当前位置: 仪器信息网 > 行业主题 > >

碘吲哚满二酮

仪器信息网碘吲哚满二酮专题为您提供2024年最新碘吲哚满二酮价格报价、厂家品牌的相关信息, 包括碘吲哚满二酮参数、型号等,不管是国产,还是进口品牌的碘吲哚满二酮您都可以在这里找到。 除此之外,仪器信息网还免费为您整合碘吲哚满二酮相关的耗材配件、试剂标物,还有碘吲哚满二酮相关的最新资讯、资料,以及碘吲哚满二酮相关的解决方案。

碘吲哚满二酮相关的资讯

  • 专家漫谈|热分析技术在药物质量控制以及药物研究中的一些应用
    p style=" text-align: left "    strong 本文 /strong strong 作者:江苏省食品药品监督检验研究院 李忠红 /strong /p p style=" text-align: left "   热分析法,顾名思义,是围绕物体热量发生了变化来进行的一系列分析测试的技术的总称,包括记录给予被测物热量后物质发生变化的过程以及物体发生变化过程中吸收或放出热量的测定。药典中收录的热分析法,广义的有转化点/熔点测定法、热重分析法、差热/差示扫描量热分析法、热载台显微镜分析法、微量热法(欧洲/英国药典)、溶液量热法(欧洲/英国药典)。中国药典2020年版四部通则0661热分析法中只收录了其中的三种。 /p p style=" text-align: left "   目前来说,在我们药品检验工作中采用热分析法对药物进行质量控制的应用主要有:原料药熔点的测定、化学对照品的纯度测定、药物水分的测定等,应用的项目与品种并不多。中国药典2015年版并未收录具体的需要用热分析仪来做质量控制的品种,2020年版是否有品种收录目前还未知晓。在国家药品监督管理局批准的各企业注册标准中,采用差示扫描量热分析法(DSC)测定熔点的品种有替格瑞洛、利培酮等,下图1是一张不同企业替格瑞洛原料药的热分析图,从图中可以看出不同企业产品的熔点存在着一定的差异,其中微小的差异可能来自于不同的纯度,而较大的差异应该是来自于不同的晶型。 /p p style=" text-align: center " img style=" max-width: 100% max-height: 100% width: 500px height: 522px " src=" https://img1.17img.cn/17img/images/202006/uepic/c71b7d9d-0621-4e0b-b52c-b8be3c48db91.jpg" title=" 图1 替格瑞洛DSC分析图.jpg" alt=" 图1 替格瑞洛DSC分析图.jpg" width=" 500" height=" 522" border=" 0" vspace=" 0" / /p p style=" text-align: center " strong 图1 替格瑞洛DSC分析图 /strong /p p   热分析法在药品质量控制中应用面较窄的这种情况的主要原因是因为热分析仪相对于一些传统的药品检验用仪器(例如熔点仪、烘箱、减压干燥箱等)价格要贵得多,客观上限制了在熔点测定与水分测定中的应用。而对于化学对照品的纯度测定,热分析法只是一个辅助测定的方法,或者说是一个验证用其他方法测定出的纯度值是否准确的方法,并不能用热分析法得到的纯度值去给对照品赋值。所以,热分析法对于化学对照品纯度的测定这一应用,只有在化学对照品发行单位得到较多的应用[1,2]。 /p p   当然,在药物的制造过程中,有不少企业已经采用快速水分测定仪(水分天平)来做中间体物料的水分监测。快速水分测定仪是利用热失重法测定样品的水分含量,由称量与加热装置(红外)组成。其原理与热重分析仪一样,也应该算是一种热分析的仪器。 /p p   尽管在药品终产品质量控制中的应用目前还不广泛,热分析技术作为一门成熟的分析技术,在药物研究过程中角色一直是不可或缺的。近5年来在药物研究过程中的应用主要有:药物多晶型的研究[3-6],药物共晶的研究[7],药物新剂型研究[8-18],生物相容性材料[19,20]的表征,药品包装材料(聚乙烯、聚丙烯等材质)与液体药物的相容性研究等。下面简要介绍一下其中的几个应用。 /p p    strong 一、药物多晶型的研究 /strong /p p   各国药典收载的多晶型药物有188种,水合物有307种,无定形(型)物有113种[21],这些药物的研究过程都或多或少地用到过热分析技术。 /p p   2015年研究者Akhtar Siddiqui等[3]发表的研究文章中用DSC结合化学计量学方法对尼莫地平两种晶型的定量测定进行了很好的研究,为质量控制提供了可能。 /p p   2016年研究者Yusuke Hattori等[4]发表的研究文章中用DSC研究了采用熔融-骤冷和研磨法获取加替沙星的无定形物。这两种方法制备的无定形物的X-射线粉末衍射图谱是无差别的,但是它们的DSC图谱存在着一定的差异。下图2就是两种无定形物的DSC图谱。 /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/e018c82b-c99f-4dff-ae98-4fa8d738bd6f.jpg" title=" 图2 加替沙星两种无定形物在不同升温速率下的DSC图谱.jpg" alt=" 图2 加替沙星两种无定形物在不同升温速率下的DSC图谱.jpg" / /p p style=" text-align: center " strong 图2 加替沙星两种无定形物在不同升温速率下的DSC图谱 /strong /p p style=" text-align: center " (A)研磨法制备 (B)熔融-骤冷法制备 /p p   对于低温下药物的结晶过程、低温下药物晶核形成的机理研究,是近年来另一个研究的热点。2017年研究者Ioannis Nikolakakis等[5]发表的研究文章中采用熔融-骤冷法对扑热息痛(对乙酰氨基酚)的结晶动力学进行了研究,熔融的过程以及对骤冷后得到的玻璃体进行表征均使用了DSC仪。2018年研究者Yuan Su等[6]发表的研究文章中用类似的方法对灰黄霉素进行了研究,提出在超低温状态下(低于玻璃化转变温度),玻璃体发生断裂,在断裂面形成了晶核,因此不仅熔融-骤冷法不一定能得到无定形药物,而且对于无定形药物的保存也要注意贮藏条件可能产生的影响。 /p p    strong 二、药物共晶的研究 /strong /p p   共晶是提高药物溶解度的一个有效手段,而DSC是表征共晶形成成功与否的强有力技术。2018年研究者Patrycja Garbacz等[7]发表的研究文章中对吲哚美辛与糖精共晶、呋塞米与对氨基苯甲酸共晶进行了研究,典型的DSC图谱见图3。由图中可见,原料比例为1:2时吲哚美辛与糖精形成了共晶,即熔点只有一个。其他检测方法,例如红外光谱法、拉曼光谱法,都无法区分物理混合物与共晶。 /p p style=" text-align: center " img style=" max-width: 100% max-height: 100% width: 500px height: 251px " src=" https://img1.17img.cn/17img/images/202006/uepic/bfbfeed1-7583-4e9d-bab7-1ff5558465af.jpg" title=" 图3 吲哚美辛与糖精共晶研究的DSC图谱.jpg" alt=" 图3 吲哚美辛与糖精共晶研究的DSC图谱.jpg" width=" 500" height=" 251" border=" 0" vspace=" 0" / /p p style=" text-align: center " strong 图3 吲哚美辛与糖精共晶研究的DSC图谱 /strong /p p style=" text-align: center "   (a)吲哚美辛与糖精物理混合物(1:1) /p p style=" text-align: center "   (b)吲哚美辛与糖精物理混合物(2:1) /p p style=" text-align: center "   (c)吲哚美辛与糖精物理混合物(1:2) /p p style=" text-align: center "   (d)吲哚美辛与糖精共晶(原料比例1:1) /p p style=" text-align: center "   (e)吲哚美辛与糖精共晶(原料比例2:1) /p p style=" text-align: center "   (f)吲哚美辛与糖精共晶(原料比例1:2) /p p style=" text-align: center "   (g)吲哚美辛 /p p style=" text-align: center "   (h)糖精 /p p    strong 三、药物新剂型的研究 /strong /p p   纳米脂质体、介孔二氧化硅纳米粒、聚L-乳酸电纺纤维、温敏性水凝胶都是近年来发展起来的一些药物载体,也是药物新剂型。对于药物载体是否成功载药的研究,DSC是一个有效的表征手段,以2018年Li Pan等[18]对载虾青素的纳米脂质体研究为例,图4为采用DSC对原料药、辅料、原料药与辅料的物理混合物、载药纳米脂质体进行研究的图。载虾青素的纳米脂质体显示了与辅料大豆磷脂酰胆碱以及二者的物理混合物不同的DSC曲线。 /p p style=" text-align: center " img style=" max-width: 100% max-height: 100% width: 500px height: 390px " src=" https://img1.17img.cn/17img/images/202006/uepic/fc4b38c6-cf08-49f0-b45d-11e2bd953a3e.jpg" title=" 图4 载虾青素的纳米脂质体研究的DSC图谱.jpg" alt=" 图4 载虾青素的纳米脂质体研究的DSC图谱.jpg" width=" 500" height=" 390" border=" 0" vspace=" 0" / /p p style=" text-align: center " strong 图4 载虾青素的纳米脂质体研究的DSC图谱 /strong /p p style=" text-align: center " (a)虾青素 /p p style=" text-align: center " (b)载虾青素的纳米脂质体 /p p style=" text-align: center " (c)大豆磷脂酰胆碱 /p p style=" text-align: center " (d)虾青素与大豆磷脂酰胆碱的物理混合物 /p p   对于载虾青素的纳米脂质体研究,研究者不仅使用了DSC,还使用了TG,图谱见图5。TG曲线可被分为三段,分别代表了三步分解过程:失水(138℃之前)、大豆磷脂酰胆碱分解(138~315℃)、虾青素分解(315~500℃)。TG曲线可以从一个侧面反映药物的组成。 /p p style=" text-align: center " img style=" max-width: 100% max-height: 100% width: 500px height: 350px " src=" https://img1.17img.cn/17img/images/202006/uepic/cd90f3d6-0c0d-47b8-94ec-55fbf677c8b9.jpg" title=" 图5 载虾青素纳米脂质体的TG图谱.jpg" alt=" 图5 载虾青素纳米脂质体的TG图谱.jpg" width=" 500" height=" 350" border=" 0" vspace=" 0" / /p p style=" text-align: center " strong 图5 载虾青素纳米脂质体的TG图谱 /strong /p p   由以上这些应用来看,随着采用热分析法对于药物多晶型的研究工作日益的广泛,以及仿制药与原研药一致性评价工作的需求,采用热分析技术作为成品的质量控制手段的可能性也会大幅提升。因此,可以预见,热分析技术在药物质量控制领域会发挥越来越大的作用。 /p p br/ /p p    a href=" https://www.instrument.com.cn/zt/rfxjszywzlkzzdyy" target=" _self" strong 热分析技术在药物质量控制中的应用专题 /strong : /a /p p style=" text-align: center " a href=" https://www.instrument.com.cn/zt/rfxjszywzlkzzdyy" target=" _self" img style=" max-width: 100% max-height: 100% width: 600px height: 131px " src=" https://img1.17img.cn/17img/images/202006/uepic/275383cf-9219-4e35-ace8-f04a0943596e.jpg" title=" 192042020200616.jpg" alt=" 192042020200616.jpg" width=" 600" height=" 131" border=" 0" vspace=" 0" / /a /p p br/ /p p    strong 参考文献: /strong /p p   [1] 刘毅,吴建敏,严菁,等. 熔点对照品标化研究,中国新药杂志,2015,24(3):264-270 /p p   [2] 刘毅,吴建敏,吴涓,等. 差示扫描量热法在化学药品对照品纯度分析中的应用,中国新药杂志,2017,26(10):1115-1118 /p p   [3] Akhtar Siddiqui, Ziyaur Rahman, Mansoor A. Khan. Application of chemometric methods to differential scanning calorimeter (DSC) to estimate nimodipine polymorphs from cosolvent system. Drug Development and Industrial Pharmacy, 2015, 41(6):995-999 /p p   [4] Yusuke Hattori, Ayumi Suzuki, Makoto Otsuka. Characterization of melt-quenched and milled amorphous solids of gatifloxacin. Drug Development and Industrial Pharmacy, 2016, 42(11): 1851-1856 /p p   [5] Ioannis Nikolakakis, Kyriakos Kachrimanis. Crystallization kinetics of orthorhombic paracetamol from supercooled melts studied by non-isothermal DSC. Drug Development and Industrial Pharmacy, 2017, 42(2): 257-263 /p p   [6] Yuan Su, Lian Yu, Ting Cai. Enhanced crystal nucleation in glass-forming liquids by tensile fracture in the glassy state. Crystal growth & amp design, 2018, DOI: 10.1021/acs.cgd.8b01427 /p p   [7] Patrycja Garbacz, MarekWesolowski. DSC, FTIR and Raman Spectroscopy Coupled withMultivariate Analysis in a Study of Co-Crystals of Pharmaceutical Interest. Molecules, 2018, 23, 2136 doi:10.3390/molecules23092136 www.mdpi.com/journal/molecules /p p   [8] 冯巧,张亚轩,夏志伟,等. 温敏型水凝胶聚(N-异丙基丙烯酰-乙烯基吡咯烷酮)的前端聚合法制备及性能. 高分子材料科学与工程,2015,31(4):37-46 /p p   [9] 王浩,康卫民,张亚秋,等. 壬苯醇醚聚ε-己内酯电纺纤维膜的表征及释放. 沈阳药科大学学报,2015,32(4):249-255,270 /p p   [10] 王浩,郭衎,刘影,等. 十六烷基磷脂酰胆碱复合聚ε-己内酯电纺微球的制备及表征. 辽宁医学院学报,2015,36(2):1-5,附页1-2 /p p   [11] 吕洁琼,林君红,崔升淼. 介孔二氧化硅纳米粒对穿心莲内酯载药性能及药物释放的影响. 广东药学院学报,2016,32(5):555-558 /p p   [12] 吕志阳,杨雨微,陈璟,等. 热熔挤出技术制备银杏总内酯固体分散体的研究. 中药材,2016,39(7):1610-1613 /p p   [13] Li Pan, Hongyan Wang, Keren Gu. Nanoliposomes as Vehicles for Astaxanthin Characterization In Vitro Release Evaluation and Structure-PXRD DSC. Molecules, 2018, 23:2822 doi:10.3390/molecules23112822 www.mdpi.com/journal/molecules /p p   [14] 赵娜,史雨,王中彦. 和厚朴酚固体分散体的制备及表征. 沈阳药科大学学报,2019,36(6):469-473 /p p   [15] 管庆霞,张悦,邹淑君,等. 马钱子碱纳米结构脂质载体的表征及体外释放行为分析. 中国中医药信息杂志,2019,26(8):66-70 /p p   [16] 郭爱灵,姚涛,潘斯庆,等. 复方葛根素水飞蓟宾固体分散体的制备及表征. 中国中医药信息杂志,2020,27(2):59-63 /p p   [17] 黄佳娜,崔银,张天,等. 载塞克硝唑泊洛沙姆复合聚L-乳酸电纺纤维的表征和释放行为考察. 中国医药工业杂志,2020,51(5):605-612 /p p   [18] 盛晓丹,刘臻,罗砚曦,等. 聚多巴胺修饰的载榄香烯介孔二氧化硅纳米粒的制备及其靶向抗肿瘤活性研究. 中草药,2020,51(10):2745-2754 /p p   [19] 王秦峰. 聚乳酸的热性能研究. 上海化工,2019,44(2):14-16 /p p   [20] Carlos David Grande Tovar, Jorge Ivá n Castro, Carlos Humberto Valencia, et al. Nanocomposite Films of Chitosan-Grafted Carbon Nano-Onions for Biomedical Applications. Molecules, 2020, 25:1203 doi:10.3390/molecules25051203 www.mdpi.com/journal/molecules /p p   [21] 张建军,钱帅,高缘主编. 晶型药物研发理论与应用,化学工业出版社,2019.1 /p p br/ /p
  • 赫施曼助力电子烟中2,3-丁二酮的检测
    电子烟是一种模仿卷烟的电子产品,通过加热雾化产生具有特定气味的气溶胶。2,3-丁二酮因具有奶油香气常作为香精原料被添加在电子烟烟液中,经加热后吸入肺部可能沉积在肺气管中而导致阻塞,加重呼吸道炎症。根据GB 41700-2022,电子烟中释放物中羰基化合物2,3-丁二酮每口释放量不超过2.5微克。其检测方法为:高效液相色谱法。 1.试剂1.1 磷酸水溶液:量取60mL磷酸(质量分数不低于85%)于1L烧杯中,搅拌下缓慢加入440mL水,混合均匀。储存于试剂瓶中有效期为3个月。1.2 衍生化试剂:取1.00gDNPH-HCl(纯度不低于98%)于2L烧杯中,加入500mL乙腈(色谱纯)和40mL磷酸水溶液,溶解后加入500mL水,混合均匀。溶液转入棕色试剂瓶中避光储存,有效期为1周。1.3 2,3-丁二酮溶液:称取0.10g(精确至0.1mg)2,3-丁二酮(纯度不低于98%)于10mL棕色容量瓶中,用乙腈溶解,定容至刻度。-18℃避光储存,有效期为3个月。1.4 DNPH衍生化合物标准储备液:称取0.1mL2,3-丁二酮溶液于25mL棕色容量瓶中,加入20mL衍生化试剂,摇匀,室温反应20min。加入1mL吡啶(纯度不低于99%),用乙腈定容至刻度,-18℃避光储存,有效期为3个月。1.5 标准工作液:用乙腈将DNPH衍生化合物标准储备液逐级稀释,至少备制5个标准工作液,浓度范围宜为0.1-4μg/mL。在使用前配置。2.样品前处理2.1 电子烟烟液:称取0.50g(精确至0.1mg)样品于10mL棕色容量瓶中,加入5mL衍生化试剂,摇匀,室温反应20min。加入0.25mL吡啶,用乙腈定容至刻度,摇匀,用PTFE滤膜过滤于棕色色谱瓶中待测。2.2 固态雾化物:称取0.50g(精确至0.1mg)样品于15mL离心管中,加入10mL衍生化试剂,避光涡轮震荡反应20min。用PTFE滤膜过滤,移取5mL容量瓶于10mL棕色容量瓶中,加入0.25mL吡啶,用乙腈定容至刻度,用PTFE滤膜过滤于棕色色谱瓶中待测。3.绘制标准工作曲线设定高效液相色谱条件后测定标准工作溶液(1.5),以目标化合物峰面积和浓度建立标准工作曲线。每进行20次样品测定后加入一个中等浓度的标准工作溶液,如测定值与原值相差15%则重新绘制标准工作曲线。4.样品测定按照谱条件测定两个样品溶液,每个样品平行测定两次,并以两次测定结果的平均值为最终测定结果。以上实验有大量的试剂添加、稀释配液等工作,赫施曼瓶口分配器可高效便捷地进行0.5%精度的液体移取,适合试验中的有腐蚀性或挥发性等危险的试剂移取、分配工作。赫施曼的opus稀释配液系统的多体积分液模式,在一个分液程序中可设定10个独立的分液体积,设定好每次分液的体积和间隔时间后,按下分液键就可以进行一组分液,且分液参数(程序)还可保存和调用。可用于毫升级的母液添和稀释液的快速、准确地添加,非常适合做标准曲线和毫升级大批量灌装。
  • 第二期欧波同汽车清洁度分析应用培训班圆满结束
    2019年5月30日,第二期欧波同汽车清洁度分析应用培训班圆满结束,来浙江地区汽车行业的专家及技术人员,秉承精益求精的精神,共同学习探讨了清洁度检测方面的新技术、新工艺。本次培训班以技术理论和上机实践相结合的形式展开,技术报告主要内容为《清洁度分析方法》《光电联用在汽车清洁度上的应用》《清洁度样品萃取方法介绍》《显微分析在汽车零部件材料测试中的应用》。在下午的分组上机实践中,参加培训的学员在工程师的指导下,先后通过欧波同清洁度分析系统,对汽车零部件样品进行检测。随着人们对汽车质量理念、质量意识的变化,汽车市场对产品的安全性、可靠性,以及对其环保节能等方面提出了更高的要求。清洁度作为一项重要的产品质量指标,其重要性已受到越来越多的关注,随着产品制造技术的发展、演化,不同的工艺方法也会给确保产品的清洁度带来一些新的问题。欧波同(中国)有限公司作为实验室解决方案服务商,一直以来持续关注技术发展趋势,致力于衔接客户应用需求。针对汽车行业客户开展“欧波同汽车清洁度分析应用培训班”,培训内容围绕样品前处理技术、清洁分析系统解决方案、光电联用技术的应用展开,帮助客户更好地解决产品清洁度相关问题。此系列培训班将持续举办,相关信息会通过欧波同微信公众平台发布,有需求的用户请持续关注!
