当前位置: 仪器信息网 > 行业主题 > >

甲基奥洛波尔

仪器信息网甲基奥洛波尔专题为您提供2024年最新甲基奥洛波尔价格报价、厂家品牌的相关信息, 包括甲基奥洛波尔参数、型号等,不管是国产,还是进口品牌的甲基奥洛波尔您都可以在这里找到。 除此之外,仪器信息网还免费为您整合甲基奥洛波尔相关的耗材配件、试剂标物,还有甲基奥洛波尔相关的最新资讯、资料,以及甲基奥洛波尔相关的解决方案。

甲基奥洛波尔相关的资讯

  • 2010波尔多国际红酒装备展VINITECH BORDEAUX
    2010年11月30日-12月2日,2010波尔多国际红酒装备展VINITECH BORDEAUX在法国波尔多举行。AMS France (Alliance instruments) 是世界上最为专业的红酒分析仪器供应商,已经成功几届参加了VINITECH. 连续流动分析仪FUTURA和PROXIMA在欧洲红酒市场已经有上百个客户。中国主要的红酒生产厂家如张裕,王朝,长城等。 另外集团子公司美国UNITY的近红外分析仪,AMS FRANCE的INFRASCAN酒精度分析仪此次也在VINITECH展出。 AMS 公司红酒分析解决方案下载地址 http://www.instrument.com.cn/netshow/SH101937/down_151783.htm http://www.alliance-instruments.com/index.php
  • 2010波尔多国际红酒装备展VINITECH BORDEAUX
    2010年11月30日-12月2日,2010波尔多国际红酒装备展VINITECH BORDEAUX在法国波尔多举行。AMS France (Alliance instruments) 是世界上最为专业的红酒分析仪器供应商,已经成功几届参加了VINITECH. 连续流动分析仪FUTURA和PROXIMA在欧洲红酒市场已经有上百个客户。中国主要的红酒生产厂家如张裕,王朝,长城等。 另外集团子公司美国UNITY的近红外分析仪,AMS FRANCE的INFRASCAN酒精度分析仪此次也在VINITECH展出。 AMS 公司红酒分析解决方案下载地址 http://www.instrument.com.cn/netshow/SH101937/down_151783.htm http://www.alliance-instruments.com/index.php
  • 为消费电子龙头检测表面缺陷,玻尔智造获数千万Pre-A轮融资
    36氪获悉,工业视觉方案提供商「玻尔智造」日前获数千万元Pre-A轮融资,领投方为浩澜资本,毅仁资本担任独家财务顾问。本轮融资资金将用于自主光学成像方案和AI技术进一步研发。玻尔智造成立于2020年,结合自研光学方案及AI算法,主要对消费电子产品进行表面缺陷检测。依靠核心技术与缺陷检测效果,如今玻尔智造已成为某消费电子龙头在外观缺陷检测领域的全球专项战略供应商。机器视觉检测此前多应用于面板、PCB、印刷等行业,主要针对单一均匀的二维平面。消费电子产品因存在异形、复杂的三维面等,外观缺陷检测仍主要由人工目检完成。这意味着相当数量的工人需要在高亮度灯光下近距离且长时间观察被检物件,既可能对人眼造成损伤,也存在准确性、稳定性、工作时长等限制。同时,消费电子产品外观缺陷检测存在诸多难点,包括需检测多种表面形态、不同材质、数百种缺陷类别等。以看似简单的手机充电器为例,不仅同时包含塑胶和金属材质,且有平面、弧面、球面等多种表面形态。其他产品如含充电仓的无线耳机等,更存在异形曲面等复杂结构。对此,玻尔智造选择结合自研自控的光学成像方案以及AI图像识别算法,进行整机集成。“打通光学和算法软件的搭配协作,整机才能灵活运用。”玻尔智造CEO&CTO陈志忠告诉36氪。