当前位置: 仪器信息网 > 行业主题 > >

甲基壬酸甲酯

仪器信息网甲基壬酸甲酯专题为您提供2024年最新甲基壬酸甲酯价格报价、厂家品牌的相关信息, 包括甲基壬酸甲酯参数、型号等,不管是国产,还是进口品牌的甲基壬酸甲酯您都可以在这里找到。 除此之外,仪器信息网还免费为您整合甲基壬酸甲酯相关的耗材配件、试剂标物,还有甲基壬酸甲酯相关的最新资讯、资料,以及甲基壬酸甲酯相关的解决方案。

甲基壬酸甲酯相关的资讯

  • 脂肪酸气相色谱分析的故事
    编者注:傅若农教授生于1930年,1953年毕业于北京大学化学系,而后一直在北京理工大学(原北京工业学院)从事教学与科研工作。1958年,傅若农教授开始带领学生初步进入吸附柱色谱和气相色谱的探索 1966到1976年文化大革命的后期,傅若农教授在干校劳动的间隙,系统地阅读并翻译了两本气相色谱启蒙书,从此进入其后半生一直从事的事业——色谱研究。傅若农教授是我国老一辈色谱研究专家,见证了我国气相色谱研究的发展,为我国培养了众多色谱研究人才。 第一讲:傅若农讲述气相色谱技术发展历史及趋势第二讲:傅若农:从三家公司GC产品更迭看气相技术发展第三讲:傅若农:从国产气相产品看国内气相发展脉络及现状第四讲:傅若农:气相色谱固定液的前世今生第五讲:傅若农:气-固色谱的魅力第六讲:傅若农:PLOT气相色谱柱的诱惑力第七讲:傅若农:酒驾判官——顶空气相色谱的前世今生第八讲:傅若农:一扫而光——吹扫捕集-气相色谱的发展第九讲:傅若农:凌空一瞥洞察一切——神通广大的固相微萃取(SPME)第十讲:傅若农:悬“珠”济世——单液滴微萃取(SDME)的妙用第十一讲:傅若农:扭转乾坤——神奇的反应顶空气相色谱分析第十二讲:擒魔序曲——脂质组学研究中的样品处理第十三讲:离子液体柱——脂质组学中分离脂肪酸的气相色谱柱 上一讲我们主要介绍了在脂质组学中对脂肪酸的分析所用的离子液体毛细管色谱柱,但是用气相色谱分析脂肪酸源远流长,有许多故事,了解一些过去的故事对现在的发展理解有好处,温故才可以知新。  先讲一下脂质组学中常常要研究的血浆分析,其中一个重要的项目是分析其中的脂肪酸,下面一个例子,概要介绍了血浆中脂肪酸的主要成分:  “虽然游离脂肪酸只占血浆中脂肪酸的一小部分,但它代表一类高度代谢活性的脂质,脂肪组织是血浆游离脂肪酸的主要来源,其分布与食物的脂肪酸组成密切相关。在正常情况下从脂肪组织中释放脂肪酸与组织对能量的需要紧密相连。但是当代谢失调时,这种平衡被打乱,导致脂解增加,会释放出多于组织所需要脂肪酸的量。健康人经过一夜禁食后血浆中含有214 nmol/ml游离脂肪酸,油酸(18:1)的含量最高,其次是棕榈酸(16:0)和硬脂酸(18:0),这三种酸占全部游离脂肪酸的78%。亚油酸(18:2)和花生四酸(20:4) 是主要的多不饱和脂肪酸(约占8%)。但是有营养作用的α-亚麻酸(18:3ω-3),二十碳五烯酸(20:5, EPA)和二十二碳六烯酸(22:6, DHA)也占有一定比例,约为全部游离脂肪酸的1%。”1 脂肪酸气相色谱分析的历史故事  气相色谱被认为是分析复杂混合物中脂肪酸的可靠方法,这一方法可追述到上世纪50年代,气相色谱的出现于脂肪酸的分析有密切的关系,1952年气相色谱发明人A. T. James 和 A. J. P. Martin就用最为原始的自制气相色谱仪分析小分子脂肪酸(Biochem J,1952,50:679),他们首次阐明气-液分配气相色谱的原理,设计了自动滴定检测脂肪酸的气相色谱仪。实验过程中使用的色谱柱为玻璃柱,其内径为4mm,长度为5英尺,固定相是把DC 550硅油涂渍在硅藻土Celite 545上。分离小分子脂肪酸的色谱如图1所示。 图1 用自动滴定计气相色谱仪分析小分子脂肪酸的色谱图  分离从乙酸到戊酸的色谱如图2所示:图 2 分离从乙酸到戊酸的色谱  此后分析脂肪酸的一个重大进步是把脂肪酸进行甲酯化,1956年James和Martin使用气体密度检测器,并把脂肪酸进行甲酯化,使用阿皮松类高温润滑脂作固定相,可以分离分子量大的脂肪酸。图3 是分离C5-C13直链和支链脂肪酸甲酯的色谱图。图 3 用高沸点润滑脂分离C5-C13直链和支链脂肪酸甲酯的色谱图色谱柱:在硅藻土载体上涂渍高沸点润滑脂;柱温:197℃;载气:氮气 14.1mL/min 色谱峰: (1) 空气, (2) n-戊酸甲酯,(3) n-己酸甲酯, (4) 4-甲基己酸甲酯,(5) 6-甲基庚酸甲酯, (6) n-辛酸甲酯, (7) 6-甲基辛酸甲酯, (8) n-壬酸甲酯,(9) 8-甲基壬酸酯, (10) n-癸酸酯, (11) 8-甲基癸酸酯, (12) 10-甲基十一酸酯 ,(13) n-十二酸酯, (14) 10-甲基十二酸酯2 脂肪酸气相色谱分析的发展  脂肪酸的气相色谱分析由于它的极性和挥发性不好而带来麻烦,所以首先要把它的极性羰基转化成易于挥发的非极性衍生物。有多种烷基化试剂可以进行羰基的衍生化,使用最多的是进行甲基化,特别是使用氢火焰离子化监测器(FID)气相色谱时,尤为方便普及。但是使用FID也有一些不足之处。绝对的定量要依靠内标物的信号强度,经常使用的内标物是十七酸(而不是使用化学和物理性质与所测定脂肪酸相近的同位素标记脂肪酸混合物作内标)。人类体内不能合成奇数碳链的脂肪酸(包括碳17酸),但是人们可以通过食物摄取它们,它们存在于血液的血浆中,增加内标物十七酸的量,从而扰乱定量分析。  进一步讲,FID不能提供分子质量或其他结构特征信息,以便区分不同的脂肪酸,所以色谱和FID只是解决把所有要研究的脂肪酸分子完全分离开,用质谱解决脂肪酸的结构信息。大家应该知道使用电子轰击电离脂肪酸分子很容易被打成碎片,通过这些碎片可以进行脂肪酸的结构分析,但是灵敏度受到限制。弱电离技术比如负化学电离(NCI)可以改善检测限。使用卤代衍生化试剂可以进一步提高检测灵敏度,这种试剂增加了电子亲和力,可改善NCI-MS的灵敏度。Kawahara 使用五氟基苄(PFB) 作衍生化试剂来衍生化有机羧酸,这样的含氟衍生物电子很容易被俘获。此后这一方法扩展到脂肪酸的衍生化为脂肪酸酯,与脂肪酸甲酯相比,它很容易被NCI-MS检测。所以使用五氟基苄进行衍生化有利于提高检测灵敏度。许多研究者使用PFB做衍生化试剂进行脂质组学中的脂肪酸分析,例如Quehenberger等就是用这一方法分析巨噬细胞中的各种脂肪酸(Prostaglandins, Leukotrienesand Essential Fatty Acids,2008,79:123–129)。下图4 是分析巨噬细胞中的各种脂肪酸的色谱图。图 4 巨噬细胞中的各种脂肪酸的色谱图图中色谱峰的脂肪酸如下:(1)12:0 (2)14:0 (3)15:0 (4)16:1 (5)16:0 (6)17:1 (7)17:0 (8) a18:3 (9) 18:4 (10) g18:3 (11)18:2 (12)18:1 (13)18:0 (14)20:4 (15)20:5 (16)11,14,17–20:3 (17)bishomo-20:3 (18)20:2 (19)5,8,11–20:3 (20)20:0 (21)22:6 (22)22:4 (23)22:5 (24)22:2 (25)22:3 (26)22:1 (27)22:0 (28) 23:0 (29)24:1 (30)24:0 3 国内外进行气相色谱分析脂肪酸的一些例证   为了进一步了解进行气相色谱分析脂肪酸的具体情况,下面表1列出近50例分析各种样品中脂肪酸的色谱柱和分离对象。表2列出国外文献中分析人体组织中脂肪酸的例证。表 1 国内气相色谱分析脂肪酸的色谱柱和分析对象 表 2 国外文献中有关分析人体组织中脂肪酸的衍生化方法和所用色谱柱4 脂肪酸气相色谱分析所用色谱柱  从已发表的文献看分析整体脂肪酸需用非极性的聚硅氧烷毛细管色谱柱,如聚二甲基硅氧烷,分离多不饱和脂肪酸需用极性强的色谱柱,如OV-275,OV-275(这是聚硅氧烷固定相中极性最强的色谱柱)和CP-Sil 88(HP-88)。 据安捷伦公司一份研究报告(5989-3760 EN),他们对最重要的一些脂肪酸(甲酯)(见表3)进行研究,研究总结认为:聚乙二醇柱对不太复杂的样品可以得到很好的分离 而中等极性的氰丙基聚硅氧烷柱(DB 23)对复杂的 FAMEs 样品可以得到很好的分离,对一些顺反异构体也可以得到分离 要使顺反异构体分离的更好,就要使用更高极性的 HP-88 氰丙基色谱柱。表3 重要的一些脂肪酸  三种主要色谱柱分离脂肪酸的特点如下:  使用DB-Wax柱,DB-23 柱和HP-88 柱上分离37种脂肪酸混合物的色谱见图5-图7.图 5 FAMEs在30 m 0.25 mm ID, 0.25 μm DB-Wax 色谱柱上的色谱图 6 FAMEs混合物在 60 m 0.25 mm ID, 0.15 μm DB-23 柱上的色谱图 7 FAMEs 混合物 在 100 m 0.25 mm ID, 0.2 μm HP-88 柱上 的色谱  其中HP-88 柱的极性最强,是含88%氰丙基甲基聚硅氧烷,其结构如下图8:图8 HP-88 的分子结构  HP-88 对一些异构体的分离能力由于DB-23如下图9所示  图 8 HP-88和HP-23分离能力的差别  (此图来自Walter Jennings博士2008年在北京大学作报告时的ppt文稿)  吴惠勤等使用P-88毛细管色谱柱分离了39种脂肪酸得到的质谱基峰离子和特征离子如表4中的数据。表4 39种脂肪酸在HP-88毛细管色谱柱上出峰次序( 吴惠勤等,分析化学,2007,35(7):998-1003)
  • 欧盟禁止进口含二甲基甲酰胺的鞋和家具
    据波兰媒体报道,自今年5月1日起,欧盟将禁止进口含有二甲基甲酰胺(DMF)的鞋和家具产品。欧盟称该物质吸收潮湿空气后会引发过敏反应。外界认为此举主要针对中国。
  • 脂溶性聚合物环氧树脂及甲基硅油分子量分布测定
    脂溶性聚合物环氧树脂及甲基硅油分子量分布测定刘兴国 熊亮 曹建明 金燕美丽而寒冷的冬天又到了,室外大雪纷飞,喜欢运动的小伙伴们由户外转战室内,场馆内羽毛球、乒乓球、篮球大战相继上演,运动的身姿和蓝绿色地面、明亮的篮板构成了一道道靓丽的风景线。你可知道这漂亮的场地和器材是用什么材料制造的吗?学化学的你可能回答:“有机材料。”其实这些都是聚合物材料,绿色和蓝色的防滑地面材料为环氧树脂,有机玻璃的篮板材料为聚甲基丙烯酸甲酯。这些均为脂溶性聚合物材料的产品,它们已渗透到日常生活和高端科技的方方面面,从每天要用到的塑料袋到航天材料都可看见它们的身影。 今天,飞飞给大家重点介绍两种脂溶性聚合物。一种是低分子型环氧树脂,是由双酚A和环氧丙烷在氢氧化钠作用下缩聚而成,室温下为黄色液体或半固体,耐热、耐化学药品、电气绝缘性好,广泛用于绝缘材料、玻璃钢、涂料等领域,是常用的基础化工材料。另外一种为甲基硅油,它具有突出的耐高低温性、极低的玻璃化温度、很低的溶解度参数和介电常数等,在织物整理剂、皮革涂饰剂、化妆品、涂料和光敏材料等领域广泛应用。 分子量分布是表征聚合物的重要指标,对聚合物材料的物理机械性能和成型加工性能影响显著。常用测定方法有:粘度法、激光光散射法、质谱法和体积排阻色谱法 (SEC法),其中凝胶渗透色谱法(GPC法)作为体积排阻色谱法的一类,方便快捷、设备普及,具有广泛适用性。通过本文,飞飞给大家介绍以聚苯乙烯为标样,GPC法测定低分子量环氧树脂以及甲基硅油分子量的方法,通过对分子量分布的准确控制可以很好地保证产品的质量。变色龙软件GPC扩展包可以非常方便地将采集的GPC数据进行处理,快速地得到分子量分布的信息,而且该扩展包完全免费。 本实验仪器配置如下:仪器:赛默飞 U3000高效液相色谱仪泵:ISO3100 Pump自动进样器:WPS 3000SL Autosampler柱温箱:TCC3000 Column Compartment检测器:ERC 521示差检测器变色龙色谱管理软件 Chromeleon CDS 7.2 1. 环氧树脂分子量测定双酚A型环氧树脂基本结构及以它为材料制造的体育馆环氧地坪见图1:图1 双酚A型环氧树脂基本结构及体育馆环氧地坪色谱条件如下:分析柱:TSKgel G2500HXL 300*7.8mm,P/N:0016135(适用分子量范围100-20000);TSKgel G3000HXL 300*7.8mm,P/N:0016136(适用分子量范围500-60000);TSKgel G5000HXL 300*7.8mm,P/N:0016138(适用分子量范围1000-4000000);三根色谱柱串联分析。柱温:25℃RI检测器:过滤常数:2s,温度:35℃流动相:四氢呋喃,流速1.0mL/min进样量:15µL 对照品为聚苯乙烯,分子量分别为162,370,580,935,1250,1890,3050和4910;称取适量对照品用四氢呋喃超声溶解,浓度0.02mg/mL。样品用四氢呋喃溶解,浓度0.1mg/mL,测定谱图见图2。 图2不同分子量聚苯乙烯对照品测定谱图注:580和370两个对照品出厂报告上polydispersity多分散系数分别为1.13和1.15,分子量集中度差,所以峰形呈现为多簇小峰。其余对照品多分散系数均小于1.05,峰形呈对称单峰。 校正曲线及相关系数如下: 图3 校正曲线校正曲线方程y=-0.0006x3+0.0502x2-1.5496x+20.4439,相关系数R=0.9998。不同厂家不同批次环氧树脂样品测定结果如下: 表1 环氧树脂样品测定结果样品名称 重均分子量Mw样品-1 387样品-2 401样品-3 396 2. 甲基硅油分子量测定测试甲基硅油的分子量及其分布,常用的GPC方法是采用甲苯或四氢呋喃作为流动相,但是由于甲苯属于管制类试剂,不易购买,因此飞飞采用四氢呋喃(THF)作为流动相来测定硅油的分子量及其分布,结果显示分离与色谱峰形均较好。对照品为聚苯乙烯,分子量分别为1210,2880,6540,22800,56600和129000;称取适量对照品用四氢呋喃超声溶解,浓度约1.0mg/mL。样品用四氢呋喃溶解,浓度1mg/mL。色谱条件如下:分析柱:Shodex KF-805L 8.0*300mm(适用分子量范围300-2000000);柱温:30℃RI检测器温度:31℃流动相:四氢呋喃,流速0.8mL/min进样量:100µL 对照品测定谱图及校正曲线如下:图4 对照品测定谱图及校正曲线 校正曲线方程y=-0.0182x3+0.5987x2-7.1522x+34.6655,相关系数R=0.9996。甲基硅油样品测定结果数均分子量为20727,重均分子量为36273,Z均分子量为59280,Z+1均分子量为91320。总结到这里,飞飞给大家介绍了采用U3000液相结合变色龙软件采集和处理数据,分析低分子量环氧树脂和甲基硅油分子量的方法,由于两者分子量范围差异较大,实验采用了两组不同分子量的聚苯乙烯标准品作为对照品。对于环氧树脂由于需要测定的是低分子量聚合物且对照品分子量接近,所以采用了三根截留分子量不同的凝胶柱串联进行测定,结果更为准确。变色龙GPC分子量计算扩展包功能强大,导入和使用方便,为广大变色龙工作站用户扩展使用GPC功能带来便利。本文介绍的为脂溶性聚合物的分子量测定,对于水溶性聚合物的分子量分布测定,飞飞这里有较多应用文章供大家参考,感兴趣的朋友可联系我索取,这里给大家提供一篇最常用的,右旋糖酐40的分子量分布测定,扫描以下二维码既可查阅。
  • GB 5749-2022 生活饮用水卫生标准解读