  • 新品上市,DLM-10-10/氘代二甲亚砜/2206-27-1!
    新品上市,DLM-10-10/氘代二甲亚砜/2206-27-1!关于产品 DLM-10-10/氘代二甲亚砜/2206-27-1 的具体详情:CAS号:2206-27-1编号:DLM-10-10包装:10g纯度/规格:D, 99.9%品牌:美国CILDLM-10-10/氘代二甲亚砜/2206-27-1 公司为答谢新老客户对我们长期以来的支持,现有大量新品上市,低价优惠促销活动,欢迎新老客户前来咨询选购!企业其他相关产品推荐:bs-9642R,17号染色体开放阅读框57抗体|C17orf57抗体价格姜酮对照品/标准品CAS:2212-67-1,禾草知标准品/对照品价格CAS:53411-70-4,D-葡萄糖-6-磷酸三钠盐,6-磷酸葡萄糖三钠盐,6-磷酸葡萄糖酸三钠盐,G-6-P-Na32,4,5-三氯联苯标准品|对照品,cas:15862-07-42,6-(盐酸尼卡地平杂质)对照品/标准品次野鸢尾黄素标准品,cas:41743-73-1对照品CAS:9028-48-2,异柠檬酸脱氢酶,ICDH,Isocitrate dehydrogenasebs-2713R,肾损伤分子1抗体(甲型肝炎细胞受体1)|HAVCR1抗体价格CAS:10031-30-8,过磷酸钙价格重组人 HSPD1/HSP60 蛋白(His & GST 标签)/11322-H20E小鼠血小板衍生生长因子AB(PDGF-AB)ELISA检测试剂盒说明书铑标准溶液,cas:7440-16-6乌药醚内脂标准品,cas:13476-25-0对照品猪血管生成素1(ANG-1)ELISA试剂盒,96T/48T兔子肝细胞生长因子(HGF)ELISA检测试剂盒说明书CAS:61438-64-0,氯碘柳胺钠现货供应CAS:51503-28-7,固红片剂,固红-萘磺酸TR片剂,快红片剂,快红TR片剂,Fast red TR Tablets常山碱乙标准品,cas:24159-07-7对照品bs-15575R,kappa轻链可变区抗体|IGKV A18抗体价格人骨特异性碱性磷酸酶B(ALP-B)ELISA检测试剂盒说明书1,2-|CAS号306-37-6|1,2-Dimethylhydrazine dihydrochlorideCAS:41532-84-7,1,1,2-三甲基-1H-苯并[e]吲哚H-苯并[e]吲哚价格bs-13014R,DNA聚合酶δ2/DNA pol δ 2抗体|DNA polymerase delta p50抗体价格丙硫氧嘧啶对照品/标准品CAS:327-97-9,绿原酸价格CAS:18686-82-3,2-巯基-1,3,4-噻二唑价格沙苑子苷标准品,cas:116183-66-5对照品bs-2679R,细胞粘附分子CD112抗体|CD112抗体价格bs-2978R,硫氧还蛋白过氧化物酶Ⅱ/巯基抗氧化蛋白抗体|Peroxiredoxin 2抗体价格朝藿定A标准品,cas:110623-72-8对照品bs-11975R,周期蛋白结合蛋白抗体|CACYBP抗体价格CAS:1072-98-6,2-氨基-5-氯吡啶价格212304/琼脂,A级培养基厂家
  • 同心同力,共赢未来——天瑞仪器上市十周年庆典活动圆满举行
    十年并肩前行,十年破茧而出,十年风华正茂,十年硕果累累。 2021年9月8日,天瑞仪器上市十周年庆典活动在昆山文化艺术中心圆满举行。天瑞仪器本部全员及天瑞环境、贝西生物、国测检测、磐合科仪、仙桃天瑞、雅安天瑞、安岳天瑞、四川天瑞、沁水璟盛、天蓝祥瑞等子公司代表欢聚一堂,共话十年奋斗的欣喜,共庆十年收获的喜悦。一、振奋人心●博士致辞天瑞仪器董事长刘召贵博士为晚会致辞 庆典晚会伊始,刘召贵博士发表了热情洋溢的致辞。他首先代表公司董事会,向长期以来一直关心和支持公司发展的社会各界朋友和付出辛勤劳动的全体员工表示衷心的感谢和诚挚的敬意。同时也肯定了天瑞仪器公司上市十年来取得的骄人成绩。刘博士表示做出高端的科学分析仪器是我们永远追求的目标,他将带领天瑞仪器持续深耕大健康产业,创造大健康产业链,牢记“助力国人健康”的初心和使命,砥砺前行,实现“坚定地做健康守护人”的伟大愿景。二、视觉盛典●文艺表演 晚会在热烈、喜庆的开场歌舞《牛牛牛》中拉开了帷幕,热烈的情绪渲染了整个现场。本次晚会主题分四个篇章进行,分别为:第一篇章:激情岁月 筑梦起航;第二篇章:携手同行 共创辉煌;第三篇章:开拓进取 放眼未来;第四篇章:众志成城 再创辉煌。整场晚会紧紧围绕主题,以歌唱,舞蹈、小品、诗朗诵、脱口秀、乐器等各式各样的表演形式汇聚一堂, 展现了一个又一个精彩绝伦的经典时刻。 三、荣耀表彰●颁奖仪式天瑞仪器董事长刘召贵博士与总经理应刚为优秀员工颁奖 在天瑞,有那么一群人,他们无时无刻不在发光发热,默默无闻的付出。他们把公司当成了家,为他拼搏奋斗,为他添砖加瓦。大家的辛劳换来了公司的腾飞,腾飞的公司也带给了大家惊喜。在今天的舞台上,公司为他们颁发了“优秀员工奖”。四、激动人心●抽奖活动 除了颁奖仪式,公司还为晚会设置了抽奖活动。不仅为大家带来了意外的惊喜,也使晚会的气氛推向一个又一个高潮。五、难忘今宵●台前幕后 演职人员合影 近三个半小时的时光,仿佛一场精美的文化盛宴,带给大家完美的视听享受,欢歌笑语深深地留在天瑞人的记忆中。这是一次鼓舞士气、振奋精神的活动,充分展示了天瑞员工的风采和活力,彰显了天瑞仪器的凝聚力和战斗力,也为天瑞继续谱写崭新篇章献上不竭的动力。 雄关漫道真如铁,而今迈步从头越。上市十周年庆典是天瑞仪器发展的里程碑,是一个满怀豪情的新起点。在刘召贵博士的带领下,全体天瑞人“同心同力,共赢未来”的号角已经吹响,以此上市十周年庆典活动为契机,勠力同心,携手同行,以更加饱满的热情,更加奋发的精神,更加昂扬的斗志,同心同力,共赢未来!
  • 士兰微预计全年订单爆满,通富微电员工将增至700人
    据厦门海沧区融媒体中心报道,今年,士兰微90%产线工人留厦参与春节不停产。目前,士兰明镓化合物与12吋特色工艺芯片生产线采取的是两班倒生产模式,即便是除夕与大年初一,生产线也没有停下来。士兰微厦门工程指挥部副总指挥、厦门士兰集科副总经理朱利荣表示,士兰明镓与集科两个工厂产线工人与管理人员就超过了750人,今年厦门士兰这两家公司不停产,“留厦”过年的产线工人超过了90%。从销售端反馈的信息预判2021年全年士兰微订单爆满。为满足市场需求,海沧项目第一条12吋生产线在一期产能的基础上持续扩产,预计第二条12吋芯片生产线大概率会比原计划提前开工建设。为让生产线早日完成扩容,厂房施工、设备安装正在抓紧推进中。此外,士兰微海沧项目自备110千伏变电站春节前刚刚封顶,现在正在进行拆架清理、土建二次结构施工及初装施工,预计6月底将投入运行。今年通富微电留厦员工约170人,超过总人数的70%,三个生产车间基本保证了100%的产能。公司发放加班补贴、全勤奖等各类“留厦礼包”总计35万元。通富微电常务副总郁凤翔表示,目前我们的金凸块生产线,有超过7成的设备和原材料来自国产,这在业界是第一个做到的。目前我们的用工缺口非常大,现在职人员247人,计划年底增加到700人。据郁凤翔介绍,目前通富微电最主要的产品金凸块产能为1.2万片/月,这个数字在年底将达到2.4万片/月。一期产房3.4万㎡,使用率目前为50%,争取在明年上半年用到70%。
  • 巅峰领跃 梦想不止 | 欧波同集团2024年新春年会暨朗铎科技十周年庆典圆满落幕
    2024年1月21日,欧波同集团2024年新春年会暨朗铎科技十周年庆典(以下简称“新春年会”)在鞍山隆重举行。新春年会非常荣幸地邀请到了中国分析测试协会领导,赛默飞世尔科技(以下简称“赛默飞”)的相关领导及欧波同的合作专家齐聚一堂,共同回顾过去一年的辉煌成就,展望未来的美好蓝图。 岁序更替,华章日新。新春年会伊始,欧波同集团董事长皮晓宇作新年致辞,回顾和总结了2023年工作成绩,并对2024年企业发展进行了全面展望。△欧波同集团董事长皮晓宇致辞 集团董事长皮晓宇在致辞中提到:2023年是欧波同集团成立二十周年的重要时刻,与战略合作伙伴、赛默飞世尔科技深化共识、深度合作,物理分析产线和化学分析产线的总体业绩持续保持增长态势,年度目标圆满达成。集团旗下子公司成绩斐然,品牌建设工程全面推进,“三大业绩提升工程”正式落地。2024年欧波同集团将乘着中国工业数字化的加速器,在科技赋能之路上阔步前行,向着下一个二十年的目标扬帆启航。△中国分析测试协会常务副理事长/辽宁省分析测试协会荣誉理事长刘成雁教致辞△赛默飞MSD商务总监Tim Chen致辞△赛默飞CAD商务总监Jerry Zhang致辞 为表彰员工们拼搏进取的精神,公司对工作表现突出的员工进行隆重嘉奖。年会上还颁发了个人类奖项及团队荣誉奖项数十个,旨在肯定员工对公司的付出,更是激励大家在2024年勇于拼搏,再创佳绩。△欧波同集团颁奖仪式 在欧波同与赛默飞的合作中,有这样一群人,他们目标明确、身体力行,为双方合作搭建了牢固的桥梁,提供强大后盾。为了感谢他们的辛苦付出,欧波同集团特设立专属奖项。△董事长皮晓宇为赛默飞谢媛媛/李洁颁奖 时光荏苒,三年时光如白驹过隙。2023年,在欧波同集团所有员工的努力拼搏下,电镜业务订单额实现连年业绩增长;手持光谱仪业务也取得了终端市场的增长,尤其在工业市场增幅巨大,并在行业拓展、客户服务等方面更上一层楼。赛默飞特此为皮晓宇董事长颁发2023年度杰出战略合作伙伴奖项,以示对欧波同集团2023年业绩和合作的认可。△赛默飞MSD商务总监Tim Chen为董事长皮晓宇颁发奖杯 此次年会不仅是一场庆祝的盛宴,更是为新一年的征程敲响战鼓。颁奖期间,通过一系列精彩纷呈的节目表演和互动环节,员工们释放了压力,增进了彼此之间的情感交流。在欢声笑语中共同度过了一个难忘的夜晚。△欧波同集团新春年会节目集锦 2024年,欧波同集团旗下朗铎科技也迎来了十周岁的生日,这十年的拼搏奋进有目共睹,这十年的蓬勃闪耀振奋人心。庆生仪式上,欧波同集董事长皮晓宇、赛默飞MSD商务总监Tim Chen、赛默飞CAD商务总监Jerry Zhang上台共切蛋糕,为朗铎科技的明天许下美好祝愿。△欧波同集团旗下朗铎科技十周年庆生合影(左:赛默飞CAD商务总监Jerry Zhang;中:欧波同集团董事长皮晓宇;右:赛默飞MSD商务总监Tim Chen)△赛默飞CAD相关领导和朗铎科技高层领导合影 惟其艰难,方显勇毅;惟其笃行,方显珍贵。欧波同集团将从昨日的澎湃中汲取力量,抖擞精神,创造下一站的辉煌与奇迹!满怀豪情,无惧挑战,共赴一场充满荣耀和梦想的远征!△欧波同集团新春年会演员谢幕及合影
  • 贝克曼库尔特苏州公司开业庆典于桑田岛圆满落幕
    p   2017年1月16日,贝克曼库尔特生物科技(苏州)有限公司在苏州桑田岛生物产业园隆重举行了开业庆典及新产品发布仪式。苏州工业园区工委副书记、管委会主任杨知评先生,苏州工业园区管委会副主任季晶女士出席了庆典,约100多位嘉宾也盛情参加了此次典礼。此次落成典礼是贝克曼库尔特公司在华生命科学领域开展业务的重要里程碑,也是该公司提升流式细胞仪产品研发、技术创新和全球客户服务能力的重要战略举措。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201701/insimg/92624e00-413f-44ec-97db-6b08ac5f9be1.jpg" title=" 1_副本.png" / /p p style=" text-align: center "    strong span style=" color: rgb(0, 176, 240) " 图1 庆典仪式领导致辞,高朋满座 /span /strong /p p   贝克曼库尔特生物科技(苏州)有限公司,即原苏州赛景生物科技有限公司,由2010年园区第四届科技领军人才留美陈永勤博士在苏州生物纳米园创建。陈永勤博士拥有麻省理工学院博士学位,是美国化学会诺贝尔签名奖、美国总统青年奖、北方电讯最佳人才奖获得者和斯隆基金会研究员,先后工作于加州大学伯克利分校,贝尔实验室和BD生物公司。公司凭借一系列核心专利技术,专注于研发新一代流式细胞分析仪及分析软件。其于2013年中旬在国际流式细胞大会(CYTO)上展出了其自主研发的XTG& #8482 -1600流式细胞仪,引起轰动,在业内被广泛关注。该款仪器体积小巧,能够检测低至100 nm的范围,包括病毒、细菌、微粒和细胞,并具有多种配置,可从双激光4通道扩展到四激光16通道。 /p p   2014年6月,美国丹纳赫集团旗下贝克曼库尔特生命科学部宣布收购赛景生物科技公司,作为其下属的全资子公司。丹纳赫是美国纳斯达克上市公司,2015年销售额约为200亿美元,是世界最大的精密仪器制造商之一。依托贝克曼库尔特在流式细胞仪研发上的多年经验,强大的生产运营能力,以及成熟的市场营销渠道,2014年底公司即向全球市场发布了第一款基于新技术的流式细胞分析仪CytoFLEX。至今,公司持续加大研发投入并已经陆续向市场推出了面向不同细分市场的3大系列产品。2年时间里,公司已向北美、欧洲为主的全球市场销售超过1000台仪器,为生命科学研究及临床检测的不同需要提供了有效的解决方案。 /p p   由于在新一代细胞分析技术领域的杰出贡献,2016年4月陈永勤博士在华盛顿美国科学院被授予美国生物医学工程院院士。2016年10月,CytoFLEX获得了2016年度丹纳赫集团全球创新大会的唯一金奖,以及贝克曼库尔特公司的平台创新奖。公司在收购整合以来的这一系列成功,得到了丹纳赫集团、贝克曼库尔特公司总部以及广大用户的高度认可,巩固了其在市场和公司内部的技术核心地位,并得到进一步的战略性投资。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201701/insimg/ca95210f-b9e5-421f-a9de-00f06e63d4e8.jpg" title=" 陈永勤_副本.jpg" / /p p style=" text-align: center "    strong span style=" color: rgb(0, 176, 240) " 图2 陈永勤博士——贝克曼库尔特生命科学事业部全球首席技术官CTO /span /strong /p p strong span style=" color: rgb(0, 176, 240) " /span /strong /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201701/insimg/4bfb9da1-eb0f-42a5-a8ac-c6ebf9e4a12f.jpg" title=" 3_副本.png" / /p p style=" text-align: center "    strong span style=" color: rgb(0, 176, 240) " 图3 2016年10月CytoFLEX流式细胞仪喜获2016年度丹纳赫集团全球创新大会的唯一金奖 /span /strong /p p   2016年11月,公司从生物纳米园搬迁至桑田岛生物产业园,总建筑面积6000多平方米。这使得其研发、生产环境得到大幅提升,2016年度全球总销售额预计将达3亿元人民币。目前拥有员工100多名,同时公司总部的生产转移项目也在积极推进中,公司将成为贝克曼库尔特生命科学部全球研发、制造的重要基地。 /p p   庆典期间,贝克曼库尔特隆重发布最新产品——CytoFLEX S IR流式细胞仪,该产品是基于在全球大获好评的CytoFLEX系列平台上推出的最新产品。CytoFLEX系列流式细胞仪自面世开始,从未停止进一步创新的步伐,目前已经上市的产品可供选择的激光器包括488nm, 638nm, 405nm, 561nm 和375nm,可供选择的配置超过30种。而此次全新推出的808nm激光器的配置,在流式细胞仪上属于首次出现。CytoFLEX采用了高灵敏度的FAPD检测器,相比传统仪器,光电转换效率更高,尤其在长波长范围,优势更明显。加上其他一系列的创新设计,使得IR激光器在流式细胞仪上的使用变为现实。从而, CytoFLEX系列产品成为首个提供从近紫外到红外波长激发激光器选择的标准平台。CytoFLEX S IR 可实现多达4个激光器及13荧光通道的同时检测。这也将进一步扩展研究者的科研范围,成为他们的日常工作的新助力,帮助他们得到更多科研成果。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201701/insimg/3cf9abb5-0e3a-4b89-8dff-84113414eb9c.jpg" title=" 4_副本.png" / /p p style=" text-align: center "    strong span style=" color: rgb(0, 176, 240) " 图4 新品发布仪式 /span /strong /p p br/ /p