其中,光学方案就像一双眼睛,面对不同材质、曲率、反射率的检测对象,需要综合打光弧度、光源波长等要素,通过光源、镜头、相机的组合应用,实现被检物品的清晰成像。完整的光学方案,需要具备一次成像能力,拍摄速度要跟上产线生产速度,并考虑设备生产和成本核算的可行性。图源企业玻尔智造团队所积累的视觉检测经验,能够在面对不同材质、结构的被检品时,短时间内提出有效的光学整体方案。对于一般方案中的缺陷成像难点,如磨砂面轻微划伤、金属麻点差异成像等,玻尔智造亦有独家技术解决,能够得到清晰、经增强的缺陷图像。基于光学方案得到的清晰影像,玻尔智造检测设备进一步通过AI图像算法对缺陷进行识别。针对部分产品及结构的检测,玻尔智造已与行业龙头客户达成独家量产合作,进一步在实际生产线中积累一手且海量的被检品图像数据库。对于集成了光学方案与软件算法的检测设备整机,玻尔智造采用了模块化设计,包括机械平台、算法平台、光学模块及机械模块。整机设备可根据实际需求对模块进行组合,配合不同产品、厂商的检测要求,以单台设备兼容多款产品检测。部分外观缺陷检测整机设备展示,图源企业面对多面、多材质、多缺陷种类的检测对象,玻尔智造设备能够在2s内完成运动、成像、识别等系列操作,相比30s标准人工工时,时长缩短至1/15。目前,玻尔智造在某龙头客户电源产品检测领域的市占率居于首位,并将拓展更多材质与结构检测,适应更多检测对象的需求。同时,结合客户的全球化布局,玻尔也将进一步开拓印度、越南市场。未来,玻尔智造计划以消费电子行业为根基,依托在中国台湾既有的资源积累,进一步向半导体领域探索,现已能完成10微米级的陶瓷基板检测。玻尔智造新的研发及组装中心将落地上海、诸暨等。玻尔智造团队研发人员占比超60%,CEO&CTO陈志忠为台湾省台湾大学化学所物理化学博士,有20余年集成视觉技术经验,拥有个人发明专利40+,发表SCI 15+,曾作为核心成员带领某台企上市,并曾任某上市工业视觉企业核心研发负责人。团队创始成员曾任职行业内全球五百强企业,具备开拓视觉检测供应商经历,拥有较强先进制造落地经验。投资方观点本轮领投方浩澜资本主管合伙人王曦表示:消费电子行业的缺陷检测,随着某龙头客户体系全面用外观缺陷检测设备取代过去的人力检测,正面临巨大的市场机会。玻尔智造作为该龙头客户战略供应商之一,在巩固消费电子行业头部位置的同时,更向半导体领域进行开拓和探索。公司积累多种材质的海量图像数据库, 更为公司技术的迭代和建立壁垒打下基础。浩澜资本会坚定持续地运用我们在先进制造和半导体行业的产业资源和资本能力,支持坚定自主创新,扎实商业落地的“硬科技”企业进入健康发展的快车道。诸暨经开区作为智能视觉“万亩千亿”新产业平台,全力支持智能视觉产业链科创企业的创新和发展,通过一系列专项政策让人才留得住、让优质项目发展得好。
  • 以技术研发为巨擘,社会责任为依托----访无锡中德伯尔生物技术有限公司副总裁袁杰
    p   2015年10月1日,新《食品安全法》颁布实施,确定了食品安全快速检测产品执法合法化 此外,食品安全快速检测技术已被列入“十三五”国家科技创新规划 加之近年来政府持续加大投资建设食品安全源头基层单位,全国各地也纷纷推广建设食品快检实验室。并且由国家食品药品监督管理总局等多个部门和机构发布的消息称,我国未来食品污染物和有害因素监测将覆盖全部县级行政区域,监测网点扩大到2870个,预计将拉动食品检测市场规模超过200亿元,年均复合增速超过50%。得益于这一庞大的市场需求,中国食品快速检测设备行业发展迅猛,成为食品安全领域的一大亮点。 /p p   行业的发展带动了食品快检设备生产企业的蓬勃发展。2016年,集食品快检设备、试剂耗材和软件的开发、生产、销售于一体的江西中德生物工程股份有限公司(简称中德生物)于新三板挂牌,并取得了营收同比增长85%,净利润增幅238%的成绩。那么,其增长背后的深层次原因是什么?