当前位置: 仪器信息网 > 行业主题 > >

栽培二棱大麦

仪器信息网栽培二棱大麦专题为您提供2024年最新栽培二棱大麦价格报价、厂家品牌的相关信息, 包括栽培二棱大麦参数、型号等,不管是国产,还是进口品牌的栽培二棱大麦您都可以在这里找到。 除此之外,仪器信息网还免费为您整合栽培二棱大麦相关的耗材配件、试剂标物,还有栽培二棱大麦相关的最新资讯、资料,以及栽培二棱大麦相关的解决方案。

栽培二棱大麦相关的资讯

  • 【网络研讨会】naica® 六色微滴芯片数字PCR系统高通量绝对定量检测大麦单花粉中核减数分裂重组率
    2021年7月15日星期四(北京时间:11:00PM),德国莱布尼茨植物遗传与作物研究所(IPK)的Stefan Heckmann教授和Yun-Jae Ahn博士将在线分享:基于naica® 六色微滴芯片数字PCR系统无需全基因组扩增 (WGA),高通量绝对定量检测大麦单花粉核减数分裂重组率”的研究。本次网络研讨会将讨论关于开发单个花粉核基因分型,实现数字PCR高通量绝对定量检测四个特定染色体间隔内的减数分裂重组率。主题:naica® 六色微滴芯片数字PCR系统高通量绝对定量检测大麦单花粉中核减数分裂重组率日期:2021年7月15日(周四)时间:北京时间11:00PM内容简介:植物育种利用减数分裂重组产生的新等位基因组合。在受精前直接测量配子中的减数分裂重组率,从单个个体中筛选出大量的样本,无需隔离种群分子标记分析,无需费时的细胞学观察的交叉互换(Cross Over)检测。目前由于花粉核DNA含量有限(~5 pg/单倍体细胞核),大麦花粉单核基因分型方案需要先进行全基因组扩增(WGA),再进行PCR分型或单细胞测序,从而限制了分析样本的数量。德国莱布尼茨植物遗传与作物研究所(IPK)科学家,基于Stilla® Technologies 公司的naica® 六色微滴芯片数字PCR系统,开发了一种单花粉核基因分型检测方法,在不进行WGA的情况下,以高通量测定四个特定染色体间隔内(两个着丝粒和两个远端)的减数分裂重组率。通过对花粉核的热稳定性限制性酶消化提高了基因分型检测的效率,完成了42,000多个花粉核进行了基因分型。杂交花粉核中测得的减数分裂重组率与隔离种群测得的重组率一致。基于naica® 六色微滴芯片数字PCR系统,通过多重分析可在两个染色体间隔同时检测,进一步提高了样本通量。该系统同时兼容基于多种不同核大小和DNA数量的农作物细胞核,证明基于naica® 六色微滴芯片数字PCR系统的单核基因分型检测方法具有广泛适用性。该成果“High-throughput measuring of meiotic recombination rates in barley pollen nuclei using Crystal Digital PCR™ ”已发表于The Plant Journal ( IF 6.417 ) PubDate : 2021-05-05 ,DOI: 10.1111/tpj.15305主讲人:Evi Lianidou博士(雅典大学分析化学和临床化学)德国莱布尼茨植物遗传与作物研究所(IPK),隶属于德国莱布尼茨科学联合会,坐落于德国Gatersleben,研究定位以作物为主要对象,研究野生和栽培植物的遗传多样性,并利用这些材料,开展具有原创性的科学发现和技术创新,并实现农作物的分子改良。经过长达70多年的收集,保存了151,000多份不同作物的种质资源,是欧洲最大的种质资源收集与保藏中心,为IPK和世界相关研究人员研究作物基因和基因组演变、发展和表达规律提供了独一无二的研究材料。注册页面:注册链接:https://u9cm7yjb.pages.infusionsoft.net/
  • 基因测序证明栽培苹果起源于新疆
    p   8月15日,国际著名学术期刊《自然· 通讯》以《基因组重测序揭示苹果起源演化历史及果实大小的二步驯化模型》为题发表了山东农业大学陈学森教授研究团队与美国康奈尔大学费章君研究团队的合作研究成果,证明世界栽培苹果起源于我国新疆。 br/ /p p   苹果是世界温带地区栽培面积最大的果树之一,其起源演化与人类文明进步密不可分。两个科研团队利用高通量测序及生物信息学技术,对亚洲、欧洲和美洲等世界范围的苹果属24个种、117份种质资源进行了全基因组重测序,共检测到720万个高质量的最小基因单位(SNPs),为苹果资源研究和分子育种提供了海量有价值的基础数据。 /p p   “研究发现,我国新疆境内的塞威士苹果保持较高的同源性、最原始,而同属中亚地区的哈萨克斯坦境内的塞威士苹果基因杂合度则相对较高。这充分说明,世界栽培苹果起源于我国新疆。”陈学森告诉记者。 /p p   近年来,陈学森带领研究团队围绕新疆野苹果资源的保护、发掘、创新与利用开展攻关,构建了新疆红肉苹果与苹果品种杂种一代、二代分离群体,明确了新疆野苹果遗传多样性特征及性状遗传变异特点,提出了苹果类黄酮生物合成的转录调控网络,创建了“果树多种源品质育种法”“易着色苹果品种培育法”及“三选两早一促的苹果育种法”等优质高效育种技术体系。 /p p br/ /p
  • 中国人首次在太空种菜 栽培装置部分来自3D打印
    天宫二号11月13日电,大家好!今天(11月11日)是神舟十一号飞行乘组进入组合体第二十四天。我是新华社太空特约记者、航天员景海鹏。  听说有很多网友关心我们在天宫种植的生菜,今天我就具体和大家讲一讲。  【航天员中心环控生保研究室副研究员王隆基解说:选择栽培生菜有以下原因:一是生菜的生长周期是一个月,这一次在轨时间恰好是30天 二是生菜在地面上的种植技术比较成熟 三是生菜可食用,在后续的在轨实验中可以作为食材 四是生菜是老百姓比较常见的植物,有利于进行科普宣传。】  今天做的是一些常规照料工作,主要是检测栽培基质的含水率、养分含量,灯光照射以及用注射器往基质推入空气。我们有一个仪器检测含水率,如果显示指数低,就说明需要给生菜浇水了。注入空气是为了让生菜的根部呼吸到新鲜空气,有利于植物的成长。我们就像是太空的“农民”,每天至少都要花10分钟的时间来照料生菜。  另外,在太空种生菜使用的基质和地面的土壤是不一样的,我们用的是蛭石。  【王隆基解说:蛭石是一种矿物质,它的吸水性非常好,水分在其中传导非常均匀,即使是在地面有重力的情况下,向上吸附都非常流畅 另外它密度小质量轻,便于携带上天。】  植物栽培是在我们进入组合体的第二天开始的,首先我们需要安装栽培装置,就像是搭积木一样,把装置的各个部件组装成一个白色箱体。  【王隆基解说:白色装置的固件是3D打印的,都是尼龙性材料,比较轻便,白色和绿色形成了一个鲜明的对比,视觉效果也很好。它上面有两个器件,一个用来测量土壤中的水分和养分参数,另一个用来在植物生长后期在封闭情况下测量植物光合作用。】  接着我们就会浇水、播种。在上天之前,有一部分种子已经放入白色的单元格里面,这些种子是经过特殊处理的丸粒化种子。由于生菜的种子比芝麻粒还小,为了方便我们播种,专家们特意在外面做了一层包衣,使它和绿豆粒差不多大,方便直接手拿。包衣在吸饱水后会裂开,但在后面的成长过程中,我们发现,包衣对种子发芽的速度会有细微的影响。  在天上播种的方式和地面不同,地面一般是先播种后浇水,但由于我们带入太空的白色单元格是硬质材料,只有吸水软化后,种子才能放进去,所以我们是先浇水后播种。  播种完后,我们会在装置里铺上一层保鲜膜,就和种庄稼的地膜一样。它的作用是保护植物,防止水分流失。  在进入组合体的第五天早上,我们发现种子发芽了。当时我和陈冬兄弟都非常高兴,第一时间把这个好消息告诉了地面工作人员。我们拍了很多照片,还跟生菜芽合影留念了。  种子发芽后,我们就会拿掉地膜,把安装在白色装置顶端的灯打开,给生菜提供光照。灯光是由红、蓝、绿三种颜色组合而成的,主要偏红色。  【王隆基解说:生菜对红光吸收效率非常高,在红光照射下生长得很好 采用绿光是因为它照射到生菜叶上,视觉效果非常好 蓝光则是对植物形态舒展具有较强作用。】  生菜进入成长期后,在光照的作用下,就开始变绿了。  我们第一次给生菜间苗和补水是播种后第六天。间苗那天,我和陈冬兄弟发现生菜长得特别新鲜,看着比地面的要绿一些。  我们间苗用的是镊子,主要是把长得相对差一些的生菜连根拔出来,在每个单元格里保留两棵菜苗。因为菜苗都非常嫩,所以我们得非常小心,一不留神就会把保留的生菜苗损坏。  过了3天后,我们开始了第二次间苗和浇水,这时每个单元格就只有一棵菜苗了。浇水其实不是每天都需要做的,专家为我们设定了5次浇水,每次浇水使用的是注射器,将水注入生菜根部。  除了播种、间苗、浇水,我们还需要每天对生菜进行观察、拍照,检查基质的含水率、养分含量等。  到今天为止,在我们亲手照料下的生菜,已经长得很好了。我们看着它们一天天成长,很有满足感。  有网友提问,在太空,生菜生长的方向会发生变化吗?长得怎么样了?  在这里,我要告诉这位网友,我们种植的生菜和地面是一样的,也是向上生长的,而且长得好像比地面更高一些。  【王隆基解说:虽然太空是失重环境,但是因为植物有趋光性,所以它依然是朝上长 同时植物还具有趋水、趋肥性,它的根部就会朝着富有水分和养分的基质生长。】  下周二,是我们在轨种植蔬菜的最后一天,到时候我们会进行植物采样,把生菜的叶子和根茎剪掉,放到低温储蓄装置中,再把它们带回。  听说有网友很好奇,种出来的生菜能吃吗?  这次我们种的蔬菜是用来做实验的,暂时不食用。我相信经过研究,以后我们在太空种的各种蔬菜,肯定是可以吃的。我也期待着在太空吃上自己种出来的蔬菜。  【王隆基解说:这次是我国首次在太空人工栽培蔬菜,暂时不让航天员食用。我们要把植物采样带回来,进行生物安全性检测,比如检测植物表面的微生物是否超标。只有检测合格后,我们才会在下次实验中考虑让航天员食用栽培的蔬菜。在轨植物栽培技术,是未来长期太空载人活动、深空探测等必不可少的一项技术,将来我们还会做其他物种的大面积栽培实验,通过几轮实验,逐步掌握植物在太空生长的规律,便于以后在空间站种植种类更多、面积更大的植物。】
  • 原生态有限公司成功参加2016年全国青年作物栽培与生理学术研讨会
    由中国作物学会主办,农业部作物生理生态与耕作学科群及中国作物学会栽培专业委员会协办,山东农业大学与中国农业科学院作物科学研究所共同承办的“2016年全国青年作物栽培与生理学术研讨会”于2016年10月26-28日在山东省泰安市顺利召开。原生态有限公司(即北京普瑞亿科科技有限公司)应邀参加了此次大会,主要展示了G4301便携式CO2 CH4 H2O分析仪、G2201-i CO2 CH4同位素分析仪、G2508 CO2 CH4 N2O NH3 H2O分析仪、超高精度液态水和水汽同位素分析仪(L2130-i、L2140-i)、CRS-1000/B土壤含水量测量系统、环境气象监测等多款仪器,同时也将稳定同位素分析和元素分析服务展示给与会专家学者。本次会议以“作物可持续生产与现代农业”为主题,围绕作物高产高效协同的理论与技术、作物节本增效耕作的理论与技术、作物抗逆稳产及对环境适应机制和作物轻简化生产的原理与技术等四个专题,与会专家学者深入探讨了作物生理生态与栽培耕作学科的发展方向与研究重点。我公司高度重视此次会议,公司总经理张光辉先生亲自带队前往,由销售主管张学涛和销售工程师李锦桥进行现场讲解。在我公司的展台前,不断有与会专家学者领取产品资料,咨询仪器性能、操作使用等相关问题,并留下仪器使用需求和购买意向。值得一提的是,新一代超轻便、电池供电的温室气体分析仪——Picarro G430便携式CO2 CH4 H2O分析仪在展会上相当吸睛。其兼顾了便携性以及测量所需的高精度和灵敏度,整体设计结实耐用,重量轻至11.3Kg,稳定功率为25W;其采样系统和内部整合的气体泵,可用于土壤的气室开发式或闭路式测量,并具备其他野外使用的扩展功能。该设备采用近红外激光,通过高精度传感器进行特定识别,用单一的时间变量进行浓度分析,测量有效路径可达5km。高精度测量腔室只有35ml,并配备高精度温度和压力控制系统,确保仪器在不断变化的环境条件下获得超高的精确度、准确性和超低的漂移。通过参加此次全国青年作物栽培与生理学术研讨会,促进了我公司与科研学者的深入交流,加强了与同领域科研机构和大学的对接,进一步提升了我公司在生态学相关领域的影响力,也为推动作物生理生态与栽培耕作学科的创新发展提供了新思路。关于北京普瑞亿科科技有限公司: 北京普瑞亿科科技有限公司以经营稳定性和放射性同位素分析仪、超痕量气体分析仪、环境气象观测系统、元素分析仪等仪器设备为主,兼顾自主创新研发,致力于为广大用户提供先进仪器设备和成套解决方案的综合性企业。公司在温室气体研究、同位素分析、食品掺假和溯源分析、痕量气体检测、元素分析、气象观测、应急响应、军事防御、城市安全等领域开展工作。 北京普瑞亿科科技有限公司已与多家国际厂商签订代理协议,负责其产品在中国区的推广、销售、维修和技术支持等服务。主要包括以激光稳定性同位素分析仪和超痕量气体仪而著称的美国Picarro公司,以提供高品质民用航空和军事气象站解决方案而著称的美国Coastal公司,以提供中尺度土壤含水量测量系统而著称的美国Hydroinnova公司,以提供最高精确度绝对碳含量测量而著称的美国UIC公司,以基于零空白自动取样技术的高品质微型元素分析仪而著称的意大利NC Technologies公司,以提供多用途光谱分析系统解决方案而著称的德国Tec5公司;同时与美国PerkinElmer公司,美国ThermoFisher公司等进行深度合作,并与波兰Easy Test ,美国2B,美国Apollo SciTech等公司达成合作共识。 更多详情请关注北京普瑞亿科科技有限公司官网:www.pri-eco.com
  • Picarro+LI-2100 | 双同位素+功能基因-研究无土栽培系统中N2O的生产和消耗过程
