜将这些构象可视化。RNA的降解与疾病RNA降解的重要性不言而喻:有缺陷或失控的降解会引起许多疾病。最著名的例子是便是囊性纤维化,在这种情况下,一些负责编码离子通道或者转运体蛋白的信使RNA被RNA降解通路降,这使得肺粘膜中的一些关键蛋白质无法正常表达,从而造成粘液的堆积并导致呼吸严重受损。“这是RNA质量控制失调的一个典型例子,”Lima博士说。RNA降解途径的缺陷也在几种类型的癌症中发挥作用。事实上,MSK的基因检测平台MSK-IMPACT检测的与RNA外切体途径相关的两个突变基因,其中一个突变在NEXT蛋白上。“不仅信使RNA需要适当的质量控制,”Lima博士解释说。“现实情况是,如果你的RNA质量控制通路出现了问题,你的核糖体将不起作用,你的转移RNA将不起作用,你的剪接体也将不起作用的话,引起一系列连锁反应,会有很多种疾病找上门来”RNA所起的作用之广解释了为什么有缺陷的RNA降解途径会产生严重的致病作用。要理解这些效应,不仅需要对RNA外切体本身有更深入、更广泛的了解,还需要对NEXT等“上游”蛋白质有更深入、更广泛的了解,这些蛋白质有助于监测RNA并确定RNA何时存在缺陷或不再需要。“我们希望能在体外进行RNA降解反应,将样品放入冷冻电镜中,并捕捉到它们在工作时所有可能动态构象。”Lima博士说。“作为结构生物学家,我们希望能够看到动态的过程,重现其工作过程。相关文献摘要RNA质量控制依赖于辅助因子和链接物来识别和准备底物,以便由核糖核酸酶(如3′到5′核糖核酸外显子)进行降解。我们解析了人源细胞核外切体靶向蛋白(nuclear exosome targeting ,NEXT)结合RNA的复合物的冷冻电镜结构,为底物识别以及RNA移交给RNA外切体之前作用机制提供了见解。结构揭示了ZCCHC8作为一个支架蛋白,形成同源二聚体,和MTR4螺旋酶相互作用并介导将柔性较大的RBM7结合到解旋酶的核心位置。三个亚基协同作用以结合RNA:RBM7和ZCCHC8检查3′端上游的序列,促进MTR4捕获RNA。ZCCHC8覆盖了MTR4的表面,这对RNA的结合和释放以及MPP6依赖性的招募和对接到RNA外切体核心很重要。这些相互作用,通过协调RNA的捕获、移位和从螺旋酶中释放到外切体中,完成RNA的降解和调控。总结 RNA的质量控制是细胞生命的重要组成部分。 RNA外切体会降解有缺陷、有害或不再需要的RNA。 科学家们已经使用冷冻电镜来确定降解机制关键部分的结构,称为NEXT。 NEXT蛋白的突变可导致包括癌症在内的疾病。相关文献Structural basis for RNA surveillance by the human nuclear exosome targeting (NEXT) complex
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制