为此,在第三届食品质量与安全学术研讨会上,仪器信息网的编辑采访了中德生物旗下子公司——无锡中德伯尔生物技术有限公司的副总裁袁杰先生,为您探索中德生物的食品快检经营之道。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201708/insimg/5fad9269-1be5-4f49-bdd0-10aab8f87b66.jpg" title=" 照片.jpg" / /p p style=" text-align: center " span style=" color: rgb(127, 127, 127) " 无锡中德伯尔生物技术有限公司副总裁袁杰(右二)、仪器信息网市场部负责人张小师(右一) /span /p p   采访中,袁杰首先简单介绍了中德生物:中德生物创建于2002年,是集食品安全检测试剂、仪器、软件于一体的产业化集团,是国家级高新技术企业。凭借强大制造水平和研发能力,中德生物多次承担国家级科研项目,如国家“十五”攻关项目、国家“863”、科技部“十五”国家重大科技专项、农业部“948”项目课题承担单位等。 /p p    span style=" color: rgb(0, 112, 192) " strong 以技术研发为巨擘 /strong /span /p p   中德生物采取以自主研发为主,合作研发为辅的模式,以技术研发来增强市场竞争能力,为公司的可持续发展奠定基础。公司研发投入逐年增加,2016年研发投入为682.83万元,同期增加43.60%,占公司营收的10% 研发人员也有所增加,2016年期末研发和技服人员共71人,占公司总人数近20%。同时,公司已与中科院、北大、清华等国内外院校开展了跨行业的交流。根据市场的发展趋势,公司对技术、产品进行及时更新和优化。袁杰认为未来的食品快检设备将向智能化、多样化、高端化、高性价比等多方面发展,公司也将根据不同的市场需求,结合其他先进技术,为政府、食品企业、消费者等客户提供一站式整体解决方案。 /p p    span style=" color: rgb(0, 112, 192) " strong 以社会责任为依托 /strong /span /p p   采访中,袁杰反复提及“社会责任”。他表示,食品安全不仅关系着老百姓的身体健康和生命安全,更关系着社会的稳定与发展。作为食品安全快检领域的领军企业之一,中德生物有责任引导食品安全快检行业健康有序的发展。同时,中德生物始终积极承担和履行社会责任,充分践行中德生物 “中德致用,格物厚生” 的企业理念。 /p p   采访中,袁杰对其两款产品也分别进行了介绍。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201708/insimg/758d6168-ea02-42a6-b711-b3fa34bbba19.jpg" title=" 仪器1.png" / /p p   袁杰首先向记者介绍了其针对农残检测研发的产品—ZN-600全自动农药残留检测仪。“这款产品是用于水果、蔬菜等农产品中有机磷和氨基甲酸酯类农药残留的检测仪器,其采用国标中的酶抑制率法并实现了农药残留快速检测的全自动化。操作简单,重复性好,检测成本低,适用于农贸市场、基层检验所等果蔬农药的大批量现场检测。且其运用了中德生物自有的知识产权,在一定程度上填补了国内市场的空白。” /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201708/insimg/7dc7dd6a-fe7c-4c9e-8a30-41ba3cc88992.jpg" title=" 仪器2.jpg" / /p p   紧接着袁杰还向记者介绍了ZJ-600多通道胶体金读取仪。袁杰表示,胶体金卡通常一卡只能检测一个项目,而中德生物的多联卡带来了检测方式的革命。