    中国是最大的温室蔬菜生产国,约占世界生产面积的83%。由于全年生产和大量施肥,温室蔬菜产量高,但也导致了土壤质量的恶化和严重的环境问题。近来,无土栽培系统(SCS)在温室蔬菜生产中逐渐发展起来,它可以减少甚至消除传统栽培方式的许多问题,。在SCS中,无土栽培基质,也称为无土栽培生长介质,可代替土壤固定根系系统,为植物提供水分和养分,为根区提供充足的通风。然而,由于N肥的大量输入,N2O排放较高。N2O是一种温室气体,具有温室效应,加剧全球变暖,在大气中存留时间长,可输送到平流层,导致臭氧层破坏,引起臭氧空洞。无土栽培基质已成为SCS中N2O排放的主要载体,但尚不清楚其产生和消耗的相关途径,因此亟待研究SCS无土栽培基质的N2O排放源。且无土栽培基质与土壤理化和生物性质高度不同,其具有更准确的水和养分分布,因此也有必要确定管理措施对SCS中N2O排放的影响。基于此,在本文中,来自中国农业科学研究院的一组研究团队基于稳定同位素技术结合qPCR分析在两种灌溉模式下(滴灌和潮汐灌溉)对成都市农林科学院((103°86′E,30°71′N)温室里两种无土栽培基质(60%泥炭+20%珍珠岩+20%蛭石+少量植物纤维/商用椰壳纤维基质)进行了相关研究,共设置4种处理:滴灌+泥炭基质(PD),滴灌+椰壳基质(CD),潮汐灌溉+泥炭基质(PT)以及潮汐灌溉+椰壳基质(CT)。旨在:(1)研究两种灌溉模式下典型无土栽培基质的N2O排放,(2)评估N2O排放及其驱动因子之间的关系以及(3)理解N2O生产和消耗的微生物机制。作者于2020年3月12日在育种室进行西红柿播种,4月9日转移至温室中。施肥后的不同时间里收集气体样品,计算NH3和N2O通量,并测量N2O同位素值。同时,收集了无土栽培基质样品,去除可见根系,过筛,测定质量含水量(ω),计算充水孔隙度(WFPS)。然后测定无土栽培基质的NH4+-N、NO3--N、pH、导电率(EC)、有机质(OM)。提取基质中的总DNA,进行qPCR分析。此外,利用全自动真空冷凝抽提系统(LI-2100,北京理加联合科技有限公司)提取基质样品中的水分,利用Picarro L115-I同位素分析仪测定水的δ18O值。通过δ18O和δ15NSP关系图来区分N2O生产和消耗途径。【结果】四种处理下(A)总含水量(B)NH4+-N(C)N2O通量(D)充水孔隙度(E)NO3--N以及(F)NH3通量的时间变化。基于pearson相关方法的不同参数之间的相关性热图。δ18O和δ15NSP关系图(A)以及N2O生产和消耗的微生物过程的贡献(B)。BN:细菌硝化作用;AN:古细菌硝化作用;ND:硝化细菌反硝化作用;BD:细菌反硝化作用。Ni:BN + AN;De:BD + ND。【结论】N2O排放由微生物组而非矿物N含量决定,由基因丰度而非基因拷贝数决定。在N2O产生途径上,泥炭基质以反硝化为主,椰壳基质以硝化为主。在无土栽培系统中,N2O还原(还原-混合)的情况可能更接近现实。反硝化和N2O还原受基质类型而非灌溉方式的影响显著,且在泥炭基质中贡献较大。综上所述,N2O排放及其微生物过程是由基质类型决定的,而非灌溉模式。更重要的是,N2O同位素值和功能基因相结合可阐明N2O产生和消耗的微生物过程。
  • 275万!天然橡胶综合栽培技术试验基地建设项目仪器设备采购
    项目编号:GZCQC2202HG05031项目名称:天然橡胶综合栽培技术试验基地建设项目仪器设备采购预算金额:275.0000000 万元(人民币)最高限价(如有):275.0000000 万元(人民币)采购需求:1.采购项目内容:具体内容详见招标文件《第三章 采购人需求》。2.采购国产产品。合同履行期限:合同签订后,国产产品60天(日历天)内完成交货、安装、调试、提供相应技术服务,保证项目交付采购人验收通过。本项目( 不接受 )联合体投标。
  • Resonon | WinRoots:用于土壤胁迫下植物表型研究的高通量栽培和表型分析系统
    土壤是重要的自然资源,地球上95%的食物来源于土壤,土壤保存了至少四分之一的全球生物多样性,不仅是粮食安全、水安全和更广泛的生态系统安全的基础,更是为人类提供多种服务、帮助抵御和适应气候变化的重要因素。由土壤组成造成的胁迫,例如盐、重金属和养分亏缺是作物减产的主要原因。作物土壤耐逆性是一种复杂性状,涉及植物形态、代谢和基因调控网络等多种遗传和非遗传因素的调控。传统的作物表型研究通常在田间进行,费事费力、劳动密集、低通量、且受研究人员无法控制的自然环境因素的影响。在此情形下,难以获得高精度的表型数据以满足表型组学的研究需求。在过去几十年,已经开发了几种HTP(高通量表型)平台在现场或可控条件下使用,但其运维成本极高。此外,作物表型相关研究通常只关注植物地上部分,而对根系形态数据的获取有限。然而,根系是植物吸收水分和养分的主要途径,也是碳水化合物的储存器官和土壤胁迫的直接感知器官。因此,根系表型是土壤胁迫条件下植物表型研究的重要组成部分。就通量、环境可控性和根系表型获取而言,现有的植物表型平台无法完全满足植物对土壤胁迫响应的表型组学研究的特定需求。基于此,在本文中,来自山东大学生命科学学院和潍坊农科院的一组研究团队描述了其最近开发的高通量植物栽培和表型系统—WinRoots平台。以大豆植物为研究对象,将其暴露在盐胁迫中,证明了土壤盐胁迫条件的一致性和可控性以及WinRoots系统的高通量。他们开发了优化的盐胁迫条件,以及适用于大豆耐盐性的高通量表型指数。此外,高通量多表型分析表明,子叶特征可作为大豆全苗耐盐性的非破坏性指标。在本研究中,Canon EOS 700D数码相机和Resonon Pika L高光谱成像仪分别用于获取RGB和高光谱图像。相机位于植物材料上方1.5 m的可滑动水平导轨上。每天收集大豆冠层和整株幼苗的图像。栽培第九天,获取离体叶片图像,每个品种重复3次。WinRoots系统:高通量根系和整株植物表型平台。系统使用示意图。【结果】盐胁迫相关性状之间的相关分析。(A)盐胁迫相关性状之间的相关矩阵。(B)预测值和观测值之间的回归曲线。大豆盐胁迫相关性状的合成聚类。(A)大豆盐胁迫相关性状的合成聚类剖面图。(B)聚类1和聚类2代表性栽培品种表型。(C)聚类1和聚类2指标比较。【结论】WinRoots系统为幼苗生长提供了均一可控的土壤胁迫条件,可用于土壤胁迫下高通量栽培和表型分析,有助于提供准确多样的土壤胁迫相关的表型数据。因此,WinRoots提供了一种分析诸如土壤胁迫之类的复杂性状的改进方法。HPPA(Hyperimager Plant Phenomics Analysis)高光谱植物表型成像系统由北京依锐思遥感技术有限公司与美国RESONON公司联合研制生产,整合了高光谱成像测量分析、RGB真彩色图像、无线自动化控制系统、线性均匀光源系统等多项先进技术;最优化方式实现大量植物样品的数据采集工作,可用于高通量植物表型成像分析测量、植物胁迫响应成像分析测量、植物生长分析测量、遗传组学与表型组学、遗传育种、生态毒理学研究、性状识别及植物生理生态分析研究等。请点击以下链接,阅读原文:https://mp.weixin.qq.com/s?__biz=MjM5NjE1ODg2NA==&mid=2650311205&idx=3&sn=ffe393bdf01d664cab05b92572691916&chksm=bee1a6da89962fccef8eae610681ac22d2239e59d016db96cd911d103186c3459c4061ca30bf&token=1489736406&lang=zh_CN#rd
  • 诺德泰科携DN2000杜马斯定氮仪参加2016年全国青年作物栽培与生理学术研讨会
    10月26-28日,由中国作物学会主办、中国作物学会栽培专业委员会及农业部作物生理生态与耕作学科群协办、山东农业大学承办的2016年全国青年作物栽培与生理学术研讨会在山东省泰安市召开。学科群首席专家中国工程院院士于振文,中国工程院院士张洪程,中国作物学会秘书长杜鹃,以及来自全国21个省区科研院所和高校的260余位专家、学者和研究生参加会议。会议以“作物可持续生产与现代农业”为主题,分作物高产高效协同的理论与技术、作物节本增效耕作的理论与技术、作物抗逆稳产及对环境适应机制、作物轻简化生产的原理与技术等4个子专题进行交流研讨。张洪程院士、中国农业大学陈阜教授、中国农业科学院作物所赵明研究员、山东农业大学贺明荣教授和南京农业大学程涛教授分别作专题报告;另有28位科研人员及博士研究生作学术报告,内容涵盖我国目前作物生理生态与栽培耕作学科的研究热点、研究进展以及未来的发展方向。氮元素是作物生长所需要的大量元素之一,是作物生长过程中的重要元素。氮元素在作物体内的转移现象是非常有趣:作物生长前期和中期,氮元素存在于茎叶中;等作物结实以后就大部分进入果实中去。所以说作物籽实中含氮元素一半是从茎叶储存并转移而来的,其余部分是籽实形成当时根系从土壤中吸收的。作物前期和中期生长好坏对氮元素的吸收,直接影响作物的产量。因此,氮元素的含量测定是农作物研究最重要的基础数据。作为国产杜马斯定氮仪的先行者,诺德泰科推出了DN2000杜马斯定氮仪,和传统的凯氏定氮相比,DN2000的优势可以用“多快好省”来概括:多:60位全自动进样器,分析样品更多快:分析速度从几小时降为几分钟好:无需腐蚀性和污染环境的化学试剂省:更低的安装要求和运行费用其突出的特点引起了众多青年学者的极大兴趣,纷纷就感兴趣的内容和我们的与会人员展开了热烈讨论,相关人员也就大家关心的问题积极予以解答,并虚心听取了各位专家的意见和建议。这些意见和建议也将激励我们做出更优秀的产品,为农作物栽培等领域的研究献上一份绵薄之力。
  • HORIBA海外用户简讯|加拿大麦吉尔大学最新研究或为糖尿病治疗开启新契机
    供稿:Sophie编辑:Joanna、鲁逸林随着社会经济的发展和人们生活方式的改变,糖尿病患病率在全球正处于快速上升期,日益成为严重威胁人类健康的全球性慢性疾病。 而这种疾病的致病根源是胰岛细胞的分泌缺陷。过去人们研究糖尿病,多关注胰岛激素中胰岛素和胰高血糖素,对旁分泌激素的作用不太重视,至于同时监测两种以上胰岛激素的分泌情况更为鲜见。近期,加拿大麦吉尔大学生物医学工程系和牙科学院的研究人员利用基于表面等离子共振成像技术(SPRi)的生物传感器,研究了胰岛细胞的旁分泌作用,并实现并行检测多种胰岛激素,这为糖尿病的治疗方法探索了一条新途径。麦吉尔大学(图片转自网络)相较于传统方式只能一次检测单一激素的模式,利用SPRi生物传感器不仅可同时直接检测多种胰岛激素,而且操作简单、耗时短、半小时内即可完成检测分析,大幅提高了研究人员的工作效率。此外它很容易与微流体灌流装置结合,还原胰岛的天然体内条件信息,实时分析胰岛分泌等,我们有理由相信它将为糖尿病的治疗开启新契机。该研究以《Multiplex Surface Plasmon Resonance Imaging-Based Biosensor for Human Pancreatic Islets Hormones Quantification》为题,发表于《Analytical Chemistry》(扫描二维码可直达英文原文)。扫描识别查看 阅读英文原文如需了解该研究中的测试方法,可扫描下方二维码进行留言,我们的应用专家将乐于为您提供解答服务。扫描识别查看 获取技术服务免责说明HORIBA Scientific公众号所发布内容(含图片)来源于文章原创作者提供或互联网转载。文章版权、数据及所述观点归原作者原出处所有,HORIBA Scientific 发布及转载目的在于传递更多信息及用于网络分享,供读者自行参考及评述。如果您认为本文存在侵权之处,请与我们取得联系,我们会及进行处理。HORIBA Scientific 力求数据严谨准确,如有任何失误失实,敬请读者不吝赐教批评指正。我们也热忱欢迎您投稿并发表您的观点和见解。HORIBA科学仪器事业部结合旗下具有近 200 年发展历史的 Jobin Yvon 光学光谱技术,HORIBA Scientific 致力于为科研及工业用户提供先进的检测和分析工具及解决方案。如:光学光谱、分子光谱、元素分析、材料表征及表面分析等先进检测技术。今天HORIBA 的高品质科学仪器已经成为全球科研、各行业研发及质量控制的首选。
  • 全国特殊食品标准化技术委员会发布《大麦苗粉制品中大麦源性成分检测方法PCR法》行业标准(征求意见稿)
    附件:1.《大麦苗粉制品中大麦源性成分PCR检测方法》行业标准(征求意见稿)2.《大麦苗粉制品中大麦源性成分PCR检测方法》行业标准(征求意见稿)编制说明3.《大麦苗粉制品中大麦源性成分PCR检测方法》行业标准(征求意见稿)意见反馈表
  • 中关村材料试验技术联盟发布CSTM团体标准《大麦苗及其制品中大麦黄苷和皂草黄苷含量的测定 高效液相色谱法》征求意见稿
    由中国材料与试验标准化委员会科学试验标准化领域委员会科学试验装置标准化技术委员会(CSTM/FC98/TCO3)归口承担的《大麦苗及其制品中大麦黄苷和皂草黄苷含量的测定高效液相色谱法》团体标准(立项号:CSTM LX 980301402—2023)已完成征求意见稿,按照《中关村材料试验技术联盟团体标准管理办法》的有关规定,现公开广泛征求意见。请于公告在CSTM官方网站/全国团体标准信息平台发布之日起30个自然日前将《中国材料与试验标准化委员会标准征求意见表》以电子邮件形式反馈至项目牵头单位或者CSTM/FC98/TCO3秘书处。逾期未回复者视为无意见,诚挚感谢!项目牵头单位联系方式联系人:王环电话:15202580197邮箱: wanghuan@nwipb.cas. cn秘书处联系方式联系方式:刘明电话:13522937718邮箱:1ium@ncschina.com附件:《大麦苗及其制品中大麦黄苷和皂草黄苷含量的测定 高效液相色谱法》征求意见稿.pdf《大麦苗及其制品中大麦黄苷和皂草黄苷含量的测定 高效液相色谱法》征求意见表.docx中国材料与试验标准化委员会科学试验标准化领域委员会科学试验装置标准化技术委员会2023年12月25日
  • 5万亿设备更新:高等职业学校茶树栽培与茶叶加工专业仪器设备装备规范
    3月13日,国务院印发《推动大规模设备更新和消费品以旧换新行动方案》,明确到2027年,工业、农业、教育、医疗等领域设备投资规模较2023年增长25%以上。  在教育领域,明确“推动符合条件的高校、职业院校(含技工院校)更新置换先进教学及科研技术设备,提升教学科研水平。”其中强调,“严格落实学科教学装备配置标准,保质保量配置并及时更新教学仪器设备。”  以下为仪器信息网整理教育部公布的高等职业学校茶树栽培与茶叶加工专业仪器设备装备规范:
  • 【微塑料】人类一手栽培的催命符 海洋中的“PM2.5”