    GB 5749-2022 生活饮用水卫生标准将于2023年4月1日正式实行,代替GB 5749-2006生活饮用水卫生标准。标准规定了生活饮用水水质要求、生活饮用水水源水质要求、集中式供水单位卫生要求、二次供水卫生要求、涉及饮用水卫生安全的产品卫生要求、水质检验方法。本标准适用于各类生活饮用水。GB5749-2022版相比2006版的变化新标准的水质指标由原来的106项调整为97项,包括常规指标43项和扩展指标54项,将高氯酸盐、乙草胺、2-二甲基异茨醇、土臭素正式作为扩展指标加入到新标准中。另外参考指标由之前的28项调整为55项,其中主要增加项目为有机磷农药及全氟化合物(全氟辛酸、全氟辛烷磺酸)、臭味化合物如二甲基二硫醚、二甲基三硫醚、硫化物等。相应的2022版《生活饮用水标准检验方法》GB/T 5750意见稿变动很大,其中有机污染物的部分尤为明显。其中的第八部分主要规定了饮用水中常见的有机污染物,如微囊藻毒素,烷基酚,环烷酸,PPCPs等的检测方法,第九部分则明确了饮用水中痕量农残的检测项目,方法及指标,此外意见稿的第十及第五部分则为主要针对饮用水中消毒副产物残留,如氯酸盐,高氯酸盐等的检测方法。 GERSTEL饮用水检测解决方案GERSTEL饮用水检测解决方案可实现的方法和技术包括:在线SPE-LC/MS/MS直接液体进样搅拌棒吸附萃取SBSE-GC/MS(/MS)在线固相微萃取SPME-GC/MS(/MS)气相色谱-嗅闻技术 GC-O-MS可以实现对以下污染物和臭味物质超痕量的监测,一网打尽GB5749-2022标准中的目标分析物:臭味化合物:2-二甲基异茨醇、土臭素、二甲基二硫醚、二甲基三硫醚、硫化物全氟化合物:如全氟辛酸、全氟辛烷磺酸消毒副产物残留:氯酸盐、高氯酸盐邻苯二甲酸盐农药残留激素、药物残留有机污染物:如微囊藻毒素、烷基酚、丙烯酰胺等应用案列01水中痕量土臭素和2-甲基异崁醇的测定GB 5749《生活饮用水卫生标准》征求意见稿和GB/T 5750《生活饮用水标准检验方法》征求意见稿均规定采用固相微萃取技术(SPME)对水体中痕量土臭素和2-甲基异崁醇进行测定,该方法具有无需有机溶剂、灵敏度高等特点,集采样、萃取、浓缩、进样于一体,能直接应用于气相色谱、气质联用、液相色谱等仪器。能够分析40mL/60mL的水质样品,标配24位样品盘,无需减少取样量,符合GB/T 5750《生活饮用水标准检验方法》标准要求(40mL水样),检出限更低、灵敏度更高。对2种目标物5ng/L,10ng/L,20ng/L,50ng/L,100ng/L进行线性研究,2-甲基异莰醇R2为0.998,土臭素R2为0.997,线性良好。2-甲基异莰醇、土臭素两种目标物具有更低的方法检出限,分别达到2.7ng/L、0.47ng/L,符合标准要求,并且结果稳定RSD 4% (n=6)。 02水中全氟化合物,草甘膦的检测GB5750.8 有机物指标增加检测项目:全氟辛酸&全氟辛烷磺酸原理:水样经混合型弱阴离子交换反相吸附剂(WAX)固相萃取小柱富集浓缩后氮吹至近干,复溶后上机测定;以超高效液相色谱串联质谱的多反应监测(MRM)模式检测,根据保留时间以及特征峰离子定性,采用同位素内标法定量分析。GERSTEL推出在线SPE-LC-MS/MS的自动化方法测定全氟碳酸和全氟磺酸。此方法在0.2– 2.0 ng/L的线性范围内最低检测质量浓度LOD远低于1 ng/L,完全符合标准中3 ng/L 和 5ng/L的要求 。通过对不同来源的加标水样进行分析,证明了该方法的准确性。相对标准偏差RSD10%,正确度在80% -110% 之间。 分析前无需过滤水样或用甲醇稀释。对不同来源的水样验证了方法的加标回收率和精密度。目标待测物英文缩写LOD (ng/L)全氟丁酸PFBA0.14全氟戊酸PFPA0.27全氟己酸PFHxA0.13全氟庚酸PFHpA0.19全氟辛酸PFOA0.22全氟壬酸PFNA0.13全氟癸酸PFDA0.20全氟丁烷磺酸PFBS0.20全氟己烷磺酸PFHxS0.18全氟庚烷磺酸PFHpS0.24全氟辛烷磺酸PFOS0.23对不同来源的水样饮用水,河水,山泉水,矿泉水验证了方法的加标回收率和精密度,以下是生活饮用水进行加标回收率测定举例,分别添加低(5 ng/L)、高(50 ng/L)2个浓度水平,按照所建立的方法进行样品处理及测定,每个浓度重复5份平行样品,计算平均加标回收率和精密度。 组分低浓度高浓度回收率%RSD%回收率%RSD%PFBA1137952PFPA748767PFHxA941923PFHpA953921PFOA1173972PFNA954932PFDA921923PFBS925814PFHxS919922PFHpS799913PFOS886973标准溶液 (50 ng/L) 水溶液的示例色谱图在线SPE-GC-MS/MS应用详情请见:根据欧盟饮用水指令和DIN38407标准使用在线SPE-LC-MS/MS测定饮用水中的PFAS同样的配置被成功应用于草甘膦及其主要代谢物氨基甲基膦酸(AMPA)的检测,对于水中草甘膦和AMPA的测定,结果达到了10 ng/L的最佳定量限(LOQ)并达到0.999的显著线性系数。使用FMOC-Cl衍生化,随后进行自动固相萃取SPE步骤。自动样品制备过程在25分钟内完成。LC-MS/MS循环时间小于20分钟。使用GERSTEL的重叠样品制备功能PrepAhead,使样品制备和分析完全同步,以最大限度地提高生产率和通量。0.1、0.5、1.0 和5.0 ng/ml草甘膦标准品色谱图031水中消毒副产物检测GB5750征求意见稿第10部分消毒副产物指标中,要求适用液液萃取衍生气相色谱法, 要求使用MTBE进行液-液萃取,然后衍生化(甲基化),然后带有电子捕获检测器的气相色谱分析测定水中的一氯乙酸 MCAA,二氯乙酸DCAA,三氯乙酸TCAA。若取水样25 mL水样测定,本方法最低检测质量浓度分别为:5.0 μg/L、2.0 μg/L、1.0 μg/L。使用离子色谱-电导检测法最低检测质量浓度分别为:一氯乙酸(MCAA)1.9 μg/L、二氯乙酸(DCAA)3.7 μg/L、三氯乙酸(TCAA)4.4 μg/L、一溴乙酸(MBAA)3.0 μg/L、二溴乙酸(DBAA)8.3 μg/L。GERSTEL解决方案自动化液液萃取和在线衍生,完全自动化标准中的手动制样过程:如调整PH值至5,使用甲基叔丁醚萃取,加入硫酸甲溶液在50 ℃加热块上衍生2小时,加入碳酸氢钠溶液中和,取上清液注入GC。使复杂繁琐的液液萃取和衍生步骤变得简单。节省人力和物力。 该系统每天可以分析32个样品,技术人员仅需1小时的时间来进行样品加载、制备和进一步处理。小型化的方案需要消耗的溶剂少得多,从而节省了成本并改善了实验室的整体工作环境。方法的测定限为1 ppb;对所有测定的卤代酸进行了验证,在0.5 -50 μg/L的线性很好R² 0.999。1μg/L 和 40 μg/L的重复性高 (RSD 4.8%)(n=3)卤代酸HAAsR² (0.5 - 50 ppb)LODμg/LRSD % (n=3)1 μg/L40 μg/L一氯乙酸0.9990.14.10.8二氯乙酸1.0000.11.51.8三氯乙酸1.0000.23.70.8一溴乙酸1.0000.14.81.4二溴乙酸0.9990.051.40.6法国威立雅环境在巴黎用于自动测定水中卤代酸(HAAs)的系统同时这套解决方案还可以实现对三氯甲烷,三溴甲烷、二氯一溴甲烷、一氯二溴甲烷、二氯甲烷、二溴甲烷、氯溴甲烷的检测,使用顶空气相色谱法。对2,4,6-三氯酚(TCP)的检测可以使用自动化顶空固相微萃取HS-SPME标准方法来实现,或者对更低浓度的痕量化合物,使用搅拌棒吸附萃取SBSE来实现。04感官气相色谱对臭味物质的测定通过化学分析与感官评价方法结合,可对水中未知嗅味物质进行鉴定。主要采用气相色谱-嗅闻技术(gas chromatography-olfactometry,GC-O) 的方法,通过GC分离混合物中的组分,部分样品分流至闻测杯后,测试人员对不同时间流出的气体样品进行嗅闻,协助从大量色谱峰中寻找相应物质。此技术也可以帮助改善饮用水处理工艺。成功案例:中国科学院生态环境研究中心:感官气相色谱对水中不同化合物嗅味特征的同步测定感官闻测耦合仪器分析: 水务部门给臭气”定罪”的黑科技去除土臭素和 2-MIB的整体饮用水处理工艺研究05水中多环芳烃和多氯联苯的检测GB5750 检测多环芳烃使用固相萃取SPE-高效液相色谱HPLC:水中多环芳烃经苯乙烯二苯乙烯聚合物柱富集后,甲醇水溶液淋洗杂质,二氯甲烷洗脱,浓缩后用乙腈水溶液复溶,经高效液相色谱分离,紫外串联荧光检测器检测,保留时间定性,峰面积外标法定量。GERSTEL提供绿色高效的检测方法,使用搅拌棒吸附萃取SBSE-气相色谱串联质谱GC-MS/MS,样品无需复杂的前处理,直接通过搅拌棒萃取,大大节省了溶剂的使用量,并且提高了检测的灵敏度。下表是标准中的16种多环芳烃化合物使用两种方法可以达到的最低检测质量浓度LOD, 只需100ml的水样,SBSE的检测下限提高了数十倍。 对加标浓度接近各自LOQ的水样品进行重复分析 (n=6),显示所有化合物的相对标准偏差RSD在1%到15%之间,平均RSD为6.9%。大多数分析物的加标回收率在90到110%之间。16种多环芳烃化合物组分GERSTELSBSE-GC-MS/MS LOD(ng/L)GB5750SPE-HPLCLOD (ng/L)SBSE加标回收率 %SBSE精密度 %100 mL水样500 mL水样 n=6萘5.020.01022.5苊烯0.108.01134.5苊1.08.09615芴0.4516.0926.5菲2.520.0935.2蒽0.06112.0816.2荧蒽0.4516.0 9211芘0.4512.0855.8苯并(a)蒽0.0764.61055.2䓛 0.0278.01163.6苯并(b)荧蒽 0.0788.0873.8苯并(k)荧蒽0.0818.0922.3 苯并(a)芘0.0334.610212二苯并(a,h)蒽0.0738.01163.6苯并(g,h,i)苝0.0497.71067.3茚并(1,2,3-cd)芘0.0445.81044.6GB5750 检测多氯联苯使用固相萃取SPE-气相色谱质谱法GC-MS:水样中多氯联苯被C18固相萃取柱吸附,用二氯甲烷和乙酸乙酯洗脱,洗脱液经浓缩,用气相色谱毛细管柱分离各组分后,以质谱作为检测器,进行测定。GERSTEL的搅拌棒吸附萃取SBSE-气相色谱串联质谱GC-MS/MS,使用共一个方法检测多氯联苯化合物。样品无需复杂的前处理,直接通过搅拌棒萃取,大大节省了溶剂的使用量,并且提高了检测的灵敏度。下表是标准中的12种多氯联苯化合物使用两种方法可以达到的最低检测质量浓度LOD, 只需100ml的水样而非1L,SBSE的检测下限提高了数十倍。 对加标浓度接近各自LOQ的水样品进行重复分析 (n=6),显示所有化合物的相对标准偏差RSD 5 %。分析物的加标回收率在96到109%之间。12种多氯联苯化合物组分GERSTELSBSE-GC-MS/MSLOD (ng/L)GB5750SPE-GC-MSLOD (ng/L)SBSE加标回收率 %SBSE精密度 %100 mL水样1000 mL水样n=6PCB810.0397 983.2PCB770.0416 994.2PCB1230.03710 983.6PCB1180.012101014.3PCB1140.03612 1084.7PCB1050.043111094.1PCB1260.05014982.8PCB1670.04412 1002.5PCB1560.04691021.6PCB1570.04712 1032.7PCB1690.05481021.2PCB1890.05417 961.5GERSTEL的搅拌棒吸附萃取SBSE-气相色谱串联质谱GC-MS/MS被成功应用于欧盟水框架指令,能够在一次分析运行中从仅仅100mL的地表水样品中测定约100种相关污染物,如塑化剂(DEHP),各种农残,包括颗粒吸附化合物,绝大多数分析物的检测限在ng/L甚至到pg/L范围内。详情请见:欧盟水框架指令使用SBSE技术轻松搞定食品中400多种农残分析
  • 文献解读丨生物活性聚甲基丙烯酸甲酯骨水泥治疗骨质疏松性椎体压缩性骨折
    研究背景 目前全球骨缺损手术每年约为2000万例,为保持原有骨骼的结构与功能的完整,骨修复就必须依赖于移植材料,因而临床治疗中对于具有支撑作用的骨植入材料需求量巨大。植入材料的特性对于骨修复具有重要影响,是再生医学研究中的关键问题,也是临床骨修复的核心要点。聚甲基丙烯酸甲酯 (PMMA) 骨水泥是临床上出现很早、使用非常广泛的骨水泥制品,其安全性和临床效果已经得到普遍认可。但是过高的弹性模量、相对较低的生物活性都限制了它在临床使用上的进一步应用和发展。骨组织的修复和再生是一个动态过程,始于骨祖细的增殖和迁移,最终分化为成熟骨细胞。虽然骨组织具有较强的再生能力,但是当大段骨组织损伤造成大范围骨缺损时,为保持原有骨骼的结构和功能,骨的修复就必须依赖于移植材料。植入材料的特性对于骨修复具有重要影响,该过程的影响成为再生医学研究中的关键问题,也是临床骨修复的核心要点。骨植入材料主要有自体骨、异体骨(同种异体骨、异种骨)和合成材料等。自体骨一直被认为是骨移植材料的金标准,但来源有限,取骨后容易出现穿孔、伤口感染、脓肿、出血等相关并发症,植入困难、创伤大等,也使其在临床上的应用受到限制。随着组织工程技术的不断发展,人工骨不仅可以实现大批量生产,而且往往具有新的研究不断赋予的生物相容性、成骨诱导性等特点,使得人工骨普遍应用于临床骨修复以及作为骨外科填充材料。 鉴于上述缺点,材料和医学科学家尝试了多种PMMA骨水泥改性策略,通过改变单体、添加生物活性材料或有机材料等策略来优化PMMA骨水泥的生物机械性能和生物学活性。 方法与结果 本研究以PMMA骨水泥作为支持材料,在其中添加具有生物活性的矿化胶原(MC)材料,通过基础实验研究复合骨水泥的材料学表征以及体内外活性,通过将该材料应用于临床,探究临床的实用性以及价值。采用兔骨质疏松模型对复合骨水泥材料MC-PMMA在体内的生物相容性及成骨性能进行评价。 采用岛津InspeXio SMX-225 CT FPD HR对骨水泥进行扫描重建,统计骨水泥的孔隙率。如图1所示,PMMA骨水泥的孔隙率与MC-PMMA骨水泥的孔隙率几乎相同(5.61±0.16%比7.22±0.53%)。与PMMA骨水泥相比,MC-PMMA具有较低的CT值(9.36±0.13对5.46±0.22)。图1 岛津micro-CT扫描材料结果 体内实验中,更重要的评价环节为影像学评价。在4周,8周,12周时处死兔子,选择有材料的椎体,在Micro-CT定位下确定材料的位置,并进行硬组织切片和染色。采用岛津InspeXio SMX-225 CT FPD HR扫描样品,扫描后经三维等值画图软件重建并进行成骨体积分析测定。通过X线透视及CT扫描影像评估样品植入前后的形状、骨密度,并通过成骨体积的测量进行定量分析。 术后各组在各个时间点的典型扫描三维重建结果如图2A所示,骨水泥材料牢固地结合到骨组织上,没有明显的间隙。通过显微CT进行的三维渲染显示了缺损和骨水泥的位置。在图2A中,骨水泥具有以红色和黄色显示的高CT值,而骨是黑色的。随着骨水泥被骨替代,颜色变为绿色,蓝色,最后变为黑色,表明CT值逐渐降低。在4周时,两组标本的骨水泥CT值和体积相似。在8周时,MC-PMMA组的CT值下降,但在PMMA组中几乎相同。在12周时,MC-PMMA组的CT值与以前相似的区域更多。然而,PMMA组的CT值保持不变。骨水泥的界面外观和CT值的差异表明MC-PMMA组中的材料吸收和骨再生比PMMA组更多。在手术后4,8和12周,MC-PMMA骨水泥组的椎体重建三维图像的定量显示比PMMA骨水泥组有更多的骨形成(图2B-E)。手术后4周,MC-PMMA组的骨量百分比和骨小梁厚度较高。然而,骨小梁厚度或骨小梁分离没有差异。手术后8周和12周,与PMMA组相比,MC-PMMA组的骨小梁厚度显着增加,骨量百分比增加,骨小梁数较高,骨小梁分离度较低,表明随着时间的推移MC-PMMA组的骨生长增加。图2 micro-CT三维重建结果和计算结果 总结与讨论 本研究通过向广泛用于PVP和BKP的PMMA骨水泥品牌的粉末中添加矿化胶原来开发基于生物活性PMMA的骨水泥。与PMMA骨水泥相比,MC-PMMA骨水泥的压缩模量显着降低,而处理时间大致相同。MC-PMMA骨水泥促进细胞增殖和分化,并加速骨质疏松兔模型中椎骨的修复和小规模临床试验中患者的OVCF。我们的研究结果表明,MC-PMMA骨水泥有望用于临床转化。 微焦点X射线CT装置inspeXio SMX-225CT FPD HR Plus高分辨率,图像清晰擅长复合材料的拍摄操作简单、试验速度快 文献题目《Bioactive poly (methyl methacrylate) bone cement for the treatment of osteoporotic vertebral compression fractures》 使用仪器岛津inspeXio SMX-225CT FPD HR Plus 第一作者诸进晋,杨淑慧 原文链接:https://doi.org/10.7150/thno.44276
  • 宁夏计质院浊度计国家计量比对项目获“满意”结果