ZJ-600是市面上极少能识读多联卡、支持多通量的仪器,它迅速提高了工作效率。同时它具有检测结果准确、检测速度快、操作简便等优点,尤其适合检测样本量较多的场合。 /p p   袁杰认为,目前食品快检市场混乱且良莠不齐,甚至会存在不正当竞争。但经过阵痛、优胜劣汰之后,行业必会逐步规范,市场也会逐步完善。为了更好地在市场竞争中保持优势,中德生物充分理解并顺应国家政策,同时提高研发水平和管理水平。下一步,中德生物将以技术创新保障企业的可持续发展,通过技术平台的创新实现产品在行业内的纵深发展 同时,进一步介入数据分析,构建食品快速检测网络及综合监管大数据,完善食品安全溯源体系。 /p p   “中德致用,格物厚生”,中德生物旨在提供高效、灵敏、快速、廉价的食品安全检测解决方案,成为中国老百姓可信赖的食品安全检测专家。 /p
  • 中国计量院与土耳其国家计量院签署合作谅解备忘录
    p !--enpproperty articleid 5105110 /articleid date 2017-11-14 08:39:35.0 /date author /author title 中国计量院与土耳其国家计量院签署合作谅解备忘录 /title keyword /keyword subtitle /subtitle introtitle /introtitle siteid 2 /siteid nodeid 20556 /nodeid nodename 第二版 /nodename nodesearchname /nodesearchname picurl /picurl /enpproperty-- !--enpcontent-- !--enpcontent-- /p p style=" MARGIN: 0px 3px 15px TEXT-INDENT: 30px" 日前,土耳其国家计量院(TUBITAK UME)与中国计量科学研究院(以下简称中国计量院)在京签署计量合作谅解备忘录。中国计量院院长方向、土耳其国家计量院院长穆斯塔法· 赛汀塔司分别代表两国国家计量院在谅解备忘录上签字。 /p p style=" MARGIN: 0px 3px 15px TEXT-INDENT: 30px" 赛汀塔司一行4人首先参观了位于中国计量院昌平院区的量子化霍尔电阻基准、约瑟夫森电压基准、计算电容、焦耳天平、玻尔兹曼常数测量、原子干涉重力仪、纳米材料测量、气体流量计量和化学计量实验室,与实验室主要负责人交流了有关技术细节和服务情况。随后,双方在该院和平里院区举行了交流座谈,并就开展计量合作签署谅解备忘录。 /p p style=" MARGIN: 0px 3px 15px TEXT-INDENT: 30px" 这是中国计量院首次与中东地区国家计量院签署合作协议。根据协议,双方将在共同关注的领域开展联合研究和技术开发,合作构建一条横跨欧亚、辐射中东、互认互信的计量纽带,为“一带一路”相关国家质量基础水平提升贡献力量。 /p p style=" MARGIN: 0px 3px 15px TEXT-INDENT: 30px" 土耳其国家计量院是土耳其科学技术研究理事会(TUBITAK)的研究机构之一,隶属土耳其科学技术与工业部。该院下设物理、力学、化学三大研究所,计量能力覆盖除电离辐射外的一般物理领域和化学领域。土耳其国家计量院在中东地区具有一定技术影响力,是欧洲区域计量组织(EURAMET)正式成员、海湾地区计量组织(GULFMET)附属成员。 《中国质量报》 /p p !--/enpcontent-- !--/enpcontent-- /p
  • 科学界的“奥斯卡”:2017 年科学突破奖揭晓