    p   日前,澳大利亚塔斯马尼亚大学海洋和南极科学研究学院发布的一项报告再次引爆了“微塑料”这个议题。报告称,在澳东南部海域海底的沉积物中发现高浓度塑料微粒,很可能污染整个食物链。 /p p   微塑料,直径小于5微米,细小到用肉眼难以发现它。也正因如此,它对海洋生物乃至人类皆产生了巨大的危害。联合国专家组(GESAMP)已将其列为海洋生物的“温柔杀手”,并指出其危害程度等同于大型海洋垃圾。 /p p   但这一强大的劲敌确是人类一手栽培喂饱的,这些塑料微粒或来源于我们日常使用的化妆品、清洁用品中,或来源于纤维类衣物脱离出的细小颗粒,又或者来源于环境中的塑料垃圾,它们经过催化分解最终形成了塑料颗粒??可以说,海洋中的微塑料来源非常复杂,既有陆地河流、工业和生活污水、塑料垃圾等陆源输入,也有船舶运输、海上钻井平台等海源输入。 /p p   微塑料逐渐为大众所知 /p p   早在上世纪70年代,海洋微塑料污染的相关研究已经开展。 /p p   2001年,一位国外科学家报道了其研究海域水体中,微塑料的密度每立方米约有上亿个,才逐步引起各国政府、媒体和研究者的广泛关注。 /p p   2004年,英国科研人员在美国《科学》杂志上发表了关于海洋水体和沉积物中塑料碎片的研究论文,首次提出微塑料(Microplastic)这个概念。 /p p   2014年,英美研究人员联合在《科学》杂志上发表的观点文章指出:微塑料已遍布整个海洋,而生物体中微塑料的污染状况以及造成的生态效应和健康风险是当前微塑料研究应着重关注的问题。 /p p   2014年6月,联合国环境大会上提出了海洋废弃物和微塑料问题,并最终达成了“海洋塑料废弃物和微塑料决议”,提出开展有关海洋塑料废弃物和微塑料的研究。 /p p   2015年,微塑料污染被列入环境与生态科学研究领域的第二大科学问题,并成为与全球气候变化、臭氧耗竭和海洋酸化并列的重大全球环境问题。 /p p   微塑料的危害 /p p   科学研究已经证实,海洋中的微塑料污染对海洋生物的生长、发育、躲避天敌和繁殖的能力皆有不同程度的影响。微塑料除了对海洋生物造成一定的危害,还通过食物链进入到更高等级的生物体内,并最终为人类所食用。 /p p   威胁海洋生态 /p p   中国一份关于海洋鱼类的调查显示,在20多种经济价值较高的常见鱼类中,90%的鱼类样本中都发现了微塑料。 /p p   前不久,科学家首次拍摄了浮游生物摄入微塑料的一小段视频,视频形象地揭示了微塑料对海洋生物的影响,而不仅仅是停留在宣告阶段,它向全人类证实了,废弃的塑料确实可以进入海洋生物体内,并沿着食物链进行传递。 /p p   威胁人类健康 /p p   经过食物链的传递,那些“被微塑料”了的海洋生物,如鱼类、贝类等,最终流向人类的餐桌,而微塑料也因此而进入了人体。 /p p   另外,研究专家已经证实,人类摄入微塑料也不仅仅是通过食用海洋生物。一个由墨西哥和荷兰科学家组成的研究小组通过在墨西哥洛斯佩泰尼斯生物圈保护区的实地研究首次证实,微塑料已经进入陆地食物链。 /p p   他们表示,由于缺乏塑料回收和处理系统,洛斯佩泰尼斯的居民通常在焚烧塑料后将其掩埋到果园的地下,这就增加了这些塑料废弃物分裂为微塑料的风险。为了评估这种情况,研究人员对保护区中10个果园的土壤以及生活在土壤中的蚯蚓、居民饲养在果园里的母鸡的粪便和胃脏进行了分析,结果显示,在土壤里、蚯蚓体内、母鸡粪便和胃里都存在微塑料。不管是海洋生物还是陆地生物,如果人类长期摄入微塑料,很可能对身体健康构成威胁。 /p p   微塑料延伸到哪了? /p p   北极 /p p   研究人员发现,数以万亿计的微塑料颗粒出现在了北极的海冰中,每立方米的海冰中含有多达240个微塑料颗粒,这一分布密度是大太平洋垃圾漂浮带微塑料颗粒的2000倍。 /p p   达特茅斯大学的材料学家兼工程师RachelObbard和她的同事通过样本估算指出,如果北极海冰全部融化,将会释放出7万亿多个微塑料片。 /p p   南极海 /p p   日本九州大学与东京海洋大学公布的调查结果显示,南极海也漂浮着“微塑料”。微塑料常见于人口密集的全球沿海地区,而在南极海发现被认为尚属首次。 /p p   该项调查在澳大利亚与南极大陆间的5个地点实施。通过拉密孔网采集海面附近浮游生物的样本,在距离南极较近的2个地点发现大量塑料粒子,平均每吨海水中有0.05个至0.1个,经换算每平方公里约有14万至29万个,与北半球海洋平均10万个的数量不相上下。 /p p   澳大利亚东南海域 /p p   澳大利亚塔斯马尼亚大学海洋和南极科学研究学院发布报告称,在澳东南部海域海底沉积物中发现高浓度塑料微粒,很可能污染整个食物链。 /p p   2015年,研究小组从新南威尔士州、维多利亚州、塔斯马尼亚州及南澳大利亚州共计42处地点采集海底沉积物样本,并发现平均每毫升沉积物中含超过3个塑料纤维或颗粒。 /p p   日本海洋 /p p   日本环境省发布消息称,在距本州和九州沿岸100公里至200公里海域发现了细微塑料漂浮物,可能会对生态系统造成不良影响。 /p p   2014年,东京海洋大学和九州大学受环境省委托进行了调查。他们在本州和九州近海的45处地点采集了漂浮物,每1立方米海水中平均发现2.4个微塑料。环境省2010年至2012年在濑户内海实施调查时平均仅为0.4个,此次有22个地点超过了这一数值。此外,调查人员还对较大的漂浮垃圾进行了调查,结果发现其中有56%是可能会变成微塑料的石油化工制品。 /p p   中国海域 /p p   微塑料污染问题不仅仅存在于国外海域中,我国海域同样存在这一问题。中国国家海洋局调查显示,中国37个海域的海面漂浮垃圾和海滩垃圾中,塑料类占77%,并且86%—91%来自陆地。事实上,我国科学家早已证实在三亚海滩和南海浮游动物体内发现了大量微塑料。只不过,我国尚未对南海微塑料开展全面的调查研究。 /p p   各国纷纷呼吁应对微塑料污染 /p p   随着微塑料的危害性逐渐加剧升级,并为大众所熟知,各国政府也开始对此事备加关注。除了出台系列政策应对塑料垃圾之外,也出台了直接针对微塑料的系列措施,而报道最多的当属“呼吁禁止在化妆品等洗护用品中添加微塑料”。 /p p   其中,美国政府已立法宣布禁止在化妆品和洗护用品中使用微塑料,成为全球第一个宣布此项禁令的国家。 /p p   欧盟也已开始着手制定禁止在化妆品中使用微塑料的提案。 /p p   2017年起,英国也禁止在化妆品以及洗护用品中使用微塑料。 /p p   2017年3月份,瑞典环境大臣卡罗利娜· 斯科格在首届“波罗的海未来大会”上呼吁,波罗的海地区应该禁止化妆品中微塑料的使用,以减轻其对环境与人类的负面影响。 /p p   在我国,国家重点研发计划“海洋微塑料监测和生态环境效应评估技术研究”已于2016年底启动,中国科学家也开始呼吁禁止在个人护理品中添加用于深度清洁的微塑料颗粒。 /p p   微塑料危害之大想必已不必多说,对于海洋生物而言,微塑料犹如海洋中的PM2.5,而对于人类而言,微塑料则犹如一道隐性催命符。因此,及早有效应对微塑料污染已迫在眉睫。而各国在解决微塑料问题上,应该抱团协作,共同努力。据了解,新成立的“西太平洋区域海洋微塑料研究项目”就将在建立机构和专家网络的基础上,发挥区域作用,引领这一主题的研究,从制定统一采样和分析方法学的角度出发,分析海洋微塑料的分布、来源、归趋,评估其对海洋生态系统的影响。 /p
  • 644万!河北省农林科学院作物遗传育种和耕作栽培重点实验室液相色谱-高分辨质谱联用仪等采购项目
    项目编号:HBTK(2022)-01-164项目名称:河北省农林科学院作物遗传育种和耕作栽培重点实验室项目设备购置预算金额:6440000最高限价(如有):一包:4190000元;二包:2250000元采购需求:一包:液相色谱-高分辨质谱联用仪 ;二包:气相色谱-三重四级杆质谱联用仪;详见招标文件。本项目两个包可兼投不可兼中,投标单位可对两个包同时投标,但只允许成交其中一个包。合同履行期限:签订合同后90日历天本项目不接受联合体投标。
  • 文献速递 | naica® 微滴芯片数字PCR系统高通量测定大麦花粉核减数分裂重组率
    减数分裂通过产生单倍体细胞和基于同源重组(HR)产生的遗传变异来支持有性生殖。HR通过重组交换(CO)、同源染色体之间的联会,交换等来确保减数分裂染色体分离,同时保证遗传变异在育种过程中发挥作用。在植物中,同源重组可以通过几种技术检测到,例如通过减数分裂染色体分析进行细胞学检测,通过测序进行基因分型和分离群体中的分子标记或荧光标记株系(FTLs)。FTLs在拟南芥中是测量花粉或种子中减数分裂重组事件的有力工具。但FTLs不适用于作物,因为在基因组特别大的作物中产生FTLs既费力又昂贵。此外,不同的作物或某些基因型不适合遗传转化。作为替代,使用小孢子(四分体或花粉核)基因分型或测序用于直接检测减数分裂产物中减数分裂重组的结果。然而,作物小孢子的测序/基因分型相当昂贵,因此可以进行检测的数量有限,特别是对于大基因组物种如谷物。在受精前测量雄配子的减数分裂重组率有样本量大,分子标记分析独立和即时重组交换分析的优势,但配子DNA含量有限,测序/基因分型方法通常依赖于全基因组扩增(WGA)。而直接通过PCR反应分析单个配子进行基因分型也由于单倍体配子的低DNA含量无法达成。在大麦中,单花粉核基因分型是通过荧光激活细胞分选从种内杂种中分离出单个单倍体花粉核,然后进行WGA和多位点KASP基因分型或单细胞基因组测序完成的。单个单倍体花粉核的DNA有限,且WGA价格较高,导致分析样品的数量有限,无法完成高通量的分析。德国莱布尼茨植物遗传和作物植物研究所的科学家近日在《The Plant Journal》上发表了一篇减数分裂重组率测量的相关文献,该文章采用naica® 微滴芯片数字PCR系统对配子中减数分裂重组率进行测量,实现高通量和低成本的基因分型。使用基于naica® 微滴芯片数字PCR系统的基因分型分析,无需大量预先进行的WGA就可完成对大麦花粉细胞核中减数分裂重组率的高通量测量。在取得花粉后,将花粉中的花粉核取出,并通过流式进行纯化,将得到的花粉核加入naica® 微滴芯片数字PCR系统的Mix中进行检测,从而得到减数分裂重组率,通过对总共42,000个单个花粉核进行基因分型(每株分析多达4900个核),在杂交植物中测量了两个着丝粒和两个远染色体间隔内的减数分裂重组率。花粉核中确定的重组频率与分离群体中的检测到的频率接近。▲ 图1:用naica® 微滴芯片数字PCR系统进行大麦单花粉核基因分型的工作流程。(a)杂交植物的花药;(b)通过使用不同筛孔大小的过滤器(100和20微米)在悬浮液中分离花粉和花粉核。(c)花粉核用碘化丙锭染色,并流式分选到数字PCR反应Mix中。(d)将25微升数字PCR反应Mix(包括分选的花粉核)装入sapphire芯片的四个腔室之一。(e)在Geode中进行液滴生成和热循环。(f)在热循环之后,在naica® Prism 3中扫描sapphire芯片,然后在Crystal Miner软件中进行数据分析该文章在进行花粉核减数分裂重组率的检测时采用双探针法,如前期可行性验证时检测的InDel3118和InDel3135之间的区间Id 3-1,用HEX标记Barke (B)等位基因特异性探针(绿色),用FAM标记Morex (M)等位基因特异性探针(蓝色)(图2b),研究者将来自亲本基因型的花粉核以1∶1的比例混合,同时也检测了Id 3-1杂合的杂交植物的花粉核。在亲本混合样本检测中,两种亲本基因型的液滴相等,两种标记显示相同的荧光(B的HEX或M的FAM)(图2b)。在杂交材料样本检测中下,预计会出现代表重组事件的不同液滴群,即同时显示两种颜色的液滴(InDel3118为HEX,InDel3135为FAM,反之亦然)(图2b)。在实际检测中发现,亲代基因型得到了数量大致相等的液滴,它们对两种标记物显示出相同的荧光(图2d,e,绿色和蓝色矩形)。在对杂交植物的花粉核的检测中,检测到具有两种颜色(HEX和FAM)的液滴,表明重组事件(图2e,红色矩形)。此外,可以区分只有一个标记成功扩增的液滴(图2d,e,簇I和iii)以及没有任何扩增的液滴(图2d,e,簇ii)。表明使用naica® 微滴芯片数字PCR系统对单个花粉核进行包裹和基因分型是完全可行的。▲ 图2。用naica® 微滴芯片数字PCR系统进行大麦花粉单核基因分型。(a)在大麦染色体1和3上定义四个染色体间隔的的InDel或单核苷酸多态性(SNP)标记。(b)以Id 3-1为例的基于naica® 微滴芯片数字PCR系统的花粉核基因分型分析:两种荧光探针的可能组合能够区分重组和非重组花粉核。(c)有效微滴阵列原始视图。每个腔室通常包含大约25000个稳定的有效液滴。在任何通道(FAM或HEX)中成功扩增的液滴是浅灰色的,而暗灰色的液滴是阴性的。(d,e)来自芯片室的基于naica® 微滴芯片数字PCR系统的花粉核基因分型数据,在软件中显示为来自以1:1比例混合的亲本基因型的花粉核的点图(d)和来自与Id 3-1杂合的杂交植物的花粉核的点图。(e)通过两个HEX标记的(绿色方框)或FAM标记的等位基因探针(蓝色方框)将两个非重组亲代群体检测为具有成功基因分型的微滴。在亲代基因型混合物(d)的点状图中以灰色框表示HEX和FAM双阳性微滴为假阳性+噪声。杂交植物中HEX和FAM双阳性微滴为包括假阳性和噪音在内的重组群体,显示为红色方框(e)。簇(I)和(iii)代表仅成功扩增一种标记的微滴naica® 微滴芯片数字PCR系统具有极高的分辨率,因此在那些成功扩增标记物的微滴中,也可以观察到微滴内的细胞核(图2c),研究者通过对微滴包裹核的数量分析进一步优化实验,通过用热稳定的限制性酶预处理花粉核来提高基因分型的效率,且因为细胞核数量与单个包裹细胞核的微滴数量呈正相关,提出上样细胞核的最佳区间(不同物种的不同大小细胞核有差异)。本文基于2色探针进行检测是非常成功的,而进一步通过6色平台可以同时进行更多组基因分型检测,将获得多重基因分型数据,也可以对相同或不同染色体上的一个以上染色体间隔的重组率进行平行测量,或者对CO干扰强度/存在的测量。总的来说,基于naica® 微滴芯片数字PCR系统的单个大麦花粉核基因分型在种内杂种植物的规定染色体间隔内提供了可靠、快速和高精度的减数分裂重组测量。来自一系列具有不同细胞核和基因组大小的物种的细胞核的成功包裹表明,所提出的方法广泛适用于单个细胞核的基因分型。德国莱布尼茨植物遗传与作物研究所(IPK)的Stefan Heckmann教授和Yun-Jae Ahn博士也给我们在线分享了他们的研究成果,想要直观的去了解这篇文章的详细内容,请点击https://mp.weixin.qq.com/s/KNXVs6rOt8MYpBjzuKZZ9A进行观看哦。本文链接:https://doi: 10.1111/tpj.15305naica® 六通道微滴芯片数字PCR系统法国Stilla Technologies公司naica® 六通道微滴芯片数字PCR系统,源于Crystal微滴芯片数字PCR技术,自动化微滴生成和扩增,每个样本孔可实现6荧光通道的检测,智能化识别微滴并进行质控,3小时内即可获得至少6个靶标基因的绝对拷贝数浓度。