    近期,由国家市场监督管理总局组织的浊度计国家计量比对项目结果公布,宁夏计质院比对仪器测量En值为0.05,获量值比对“满意”结果。   浊度计是依据浑浊液对光进行散射或透射的原理制成的测定水体浊度的专用仪器,广泛应用于环境监测站、污水厂、化工厂等单位企业的水质检测,是环境监测领域必不可少的设备,其检测精准度直接关系社会民生及生态保护质量。宁夏计质院作为法定计量检定技术机构,为了保证能够准确高效开展浊度计的计量检定,积极参加项目比对,严格按照比对方案进行实验和结果上报,圆满完成了此次比对任务。   本次比对是A类国家计量比对项目,国内有72家计量技术机构参与。宁夏计质院取得“满意”结果,充分反映了对浊度计的检定能力,同时通过与其他院所的学习交流,使得技术人员自身业务能力更加精进,为今后高质量开展计量检校工作奠定了坚实基础。
  • 关于建立2项国家计量基准和提升1项国家计量基准技术能力的公示
    为加强计量体系和能力建设,有关计量技术机构申请建立“光谱规则透射比基准装置”“脉冲波形参数副基准装置”,提升“直流电压副基准装置”技术能力,市场监管总局拟批准建立上述2项国家计量基准、提升上述1项国家计量基准技术能力,现予以公示(具体内容见附件)。公众可通过以下途径和方式提出意见:一、通过信函方式将意见邮寄至:北京市东城区安外大街56号市场监管总局安外办公区计量司量值处 邮编:100011。二、通过电子邮件将意见发送至jlslzc@samr.gov.cn。三、通过传真将意见发送至:010-82260132。四、请在信函、电子邮件、传真中提供真实姓名和联系方式。五、公示截止日期为2023年7月6日。联系电话:010-82261844、010-82262871附件:新建国家计量基准名单.pdf 技术能力提升国家计量基准名单.pdf市场监管总局2023年6月30日
  • 国家市场监管总局组织实施一批制造业国家计量比对项目
    近年来,我国制造业高速发展,制造精度显著提高,对测量能力提出更高要求。近期,市场监管总局组织实施了一批制造业国家计量比对项目,为提升支撑工业制造的计量保障能力,加快推动制造业由大变强,构建以先进制造业为骨干的现代产业体系筑牢计量根基。在提高生产效率方面,组织实施超声波测厚仪校准装置计量比对,超声波测厚仪根据超声波脉冲反射原理来进行无损厚度测量,可以快速、准确地测量各种材料的厚度,相比传统测量仪器,更加节省测量时间。本次比对将超声波测厚仪作为传递样品,进一步助力提升冶金、化工、电子制造、汽车制造等行业降低时间成本、提高生产效率。组织实施力标准机标准装置(拉向)计量比对,选择小力值拉伸实验作为性能测试手段。随着医疗用品的普及,智能设备的革新,对无纺布、功能纤维、金属膜片等柔性装备的拉伸性能提出了新要求,保障小力值标准测力仪拉向计量性能准确可靠,可以节省测试时间,进一步提高企业生产制造效率。在提高产品精度方面,组织实施石油螺纹量规校准装置计量比对。石油螺纹量规紧密距是衡量石油螺纹连接精密性的重要参数,石油管材螺纹连接部分是油井管最薄弱的部分,约有80%的油井管和套管失效发生于此,导致出现经济损失,因此保证油井管生产精度尤其重要。我国是石油管材生产大国,也是世界油井管出口大国。本次比对采用石油螺纹工作量规作为传递标准器,提高石油生产企业对油管产品检验精度,从而提高油井管精密制造水平。组织实施0.03级力标准机计量比对,标准测力仪是力学领域的主要计量标准器具,本次比对选取测量范围为(100~200)kN的0.1级标准测力仪作为传递样品,可以对国内标准测力仪量值进行有效统一,全面掌握全国各省、市法定计量技术机构0.1级标准测力仪校准的实际水平和技术能力,进一步保障精密机械、安全防护等领域产品质量精度。在提高产品质量方面,组织实施金属洛氏硬度基准计量比对。硬度测试是评价材料、产品等机械性能的常用试验方法,广泛应用于钢铁、航空、石油和军工等行业中。本次比对选取高稳定性、均匀度小的硬度标块作为比对样品,可保证洛氏硬度量值的准确和统一,考察实验室测量量值、出具测量结果与计量基准复现量值一致的程度,对于提高铜、铝等软材料,钛合金、轴承钢等硬材料,硬质合金、硬化钢等超硬材料性能具有重要意义。组织实施机动车前照灯检测仪检定装置计量比对,机动车前照灯检测仪是用于测量机动车前照灯远光光束的发光强度检测的仪器,是机动车安全检验机构对车辆进行定期安全检验的主要计量器具。本次比对能够助力机动车前照灯生产质量检测,保证机动车安全检验的准确性和可靠性。通过组织实施国家计量比对,保障全国量值准确一致,提升计量技术机构和企业的精密测量能力,从而提升制造业产品质量和竞争力。市场监管总局将持续加大国家计量比对供给力度,深化国家计量比对应用,进一步夯实制造业计量技术基础,推动制造业高质量发展,为我国制造业向中高端跨越、实现制造强国和质量强国提供重要支撑。
  • 科学家开发出精氨酸二甲基化蛋白质组分析新方法
    近日,中国科学院大连化学物理研究所生物分离分析新材料与新技术研究组研究员叶明亮团队和上海有机化学研究所生物与化学交叉研究中心研究员刘聪团队合作,将硼酸化学引入到甲基化蛋白质组分析方法中,并巧妙利用精氨酸残基上不同修饰基团的位阻差异,实现高效的精氨酸二甲基化肽段富集,显著提高了蛋白质甲基化的分析能力;利用此新方法,系统分析了蛋白质分相过程中精氨酸二甲基化的变化,揭示了此类修饰的发生会降低蛋白质的分相能力。  蛋白质精氨酸甲基化是一种调控蛋白质功能的重要翻译后修饰,与较多疾病的发生发展相关。研究表明,精氨酸二甲基化会影响一些神经退行性疾病相关蛋白的液-液相分离,以及相分离所驱动的无膜细胞器的产生。然而,受限于目前精氨酸二甲基化蛋白质组分析技术覆盖率不足,这类研究仅聚焦于少数几个蛋白,尚未系统性探究精氨酸甲基化对蛋白质相分离的影响。  本研究发现,不同甲基化修饰的精氨酸残基在与邻二酮类化合物反应时,由于位阻不同,反应活性差异巨大。合作团队据此设计了一种精氨酸二甲基化肽段的富集方法:先利用环己二酮选择性的封闭无修饰精氨酸残基,随后利用丙酮醛选择性的在二甲基化精氨酸残基上修饰顺式邻二羟基,从而使得硼酸材料可以选择性的富集精氨酸二甲基化肽段。相比传统的免疫亲和富集方法,该方法拥有较强的精氨酸二甲基化肽段富集能力,特别是在鉴定RG/RGG序列上的精氨酸二甲基化位点方面有更高的灵敏度。合作团队将该方法应用于分析蛋白质相分离过程中精氨酸甲基化的变化,发现包括G3BP1,FUS,hnRNPA1、KHDRBS1在内的一些与无膜细胞器或神经退行性疾病相关的蛋白质上的精氨酸二甲基化程度发生了显著变化;系列实验验证发现,精氨酸甲基化会显著降低这些蛋白质的分相能力,且上述蛋白质组分析中鉴定到变化的甲基化位点是调控蛋白质相分离的关键因素。本工作开发了基于化学反应的精氨酸二甲基化蛋白质组分析方法,并利用这一方法揭示了精氨酸二甲基化对蛋白质液-液相分离具有重要的调控作用。  叶明亮团队致力于蛋白质磷酸化、糖基化、甲基化等翻译后修饰分析新方法的研究,发展了基于可逆酶促化学标记的O-GlcNAc糖肽无痕富集方法,克服了标记基团对糖肽质谱检测的干扰,实现了O-GlcNAc糖基化的高灵敏分析(Angew. Chem. Int. Edit.);利用不同糖肽的同一肽段骨架具有相似碎裂规律的特点,发展出基于“模式识别”的肽段序列鉴定新方法,实现了谱图拓展,显著提高了N-链接位点特异性糖型的鉴定灵敏度,并可发现未知的糖链及糖链修饰(Nat. Commun.)。  相关研究成果以Global profiling of arginine dimethylation in regulating protein phase separation by a steric effect-based chemical-enrichment method为题,发表在《美国国家科学院院刊》(PNAS)上。研究工作得到国家重点研发计划、国家自然科学基金、大连化物所创新基金等的支持。
  • 363项!市场监管总局印发2024年国家计量技术规范制修订计划
    各全国专业计量技术委员会、分技术委员会:现将《2024年国家计量技术规范制定、修订计划》《2024年国家计量技术规范宣贯计划》印发给你们,请按照《国家计量技术规范管理办法》《全国专业计量技术委员会章程》有关规定,坚持科学严谨、公开公正、注重实效的原则,结合实际认真贯彻落实。制定、修订项目应于2026年5月31日前完成材料报送报批,宣贯项目应于2024年12月31日前完成。市场监管总局办公厅2024年5月31日2024 年国家计量技术规范制定、修订计划共公布363项,包含电化学氧测定仪、热导式气体分析仪、自动光度滴定仪、微生物快速浓缩仪、氨基酸序列分析仪、单分子基因测序仪等多项仪器校准规范。全文可点击下载:1、2024年国家计量技术规范制定、修订计划.pdf、2024 年国家计量技术规范宣贯计划共69项,包含干式生化分析仪、多功能血气分析仪、全自动酶免分析仪、洁净工作台、微生物鉴定与药敏分析系统、酒类检测气相色谱仪、反应蛋白分析仪校准等仪器校准规范。全文可点击下载:2、2024年国家计量技术规范宣贯计划.pdf
  • 赛默飞发布测定清漆中六亚甲基二异氰酸酯单体(HDI)的解决方案
    2015年7月28日,北京——科学服务领域的世界领导者赛默飞世尔科技(以下简称:赛默飞)近日发布了使用GC-FID法测定清漆中六亚甲基二异氰酸酯单体(HDI)的解决方案。六亚甲基二异氰酸酯是全球应用发展十分迅速的一种新型聚氨酯原料。HDI 及 HDI 缩二脲、三聚体是生产聚氨酯涂料及聚氨酯弹性体的重要原料,广泛用于航空、汽车、建筑、木器、塑料皮革等行业和领域。HDI吸入有毒,会强烈腐蚀皮肤,引起红肿、胀痛、感染和皮疹。本品蒸气会刺激眼睛粘膜和呼吸道,引起流泪和咳嗽,可能会引起永久性眼部疾病。接触皮肤或吸入其蒸气可能会引起过敏。目前六亚甲基二异氰酸酯单体检测的检测方法有《GB/T 18446-2009 色漆和清漆用漆基 异氰酸酯树脂中二异氰酸酯单体的测定》,但是方法老旧,单点校正不准确,恒温分析会导致峰型较差,油漆残留在色谱柱内等缺点,因此需要改进。此次赛默飞发布的解决方案基于《GBT18446-2009 色漆和清漆用漆基 异氰酸酯树脂中二异氰酸酯单体的测定》,采用Thermo ScientificTM TRACE 1310气相色谱仪,搭配FID检测器,通过优化子内标物和HDI的浓度比,并将原来的130℃恒温模式分析改为程序升温模式分析(在高温度下运行几分钟,降低色谱柱污染,延迟使用寿命),对相应的气相色谱条件进行了优化;色谱柱由15m毛细管柱改为通用型的 30m 毛细管柱;同时采用多点校正的方式,使得内标物和待测组分的分离度更高、峰型更好,定量更加准确。产品链接:TRACE 1310 气相色谱仪www.thermoscientific.cn/product/trace-1310-gas-chromatograph.html解决方案下载:www.thermoscientific.cn/content/dam/tfs/Country%20Specific%20Assets/zh-ch/CMD/Chrom/petrochemical/documents/Measurement-of-HDI-in-varnish.pdf-------------------------------------------------------关于赛默飞世尔科技 赛默飞世尔科技(纽约证交所代码:TMO)是科学服务领域的世界领导者。公司年销售额170亿美元,在50个国家拥有约50,000名员工。我们的使命是帮助客户使世界更健康、更清洁、更安全。我们的产品和服务帮助客户加速生命科学领域的研究、解决在分析领域所遇到的复杂问题与挑战,促进医疗诊断发展、提高实验室生产力。借助于首要品牌Thermo Scientific、Applied Biosystems、Invitrogen、Fisher Scientific和Unity Lab Services,我们将创新技术、便捷采购方案和实验室运营管理的整体解决方案相结合,为客户、股东和员工创造价值。欲了解更多信息,请浏览公司网站:www.thermofisher.com赛默飞世尔科技中国 赛默飞世尔科技进入中国发展已有30多年,在中国的总部设于上海,并在北京、广州、香港、台湾、成都、沈阳、西安、南京、武汉等地设立了分公司,员工人数约3700名。我们的产品主要包括分析仪器、实验室设备、试剂、耗材和软件等,提供实验室综合解决方案,为各行各业的客户服务。为了满足中国市场的需求,现有8家工厂分别在上海、北京和苏州运营。我们在全国共设立了6个应用开发中心,将世界级的前沿技术和产品带给国内客户,并提供应用开发与培训等多项服务;位于上海的中国创新中心结合国内市场的需求和国外先进技术,研发适合中国的技术和产品;我们拥有遍布全国的维修服务网点和特别成立的中国技术培训团队,在全国有超过2000名专业人员直接为客户提供服务。我们致力于帮助客户使世界更健康、更清洁、更安全。欲了解更多信息,请登录网站:www.thermofisher.cn
  • 华大基因多家医学实验室满分通过全国SDC2基因甲基化检测室间质评
    近日,国家卫生健康委临床检验中心 (NCCL) 公布了《2023年全国SDC2基因甲基化检测室间质量评价预研活动结果报告》,华大基因旗下深圳、武汉、天津3地医学检验所均以满分成绩通过。这是5月华大基因深圳、天津医学检验所满分通过全国肿瘤游离DNAEGFR基因突变检测室间质评以来的再次满分认证通过,多次获得国家权威机构组织的充分肯定,证明了华大基因在肿瘤防控领域的专业检测能力。华大基因多家医学检验所满分通过室间质评华大基因十分注重医学检验所的质量管理。从2020年参与室间质评以来,多次以满分高分通过国家级室间质评。此次室间质评是国家卫健委临床检验中心首次针对SDC2基因甲基化检测面向全国医疗机构/临床实验室开展的室间质量评价,通过SDC2基因甲基化检测的定性检测,对临床实验室进行质量评价。华大基因三家医学实验室采用华大基因自主研发的粪便DNA甲基化检测试剂参加本次室间质评,阳性符合率和阴性符合率均为100%,满分通过该项能力验证,这也充分证明了华大基因粪便DNA甲基化检测技术的稳定性与高质量水平。在加速技术创新及完善实验室质量管理体系的同时,华大基因基于粪便DNA甲基化检测技术推出多款基因检测方案,其中,采用荧光定量PCR技术的华常康[gf]ae[/gf]粪便DNA甲基化检测,能够通过检测粪便携带的肠道脱落细胞中的3个肠癌相关基因 (SDC2、ADHFE1、PPP2R5C) 的甲基化水平,从而评估受检者罹患肠癌的风险。此外,华大基因为检测试剂提供配套处理系统,实现低中高通量的结直肠癌防控一站式自动化整体解决方案,为合作伙伴打造疾病检测和肿瘤防控“平急两用”通用型平台。近年来,华大基因始终坚持“防大于治、人人可及”的公共卫生普惠精准防控理念,不断创新技术,推动普惠民生项目。未来,华大基因仍将积极探索新模式、新思路、新技术与新场景,将基因科技赋能精准医学, 为加快实现‘健康中国2030’贡献科技力量。
  • 广州菲罗门酒类专用柱FB-Wine分析中国三大名酒