    美国当地时间12月4日晚间,有着“科学界奥斯卡”称号的科学突破奖(Breakthrough Prize)在硅谷NASA艾姆斯研究中心公布。多位科技亿万富翁、名流和杰出科学家齐聚NASA的艾姆斯研究中心,共同庆祝科学界今年取得的多项重大成就。多名科学家因在生命科学、基础物理学及数学领域做出的杰出贡献,分享了2500万美元的奖金。  今年是科学突破奖成立的第五年,该奖项由Facebook公司创始人马克扎克伯格,联合Google公司创始人谢尔盖布林及俄罗斯风险投资家Yuri Milner等人共同设立,奖项设置有数学突破奖、物理学突破奖、生命科学突破奖、物理新视野奖、数学新视野奖等多个奖项,用来表彰在生命科学、基础物理学以及数学领域做出杰出贡献的人。  值得一提的是,马云夫妇于2013年加入科学突破奖基金会,每年捐赠300万美元。  在生命科学领域,有5人获得各300万美元的奖金。具体是哈佛医学院的斯蒂芬埃利奇发现细胞如何感知和应对DNA损伤以及这与癌症的发展和治疗之间的关系 加州大学圣克鲁兹分校的哈里诺勒揭示了RNA在核糖体合成中的重要作用,将现代生物学与生命的起源关联起来 斯坦福大学的罗兰德努瑟在Wnt通路(促进细胞分裂且是关键的细胞间信号系统之一)领域做出了开拓性的研究 2016年诺贝尔生理学或医学奖获得者、日本东京工业大学的大隅良典再次因发现细胞自噬背后的机制而获奖 贝勒医学院的胡达佐格比成功揭示了包括脊髓小脑共济失调等在内的神经退化和神经疾病的遗传和生化机制,有助于阿尔茨海默病等神经疾病的药物研发。  “基础物理学突破奖”已于今年5月份授予首次探测到引力波的激光干涉引力波天文台(LIGO)的科学家,LIGO的三位创办者:加州理工学院的罗纳德德雷弗、基普索恩以及麻省理工学院的雷纳韦斯分享100万美元 剩下200万美元由1012名参与者平均分配。  基础物理学另外300万美元的奖金由加州理工大学圣巴巴拉分校的约瑟夫波尔钦斯基、哈佛大学的安德鲁施特罗明格和卡姆朗瓦法分享,以表彰他们分别在黑洞、量子引力和弦理论领域所做的贡献。  普林斯顿高等研究所的辛康布尔甘在分析学、组合学、偏微分方程、高维几何以及数论等领域做出了巨大贡献,独享“数学突破奖”300万美元的奖金。  据了解,包括科学突破奖在内,由往届获奖者组成的小组委员会今年共授予了15个奖项,其中包括6个奖金10万美元的New Horizons奖,一个奖金25万美元的Breakthrough Junior奖。这些奖项的总金额高达2500万美元。  扎克伯格在颁奖典礼上说:“我们用了更多的时间去关注、支持科学,2017年科学突破奖的获得者们是物理学、数学和生命科学界的领军人物,他们的突破将开启新的可能性,帮助这个世界变得更好。”
  • 英肖仪器预祝2024年巴黎奥运会中国体育代表团取得佳绩 —— 盛况前瞻与美好祝愿
    在全球亿万双眼睛的热切期盼中,第33届夏季奥林匹克运动会,即万众瞩目的2024年巴黎奥运会,即将在法国的璀璨明珠——巴黎拉开帷幕。这座城市,以其独特的魅力融合了历史的深邃与现代的活力,正以最热烈的姿态迎接这场全球体育的顶级盛宴。这不仅仅是一场运动员们展现技艺与毅力的竞技场,更是全球人民共襄盛举、传递友谊与和平的璀璨庆典。英肖仪器预祝2024年巴黎奥运会中国体育代表团取得佳绩 —— 盛况前瞻与美好祝愿巴黎,这座充满艺术气息与深厚历史底蕴的城市,每一处都散发着迷人的魅力。从雄伟壮观的埃菲尔铁塔到蜿蜒流淌的塞纳河,从古典优雅的卢浮宫到现代化的奥林匹克体育场,它们共同构成了巴黎奥运会的独特风景线。在这里,历史与现代交织成一首动人的交响乐章,为全球的体育爱好者呈现一场前所未有的视觉与心灵的双重盛宴。中国体育代表团,作为国际体坛的佼佼者,始终以其良好的竞技水平和坚韧不拔的精神风貌赢得世界的尊敬。从昔日的默默无闻到如今的体育强国,中国运动员们用汗水和泪水铺就了一条通往荣耀的道路。对于即将到来的2024年巴黎奥运会,中国体育代表团已经做好了充分的准备,他们将以更加坚定的信念、更加昂扬的斗志,向着更高的目标发起冲击。