  • 第二届光电材料与器件学术研讨会在“英雄城市”武汉圆满落幕,滨松中国报告备受关注
    2021年4月8日-10日为期三天的第二届全国光电材料与器件学术研讨会在武汉这座“英雄”城市圆满落幕。4月8日大会开始的第一天对武汉来说是个非同寻常的日子,武汉解封一周年纪念日。这一天对于第二届全国光电材料与器件学术研讨会也是意义非凡,在众多专家学者与企业的支持下,本届研讨会有来自武汉理工大学、武汉大学、华中科技大学等众多高校的600余位科研专家参与其中,共同探讨了光电材料与器件领域研究热点,开展了广泛的学术研讨,交流了最新研究进展。江城水暖,春光复苏。再次向武汉这座英雄城市表示敬意与祝福的同时,也希望光电材料与器件学术研讨会可以从武汉开始带给业内人士更多专业的信息、更多前沿的展望以及更多产学研用相结合的机会。会议期间,滨松中国销售技术工程师丁珏发表了《滨松发光材料&器件检测的新花样》的报告,详细讲解了滨松对于上转换测试、EQE测试、分子取向测试、小尺寸器件测试、TREL测试等内容最新的研究进展,并介绍了滨松在相关应用方面的产品,其中新颖的观点与强有力的论据支持,引起现场众多专家学者的赞同。在本次展会中,滨松中国与合作代理商睿光科技共同参展。为了让客户对滨松的产品有更加直观的了解,Quantaurus-QY Plus C13534-11也与销售工程师一同亮相展会现场。相比较于传统的荧光量子效率的测量仪,该款产品有了三点新突破:1、可以在近红外区域到1650nm波长范围内进行测量;2、能准确测量1%甚至更低的量子产率;3、可以进行上转换发射材料的测量。滨松是一个拥有雄厚光子技术实力的公司,有着非常齐备的光电产品线,可为发光材料基础研究测试提供一些列产品,如荧光寿命测量仪Quantaurus-Tau、光源控制器、积分球、多通道探测器、光源控制器等等,来满足不同的测量需要。滨松的该系列产品也已在世界范围内得到了诸多行业知名专家和学者的认可。
  • iMeta | 齐碳纳米孔测序助力揭示桑黄多酚抗结肠炎肠道分子机制
    近日,浙江省农业科学院李有贵、天津中医药大学吴崇明和中国农科院深圳基因组所刘永鑫等团队在iMeta在线联合发表了题为《The gut microbiota-aromatic hydrocarbon receptor (AhR) axis mediates the anticolitic effect of polyphenol-rich extracts from Sanghuangporus》的研究成果。基于齐碳纳米孔测序平台及二代测序平台开展研究,通过16s rRNA基因测序评估SH处理对小鼠肠道微生物群落结构的影响;通过对肠道微生物群落的宏基因组测序,确定与5-羟色胺-3-乙酸(5HIAA)生物合成相关的功能基因序列;通过对微生物,尤其是Alistipes onderdonkii等关键菌株的全基因组测序及组装,进一步理解微生物如何影响宿主健康。最终,本研究证明了桑黄多酚(SH)通过调节肠道菌群有效减轻葡聚糖硫酸钠(DSS)诱导小鼠的结肠炎病理症状,揭示了基于SH和肠道菌群之间的相互作用开发结肠炎治疗策略的潜在途径。背景炎症性肠病(IBD)主要包括溃疡性结肠炎(UC)和克罗恩病(CD),是一个全球性的健康问题,影响全球约0.5%人口。IBD的典型症状包括急性腹泻、间歇性腹痛、直肠出血和体重减轻。除了显著降低生活质量外,IBD还增加了结肠癌的患病风险,从而给个人和社会带来了沉重负担。目前,IBD缺乏明确的治疗药物,虽然常用临床药物具有较高的缓解率,但往往会出现继发性失败。因此,迫切需要寻找更有效、更安全的新的治疗干预措施。越来越多的证据证明了肠道菌群失调与IBD 的发生发展内在联系。Machiels等人发现,UC患者肠道微生态失调表现为产丁酸盐物种,如Roseburia hominis和Faecalibacterium prausnitzii的显著减少。丁酸钠治疗可减轻结肠炎的炎症状态和肠黏膜病变。吲哚衍生物是重要的微生物代谢物,已被证实是改善实验性溃疡性结肠炎的有益药物。例如,吲哚-3-乙酸(IAA)、吲哚-3-甲醇(I3C)和吲哚-3-丙酮酸(IPA)可以作为芳基烃受体(AhR)的天然配体,通过提高血清和组织抗炎白细胞介素水平来减轻IBD。因此,肠道菌群及其代谢产物,特别是吲哚衍生物,可能是开发新的抗IBD治疗干预措施的有效途径。成果概述中药(TCM)在中国已成功治疗疾病数千年。越来越多的证据强调了天然药物资源的药理益处。食药用食物已成为一种很有前途的疾病治疗方法。桑黄是一种可食用的药用真菌,可作为药物和膳食补充剂。研究证明,桑黄具有多种药理作用,包括抗炎、抗肿瘤和抗氧化。此外,它还具有调节肠道菌群的能力。然而,桑黄对于IBD的治疗潜力尚未被探索。本研究旨在确定桑黄多酚(SH)的抗结肠炎作用,并探讨其有益作用是否与肠道菌群密切相关,以及潜在的肠道分子机制。本研究首先评估了SH抗结肠炎活性,并通过一种涉及体内功能验证和粪菌移植的综合方法证实了肠道菌群在其抗结肠炎作用中的重要贡献。此外,本研究还确定了关键的肠道细菌种类及其活性代谢产物5-羟基吲哚-3-乙酸(5HIAA),他们是SH改善结肠炎作用的关键介质,主要通过激活AhR信号通路发挥抗结肠炎作用。本研究不仅有助于更深入地了解SH的治疗潜力,而且也为今后探索SH和肠道菌群治疗结肠炎的治疗途径奠定了科学基础。成果亮点1.SH减轻DSS诱导的C57BL/6小鼠结肠炎桑黄在中国已经实现了大规模的人工栽培(图S1A)。SH是桑黄多酚提取物(93.86% ± 2.78%)(图S1B;表S1)。本研究首先评价了SH在葡聚糖硫酸钠(DSS)诱导小鼠中的抗结肠炎作用(图1A)。与正常小鼠相比,结肠炎小鼠表现出体重减轻(图S2A)、疾病活动指数增加(DAI)(图1B)、结肠长度缩短(图1C;图S2B)、隐窝和结肠组织结构受损(图1D;图S2C),以及明显的炎症反应(TNF-α、IL-1β、IL-6、MCP-1和IL-17α增加,IL-4、IL-10和IL-22降低)(图S3)。低剂量和高剂量SH均可改善结肠炎病理症状,主要表现在增加体重,改善结肠长度和结构损伤(图1B-D;S2)。此外,SH给药以剂量依赖性方式逆转了炎症细胞因子水平的变化(图S3),表明SH具有强大的抗炎作用。氧化应激和肠黏膜屏障对于维持肠道通透性以抵御毒素、致病菌和其他有害物质至关重要。团队在转录和翻译水平上评估了SH对上皮细胞紧密连接蛋白表达的影响,并检测了氧化应激相关基因的表达。与DSS组相比,SH处理组紧密连接蛋白基因Occludin、Claudin-3和Claudin-4的转录水平明显升高(图S4A),结肠组织中NF-kB、Nox4和Stat3的表达水平明显下调(图S4B)。同时,SH也增强了紧密连接蛋白的蛋白表达水平(图S4C-D),证实了SH对粘膜屏障的正向调控作用。此外,经过SH处理后,杯状细胞的数量也显著增加(图S4E)。以上结果表明,SH可显著改善DSS诱导的小鼠结肠炎症状。图1.SH缓解DSS小鼠实验性结肠炎症状,并改变其肠道菌群(A)动物实验示意图;(B)疾病活动指数(DAI)评分;(C)结肠组织图片;(D)苏木精&伊红染色(H&E)结肠病理图(比例尺= 50µ m);(E)基于Chao1指数和Shannon指数评价肠道菌群Alpha多样性。(F)基于加权UniFrac距离的肠道菌群主坐标分析(PCoA);(G)属水平上肠道微生物群的分类特征。(H)DSS相关细菌的核心微生物群。内环代表了在NC-DSS-SHL-SHH队列中可重复检测到的OTUs。不同微生物群落的相对丰度显示为蓝色(NC)、绿色(DSS)、红色(SHL)和青色(SHH)热图。alpha多样性分析采用Wilcoxon非参数检验,PCoA分析采用置换多元方差分析(PERMANOVA)。数据显示为平均值±标准误(n = 8)。*p 0.05,**p 0.01,***p 0.001。NC,阴性对照;DSS,葡聚糖硫酸钠;SHL,低剂量桑黄多酚组(250 mg/kg/d);SHH,高剂量桑黄多酚(400 mg/kg/d);DAI,疾病活动指数。2.肠道菌群在SH抗结肠炎作用中起关键作用为了评估肠道菌群对SH抗结肠炎作用的贡献,团队进行了16S rRNA基因测序分析,以评估SH治疗对肠道菌群的影响。DSS诱导结肠炎小鼠肠道菌群α-多样性明显低于正常小鼠(p 图2.粪菌移植(FMT)揭示SH调节肠道菌群的抗结肠炎作用(A)动物实验示意图;(B)小鼠体重(g);(C)疾病活动指数(DAI)评分;(D)结肠长度(cm);(E)苏木精&伊红染色(H&E)结肠病理切片(上)(比例尺= 200µ m)和Claudin-4紧密连接蛋白免疫荧光图(下)(比例尺= 50µ m);(F)血清抗炎细胞因子IL-10 水平;(G)血清抗炎细胞因子IL-22 水平;(H)血清促炎细胞因子(TNF-α、IL-1β、IL-6和IL-17α)水平;(I)结肠组织中Occludin,Claudin-3和Claudin-4的蛋白表达。采用单因素方差分析和Dunnett’s检验进行统计学分析。数据显示为平均值±标准误(n = 8)。*p 3.SH富集Alistipes onderdonkii改善结肠炎接下来,团队在属水平上仔细研究了肠道菌群的分类组成,以确定SH抗结肠炎作用的核心细菌。结果显示,与DSS组相比,对照组、SHL组和SHH组中,共有12个菌属表达上调,25个菌属表达下调(图S7A)。与对照组相比,模型组有34个菌属增加,13个属菌降低。低剂量SH处理使得10个菌属上调,4个菌属下调。高剂量SH处理后,20个菌属上调,4个菌属下调(图S7B)。差异表达分析显示,只有Alistipes在DSS组显著减少,而在SH治疗后显著增加(图S7C)。进一步Spearman相关分析表明,3个菌属与DAI评分显著负相关、与结肠长度显著正相关,其中Alistipes相关性最为显著(图S7D)。这些结果表明,SH可以显著调节肠道微生物群落,特异性富集Alistipes。进一步,团队通过物种特异性定量PCR(qPCR)对粪便Alistipes进行定量,发现Alistipes onderdonkii是SH富集的主要菌种(图S7D-E)。团队获得了3株A. onderdonkii,并评价了它们对DSS诱导的结肠炎影响。结果显示,三个菌株中,两个A. onderdonkii 菌株(#1:FDB8和#2:FDFM)可有效预防体重减轻,降低DAI评分,恢复结肠组织损伤,改善炎症状态(图3A-E)。此外, A. onderdonkii提高了紧密连接蛋白的表达,以增强肠道屏障功能(图3F-H)。因此,A. onderdonkii可能是介导SH抗结肠炎作用的关键有效物种。有趣的是, A. onderdonkii(#3)几乎没有改善结肠炎,甚至造成了有害的影响(图S8),表现出了菌株特异性的功能。图3.A. onderdonkii减轻DSS诱导的C57BL/6小鼠结肠炎(A)小鼠体重百分比(%)和体重变化(g);(B)DAI评分和DAI评分的AUC;(C)苏木精&伊红染色(H&E)的结肠病理切片(比例尺= 200µ m)。(D)血清抗炎细胞因子IL-10和IL-22的水平;(E)血清促炎细胞因子IL-1β和MCP-1的水平;(F)结肠组织Occludin,Claudin-2,Claudin-3,Claudin-4和ZO-1的mRNA表达水平;(G)结肠组织Occludin、Claudin-3和Claudin-4的蛋白表达;(H)Claudin-4紧密连接蛋白免疫荧光图(比例尺= 50µ m)。采用单因素方差分析和Dunnett’s检验进行统计学分析。数据显示为平均值±标准误(n = 8)。*p 4.5-羟基吲哚-3-乙酸(5HIAA)是一种关键活性代谢产物考虑到SH对肠道菌群的调节作用,团队对粪便样本进行了代谢组学分析,旨在识别功能微生物代谢产物。如图S9A所示,与NC小鼠相比,DSS诱导结肠炎小鼠中代谢物水平发生显著改变(图S9A),而SH处理组的代谢物谱与NC组接近,表明SH显著恢复了微生物代谢物的分布(图S9A)。随后,团队确定5HIAA在SH处理后显著升高(图S9B-C)。通过对3株A. onderdonkii功能基因序列的全面分析,发现2株A. onderdonkii(#1:FDB8和#2:FDFM)的基因组中含有一个与诱导吲哚化合物生物合成相关的tpl基因。相比之下,第三株菌株(#3:FDPA)的基因组缺乏这个特定的基因(图S9D)。为了证明A. onderdonkii确实具有产生5HIAA的能力,团队采用高效液相色谱(HPLC)对A. onderdonkii培养上清液中5HIAA含量进行检测,发现5HIAA浓度高达33.5 μg/mL。值得注意的是,5HIAA的产生与A. onderdonkii改善结肠炎的作用相关,主要表现为两个有效的A. onderdonkii菌株产生的5HIAA(33.5和16.83 μg/ml)多于无效菌株(0.83μg/ml)(图S9E)。代谢物与结肠炎指数的相关分析显示,有22种代谢物与结肠炎症状密切相关,其中5HIAA与结肠长度呈正相关,与DAI评分呈负相关(图S9F)。因此,SH可以促进5HIAA产生,这可能是与SH抗结肠炎作用相关的关键微生物代谢产物,尤其是A. onderdonkii。据报道,肠道微生物产生的IAA可以缓解结肠炎。因此,团队研究了与IAA密切相关的衍生物5HIAA对DSS诱导结肠炎的影响(图4A)。IAA治疗显著改善了结肠炎的症状(图4B-F),这与之前的报道结果一致,而5HIAA在缓解结肠炎方面的表现明显优于IAA(图4B-F)。此外,这两种吲哚衍生物都能有效地提高抗炎因子的水平,降低促炎因子的水平,以减轻炎症反应(图S10A-B)。在DSS诱导小鼠中,吲哚衍生物也降低了氧化应激相关基因(NF-kB、Nox4和Stat3)的相对表达(图S10C)。此外,IAA和5HIAA均上调了紧密连接蛋白Occludin和Claudins的表达,后者具有显著性(图S10D-E)。图4.5HIAA治疗可减轻DSS诱导的C57BL/6小鼠结肠炎(A)动物实验示意图;(B)体重百分比(%);(C)小鼠DAI评分;(D)小鼠结肠长度(cm);(E)苏木精&伊红染色(H&E)的结肠病理图(比例尺= 200µ m)和小鼠组织学评分;(F)Claudin-4紧密连接蛋白免疫荧光图(比例尺= 50µ m)。采用单因素方差分析和Dunnett’s检验进行统计学分析。数据显示为平均值±标准误(n = 8)。*p 5.结肠AhR激活对SH抗结肠炎具有重要作用既往研究表明,微生物来源的吲哚衍生物可以通过结合并激活AhR来保护结肠炎,提示SH可能通过富集Alistipes及其代谢物5HIAA来激活AhR,从而改善结肠炎。为了证实这一假说,团队首先检测了AhR下游基因(Cypa1、Cypa2和Cypb1)在结肠中的表达水平。结果显示,5HIAA和SH两种处理均显著上调了Cypa1、Cypa2和Cypb1(图5A-B)基因水平,表明AhR在结肠组织中被激活。随后,团队用AhR抑制剂处理DSS小鼠,以验证AhR信号通路对SH抗结肠炎疗效的贡献。AhR拮抗剂StemRegenin 1基本上消除了5HIAA对结肠炎的改善作用,如体重、DAI、结肠长度、血清IL-22和IL-10水平,以及结肠组织病理学(图5C-H)。AhR拮抗剂消除了SH治疗对体重的有益作用(图5C-H),但对DAI、结肠长度等指标的消除作用明显减弱(图5C-H)。通过对Caco-2细胞的体外实验,进一步验证了AhR信号通路的激活情况。CCK-8检测结果显示,五种浓度的5HIAA对Caco-2细胞都没有细胞毒性作用(图S11A)。虽然5-HIAA处理后Caco-2细胞中AhR的表达没有明显变化,但Cypa1、Cypa2和Cypb1的表达明显增加(图S11B),提示5HIAA部分激活了AhR信号通路。以上结果表明,SH至少大部分通过激活AhR信号通路来缓解结肠炎。图5.AhR抑制剂可削弱SH和5HIAA的抗结肠炎作用(A)5HIAA处理结肠炎小鼠结肠组织中Ahr、Cypa1、Cypa2和Cypb1的相对mRNA水平;(B)SH处理结肠炎小鼠结肠组织中Ahr、Cypa1、Cypa2和Cypb1的相对mRNA水平;(C-D)小鼠体重(C)及体重变化(D);(E)DAI分数;(F)小鼠结肠长度(cm);(G)血清抗炎细胞因子(IL-22和IL-10)水平;(H)结肠组织和苏木精&伊红染色(H&E)结肠病理图(比例尺= 200µ m)。采用单因素方差分析和Dunnett’s检验进行统计学分析。数据显示为平均值±标准误(n = 8)。*p 0.05, **p 0.01, ***p 0.001。AhR,芳香烃受体。