  • 2024年9月份有263份标准将实施——食品等标准占46%,独领风骚
    2024年9月份有263份标准将实施——食品等标准占46%,独领风骚金秋送爽,硕果飘香。我们通过国家标准信息平台查询到,2024年9月,一批新的国家标准、行业标准及地方标准将正式实施,涵盖食品安全、环境保护、医疗卫生、机械电力等多个领域,将进一步规范行业发展,提升产品和服务质量,保障人民群众的食品、生命健康安全。让我们一起来了解一下这些新标准带来的变化。在食品安全领域,新实施的国家标准包括《食品冷链物流追溯管理要求》、《食品安全国家标准 婴幼儿配方食品良好生产规范》、《食品安全国家标准 化学分析方法验证通则》等。这些标准的实施将进一步完善食品生产全过程的监管,从源头上保障食品安全。其中,《食品冷链物流追溯管理要求》的实施尤其值得关注,它将规范食品冷链物流各环节的信息记录和传递,提高食品安全事故的追溯能力,让消费者吃得更放心。环境保护方面,《生活垃圾填埋场污染控制标准》、《固定污染源排气中湿度的测定 阻容法》等标准的实施,将为污染物排放监测和控制提供更加科学、精确的依据,有助于改善环境质量,推动绿色发展。特别是《生活垃圾填埋场污染控制标准》的修订,保障了垃圾处理措施,对生态环境保护具有重要意义。医疗卫生领域,《医疗机构污水处理工程技术标准》、《医院洁净护理与隔离单元建筑技术标准》等标准的实施,将进一步规范医疗机构的污水处理和隔离防护工作,提高医疗卫生安全水平。同时,《职业性慢性化学物中毒诊断标准 总则》、《尿中1,2-双羟基-4-(N-乙酰半胱氨酸)-丁烷测定标准液相色谱-串联质谱法》两个指导性标准的出台,进一步保障职业人员的健康。具体2024年9月份主要新实施的标准如下:需要相关标准的,点击链接即可下载收藏↓农林牧渔食品标准(121份)GB/T 28843-2024食品冷链物流追溯管理要求 GB 31612-2023食品安全国家标准 食品加工用菌种制剂生产卫生规范 GB 19303-2023食品安全国家标准 熟肉制品生产卫生规范 GB 4806.11-2023食品安全国家标准 食品接触用橡胶材料及制品 GB 4806.9-2023食品安全国家标准 食品接触用金属材料及制品 GB 4806.14-2023食品安全国家标准 食品接触材料及制品用油墨 GB 23790-2023食品安全国家标准 婴幼儿配方食品良好生产规范 GB 5009.295-2023食品安全国家标准 化学分析方法验证通则 GB 31639-2023食品安全国家标准 食品加工用菌种制剂 GB 12693-2023食品安全国家标准 乳制品良好生产规范 GB 31608-2023食品安全国家标准 茶叶 GB 4806.7-2023食品安全国家标准 食品接触用塑料材料及制品 GB 29923-2023食品安全国家标准 特殊医学用途配方食品良好生产规范 GB 31604.1-2023食品安全国家标准 食品接触材料及制品迁移试验通则 GB 1103.1-2023棉花 第1部分:锯齿加工细绒棉GH/T 1460-2024 蔬菜废弃物饲料化绿色发酵技术规程GH/T 1459-2024冷冻果蔬汁(浆)加工技术规程GH/T 1458-2024果蔬脆片加工技术规范 GH/T 1457-2024黑木耳酱腌菜加工技术规程GH/T 1456-2024果蔬粉GH/T 1455-2024智慧农贸市场运营管理规范GH/T 1454-2024金花白茶GH/T 1453-2024脱咖啡碱茶GH/T 1452-2024蜂蜜中葫芦巴碱含量的测定 液相色谱-串联质谱法GH/T 1451-2024调配蜂蜜水GH/T 1450-2024电子商务交易产品追溯信息编码与标识规范 茶叶GH/T 1449-2024电子商务交易产品质量抽检规范 茶叶GH/T 1448-2024雅安藏茶原料要求GH/T 1120-2024雅安藏茶DB3209/T 1271.4-2024农业机械售后服务规范 第4部分:质量保证DB3209/T 1271.3-2024农业机械售后服务规范 第3部分:技术培训与指导DB3209/T 1271.2-2024农业机械售后服务规范 第2部分:维修保养DB3209/T 1271.1-2024农业机械售后服务规范 第1部分:总则DB3209/T 1270-2024农业机械售前售中服务规范DB3209/T 1269-2024机械深松作业技术规程DB5305/T 172-2024红细软水稻生产技术规程DB5305/T 171-2024银杏古树养护技术规程DB5305/T 170-2024食用银杏优树选择技术规程DB5305/T 169-2024保山市羊肚菌生产技术规程DB5305/T 168-2024饲用木薯生产技术规程DB5305/T 167-2024食用木薯生产技术规程 DB5305/T 166-2024农作物秸秆粉碎还田技术规程DB5305/T 165-2024保山市山地玉米机械化生产技术规程DB5305/T 164-2024保山市大麦机械化生产技术规程DB5305/T 163-2024秃杉主要有害生物防治技术规程DB5305/T 162-2024保山市核桃生物灾害损失评估技术规范DB5305/T 161-2024节果决明育苗技术规程DB5305/T 160-2024皱皮木瓜栽培技术规程DB5305/T 159-2024保山市核桃测产技术规程DB5305/T 158-2024余甘子种质资源异地田间保存技术规程DB5305/T 157-2024余甘子主要病虫害监测及防治技术规程DB5305/T 156-2024余甘子丰产栽培技术规程DB5305/T 155-2024余甘子苗木培育技术规程DB5305/T 154-2024余甘子优树选择和优良无性系选育技术规程DB5305/T 153-2024红花木莲种质资源收集与保存DB5305/T 152-2024乡土树种保障性苗圃建设规范DB5305/T 151-2024保山市规模化肉牛养殖场兽药管理使用规范DB5305/T 150-2024保山市畜禽运输车辆洗消中心建设规范DB5305/T 149-2024保山市巨菌草种植技术规程DB5305/T 148-2024外来入侵植物监测技术规程 虉草DB5305/T 147-2024甘蔗机栽技术规程DB5305/T 146-2024保山市烟后大豆玉米带状复合种植技术规程DB5305/T 145-2024保玉系列玉米品种杂交制种技术规程DB5305/T 144-2024大麦良种繁殖技术规程 DB5305/T 143-2024滇麦7号生产技术规程DB5305/T 142-2024保啤麦28号生产技术规程DB5305/T 141-2024 保山市丝茧育养蚕技术规程DB5305/T 140-2024保山市小蚕粉状人工饲料共育技术规程DB5305/T 139-2024怒江山茶良种选育技术规程DB5305/T 138-2024红椿良种选育技术规程DB5305/T 137-2024五柱滇山茶实生苗培育技术规程DB5305/T 6-2024保山市香菇生产技术规程DB4112/T 326—2024中蜂人工育王技术规范DB4112/T 325—2024中蜂活框养殖技术规范DB4112/T 324—2024中蜂蜂蜜生产技术规范DB4112/T 323—2024旱作芝麻机械化生产技术规程DB4112/T 321—2024蓝莓露地高效栽培技术规程DB31/T 1441.3-2024果品全产业链生产技术规范 第3部分:草莓DB33/T 310024.3-2024长三角地区食品和食用农产品信息追溯 第3部分:数据接口DB33/T 310024.2-2024长三角地区食品和食用农产品信息追溯 第2部分:数据元DB33/T 310024.1-2024长三角地区食品和食用农产品信息追溯 第1部分:通则DB52/T 1818-2024辣椒机械化播种技术规程DB52/T 1815-2024红托竹荪液体菌种生产技术规程DB52/T 1814-2024百香果种苗生产技术规程DB52/T 1813-2024猪场生物安全技术规范DB52/T 1808-2024农业野生植物原生境保护区监测技术规程DB52/T 1807-2024农田地膜残留监测技术规范DB36/T 921-2024红芽芋种芋繁育技术规程DB36/T 920-2024红芽芋早熟栽培技术规程DB36/T 915-2024 红壤旱地春大豆栽培技术规程DB36/T 909-2024棉花育苗移栽集成技术操作规程DB36/T 896-2024赣南脐橙适温冷链物流技术规程 DB36/T 895-2024南丰蜜桔采后商品化处理规程DB36/T 894-2024广东紫珠规范化生产技术规程DB36/T 892-2024木通栽培技术规程DB36/T 884-2024稻曲病防治技术规程DB36/T 874-2024大水面鲢鳙增养殖技术规程DB36/T 825-2024‘金魁’猕猴桃生产技术规程DB36/T 809-2024红壤旱地木薯间作冬瓜生产技术规程DB36/T 795-2024紫山药生产技术规程DB36/T 782-2024稻油两熟制油菜轻简化栽培技术规程DB36/T 757-2024香料用樟树培育技术规程DB36/T 755-2024山茶花培育技术规程DB36/T 752-2024地理标志产品 婺源绿茶DB36/T 715-2024木薯生产技术规程DB36/T 675-2024圆齿野鸦椿苗木培育技术规程DB36/T 669-2024桑蚕饲养技术规程DB36/T 668-2024蚕用桑树栽培技术规程DB36/T 583-2024光皮树栽培技术规程DB36/T 559-2024亚美马褂木培育技术规程 DB36/T 551-2024油茶丰产栽培技术规程DB36/T 425-2024栀子规范化生产技术规程DB36/T 422-2024杉木大径材培育技术规程DB36/T 413-2024安义瓦灰鸡DB36/T 1951.1-2024经果林水土保持技术规范 第1部分:生态果园水土保持建设技术导则
  • 徕卡课堂——冷冻断裂与冷冻蚀刻基础介绍
    揭示生物学样本和材料样本原本无法观察到的内部结构冷冻断裂是一种将冰冻样本劈裂以露出其内部结构的技术。冷冻蚀刻是指让样本表面的冰在真空中升华,以便露出原本无法观察到的断裂面细节。金属/碳复合镀膜能够实现样本在SEM(块面)或TEM(复型)中的成像,主要用于研究如细胞器、细胞膜,细胞层和乳胶。这项技术传统上用于生物学应用,但现在逐渐在物理学和材料科学中展现出重要意义。近年来,研究人员通过冷冻断裂电子显微镜,尤其是冷冻复型免疫标记(FRIL),对膜蛋白在动态细胞过程中所发挥的作用有了新的见解。作者:Gisela Höflinger图1:麦叶上的蚜虫适合于电子显微镜的环境电子显微镜的样品室通过抽真空处理降至极低压力。置于这种环境下的活细胞无法有效保全结构,因为细胞构成中的大部分水分会快速蒸发。生物样本的制备方法有很多种。样品材料被(固定)保存,这样后续脱水对原位结构的破坏最小,同时可以使用环境扫描电镜(SEM)或者将水冷冻。高压冷冻是观察自然状态下含水结构的唯一方法。高压冷冻所形成的冰不是六边形冰(从水变为六边形冰时体积会增加)而是无定形冰,因此体积保持不变。所以,对渗透和温度变化敏感的结构得以保留(见文章“高压冷冻基础介绍”)。要观察诸如细胞器、细胞膜、乳胶或液体的表面界面等结构,冷冻断裂是唯一的方法。通过刀片(或类似物)或释放弹簧负载的外力来破开冷冻样本,并沿着最小阻力线断裂样本。图2:冷冻断裂(来源:http://en.wikibooks.org/wiki/Structural_Biochemistry/Lipids/Membrane_Fluidity) 水的升华与凝结 – 冷冻蚀刻与污染要暴露冷冻断裂面,需要把冰去除。这就需要通过把断裂面的冰升华去除以保存样品的结构。升华的过程是冰不经过液态过程直接转化为气态。而液态过程会导致样品体积和结构的破坏。图3:ES,细胞外表面;PF,细胞膜冷冻断裂面;EF,细胞膜外层冷冻断裂面;FS,细胞膜内表面;Cyt,细胞质水的升华/冷凝过程取决于特定温度下的饱和压力,以及水或冰在室内的有效水分压。注意:良好的真空度会降低水分压。例如:温度为-120℃的冰或冰冻样本饱和压力约为10-7 mbar。如果样品室内达到这个压力,则冷凝和蒸发处于平衡状态。蒸发的分子数量等于冷凝的分子数量。在更高压力下,冷凝速度要快于升华速度 – 因此冰晶会在样本表面上生长。必须采取一切手段来避免这种情况。样本上方一个较冷(比样本更冷)的冷阱会降低局部压力,从而起到了冷凝阱的作用。从样本中带出的水分子优先附着在较冷的表面上。在低于饱和压力的压力下,更多的分子升华而不是冷凝,同时会发生冷冻蚀刻。执行冷冻蚀刻直到样本完全无冰,这一过程称为冷冻干燥。仅适用于合理时间内执行的小样本。该过程分为几个步骤,需要从大约-120℃加热到-60℃,同时在每个步骤上使温度保持一定时间。该过程需要几天的时间来完成。图4:饱和蒸汽压力(感谢Umrath 1982提供的图片)样本温度低于-120℃时,蚀刻速度非常慢,蚀刻持续时间会增加到不切实际的程度。如果真空室的压力固定,则可以通过提高样本温度来提高蚀刻速度。对于生物样本,要特别小心温度高于-90℃。蚀刻速度会大幅提高。另外,要注意玻璃态冰中形成六边形冰晶从而导致脱水伪像。纯水的理论升华速度会降低,因为:• 样本深处的水升华速度比表面的水更慢。• 盐和大分子溶剂会降低升华速度。• 生物样本中大量存在的结合水会降低升华速度。通过冷冻断裂生成图像冷冻断裂和冷冻蚀刻技术往往采用高真空精细镀膜技术,将超细腻重金属和碳薄膜沉积于断裂表面。冷冻断裂样本在一定角度下用金属覆盖,然后在碳背衬膜(徕卡EM ACE600冷冻断裂或徕卡EM ACE900与徕卡EM VCT500)上生成复型进行TEM成像或在SEM的试块面上进行成像。对于这两种方法,冷冻断裂表面经过一定的蚀刻时间后以相同的方式进行镀膜。首先在一定角度下进行一层薄的(2-7nm)重金属镀膜,以形成地形对比度(阴影)。其次再针对重金属薄膜,在90°下进行一层厚的碳层(15-20nm)镀膜,以稳定超薄电子束蒸发。此时的蚀刻处理会停止。要对极小的结构进行成像,需要在极低的角度(2–8°)镀膜重金属并在镀膜期间旋转样本。