在田径场上,中国飞人将再次挑战速度的极限;在碧波荡漾的泳池中,中国泳将们将用矫健的身姿书写水上的传奇;在乒乓球桌前,国球健儿们将捍卫荣耀,续写不败的辉煌;而在羽毛球场上,中国羽毛球队将再次刮起强劲的“中国风”。此外,在篮球、足球、排球等集体项目中,中国代表团也将全力以赴,展现中国体育的团结与力量。在这个充满激情与梦想的时刻,英肖仪器作为长期陪伴并坚定支持中国体育事业发展的坚实后盾,满怀自豪与期待地向即将踏上巴黎奥运会征程的中国体育代表团致以最热烈的祝贺与最深沉的祝福。我们深知,每一次奥运舞台的闪耀,都是运动员们无数汗水与泪水交织的结晶,是“更高、更快、更强、更团结”奥林匹克精神最生动的诠释。中国体育健儿们,你们不仅是赛场上的勇士,更是国家荣誉的捍卫者,民族精神的传承者。在即将到来的巴黎奥运会上,无论面对何种挑战与困难,我们相信你们都将以无畏的勇气、坚韧的毅力,以及超凡的技艺,向世界展示中国体育的风采与力量,为国家赢得更多的辉煌与荣耀。你们的每一次冲刺、每一次跳跃、每一次挥拍,都将是激励亿万国人前行的力量源泉。在此之际,英肖仪器也自豪地向大家推介我们的明星产品——英国肖氏(SHAW)手持式露点仪SDHmini。这款集高科技、较高精度、便捷性于一身的仪器,凭借其良好的氧化铝原理与阻容法技术,能够准确地捕捉气体中的微量水分,为电力、石油、化工、制药等多个关键领域提供至关重要的湿度监测解决方案。其小巧紧凑的设计、强大的数据处理能力(支持最多300,000个数据点的记录与传输)、以及通过ATEX、IECEx和UL等国际安全标准认证的坚实品质,确保了无论是在严苛的工业现场还是复杂的实验环境中,都能稳定可靠地运行,为科技进步与产业发展贡献力量。英肖仪器预祝2024年巴黎奥运会中国体育代表团取得佳绩 —— 盛况前瞻与美好祝愿我们坚信,正如中国体育代表团在奥运赛场上不断追求良好、勇于突破一样,英肖仪器也将持续创新,以更加优质的产品和服务,助力各行各业迈向新的高度。未来,我们期待与更多志同道合的伙伴携手并进,共同书写科技改变世界的壮丽篇章。让我们再次为中国体育代表团加油鼓劲!愿你们在巴黎奥运会的赛场上,以梦为马,不负韶华,用实际行动诠释中国力量,用辉煌战绩续写奥运传奇。预祝2024年巴黎奥运会圆满成功,中国体育代表团凯旋而归!加油,中国!更多英肖仪器预祝2024年巴黎奥运会中国体育代表团取得佳绩 —— 盛况前瞻与美好祝愿、请致电英肖仪器仪表(上海)有限公司1⃣ ️ 7⃣ ️ 3⃣ ️ 1⃣ ️ 7⃣ ️ 6⃣ ️ 0⃣ ️ 8⃣ ️ 3⃣ ️ 7⃣ ️ 6⃣ ️ ,英肖仪器仪表(上海)有限公司是进口露点仪品牌英国肖氏SHAW总代理、露点仪代表处、肖氏SHAW露点仪售后服务保障。露点仪、SADP露点仪、SDHmini露点仪、SDT-Ex露点仪变送器、防爆露点仪
  • 微波合成助力药物生产-流感特效药奥司他韦
    新冠疫情正离我们远去,然而最近甲型流感来了,大家又在抢流感药物奥司他韦。其实有了安东帕微波合成仪的帮助,可以实现快速合成奥司他韦。奥司他韦(Oseltamivir)作为抗病毒的药物,主要用于甲型和乙型流感的治疗,每当流感爆发的季节,奥司他韦就会出现热卖甚至紧缺的情况。历史上多次发生奥司他韦脱销的情况,到如今2023年的甲流盛行。为了能扩大奥司他韦的产量,各国的科学家都在研究更快速合成奥司他韦的方法。传统合成技术路线奥司他韦目前的工业化合成路线以缩丙酮保护莽草酸衍生物为原料,但是该路线需要使用危险的叠氮化钠,具有一定的安全隐患。且仅是合成时间就超过30个小时,这还不包括合成前后进行相关处理的时间。为了缩短合成的时间,提高合成的效率,科学家们都进行了各种尝试。微波合成技术路线日本东北大学的Yujiro Hayashi就利用微波合成的方式在他以前合成奥司他韦的基础上发展出了更加高效便捷的合成方法。