  • 康宁新案例 |可烯醇化酮α -羟胺化连续流合成工艺之二
    可烯醇化酮的α-羟胺化反应一、以苯乙酮或苯丙酮的α-羟胺化反应以苯乙酮或苯丙酮为底物,在高效、多功能流动化学工艺平台进行了α-氯亚硝基衍生物原位制备、底物拔氢、α-羟胺化反应、硝酮中间体酸解、产物分析、液液分离、环戊酮骨架循环套用的整个流程(下图)。该连续流工艺平台实验室和放大规模反应单元采用的是康宁 LowFlow Reactor 和G1反应器,康宁反应器无缝放大的技术优势是该反应进一步扩大产能的保障。图7. 苯乙酮或苯丙酮的α-羟胺化反应连续流反应体系底物苯乙酮/苯丙酮与LiHMDS进入反应模组I在0℃、1 min停留时间条件下完成拔氢反应。反应液与发生器II中生成的 1-氯-1-亚硝基环戊烷进入反应模组II在0℃、1 min停留时间条件下发生亲电胺化反应。所得反应液中的硝酮中间体与盐酸进入反应模组III在60℃、1 min停留时间条件下发生酸解,原料转化率分别为70%(苯乙酮)和98%(苯丙酮),产物分离收率分别为62%(苯乙酮)和90%(苯丙酮)。表8. 产物收率随时间和温度变化曲线值得一提的是,在反应釜条件下,如果以一级酮(苯乙酮)为底物,即便将反应温度冷却至-78℃,反应生成的硝酮中间体还是更容易与原料烯醇负离子质子交换,进一步反应后只能得到46%的二胺化杂质。而在连续流工艺条件下,得益于物料的快速混合效果、低返混以及局部化学计量的精准控制,有助于得到目标产物,避免二胺化杂质的产生(下表)。对比典型的间歇釜反应条件(-78℃),在连续流工艺中,亲电胺化反应可以在更温和的反应温度(0℃)中进行,同时避免物料分解并在停留时间1分钟内达到几乎定量的转化。但不建议尝试高于0℃的反应条件以进一步减少停留时间,这可能会导致堵塞或物料的爆炸性分解。反应模块III的出料口集成了Zaiput高效液-液分离器在用来在线自动分离水相和有机相,水相中基本为纯的目标产物的盐酸盐,有机相中主要为环戊酮骨架。对有机相进一步处理以回收环戊酮,可转化为环戊酮肟,分离收率83%。环戊酮骨架的循环利用,使整个工艺更加绿色环保。Zaiput 液-液分离器是康宁在中国独家代理的在线分离仪器。是由MIT孵化出来的新型专利技术,可取代传统萃取技术。 二、扩展实验维持反应器设置不变,尝试了包括苯乙酮在内的22个底物,原料转化率和产物分离收率列于下表:实验结果讨论本通过独特、高效、可放大的连续流平台,可实现从可烯醇化酮和α-氯亚硝基化合物1a以高分离收率制备α-羟胺化酮化合物库。对高附加值的α-羟胺化酮中间体的生产可以实现工业化生产。分别以一级、二级和三级酮类化合物为原料制备了22个α-羟胺化酮化合物,为几种医药中间体 (包括世卫组织必需品和短缺药物)的生产开辟了道路。本项研究充分体现了连续流工艺的主要优点包括:高效的传热、传质系数,在线分析的集成、很少的占地面积等。反应平台保持了紧凑和高度集成的反应器设计(包括辅助设备在内小于2平方米)。连续流工艺条件下毒性和有潜在爆炸风险的化合物的原位制备和消耗使反应对环境的影响大大降低,对绿色合成技术延伸与拓展具有显著的参考意义!Reference:Victor-Emmanuel H. Kassin, Romain Morodo,a Thomas Toupy,Isaline Jacquemin, Kristof Van Hecke, Raphaël Robiette and Jean-Christophe M. Monbaliu ,Green Chem., 2021, 23,2336
  • 贝克曼库尔特离心机75周年系列活动:重返经典离心年代
    vintage有多种释义,广为流传的是复古、复古风、古着这三种解释。虽然没有很明显的时间界限,但通常指1940年以后保存良好的时代精品。在时尚,设计,艺术领域,vintage代表着一种成熟,历时不变的经典魅力;在生命科学仪器领域,vintage 代表着经久不衰的技术,无与伦比的制造工艺。实际上,早在1947年,贝克曼库尔特(以下简称“贝克曼”)就制造出其首台分析型超速离心机与制备型超速离心机,为人类离心科学里程碑增添了浓墨重彩的一笔。因为质量稳固,目前世界各地的众多实验室里依然沿用着几十年前的贝克曼离心机,这一方面体现了贝克曼悠久的离心历史,也反映出贝克曼产品的质量稳定性。在贝克曼离心机成立75周年之际,我们特邀您参与"贝克曼vintage 离心机"评选活动,秀出您身边历史最悠久的离心机,我们将链接全国贝克曼用户,一同分享和见证离心技术的发展!所有参与活动的用户都将获得精美礼品。另外,获"vintage离心机"称号的参与用户将获得贝克曼75周年纪念手提袋与电脑屏幕补光灯,快来参与活动秀出您身边的复古离心机吧! 参与方式请使用电脑端打开网页参与活动:https://resources.mybeckman.cn/mycentrifuge/75anniversary3/ 活动时间:2022年8月4日-2022年9月30日 活动流程:* 为方便邮寄奖品,请准确完整的填写本人信息。1. 注册并登陆账号。2. 点击“我要提交”按钮,上传附件,仔细阅读征文规则,准确完整的填写本人信息。3. 审核通过,前20%的用户作为“vintage离心机”称号获得者。4. 活动结束后10个工作日公布获奖结果,并邮寄奖品。 评奖规则:依据机器生产时间,评选出前20%的用户作为“vintage离心机”称号获得者,并送出贝克曼75周年纪念手提袋与电脑屏幕补光灯。 奖项设置 纪念手袋 电脑屏幕补光灯 离心机历史自19世纪中期以来,离心机一直在商业上使用,最初Antonin Prandtl发明了一种机器,用于为乳制品行业分离牛奶和奶油。在接下来的100年里离心机持续发展,直到Edward Pickels在1942年发明了第一台电动真空离心机,并创立了Spinco公司。12年后的1954年,贝克曼收购Spinco,专注于制造具有高速马达和更有效转子的离心机。从那时起,贝克曼继续革新离心技术,不断更新,生产出不同特点的离心机,用以支持全面的分离纯化应用。 投稿案例姓名:黄俊杰贝克曼离心机—-沟通友谊的桥梁姓名:吴学友用我们的呵护回报你的热情姓名:吴迪这是中国最古老的Beckman离心机吗?
  • 第二届“安东帕奖学金”颁奖典礼于江南大学圆满举行
    2021年5月25日下午,江南大学第二届“安东帕奖学金”颁奖典礼在生物工程学院茅台厅举行。安东帕中国市场部经理畅良艳、实验室销售经理陈希、江苏省销售梁永奇,江南大学生物工程学院李崎教授,生物工程学院党委副书记兼副院长周云龙及获奖学生参加颁奖典礼,颁奖典礼由张同舟老师主持。首先,陈希经理代表安东帕公司致辞,他对与生物工程学院再次合作感到高兴,并对获奖同学表示祝贺。他还向与会师生介绍了安东帕公司“个性”、“合作”、“团结”、“信任”等人才发展理念,希望获奖同学能将江南大学“笃学尚行,止于至善”的校训精神与安东帕的企业文化相结合,不断自我学习、自我提升,争取更大的进步。陈希经理紧接着,周云龙副书记代表生物工程学院致辞,周书记对安东帕在学院设立奖学金表示感谢,他还向企业介绍了2020年生物工程学院在抗疫防疫、教学科研、学科建设等方面取得成绩,希望能与安东帕公司共面新机遇,同迎新挑战,不断深化合作交流。周云龙副书记随后,李崎教授宣读2020年“安东帕奖学金”获奖名单,畅良艳、陈希、梁永奇分别为一等奖、二等奖、三等奖获得者颁发了证书并合影留念。颁奖环节结束后,获奖研究生代表官钰、本科生代表孙丹妮分别发表获奖感言,二位同学向大家介绍了自己入学以来在学习、科研、竞赛等方面的成绩,同时表达对安东帕公司的感谢,并表示未来道路上将不忘初心,继续前进。李崎教授颁奖典礼结束后,与会嘉宾和获奖学生还在生物工程学院B327举办校企座谈会,双方就酿造行业发展,精酿啤酒市场等话题开展了热烈讨论。座谈会转载:江南大学
  • 天津市“恒宇-欧波同杯”首届大学生金相技能大赛圆满落幕
    2019年4月27日,天津市“恒宇-欧波同杯”首届大学生金相技能大赛在天津大学材料科学与工程学院圆满结束。本次大赛由天津市热处理学会主办,天津大学材料科学与工程学院承办,来自天津大学、河北工业大学、天津理工大学、天津工业大学、天津中德应用技术大学、天津科技大学和天津商业大学的七个团队进入决赛。欧波同(中国)有限公司作为冠名单位为本次大赛提供大力支持。图1:参赛合影27日上午8:30,天津市“恒宇-欧波同杯”首届大学生金相技能大赛暨第八届全国大学生金相技能大赛预选赛在天津大学材料科学与工程国家级实验教学示范中心顺利拉开帷幕。本次大赛参赛选手达五百余人,经过初赛严格选拔,最终产生七十名选手进入复赛、决赛环节。图2:比赛进行中图3:比赛进行中在磨制、抛光、浸蚀等环节全部完成后,评委老师根据金相制备过程和金相图像质量两方面进行了评审打分,由欧波同提供的蔡司倒置式显微镜Axio Vert.A1为评委们呈现了参赛作品的最佳图像。最终,共评选出一等奖七名,二等奖十五名,三等奖二十五名,并且根据参赛整体表现,评选出最佳组织奖一名,优秀团队奖一名。图4:严格评审图5:严格评审27日下午,大赛颁奖典礼在天津大学材料科学与工程学院报告厅举行,欧波同(中国)有限公司代表与天津市热处理学会领导、各参赛高校领导共同出席颁奖典礼,并为获奖选手进行颁奖。图6:颁奖典礼本次大赛旨在提高材料、机械和冶金学科大学生的金相制备及观察实验操作技能,增强金相图谱分析能力,推动高校材料学科实验教学改革,不断提高人才培养质量。为广大学子提供了一个互相交流和学习的平台,提高了同学们研究材料知识的热情和实践探索的自信。欧波同将持续展开与高校间的交流合作,推动科研事业发展,助力高校人才培养,打造实验室解决方案服务商的领军品牌。
  • 新型铜催化剂助力二氧化碳变燃料
    中国科学技术大学教授高敏锐课题组合成一系列暴露不同铜(100)和铜(111)晶面比例的铜催化剂,发现铜(100)/铜(111)的界面位点相比于单一的晶面展现了显著增强催化碳—碳电化学耦联的性能,对于利用二氧化碳制备多碳燃料具有重要意义。相关成果日前发表于《美国化学会志》。  电催化二氧化碳还原制备高附加值化学品,是二氧化碳资源化利用的有效手段。近年来,科学界通过电催化二氧化碳制备能量密度高、应用前景广阔的多碳燃料取得很大进展,但其选择性和转化效率仍不尽人意。这主要由于二氧化碳转化为多碳燃料需经历动力学缓慢的碳—碳耦联过程。因此,设计并创制能高效促进碳—碳电化学耦联的催化剂至关重要。  研究人员利用电化学测试表明,与其他铜催化剂相比,这种新型铜催化剂在电流密度为每平方厘米100毫安至400毫安时,均有利于催化二氧化碳到多碳产物的转化。多碳产物的选择性与铜(100)/铜(111)界面的长度呈现线性相关,证明该界面为催化碳—碳耦联的活性位点。原位拉曼和红外实验证明,在铜(100)/铜(111)界面处,能更好吸附中间体,展现更强的碳—碳耦联能力。理论计算进一步表明,铜(100)/铜(111)界面处电子结构被优化,促进了碳—碳耦联动力学。  该项研究发现了铜原子排列变化形成的特定界面结构能更高效地催化碳—碳耦联,降低多碳产物形成过程中的关键步骤能垒,这一成果对于二氧化碳制备多碳燃料的电化学升级利用具有重要意义。  相关论文信息:https://doi.org/10.1021/jacs.1c09508
  • PerkinElmer与瑞典波通公司达成最终收购协议
    l 拓宽针对食品和农产品相关市场的产品组合l 加强食品质量分析检测能力l 在全球范围内拓展PerkinElmer的足迹,提供更加完善的环境健康解决方案马塞诸塞州,沃尔瑟姆——PerkinElmer,致力于不断改善人类和环境健康的全球领导者,今日宣布:公司将收购瑞典波通仪器公司,双方已就相关事宜达成最终协议。总部位于瑞典斯特哥尔摩的波通公司是全球领先的先进仪器供应商,其产品主要用于对食品、谷物、面粉和饲料等进行质量控制。此次收购将使得珀金埃尔默在高速增长的食品检测领域能够更加有所作为。“通过将波通公司独一无二的检测能力与PerkinElmer创新性的分析仪器产品组合相融合,使我们能够更深入地对价值几十亿美元的食品检测市场进行渗透,帮助我们在相关业务高速增长的地区(如:中国)更好地把握住长期机会。”PerkinElmer环境健康事业部总裁Jon DiVincenzo说。“PerkinElmer如今拥有了更清晰的定位,我们帮助用户应对繁复的食品质量监管法规、进出口产品质量检测,以及迎合在全球范围内所衍生出的保障供应链整体品质安全的需求。”通过对波通公司分析平台和其领先的食品质量校准数据库进行有效整合,PerkinElmer将在整个产品开发和制造流程中提供完备的食品安全和质量检测解决方案。PerkinElmer的综合性解决方案将包括针对化学品、毒物和营养物质的检测能力、材料表征和预警工具,同时还包括分析方法和数据管理。此次收购的净购买价格约为2.66亿美元,但最终价格依然取决于惯例成交条件和监管部门的批准。预期的交易完成时间为2014年12月。波通公司年收入约6500万美元,因而此次收购预计对PerkinElmer 2014财年非公认会计原则下每股收益结果所产生的影响将非常有限。PerkinElmer目前预计对2015年财年非公认会计原则下每股收益结果会有大约每股0.04美元的增加,公司将于2015年1月正式发布2015年金融指导准则。关于PerkinElmer: 珀金埃尔默是专注于人类和环境健康的全球领军企业。2013年,公司收入约为22亿美元,在150个国家拥有超过7600名员工。同时,珀金埃尔默也是标准普尔500指数公司,欲了解更多信息,可访问:www.perkinelmer.com.cn。影响未来表现的因素: 本新闻稿包含的“前瞻性”陈述是严格参照1995年《私人证券诉讼改革法案》中的定义而确定的,包括但不限于有关测算每股未来收益,现金流,收入增长及其它财务结果,关于对我们的客户和终端市场的发展计划以及对于未来业务发展机会和剥离的可能性。诸如“相信”,“打算”,“预期”,“计划”,“期望”,“旨在”,“预测”,“将会”等类似的表述,旨在识别前瞻性声明。这些陈述是基于管理层当前设想和期望的,并不能保证我们的假设或预期是正确的。许多重要的风险因素可能会导致实际结果与当前描述、暗示或预测的前瞻性陈述存在重大差异。这些因素包括但不限于:(1)市场进入萧条时期,我们的销售额下降;(2)全球经济和政治环境的波动;(3)我们未能及时推出新产品;(4)我们对收购的执行力,对关键技术许可的执行力,成功整合或剥离业务和维持业务发展的能力;(5)我们未能充分保护知识产权;(6)我们的任何许可或许可权的丧失;(7)我们有效竞争的能力;(8)根据我们的季度经营业绩和我们的能力来调整我们的运营,解决意外变化的能力;(9)第三方包裹递送和进出口服务的中断或显著的价格上涨;(10)原料的供应中断;(11)制造和销售中因产品而导致的索赔责任;(12)我们未能遵守适用的政府法规;(13)监管政策的变化;(14)我们无法遵守医疗卫生行业规章;(15)经济,政治及其他风险性操作; (16)我们保留关键人才的能力; (17)在我们的信息技术系统遭受显著的破坏;(18)我们能否获得未来融资;(19)我们的信贷协议的限制;(20)我们实现的全部价值和无形资产的能力;(21)股票价格的显著波动;(22)减少分红或取消股票;和(23)我们的最新季度报告中标示为“风险因素”的其他因素。 我们不对在本新闻稿发布之后因前瞻性陈述而导致的任何结果负责。媒体联系: 薛萍: 021-60645888Ping.xue@perkinelmer.com
  • “创伟大,新颠峰” 美墨尔特2019年代理商会议圆满召开