这样可增加细丝状及其它细小结构的对比度。此项技术又称为小角度旋转投影。蒸镀重金属薄膜需要采用电子束蒸发镀膜技术。这种镀膜技术可实现精细定向沉积。碳的支撑层稳定了未被金属覆盖的结构。随着温度的升高,这些结构会改变它们的轮廓,样本不会完全导电,复型也不会粘在一起。冷冻断裂酵母的单向投影图5:低温SEM,BSE(背散射电子)图像。Walther P, Wehrli E, Hermann R, Müller M.(1995)双层镀膜获取高分辨率低温SEM。J Microsc. 179, 229-237。图6:复型,TEM图像(感谢Electronmicroscopy ETH Zürich提供图片)。Walther P, Wehrli E, Hermann R, Müller M.(1995)双层镀膜获取高分辨率低温SEM。J Microsc. 179, 229-237。图7:徕卡高压冷冻,真空冷冻传输至冷冻断裂系统中,利用电子束发射枪和旋转样本底座来进行冷冻蚀刻和低温镀膜。徕卡真空冷冻传输至低温SEM。油/水基样品,–100℃(升华)3分钟暴露油脂结构。图8:徕卡高压冷冻,真空冷冻传输至冷冻断裂系统中,利用电子束发射枪和旋转样本底座来进行冷冻蚀刻和低温镀膜。徕卡真空冷冻传输至低温SEM。原生生物游仆虫混合培养的羽纹硅藻。感谢英国波特斯巴NIBSC的Roland Fleck博士提供图片图9:徕卡冷冻断裂系统及徕卡真空冷冻传输至低温SEM的HPF、冷冻断裂、冷冻蚀刻和低温镀膜。油/水基乳液破裂,露出洋葱状薄片结构,形成液滴。感谢汉堡拜尔斯多夫Stefan Wiesner博士提供的图片。图10:TEM中的酵母细胞复型。经徕卡高压冷冻和徕卡冷冻断裂复型制备。感谢Elektronenmikroskopie ETH Zürich提供的图片。图11:大麦叶上的真菌。安装于徕卡冷冻断裂仪样本台上,并通过冷却样本台在液氮下进行冷冻。徕卡冷冻断裂仪对样品进行部分冷冻干燥(在更高的样本温度下冷冻干燥)。使用钨镀膜。徕卡真空冷冻传输至低温FESEM 5keV。相关产品徕卡EM ACE900 高端EM样本制备冷冻断裂系统徕卡EM VCT500了解更多:徕卡官网
  • 迎接英雄回家——海尔航天冰箱搭载神十一成功返航
    北京时间11月18日14时07分,搭乘2名中国航天员的神舟十一号载人飞船(以下简称神十一)在内蒙古中部草原顺利着陆,航天员景海鹏、陈冬圆满完成本次飞行任务,并带回在太空栽培的生菜、结茧的蚕以及太空搜集的保存在航天冰箱内的尿液、唾液等样本,为下一步的科研工作提供更丰富的素材资源。两位航天员在经历了33天的太空之旅后,顺利完成了从太空“搬家”回归地球的工作任务,确保天宫二号继续安全、稳定运行。神十一任务的顺利完成,意味着我国建成未来空间站的目标又迈向了一大步。从中国航天员中心得到的最新消息,整个在轨运行过程中,海尔航天冰箱各项技术指标正常,安全存储航天员的生理样本,圆满完成此次飞行任务,为航天医学研究提供天地全程冷链的技术保障!以四大核心技术铸就航天品质,用航天科技服务生命科学面对太空环境及飞船运行结构的特殊性,海尔航天冰箱自主研发四大航天技术,圆满完成航天任务,更将航天科技应用于生命科学领域,创造更多“航天冰箱“式的领先的差异化产品和服务,为专业用户提供更安全、更便捷的解决方案:第一:轻强结构,强度高、重量轻,全方位安全保障“飞船发射成本高昂,应最大限度减轻航天冰箱重量,节约发射成本”,这是对航天冰箱技术的首要要求。航天冰箱具备高强度结构,可耐受发射过程强烈震动冲击,同时采用航天热电制冷系统紧凑设计,保温层厚度减半,节约外部空间25%,重量比设计限值降低25%。海尔生物医疗,基于航天高强度的安全保障,在实验、科研应用领域中我们创新研发、为用户提供全生命周期风速恒定的实验室安全呵护:l智净生物安全柜恒风速专利,全生命周期保证风速恒定,保障人和样本安全首创恒风速专利,终解行业内安全柜久用风速降低难题,实时显示风速和气流是否达标,自动调整风速,全生命周期保障安全柜风速恒定,有效防止因风速不均匀而造成人员感染、样本受污染的隐患。第二:高效节能,是航天需求,更是引领行业节能环保变革飞船运行中,能源来源于太阳能帆板,需要首先保证生命支持、飞船控制系统供应;最大化降低能耗,为飞行任务提供保障是对航天冰箱的第二大技术要求。航天冰箱通过高效控制、高效换热和高效隔热三大高效节能技术,最终实现能耗比设计要求节能25%,其制冷效率比普通冰箱提高50%,为飞行任务节约宝贵空间能源。能源的宝贵不止于空间飞行,地球的节能、环保更是我们一直努力的方向。l节能芯超低温冰箱全球首创HC碳氢制冷技术,完全无氟,制冷效率更优,节能环保海尔节能芯超低温冰箱,HC碳氢制冷,完全无氟、臭氧层破坏为零、温室气体排放为零,绿色环保;同时制冷效率提高30%,省电高达一半,创造节能环保绿色生物样本库和绿色实验室。目前,已成为国家基因库、UK-Biobank的首选!近日,更获得中国质量认证中心CQC颁发的001号节能环保认证。是中国第一款真正意义的节能超低温冰箱。第三:智能控制,30万米高度天地全程冷链安全通过物联网控制技术的应用,北京航天飞船控制中心可远程开启30万米高空的航天冰箱,天地全程温度监测和远程控制,减少航天员的在轨工作量、从事太空实验,创造便捷、舒适的空间生活。海尔生物医疗,完成超远程的天地物联的同时,实现低温环境全自动智能化存储与管理未来全世界样本存储数量,将在当前十亿的基础上呈几何倍数增长,而目前人工存取、样本信息可追溯性低、低温人身伤害等问题,使生命科学产业处于初级阶段。l全自动样本存储管理系统保证样本安全、人员安全,信息化管理更便捷方案包括自动化液氮罐、自动化冷库,通过机械臂自动存取冻存盒,不再需要打开冰箱或进入内部等繁琐工作,最大限度保障样本安全性及样本质量、降低实验室安全风险、对人员安全保护更高。通过信息化智能管理,自动审核、盘点,实时监控样本出入库记录,多用户多权限管理,实现全程可记录、可追溯,智能便捷的管理海量样本。第四:恒温蓄冷,超长保温,保障样本无能源下的安全存储飞船在发射、对接及返回阶段都是断电状态,对航天冰箱在恒温蓄冷方面的技术有极高要求,全方位确保天地全程样本安全。航天冰箱通过恒温蓄冷模块的应用,在无电源情况下,实现最长20小时恒温蓄冷,保证航天冰箱从发射到返回全过程温度恒定,保证实验样本安全。我国幅员辽阔,很多偏远地区,电力资源不足和短缺,通过有效利用太阳能,并结合恒温蓄冷技术,超长保温,保证疫苗等医疗用品的存储安全。l海尔太阳能疫苗冰箱纯太阳能不用电,一次使用,保温时间长达7天超越了通过电力和燃油驱动的传统冰箱,完全利用太阳能工作,无需额外电源,满足用电不稳、不方便地区疫苗的安全存储,保障安全、经济节能;一次供电,保温时间最长可达7天,成为全球冰箱应用领域跨时代的创新产品,已经相继为非洲、拉丁美洲千万儿童的疫苗接种提供恒温存储服务。通过十年创业创新,航天冰箱4大核心技术突破,并应用于低温冷链和生命科学领域,诞生中国最大低温冷链产品群。海尔生物医疗也实现由一个产品到一个方案,再到一个产业的升级跨越,开创中国低温制冷行业第一品牌,支持中国民族生物医疗产业发展、服务全球生命科学领域。
  • 166项!2023年度湖北省农业农村领域科技计划拟立项项目公示
    4月7日,湖北省科技厅公示了2023年度农业农村领域科技计划拟立项项目,其中包含食品、农产品、畜牧养殖等多个领域。 根据《中共中央办公厅 国务院办公厅关于深化项目评审、人才评价、机构评估改革的意见》《湖北省科技计划管理改革实施方案》《2023年省级科技计划组织工作方案》要求,现将2023年度农业农村领域科技计划拟立项项目名称和承担单位向社会公示。 2023年度农业农村领域科技计划拟立项项目名单序号 项目名称 申报单位1淡水水产高效养殖技术研究与集成示范湖北洪山实验室2ARC生物菌剂提质固氮耦合技术研发及产业化中国农业科学院油料作物研究所3面向重金属污染农田修复的功能生物炭制备关键技术及应用示范中环循环境技术有限责任公司4优质香型长粒粳稻新品种的培育湖北中香农业科技股份有限公司5魔芋葡甘聚糖基气凝胶中试生产关键技术研究武汉力诚生物科技有限公司6神农架林区特色红缨子高粱酿造关键技术研究及产业化应用劲牌有限公司7藤茶中DMY的硒化修饰、靶向功能及产品高值利用研究施恩(恩施)生物医药开发有限公司8杂柑抗早衰关键技术研究与示范湖北农科农乐现代农业产业有限公司9微流水条件下池塘设施化健康养殖关键技术研究与示范当阳市钰源水产品养殖专业合作社10双莲鸡配套系选育技术的研究湖北民大农牧发展有限公司11防控猪蓝耳病药物泰万菌素的原料及制剂生产技术迭代开发及临床推广武汉回盛生物科技股份有限公司12发酵蔬菜加工关键技术研究及应用湖北聚汇农业开发有限公司13全流程一体化智能采收机器人武汉禾大科技有限公司14高产抗病太空玉米诱变育种湖北金广农业科技有限公司15茄果类蔬菜智能化全人工光立体育苗关键技术研发艾欧创想智能科技(武汉)有限公司16木本油料智能压榨关键技术与装备研究应用东方红集团(湖北)粮食机械股份有限公司17有机羊肚菌工厂化高效种植关键技术研发湖北飘扬食品科技有限公司18农田污染物绿色治理的功能菌剂研制与开发武汉合缘绿色生物股份有限公司19有机茶优质高效栽培关键技术的研究湖北芊茶汇农业科技股份有限公司20原粮整理与入仓智能装备技术研发及产业化湖北飞来钟粮油设备有限公司21低盐、低化学添加剂、无亚硝酸盐发酵泡菜研发湖北红日子农业科技有限公司22低GI功能水稻高产高效绿色保优栽培技术研究与示范竹溪三元米业有限公司23郧巴良种肉牛高效繁育关键技术研发竹山恒坤牧业有限公司24良种西门塔尔肉牛双胎关键技术研发及配套技术集成示范房县牵亿肉牛养殖专业合作社25甲酸衍生型饲料酸化剂关键技术研发武汉有机实业有限公司26生物活性小肽新型替抗动物饲料添加剂的研发湖北泓肽生物科技有限公司27富含谷胱甘肽和类胡萝卜素酵母培养物的创制与产业化示范湖北绿科乐华生物科技有限公司28风味土豆面加工工艺开发及产业化武汉新五心食品科技有限公司29绿色“米饭型全谷黑米”基因组育种与新品种应用湖北洪山实验室30短生育期油菜迟播稳产关键技术研发与新品种选育华中农业大学31新型动物专用抗菌增效剂艾迪普林原料与制剂开发华中农业大学32耐密植超高产油菜品种高通量智能化选育中国农业科学院油料作物研究所33新资源水稻核不育系XS的研究与应用湖北省农业科学院粮食作物研究所34人造雪花猪肉高效培育关键技术研究湖北省农业科学院畜牧兽医研究所35瓜类蔬菜智能嫁接机及配套嫁接育苗技术研发武汉市农业科学院36家禽主要呼吸道病毒病二联耐热活疫苗创制湖北省农业科学院畜牧兽医研究所37鄂西山区马铃薯特征风味品质形成机制解析与优质特色新品种选育华中农业大学38传统蛋制品全周期综合品质在线无损检测技术及智能装备研制华中农业大学39水稻高温热害鉴定及防减技术研发华中农业大学40淡水鱼智能保鲜加工技术与装备创制华中农业大学41潜渍型中低产稻田降渍增氧与产能提升关键技术研发及应用湖北省农业科学院植保土肥研究所42基于脂质代谢靶标的仔猪病原性肠道损伤营养调控剂的发现武汉轻工大学43草莓设施立体栽培技术装备及模式应用研究与示范武汉市农业科学院44小龙虾品质无损快速检测技术及装备武汉轻工大学45优质多抗茶树新品种选育及配套轻简栽培技术研究湖北省农业科学院果树茶叶研究所46功能辣椒新品种培育及产业化应用湖北省农业科学院经济作物研究所47微生物富硒恩施黑猪新类群培育及健康、标准养殖关键技术研发长江大学48稻谷加工智能工厂及其工业互联网分布式系统研究与应用武汉轻工大学49基于理想脂肪酸模式的猪功能性脂类产品研发武汉轻工大学50营养型花生饼粕基植物乳绿色制备关键技术创新与应用中国农业科学院油料作物研究所51湖北省坡耕地减障提质技术模式构建与应用华中农业大学52适合机采的棉花优质耐高温新品种选育与应用湖北省农业科学院经济作物研究所53两个国审鲌鲂品种的品质提升关键技术及调控机制研究中国水产科学研究院长江水产研究所54特早熟优质甘薯新品种选育与“一年两收”配套栽培技术体系的研发及示范湖北省农业科学院粮食作物研究所55创制植物疫苗促进水稻油菜抗病增产试验示范湖北洪山实验室56基因突变体介导的鱼类人工多倍体创制技术研发华中农业大学57湖北省猕猴桃野生资源调查及地方特色新品种培育中国科学院武汉植物园58大豆蛋白“人造肉”蛋白基料制备关键技术研发华中农业大学59智能化陆基循环水养殖技术研发与示范华中农业大学60湖北高产、快繁、优质荷斯坦母牛本土化选育关键技术攻关武汉市农业科学院61预制菜品质提升与智能制造关键技术集成与示范华中农业大学62水产养殖要素高精度监测与实时预警系统研发湖北大学63木本饲料专用复合酶产品创制关键技术湖北大学64马铃薯商品薯智能化分级技术及装备研究与示范华中农业大学65靶向植物病毒关键蛋白TMV-CP的药物发掘及应用湖北省生物农药工程研究中心66猕猴桃集约化高效育苗关键技术创新及应用武汉市农业科学院67经济作物富硒栽培关键技术研究与应用长江大学68阻控藜蒿吸收富集重金属的技术研究与应用武汉市农业科学院69湖北省大宗水产品中典型新污染物的筛查与健康风险评估江汉大学70湖北特色食品低糖化关键技术开发武汉轻工大学71生猪重要细菌性疫病炎症风暴的发生机制与药物新靶标的挖掘武汉轻工大学72丰产优质再生稻品种桃优77中试与示范中垦锦绣华农武汉科技有限公司73国审优质高产强再生杂交水稻“箴两优荃晶丝苗”中试与示范湖北荃银高科种业有限公司74绿色高产高档优质香型水稻新品种培育与应用湖北省种子集团有限公司75新型实蝇诱杀剂的研发及应用湖北谷瑞特生物技术有限公司76湖北省冬小麦超高产营养调控关键技术研究与应用湖北格林凯尔农业科技有限公司77夏秋茶资源砖茶加工技术中试与示范宜昌清溪沟贡茶有限公司78核桃新品种高效生态栽培关键技术中试与示范湖北聚芳林业科技开发有限公司79秸秆高值化利用与优质肉牛节能减排技术中试湖北庚源惠科技有限责任公司80一种高纯度4,6-二甲氧基-2-((苯氧基羰基)氨基)-嘧啶(DPAP)的绿色工艺开发湖北汇达科技发展有限公司81葡萄新品种“阳光玫瑰”中试与示范黄冈市黄州区嘉裕葡萄种植专业合作社82特色茄果蔬菜品种及优质高效技术转化应用郧西县民辉蔬菜专业合作社83油菜根肿病防治专用生物有机肥中试生产与示范湖北新保得生物科技有限公司84优质条形绿茶加工技术中试转化与示范郧西县槐树茶叶专业合作社85大球盖菇精深化加工技术熟化及示范神农架天润生物科技有限责任公司86中国樱桃新品种“八里旺”优质高效生产中试 