通过在60分钟内完成5步反应,并且总收率达到15%完美的完成的磷酸奥司他韦一锅法全合成,整个合成反应的优点是一锅化反应,中间体不需要提纯,总收率高,且整个反应只需要一个小时。反应的过程是:硝基烯烃2和α-烷基醛3在三个催化剂(4,硫脲和甲酸)共同的作用下得到迈克尔加成产物6,化合物6和丙烯酸乙酯衍生物7,以叔丁醇钾为碱,乙醇为溶剂,零度下20分钟就完成反应,得到中间体8,再利用三甲基氯硅烷在&minus 40°C产生氯化氢,得到质子化的5R/5S消旋体的硝基环己烯9,接着将异构体的差向异构化,在TBAF,40°C的条件下,微波五分钟,异构体比例可达到1:1,得到消旋体9,最后使用锌粉将硝基还原成氨基,其在一般加热条件下,需要70℃下反应100分钟,但是使用微波合成,只需要5分钟,就可以结束反应。Yujiro Hayashi研究小组的这个突破性研究成果给了将来更快更高效合成奥司他韦并商业化一种可能,而安东帕微波合成设备正是实现这一可能的理想平台。▲ 安东帕微波合成&拉曼光谱仪联用 安东帕微波合成仪奥地利安东帕公司提供微波合成设备,从研发级别的Monowave到高通量 & 平行合成Multiwave5000。都能为制药领域研究有机合成的专家们提供更高效便捷可靠的合成。点击图片了解更多安东帕微波合成仪
  • 喜讯|盛奥华三款产品获得国家计算机软件证书
    近日,公司申报的三款仪器软件操作系统已获得国家计算机软件著作权登记证书,可喜可贺。其中包含:多参数水质检测仪(6B-3000A型 V10)检测系统、智能消解仪(6B-12型 V9)消解系统和新款触屏式消解仪(6B-30A型 V10)消解系统。盛奥华从创立开始,所研发生产的水质检测仪器屡有突破性地创新,先后获得各项国家专利、软件证书等,得到相关部门的肯定和用户的认可,实实在在、兢兢业业地做好产品、树好品牌、铸好厂商,不断努力,更好地回馈广大用户,为祖国的环保事业贡献绵薄之力。
  • 迎难而上,再创佳绩——访奥林巴斯(北京)销售服务有限公司上海分公司潘伟先生、王晓宁先生
    迎难而上,再创佳绩 ——访奥林巴斯(北京)销售服务有限公司上海分公司科学事业统括、产业营业二部部长潘伟先生及奥林巴斯产业营业二部副部长王晓宁先生在去年10月举办的“第25届中国国际质量控制与测试工业设备展览会(Q.C.China)”期间,《无损检测》杂志社对奥林巴斯(北京)销售服务有限公司上海分公司科学事业统括、产业营业二部部长潘伟先生及奥林巴斯产业营业二部副部长王晓宁先生进行了采访。1.2.3.4.5.6.7.8.《无损检测》杂志社 黄彬彬 撰稿来源:《无损检测》2020年11期
  • 博奥生物程京院士等14位科学家获中国生命科学“诺贝尔奖”
    11月26日上午,有我国生命科学“诺贝尔奖”之誉的2016年度第九届“谈家桢生命科学奖”颁奖典礼在武汉大学隆重举行,共14位科学家荣获该奖,颁奖典礼由奖励委员会主任、中科院院士饶子和主持。详细名单如下:  “谈家桢生命科学奖”是为纪念国际知名遗传学家、我国现代遗传学奠基人之一谈家桢先生而设立,是我国生命科学领域的最高奖项。  生命科学成就奖得主:中国工程院院士、中国科学院大学药学院院长、上海药物研究所学术委员会主任丁健(下图左) 中国工程院院士、生物芯片北京国家工程研究中心主任程京(下图右)。  丁健院士主要贡献在于领导建立了符合国际规范的抗肿瘤药物筛选和药效学评价体系,为我国抗肿瘤创新药物的自主研发提供了重要的技术支撑和能力保障,在分子靶向抗肿瘤药物的研究中取得了重要进展,是我国新药研究领域具有影响力的领军人物之一。  程京院士长期从事基础医学和临床医学相关生物技术研究,在生物芯片的研究中有重要建树和创新,他站在国际生物芯片研究前沿并结合国情,主持建立了国内急需的疾病预防、诊断和预后分子分型芯片技术体系,领导研制了基因、蛋白和细胞分析所需的多种生物芯片,实现了生物芯片所需全线配套仪器的国产化并实现了国产生物芯片类产品向欧美等发达国家的批量出口。  