    广州菲罗门酒类专用柱fb-wine分析中国三大名酒白酒常见的香型有酱香型、浓香型、清香型等,酱香型味最重(高级酯、高级醇等总含量也最高),浓香居中,清香更低(香型物质总含量也是最低的)。本文所介绍的三种名酒:*台,五*液和泸**窖就分属酱香型和浓香型,并对它们进行成分以及主体香源物质进行分析。本应用采用的是直接进样法,气相色谱仪7890-fid分析。检测方法:仪器:agilent 7890 w/ fid柱型:fb-wine, 30m x 0.32mm x 0.40um(p/n: 30m-l101-040)炉温:50°c 5min 5 °c/min 200°c 2min载气:氢气 @ 1.3ml/min (恒定流量)进样口:分流40ml/min @ 240 °c检测器: fid @ 260 °c样品:*台,五*液,泸**窖进样量:1ul 图一*台(酱香型)样品测试图谱 (a)峰1-7放大图 (b)峰11-17放大图 图二 五*液(浓香型)样品测试图谱 (a)峰1-6放大图 (b)峰10-19放大图 图三 泸**窖(浓香型)样品测试图谱表1 *台、五*液、泸**窖酒的峰鉴定峰号*台min五*液 min泸**窖 min1乙醛2.640乙醛2.597乙醛2.6472丙醛3.292丙醛3.2453异丙醛3.365异丙醛3.3184甲酸乙酯3.5955乙酸乙酯4.043乙酸乙酯3.988乙酸乙酯4.0486乙缩醛4.267乙缩醛4.1997甲醇4.555甲醇4.4988乙醇5.263乙醇5.118乙醇5.3029丙酸乙酯5.41910异丁酸乙酯5.567异丁酸乙酯5.80811仲丁醇7.060仲丁醇6.99012丁酸乙酯7.359丁酸乙酯7.291丁酸乙酯7.37413异戊酸乙酯8.23514正丙醇7.497正丙醇7.42215异戊酸乙酯8.30216异丁醇9.322异丁醇9.21217仲戊醇9.94118戊酸乙酯10.096戊酸乙酯10.10619正丁醇10.811正丁醇10.70220异戊醇12.599异戊醇12.53121己酸乙酯13.138己酸乙酯13.134己酸乙酯13.16622己酸丙酯15.119己酸丙酯15.06023庚酸乙酯15.98024乳酸乙酯16.590乳酸乙酯16.542乳酸乙酯16.60525正己醇16.65126己酸丁酯18.67927辛酸乙酯19.869辛酸乙酯19.84228乙酸19.992乙酸20.021乙酸20.08629壬酸乙酯21.633壬酸乙酯21.60230丙酸22.10731己酸己酯22.94932正丁酸24.141正丁酸24.084丁酸24.17933未知杂质24.50434异戊酸25.02735正戊酸26.473正戊酸26.55036正己酸28.754正己酸28.685正己酸28.75937十四酸乙酯30.80138辛酸29.843辛酸32.81839油酸乙酯35.60040亚油酸乙酯35.829图一是*台酒的分析图谱,此酒属于酱香型白酒。从放大图可以看出峰1-7和11-17分离状况详情:图(a)乙酸乙酯和乙缩醛分辨率为3.69;丙醛和异丙醛分辨率为1.82。甲醇的拖尾因子是1.18。 图(b)几种主要醇类仲丁醇、正丙醇、异丁醇和正丁醇的峰形很好。从成分上分析,酱香酒的各种芳香物质含量高种类多,但其中乙酸乙酯起很大的作用,*台酒中乙酸乙酯的含量高于五*液和泸**窖。它的香味分为前香和后香。*台酒的酸度是其它酒的3至5倍,主要以乳酸和乙酸为主。由于乳酸在fid上没有响应,但可以从乙酸的峰看出其含量是大于五*液和泸**窖的。 图二和图三是浓香型白酒泸**窖和五*液的图谱。这种香型的白酒窖香浓郁,绵甜爽净。图二的放大图可以看出峰1-6和10-19的分离情况:图(a)乙酸乙酯和乙缩醛分辨率为3.72;丙醛和异丙醛分辨率为2.17。甲醇峰形较好,拖尾因子是0.94。图(b)几种主要醇类仲丁醇、正丙醇、异丁醇和正丁醇的峰形很好。它的主体香源成分是己酸乙酯和丁酸乙酯。有机酸以乙酸和己酸为主,从图谱中可以看出己酸的含量比其它香型酒要高出几倍,其中乙酸含量在此酒中是要略高于己酸的,但由于乙酸在fid上响应较弱,所以峰面积小。图三中泸**酒的成分相对简单,相比于五*液中还有其它低沸点的醇、酯、醛,泸州老窖只有几种主要成分乙酸乙酯、己酸乙酯、乳酸乙酯、乙酸和正己酸, 这是浓香型酒几种典型的香味成分。白酒中的成分是很复杂的,由于有些成分的含量低或者在fid上响应低,所以在以上的方法中没有列出。订货信息:货号:30m-l101-040;描述:fb-wine 30m*0.32mm*0.4um
  • 仪真分析独家代理美国EPA推荐的BRL全自动甲基汞/总汞测定仪
    仪真分析仪器有限公司(以下简称仪真)于2011年10月份正式成为美国布鲁克兰实验室(Brooks Rand Lab)的全自动总汞,全自动甲基汞及二位一体形态汞分析仪器MERX的全国独家代理商,并且全面负责该产品的市场推广,销售以及培训和售后服务等工作。从此,中国的众多客户可以得到近距离的贴切服务。 MERX 系统功能齐全,可用于总汞和甲基汞和其他汞形态的分析,一个系统全部搞定。MERX还可以与市场上所有ICP/MS 联用,实现GC-ICP/MS 形态汞测定。模块式的设计让系统具备无与伦比的灵活性,为客户节省费用及开支。MERX系统还是全球运用最多,市场占有率最大的甲基汞分析仪器,为美国EPA 1630方法所推荐。MERX所拥有的优越性能,将有助于推广总汞及甲基汞的检测范围和应用领域。特别有助于在环境,农林牧渔的样品中总汞及形态汞的研究及检测。 关于美国布鲁克兰实验室(Brooks Rand Lab)-http://www.brooksrand.com 美国的布鲁克兰试验室是世界上最大的甲基汞分析仪器生产商及商业分析实验室,具有三十多年重金属分析经验,在原有的知名总汞分析仪器基础上,三年前推出了世界上第一台商品化的,完全符合美国EPA 1630 甲基汞分析方法的,应用气相色谱-高温裂解-冷原子荧光检测的最新全自动甲基汞分析仪器MERX,能够分析从常量到痕量的甲基汞,结束了甲基汞测试步骤繁琐且重复性差的历史。布鲁克兰实验室的研发人员来自在美国从事汞分析的多年的专家,对从总汞到形态汞的检测具备独到的经验,为客户分析提供完整的解决方案。 仪真分析拥有强大的技术支持团队,为布鲁克兰实验室钦定的大中国的独家代理.相关产品垂询,敬请与我们联系将为您的实验室提供最优质的服务和解决方案。 更多产品请登陆仪真官网:www.esensing.net 仪真分析仪器有限公司 电话:(021) 62087664 传真:(021) 62191934 E-Mail:yu@esensing.net
  • 近期国家计量技术规范制修订征求意见信息汇总
    近期国家计量技术规范制修订征求意见信息汇总专业计量技术委员会计量技术规范(点击可打开相关材料下载)全国生物计量技术委员会全自动酶联免疫分析仪校准规范生物安全采样舱性能参数校准规范生物降解试验中接种物活性定量测量方法负压隔离舱生物安全参数校准规范移动生物检测实验舱性能参数校准规范负压救护车医疗舱性能参数校准规范 全国流量计量技术委员会液体容积式流量计检定规程液体容积式流量计型式评价大纲激光多普勒流速仪热式燃气表检定规程热式燃气表型式评价大纲烟道气体流速测量三维皮托管校准规范固定污染源烟气流量比对装置校准方法全国流量计量技术委员会液体流量分技术委员会标准刮板油流量计校准规范热量表通信技术协议计量技术规范全国声学计量技术委员会环境噪声自动监测仪高强度定向声源测试规范骨导助听器校准规范超声探伤仪检定规程毫瓦级超声功率源检定规程全国光学计量技术委员会光传输用稳定光源透射式能见度仪校准规范阿贝折射仪全国标准物质计量技术委员会电子探针显微分析标准物质研制规范检验医学标准物质互换性评估规范稳定同位素标准物质研制规范有机同位素稀释质谱法定值规范全国气象专用计量器具计量技术委员会大气电场仪校准规范气象湿度传感器气象用红外地温传感器自动气象站风向传感器自动气象站数据采集器气象专用计量器具国家计量技术规范体系构架全国温度计量技术委员会温度变送器校准规范热电偶、热电阻自动测量系统校准规范温度传感器动态响应校准规范全国压力计量技术委员会相对法压电式压力传感器校准规范防水卷材不透水仪校准规范锰铜电阻压力计(静态)校准规范全国几何量工程参量计量技术委员会焊接检验尺校准规范光谱共焦传感器校准规范缝隙、段差测量仪校准规范大量程数显千分表校准规范漆膜划格器校准规范全国电离辐射计量技术委员会放射治疗模拟定位X射线辐射源检定规程机动车测速仪现场测速标准装置校准规范 汽车行驶记录仪校准规范全国振动冲击转速计量技术委员会恒转速源校准规范机动车测速仪现场测速标准装置校准规范 汽车行驶记录仪校准规范高加速寿命和应力筛选试验系统校准规范行星式水泥胶砂搅拌机校准规范轮速传感器检测装置校准规范索力动测仪(振动法)校准规范出租汽车计价器检定装置检定规程地球重力法低频振动校准规范工业机器人校准规范全国计量器具管理标准化技术委员会企业能源计量器具配备率检查方法(征求意见稿)全国环境化学计量技术委员会波长色散 X 射线荧光光谱仪校准规范环境空气挥发性有机物采样器校准规范
  • 欧盟正式就批准的农药向世贸组织通报
    2013年7月4日消息,欧盟委员会已经向世界贸易组织技术性贸易壁垒委员会(the World Trade Organization’s Committee on Technical Barriers to Trade)通报其拟批准的一系列现有用于某些农药产品中的活性物质。   这些活性物质包括:苯甲酸(benzoic acid),磷化铝(aluminium phosphide),醚菊酯(etofenprox),壬酸(nonanoic acid),溴乙酸(bromoacetic acid),碘代丙炔基氨基甲酸丁酯(IPBC),五水硫酸铜(copper sulfate pentahydrat),和戊唑醇(tebuconazole)。   委员会实施细则草案拟议的实施日期为2013年9月。
  • 欧盟禁止2,5-二甲基-3-乙酰基噻吩作为食用香料
    2013年6月15日,据欧盟网站消息,欧盟发布(EU)No 545/2013号委员会条例,修订了(EC)No 1334/2008号食用香精香料法规,禁止2,5-二甲基-3-乙酰基噻吩(3-acetyl-2,5-dimethylthiophene)作为食用香料用于食品。   据欧洲食品安全局2013年5月15日公布的2,5-二甲基-3-乙酰基噻吩评估结果,2,5-二甲基-3-乙酰基噻吩在体内外试验均具有致突变性,因此本法规将其从许可香料清单中删除。   同时,禁止2,5-二甲基-3-乙酰基噻吩作为食用香料投放市场或用于食品;禁止含有香料物质2,5-二甲基-3-乙酰基噻吩的食品投放市场,禁止2,5-二甲基-3-乙酰基噻吩作为香料进口或含有2,5-二甲基-3-乙酰基噻吩的食品进口。   对于在本法规生效前上市的含有2,5-二甲基-3-乙酰基噻吩的食品可在其保质期内进行销售;本法规生效前进口的含有2,5-二甲基-3-乙酰基噻吩的食品不适用于本法规。   本法规自公布之日起生效。
  • 128家单位,累计329家次比对!15项国家计量比对项目结果公布
    市场监管总局公布15项国家计量比对结果此次全国共有128家单位累计参加了329家次比对,其中包括117家法定计量技术机构和专业计量站,以及11家第三方计量技术机构、企业和高等院校的实验室。此次比对项目着眼民生领域测量热点和产业发展需求,精准查摆问题,对提升相关行业发展水平具有重要促进作用。 在放射治疗方面。放射治疗是目前肿瘤治疗的三大基本手段之一,放疗剂量的准确与否关系着患者的治疗效果和生命安全。治疗水平电离室剂量计测得的数据是放射治疗设备对病人进行精准放射治疗的重要依据,因此,保障剂量的准确测量显得尤为重要。市场监管总局组织开展了(60-250)kV X射线空气比释动能国家计量比对,全国共有11家计量技术机构参加比对,比对结果在规定的区间范围内,对保障放射临床剂量的准确、维护患者生命安全起到了重要支撑保障作用。   在医用超声波诊断方面。超声波技术已广泛应用于临床诊断,特别是近年来大功率彩超、超声波治疗仪、超声波理疗仪等大功率超声波设备被大量生产和应用,超声测量结果的准确性直接关系到临床治疗方案。此次共有27家计量技术机构参加超声功率量值国家计量比对,比对结果均在规定的区间范围内,对保障医疗卫生领域超声功率量值的统一、准确、可靠,维护人民群众的身体健康和生命安全起到了重要支撑保障作用。   在雷达测速仪方面。此次组织开展的机动车雷达测速仪微波发射频率及模拟测速量值比对项目,选择了机动车雷达测速仪在微波发射频率、模拟测速测量点的测量值为比对参数,评估了目前我国多个省、市计量技术机构机动车雷达测速仪检定装置建标情况、测量能力和量值传递工作现状,为公安交管部门强化执法监督,遏制车辆超速等交通违法行为,预防交通事故发生,保障人民群众出行安全提供了有力计量技术支撑。   在燃气表计量方面。燃气表属于国家强制检定的与广大人民群众息息相关的六类重点工作计量器具之一,广泛用于工业及民用燃气的贸易结算。此次家用膜式燃气表检测装置量值比对项目,以使用量较大的G2.5型膜式燃气表为传递标准,选择密封性、不同流量点示值误差为比对项目,全国共有36家计量技术机构参加此次比对,比对结果均在规定的区间范围内,为保障人民群众生命安全、加强能源计量监督管理、助推节能降耗提供重要支撑。15项国家计量比对结果.pdf
  • 质检总局发布10项新国家计量基准
    p   2月29日上午,质检总局在京召开专题新闻发布会,质检总局计量司司长谢军发布了新批准的10项国家计量基准,并宣布正式启用。 /p p   10项基准可归纳为四类:一是振动(中、高、低频)国家计量基准(副基准)4项和冲击加速度国家计量基准2项,二是容量计量基准1项,三是硬度计量副基准2项,四是声学计量基准1项 /p p   具体包括: /p p   1、(0.001~5000)mL容量国家计量基准 /p p   2、中频振动国家计量基准 /p p   3、高频振动国家计量基准 /p p   4、(2× 104~2× 106)m/s2 (米每二次方秒)冲击加速度国家计量基准 /p p   5、(50~2× 104)m/s2(米每二次方秒)冲击加速度国家计量基准 /p p   6、耦合腔互易法声压国家计量基准 /p p   7、金属洛氏硬度国家计量副基准 /p p   8、金属表面洛氏硬度国家计量副基准 /p p   9、低频垂直向振动国家计量副基准 /p p   10、低频水平向振动国家计量副基准。 /p p   据介绍,此次发布的这10项国家计量基准,全部由中国计量科学研究院建立、保存和维护,向各行各业依法传递相应量值。它们全部为自主知识产权,是我国在科学计量研究方面取得的又一批重要科研成果的最高体现,标志着我国在容量、硬度、声学、振动冲击等领域的计量基准水平达到国际先进水平,部分指标达到国际领先水平。这10项国家计量基准的启用,将更加有力地为新材料研发、装备制造、航空航天、灾害预防、医疗卫生等领域提供更加精准的量传溯源服务,保证相关领域测量结果准确可靠。 /p p   质检总局计量司司长谢军介绍,计量基准是我国一切量值的溯源源头,代表着我国量值的最高水准,反映我国的最高计量能力和水平,是统一我国量值的最高依据,具有权威性、唯一性和不可替代性。截至目前,我国共研究建立了183项国家计量基准。目前,基于国家计量基准的1266项国家最高测量能力得到国际认可,位居亚洲第一,世界第四,为我国科技创新、战略性新兴产业、国防和民生发展作出了重要贡献。 br/ /p
  • 沃特世为分析饮料中的2-甲基咪唑和4-甲基咪唑含量提供解决方案