与示范湖北房陵红家庭农场有限公司87郧西县冷水稻新品种E两优88及配套技术集成示范郧西县楚有香自然生态种植专业合作社88三种药食同源植物品质提升及硒多糖提取关键技术研究恩施硒谷科技股份有限公司89茶花粉多糖及多酚类物质关键技术研究湖北神农蜂语生物产业有限公司90猕猴桃健康种苗工厂化生产关键技术集成应用与示范赤壁神山兴农科技有限公司91聚合硅酸钙新型土壤调理剂生产之关键技术研发湖北富贵象农业科技有限公司92一种基于提质增效的绿色功能型有机肥关键技术研究荆门法麦克斯农业科技有限公司93地源性饲料资源高效养殖马头山羊关键技术集成与示范湖北鑫农生态科技有限责任公司94新型微生物菌剂防控中药材土传病害应用与示范郧西县远宏中药材种植专业合作社95优质宜机采茶树新品种“鄂茶201”中试与示范孝昌县管氏茶业有限责任公司96基于生猪精细化养殖的智能饲喂机研究与产业化武汉中畜智联科技有限公司97基于品质保障的淡水鱼养殖环境智慧管控关键技术研发与示范武汉百瑞生物技术有限公司98农田减灾的一体化排涝闸站调度技术武汉睿山智水科技发展有限公司99工厂自动化鳗鱼饲养关键技术研发武汉市科洋生物工程有限公司100一种莲种苗快速繁殖的新技术应用与产业化湖北秀湖植物园有限公司101新型非常规饲料原料在猪饲料中的多元化应用研究武汉家家乐饲料股份有限公司102MBBR及微纳米曝气技术在畜禽养殖废水处理领域研究与应用武汉市鄂正农科技发展有限公司103具有改善和修复猪肠道损伤的创新饲料添加剂研发武汉诺见生物技术有限公司104高温蒸煮双效能浓缩香菇汁的研发与应用湖北万和食品有限公司105山茶油精深加工产业化湖北省施福春农业有限公司106莼菜营养健康功能产品创制关键技术研发与示范恩施硒马农业发展有限公司107表面活性剂协同动态逆流超声提取香菇多糖技术研发与应用竹山县绿谷食用菌有限公司108抗油菜菌核病药肥一体纳米级钼酸盐绿色制剂创制及产业示范湖北中澳纳米材料技术有限公司109玉米白斑病抗性位点挖掘及抗性种质创制和应用襄阳正大种业股份有限公司110个性化富硒粞食品增材制造与智能化加工装备研制湖北天和机械有限公司111欣华鸡高贮精能力新品系选育湖北欣华生态畜禽开发有限公司112欧标(有机)茶大面积生产主要病虫害微生态防控技术研发与应用宣恩县伍台昌臣茶业有限公司113蛋清中卵转铁蛋白制备关键技术研究及产业化湖北神地生物科技有限公司114优质青贮大麦新品种选育及冬闲田应用关键技术研发湖北腾龙种业有限公司115基于营养精准调控重组米制品加工关键技术研发与示范湖北心辉粮油股份有限公司116耐高温抗倒伏水稻新品种选育与应用湖北智荆高新种业科技有限公司117即热预制淡水鱼加工关键技术研发与示范洪湖市万农水产食品有限公司118方便鲜湿面加工关键技术研发与示范湖北金银丰食品有限公司119繁殖性状全基因组育种技术研发及高繁大白猪新品系选育湖北三湖畜牧有限公司120博落回替抗酶解技术湖北博瑞生物科技股份有限公司121基因编辑技术创制适用机械化制种 的番茄雄性不育系的研发湖北伯远合成生物科技有限公司122恩施富硒藤茶活性成分高效提取及其功能性食品研发湖北仙芝堂生物科技有限公司123皮蛋保健型功能饮品的关键技术开发与中试示范湖北神丹健康食品有限公司124基于进化演算灰箱模型的多智能体稻谷加工控制系统湖北永祥粮食机械股份有限公司125黄鳝预包装即食食品加工及质量控制关键技术研发与示范湖北省仙桃黄鳝产业技术研究院有限公司126DHA营养强化蛋黄粉深加工关键技术集成与应用湖北康利农生物科技有限公司127少球悬铃木‘华农青龙’的繁育及叶片少毛材料的发掘襄阳三叶花开园林生态有限公司128萝卜耐裂根分子标记开发及其新品种培育与应用湖北领尚生态农业有限公司129淡水鱼智能化预处理加工装备与关键技术荆州市集创机电科技股份有限公司130基于智慧农业技术的循环经济、立体种养模式研究恩道格农业发展鄂州有限公司131水杨酰胺一步胺化合成工艺的研究荆州市凯文生物科技有限公司132新兽药氟雷拉纳的研制湖北美天生物科技股份有限公司133特色水果品质无损检测及智能分选装备创制与应用湖北国炬农业机械科技股份有限公司134庆大霉素菌种高产低杂定向改造和代谢过程关键技术研究及应用宜昌三峡制药有限公司135预制调理小龙虾工厂化加工关键技术研发湖北大自然农业实业有限公司136大口黑鲈大规格苗种高效培育技术研究与示范荆州市渔都特种水产养殖有限公司137监利猪种质资源创新利用与优质配套系培育湖北天牧畜禽有限公司138畜禽粪污堆肥固氮减排关键技术创新及应用来凤民福生态肥业有限公司139香料凤菊绿色高效栽培技术与精深加工产品研发湖北来凤腾升香料化工有限公司140薯玉豆复合种植绿色高效模式研究与推广恩施市盛元食品有限责任公司141不同作物效应生物合成信号蛋白肥料增效剂产品研发及推广应用湖北微生元生物科技有限公司142优质、高产高抗小麦品种选育与推广湖北扶轮农业科技开发有限公司143砂梨主要病虫害绿色防控关键技术研发与应用湖北满园果生态农业有限公司144鸡卵黄抗体的绿色高效制备与肠道靶向释放包埋集成技术研究湖北双港农业科技贸易股份有限公司145低温乳酸菌的筛选、高密度发酵及其创新应用湖北华扬科技发展有限公司146大别山黑山羊精准选育与智慧养殖关键技术研发湖北名羊农业科技发展有限公司147草莓种苗低繁高扦技术研究与示范当阳市弘杨种苗有限责任公司148浓香菜籽油质量安全生产技术湖北巴山食品有限责任公司149富硒水稻种质及其绿色优质高效种植关键技术研发利川市一里香米业有限责任公司150武当名贵珍稀中药材金果榄品种提纯与高效繁育技术研发湖北金水源农业开发有限公司151传统蛋白凝胶食品工业化生产技术开发与产业化荆州市依顺食品有限公司152香菇重金属控制多维评价技术及控糖营养功能性食品研发钟祥兴利食品股份有限公司153百合鳞茎工厂化快繁及冬闲田商品种球繁育技术湖北春之染农业科技有限公司154鄂西北茶区纳米硒免疫激活茶树提质增效技术研究与示范湖北龙王垭茶业有限公司155地方源猪用发酵饲料标准化与健康养殖关键技术研发十堰武当农夫牧业有限公司156武当骞林茶种质资源利用及新产品研发湖北丹鼎茶业有限公司157禽肉酱卤制品真空低温卤制关键技术研发湖北小胡鸭酱卤食品研究院有限公司158味源植物中呈味功能物质高效提取关键技术研发与示范宝得瑞(湖北)健康产业有限公司159富硒茭白资源高值化加工技术研发恩施思清农业有限公司160富硒蒸谷米加工关键技术及装备创制湖北碧山机械股份有限公司161绿色缓控释肥料研制及应用示范新洋丰农业科技股份有限公司162英山生态茶园系统构建及关键技术研究与示范湖北志顺茶业股份有限公司164优质高效梨新品种选育及轻简栽培模式创新与应用鄂州市樟嘉裕民生态农业专业合作社165设施稻瓜菜轮作模式创新及绿色高效生产技术研究与应用石首市天字号瓜蔬土地股份专业合作社166基于智慧农业的茅苍术连作障碍绿色消减技术研发湖北卫尔康现代中药有限公司
  • Indigo500 系列变送器改进了对麦芽加工过程的控制
    作为优质麦芽产品供应商之一,Viking Malt 公司研究了其位于瑞典哈尔姆斯塔德的工厂中麦芽加工过程内持续湿度监测的优点。维萨拉 Indigo520 变送器已经与该工厂的控制系统集成,在经过 3 个月的试运行后,技术经理 Tony Öblom 说:“由于能够实时访问湿度数据,麦芽加工过程得到了更严格的控制,从而提高了质量,同时还节约了能源并提高了盈利能力。”背景麦芽是制造啤酒、威士忌和许多烘焙产品的关键成分。Viking Malt 总部设在芬兰,该集团在芬兰、丹麦、瑞典和立陶宛共经营有六家麦芽厂,并在波兰设有两家麦芽厂,每年麦芽总产量达 60 多万吨。大部分制造麦芽的谷物是大麦,但也可以使用小麦和黑麦,以及大米和玉米。麦芽厂设在北欧让 Viking Malt 拥有了很多优势。例如,其承包农场生产的大麦品质优良,麦芽特性优异。此外,寒冷的冬天会消灭病虫害,作物在午夜阳光下生长迅速,这意味着它们对杀虫剂的需求不大。麦芽加工过程麦芽加工涉及发芽的开始、管理和中止。这是通过仔细和准确地控制室内湿度、温度(有时控制二氧化碳)来实现的。 啤酒的好坏可能因个人口味而异,但风味的一致性和其他特性取决于是否采用优质麦芽。Tony 说:“在 Viking Malt,我们精益求精,确保生产风味一致的优质麦芽。这是通过精心甄选和管理原料以及尽可能仔细和准确地监测和控制生产来实现的。”根据原料的特性和所生产麦芽的规格,麦芽加工过程分为三个主要阶段,总共需要 7 到 10 天的时间。这三个阶段分别是:浸泡 – 谷物经洗涤后,其含水量在浸麦槽中增加,以刺激发芽。浸泡通常涉及不同时长的干湿期组合。发芽 – 种子发芽时会产生酶。例如,淀粉酶将种子中的淀粉转化为可发酵糖,蛋白酶分解蛋白质。烘烤 – 在过程的最后一部分,将“绿色麦芽”在窑中干燥和加热,以达到所需的规格。在麦芽加工过程开始时,窑内温度为 60°C 至 65°C,湿度可能达到 100%,而最终烘烤温度可能在 80°C 至 95°C 之间,目标湿度为 4%。监测的重要性
  • 运动发酵单胞菌运动亚种的特点与优势及培养方法!
    运动发酵单胞菌运动亚种的特点与优势及培养方法! 运动发酵单胞菌运动亚种是Zymomonas属的微生物,原产地为美国。G-,细胞具有圆端的短杆状,丛生鞭毛运动,单个或成对排列。主要用途为研究,具体用途为用于细菌发酵酒精的研究。 一、菌种简介平台编号:Bio-66722提供形式:冻干物拉丁属名:Zymomonas Mobilis Subsp. Mobilis中文名称:运动发酵单胞菌运动亚种属名:Zymomonas种名加词:mobilis subsp. mobilis其它中心编号:ATCC 31821来源历史:←北京工商大学化工学院(31821)收藏时间:2008.10.31原始编号:WAY资源归类编码:15131139101模式菌株:非模式菌株主要用途:研究具体用途:用于细菌发酵酒精的研究特征特性:G-,细胞具有圆端的短杆状,丛生鞭毛运动,单个或成对排列。利用葡萄糖、蔗糖或果糖产乙醇和CO2,利用山梨醇,不发酵麦芽糖、阿拉伯糖、鼠李糖、木糖。不还原硝酸盐,不液化明胶,接触酶阳性。 生物危害程度:四类致病对象:无培养基:葡萄糖 100.0g,酵母膏 5.0g,(NH4)2SO4 1.0g,KH2PO4 1.0g,MgSO4?7H2O 0.5g,琼脂 20.0g,蒸馏水 1.0L, pH7.0。培养温度:30℃资源保藏类型:培养物保存方法:真空冷冻干燥法实物状态:有实物共享方式:公益性共享;资源纯交易性共享;合作研究共享;资源交换性共享用途:研究;用于细菌发酵酒精的研究注意事项:仅用于科学研究或者工业应用等非医疗目的不可用于人类或动物的临床诊断或治疗,非药用,非食用(产品信息以出库为准) 二、产品特点1、菌种功能明确、品种稳定、应用 2、产品仅限用于科研本品芽孢含量高,稳定性好、耐高温和挤压 3、繁殖能力快、定植能力强、易存活、耐受低pH值环境 4、复活迅速,可在短期内成为优势种群 5、本品安全高效、无抗药性、不污染环境 6、对多数抗生素不敏感,可与低浓度抗革兰氏阴性菌抗生素同时使用。 三、产品优势1、产品质量稳定,是为科研和提供微生物菌种资源共享服务的专业平台。2、国内首创封闭管包装,冻干后的菌株使用时添加配套的复苏培养基后迅速而完全溶解。针对不同的菌株提供八种不同的培养方法,保证菌种的复苏质量。3、严格的质检程序,确保产品质量的稳定性。4、该类产品广泛使用到食品、药品、化妆品、水产品、化工等行业,疾控中心、质检局、出入境、药检局等等,得到广泛好评。 四、菌种的培养1、菌种是指食用菌菌丝体及其生长基质组成的繁殖材料。菌种分为母种(一级种)、原种(二级种)和栽培种(三级种)三级。工业发酵的有用菌种,其筛选步骤包括菌种分离、初筛和复筛。2、挑选具有某种能力的有用菌种,也称种子制备,是指菌种在一定条件下,经过扩大培养成为具有一定数量和质量的纯 菌种的制备过程。以作接入发酵罐中进一步扩大菌体量及合成产物之用。3、种子制备包括孢子制备和菌丝体制备菌种制备。4、保存在沙土管或冷冻管中的菌种,用无菌手续挑取少许,接入琼脂斜面培养基上,在25℃(或较高温度)下培养5~7天(或较长时间。所得孢子还需进一步用较大表面积的固体培养基以获得更多孢子(对于霉菌类孢子制备,多数采用大米、小米之类的天然培养基)。5、将培养成熟的斜面孢子制成悬浮液,接种到扁瓶固体培养基上,于25~28℃培养14天。将成熟的扁瓶孢子于真空中抽干,使水分降至10%以下,并放入 4℃冰箱中备用。一次制得的孢子瓶可在 上延续使用半年左右。6、如果有些菌种不产孢子,如赤霉素产生菌或产孢子不多的,则可采用摇瓶液体培养制得菌丝体,作种子罐的种子。种子罐的目的是使接入有限的孢子或菌丝体迅速发芽、生长、繁殖成大量菌体。其中的培养基组分应是易于被菌体利用的碳源(如葡萄糖)和氮源(如玉米浆),及无机盐(如磷酸盐)等。作为发酵罐的种子应生命力旺盛、染色深、菌丝粗壮,无杂菌及异常菌体。接种量一般在10%~20%。 五、保藏方法1、传代培养保藏法又有斜面培养、穿刺培养、疱肉培养基培养等(后者作保藏厌氧细菌用),培养后于4-6℃冰箱内保存。2、液体石蜡覆盖保藏法是传代培养的变相方法,能够适当延长保藏时间,它是在斜面培养物和穿刺培养物上面覆盖灭菌的液体石蜡,一方面可防止因培养基水分蒸发而引起菌种死亡,另一方面可阻止氧气进入,以减弱代谢作用。3、载体保藏法是将微生物吸附在适当的载体,如土壤、沙子、硅胶、滤纸上,而后进行干燥的保藏法,例如沙土保藏法和滤纸保藏法应用相当广泛。4、寄主保藏法用于目前尚不能在人工培养基上生长的微生物,如病毒、立克次氏体、螺旋体等,它们必须在生活的动物、昆虫、鸡胚内感染并传代,此法相当于一般微生物的传代培养保藏法。病毒等微生物亦可用其他方法如液氮保藏法与冷冻干燥保藏法进行保藏。5、冷冻保藏法可分低温冰箱(-20-30℃,-50-80℃)、干冰酒精快速冻结(约-70℃)和液氮(-196℃)等保藏法。6、冷冻干燥保藏法先使微生物在极低温度(-70℃左右)下快速冷冻,然后在减压下利用升华现象除去水分(真空干燥)。有些方法如滤纸保藏法、液氮保藏法和冷冻干燥保藏法等均需使用保护剂来制备细胞悬液,以防止因冷冻或水分不断升华对细胞的损害。保护性溶质可通过氢和离子键对水和细胞所产生的亲和力来稳定细胞成分的构型。保护剂有牛乳、血清、糖类、甘油、二甲亚砜等。 欢迎访问微生物菌种查询网,本站隶属于北京百欧博伟生物技术有限公司,单位现提供微生物菌种及其细胞等相关产品查询、咨询、订购、售后服务!与国内外多家研制单位,生物医药,第三方检测机构,科研院所有着良好稳定的长期合作关系!欢迎广大客户来询!
  • 同为培养箱,生化培养箱与恒温培养箱"各怀鬼胎",你品,细品!