    2019年3月15日-17日,德国美墨尔特Memmert公司“创伟大新巅峰”中国大中华地区2019年度代理商会议在山城重庆JW万豪酒店圆满召开。100多位各地代理商代表莅临参加盛会,回顾2018年的成果,畅想新一年的新巅峰。Memmert全球市场拓展副总裁Heinz Bayer先生及美墨尔特(上海)贸易有限公司大中华及日韩缅甸总经理穆先银先生出席。3月15日晚举办了盛大的招待酒会,美墨尔特(上海)贸易有限公司副总经理石晓娟女士发表了热情洋溢的欢迎辞,席间进行了精彩的文艺表演,给来宾带来了欢声笑语。石晓娟女士在致辞现场主持人在串场精彩的表演精彩的表演16日年会正式开始,Heinz先生就美墨尔特新战略作了演讲,重磅发布了全新系列产品,并就产品性能特点作了细致的技术讲解。穆先银先生对前来参会的代理商尤其是新加入Memmert Family的代理商表示欢迎,回顾了过去一年的丰硕的增长成果,连续数年高增长,进一步夯实了市场基础,展望了2019年的市场前景,“所有既往,皆为序章”,希望这种相伴能够延续下去,保持双位数增长,继续精诚合作,齐心协力,共同携手,再创新巅峰。Heinz先生在做新产品战略报告穆先银先生在回顾2018年业绩 会上各地优秀销售代表作了精彩的市场推广案例分析。随后表彰了全国优秀代理商,颁授了美墨尔特诚意制作的“年度优秀代理商”小金人奖杯,感谢对美墨尔特产品推介与市场推广所作的辛苦努力与杰出贡献。随后获奖优秀代理商代表作了精彩分享,揭示了不同架构规模的代理商地域与市场环境迥异的情况下,如何致胜取得成功,携手与美墨尔特一起成长的。Memmert售后服务部经理樊海忠先生就备受关注的售后服务话题做了交流,美墨尔特愿意为广大代理商提供专业、周到、高效的支持与服务。会议结束前,穆先银先生诚挚地向大家发出邀约,明年将是美墨尔特中国成立十周年,希望能够在来年相约,共同庆祝这一盛典。代理商会议会场与会嘉宾合影关于美墨尔特:全球温控箱体领导品牌德国Memmert(美墨尔特),成立于1933年。近九十年来,美墨尔特一直致力于精确温控箱体的研发和生产,并引领箱体的发展方向与潮流。公司同时拥有悠久的半导体控温技术(Peltier)经验,为仅有的全系列半导体技术温控箱体制造商。 产品包括二氧化碳培养箱、恒温恒湿箱、光照培养箱、低温培养箱、环境测试箱、真空烘箱、通用烘箱、灭菌箱、生化培养箱、水浴油浴,及超低温冰箱等。2010年9月11日,德国Memmert(美墨尔特)大中华区全资子公司——美墨尔特(上海)贸易有限公司在上海成立,现在北京、南京及广州设有代表处。
  • 叶坚团队在光照安全剂量内实现拉曼光学信号穿透14 厘米肌肉组织的检测
    无创检测体内肿瘤病灶对于临床医学肿瘤诊疗至关重要。医学成像技术如计算机断层扫描、核磁共振或正电子发射计算机断层扫描等虽然能诊断体内深层病灶,但存在采集时间长、仪器昂贵或辐射剂量大等原因,更常用于术前检查。与之相比,光学检测和成像方法具有实时、高灵敏、非电离辐射、采集方便等优势,结合外源性造影剂可以提供生物体结构、功能和分子的精确信息,是肿瘤诊断的绝佳工具。但是,现有的肿瘤光学检测技术的进一步发展也面临着瓶颈:组织穿透深度较低,无法检测深层病灶。由于生物组织对光子强烈的散射和吸收作用(如图1),光在生物组织中的穿透深度受限一直是这个领域中的巨大挑战。例如,近红外区域肌肉组织的传输平均自由程只有1~2 mm,目前广泛使用的荧光成像技术的组织穿透深度通常只有几毫米。临床结果发现,基于吲哚菁绿的分子影像无法检测到距离胸膜深度超过1.3 cm的肺结节,容易造成假阴性。图1. 生物组织对光子的散射与吸收表面增强拉曼光谱(SERS)对金属纳米颗粒附近的分子的拉曼信号实现极大地增强,具有高特异性和高灵敏度等优点,非常适合用于生物光谱检测。为了获取更高的检测深度,已经报道了光源和探测器间具有一定空间偏移的空间偏移拉曼光谱装置。它利用了生物组织的高散射特性,即来自深层的光子到达表面时会有更大的横向偏移。空间偏移拉曼光谱抑制了表层的背景信号,因此提高了来自深层信号的信噪比。它的一种特殊形式是透射拉曼光谱,它将激光和拉曼探测器放置在样品的两侧。据报道,透射拉曼光谱技术可以实现具有高组织穿透能力的无创检测。尽管如此,透射拉曼光谱技术的最新水平仍未能满足实际生物医学应用的需求。首先,目前文献报道的透射拉曼光谱技术的检测深度或组织厚度仍远低于与人体相关的厚度值。例如,人类的腹背距离超过10 cm。然而,使用透射拉曼光谱技术穿透超过10 cm厚的体外组织或活体动物的可行性迄今尚未得到证实。其次,光子在透射拉曼检测中的传播过程以及测量因素如何决定信号尚不清楚。透射拉曼信号不仅受组织散射系数和吸收系数的影响,还可能与SERS纳米探针的亮度、病灶埋深、组织总厚度等因素有关。评估这些决定性因素之间的关系至关重要。第三,激光的安全性是光学模态临床转化中一个长期关注的问题。临床激光的光安全性通常由最大允许照射量来评估,即对暴露的身体表面造成损伤的风险可忽略不计的最高激光辐射水平。然而,目前大多数体内SERS研究使用的激光剂量远远高于光安全剂量限值,这在很大程度上阻碍了SERS技术的临床转化。图2. 使用透射拉曼装置和超亮SERS探针对小鼠深部肿瘤进行无创成像(示意图)以及透射拉曼光谱信号的理论计算为了解决本领域的上述重要问题,上海交通大学生物医学工程学院叶坚团队首先从透射拉曼光谱测量过程中拉曼光子传播的理论建模和计算入手,研究了实验参数(组织厚度、SERS纳米探针位置、纳米探针亮度、激光功率和光束尺寸)对透射拉曼光谱探测深度的影响(如图2)。理论计算表明,透射拉曼信号与信号源的埋深之间呈不对称的U型关系,说明病变位于组织中部时信号最弱,对透射拉曼信号的检测是最具挑战性的。而提高SERS纳米探针的亮度是增加检测深度/透射组织厚度最直接有效的途径。此外,光束尺寸的增大对深部病灶的透射拉曼检测强度几乎没有影响。因此,可以采用较大的激光束尺寸来降低功率密度。图3. 扩散光束照明的体外透射拉曼光谱检测基于这些发现,该团队设计制备了超亮SERS纳米探针与自制的透射拉曼装置相结合,开发了一个拉曼检测/成像系统。该系统具有以下优点:(1)深度检测能力,使用了低至单颗粒检测水平的超亮SERS纳米探针 (2)临床光安全,样品表面的激光功率密度低于安全光照剂量阈值。利用该系统,团队成功地在安全光照剂量内通过体外14cm厚的组织实现了对包埋在其中的SERS纳米探针的检测(图3),与目前已报道的透射拉曼光谱检测研究相比,穿透深度提高了约97%。进一步地,团队在安全光照剂量内实现了1.5 cm厚未剃毛活鼠体内深层SERS纳米探针的体内无创成像(图4),相比之下,传统的背散射拉曼成像无法获得显著信号。这项工作为透射拉曼光谱技术在体内非侵入性生物医学检查方面的发展提供了新的见解,证明透射拉曼光谱有望成为未来临床癌症诊断的可行工具。图4. 活体小鼠无创光安全透射拉曼光谱检测
  • 910万!广东省公安厅2023-100禁毒检测试剂消耗品采购项目
    一、项目基本情况项目编号:0809-2341GDG14250项目名称:广东省公安厅2023-100禁毒检测试剂消耗品采购项目采购方式:公开招标预算金额:9,104,695.90元采购需求:合同包1(依托咪酯快检试剂):合同包预算金额:2,400,000.00元品目号品目名称采购标的数量(单位)技术规格、参数及要求品目预算(元)最高限价(元)1-1化学试剂和助剂吗啡、甲基安非他明、氯胺酮、依托咪酯(4合1)检测试剂(胶体金法)80,000(人份)详见采购文件2,400,000.00-本合同包不接受联合体投标合同履行期限:合同服务期为一年。当1年合同服务期满或货物总额累计结算达到各包组的每年预算金额时先到为准,服务合同自动终止。合同包2(毒品标准品及对照品):合同包预算金额:1,327,726.00元品目号品目名称采购标的数量(单位)技术规格、参数及要求品目预算(元)最高限价(元)2-1化学试剂和助剂吗啡一水合物3(瓶)详见采购文件1,764.00-2-2化学试剂和助剂甲卡西酮外消旋体盐酸盐3(瓶)详见采购文件3,186.00-2-3化学试剂和助剂苯丙胺盐酸盐3(瓶)详见采购文件1,764.00-2-4化学试剂和助剂可待因3(瓶)详见采购文件1,764.00-2-5化学试剂和助剂替苯丙胺盐酸盐3(瓶)详见采购文件2,175.00-2-6化学试剂和助剂去氧麻黄碱外消旋体盐酸盐3(瓶)详见采购文件1,764.00-2-7化学试剂和助剂二亚甲基双氧安非他明盐酸盐3(瓶)详见采购文件2,175.00-2-8化学试剂和助剂氟胺酮3(瓶)详见采购文件5,850.00-2-9化学试剂和助剂4-甲氧基甲基苯丙胺盐酸盐3(瓶)详见采购文件4,746.00-2-10化学试剂和助剂盐酸去甲氯胺酮3(瓶)详见采购文件3,675.00-2-11化学试剂和助剂去甲芬太尼盐酸盐一水合物3(瓶)详见采购文件4,800.00-2-12化学试剂和助剂苯甲酰爱康宁3(瓶)详见采购文件1,764.00-2-13化学试剂和助剂氯胺酮3(瓶)详见采购文件1,764.00-2-14化学试剂和助剂盐酸曲马多3(瓶)详见采购文件4,500.00-2-15化学试剂和助剂瑞芬太尼盐酸盐3(瓶)详见采购文件5,952.00-2-16化学试剂和助剂哌替啶盐酸盐3(瓶)详见采购文件1,764.00-2-17化学试剂和助剂去环丙甲基丁丙诺啡3(瓶)详见采购文件14,256.00-2-18化学试剂和助剂可卡因3(瓶)详见采购文件1,764.00-2-19化学试剂和助剂麦角二乙胺3(瓶)详见采购文件4,800.00-2-20化学试剂和助剂芬太尼盐酸盐3(瓶)详见采购文件1,410.00-2-21化学试剂和助剂丁丙诺啡盐酸盐3(瓶)详见采购文件15,840.00-2-22化学试剂和助剂舒芬太尼3(瓶)详见采购文件4,416.00-2-23化学试剂和助剂5-二甲基-3,3-二苯基氮杂戊环高氯酸盐3(瓶)详见采购文件2,646.00-2-24化学试剂和助剂美沙酮盐酸盐3(瓶)详见采购文件1,764.00-2-25化学试剂和助剂芬特明盐酸盐3(瓶)详见采购文件3,660.00-2-26化学试剂和助剂羟考酮3(瓶)详见采购文件4,560.00-2-27化学试剂和助剂安非拉酮盐酸盐3(瓶)详见采购文件9,030.00-2-28化学试剂和助剂替来他明盐酸盐3(瓶)详见采购文件4,320.00-2-29化学试剂和助剂乙基去甲氟胺酮盐酸盐3(瓶)详见采购文件7,950.00-2-30化学试剂和助剂2-(乙氨基)-2-苯基环己-1-酮盐酸盐3(瓶)详见采购文件12,780.00-2-31化学试剂和助剂地佐辛盐酸盐一水合物3(瓶)详见采购文件13,050.00-2-32化学试剂和助剂甲胺酮盐酸盐3(瓶)详见采购文件11,940.00-2-33化学试剂和助剂哌醋甲酯盐酸盐3(瓶)详见采购文件2,865.00-2-34化学试剂和助剂依托咪酯3(瓶)详见采购文件2,925.00-2-35化学试剂和助剂甲喹酮3(瓶)详见采购文件4,260.00-2-36化学试剂和助剂地芬诺酯盐酸盐3(瓶)详见采购文件12,570.00-2-37化学试剂和助剂N-(1-氨甲酰基-2,2-二甲基丙基)-1-丁基吲唑-3-甲酰胺3(瓶)详见采购文件11,550.00-2-38化学试剂和助剂N-(1-氨甲酰基-2,2-二甲基丙基)-1-(4-戊烯基)吲唑-3-甲酰胺3(瓶)详见采购文件11,550.00-2-39化学试剂和助剂3,3-二甲基-2-[1-(4-氟丁基)吲哚-3-甲酰氨基]丁酸甲酯3(瓶)详见采购文件11,550.00-2-40化学试剂和助剂2-[1-(4-氟苄基)-1H-吲哚-3-甲酰氨基]-3-甲基丁酸甲酯3(瓶)详见采购文件11,550.00-2-41化学试剂和助剂N-(1-甲基-1-苯基乙基)-1-(4-氰基丁基)吲唑-3-甲酰胺3(瓶)详见采购文件11,550.00-2-42化学试剂和助剂2-[1-(5-氟戊基)-1H-吲哚-3-甲酰氨基]-3,3-二甲基丁酸甲酯3(瓶)详见采购文件11,550.00-2-43化学试剂和助剂N-(1-乙氧基羰基-2-甲基丙基)-1-(5-氟戊基)吲哚-3-甲酰胺3(瓶)详见采购文件11,550.00-2-44化学试剂和助剂2-[1-(4-氟丁基)-1H-吲唑-3-甲酰氨基]-3,3-二甲基丁酸甲酯3(瓶)详见采购文件11,550.00-2-45化学试剂和助剂2-[1-(5-氟戊基)-1H-吲哚-3-甲酰氨基]-3-苯丙酸甲酯3(瓶)详见采购文件11,550.00-2-46化学试剂和助剂N'-(1-(5-氟戊基)-2-氧代吲哚-3-亚基)苯甲酰肼3(瓶)详见采购文件11,550.00-2-47化学试剂和助剂3,3-二甲基-2-[1-(5-氟戊基)吲哚-3-甲酰氨基]丁酸乙酯3(瓶)详见采购文件11,550.00-2-48化学试剂和助剂3,3-二甲基-2-[1-(5-氟戊基)吲唑-3-甲酰氨基]丁酸甲酯3(瓶)详见采购文件7,470.00-2-49化学试剂和助剂3,3-二甲基-2-[1-(4-戊烯-1-基)-1H-吲唑-3-甲酰氨基]丁酸甲酯3(瓶)详见采购文件11,550.00-2-50化学试剂和助剂N'-(1-戊基-2-氧代吲哚-3-亚基)苯甲酰肼3(瓶)详见采购文件11,550.00-2-51化学试剂和助剂N'-(1-己基-2-氧代吲哚-3-亚基)苯甲酰肼3(瓶)详见采购文件11,550.00-2-52化学试剂和助剂3,3-二甲基-2-(1-戊基-1H-吲唑-3-甲酰氨基)丁酸乙酯3(瓶)详见采购文件11,550.00-2-53化学试剂和助剂[1-(4-氟苄基)-1H-吲哚-3-基](2,2,3,3-四甲基环丙基)甲酮3(瓶)详见采购文件6,720.00-2-54化学试剂和助剂N-(1-金刚烷基)-1-(4-氟丁基)吲唑-3-甲酰胺3(瓶)详见采购文件11,550.00-2-55化学试剂和助剂N-(金刚烷-1-基)-1-(5-氯戊基)-1H-吲唑-3-甲酰胺3(瓶)详见采购文件11,550.00-2-56化学试剂和助剂N-(金刚烷-1-基)-1-(环己基甲基)-1H-吲唑-3-甲酰胺3(瓶)详见采购文件11,550.00-2-57化学试剂和助剂羟基可替宁1(瓶)详见采购文件1,538.00-2-58化学试剂和助剂乙酰芬太尼1(瓶)详见采购文件1,397.00-2-59化学试剂和助剂甲氧麻黄酮1(瓶)详见采购文件749.00-2-60化学试剂和助剂去甲氟胺酮1(瓶)详见采购文件8,826.00-2-61化学试剂和助剂溴胺酮1(瓶)详见采购文件7,310.00-2-62化学试剂和助剂3-[1-(哌啶-1-基)环己基]苯酚盐酸盐1(瓶)详见采购文件1,554.00-2-63化学试剂和助剂地西泮1(瓶)详见采购文件562.00-2-64化学试剂和助剂依替唑仑1(瓶)详见采购文件8,353.00-2-65化学试剂和助剂艾司唑仑1(瓶)详见采购文件1,456.00-2-66化学试剂和助剂利多卡因盐酸盐一水合物1(瓶)详见采购文件1,058.00-2-67化学试剂和助剂盐酸甲苯噻嗪1(瓶)详见采购文件428.00-2-68化学试剂和助剂N-(1-氨基-3,3-二甲基-1-氧代丁-2-基)-1-丁基-1H-吲唑-3-甲酰胺1(瓶)详见采购文件7,084.00-2-69化学试剂和助剂3,3-二甲基-2-[1-(4-戊烯-1-基)-1H -吲唑-3-甲酰胺基]丁酸1(瓶)详见采购文件9,000.00-2-70化学试剂和助剂3,3-二甲基-2-[1-(4-丁醇)吲哚-3-甲酰氨基]丁酸甲酯1(瓶)详见采购文件9,000.00-2-71化学试剂和助剂咖啡因-D31(瓶)详见采购文件8,838.00-2-72化学试剂和助剂那可汀-D31(瓶)详见采购文件2,800.00-2-73化学试剂和助剂N-蒂巴因-D31(瓶)详见采购文件3,276.00-2-74化学试剂和助剂罂粟碱-D61(瓶)详见采购文件3,276.00-2-75化学试剂和助剂舒芬太尼-D51(瓶)详见采购文件9,000.00-2-76化学试剂和助剂去甲氟胺酮-D41(瓶)详见采购文件6,375.00-2-77化学试剂和助剂地西泮-D51(瓶)详见采购文件506.00-2-78化学试剂和助剂羟基可替宁1(瓶)详见采购文件1,538.00-2-79化学试剂和助剂去甲乙酰芬太尼盐酸盐一水合物1(瓶)详见采购文件1,648.00-2-80化学试剂和助剂4-苯胺基-N-苯乙基哌啶二盐酸盐一水合物1(瓶)详见采购文件5,860.00-2-81化学试剂和助剂可替宁3(瓶)详见采购文件3,000.00-2-82化学试剂和助剂吗啡-D33(瓶)详见采购文件18,000.00-2-83化学试剂和助剂O6-单乙酰吗啡-D33(瓶)详见采购文件18,000.00-2-84化学试剂和助剂去氧麻黄碱外消旋体盐酸盐-D53(瓶)详见采购文件7,788.00-2-85化学试剂和助剂苯丙胺-D53(瓶)详见采购文件36,000.00-2-86化学试剂和助剂氯胺酮-D43(瓶)详见采购文件22,500.00-2-87化学试剂和助剂去甲氯胺酮-D43(瓶)详见采购文件22,500.00-2-88化学试剂和助剂3,4-亚甲二氧基甲基苯丙胺-D53(瓶)详见采购文件18,000.00-2-89化学试剂和助剂3,4-亚甲二氧基苯丙胺-D53(瓶)详见采购文件22,500.00-2-90化学试剂和助剂可卡因-D33(瓶)详见采购文件18,000.00-2-91化学试剂和助剂苯甲酰爱康宁-D33(瓶)详见采购文件18,000.00-2-92化学试剂和助剂四氢大麻酸-D33(瓶)详见采购文件22,500.00-2-93化学试剂和助剂可替宁-D33(瓶)详见采购文件18,000.00-2-94化学试剂和助剂甲卡西酮-D33(瓶)详见采购文件22,500.00-2-95化学试剂和助剂氟胺酮-D43(瓶)详见采购文件19,125.00-2-96化学试剂和助剂PMMA-D33(瓶)详见采购文件19,350.00-2-97化学试剂和助剂芬太尼-D5盐酸盐3(瓶)详见采购文件7,680.00-2-98化学试剂和助剂去苯乙基芬太尼-D53(瓶)详见采购文件18,000.00-2-99化学试剂和助剂去苯乙基乙酰芬太尼-13C63(瓶)详见采购文件35,607.00-2-100化学试剂和助剂4-ANPP-D53(瓶)详见采购文件36,000.00-2-101化学试剂和助剂可待因-D63(瓶)详见采购文件36,000.00-2-102化学试剂和助剂美沙酮-D33(瓶)详见采购文件18,000.00-2-103化学试剂和助剂曲马多-D33(瓶)详见采购文件25,950.00-2-104化学试剂和助剂钯ICP标准液1(瓶)详见采购文件612.10-2-105化学试剂和助剂银ICP标准液1(瓶)详见采购文件388.02-2-106化学试剂和助剂金ICP标准液1(瓶)详见采购文件612.10-2-107化学试剂和助剂铅ICP标准液1(瓶)详见采购文件611.93-2-108化学试剂和助剂汞ICP标准液1(瓶)详见采购文件611.93-2-109化学试剂和助剂磷ICP标准液1(瓶)详见采购文件351.02-2-110化学试剂和助剂1-苄基-1H-咪唑-5-羧酸1(瓶)详见采购文件1,200.00-2-111化学试剂和助剂碘化钾1(瓶)详见采购文件92.90-2-112化学试剂和助剂甲醇中D-依托咪酯溶液3(瓶)详见采购文件900.00-2-113化学试剂和助剂甲醇中D-依托咪酯-D5溶液3(瓶)详见采购文件6,900.00-2-114化学试剂和助剂甲醇中依托咪酯酸溶液3(瓶)详见采购文件2,700.00-2-115化学试剂和助剂海洛因3(瓶)详见采购文件9,699.00-2-116化学试剂和助剂氯胺酮1(瓶)详见采购文件2,613.00-2-117化学试剂和助剂左旋甲基苯丙胺盐酸盐1(瓶)详见采购文件4,067.00-2-118化学试剂和助剂右旋甲基苯丙胺盐酸盐1(瓶)详见采购文件3,658.00-2-119化学试剂和助剂麻黄碱1(瓶)详见采购文件2,613.00-2-120化学试剂和助剂二亚甲基双氧安非他明盐酸盐1(瓶)详见采购文件2,613.00-2-121化学试剂和助剂乙酰可待因1(瓶)详见采购文件6,533.00-2-122化学试剂和助剂O3-单乙酰吗啡氨基磺酸盐1(瓶)详见采购文件5,500.00-2-123化学试剂和助剂可卡因1(瓶)详见采购文件2,613.00-2-124化学试剂和助剂吗啡一水合物1(瓶)详见采购文件2,613.00-2-125化学试剂和助剂1-苯基-2-丙酮1(瓶)详见采购文件4,800.00-2-126化学试剂和助剂3,4-亚甲基二氧苯基-2-丙酮1(瓶)详见采购文件4,800.00-2-127化学试剂和助剂胡椒醛1(瓶)详见采购文件4,800.00-2-128化学试剂和助剂N-乙酰氨基苯甲酸(N-乙酰邻氨基苯甲酸)1(瓶)详见采购文件7,060.00-2-129化学试剂和助剂邻氨基苯甲酸1(瓶)详见采购文件7,060.00-2-130化学试剂和助剂羟亚胺盐酸盐1(瓶)详见采购文件8,826.00-2-131化学试剂和助剂邻氯苯基环戊酮1(瓶)详见采购文件8,826.00-2-132化学试剂和助剂1-苯基-2-溴-1-丙酮(α-溴代苯丙酮)1(瓶)详见采购文件4,800.00-2-133化学试剂和助剂4-苯氨基-N-苯乙基哌啶1(瓶)详见采购文件5,860.00-2-134化学试剂和助剂黄樟素1(瓶)详见采购文件4,800.00-2-135化学试剂和助剂N-苯乙基-4-哌啶酮1(瓶)详见采购文件5,860.00-2-136化学试剂和助剂N-甲基-1-苯基-1-氯-2-丙胺盐酸盐1(瓶)详见采购文件4,800.00-2-137化学试剂和助剂γ-丁内酯1(瓶)详见采购文件3,768.00-2-138化学试剂和助剂3-氧-2-苯基丁腈(α-氰基苯丙酮)1(瓶)详见采购文件3,325.00-2-139化学试剂和助剂溴西泮1(瓶)详见采购文件2,613.00-2-140化学试剂和助剂可待因1(瓶)详见采购文件2,613.00-2-141化学试剂和助剂地西泮1(瓶)详见采购文件1,295.00-2-142化学试剂和助剂艾司唑仑1(瓶)详见采购文件1,786.00-2-143化学试剂和助剂美沙酮盐酸盐1(瓶)详见采购文件2,613.00-2-144化学试剂和助剂安眠酮(甲喹酮)1(瓶)详见采购文件2,613.00-2-145化学试剂和助剂Δ9-四氢大麻酚1(瓶)详见采购文件1,034.00-2-146化学试剂和助剂三唑仑1(瓶)详见采购文件3,140.00-2-147化学试剂和助剂氟胺酮1(瓶)详见采购文件4,873.00-2-148化学试剂和助剂麦角二乙胺1(瓶)详见采购文件1,600.00-2-149化学试剂和助剂芬太尼1(瓶)详见采购文件195.00-2-150化学试剂和助剂1-[1-(3-甲氧基苯基)环己基]哌啶盐酸盐1(瓶)详见采购文件8,826.00-2-151化学试剂和助剂亚甲基二氧吡咯戊酮盐酸盐1(瓶)详见采购文件8,857.00-2-152化学试剂和助剂N-甲基-N-异丙基-5-甲氧基色胺1(瓶)详见采购文件6,213.00-2-153化学试剂和助剂N-(1-氨基-3,3-二甲基-1-氧亚基丁-2-基)-1-(戊-4-烯-1-基)-1H-吲唑-3-甲酰胺 (ADB-4en-PINACA)1(瓶)详见采购文件7,084.00-2-154化学试剂和助剂3,3-二甲基-2-[1-(4-戊烯-1-基)-1H-吲唑-3-甲酰氨基]丁酸甲酯 (MDMB-4en-PINACA)1(瓶)详见采购文件7,084.00-2-155化学试剂和助剂N-(1-氨基-3,3-二甲基-1-氧亚基丁-2-基)-1-丁基-1H-吲唑-3-甲酰胺 (ADB-BUTINACA)1(瓶)详见采购文件7,084.00-2-156化学试剂和助剂1-(4-氰基丁基)-N-(2-苯基丙-2-基)-1H-吲唑-3-甲酰胺 (4CN-CUMYL-BUTINACA)1(瓶)详见采购文件7,084.00-2-157化学试剂和助剂2-[1-(5-氟戊基)-1H-吲哚-3-甲酰氨基]-3-甲基丁酸乙酯 (5F-EMB-PICA)1(瓶)详见采购文件7,084.00-2-158化学试剂和助剂2-[1-(5-氟戊基)-1H-吲哚-3-甲酰氨基]-3,3-二甲基丁酸甲酯 (5F-MDMB-PICA)1(瓶)详见采购文件7,084.00-2-159化学试剂和助剂2-[1-(4-氟丁基)-1H-吲唑-3-甲酰氨基]-3,3-二甲基丁酸甲酯 (4F-MDMB-BUTINACA)1(瓶)详见采购文件7,084.00-2-160化学试剂和助剂N-(1-金刚烷基)-1-(4-氟丁基)吲唑-3-甲酰胺 (4F-ABUTINACA)1(瓶)详见采购文件7,084.00-2-161化学试剂和助剂N-(1-氨甲酰基-2-甲基丙基)-1-(4-氟苄基)吲唑-3-甲酰胺 (AB-FUBINACA)1(瓶)详见采购文件2,452.00-2-162化学试剂和助剂赛洛新1(瓶)
  • 用于评估儿童锰暴露的多巴胺和血清素代谢产物的灵敏高效液相色谱法 ——该方法有助于诊断HVA和5-HIAA水平改变的疾病
    • Ryan De Vooght-Johnson概述一个巴西分析小组开发了一种新的多巴胺和血清素尿液代谢产物的HPLC方法,并用它来评估儿童的锰暴露情况。该方法最终有助于早期识别和治疗有锰中毒风险的儿童。锰暴露对神经系统的影响阿尔茨海默病和帕金森病是影响认知和运动功能的神经退行性疾病。这些疾病的症状可能与锰中毒的症状重叠,锰中毒是一种因接触高水平锰而引起的疾病。然而,这些条件之间存在一些关键差异。帕金森病是由大脑中产生多巴胺的细胞死亡引起的,而阿尔茨海默病与大脑中淀粉样蛋白斑块和tau缠结的堆积有关,两者都是不可逆转的。锰中毒是由暴露于高水平的锰引起的,锰是一种在环境中自然存在的金属,也用于一些工业过程。锰中毒最常见于矿工、焊工和电池制造商等暴露在高锰尘中的行业。锰中毒也可能发生在暴露于环境中高水平锰的人身上,例如空气污染或受污染的水。然而,一旦暴露源被消除,症状通常会消退。锰中毒、阿尔茨海默氏症和帕金森氏症都会导致体内神经递质多巴胺和血清素水平的变化。多巴胺和血清素代谢时分别产生高香草酸(HVA)和5-羟基吲哚乙酸(5-HIAA)。这些神经递质代谢物很难在生物流体中检测到,因为它们的浓度非常低,因此需要灵敏和选择性的方法来检测它们。巴伊亚联邦大学(巴西)的科学家最近报道了一种新的灵敏HPLC方法,该方法使用电化学检测来测量尿液中的HVA和5-HIAA水平。研究人员随后在已知接触锰的儿童和对照组中测试了这种新方法。使用氢氧化钠将尿液样本的pH调节至6-7,然后加入内标物(对香豆素)。将样品装载到强阴离子交换SPE柱上,然后用氢氧化钠水溶液和甲醇洗涤,然后用酸化的甲醇洗脱分析物。将样品干燥并重新溶解在甲醇中,准备注射到HPLC系统中。HVA和5-HIAA标准品用于定量。分析在具有Waters 2465电化学检测器的Agilent 1260 Infinity HPLC上进行。该探测器设置在壁射流布置中,具有玻璃碳工作电极和Ag/AgCl参比电极原位Ag/AgCl(ISAAC)。Waters Symmetry C18柱用于梯度模式下的分离。该方法根据巴西国家卫生监督局(ANVISA)指南进行了验证,LOD分别为4和8 μmol/L,回收率为85~94%,线性良好(R20.99)。HVA和5-HIAA水平无显著差异接触锰的儿童的代谢物水平与对照组没有显著差异,均在预期的生理范围内。尽管在这种情况下没有发现锰暴露的任何影响,但尿HVA和5-HIAA的新方法是有效和敏感的,应该有助于诊断改变这些排泄代谢产物水平的疾病。相关链接Cardoso MS, Rocha AR, Souza-Júnior JA, Menezes-Filho JA. Analytical method for urinary homovanillic acid and 5-hydroxyindoleacetic acid levels using HPLC with electrochemical detection applied to evaluate children environmentally exposed to manganese. Biomedical Chromatography. 2023. https://doi.org/10.1002/bmc.5699 Guilarte TR. Manganese and Parkinson’s Disease: A Critical Review and New Findings. Environmental Health Perspectives. 2010. https://doi.org/10.1289/ehp.0901748 作者简介•Ryan De Vooght JohnsonRyan是一名自由科学作家和编辑。在获得仪器和分析方法硕士学位后,他在制药行业担任过各种分析开发职务,之后担任编辑职务。作为委托编辑,他创办了两本与分析化学和药物相关的期刊《生物分析》和《治疗药物》,并管理了许多其他期刊。他现在是一名自由科学作家和编辑,以便有更多的时间陪伴家人、骑自行车和分配。本文来源:Wiley Analytical Science Magazine . Sensitive HPLC method for dopamine and serotonin metabolites used to assess manganese exposure in children供稿:符 斌
  • 珀金埃尔默2.66亿美元收购瑞典波通仪器
    珀金埃尔默(PerkinElmer)宣布已经签订了一份最终协议,收购瑞典波通仪器(Perten)。总部位于瑞典斯德哥尔摩的Perten是全球领先的食品、谷物、面粉和饲料质量控制分析仪器的供应商,预计收购将显著扩大PerkinElmer在快速增长的食品检测领域中的份额。   &ldquo Perten独特的能力与PerkinElmer创新的分析工具相结合,将使我们进一步渗透到数十亿美元的全球食品测试市场中,包括长期高增长的地区,如中国,&rdquo PerkinElmer环境卫生部门董事长Jon DiVincenzo说,&ldquo PerkinElmer现在将牢牢定位于帮助客户解决食品质量控制、进出口检测,并且保持全球供应链的完整性。&rdquo   增加了Perten的分析平台以及领先的食品质量校准数据库,PerkinElmer将在整个产品开发和制造流程中提供广泛的食品安全和质量测试服务。PerkinElmer全面的解决方案将包括化学品、毒素和营养物质的检测能力、材料表征和预警工具,同时还有分析方法和数据管理。   该交易的净购买价格大约是2.66亿美元,预期交易将在2014年12月完成。Perten年收入约6500万美元,预计对PerkinElmer 2014财年非公认会计原则的每股收益结果影响很小。该公司目前预计对2015年财年非公认会计原则的每股收益结果会有大约每股0.04美元的增加,公司将于2015年1月正式发布2015年金融指导。
  • 第二届瑞士万通—Sigma Aldrich联合技术交流会北京站圆满结束
    7月6日,第二届瑞士万通-Sigma联合技术交流会在北京贵州大厦多功能厅举办顺利召开。北京及周边地区近百名科研高校、企事业单位的实验室工作人员及技术专家参加了此次会议。会议由瑞士万通中国有限公司产品经理龚雁主持。瑞士万通全球水分仪经理Michael Margreth, 电极经理Christine Thielen在交流会上做了精彩发言,Sigma公司高珏女士也就如何选择合适的卡式试剂及水标向来宾做了详细介绍。 用户在认真听讲Michael Margreth介绍瑞士万通最新的水份仪技术Sigma公司高珏女士介绍卡式水分试剂及标样 Christine Thielen讲解玻璃电极的测量原理 会上,Michael 先生特别为中国客户介绍了瑞士万通最新推出的899型库仑法水分仪,秉承了经典的831型库仑法水分仪的轻灵便捷、平衡迅速、经济实用等优点,新一代的899型库仑法水分仪所占空间更小,只有一张A4纸大小,体现了现代实验室节约的理念,并且独创性的增加了内置电池模块,使水分测量摆脱了对电源的依赖,为更多测量方案提供了可操作性。 899型库仑法水分仪
  • 瑞典波通仪器公司DA7200技术培训班圆满结束
    近年来随着DA7200用户群体的不断壮大,为了帮助大家更好地使用仪器,方便快捷高效地开发各种应用方法,提高仪器的使用效率。波通公司于12月15-18日在北京市成功举办DA7200近红外光谱仪2010年北方区用户技术培训班。 来自北方各地的50多名用户参加了培训,主要为化验室负责人或者实际操作的化验员。培训内容很丰富,由波通公司应用部经理倪勇和应用工程师李勇给大家就近红外最新技术与应用;近红外检测结果的评价方法;国内外近红外标准的解读;DA7200整机清理与维护和常见故障和问题的解决方法;新曲线和新应用方法的开发;新建模软件的介绍和使用;最新国内外典型用户使用经验介绍和DA7200软件升级等做了全面的讲解。于会人员都认真听取了这些报告,并积极发言与波通工程师交流使用经验。对本次研讨会给予了高度评价,表示通过此次研讨会这样一个经验交流平台,对波通仪器有了更深层次的认识,在提高仪器使用价值上有很大的帮助。