    沃特世ACQUITY UPLC H-CLASS-PDA系统和ACQUITY UPLC/Xevo TQ MS系统分析饮料中的2-甲基咪唑和4-甲基咪唑含量 赵嘉胤.蔡麒.孙庆龙 引言 焦糖色素是一种允许使用的着色剂,我国对焦糖色使用量的规定除个别产品外均为按生产需要适量使用,其中规定仅有亚硫酸铵法生产地焦糖色允许使用在碳酸饮料中。而以加氨或其铵盐制成的焦糖(Ⅲ类氨法焦糖和Ⅳ类亚硫酸铵法焦糖)会产生4-甲基咪唑,并且4-甲基咪唑是一种能够诱发肿瘤的高水平的化学物质。 焦糖色素被广泛用于食品以及饮料中,所以4-甲基咪唑的含量监控也是必须被重视的,由于4-甲基咪唑分子极性很大,含量很低,所以如何快速、准确地检测出其含量,就成为人们现阶段研究的重点。目前我国国家标准中只有《焦糖色中的4-甲基咪唑的测定-高效液相色谱法》,而对于饮料中的4-甲基咪唑则没有相关检测方法。 沃特世(Waters® )公司所提供的整体解决方案,同时来监控饮料中的4-甲基咪唑以及2-甲基咪唑。使用沃特世SPE的固相萃取策略来对于复杂的样品基质进行净化,完成对于4-甲基咪唑以及2-甲基咪唑的提取浓缩,而沃特世HILIC模式的色谱保留,对于极性分子的色谱分离提供完美的效果,最后通过UPLC® H-CLASS PDA以及UPLC/Xevo® TQ MS的分析,完成出色的定性定量工作。 实验条件 样品前处理方案 固相萃取SPE解决方案&mdash &mdash Oasis® MCX (3cc/60mg) 小柱净化取3g饮料样品,超声5分钟,后待净化。 ACQUITY UPLC H-CLASS PDA超高效液相色谱分离条件: 色谱柱: ACQUITY UPLC® BEH HILIC Column 2.1x100 mm,1.7&mu m 流动相 A: 乙腈 流动相 B: 5mM甲酸铵 柱温: 35˚ C 检测波长: 215nm 进样量: 5&mu L 运行时间: 3min 梯度表: Time (min) Flow (mL/min) %A Curve 0.00 0.5 80 6 3.00 0.5 80 6 ACQUITY UPLC Xevo TQ MS超高效液相色谱-串联质谱分析条件: 色谱柱: ACQUITY UPLC BEH HILIC Column 2.1x100 mm,1.7&mu m 流动相 A: 乙腈 流动相 B: 5mM 甲酸铵 柱温: 35˚ C 进样量: 2&mu L 运行时间: 3min 梯度表: Time (min) Flow (mL/min) %A Curve 0.00 0.5 80 6 3.00 0.5 80 6 实验结果及讨论 1、ACQUITY UPLC H-CLASS PDA分析 混合标准品色谱图 饮料空白样品图 基质添加回收色谱图 2、ACQUITY UPLC/Xevo TQ MS分析 混合标准品TIC 3.2.3 茶饮料样品加标与空白对比分析 3.2.4 可乐样品加标与空白对比分析 通过分析结果可以看出,4-甲基咪唑和2-甲基咪唑分子极性很大,一般反相很难保留,多用离子对试剂来增加保留,但由于离子对色谱方式平衡时间很长,增加整体分析周期,同时对于色谱柱以及仪器的损耗很大,最关键是无法进行有效的质谱方法分析。而沃特世公司HILIC模式的极性分析方案可以非常好的进行极性分子的保留,流动相简单,优异兼容质谱条件,使4-甲基咪唑和2-甲基咪唑有非常好的分离效果以及灵敏度。 同时由于目标化合物极性很大,对于前处理的要求非常高,分离提取是个难点,而沃特世公司的固相萃取方案能使样品达到非常好的净化效果,通过Oasis MCX进行保留分离,同时能够减少样品杂质对于色谱柱以及整个仪器系统的损害。由沃特世ACQUITY UPLC H-CLASS-PDA和ACQUITY UPLC / Xevo TQ MS所提供的超高效性能以及灵敏度,使得4-甲基咪唑和2-甲基咪唑的分析达到理想效果。 结论 1.采用ACQUITY UPLC H-CLASS-PDA和ACQUITY UPLC / Xevo TQ MS可以快速高效地对4-甲基咪唑和2-甲基咪唑的含量进行测定,ACQUITY UPLC H-CLASS-PDA灵敏度可以达到1mg/kg,ACQUITY UPLC / Xevo TQ MS灵敏度可以达到1&mu g/kg。 2.应用沃特世固相萃取SPE解决方案配合HILIC模式色谱保留,对于大极性的小分子有很好的保留以及分离提取的作用,达到理想净化效果以及色谱分离效果。 3.从样品前处理到样品色谱质谱分析的整体解决方案,给客户提供一体化的服务解决样品分析过程中可能遇到的所有问题,帮助客户成功! 关于沃特世公司 (www.waters.com) 50多年来,沃特世公司(NYSE:WAT)通过提供实用和可持续的创新,使医疗服务、环境管理、食品安全和全球水质监测领域有了显著进步,从而为实验室相关机构创造了业务优势。 作为一系列分离科学、实验室信息管理、质谱分析和热分析技术的开创者,沃特世技术的重大突破和实验室解决方案为客户的成功创造了持久的平台。 2011年沃特世公司拥有18.5亿美元的收入,它将继续带领全世界的客户探索科学并取得卓越成就。 联系方式: 叶晓晨 沃特世科技(上海)有限公司 市场服务部 xiao_chen_ye@waters.com 周瑞琳(GraceChow) 泰信策略(PMC) 020-83569288 13602845427 grace.chow@pmc.com.cn
  • 市场监管总局公布10项国家计量比对结果
    本次公布结果的2019年国家计量比对包括4项A类国家计量比对和6项B类国家计量比对,涉及几何量、力学、电磁学、光学、声学、化学、生物以及标准物质8个计量专业领域,全国共有97家单位累计参加了176家次比对,其中包括55家法定计量技术机构和专业计量站,43家第三方计量技术机构及企业。此次比对项目的选择着眼民生领域测量热点和产业发展需求,精确查摆问题,对提升相关行业发展水平具有重要促进作用。   在几何量领域,几何量计量广泛应用于生产制造、科学研究、国民经济和社会发展各个领域。市场监管总局组织开展的标准钢卷尺示值误差国家计量比对,全国共有7家计量技术机构参加比对,比对结果在规定的正常范围内。   在力学领域,转速是旋转物体的转数与时间之比的物理量,是描述各种旋转机械运转技术性能的一个重要参量,是力学运动学计量的基础。本次共有32家计量技术机构参加转速测量仪量值比对,比对结果均在规定的正常范围内。   在电磁学领域,本次开展的直流电能校准能力计量比对以及直流电压分压器误差计量比对,共有包含2家主导实验室在内的34家实验室参加,比对结果均在规定的正常范围内。这2项比对对量值溯源链进行有效验证,对民生计量提供了技术保障。   市场监管总局计量司有关负责人表示,计量比对是保障量值准确一致、支撑计量事中事后监管和提升计量技术机构能力的有效手段。通过在不同层级、不同专业领域组织实施计量比对工作,客观反映了当前计量技术机构的技术能力和人员水平,为保障相关领域测量精准提供技术支撑。
  • 王家海团队最新成果:开发纳米孔计数器检测甲基化基因方法 检测限达到1aM以下
    近日,化学化工学院王家海教授团队开发了基于纳米孔计数器检测甲基化基因的方法,成果以“Nanopore counter for highly sensitive evaluation of DNA methylation and application for in vitro diagnostics”为题发表在国际知名学术期刊Analyst上。1、研究背景 DNA甲基化是一种重要的表观遗传修饰,在维持正常细胞功能、染色体结构、胚胎发育和衰老方面发挥着重要作用。因此,DNA异常的甲基化水平被认为是重要的恶性肿瘤生物标记物之一,开发一种简单而灵敏的DNA甲基化水平检测方法是必要的。固态纳米孔是纳米孔技术中重要的组成部分,其对双链DNA(dsDNA)的检测具有无标记和超高灵敏度的特性。将DNA甲基化程度通过合适的转换机制,变换成特定长度双链DNA的浓度,有助于开发信号读出良好,灵敏度高的甲基化传感器。2、研究内容受此思路启发,王家海教授团队提出了一种过程简单,条件温和的甲基化监测方案——即通过纳米孔计数器对双链的读出能力,结合双限制性内切酶(BstUI/HhaI)消化策略和聚合酶链式反应(PCR)扩增将DNA甲基化转换为PCR扩增物的数量来评估DNA甲基化的程度。相比于传统亚硫酸氢盐转化方法,基于双甲基化敏感内切酶的消化策略结合纳米孔是更好的选择。首先,基于甲基化敏感的核酸内切酶的消化策略可以在更加温和的条件下特异性地消化未甲基化的DNA,这对于开发简单、通用的甲基化检测方法至关重要;此外,基于甲基化敏感的核酸内切酶消化策略的可以将非甲基化的DNA切碎,这可以大大减少背景信号,从而显著简化纳米孔传感器的数据分析,使得信号更加规整、好读。而加入PCR策略,是将信号灵敏度和选择性进一步提升,使其达到临床所需。图1 技术原理图:(a) 双内切酶系统可以消化未甲基化的DNA,但保留甲基化的完整DNA,完整的甲基化DNA可以通过PCR反应扩增并产生大量固定长度的双链DNA扩增子。(b) 通过玻璃纳米孔计数器直接检测PCR扩增子。由于PCR扩增子的规律性,信号是非常均匀、好读出的。3、工作亮点在本工作中,我们根据PCR扩增的效率以及产生信号的信号比优化了PCR产物的长度,使得传感器兼顾灵敏度以及读出信号的方便性。结合PCR技术产生固定长度扩增子后,该传感技术对DNA甲基化的检测达到了1aM以下的检测限,并且具有1aM~100pM之间(109倍)的超宽传感器线性区间:图2 PCR扩增子长度的优化。(a)扩增子的引物的位置。(b)凝胶电泳图,说明经过反应后,只有甲基化SEPT7基因可以保持完整,并成功产生不同长度的产物条带。(c)三种长度的PCR扩增子的易位信号,可以看出随着扩增子长度的增加,信噪比提升。(d) 317、406和806bp扩增子的信号幅度分布直方图,可以看到扩增子越长,信号率下降,传感器灵敏度下降。图3 纳米孔传感器对甲基化DNA的定量测试。(a)甲基化PUC57-SEPT9浓度范围为1 aM至100 pM时的校准曲线。(b)传感器的对数校准曲线。对数校准曲线的分段线性范围为1 aM至100 aM(c)和100 aM至100pM(d)。(e) 传感器在5秒内对不同浓度的甲基化PUC57-SEPT9的易位信号。此外,传感器具备优秀的选择性,能在大量非甲基化的基因中检测出仅有0.01%的甲基化基因。与其他现存技术相比,我们的技术在检测限及监测范围中有足够的优势。图4 传感器对DNA甲基化水平的测试。(a)用不同甲基化水平的DNA测试时的事件率。(b)测量的甲基化水平与实际输入甲基化水平之间的关系。结果显示即使在低至0.01%的浓度水平下也具有良好的一致性。表1 本文结果与其他甲基化检测方法的性能比较方法扩增手段检测范围检测下限fluorescenceOxidation damage base-based amplification100 fM-100 nM34.58fMelectrochemistryElectrochemical strategies for tetrahedral RCA amplification1 fM-1 nM100 aMchemiluminescenceSynergistic in situ assemblies of G-quadruplex DNAzyme nanowires1 aM-100 pM0.565 aMfluorescenceDual endonucleases digestion coupled with RPA-based CRISPR/Cas13a200 aM-20 pM86.4 aMfluorescenceFluorescence nanosensor based on Fe3O4/Au core/shell nanoparticles3.2 fM-800 fM310 aMNanopore(this work)Dual endonucleases digestion combined with PCR-based nanopore1 aM-100 pM0.61 aM4、研究相关 王家海教授为论文第一作者,团队成员陈达奇(广州大学讲师)为论文通讯作者,广州大学为第一通讯单位。文章链接: https://pubs.rsc.org/en/content/articlelanding/2023/an/d3an00035d
  • 解密“N-二甲基亚硝胺”,浅谈基因毒性杂质
    2018年中旬,长春长生的疫苗案还未彻底了结,缬沙坦原料药事件让N-二甲基亚硝胺(NDMA)又一次上了热搜。 时至今日,风波犹存,欧盟范围内对所有沙坦类药物进行审查。之后EMA通报,分别在印度药企Hetero Labs和Aurobindo Pharma生产的氯沙坦及厄贝沙坦原料药中,同样发现了含量极低的亚硝胺类化合物。美国FDA 仍在继续评估含缬沙坦的药物,并将获得的新信息持续更新「召回范围内的药物清单」和「不在召回范围内的药物清单」。 “治病”?“致病”!众所周知,药品是特殊的商品,它可以预防、治疗、诊断人的疾病。近年来,多种新药例如PD1/PD-L1免疫抑制剂的问世,让攻克癌症不再是梦想。 同时,药品的副作用及其安全性很大程度上决定其使用效果,有时不仅不能“治病”,还可能“致病”,甚至危及生命安全,所以药品生产商和监管部门对药品追溯和管理承担着不可或缺的责任。 揭开“基因毒性杂质”真面目NDMA是亚硝胺化合物的一种,而亚硝胺化合物、甲基磺酸酯、烷基-氧化偶氮等又均为常见的基因毒性杂质。基因毒性杂质(或遗传毒性杂质, Genotoxic Impurity, GTI)一般指能直接或间接损伤细胞DNA,产生致突变和致癌作用的物质,具有致癌可能或者倾向。 基因毒性杂质向来受到了严格的监控,2006年爆发甲磺酸奈非那非(维拉赛特锭)事件后,欧洲药品管理局( EMA)随即颁布了《基因毒性杂质限度指南》,人用药品注册技术要求国际协调会议(ICH)与美国食品与药品监督管理局( FDA)出台了相应的法规,中国国家食品药品监督管理总局也密切跟踪国际药品质量控制技术要求,不断完善现有药典收载技术指南,包括方法学验证、药品稳定性评价指导原则以及药品基因毒性杂质评价技术指南等。 药物合成、纯化和储存运输(与包装物接触)等过程中,多个环节均有产生或有可能产生基因毒性杂质。在工艺研究中采用“避免-控制-清除(ACP)”的策略能够最大限度减少基因毒性杂质对原料药物的影响,从而快速灵敏的监测分析手段变得尤为重要。 这时候,飞飞在此!今天赛默飞借助全新一代LC-QQQ技术,让我们一起助力“解密N-二甲基亚硝胺”。 赛默飞针对药品中基因毒性杂质液质检测解决方案 飞飞芳基磺酸酯类基因毒性解决方案Thermo Scientific™ 全新液相色谱三重四极杆质谱TSQ Fortis™ 平台建立了检测8种磺酸酯类的方法(苯磺酸酯类3个、对甲苯磺酸酯类3个、1,5-戊二醇单苯磺酸酯、 1,5-戊二醇二苯磺酸酯)。本方法灵敏度高、专属性强、稳定性好,可以满足各药企对此类基因毒性杂质的检测要求,可为基因毒性杂质风险监控提供有效的技术支持。结果如下:图1. 8种芳基磺酸酯提取离子流图(点击查看大图) 图2. 部分化合物标准曲线图(点击查看大图) 可以看出实验建立了三重四极杆液质联用仪(TSQ Fortis)分析8种芳基磺酸酯类的检测方法。实验结果表明,基于Thermo Scientific™ TSQ Fortis™ 建立的检测方法不仅具有优异的灵敏度和线性范围,同时具备良好的重现性。本方法可用于芳基磺酸酯类基因毒性化合物的日常分析检测。 飞飞N-亚硝基类基因毒性解决方案Thermo Scientific™ TSQ Fortis™ 针对基因毒性物质10个N-亚硝基化合物建立了稳定灵敏的分析方法。该方法在电喷雾离子化(ESI)条件下即可进行有效检测分析,试验结果优异,该方法稳定,快速,满足日常微量基因毒性物质N-亚硝胺类化合物的分析要求。图3. 10个N-亚硝基化合物的色谱图(5ng/mL)(点击查看大图) 图4. 部分化合物标准曲线图(点击查看大图) 从上图中可以看出建立的方法灵敏,快速和稳定性,色谱峰形良好,同时具备优异的重现性,可以满足药品中日常分析N-亚硝基类基因毒性杂质的检测要求。 飞飞总结语此次的应用案例就分享到这里了,不过难道只有这些?不!后续赛默飞更会带来应对基因毒性杂质的多平台解决方案,令“NDMA们” 无所遁形,敬请期待!扫描下方二维码即可获取赛默飞全行业解决方案,或关注“赛默飞色谱与质谱中国”公众号,了解更多资讯
  • “中国青年女科学家奖”及“未来女科学家计划”开始评选