    一说到培养箱,自然而然会浮现生化培养箱、恒温培养箱系列产品,它具有制冷和加热双向调温系统,温度可控的功能,是植物、微生物、遗传、病毒、医学、环保等科研,教研`教育部门不可缺少的实验室设备,广泛应用于低温恒温试验、培养试验、环境试验等等。??生化培养箱和恒温培养箱是常使用的两种,同是培养箱,有什么不同之处???一、产品特点不同??(一)生化培养箱的产品特点:??适用于环境保护、卫生防疫、药检、农畜、水产等科研、院校和生产部门。是水体分析和BOD测定,细菌、霉菌、微的培养、保存、植物栽培、育种试验的专用恒温设备。??1、带定时功能键的数显微电脑温度控制器,控温可靠;??2、采用镜面不锈钢内胆,半圆弧四角易清洁,箱内搁板间距可调;??3、采用玻璃观察窗,观察方便明了;??4、设有限温报警系统,超过限制温度即自动中断,保证实验安全运行,不发生意外; (二)恒温培养箱的产品特点:??恒温培养箱(电热恒温培养箱)适用于医疗卫生、医药工业、化学和农业科学等科研和工业生产部门做细菌培养、发酵及恒温试验用。??1、外壳采用冷轧钢板制作,表面使用静电喷塑工艺。??2、工作室采用不锈钢板或冷轧钢板加工成型,并经防锈防腐处理。??3、可选装指针式控温仪或微电脑智能控温仪,智能控温仪采用PID控制程序、大屏幕数码显示屏,轻触型操作按键,具有超温报警功能。??4、门中间设有双层钢化玻璃观察窗,便于直接观察培养物的变化。??5、磁性胶条密封,启闭方便、密封良好。二、控温精度不同:??1、生化培养箱主要用于生化反应的孵化,所以它们的门主要由玻璃组成,用于在特定温度孵化反应,操作者可在不破坏反应条件的前提下在外观察反应的变化;亦可用于细菌霉菌与控制菌的培养。??2、恒温恒湿培养箱主要用于培养细菌和控制菌,正如其名,其密封性好,温度和湿度都是可控恒定的,但不便于在外观察。 上海沪净医疗器械有限公司是华东地区净化设备行业中的公司之一,其凭借雄厚的实力,综合科技,完善的服务,敏锐的市场洞察力开发了一系列净化设备产品。我们拥有强大的销售团队、众多技术人才,良好的售后服务。可按ISO14644-1标准、GB50073-2001国家标准及国家GMP规范要求为微电子、生物医药、医院手术室、光纤光缆、食品饮料、精密仪器、半导体及新材料应用等行业的空气净化系统工程设计、施工、检测及技术服务。本公司可根据客户的现实要求和实际需要设计,定做安装洁净室系统及专用设备。 公司生产的净化工作台系列、风淋室系列、通风柜系列,生物安全柜系列一上市就受到了广大消费者和经销商的青睐和厚爱,沪净净化产品被广泛应用于医疗卫生、电子、制药、生物、食品、农林、畜牧兽医、检验检疫、航空航天、汽车制造、精密仪器、大专院校和各科研机构,在和东南亚市场享有的声誉。 经营理念:重诚信、重质量、重售后。企业精神:质量为先,信誉为重,管理为本,服务为诚。
  • 北京市2023年度面上及青年科学基金资助项目发布,食品领域29项!
    4月7日,北京市自然科学基金委员会发布2023年度北京市自然科学基金面上及青年科学基金资助项目名单,其中,食品领域决定资助29项项目,包括面上项目25项,青年项目4项。食品领域2023年度北京市自然科学基金资助项目名单面上及青年项目 (农业)科学 金额单位(万元)拟资助项目编号拟资助项目名称依托单位申请者职称合作单位金额 面上项目6232001“面筋蛋白AF-多酚”复合物的构建及其对多酚递送的机制解析北京工商大学张慧娟教授206232003大球盖菇生料栽培过程中微生物群落动态与碳代谢机制研究北京农学院张国庆教授206232004 Cer-NLRP3轴在NEB奶牛脂肪组织炎症发展中的作用及柚皮苷调控机制研究北京农学院赵玉超无206232006蔗糖转运蛋白调控小麦光温敏不育系籽粒蔗糖卸载与灌浆的分子机制北京市农林科学院杨卫兵副研206232007新型钙信号蛋白HbCSP1调控盐生植物野大麦耐盐碱性的分子机制研究北京市农林科学院江颖助研206232008基于全基因组水平的香菇交配型基因演化路径分析及应用北京市农林科学院严冬副研206232010糖代谢关键基因TaUGP1-6A调控雄性不育小麦花粉发育的分子机制解析北京市农林科学院刘子涵助研206232011基于杏远缘杂交后代多胚形成的新种质创制研究北京市农林科学院孙浩元研究员206232012牛疱疹病毒1型糖蛋白D的T细胞表位鉴定及其免疫效果评价北京市农林科学院刘文晓高级兽医师206232013非接触式鲟鱼表型高通量测量方法研究北京市农林科学院吝凯助研206232014DNA甲基转移酶基因CaCMT2与CaCMT4调控辣椒果实成熟的作用机理研究中国农业大学孙亮副教授206232016玉米转录因子GRAS32调控根毛生长和铁胁迫响应的分子机制中国农业大学陈立群教授206232017基于单细胞多组学技术研究羊卵泡发育过程中卵母细胞成熟命运的分子决定机制中国农业大学高帅研究员206232019草莓果实品质形成中ABA和IAA信号协同调控机理及其分子操控研究中国农业大学贾文锁教授206232020棉铃虫转录因子HaGATAa和HaGATAb调控雌蛾生殖行为的分子机制中国农业大学刘小侠教授206232021线粒体自噬介导SP/NK1R信号通路对ETEC感染仔猪腹泻的防御作用及机制中国农业大学马云飞副教授206232024德氏乳杆菌调控巨噬细胞分型改善仔猪肠道屏障的机制研究中国农业大学王军军教授206232034基于芽孢乳杆菌诱导的草莓土传病害致病/抑病微生物演替规律及驱动因子研究中国农业科学院植物保护研究所宋兆欣助研206232036粮食中修饰型玉米赤霉烯酮的形成规律及在体内的毒性释放机制研究中国农业科学院原子能利用研究所(农产品加工研究所)杨术鹏副研206232037甘蓝抗霜霉病基因BoDMR的图位克隆及功能分析中国农业科学院蔬菜花卉研究所张扬勇研究员206232038钙敏感受体(CaSR)调控高植物蛋白饲料引起的施氏鲟瓣肠炎症作用机制中国农业科学院饲料研究所梁晓芳副研206232039基于TLR2/NF-κB信号通路研究热灭活棒状乳杆菌激活肠道免疫的机制中国农业科学院饲料研究所徐小轻助研206232040设施温棚常用杀虫剂氟啶虫胺腈对蜜蜂授粉作业影响的机制研究中国农业科学院蜜蜂研究所齐素贞副研206232041脂联素对西伯利亚鲟性腺脂肪化的调控及其分子机制研究中国水产科学研究院任源远助研206232042日本对虾抗WSSV功能基因的挖掘及验证中国水产科学研究院张亚群助研20 青年项目6234044SiFIE2参与谷子品种改良的机制解析北京市农林科学院王海龙无106234046橡胶草×普通蒲公英杂交的分子遗传机理及高产胶基因挖掘中国科学院遗传与发育生物学研究所操银红无106234047超声波修饰马铃薯果胶调控Pickering乳液环境稳定性的作用机理中国农业科学院原子能利用研究所(农产品加工研究所)马梦梅助研106234048马铃薯甲虫聚集行为机制初探中国检验检疫科学研究院李红卫助研10 原文链接:http://kw.beijing.gov.cn/art/2023/4/7/art_736_640606.html
  • 现代化育种迎来福音,用手机就能轻松测算小麦亩穗数!
    一年之计在于春,目前全国各地正在陆续开展春耕备耕工作,小麦种植地区也在进行小麦化学除草、春灌等田间管理工作,确保小麦增产增收。  今年以来,种业如何发展这一问题在多个重要场合成为热点。2021年中央一号文件及两会期间,“农业芯片”——种子问题备受关注,解决好种子“卡脖子”问题,成为接下来农业发展任务的重中之重。  春种一粒粟,秋收万颗子。小麦作为我国主要的粮食作物之一,小麦产量直接关乎到我国的粮食安全,因此如何培育最优品种的小麦,实现小麦产量提升是育种专家的重要任务之一。小麦亩穗数作为组成小麦产量的重要衡量指标,是小麦育种和栽培工作中必要的测量内容,对于小麦优种选育有着重要的参考意义。  传统测算方式,实割实测  目前,到小麦成熟季,小麦产量测算主要通过人工手动统计,需要育种专家深入田间实割实测,再通过获得数据推算小麦产量。  在收割前一周,专家们需要深入田间地头,实地观察麦田长势,预估小麦产量。等到了实割实测现场,专家们要顶着烈日对麦田进行标识测量、拉尺放样,然后弯腰弓背亲手割取小麦样本,几个回合下来往往都是汗流浃背。随后再经过脱粒去杂、测水称重等环节,几番辛苦才能完成整个小麦产量测算的前期工作。经过所有环节后,专家们还要称出小麦重量、含水量,再加上测量的固定面积,将数据代入专门公式才能最终测算出小麦的实收产量。  不难看出,小麦实收产量的传统测算方式不仅费时费力、环节繁琐而且没有统一的标准化计数方案。在另一种测算小麦理论产量的方法中也存在同样问题,小麦理论产量可通过亩穗数、穗粒数、千粒重来获取,但是目前,获取小麦亩穗数的方式仍然有赖于人工肉眼计数统计,数据准确度有待提高,那有没有办法可以快速获取小麦亩穗数呢?  智能测算方式,快速获取  针对传统小麦亩穗数的测算痛点,浙江托普云农科技股份有限公司自主研发了小麦亩穗数测量系统,通过搭配硬件采集特定面积内的小麦图像信息,系统利用深度学习、图像识别等人工智能技术可快速计算出小麦亩穗数量,取代人工方法统计,并可实时查看多张照片的测算和分析结果,通过软件自动生成报表功能,有效实现数据的编辑、筛选、导出和分享,为育种和考种专家提供便利。  利用麦穗数和亩穗数测算结果,用户根据实际测量获取的穗粒数及千粒重数据,就可以快速计算得出小麦的理论产量,有效提高科研效率,积极促进小麦高产栽培和良种选育工作。  目前,随着农业技术的发展,传统作物的产量测算方式正在逐渐被更发达的科技手段而取代,人工智能技术也越来越深入在农业领域的方方面面。相信在人工智能技术的不断应用实践下,农业科研发展及新农人将迎来更便利、快捷的服务模式。
  • 霉菌培养箱操作使用注意事项
    霉菌培养箱操作使用注意事项霉菌培养箱一般应用于医疗卫生、生物制药、农业科研、环境保护等研究应用领域,是水体分析、BOD测定,细菌、菌种、微生物的培养、保存和植物栽培、育种实验生物培养的专用设备。要菌培养箱使用时的注意事项具体如下:1、用霉菌培养箱底部调节螺钉调节高度,使箱体安置平稳2、搬运时必须小心,搬运时与水平面的夹角不得小于45°3、加湿器的安装:将加湿器的电源插头插在仪器背面的电源插座上,再将仪器的加湿管与加湿器相连,相连处一定要紧密连接。加湿器水箱里加水一定要按说明书上正确操作作。4、当使用温度较低时,应定期倒掉位于箱内底部积水盘内的积水.5、如箱内不用杀菌时,应将面板上的杀菌开关置于“关”的位置.6、当温度设定好之后,不能随便将控温旋钮来回多次旋转,以免压缩机启动频繁,造成压缩机出现过载现象,影响压缩机的使用寿命。7、仪器背部装有二组保险盒,2A为制冷加热负载保险丝盒,8A为控制电源保险丝盒,若机器运转出现故,例如控温失灵,不加热或不制冷,须切断电源,分别检查保险丝是否完好,再检查相应部位。8、当湿度传感器长时间处于高湿状态,会形成结露即湿度显示值会居高不下,若需要准确的湿度显示值,则应关机后,将培养箱箱门打开,让湿度传感器处于室温中,自然干爆后,即可继续使用。9、为了保证设备的外观完好,禁止用酸或碱及其它腐蚀性物品来擦表面,箱内可以用干布定期擦干。激活 Windows转到“设置”以激活Wind10、当仪器在停止使用时,应拔掉电源插头。 ● 仪器试用环境适用于恒温试验、环境试验、低温培养、冷藏保存等场合。是水体分析培养、发酵、各种恒温试验、环境试验、水体分析、 BOD测定、微生物培养物质变性试验和培养基、血清、药物等物品的储存等。广泛应用于医疗卫生、生物制药、农业科研、环 境保护等研究应用领域。●仪器特点◆ 配备进口带刹万向脚轮,外形小,承重性好,双轮设计转动顺畅,移动安全便捷。◆ 门与箱体之间采用耐高温之高张性密封条以确保测试区的密闭,保证测试数据的精度和稳定。 以高质量抗菌不锈钢材质和经圆边处理而制成的光滑表面.易于清洁和保持完美的清洁度。◆ 独特的风道结构,进口风扇马达搭配耐高、低温的多翼式结构循环搅拌风叶,以达到空气的强制对流垂直扩散循环效果。◆ 采用模糊PID智能控制方式,具有可编程的程序运行模式,温度控制输出功率由微电脑自动演算,以达高精度及高效率之 用电效益。◆ 配备外部RS232通讯接口及警报输出端口,方便用户连接外部PC机对试验数据进行监控显示和打印输出。加强了人机对话功能,有效确保了试验的直观性。◆ 标配有漏电保护、独立的可调温度安全装置、压缩机过压保护、冷却风机过热保护、开门报警、停电报警、传感器报警 等功能确保用户使用的绝对安全性。◆ 控制系统具有自动除霜和手动除霜两项除霜功能供用户选择(做长期试验时建议选择自动除霜功能),可有效避免设备 运行中因蒸发器结霜严重而造成设备箱体内温湿度产生漂移等现象。◆ 配置进口品牌压缩机和德国EBM散热风机.霍尼韦尔PT1000三芯高精度温度传感器。◆培养箱内部可以选配万用防水插座,便于用户在培养箱内使用其它实验设备。◆具备超大可视观察窗,能在外门不被开启的情况下,全方位、立体式观察设备内部各个区域的实验情况。风道结构:独特的风道结构,进口耐高温电机搭配耐高温的多翼式结构循环搅拌风叶,以达到空气的强制对流垂直扩散循环效果。放置隔板::用户可随意调节测试区域隔板间间距和 言密,具跳也瓦方便安装和取出雨板
  • 利曼中国出席第二届中国大豆产业高峰论坛
    2017年8月11日,由黑龙江省大豆协会主办、中国大豆产业协会等单位协办的第二届中国大豆产业高峰论坛在哈尔滨召开,与会专家围绕大豆产业的发展,研讨大豆市场行情及发展机遇,探索我国大豆产业健康、持续发展新路。 利曼中国作为全球先进便携式近红外谷物分析仪(大豆蛋白仪)的优质供应商,受邀参与此次论坛,通过现场演示及讲解,仪器的便携性、准确性和简便性获得广大专家和用户的肯定与认可! 积累近三十年产品研发经验,美国Zeltex全新设计升级的ZX-50IQ及ZX-550IQ近红外谷物分析仪(大豆蛋白仪),凭借多项近红外专利技术,准确性大大提升,可在现场快速、准确地无损检测多种谷物和种子,满足GB/T 24870-2010《粮油检验大豆粗蛋白质、粗脂肪含量的测定近红外法》标准。 主要特点:■ 操作简单,上手容易,便携小巧,不受使用环境限制;■ 6节5号电池即可供电,亦可外接车载点烟器或交流电源;■ 无需前处理,整粒无损检测,分析时间1分钟;■ LED冷光源耐低温、寿命长;■主机尺寸:26 x 12 x 9 cm,重量:1.5 kg。 分析项目:蛋白油脂水分纤维淀粉大豆√√√√硬质红小麦√√大麦√√玉米√√√√大米√√油菜籽√√√豆粕√√√ 利曼中国一直致力于质量控制与分析、智能科技产品的推广及应用,在国内拥有20多个销售联络机构、覆盖全国的多个维修服务中心及示范实验室,近百名员工以及众多的国内外合作伙伴。公司一向秉承认真严谨,服务至上的原则,以优质专业的快捷服务,享誉政府质检、高校科研以及环保、化工、地矿、铸造、机械等行业。在日益发展的中国市场,旨在为国内用户提供世界一流的技术和先进的解决方案。
  • 安捷伦新年“新”计划:聚焦用户、培养人才——访安捷伦科技副总裁、化学分析事业部大中华区总经理丁再福博士