  • 博纳艾杰尔推出车内空气检测用醛酮采集管
    《汽车内环境质量标准》有望年底实施,DNPH-Silica助您维权   随着车内空气质量引发的维权纠纷日益增多,2008年3月1日,国家颁布了-《HJ/T 400—2007 车内挥发性有机物和醛酮类物质采样测定方法》,迈出了改善车内坏境的第一步;该《方法》规定了测量机动车乘员舱内挥发性有机物和醛酮类物质的采样点设置、采样环境条件技术要求、采样方法和设备、相应的测量方法和设备、数据处理、质量保证等内容,但并未包含如何判定车内空气污染物超标等问题,使消费者在维权的过程中无据可依。日前,该标准有望于今年年底出台。   车内空气污染物主要是含6个碳到16个碳的挥发性有机组分和甲醛、乙醛、丙酮、丙烯醛、丙醛、丁烯醛、丁酮、丁醛、甲基丙烯醛、苯甲醛、戊醛、甲基苯甲醛、环己酮、己醛等羰基化合物两类。   车内醛酮类污染物采样利用了羰基化合物和2,4-二硝基苯肼(DNPH)的特异性反应来富集污染物,再经洗脱、浓缩,进行HPLC定量分析。商品化的醛酮采集管DNPH-Silica一直被国公司垄断,而该产品经过进口漫长的运输过程,容易导致醛酮本底值的增加,使检测结果受到影响。   为打破国外产品垄断,克服进口产品货期过长、本底值增加等弊端,北京艾杰尔科技有限公司从2007年初启动了CleanertTM DNPH-Silica醛酮采集管的研发,该研发项目获海淀区科委专项资金资助(项目编号:k2007092);2007年12月,CleanertTM DNPH-Silica醛酮采集管实现产业化生产,产品通过了中国计量科学研究院计量验证;2007年12月,CleanertTM DNPH-Silica醛酮采集管获国家重点新产品证书。   博纳艾杰尔科技的CleanertTM DNPH-Silica醛酮采集管甫一推出,即受好评,国内率先开展车内气体质量检测的单位:北京市劳动保护科学研究所,华测检测技术股份有限公司,美国GD(高迪)深圳检测中心,北京大学环境学院,北京理工大学车辆与交通工程学院,上海市疾病与预防控中心等都选择了博纳艾杰尔科技的CleanertTM DNPH-Silica醛酮采集管。   博纳艾杰尔科技的CleanertTM DNPH-Silica醛酮采集管采用了与国际同步的先进制作生产工艺,更有本土化的供货优势,产品在一周内可到达国内任何手中,避免了长时间运输导致本底值增加的问题。所以,在客户的使用过程中,CleanertTM DNPH-Silica醛酮采集管的性能都优于同类进口产品;使得车内空气质量的检测更加快捷,更加方便,更加准确,为广大车主提供有力的安全保障。   同时,博纳艾杰尔科技联合国内检测专家,为客户提供车内气体质量检测的整体解决方案服务,包括:检测舱建立,实验室仪器配置,采样检测方法培训。 国家重点新产品证书 北京市劳动保护科学研究所使用报告 中国计量科学研究院测试报告
  • 314万!西安交通大学第二附属医院发布微生物试剂采购项目
    近日,西安交通大学第二附属医院发布微生物组试剂采购项目,计划采购全自动细菌鉴定与药敏检测试剂、细菌质谱鉴定检测试剂、全自动染色仪检测试剂等一年使用量的耗材,总预算为314万元。以下为标讯详细信息:项目编号:ZDZC2022030404项目名称:西安交通大学第二附属医院微生物组试剂采购项目(1标段、3标段、4标段、5标段、6标段)二次预算金额:314.0000000 万元(人民币)采购需求:本次采购标的标段划分如下:标段号产品组合名称产品名称检测方法使用科室采购预算(万元/年)拟中标家数备注1标段全自动细菌鉴定与药敏检测试剂(进口)革兰氏阴性细菌鉴定卡全自动细菌鉴定与药敏1医学检验科2501家革兰氏阳性细菌鉴定卡酵母菌鉴定卡奈瑟菌、嗜血杆菌鉴定卡革兰氏阴性细菌药敏卡片 AST-GN09革兰氏阳性细菌药敏卡片肺炎链球菌药敏卡片革兰氏阴性细菌药敏卡片 AST-GN13VITEK 2革兰氏阴性细菌药敏卡片AST-GN16VITEK 2 革兰氏阴性细菌药敏卡片AST-XN04VITEK 2 革兰氏阴性细菌药敏卡片AST-GN67一次性悬浮液管VITEK 2 革兰氏阴性细菌药敏卡片 AST-N334VITEK 2 革兰氏阴性细菌药敏卡片 AST-N335VITEK 2 革兰氏阳性细菌药敏卡片 AST-P639β-内酰胺酶快速检测试剂Genbag 厌氧产气袋厌氧菌及棒状杆菌鉴定卡片ANC样本稀释液VITEK-COMPACT比浊管细菌质谱鉴定检测试剂(进口)VITEK MS-DS样品板飞行时间质谱细菌鉴定仪质谱样品处理基质溶液质谱样品预处理溶液全自动染色仪检测试剂(进口)革兰染色液(丙酮番红)全自动革兰染色仪革兰染色液(番红)革兰染色液(丙酮品红)革兰染色液(品红)革兰染色液(碘液)革兰染色液(结晶紫)喷嘴清洗液全自动血培养仪检测试剂(进口)需氧和兼性厌氧微生物培养瓶 BacT/ALERT FA全自动血培养仪1厌氧微生物培养瓶 FN需氧微生物培养瓶 SA厌氧和兼性厌氧微生物培养瓶 SN需氧和兼性厌氧微生物培养瓶 PF厌氧和兼性厌氧微生物培养瓶BacT/ALERT FN Plus需氧和兼性厌氧微生物培养瓶BacT/ALERT FA Plus需氧和兼性厌氧微生物培养瓶BacT/ALERT PF Plus半自动鉴定及药敏检测试剂(进口)ID 32 GN 革兰氏阴性杆菌鉴定试剂盒(比色法)半自动手工鉴定及药敏ID 32 C 酵母菌鉴定试剂盒(比色法)RAPID ID 32 A 厌氧菌鉴定试剂盒(比色法)ID 32 E 肠杆菌科和其它非苛养革兰氏阴性杆菌鉴定试剂盒(比色法ID 32 STAPH 葡萄球菌鉴定试剂盒(比色法)RAPID ID 32 STREP 链球菌快速鉴定试剂盒(比色法)FUNGUS Ⅲ酵母样真菌药敏试剂盒(微量稀释法)ATB ENTEROC 5 肠球菌药敏试剂盒(比色法)ATB G-5 肠细菌药敏试剂盒(比色法)ATB STAPH 5 葡萄球菌药敏试剂盒(比色法)ATB PSE 5 假单胞菌和非发酵菌药敏试剂盒(比色法)ATB HAEMO 嗜血杆菌和布兰汉球菌药敏试剂盒(比色法)肠杆菌药敏试剂盒(比色法)非发酵菌药敏试剂盒(比色法)ATB STREP 5链球菌和肺炎球菌药敏试剂盒(比色法)NaCl 0.85#% 悬浮液悬浮液(3ml)(100支/盒)ATB Medium 肉汤培养基FB(坚固兰)(FAST BLUE BB)JAMES 吲哚试剂麦氏比浊管 McFarland StandardAPI MINERAL OIL 矿物油NIN 马尿酸NIT1 + NIT2 硝酸盐试剂丙酮酸反应检测液(VP1 + VP2)STERILE ATB 无菌加样吸头BCP 二甲苯试剂EHR 色氨酸试剂XYL 溴甲酚紫试剂3标段G实验+GM实验配套试剂及碳青霉烯酶检测试剂、耗材革兰阴性脂多糖检测试剂盒(光度法)显色法551家真菌(1-3)--D葡聚糖检测试剂盒曲霉菌半乳甘露聚糖检测试剂盒化学发光法免疫显色试剂(NDM型碳青霉烯酶检测卡)胶体金法免疫显色试剂(KPC型碳青霉烯酶检测卡)免疫显色试剂(IMP-4型碳青霉烯酶检测卡)免疫显色试剂(VIM型碳青霉烯酶检测卡)免疫显色试剂(OXA-23碳青霉烯酶检测卡)免疫显色试剂(OXA-48碳青霉烯酶检测卡)免疫显色试剂(NDM、KPC、IMP-4型碳青霉烯酶检测卡)烟曲霉菌硫氧还蛋白还原酶IgG抗体检测试剂盒酶联免疫法念珠菌烯醇化酶IgG抗体检测试剂盒一次性使用小吸头一次性使用大吸头一次性使用真空采血管一次性无热源专用离心管(EP管)一次性使用吸头(IGL-800专用)一次性专用平底试管(IGL-800专用)一次性使用无热源混合瓶(IGL-800专用)一次性接种环4标段进口药敏纸片药敏纸片K-B法(进口)通用药敏实验纸片纸片扩散法31家CT0425B环丙沙星药敏实验纸片CIP 5ug头孢吡肟药敏实验纸片(扩散法)CT0043B青霉素药敏实验纸片(扩散法) P 10ugCT0647B替考拉宁药敏实验纸片(扩散法)CT0725B哌拉西林/他唑巴坦药敏实验纸片(扩散法)CT0119B头孢西丁药敏实验纸片(扩散法)FOX 30ugCT1841B替加环素药敏实验纸片(扩散法)CT0166B头孢噻肟药敏实验纸片(扩散法)CTX 30ugCT0030B米诺环素药敏实验纸片(扩散法)MH 30ugCT0013B氯霉素药敏实验纸片(扩散法)C 30ugCT0064B克林霉素药敏实验纸片(扩散法)DA 2ugCT0020B红霉素药敏实验纸片(扩散法)E 15ugCT0107B阿米卡星药敏实验纸片(扩散法)AK 30ugCT0774B美罗培能药敏实验纸片(扩散法)CT0520B氨苄西林/舒巴坦药敏实验纸片(扩散法)SAM 20ugCT1650B利奈唑胺药敏实验纸片(扩散法)LZD 30ug头孢他啶药敏实验纸片(扩散法)磷霉素/氨丁三醇药敏实验纸片(扩散法) FOT 20ugCT0058B万古霉素药敏实验纸片(扩散法)VA 30ugCT0264B氨曲南药敏实验纸片(扩散法)ATM 30ugCT0003B氨苄西林药敏实验纸片(扩散法)AMP 10ugCT0054B四环素药敏实验纸片(扩散法)TE 30ugCT0127B头孢呋辛钠药敏实验纸片(扩散法)CXM 30ugCT0159B苯唑西林药敏实验纸片(扩散法)CT0417B头孢曲松药敏实验纸片(扩散法)CRO 30ugK6101 奥普托欣纸片 5ugCT1727B头孢哌酮/舒巴坦药敏实验纸片(扩散法)SCF 105ugCT0052B磺胺甲恶唑/甲氧苄啶药敏实验纸片(扩散法)SXTCT1587B左氧氟沙星药敏实验纸片(扩散法)LEV 5ugCT0024B庆大霉素药敏实验纸片(扩散法)CN 10ugCT0011B头孢唑啉药敏实验纸片(扩散法)CT0455B亚胺培南药敏实验纸片(扩散法)IPM 10ug5标段国产药敏纸品+基础培养基微生物肉汤稀释法MIC+其他配套试剂通用药敏试剂(8浓度)细菌药敏试剂(微量肉汤稀释法)31家通用药敏试剂(12浓度)头孢噻肟药敏试剂微量肉汤稀释法(8浓度)头孢曲松药敏试剂微量肉汤稀释法(8浓度)头孢哌酮药敏试剂微量肉汤稀释法(8浓度)头孢他啶药敏试剂微量肉汤稀释法(8浓度)头孢呋辛药敏试剂微量肉汤稀释法(8浓度)头孢唑啉药敏试剂微量肉汤稀释法(8浓度)头孢西丁药敏试剂微量肉汤稀释法(8浓度)头孢吡肟药敏试剂微量肉汤稀释法(8浓度)哌拉西林药敏试剂微量肉汤稀释法(8浓度)苯唑西林药敏试剂微量肉汤稀释法(8浓度)氨苄西林药敏试剂微量肉汤稀释法(8浓度)羧苄西林药敏试剂微量肉汤稀释法(8浓度)替卡西林药敏试剂微量肉汤稀释法(8浓度)左氧沙星药敏试剂微量肉汤稀释法(8浓度)环丙沙星药敏试剂微量肉汤稀释法(8浓度)氧氟沙星药敏试剂微量肉汤稀释法(8浓度)洛美沙星药敏试剂微量肉汤稀释法(8浓度)加替沙星药敏试剂微量肉汤稀释法(8浓度)氟罗沙星药敏试剂微量肉汤稀释法(8浓度)诺氟沙星药敏试剂微量肉汤稀释法(8浓度)庆大霉素药敏试剂微量肉汤稀释法(8浓度)司帕沙星药敏试剂微量肉汤稀释法(8浓度)多西环素药敏试剂微量肉汤稀释法(8浓度)米诺环素药敏试剂微量肉汤稀释法(8浓度)克拉霉素药敏试剂微量肉汤稀释法(8浓度)万古霉素药敏试剂微量肉汤稀释法(8浓度)阿奇霉素药敏试剂微量肉汤稀释法(8浓度)卡那霉素药敏试剂微量肉汤稀释法(8浓度)克林霉素药敏试剂微量肉汤稀释法(8浓度)红霉素药敏试剂微量肉汤稀释法(8浓度)青霉素药敏试剂微量肉汤稀释法(8浓度)氯霉素药敏试剂微量肉汤稀释法(8浓度)利奈唑胺药敏试剂微量肉汤稀释法(8浓度)链霉素药敏试剂微量肉汤稀释法(8浓度)四环素药敏试剂微量肉汤稀释法(8浓度)利福平药敏试剂微量肉汤稀释法(8浓度)阿莫西林/棒酸药敏试剂微量肉汤稀释法(8浓度)替卡西林/棒酸药敏试剂微量肉汤稀释法(8浓度)12浓度)阿奇霉素药敏试剂微量肉汤稀释法(12浓度)卡那霉素药敏试剂微量肉汤稀释法(12浓度)克林霉素药敏试剂微量肉汤稀释法(12浓度)GC琼脂平板乙腈甲酸头孢硝噻吩纸片
  • “欧波同杯”长春师范大学金相技能大赛圆满结束
    2019年5月23日,“欧波同杯”长春师范大学金相技能大赛决赛在工程学院圆满落幕。本次大赛由长春师范大学工程学院主办,欧波同(中国)有限公司冠名赞助。大赛共吸引了一百余位学生报名参加,经过初赛、复赛较量,最终三十五位选手进入决赛,并选拔出三位优胜者参加全国大学生金相大赛。此次比赛分为磨制、抛光、腐蚀和观察四个阶段。评委根据选手操作规范、金相图像质量和样品表面质量三部分评分。经过激烈角逐,在评委们认真细致的评审下,最终评选出特等奖一名,一等奖三名,二等奖五名,三等奖九名。欧波同代表出席了大赛闭幕式,并为获奖学生颁奖。金相技能大赛是对金属材料基础知识和实验技能的双重选拔,学生们通过金相大赛,展示了非常优秀的专业能力。通过理论与实践的结合,促进材料学科人才的能力提升。欧波同作为实验室解决方案服务商,目前拥有非常全面的显微分析产品线和非常专业的行业解决方案。客户群体涉及多个领域,与全国各地企业、高校、科研院所建立了广泛的合作。除了为高校教研工作提供高品质的显微分析设备以外,更加注重技术的交流合作,多次支持全国各地高校举办的金相技能大赛。欧波同也希望能够通过本次大赛,为培养专业型创新人才助力,推进高校材料学科的快速发展。
  • 质谱大会颁奖典礼暨闭幕式——中国化学会第二届质谱分析学术报告会圆满落幕
    p   span style=" font-family: times new roman "   /span strong span style=" font-family: times new roman " 仪器信息网讯 /span /strong span style=" font-family: times new roman " 2015年10月19日上午,由中国化学会和国家自然科学基金委员会主办、中国化学会质谱分析专业委员会和浙江大学化学系承办的中国化学会第二届全国质谱分析学术报告会胜利闭幕。会议颁奖典礼暨闭幕式在浙江大学紫金港校区蒙民伟楼举行。中国化学会质谱分析专业委员会组织委员会副主任、浙江大学教授潘远江主持了闭幕式。 /span /p p style=" text-align: center " span style=" font-family: times new roman " img title=" IMG_4810_副本.jpg" src=" http://img1.17img.cn/17img/images/201510/insimg/2698ddbb-fdd2-4510-b2af-5d3c59a31142.jpg" / /span /p p style=" text-align: center " span style=" color: rgb(0, 32, 96) font-size: 14px " strong span style=" font-family: times new roman font-size: 14px " 中国化学会质谱分析专业委员会组织委员会副主任、浙江大学教授潘远江 /span /strong /span /p p span style=" font-family: times new roman "   为了鼓励和表彰本次会议的青年论坛优秀报告和墙报,会议特设“岛津杯优秀青年报告奖”和“日立高新杯优秀墙报奖”。 /span /p p span style=" font-family: times new roman "  & nbsp & nbsp 岛津公司分析测试仪器市场经理胡家祥向获得“岛津杯优秀青年报告奖”的16位青年学者表示祝贺,并邀厦门大学院士赵玉芬共同为获奖者颁奖。 /span /p p style=" text-align: center " span style=" font-family: times new roman " img title=" IMG_4815_副本.jpg" src=" http://img1.17img.cn/17img/images/201510/insimg/35516589-5fc2-45d6-ad1c-4218774027d3.jpg" / /span /p p style=" text-align: center " span style=" color: rgb(0, 32, 96) font-size: 14px " strong span style=" color: rgb(0, 32, 96) font-family: times new roman font-size: 14px " 岛津公司分析测试仪器市场经理胡家祥 /span /strong /span /p p span style=" font-family: times new roman "   /span span style=" font-family: times new roman " img title=" IMG_4833_副本_副本8.jpg" src=" http://img1.17img.cn/17img/images/201510/insimg/e1e50f5e-4f21-40d1-8c18-175772cbc207.jpg" / /span /p p style=" text-align: center " span style=" color: rgb(0, 32, 96) font-size: 14px " strong span style=" color: rgb(0, 32, 96) font-family: times new roman font-size: 14px " “岛津杯优秀青年报告奖”颁奖现场 /span /strong /span /p p span style=" font-family: times new roman "   日立高新技术公司液相产品部经理梁仁雷向获得“日立高新杯优秀墙报奖”的30位作者表示祝贺,并分别邀中国科学院化学研究所研究员陈义、清华大学教授林金明、浙江大学教授潘远江共同为获奖者颁奖。 /span /p p style=" text-align: center " span style=" font-family: times new roman " img title=" IMG_4841_副本.jpg" src=" http://img1.17img.cn/17img/images/201510/insimg/68667ff0-72a7-4a17-9cd6-8e885f80a6cf.jpg" / /span /p p style=" text-align: center " span style=" color: rgb(0, 32, 96) font-size: 14px " strong span style=" color: rgb(0, 32, 96) font-family: times new roman font-size: 14px " 日立高新技术公司液相产品部经理梁仁雷 /span /strong /span /p p style=" text-align: center " img title=" IMG_4833_副本_副本.jpg" src=" http://img1.17img.cn/17img/images/201510/insimg/874de1e6-6bb5-429c-b908-6d4fb4600f88.jpg" / /p p style=" text-align: center " span style=" color: rgb(0, 32, 96) font-size: 14px " strong span style=" color: rgb(0, 32, 96) font-family: times new roman font-size: 14px " “日立高新杯优秀墙报奖”颁奖现场 /span /strong /span /p p style=" text-align: left " span style=" font-family: times new roman "   中国化学会质谱分析专业委员会秘书长、清华大学教授林金明为大会致闭幕辞。林金明代表中国化学会质谱分析专业委员会正、副主任及全体委员向承办本次会议的浙江大学化学系表示感谢,同时感谢报告嘉宾和全体参会代表以及16家赞助企业。“特别感谢浙江大学化学系潘远江、孙翠荣二位教授和服务会议的志愿者们!也要感谢幕后收集和制作会议摘要和《质谱团队简介》的清华大学林海峰老师。”林金明在致辞中说。 /span /p p style=" text-align: center " span style=" font-family: times new roman " img title=" IMG_4881_副本.jpg" src=" http://img1.17img.cn/17img/images/201510/insimg/0367944b-ccfc-4335-8522-7ba27504c4ea.jpg" / /span /p p style=" text-align: center " span style=" color: rgb(0, 32, 96) font-size: 14px " strong span style=" color: rgb(0, 32, 96) font-family: times new roman " 中国化学会质谱分析专业委员会秘书长、清华大学教授林金明 /span /strong /span /p p span style=" font-family: times new roman "   林金明简要总结了会议情况:本次会议的17个大会报告、56个邀请报告、54个口头报告、26个青年论坛报告和200篇墙报都经过了质谱分析专业委员会的精心挑选。会议专门成立青年论坛评选小组对青年论坛和墙报进行专业评审。 /span /p p span style=" font-family: times new roman "   中国化学会质谱分析专业委员会自2013年成立以来,在委员会主任陈洪渊院士的领导下群策群力,短短两年时间已经发展到1000人以上规模的学术交流平台。林金明表示相信在这种良好氛围下我国质谱的基础教育、创新研究、技术开发、产业化和国际交流等方面都会得到快速发展。最后,林金明宣布本届大会圆满闭幕。 /span /p p style=" text-align: right " span style=" font-family: times new roman "   撰稿:郭浩楠 /span /p p br/ /p
  • 空气醛酮污染亟待检测,艾杰尔受任于“危难”
    甲醛等羰基化合物是城市大气中主要的污染物,甲醛污染的主要来源包括汽车尾气排放,煤气及吸烟,在使用某些化学物质的工业生产过程中也会释放甲醛。在室内,甲醛来自硬木镶板,尿素、甲醛泡沫塑料制成的绝缘材料和家具。车内空气中所含的甲醛多是来自座椅沙发垫、车顶装饰布内衬等装饰材料。在美国健康和公共事业部及公共卫生局发布的致癌物质的报告中,已将甲醛列入一类致癌物质。国际癌症研究机构已经于2004年将甲醛上升为第一类致癌物质。专家研究认为,有足够的证据可以证明甲醛引起人类的鼻咽癌、鼻腔癌和鼻窦癌,并有证据证明甲醛可引发白血病。目前,国内已有多起由空气中甲醛超标引起的诉讼案。 醛酮检测势在必行:呼唤优越的检测方法 检测甲醛等羰基化合物在大气、室内,车内以及其他场所的含量水平和分布规律是十分重要的。但羰基化合物在大气中的浓度非常低,需要比较灵敏的方法才能检测,国内很多行业制定了空气中污染物的检测方法和标准,其中所有涉及检测甲醛和羰基类污染物方法中的大部分均采用DNPH衍生法。 汽车内空气中醛酮组分较为复杂,通常含有甲醛、乙醛及丙烯醛等多种物质,且含量分布较广,分光光度法不能同时测定多种醛酮组分,与气相色谱法相比,采用2,4-DNPH 吸附管吸附高效液相色谱法具有操作简便快捷、结果稳定等特点。 检测配件尚需进口:成本高,质量无保证 为了保护环境,促进人体健康,改变目前国内尚无车内环境检测标准的现状,为检测车内空气污染物工作提供技术依据,我国有关部门正在加紧制定国家环境保护标准&ldquo 车内空气污染物测量方法&rdquo 。方法征求意见稿中采用2,4-DNPH 吸附管吸附高效液相色谱法,正式的方法出台后,汽车生产厂家和检测机构将会大量使用DNPH-Silica样品采集管,检测成本也会因此成为影响效益的瓶颈问题。 目前国内使用的DNPH-Silica采集管全部从国外进口,由于DNPH-Silica采集管需要在4℃冷藏,不仅价格昂贵,而且供货周期漫长,质量无法保证。基于此现状,国内相关领域的企业也转向DNPH-Silica采集管的研发与生产,期望能够取代进口产品,降低使用成本,保证产品质量。 展望:艾杰尔将填补国内空白 北京艾杰尔科技有限公司在现有SPE产品技术的基础上,进行了国产DNPH-Silica气体样品采集管的研发,该项目已列入北京市海淀区2007年科技支持项目,完成了实验室试制,得到了小试样品,并对样品的质量进行了初步评价,其功能与进口产品性能相当,符合羰基化合物采样分析的要求;如能实现规模化生产,将对检测和监测大气环境污染起到很好的作用。本项目产品不但可替代进口,填补国内该类产品的空白,而且本产品的价格远低于进口产品,并可保证质量和及时供货。
  • 用磁场做导航 纳米机器人精准搏杀肿瘤细胞
    团队用靶向给药微纳米机器人在小鼠身上做了实验。他们用了乳腺癌细胞种植的皮下肿瘤模型,对30只小鼠跟踪了30天。团队发现,这种方法对小鼠肿瘤确有靶向杀伤作用,且对周围正常组织的影响最小。  上映于1966年的科幻电影《神奇旅程》,讲了这么一个故事:为给一名科学家实行高难度血管手术,5名医生被缩小成头发丝大小,置于针筒中,注射进他体内。5人驾驶着“潜艇”,躲过了免疫细胞的攻击,一路乘风破浪,成功完成任务。  50多年过去,当初的幻想,已经部分成为了现实。微纳米医疗机器人,就被认为是一种颇具前途的智能给药平台,目前被广泛用于肿瘤的靶向治疗。  近日,北京航空航天大学机械工程及自动化学院“卓越百人”副教授、博士生导师冯林课题组,研究出了一种新的更为智能的肿瘤靶向机器人。它有了伪装,还有了导航,能够在磁场的驱动下,精准抵达战场,投掷杀伤肿瘤的弹药。  让巨噬细胞吞下纳米药物,变身微纳米机器人  让纳米机器人装载药物,到达指定地点,定向治疗炎症或清除肿瘤,这是医学纳米技术的终极目标之一。但传统微纳米机器人在人体内的运动,其实靠的是分子之间的结合力,这是一种“被动靶向”,难免脱靶。“就好比我们知道,人群中具有某种特质的两类人可能会碰上。但茫茫人海中你最后碰上的是不是想要的人,其实要打一个问号。”冯林说。  而且,也如当初那部电影里所展示的,被注射进人体内的纳米机器人,稍有不慎,就会遭到兢兢业业工作的免疫细胞的攻击。  能不能让这类医疗机器人更为安全且精准地到达要去的地方?  2016年从日本回国后,冯林就一直思考这个问题。在北航机器人所的支持下,冯林和陈华伟老师合作申请获批了国家重点研发计划—机器人重大项目“靶向给药微纳米机器人”。在一次讨论中,陈华伟问可不可以让活细胞作为载体。这句看似很随意的提问提醒了冯林:直接让活的细胞吞进载药纳米颗粒变身微纳米机器人行不行?  他们想到了巨噬细胞——这是一种喜欢吞食并处理异物的细胞。  合适的载体和“伪装”找到了,接下来,就是设计机器人的“导航系统”。  磁性纳米颗粒可以由磁场来控制,药物释放可以利用红外或者超声波。几乎是从零开始,冯林团队自行设计了复合磁控系统。他们从电子线圈开始设计,一点点调整、摸索技术参数。磁性纳米颗粒进入小鼠体内后,通过这套系统,他们可以在体外对其行走路径进行高精度控制。  再接下来,就是让磁性纳米颗粒装载药物,并让它在合适地点,通过合适方式,释放药物。  这款机器人其实设计有许多层。在阿霉素外层,是聚乙二醇,一种具有良好水溶性的高分子化合物;再外一层,是吲哚菁绿,它是药物研究中常用的荧光标记物,帮助科研人员判断机器人所在的位置。最后他们还包裹了一层脂质体,它具有非常高的生物相容性。  团队还为机器人设计了一个开关——近场红外光。近红外光穿透表层皮肤,磁性纳米颗粒吸收光线,产生热量,会释放出阿霉素。  如此一来,纳米机器人基本实现“指哪打哪”的效果。  “接收指令,执行指令,完成任务,在我们做机械的人眼中,具备这些能力的,才是智能的机器人。”冯林说。  团队用靶向给药微纳米机器人在小鼠身上做了实验。他们用了乳腺癌细胞种植的皮下肿瘤模型,对30只小鼠跟踪了30天。团队发现,这种方法对小鼠肿瘤确有靶向杀伤作用,且对周围正常组织的影响最小。  9月,纳米科学领域权威期刊《小》(Small)以封面文章的形式报道了课题组的研究成果。  在机械学院,他们建立生物医学实验室  冯林的团队中,有好几个医学生物专业出身的博士。在他的机械实验室里,还有一块专门区域,用来做生物医学实验。  所以,你能看到这样一个略显奇特的景象——实验室里,有各类机械模型,有专业级的显微镜,以及小白鼠。  去采访时,由于已经结束了上一轮的实验,小白鼠所剩不多,正在笼子里踱来踱去,安度余生。  冯林是“80后”,本科学的电子信息工程,硕士专业是生物机器人,博士留学日本名古屋大学,跟着导师新井史人教授一头扎进了更为微观的世界——微纳米机器人。  回国后,冯林来到北航,获得北航“卓越百人”,加入了机械学院张德远老师领导的仿生与微纳系统研究所,之后又得到北京市“科技新星”资助。北航提倡“医工结合”,冯林也被聘入了北京市生物医学工程高精尖中心,更深入地进入到医疗机器人领域。  “不能只是炒概念,说纳米机器人未来能如何如何。”冯林一直存着这个念头,就是要真正把纳米机器人打入体内,真正杀死体内的肿瘤细胞。  就在不久前,冯林指导的学生团队凭借Medcreate磁悬浮胶囊机器人在第七届中国国际大学生“互联网+”创新创业大赛中获得本科生创意组全国第五名。  它用到的技术,也是“复合场磁控”。  这是一款主动可控高速图像传输型胶囊机器人,能对胃部等大体积消化道器官进行全方位无死角视频探查。胶囊机器人可以悬浮运动,无需改变患者体位,就能完成整个胃部的覆盖式检查。  冯林为学生取得的成绩高兴,但他也知道,要完善各类治疗型的微纳米机器人,还“路漫漫其修远兮”。  从小鼠到人体,从试验到临床,还需要一步步完善和摸索,这并非坦途。“你要舍得花一辈子的时间。”冯林说。
  • STRIVING FOR THE BEST —— 欧波同新春年会暨颁奖盛典
    年年如意,岁岁吉祥,千家万户团圆日。龙腾虎跃,佳音频传,金鼠贺岁满园春!2020年1月21日,《Striving for the best》 欧波同集团新春年会暨颁奖盛典在鞍山铂尔曼酒店隆重举行。欧波同集团全体员工齐聚一堂,共同回顾2019,分享收获的喜悦,展望2020,确立新阶段的宏伟蓝图。集团董事长皮晓宇先生上台致新春贺词,向全体员工及家属送上诚挚的祝福。致辞中,皮晓宇董事长肯定了员工们在过去一年里的勤恳付出,鼓励大家再接再厉,协力攀向更高的山峰。并向为公司发展积极拼搏的全体员工,表达了衷心的谢意。皮晓宇先生向大家介绍了欧波同集团下一个十年的发展规划,确立了新阶段的奋斗目标。2019年对于欧波同来说是不平凡的一年,企业规模快速增长,核心产线优化升级,每一位员工都在自己的岗位上播撒着智慧和汗水。为表彰员工们兢兢业业、勤于业务的精神,集团对优秀的员工进行隆重嘉奖。年会现场颁发了优秀新人奖、优秀员工奖、优秀Callcenter助理奖、优秀经理奖、优秀销售团队奖、业绩突破奖、销售冠军奖、十年成就奖等诸多奖项。旨在肯定员工对公司的付出,更是激励大家在2020年激流勇进,奋斗不息。年会节目更是精彩不断,各部门员工才艺与创意迸发,歌舞、小品、乐器、创意节目等类型多样,青春活力,美轮美奂。这一环节高潮迭起,掌声不断,现场气氛其乐融融。自信的舞步,灿烂的笑脸,彰显了欧波同人奋发向上的精神面貌。我们执着地奔跑在追梦之路上,信心百倍,不负韶华。举杯同庆,憧憬未来。年会晚宴上,皮晓宇董事长致祝酒词,大家共同举杯,感恩收获颇丰的2019,迎接希望满载的2020。骄傲的成绩,美好的未来,公司的实力增长带给每一位员工十足的动力,充满活力与温情的企业文化,更体现了欧波同人齐心协力、一往无前的坚定信心。万象更新,未来如画。我们的热血因梦想沸腾。璀璨征程,蓄势待发,我们踏着时代强音,舞动科技的力量。远征的号角已经吹响,让我们再次扬帆起航!
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制