    中国科协关于开展第十三届中国青年女科学家奖、2016年度“未来女科学家计划”候选人推荐工作的通知  各全国学会、协会、研究会,各省、自治区、直辖市科协,新疆生产建设兵团科协,有关高校科协:  为激励广大女性科技工作者的创新创造热情,引导广大女性科技工作者积极投身创新型国家建设伟大实践,中华全国妇女联合会、中国科学技术协会、中国联合国教科文组织全国委员会、欧莱雅(中国)有限公司决定共同举办第十三届中国青年女科学家奖评选活动,并实施2016年度“未来女科学家计划”。第十三届中国青年女科学家奖以及2016年度“未来女科学家计划”项目候选人的推荐工作由中国科协组织开展,现就有关事项通知如下:  一、第十三届中国青年女科学家奖  (一)评选范围和条件  1.热爱祖国,遵纪守法,具有“献身、创新、求实、协作”的科学精神及“自尊、自信、自立、自强”的时代精神,学风正派   2.在基础科学或生命科学领域取得重大发现、重大成果   3.不超过45周岁(1971年5月31日及以后出生)的中国女性科技工作者   评选范围不含工程技术领域及涉密领域。  (二)奖励人数  奖励人数不超过10名,其中至少1名在西部地区工作。  (三)推荐渠道及推荐名额  1.各有关全国学会、协会、研究会可推荐本学科领域的候选人1-2名   2.各省、自治区、直辖市科协可推荐本地区的候选人3-5名   3.各有关高校科协可推荐本校候选人1名   4.香港、澳门特别行政区候选人由有关机构各推荐2-3名   5.中国青年女科学家奖专家提名委员会提名。  二、2016年度“未来女科学家计划”  (一)评选范围和条件  1.热爱祖国,遵纪守法,诚实守信,尊师重教,具有良好的学风和道德品质,勤奋学习,刻苦钻研,表现出较强的科研能力和发展潜力   2.从事基础科学或生命科学领域研究工作,研究项目涉及动物(如实验用脊椎动物)和化妆品研究的不在此列   3.不超过35周岁(1981年5月31日及以后出生)的中国女性科技工作者   4.目前为在读博士生或在站博士后   5.具有拟利用本计划资助开展的科研项目,且该项目须于2017年开始研究,研究的持续时间不少于12个月。  (二)支持人数  本次支持人数不超过5名,并择优推荐其中1名参加“世界最具潜力女科学家”项目评选。  (三)推荐渠道及推荐名额  1.各有关全国学会、协会、研究会可推荐本学科领域的候选人1名   2.各省、自治区、直辖市科协可推荐本地区的候选人1-2名   3.各有关高校科协可推荐本校候选人1名   4.香港、澳门特别行政区候选人由有关机构各推荐2-3名   5.中国青年女科学家奖专家提名委员会提名。  三、推荐工作要求  (一)每位被推荐人需明确参评中国青年女科学家奖或“未来女科学家计划”,不得两个项目同时参与评选。  (二)坚持“公开、公正、公平、择优”原则,拓宽推荐渠道,严格评选条件,保证评选质量。  (三)中国青年女科学家奖推荐人选要注重向长期在科研和生产第一线以及西部欠发达地区工作的优秀青年女科技工作者倾斜,被推荐人的成果贡献以在国内作出的为主,应为主要完成人或主要贡献人 “未来女科学家计划”项目推荐人选既要注重目前已承担的科研工作取得的成果及表现出的科研潜力,更要注重拟申请资助项目的创新性。  (四)候选人推荐材料是评审的主要依据,要简明扼要、突出重点。非学术性报纸、刊物、网络的有关报道不作为证明材料,非学术任(兼)职、非科技类奖项不得填入推荐表相关栏目。电子版材料与相应的纸质版材料必须保持一致。  (五)推荐单位和候选人要自觉恪守科学道德和学术规范,推荐材料要客观、准确、完整,对于材料填报不实和有其他学术不端行为者,经查实,均按程序取消评选资格或撤销获奖和资助资格,并记录在案。如候选人被投诉,推荐单位及候选人所在单位应进行调查核实并提供书面调查材料和结论性意见。  (六)候选人推荐材料不得涉及国家秘密,并出具候选人所在单位关于非涉密的证明。材料违反保密规定的,取消被推荐资格。  四、报送材料要求  (一)推荐工作材料  推荐情况报告1份,内容包括推荐人选产生方式、专家评审情况以及确定推荐的人选等,单位负责同志签字并加盖推荐单位公章。电子版发邮箱。  (二)候选人材料  报送的推荐材料包括电子材料和书面材料。  1.电子材料  电子材料通过中国青年女科学家奖推荐及评审管理系统(http://qnnkxjj.cast.org.cn)报送。请各推荐单位用分配的“推荐单位用户名、密码”登陆系统,按照要求组织候选人用“候选人注册密码”注册并登陆后进行网络填报,填报中注意选择拟推荐的类别。“推荐单位用户名、密码,候选人注册密码”另行发送。请于2016年7月31日前完成网络填报工作。  2.中国青年女科学家奖候选人书面材料  (1)《第十三届中国青年女科学家奖候选人推荐表》一式10份,其中原件1份,复印件9份,请勿另附封面。使用中国青年女科学家奖推荐及评审管理系统将电子材料报送成功后,继续使用该系统打印《推荐表》。  (2)附件材料1套,包括代表性论文(不超过3篇)、主要科技成果目录以及被引用、技术鉴定、知识产权、技术应用、所获奖项等相关证明材料。专著(不超过1本)可另附。  (3)候选人所在单位出具的非涉密证明。  3.“未来女科学家计划”候选人书面材料  (1)《2016年度“未来女科学家计划”候选人推荐表》一式10份,其中原件1份,复印件9份,请勿另附封面。使用中国青年女科学家奖推荐及评审管理系统将电子材料报送成功后,继续使用该系统打印《推荐表》。  (2)博士生请提供研究生院出具的在读证明,需写明专业及拟毕业时间 博士后请提供博士学位证书及工作协议。  (3)候选人所在单位(学校)出具的非涉密证明。  请于2016年8月15日前完成书面材料报送,以收到为准,请留出足够的寄送时间。  五、联系方式  中国科协组织人事部具体负责中国青年女科学家奖、“未来女科学家计划”评选的组织工作,中国科协培训和人才服务中心负责网上填报和上传信息指导及材料接收工作。  中国科协培训和人才服务中心  联 系 人:张玮琳 石 敏  联系电话:(010)68788768  通讯地址:北京市复兴路3号中国科技会堂404室  电子邮箱:qnnkxjj@cast.org.cn  中国科协组织人事部  联 系 人:刘 洋 姚振清  联系电话:(010)68526144 68578091  附件:1.第十三届中国青年女科学家奖候选人推荐表.docx   2.2016年度未来女科学家计划候选人推荐表.docx   3.推荐单位用户名、密码,候选人注册密码.docx  中国科协  2016年6月7日
  • 国家税务总局官方解读来了:仪器制造业企业享受研发费用加计扣除还需要符合这些条件!
    近日,财政部、税务总局发布《财政部 税务总局关于进一步完善研发费用税前加计扣除政策的公告》(2021年第13号)将制造业研发费用加计扣除比例由75%提高到100%,这对于国内仪器研发企业节省研发成本是重大利好。然而,部分仪器企业也十分想要知道:享受到这项政策红利是否还有其他的附加条件?今日,国家税务总局发布官方解读:《财政部 税务总局关于进一步完善研发费用税前加计扣除政策的公告》(2021年第13号)仅将制造业研发费用加计扣除比例由75%提高到100%,其他政策口径和管理要求没有变化,继续按照《财政部 国家税务总局 科技部关于完善研究开发费用税前加计扣除政策的通知》(财税〔2015〕119号)、《财政部 税务总局 科技部关于企业委托境外研究开发费用税前加计扣除有关政策问题的通知》(财税〔2018〕64号)、《国家税务总局关于企业研究开发费用税前加计扣除政策有关问题的公告》(2015年第97号)、《国家税务总局关于研发费用税前加计扣除归集范围有关问题的公告》(2017年第40号)等文件规定执行。小编将以上公告进行了归纳整理,以便于仪器企业加深了解此项政策的“前世今生”。《财政部 税务总局关于进一步完善研发费用税前加计扣除政策的公告》(2021年第13号)财政部 税务总局关于进一步完善研发费用税前加计扣除政策的公告财政部 税务总局公告2021年第13号    为进一步激励企业加大研发投入,支持科技创新,现就企业研发费用税前加计扣除政策有关问题公告如下:    一、制造业企业开展研发活动中实际发生的研发费用,未形成无形资产计入当期损益的,在按规定据实扣除的基础上,自2021年1月1日起,再按照实际发生额的100%在税前加计扣除;形成无形资产的,自2021年1月1日起,按照无形资产成本的200%在税前摊销。    本条所称制造业企业,是指以制造业业务为主营业务,享受优惠当年主营业务收入占收入总额的比例达到50%以上的企业。制造业的范围按照《国民经济行业分类》(GB/T 4574-2017)确定,如国家有关部门更新《国民经济行业分类》,从其规定。收入总额按照企业所得税法第六条规定执行。    二、企业预缴申报当年第3季度(按季预缴)或9月份(按月预缴)企业所得税时,可以自行选择就当年上半年研发费用享受加计扣除优惠政策,采取“自行判别、申报享受、相关资料留存备查”办理方式。    符合条件的企业可以自行计算加计扣除金额,填报《中华人民共和国企业所得税月(季)度预缴纳税申报表(A类)》享受税收优惠,并根据享受加计扣除优惠的研发费用情况(上半年)填写《研发费用加计扣除优惠明细表》(A107012)。《研发费用加计扣除优惠明细表》(A107012)与相关政策规定的其他资料一并留存备查。    企业办理第3季度或9月份预缴申报时,未选择享受研发费用加计扣除优惠政策的,可在次年办理汇算清缴时统一享受。    三、企业享受研发费用加计扣除政策的其他政策口径和管理要求,按照《财政部 国家税务总局 科技部关于完善研究开发费用税前加计扣除政策的通知 》(财税〔2015〕119号)、《财政部 税务总局 科技部关于企业委托境外研究开发费用税前加计扣除有关政策问题的通知 》(财税〔2018〕64号)等文件相关规定执行。    四、本公告自2021年1月1日起执行。    特此公告。  财政部税务总局2021年3月31日《财政部 国家税务总局 科技部关于完善研究开发费用税前加计扣除政策的通知》(财税〔2015〕119号)财政部 国家税务总局 科技部关于完善研究开发费用税前加计扣除政策的通知财税〔2015〕119号各省、自治区、直辖市、计划单列市财政厅(局)、国家税务局、地方税务局、科技厅(局),新疆生产建设兵团财务局、科技局:  根据《中华人民共和国企业所得税法》及其实施条例有关规定,为进一步贯彻落实《中共中央 国务院关于深化体制机制改革加快实施创新驱动发展战略的若干意见》精神,更好地鼓励企业开展研究开发活动(以下简称研发活动)和规范企业研究开发费用(以下简称研发费用)加计扣除优惠政策执行,现就企业研发费用税前加计扣除有关问题通知如下:  一、研发活动及研发费用归集范围。  本通知所称研发活动,是指企业为获得科学与技术新知识,创造性运用科学技术新知识,或实质性改进技术、产品(服务)、工艺而持续进行的具有明确目标的系统性活动。  (一)允许加计扣除的研发费用。  企业开展研发活动中实际发生的研发费用,未形成无形资产计入当期损益的,在按规定据实扣除的基础上,按照本年度实际发生额的50%,从本年度应纳税所得额中扣除;形成无形资产的,按照无形资产成本的150%在税前摊销。研发费用的具体范围包括:  1.人员人工费用。  直接从事研发活动人员的工资薪金、基本养老保险费、基本医疗保险费、失业保险费、工伤保险费、生育保险费和住房公积金,以及外聘研发人员的劳务费用。  2.直接投入费用。  (1)研发活动直接消耗的材料、燃料和动力费用。  (2)用于中间试验和产品试制的模具、工艺装备开发及制造费,不构成固定资产的样品、样机及一般测试手段购置费,试制产品的检验费。  (3)用于研发活动的仪器、设备的运行维护、调整、检验、维修等费用,以及通过经营租赁方式租入的用于研发活动的仪器、设备租赁费。  3.折旧费用。  用于研发活动的仪器、设备的折旧费。  4.无形资产摊销。  用于研发活动的软件、专利权、非专利技术(包括许可证、专有技术、设计和计算方法等)的摊销费用。  5.新产品设计费、新工艺规程制定费、新药研制的临床试验费、勘探开发技术的现场试验费。  6.其他相关费用。  与研发活动直接相关的其他费用,如技术图书资料费、资料翻译费、专家咨询费、高新科技研发保险费,研发成果的检索、分析、评议、论证、鉴定、评审、评估、验收费用,知识产权的申请费、注册费、代理费,差旅费、会议费等。此项费用总额不得超过可加计扣除研发费用总额的10%。  7.财政部和国家税务总局规定的其他费用。  (二)下列活动不适用税前加计扣除政策。  1.企业产品(服务)的常规性升级。  2.对某项科研成果的直接应用,如直接采用公开的新工艺、材料、装置、产品、服务或知识等。  3.企业在商品化后为顾客提供的技术支持活动。  4.对现存产品、服务、技术、材料或工艺流程进行的重复或简单改变。  5.市场调查研究、效率调查或管理研究。  6.作为工业(服务)流程环节或常规的质量控制、测试分析、维修维护。  7.社会科学、艺术或人文学方面的研究。  二、特别事项的处理  1.企业委托外部机构或个人进行研发活动所发生的费用,按照费用实际发生额的80%计入委托方研发费用并计算加计扣除,受托方不得再进行加计扣除。委托外部研究开发费用实际发生额应按照独立交易原则确定。  委托方与受托方存在关联关系的,受托方应向委托方提供研发项目费用支出明细情况。  企业委托境外机构或个人进行研发活动所发生的费用,不得加计扣除。  2.企业共同合作开发的项目,由合作各方就自身实际承担的研发费用分别计算加计扣除。  3.企业集团根据生产经营和科技开发的实际情况,对技术要求高、投资数额大,需要集中研发的项目,其实际发生的研发费用,可以按照权利和义务相一致、费用支出和收益分享相配比的原则,合理确定研发费用的分摊方法,在受益成员企业间进行分摊,由相关成员企业分别计算加计扣除。  4.企业为获得创新性、创意性、突破性的产品进行创意设计活动而发生的相关费用,可按照本通知规定进行税前加计扣除。  创意设计活动是指多媒体软件、动漫游戏软件开发,数字动漫、游戏设计制作;房屋建筑工程设计(绿色建筑评价标准为三星)、风景园林工程专项设计;工业设计、多媒体设计、动漫及衍生产品设计、模型设计等。  三、会计核算与管理  1.企业应按照国家财务会计制度要求,对研发支出进行会计处理;同时,对享受加计扣除的研发费用按研发项目设置辅助账,准确归集核算当年可加计扣除的各项研发费用实际发生额。企业在一个纳税年度内进行多项研发活动的,应按照不同研发项目分别归集可加计扣除的研发费用。  2.企业应对研发费用和生产经营费用分别核算,准确、合理归集各项费用支出,对划分不清的,不得实行加计扣除。  四、不适用税前加计扣除政策的行业  1.烟草制造业。  2.住宿和餐饮业。  3.批发和零售业。  4.房地产业。  5.租赁和商务服务业。  6.娱乐业。  7.财政部和国家税务总局规定的其他行业。  上述行业以《国民经济行业分类与代码(GB/4754 -2011)》为准,并随之更新。  五、管理事项及征管要求  1.本通知适用于会计核算健全、实行查账征收并能够准确归集研发费用的居民企业。  2.企业研发费用各项目的实际发生额归集不准确、汇总额计算不准确的,税务机关有权对其税前扣除额或加计扣除额进行合理调整。  3.税务机关对企业享受加计扣除优惠的研发项目有异议的,可以转请地市级(含)以上科技行政主管部门出具鉴定意见,科技部门应及时回复意见。企业承担省部级(含)以上科研项目的,以及以前年度已鉴定的跨年度研发项目,不再需要鉴定。  4.企业符合本通知规定的研发费用加计扣除条件而在2016年1月1日以后未及时享受该项税收优惠的,可以追溯享受并履行备案手续,追溯期限最长为3年。  5.税务部门应加强研发费用加计扣除优惠政策的后续管理,定期开展核查,年度核查面不得低于20%。  六、执行时间  本通知自2016年1月1日起执行。《国家税务总局关于印发〈企业研究开发费用税前扣除管理办法(试行)〉的通知》(国税发〔2008〕116号)和《财政部 国家税务总局关于研究开发费用税前加计扣除有关政策问题的通知》(财税〔2013〕70号)同时废止。财政部 国家税务总局 科技部2015年11月2日《财政部 税务总局 科技部关于企业委托境外研究开发费用税前加计扣除有关政策问题的通知》(财税〔2018〕64号)财政部 税务总局 科技部关于企业委托境外研究开发费用税前加计扣除有关政策问题的通知财税〔2018〕64号各省、自治区、直辖市、计划单列市财政厅(局)、科技厅(局),国家税务总局各省、自治区、直辖市、计划单列市税务局,新疆生产建设兵团财政局、科技局:    为进一步激励企业加大研发投入,加强创新能力开放合作,现就企业委托境外进行研发活动发生的研究开发费用(以下简称研发费用)企业所得税前加计扣除有关政策问题通知如下:    一、委托境外进行研发活动所发生的费用,按照费用实际发生额的80%计入委托方的委托境外研发费用。委托境外研发费用不超过境内符合条件的研发费用三分之二的部分,可以按规定在企业所得税前加计扣除。    上述费用实际发生额应按照独立交易原则确定。委托方与受托方存在关联关系的,受托方应向委托方提供研发项目费用支出明细情况。    二、委托境外进行研发活动应签订技术开发合同,并由委托方到科技行政主管部门进行登记。相关事项按技术合同认定登记管理办法及技术合同认定规则执行。    三、企业应在年度申报享受优惠时,按照《国家税务总局关于发布修订后的〈企业所得税优惠政策事项办理办法〉的公告》(国家税务总局公告2018年第23号 )的规定办理有关手续,并留存备查以下资料:    (一)企业委托研发项目计划书和企业有权部门立项的决议文件;    (二)委托研究开发专门机构或项目组的编制情况和研发人员名单;    (三)经科技行政主管部门登记的委托境外研发合同;    (四)“研发支出”辅助账及汇总表;    (五)委托境外研发银行支付凭证和受托方开具的收款凭据;    (六)当年委托研发项目的进展情况等资料。  七、后续管理与核查税务机关应加强对享受研发费用加计扣除优惠企业的后续管理和监督检查。每年汇算清缴期结束后应开展核查,核查面不得低于享受该优惠企业户数的20%。省级税务机关可根据实际情况制订具体核查办法或工作措施。八、执行时间本公告适用于2016年度及以后年度企业所得税汇算清缴。特此公告。附件:(点击此链接打包下载下列附件) 1.自主研发“研发支出”辅助账2.委托研发“研发支出”辅助账3.合作研发“研发支出”辅助账4.集中研发“研发支出”辅助账