    条纹衬衫、红色领带,外搭一件灰色外套,脸上始终带着微笑,极具亲和力&mdash &mdash 他就是安捷伦科技副总裁、化学分析事业部大中华区总经理丁再福博士(Dr. Teng Chai Hock),现执掌安捷伦化学分析集团大中华区的业务。   安捷伦在中国一直坚持选择任用本土高管,但丁再福博士却有些不同&mdash &mdash 调任大中华区之前,他一直负责安捷伦在亚太和东南亚市场的业务。安捷伦之所以选择丁再福博士来掌管化学分析事业部大中华区的业务,正是看中丁再福博士在仪器行业30多年的积累、在安捷伦23年的工作经验,以及他对中国市场和用户的深层了解。 安捷伦科技副总裁、化学分析事业部大中华区总经理 丁再福博士   在刚刚过去的2013财年,丁再福博士率领着安捷伦化学分析事业部中国团队取得了不俗的业绩。2013财年,安捷伦在中国市场的化学分析业务继续保持高增长,中国依然是安捷伦全球增长最快的市场。更令人激动的是,与安捷伦全球第一大市场美国相比,中国对于安捷伦总收入的贡献已经与美国相去无几。   优异业绩背后的强劲推动力来自何处?丁再福博士解释道,&ldquo 由于美国和欧洲市场的疲软,整个全球仪器行业在2013年增长放缓,对于安捷伦而言,中国地区仍然是强大的增长引擎。中国市场的增长主要归功于食品、环境和能源行业的强劲需求,而我们的售后市场,包括化学品、消耗品和服务不仅为客户带来了高水平的支持和体验,也成为安捷伦的增长动力之一。&rdquo   在已经开始的2014财年,安捷伦将发生一次巨大的变化:拆分成两家独立上市公司。新安捷伦将成为一家完全专注于生命科学、诊断和应用市场的测试测量公司。安捷伦首席执行官邵律文(Bill Sullivan)期望,2014财年,新安捷伦的收入能够达到50亿美元。   作为第一大新兴市场&mdash &mdash 中国的负责人,丁再福博士重任在肩。但丁再福博士对新财年秉持乐观,并充满信心。在他看来,中国的市场机会还有很多,如食品安全、环保、新能源、新材料市场等,业绩增长的空间还很大。与此同时,移动检测也是未来市场增长的重要机会之一。丁再福博士认为,在食品安全、环境保护领域,尤其对于没有条件建设实验室的国内偏远地区,移动检测方案是首选。   丁再福博士说,&ldquo 从迈入该项业务领域开始,安捷伦就坚持提供实验室品质检测结果的移动检测方案。安捷伦的方案并非帮助用户筛查,而是现场即可确证,这是我们与其他移动检测方案供应商的最大不同,也是安捷伦的优势。&rdquo 2013年,安捷伦在原有车载气质、微型气相的基础上,又推出了车载液相及便携红外光谱仪,极大地扩展了移动检测方案的产品线。并且在诸多案例中成功应用,如在国内煤矿安全领域检测可燃气体或危险气体、保障雅安地震灾区的饮用水安全、保障2013年全运会食品安全和爆炸物检测等。   2014年,丁再福博士在其计划表中,将&ldquo 聚焦用户&rdquo 和&ldquo 培养人才&rdquo 列为最为重要的两项工作,他认为用户和人才是实现目标的关键。   聚焦用户   &ldquo 用户满意度第一&rdquo 是邵律文提出的战胜竞争对手的三条道路之一。2014年,安捷伦中国区在此方面将是动作频频。丁再福博士介绍道,&ldquo 首先,安捷伦在2014年将会向中国市场推出大量全新产品,让更多中国用户享用到最新技术。&rdquo 2014年1月,安捷伦刚刚发布了新一代7900电感耦合等离子体质谱仪(ICP-MS)和第二代4200微波等离子体原子发射光谱仪(MP-AES)两款光谱新品,而这仅仅是开始,接下来还会有色谱、质谱等多款新品推出。   &ldquo 其次,安捷伦将继续为中国用户提供有别于竞争对手,更高品质的服务。&rdquo 丁再福博士说。安捷伦拥有业界口碑最好的售后服务,但安捷伦永远不满足于现有的成绩,不断提升服务品质是安捷伦对用户的承诺。2013年,安捷伦在中国率先推出7天× 8小时(双休日)技术服务热线,成为业内第一家能够在周末节假日提供技术服务的公司。对此,丁再福博士提到,&ldquo 经过统计,我们发现80%的用户问题可以通过在线服务得到解决 同时考虑到中国用户会有周末加班的情况,双休日技术服务热线的推出给用户带来了特别的价值。&rdquo   今年1月初,安捷伦专为中国分析仪器市场打造全新金牌服务,为高通量实验室提供更具优势的服务,全面提升仪器生产力和投资回报率。   此外,丁再福博士还提到,&ldquo 2014年,安捷伦跨品牌服务将可以支持更多品牌供应商、更多型号的产品,而服务所涵盖的仪器种类也将拓展。&rdquo   最后,在聚焦用户方面,安捷伦将增加与用户,特别是行业思想领袖的合作,为中国用户提供更有针对性的解决方案和全新应用。2013年,安捷伦首次将&ldquo 思想领袖奖&rdquo 授予了中国的行业领袖&mdash &mdash 中科院生态环境研究中心江桂斌博士及中科院生物与化学跨学科研究中心袁钧瑛博士。丁再福博士表示,&ldquo 在与江桂斌博士的合作中,我们将围绕新兴污染物为代表的非目标化合物的筛查展开研究 与袁钧瑛博士合作的内容涉及采用整合生物学的方法深入了解基因、蛋白质和代谢物之间的复杂交互作用,从而推动严重神经退行性疾病,如,阿尔茨海默病和帕金森疾病相关新型治疗方法的开发。&rdquo 这些合作成果都将即时推荐给安捷伦中国用户。 丁再福博士对安捷伦新财年秉持乐观,充满信心。   培养人才   上任伊始,丁再福博士在多个场合表示,他调任中国区后最重要的任务之一就是&ldquo 培养中国安捷伦新一代的领导力&rdquo 。在如今竞争激烈的中国仪器市场,公司之间的竞争就是人才的竞争。为此,安捷伦发起了关于选拔人才、留住人才的多项举措。   第一项是加强安捷伦中国区人才梯队建设。丁再福博士告诉笔者,&ldquo 每年实施的校园招聘项目&mdash &mdash &lsquo 火炬计划&rsquo ,是安捷伦人才梯队建设的重要一步。&rdquo 2014年安捷伦中国校园招聘&ldquo 火炬计划&rdquo 已经启动,今年招聘的人数将是2013年的两倍,足以见得安捷伦对于&ldquo 火炬计划&rdquo 的重视。对于这些形容为&ldquo 火炬&rdquo 的新生力量,安捷伦会为他们安排长达三个月的集中培训,之后将对他们进行业务考核,帮助他们选定最终合适的岗位。据介绍,有些校园招聘的员工三年之后就被提升成为小团队的主管,五年后已经成为更高一级的经理。   第二项则是从现有员工中发掘安捷伦的&ldquo 领导力&rdquo 。在过去一年中,安捷伦中国已为超过100名员工(包括经理及普通员工)制定了特别的培养计划。其中一项是针对高潜质员工,提供领导力培训 针对新经理,安捷伦特设领导力加速课程,让他们学习更多管理课程和技巧,加速他们的成长。此外,安捷伦全球还有设有&ldquo 下一代领导力培养课程&rdquo ,专为建立下一代领导管理团队而设置。2013年,多位中国经理赴总部参加了这一培训。 采访合影 (左起依次为:丁再福博士,笔者,安捷伦科技生命科学和化学分析事业部 大中华区市场总监何峻)   丁再福博士说道,&ldquo 综合来讲,针对不同层次的员工,安捷伦针对他们现有的工作和未来的发展都制定了不同培养计划,其中一个重要核心就是,为人才带去新的挑战,让人才承担更重要的工作,迅速提高他们的能力。&rdquo   &ldquo 当然,对于外部人才,安捷伦也很关注。安捷伦的理念是找到最适合的人才,无论人才来自何处。&rdquo 丁再福博士补充道。今年,安捷伦将在公司内外发掘大量人才,而发掘的人才专业领域将贯穿于仪器市场整个工作流程,包括销售、市场、售后、应用等。   采访编辑:杨娟   附录1:丁再福博士(Teng Chai Hock)个人简历   丁再福博士现任安捷伦科技公司副总裁兼化学分析事业部大中华区总经理,负责市场和销售运营,业务领域涵盖气相色谱、气质联用、电感耦合等离子质谱、液相色谱、液质联用,以及售后服务、色谱柱与消耗品等。   丁博士于1990年加入惠普公司,在过去的23年里,历任高级现场工程师、不同岗位的管理及高级管理职务。在担任现职务之前,丁博士曾担任多项亚太区管理职务,包括东南亚/越南销售运营经理、亚太渠道项目经理、亚太市场总监、南亚太及韩国生命科学与化学分析事业部总经理。   丁博士拥有英国布拉福德大学化学及控制工程学士学位,并通过英国石油奖学金项目在该大学取得化学博士学位。之后,丁博士在加拿大麦克马斯达大学完成其博士后研究项目,并在哈佛大学完成总经理项目。   附录2:安捷伦科技公司   http://www.agilent.com/chem/cn   http://agilent.instrument.com.cn/
  • 美谷物病害实验室:野生燕麦被用于抗冠锈病研究
    目前野生燕麦已经成为冠锈病抗击研究的有效资源。美国农业部农业研究局谷物病害实验室研究负责人Martlin L. Carson说,冠锈病由Puccinia coronata真菌引起,它对燕麦产量的影响高达40%。这种真菌能在5年左右对一系列的抗性基因产生抗性。   燕麦在密苏里州被列入有害杂草名单,它入侵加利福尼亚州、南亚、欧洲大部及地中海沿岸等地区。该研究团队发现野生燕麦对一系列的冠锈病菌株具有抗性。初步育种实验表明栽培燕麦Avena sativa幼苗对冠绣病具有抗性。这一研究团队目前正在开发一些高产、抗锈病、耐旱的稳健品系。
  • 育种家话育种|“三株野草”如何变成“一碗面”?——对话小麦育种专家杨武云
    文章来源:光明网-科普中国小麦是世界上种植面积最广的粮食作物,栽培历史有1万年以上。不过,我们今天见到的小麦,已经不是它最初的样子。“现代小麦的起源进化是一个巧合且复杂的过程,经历了两次远缘杂交。”四川省农业科学院副院长、研究员、农业农村部西南区小麦生物学与遗传育种重点实验室主任杨武云介绍说。 在一万多年前,两个物种,一个叫做乌拉尔图小麦,还有一个是拟斯卑尔脱山羊草,天然杂交形成了做意大利面条的四倍体小麦;七千年前左右,四倍体小麦在自然界又跟另外一个物种叫节节麦,天然杂交,染色体自动加倍,形成了六倍体小麦,也就是现代面包小麦的祖先。  “研究清楚小麦的遗传和生物学特性,才能更好的指导小麦新品种的培育。”杨武云说,如今,科学家能够模拟小麦的进化过程,用不同的四倍体小麦和不同的节节麦杂交,合成新的人工合成小麦,再用它作为桥梁,将具有丰富遗传多样性的小麦祖先中优异基因导入到现代小麦中,从而培育新的小麦品种。  1995年,杨武云利用在国际玉米小麦改良中心培训的机会,带回了一批含节节麦血缘的人工合成小麦资源。当时,全世界育种家对人工合成小麦基因资源寄予厚望,但还没有取得成功。  “里面有节节麦的基因资源,野生性很强,具有很多对育种不利的性状,比如株型散,株高很高,壳比较硬难以脱粒等。所以无法在育种中被直接利用。”  杨武云将带回来的人工合成小麦与四川小麦杂交,经多代鉴定,最终在国际上率先育成了突破性小麦新品种“川麦42”。川麦42高抗条锈病、稳定性好、适应性广、品质优良且综合性状好,2003年和2004年,分别通过了国家和四川省品种审定委员会审定,并被推荐为四川省和全国重点推广的小麦新品种。  “川麦42产量比对照品种,在国家区试里面增产了17%,在四川省区试里面增产了30%。在大面积生产上应用,每亩可以增加100公斤左右。现在川麦42是四川小麦培育的骨干亲本,利用它又先后培育了40多个品种。”杨武云说。在培育川麦42的过程中,杨武云还结合多年来的育种实践经验,总结出了一套高效的人工合成小麦育种利用策略——“大群体有限回交法”。不仅在小麦育种上可以应用,在其他作物育种中也可以使用。  “现在我们课题组收集了大量的四倍体小麦和节节麦,在大量合成新的人工合成小麦。这些材料就像自己的子女一样,肯定有好东西在里面。”谈起未来的目标,杨武云说,第一是要高产稳产,第二是要绿色生产,抗病、抗逆,少用农药,第三还要培育强筋、弱筋或者中强筋等多元化的品种出来,满足不同层次的市场需求。  “野生资源很好,但是它也有很多不好的东西,要通过先进的技术来改良它,才能够更大范围地更好地利用它的基因资源为我们现代育种服务。”杨武云说。
  • 买的多,送的多;你敢买,我敢送! ——买一送一,买二送二,还有培训班名额哦!
    为感谢多年来生物制药分析技术工作者对ACQUITY/XBridge BEH SEC色谱柱与Glycoworks RFMS糖基分析试剂包的认可与支持,我们特别推出盛夏感恩回馈活动,为广大用户提供尊享试新机会,诚邀大家继续感受我们的优质产品!- 2010年,全球第一根UPLC SEC柱上市!SEC首次拥有超高效的速度与分离度。- 2014年,XBridge BEH SEC分析柱上市,让常规分析SEC柱寿命首次可达1000针以上。- 2015年,GlycoWorks RFMS革命性标记试剂,制备更快速,响应更灵敏,从研发到QC广受好评。- 2018年底,2.5um XBridge SEC柱上市,帮助研发与生产稳步提升速度与分离度。- 2019年初,BioResolve IEX色谱柱全新启航上市!为IEX提供更理想的分离与续航寿命!买一送一(1+1):凡购买任意一根XBridge/BEH SEC分析柱 或 GlycoWorks RFMS糖基分析试剂包,即可获赠一根BioResolv IEX分析柱(配保护柱)。买二送二(2+2):凡购买任意一根XBridge/BEH SEC分析柱 及 任意一套GlycoWorks RFMS糖基分析试剂包,即可获赠一根BioResolve IEX分析柱(配保护柱)及一次Bio LC School课程!长按识别上方二维码,立即参与优惠活动。参与活动产品范围:ACQUITY/XBridge BEH SEC柱:GlycoWorks RFMS糖基分析试剂包:赠!BioResolve SCX分析柱,3um, 4.6x100mm,配VanGuard FIT保护柱(PN:186009059)感恩回馈活动说明:- 活动截止时间: 2019年8月30日,仅限终端用户;- 多买多送,BioResolv IEX分析柱按购买套数成比例赠送(不超过5根/单位);- 多买多送,Bio LC School课程,按购买套数比例赠送(不超过2人/单位)。注:沃特世将会对用户类型进行分析,判断是否适合此活动,以确保符合相关法律法规。沃特世对于此活动拥有最终解释权。关于ACQUITY/ XBridge BEH SEC柱:- BEH杂化颗粒,耐受高盐高pH流动相,SEC色谱柱寿命达到新高度;- 粒径1.7um UPLC, 2.5um UHPLC, 3.5um HPLC,全面覆盖各种仪器平台;- 孔径125A,200A,450A,适用各种级别大小的生物药分析项目。关于GlycoWorks RFMS糖基分析试剂包:- 革命性标记试剂,让制备更快速更便捷,半小时完成;- 无以伦比的MS与荧光灵敏度;- 稳定可靠,方法转移重现无忧;- 大量上市生物药项目实证!关于GlycoWorks RFMS糖基分析试剂包- 革命性标记试剂,让制备更快速更便捷,半小时完成;- 无以伦比的MS与荧光灵敏度;- 稳定可靠,方法转移重现无忧;- 大量上市生物药项目实证!
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制