  • 市场监管总局组织实施30项国家计量比对项目
    一、2022年国家计量比对项目   (一)2022年A类国家计量比对项目,包括一等标准铂铑30-铂铑6热电偶检定装置计量比对等13项(见附件)。已取得相关计量标准考核证书以及获得相关检定、校准项目授权的计量技术机构和取得标准物质定级证书的单位必须报名参加。确有特殊情况不能报名参加的,需发证机构书面同意,并报市场监管总局计量司备案。对于报名实验室数量较多的国家计量比对项目,市场监管总局将选取部分实验室参加本次计量比对。华北大区紫外可见近红光分光光度计计量比对等7项由大区国家计量测试中心组织的国家计量比对项目,有关计量技术机构按照大区相关管理规定参加。A类国家计量比对项目主要由市场监管总局给予经费补助,参加计量比对实验室无需交纳比对费用。   (二)2022年B类国家计量比对项目,包括粉尘浓度测量仪计量比对等10项(见附件)。各类计量技术机构或相关标准物质研制生产机构可自愿报名参加B类项目。   二、认真抓好项目组织实施   (一)各省、自治区、直辖市和新疆生产建设兵团市场监管局(厅、委)及中国计量科学研究院、中国测试技术研究院、各大区国家计量测试中心及有关单位应当按照本通知要求及时组织做好2022年国家计量比对项目的报名工作。各省、自治区、直辖市和新疆生产建设兵团市场监管局(厅、委)在本通知印发后30日内将本地区应参加A类项目的计量技术机构名单报送市场监管总局计量司,并依法依规做好对本地区应报名参加A类项目而未报名单位的督促和处理工作。   各省、自治区、直辖市和新疆生产建设兵团市场监管局(厅、委)要及时将本通知转发法定或授权计量技术机构、社会第三方计量机构及有关单位,鼓励各机构自愿参加B类国家计量比对项目。   (二)各项目主导实验室要对国家计量比对项目的具体实施负主体责任,按照《计量比对管理办法》和相关计量技术规范要求,认真做好国家计量比对项目实施方案编制与论证、征求意见以及项目实施、验收、总结等工作。项目实施方案应当充分考虑传递标准(样品)稳定性、溯源性、重复性以及实验操作安全、数据处理、避免串通或作弊、结果利用等方面内容,确保国家计量比对结果的真实性、科学性、公正性和权威性。主导实验室要加强技术交流研讨,及时妥善处置参加计量比对实验室技术需求和疑难问题。比对实施过程中,不得擅自更改比对项目参数以及比对方案,无正当理由且未经市场监管总局同意,不得延误国家计量比对。   各项目主导实验室在项目完成后15日内组织专家评审,经征求各参加比对实验室意见后,向市场监管总局计量司报送国家计量比对项目总结报告、专家评审意见以及参加机构名单等相关材料。项目主导实验室要对参加计量比对实验室提交比对结果的不确定度与其计量标准、计量授权考核的不确定度、准确度等级和最大允许误差进行对比分析。   (三)各有关计量技术机构和标准物质研制生产机构要按照要求参加国家计量比对项目,在规定时间内报送真实有效的比对结果,配合主导实验室做好结果分析等相关工作。对于参加计量比对实验室比对结果异常的,视为本次计量比对结果不符合规定要求。参加计量比对项目的有关具体事宜可直接与项目主导实验室联系。   (四)各项目主导实验室和参加计量比对实验室要结合实际制定内部激励约束和奖励惩罚措施,可以将国家计量比对工作量作为年度考核内容予以重视。要加强诚信和保密管理,在国家计量比对结果公布前不得泄露相关数据和信息。   三、强化计量比对结果使用   (一)市场监管总局将向社会公布国家计量比对结果。对项目主导实验室和比对结果符合规定要求的计量技术机构、标准物质研制生产机构,在接受计量授权监督检查和到期复核、计量标准监督检查和复查考核、标准物质监督检查时,相关项目可免于现场试验。参加B类项目且比对结果符合规定要求的计量技术机构,在申请新建与该项目相关的计量标准考核时,可根据情况简化现场考核程序。   (二)对于应参加A类项目但无故不参加以及参加国家计量比对项目过程中经核实存在串通结果或提供虚假数据等情况的单位,将根据有关规定进行处理。   (三)对于参加国家计量比对项目但比对结果不符合规定要求的计量技术机构,已取得相关计量标准考核证书的应暂停相关计量标准的量值传递工作并限期整改。对在规定期限内不能完成整改并重新确认的计量技术机构和标准物质研制生产机构,将根据有关规定进行处理。
  • 17项国家计量比对项目将组织实施,涉及多种仪器设备
    市场监管总局办公厅关于组织实施2023年国家计量比对项目的通知中国计量科学研究院,中国测试技术研究院,中国计量测试学会,中国计量协会,各大区国家计量测试中心,各参加比对实验室:为贯彻落实《市场监管总局关于加强计量比对工作的指导意见》(国市监计量〔2020〕127号),更好发挥计量比对在保障量值准确可靠、提升计量技术机构能力方面的重要作用,市场监管总局决定组织实施17项国家计量比对项目。现将有关事项通知如下:一、2023年国家计量比对项目(一)国家计量基准比对项目。根据国家计量基准管理需求,结合具体工作实际,市场监管总局决定组织中频振动基准计量比对等10项国家计量基准比对项目(附件1)。(二)大区计量比对项目。为提升大区国家计量测试能力水平,市场监管总局决定组织二等标准铂电阻温度计计量比对等7项大区计量比对项目(附件2)。二、认真抓好项目组织实施(一)各主导实验室要对国家计量比对项目的具体实施负主体责任,按照《计量比对管理办法》和相关计量技术规范要求,认真做好国家计量比对实施方案编制与论证、征求意见以及项目实施、验收、总结等工作。实施方案应当充分考虑传递标准(样品)稳定性、溯源性、重复性以及实验操作安全、数据处理、避免串通或作弊、结果利用等方面内容,确保国家计量比对结果的真实性、科学性、公正性和权威性。主导实验室要加强技术交流研讨,及时妥善处置参加计量比对实验室技术需求和疑难问题。计量比对实施过程中,不得擅自更改计量比对参数及计量比对实施方案,无正当理由且未经市场监管总局同意,不得延误国家计量比对。主导实验室不得收取参加比对实验室任何费用。各主导实验室在项目完成后15日内组织专家评审,经征求各参加比对实验室意见后,向市场监管总局计量司报送国家计量比对总结报告、专家评审意见以及参加机构名单等相关材料。各主导实验室要对参加计量比对实验室提交比对结果的不确定度与其国家计量基准、计量标准、计量授权考核的不确定度、准确度等级和最大允许误差进行对比分析。(二)各参加比对实验室要按照要求参加国家计量比对,在规定时间内报送真实有效的比对结果,配合主导实验室做好结果分析等相关工作。对于参加比对实验室比对结果异常的,视为本次计量比对结果不符合规定要求。参加计量比对有关具体事宜可直接与项目主导实验室联系。(三)各主导实验室和参加比对实验室要结合实际制定内部激励约束和奖励惩罚措施,可以将国家计量比对工作量作为年度考核内容予以重视。要加强诚信和保密管理,在国家计量比对结果公布前不得泄露相关数据和信息。三、国家计量比对结果使用(一)市场监管总局定期向社会公布国家计量比对结果。国家计量比对结果符合规定要求的,可以作为计量基准和计量标准复查考核、计量授权以及实验室认可的参考依据。对主导实验室和比对结果符合规定要求的计量技术机构,在接受计量授权监督检查和到期复核、国家计量基准现场复核、计量标准监督检查和复查考核,相关项目可在5年内免于现场试验。(二)对于应参加国家计量比对,但无正当理由拒不参加,以及参加过程中经核实存在串通结果或提供虚假数据等情况的单位,将根据有关规定进行处理。(三)对于参加国家计量比对项目但比对结果不符合规定要求的计量技术机构,已取得相关国家计量基准证书、计量标准考核证书的,应暂停相关量值传递工作并限期改正。对在规定期限内不能完成整改并重新确认的计量技术机构,将根据有关规定进行处理。 联系人:计量司 刘国传 010-82262865 张 楠 010-82261832 附件:1.2023年国家计量基准比对项目汇总表W020230421360603789596.pdf2.2023年大区计量比对项目汇总表W020230421360603792923.pdf市场监管总局办公厅2023年4月18日
  • 市场监管总局办公厅组织实施2024年国家计量比对项目
    各省、自治区、直辖市和新疆生产建设兵团市场监管局(厅、委),中国计量科学研究院,中国测试技术研究院,中国计量测试学会,中国计量协会,各全国专业计量技术委员会、大区国家计量测试中心、国家专业计量站、参加比对实验室:为贯彻落实《计量发展规划(2021—2035年)》(国发〔2021〕37号)和《市场监管总局关于加强计量比对工作的指导意见》(国市监计量〔2020〕127号),依据《计量比对管理办法》有关规定,更好发挥计量比对在保障量值准确可靠、提升计量技术机构能力方面的重要作用,市场监管总局决定组织实施57项国家计量比对项目(见附件1)。有关事项通知如下:一、2024年国家计量比对项目(一)A类国家计量比对项目1. 计量基准比对项目。为保障计量基准量值一致性,检验计量基准运行维护管理情况和保存、复现量值的能力,市场监管总局决定组织实施低频垂直向振动基准计量比对等18项计量基准比对项目。2. 计量标准、标准物质比对项目。聚焦民生和法制计量、产业计量和碳排放计量等重点领域,市场监管总局决定组织实施透射式烟度计检定装置吸收比计量比对等12项计量标准、标准物质比对项目。3. 大区计量比对项目。为提升大区和区域计量测试能力水平,市场监管总局决定组织实施东北大区接地电阻表检定装置计量比对等7项大区计量比对项目。对于本次组织实施的A类国家计量比对项目,已取得相关计量基准证书、计量标准考核证书、标准物质定级证书以及获得相关检定、校准项目授权的计量技术机构必须向主导实验室报名参加计量比对。确有特殊情况不能报名参加的,需发证机构同意并报市场监管总局计量司备案。对于参加比对实验室(包括主导实验室、参比实验室)数量过多的A类国家计量比对项目,主导实验室将参加比对实验室名单报送市场监管总局计量司,由市场监管总局计量司按比例选取部分实验室参加本次计量比对。A类国家计量比对项目由市场监管总局给予主导实验室经费补助,参加比对实验室无需交纳比对费用。(二)B类国家计量比对项目根据各专业领域实际需求,市场监管总局决定组织实施体温计检定装置计量比对、石油螺纹量规校准装置计量比对等20项B类国家计量比对项目。B类国家计量比对项目采取自愿参加原则,各类计量技术机构或相关标准物质研制单位可根据实际情况报名参加。二、认真抓好项目组织实施(一)主导实验室要对国家计量比对项目的具体实施负主体责任,按照《计量比对管理办法》和相关计量技术规范要求,认真做好国家计量比对实施方案编制与论证、征求意见,及时填报国家计量比对项目任务书(见附件2),并于2024年3月29日前盖章pdf版和可编辑wps版的电子版材料,发送至jlslzc@samr.gov.cn,电子邮件标题请注明项目编号及项目名称。实施方案应当充分考虑传递标准(样品)稳定性、溯源性、重复性以及试验操作安全、数据处理、避免串通或作弊、结果利用等方面内容,确保国家计量比对结果的真实性、科学性、公正性和权威性。(二)主导实验室要抓紧做好项目实施、验收、总结等工作,加强技术交流研讨,及时妥善处置参加比对实验室技术需求和疑难问题。实施国家计量比对,不得擅自更改计量比对参数及计量比对实施方案。无正当理由且未经市场监管总局同意,项目完成不得晚于规定的截止时间;如确有需要延长预计完成时间的,应于截止日期前3个月由立项推荐单位向市场监管总局提交书面申请。对于实施周期超过6个月的国家计量比对项目,主导实验室应每隔6个月向市场监管总局报送计量比对项目工作进展。市场监管总局将对进行中的国家计量比对项目开展不定期监督检查。(三)主导实验室在项目完成后15日内,应按照《计量比对管理办法》、JJF 1117《计量比对》、JJF 1117.1《化学量计量比对》、JJF 1960《标准物质计量比对计量技术规范》等有关要求,及时组织专家召开项目验收会,组织参比实验室召开比对总结会。经专家评审和征求参加比对实验室意见后,向市场监管总局计量司报送国家计量比对总结报告、项目验收材料、比对结果公开意见等(见附件3、附件4)。所有材料均需加盖公章,并提供盖章pdf版和可编辑wps版的电子版材料,发送至jlslzc@samr.gov.cn,电子邮件标题请注明项目编号及项目名称。(四)主导实验室按照《计量比对管理办法》、JJF 1117《计量比对》、JJF 1117.1《化学量计量比对》、JJF 1960《标准物质计量比对计量技术规范》等有关要求撰写国家计量比对总结报告,对参加比对实验室提交比对结果的不确定度与其计量基准、计量标准、计量授权考核的不确定度、准确度等级、最大允许误差进行对比分析。主导实验室应告知参加比对实验室本次计量比对结果,参加比对实验室应向主导实验室报送有关同意计量比对结果公示的书面确认函。(五)参加比对实验室要在规定时间内报送真实有效的计量比对结果,配合主导实验室做好结果分析等相关工作。对于计量比对结果偏离正常范围的参加比对实验室,应由主导实验室组织其尽快整改并进行一次补测。补测结果未偏离正常范围的视为本次计量比对结果符合规定要求。参加计量比对有关具体事宜可直接与主导实验室联系。(六)主导实验室和参加比对实验室可结合实际情况制定计量比对内部管理细则和奖惩措施,可以将国家计量比对工作量和完成情况列入年度考核内容。加强诚信和保密管理,各相关方在国家计量比对结果公布前不得泄露相关数据和信息。市场监管总局将把国家计量比对的有关情况向社会公开,各主导实验室应对所提交材料的真实性、准确性、可公开性负责。三、国家计量比对结果使用(一)市场监管总局定期向社会公布国家计量比对结果。国家计量比对结果符合规定要求的,可作为计量基准和计量标准复查考核、计量授权以及实验室认可的参考依据。对主导实验室和比对结果符合规定要求的计量技术机构,在接受计量授权监督检查和到期复核、国家计量基准现场复核、计量标准监督检查和复查考核时,相关项目可在5年内免于现场试验。(二)对于应参加国家计量比对,但无正当理由拒不参加,以及参加过程中经核实存在串通结果或提供虚假数据等情况的参加比对实验室,将根据有关规定进行处理。(三)对于本次国家计量比对结果偏离正常范围的计量技术机构,已取得相关国家计量基准证书、计量标准考核证书的,应暂停相关量值传递工作并限期改正。对在规定期限内不能完成整改并达到规定要求的计量技术机构和标准物质生产研制机构,将根据有关规定进行处理。联系人:计量司 李建威 010-82262871张 溯 010-82261419附件: 附件1:2024年国家计量比对项目汇总表.pdf 附件2:2024年国家计量比对项目任务书.docx 附件3:国家计量比对项目验收材料(示例).docx 附件4:国家计量比对结果公开意见.docx市场监管总局办公厅2024年3月5日
  • 甲基化成肿瘤检测新靶标?五种新型DNA甲基化酶检测技术进展揭秘
    DNA甲基化是哺乳动物基因组中最常见的表观遗传事件之一,即DNA中核苷酸与甲基基团的共价修饰[2]。DNA甲基化与人的生命进程有着密不可分的关系。细胞的增殖与分化、染色体完整性的维护或者X染色体的活性等等都离不开DNA甲基化的控制,DNA甲基化流程在胚胎发育中是无处不在的[1]。如果DNA甲基化进程出现异常,会导致生物体出现各种各样的疾病以及身体的生长缺陷或生理紊乱。DNA与蛋白质之间的相互作用如果出现异常,会影响基因的表达,从而引起人体内肿瘤的发生或者肿瘤的转移,这一切的源头都是DNA甲基化进程出现异常的结果[3]。DNA甲基化酶是肿瘤治疗靶点DNA甲基化酶是一种修饰酶,经常与限制性内切酶一同出现。在真核生物基因组以及原核生物基因组中,普遍存在DNA甲基化酶维持以及催化DNA甲基化过程的现象。DNA甲基化酶被广泛认为是一种治疗靶点以及预测生物甲基化过程的标志物,在单细胞水平上准确灵敏地检测DNA甲基化酶对于肿瘤医学上的临床诊断以及临床治疗甚至是生物学研究有着至关重要的作用。根据甲基化的核苷酸和位置被分为三组,即腺嘌呤的甲基化、胞嘧啶的4-N甲基化和胞嘧啶的5-C甲基化。所有已知的DNA甲基化酶在其甲基化过程中以s-腺苷甲硫氨酸作为甲基供体。最常见的DNA甲基化不仅发生在胞嘧啶嘧啶环5-C位置的CpG位点上,还发生在对称四核苷酸5’-G-A-T-C-3’ 中腺嘌呤环的6-N位置[4,5]。传统DNA甲基化酶检测方法有局限 DNA甲基化酶活性的高灵敏度检测在基因调控、表观遗传修饰、临床诊断和治疗等方面具有重要意义。传统用于检测DNA甲基化酶活性的方法包括高效液相色谱法(HPLC)[6], 聚合酶链反应(PCR)[7],凝胶电泳[8],高效毛细管电泳(HPCE)[9],以及使用同位素标记的s-腺苷甲硫氨酸甲基化检测[10,11]。尽管这些技术在实验室实践中被证明是有用的,但它们具有局限性。例如,大多数技术不仅使用笨重昂贵的设备,而且需要复杂的样品制备和数据分析所需的大量时间。同位素标记等技术是有效的,但它们往往需要费力的样品制备、同位素标记、复杂的设备和大量的DNA,使得它们不适合在医护点使用。所以,DNA甲基化酶活性检测迫切需要简单、便携、高灵敏度和低成本的检测方法。在最近的技术进步中,许多替代的DNA甲基化酶活性测定方法,如放射法、比色法、荧光法、电化学法等已被提出。此外,其中许多与纳米材料或酶结合,以显著提高它们的敏感性。放射法、蛋白质纳米孔等新型检测技术兴起 放射法:同位素标记作为最早检测DNA甲基化酶活性的方法之一,早期广泛应用于检测DNA甲基化酶和DNA甲基化的活性[12,13]。在由DNA甲基化酶催化的甲基化过程中,同位素标记的甲基部分转移到DNA上,从而赋予甲基化的DNA放射性。这种放射性可以很方便地用闪烁计数器或放射自显像仪来检测。可惜的是,放射性试剂的介入是限制这种试验在中央实验室进行的最大缺点。对无辐射DNA甲基化酶活性检测的研究导致了甲基化特异性PCR[14]、HPCE[9]和HPLC等替代品的发展[7,14],而甲基化特异性PCR被认为是较好的方法。尽管非放射性,上述DNA甲基化酶活性检测需要庞大且通常昂贵的设备,冗长且耗时的样品制备和数据分析,以及繁琐的检测方案,这在临床实践中也比较难以实现全覆盖。比色法:比色法用于DNA甲基化酶活性检测依赖于颜色变化的目视观察或与DNA甲基化酶相关的吸收光谱的光谱测量。它们具有成本低、简单、可移植性和在某些情况下无需仪器的优点。虽然紫外-可见光谱法可以量化DNA,但甲基化和未甲基化DNA在紫外-可见吸收特性上的低灵敏度和不显著差异基本否定了紫外-可见光谱法直接检测DNA甲基化酶活性[15~17]。金纳米粒子:金纳米粒子(AuNPs)由于其表面的等离子体共振吸收的高消光系数且强依赖于粒子间距离,在DNA甲基化酶活性检测的比色法研究中引起了广泛关注。如图1 所示,金纳米粒子表面包覆有双链DNA (ds-DNA),其中一条链包含DNA甲基化酶识别序列和5’-硫醇末端。在DNA甲基化酶存在的情况下,如图1 B 所示,DNA甲基化酶被共价标记在ds-DNA中碱基环的6-C位置,因为在5-N位置缺乏一个质子阻止了β-消除,甲基化的DNA不能被核酸外切酶 ExoⅠ剪切,因此金纳米粒子仍然均匀地分散在溶液中 [18]。从而实现DNA甲基化酶活性的检测。结果表明,在526 nm处,金纳米粒子聚集物的吸光度与DNA甲基化酶的活性呈2 ~ 32 U / mL的线性关系,检出限为0.5 U/ mL。图1. (A)基于ABP的比色生物传感器的示意图(B) DNA甲基化酶的检测机制 荧光法:荧光指吸收激发荧光团的光,以促进电子从基态到激发态,电子迅速地回到激发态的最低能级,然后当电子最终返回基态时,发出波长较长的光。与其他DNA甲基化酶活性测定法相比,荧光法检测DNA甲基化酶活性的优点是检测过程简单,灵敏度高,但其复杂的光学性能限制了其在集中实验室的应用[19~20]。图2. 基于外切酶的靶循环的DNA甲基化酶活性检测原理图电化学法:电化学生物分析技术的发展一直是现代分析化学研究的热点之一。电化学法用于DNA甲基化酶分析包括测量电流、电压、电荷和电阻等电量,以反映DNA甲基化酶的活性。与许多其他类型的DNA甲基化酶活性的检测相比,它们具有低成本、高灵敏度、执行现场监测的能力以及非常适合微型化和集成微制造技术的优点[22~23]。Zhi-Qiang Gao等人在2014年报道了一种简单、高灵敏度的DNA甲基化酶电化学活性测定方法。该方法采用电催化氧化抗坏血酸(AA)的信号放大手段,通过一个螺纹插层N,N -2(3-丙基咪唑)-1,4,5,8-萘二酰亚胺(PIND)电催化氧化还原Os(bpy)2Cl+ (PIND-Os),包含5’-CCGG-3’ 对称序列的ds-DNA首先固定在金电极上。然后用DNA甲基化酶孵育电极,经过酶催化特定CpG二核苷酸的甲基化,然后用识别5’-CCGG-3’ 序列的限制性内切酶 Hpa II 剪切酶处理电极,从而实现DNA甲基化酶活性检测的目的[24]。图3. DNA甲基化酶活性的检测原理示意图蛋白质纳米孔:蛋白质纳米孔检测技术是在单分子水平上以低成本、无标签和高通量的方式研究生物分子的检测技术。近年来,纳米孔技术正从生物传感的角度进行研究[25]。应用于核酸特征鉴定、化学反应过程的测量、蛋白质分析、疾病相关蛋白状态的检测以及酶动力学的研究等[26]。α-溶血7素是一种蛋白质纳米孔,它自发地插入到脂质双层膜中,形成一个纳米孔[27]。当一个带电分子在外加电势下通过蛋白质纳米孔时,它会引起离子电流的瞬态变化,电流变化事件被记录下来。被分析物可以通过当前电流发生的频率进行量化,特征电流信号则可以揭示被分析物的各种特征[28~30]。该检测方法不需要对DNA探针进行任何化学修饰,既方便又节约成本,减少了样品消耗。 图4. 用于分析DNA甲基化酶活性的纳米孔试验的示意图 在过去的十几年中,DNA甲基化酶活性的检测取得了重大进展。有几种方法有希望可在临床检测,使得该方法在用于癌症诊断、预后和治疗方面显示出了希望。比色法依赖于颜色变化的目视观察或与DNA甲基化酶相关的吸收光谱的光谱测量,具有成本低、简单、可移植性和在某些情况下无需仪器的优点,但是检出限相对较高。荧光法检测DNA甲基化酶活性的检测过程简单,检出限相对理想,但其复杂的光学性能以及昂贵的仪器设备限制了其在生活中的应用。电化学法由于需要构建较复杂的反应电极材料而使得其在临床上受到了一定的限制。蛋白质纳米孔的检测方法不需要对DNA探针进行任何化学修饰,既方便又节约成本,减少了样品消耗,检出限相对较为理想,并且已经成功应用于人类血清样本。这类检测可能最终为常规DNA甲基化酶活性的检测和分子诊断打开大门,为疾病的管理和诊断带来新的前景。 作者:王家海、骆 乐 作者简介:王家海,博士,教授,硕士生导师/博士生导师,广州大学化学化工学院;分析化学专业;主要研究领域为“基于核算纳米结构为信号传导载体的纳米孔传感器”;在核酸探针和仿生纳米孔两方面开展了一系列分子识别的工作,也为将来进一步开展分析化学研究打下了坚实的基础,期间积累了多种前沿分析方法和技术:仿生纳米孔制备和检测;微纳米加工技术;核酸探针人工合成技术。参 考 文 献 [1] 陈晓娟,闫少春,邵国,等.人DNA甲基化转移酶的分类及其功能[J].包头医学院学报,2014,30(04):136-138.[2] Das PM, et al. DNA methylation and cancer[J]. Clin. Oncol. 2004 22: 4632-4642.[3] Jurkowska RZ, et al. Structure and function of mammalian DNA methyltransferases[J]. ChemBioChem 2011 12: 206-222.[4] Lee GE, et al. DNA methyltransferase 1-associated protein (dmap1) is a co-repressor that stimulates DNA methylation globally and locally at sites of double strand break repair[J]. Biol. Chem. 2010 285: 37630-37640.[5] Liu SN, et al. Assay Methods of DNA Methylation and Their Applications in Cancer Diagnosis and Therapy[J]. Chinese J.Anal. Chem. 2011 39: 1451-1458.[6] Boye E, et al. Quantification of dam methyltransferase in Escherichia coli[J]. Bacteriol. 1992 174: 1682-1685.[7] Eads CA, et al. CpG island hypermethylation in human colorectal tumors is not associated with DNA methyltransferase overexpression[J]. Cancer Res. 1999 59: 2302-2306.[8] Bergerat A, et al. Allosteric and catalytic binding of s-adenosylmethionine to escherichia coli DNA adenine methyltransferase monitored by 3H NMR[J]. Proc. Natl. Acad. Sci. U. S. A. 1991 88: 6394-6397.[9] Fraga MF, et al. Rapid quantification of DNA methylation by high performance capillary electrophoresis[J]. Electrophoresis 2000 21: 2990-2994.[10] Yokochi T, et al. DMB (dnmt-magnetic beads) assay: measuring DNA methyltransferase activity in vitro[J]. Methods Mol. Biol. 2004 287: 285-296.[11] Adams RLP, et al. Microassay for DNA methyltransferase[J]. Biochem. Bioph. Methods 1991 22: 19-22.[12] Jurkowska RZ, et al. DNA methyltransferase assays[J]. Methods Mol. Biol. 2011 791: 157-177.[13] Pradhan S, et al. Recombinant human DNA (cytosine-5) methyltransferase [J]. Biol. Chem. 1999 274: 33002-33010.[14] Herman JG, et al. Methylation-specific PCR: a novel PCR assay for methylation status of CpG islands[J]. Proc. Natl. Acad. Sci. U. S. A. 1996 93: 9821-9826.[15] Kattenhorn, L. M. Korbel, G. A. Kessler, B. M. Spooner, E. Ploegh, H. L. Mol. Cell 2005, 19, 547−557.[16] Mosammaparast, N. Shi, Y. Annu. Rev. Biochem. 2010, 79, 155−179.[17] Barglow, K. T. Cravatt, B. F. Angew. Chem., Int. Ed. 2006, 45, 7408−7411.[18] Wu Z, et al. Activity-based DNA-gold nanoparticle probe as colorimetric biosensor for DNA methyltransferase/glycosylase assay[J]. Anal. Chem. 2013 85: 4376-4383.[19] Zhu, C. Wen, Y. Peng, H. Long, Y. He, Y. Huang, Q. Li, D. Fan, C. Anal. Bioanal. Chem. 2011, 399, 3459−3464.[20] Chen, F. Zhao, Y. Analyst 2013, 138, 284−289.[21] Xing XW, et al. Sensitive detection of DNA methyltransferase activity based on exonuclease-mediated target recycling[J]. Anal. Chem. 2014 86: 11269-11274.[22] Wu, H. Liu, S. Jiang, J. Shen, G. Yu, R. Chem. Commun. 2012, 48, 6280−6282[23] Wang, M. Xu, Z. Chen, L. Yin, H. Ai, S. Anal. Chem. 2012, 84, 9072−9078[24] Deng H, et al. Highly sensitive electrochemical methyltransferase activity assay[J]. Anal. Chem. 2014 86: 2117-2123.[25] Howorka, S. Siwy, Z. Nanopore Analytics: Sensing of Single Molecules. Chem. Soc. Rev. 2009, 38, 2360−2384.[26] Song, L. Hobaugh, M. R. Shustak, C. Cheley, S. Bayley, H. Gouaux, J. E. Structure of Staphylococcal α-Hemolysin, a Heptameric Transmembrane Pore. Science 1996, 274, 1859−1865.[27] Lin, L. Yan, J. Li, J. Small-Molecule Triggered Cascade Enzymatic Catalysis in Hour-Glass Shaped Nanochannel Reactor for Glucose Monitoring. Anal. Chem. 2014, 86, 10546−10551.[28] Li, J. Yan, H. Wang, K. Tan, W. Zhou, X. Anal. Chem. 2007, 79, 1050−1056.[29] Wood, R. J. Maynard-Smith, M. D. Robinson, V. L. Oyston, P. C. F. Titball, R. W. Roach, P. L. PLoS One 2007, 2, e801−e801.[30] Wood, R. J. McKelvie, J. C. Maynard-Smith, M. D. Roach, P. L. Nucleic Acids Res. 2010, 38, e107−e107.[31] Jinghong Li, et al. Nanopore-based, label-free, and real-time monitoring assay for DNA methyltransferase activity and inhibition[J]. Anal. Chem. 2017 89: 13252−13260.
  • 围观!5项国家计量基准批准发布
    市场监管总局关于批准启用和替代部分国家计量基准的公告根据《中华人民共和国计量法》《中华人民共和国计量法实施细则》以及《计量基准管理办法》相关规定,现将国家计量基准批准启用和替代事项公告如下:一、批准启用“(0.2 ~ 30)m/s空气流速基准装置”“水量热计加速器光子水吸收剂量基准装置”“乳腺X射线空气比释动能基准装置”等3项新建国家计量基准。二、批准启用“同轴功率基准装置”“漫透射视觉密度基准装置”等2项新建立的国家计量基准替代“同轴功率基准装置(国基证〔2002〕第065号)”“漫透射视觉密度基准装置(国基证〔2002〕第087号)”等2项国家计量基准。特此公告。附件:1. 新建国家计量基准名单2. 新建替代国家计量基准名单3. 废除国家计量基准名单市场监管总局2021年8月2日
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制