生命科学临床医学奖得主:中国工程院院士、浙江大学教授、博士生导师李兰娟(下图左) 复旦大学附属中山医院院长、上海市肝病研究所所长樊嘉(下图右)教授。  浙大医学院李兰娟院士从事传染病学医疗、教学和研究工作30余年,创建独特有效的人工肝支持系统治疗重型肝炎(ALSS)获重大突破。主持制定ALSS技术规范作为全国标准,积极推广至全国 获国家科技进步二等奖。建立我国第一个永生化人源性肝细胞系 创建四步灌流分离肝细胞新方法 构建新型混合型人工肝等。此外,她还担任传染病诊治国家重点实验室主任,近年来在H7N9亚型禽流感病毒方面也取得了多项重要成果,还领衔研制了针对H7N9禽流感病毒的疫苗。  樊嘉教授长期致力于提高肝癌临床治疗疗效与转移复发机制研究,在肝癌门静脉癌栓及肝癌肝移植术后转移复发的临床防治上有重大突破、在转移复发机制研究方面有重要创新,是我国肝癌领域中青年专家的领军人物。  生命科学产业化奖得主:江南大学食品学院院长、国家功能食品工程技术研究中心主任陈卫教授。  陈卫 博士,1966年5月出生,江南大学食品学院食品生物技术研究中心教授、博士生导师,长江学者特聘教授,江苏特聘教授。目前担任江南大学食品学院院长、国家功能食品工程技术研究中心主任。1988年和1995年在无锡轻工大学分别获食品科学学士和硕士学位,毕业后留校任教 1998-2003年在江南大学在职攻读博士学位,2007年和2014年分别在美国Wake Forest University 医学院和美国University of California,Davis大学做访问研究。2011年获国家杰出青年科学基金,2012年入选国家特殊人才支持计划(“万人计划”)首批科技创新领军人才 同时还先后荣获新世纪“百千万人才”工程国家级人选、国务院特殊津贴、全国“五一”劳动奖章、全国优秀科技工作者、全国先进工作者等 2012年入选教育部长江学者奖励计划创新团队(负责人)、科技部重点科技领域创新团队(负责人)。陈卫教授主要从事食品微生物学的教学和研究工作,近年来围绕乳酸菌的资源发掘与整理,益生菌生理代谢与功能机制的解析和优化,益生菌与环境及宿主的互作,益生菌对宿主的健康效应,肠道微生物与人体健康等开展了一系列的研究。主持完成国家“十一五”863计划、国家科技支撑计划、国家自然科学基金项目等10余项,成果先后获国家与省部级奖励10余项,其中“功能性益生乳酸菌高效筛选及应用关键技术”获2009年国家科技进步二等奖 发表科研论文300余篇,其中SCI论文110余篇 申请国家发明专利72项,其中国际专利8项,已获授权专利28项 出版著作及教材5本 “食品学科创新实践链式教育人才培养模式研究与实践” 2014年获国家教学成果一等奖。  生命科学创新奖获得主(9名):中科院生物物理研究所王艳丽研究员,北大生科院汤富酬教授,中科院上海生化细胞所许琛琦研究员,清华大学生科院杨茂君教授,中科院动物所陈大华研究员,中科大学生科院周荣斌教授,浙江大学医学院胡海岚教授,复旦大学蓝斐教授,北京大学生物动态光学成像中心魏文胜研究员(依次如下图所示)。  生命科学创新奖获奖者简介:  王艳丽,2004年博士毕业于中国科学技术大学,中国科学院生物物理研究所 “百人计划”研究员(2010-),主要从事于CRISPR/Cas系统的作用机理和小分子介导的基因沉默的结构生物学研究。近期成果包括成功解析了分辨率为3埃的E.coli Cascade复合物结构,揭示了由11个Cas蛋白以及一个61核苷酸的crRNA共同组成的分子量为405kDa的Cascade复合物的精确的组装方式,揭示了CRISPR作用的分子机理,同时也为进一步了解靶标的识别机制提供了新的见解(Zhao et al.,Nature,2014) 解析了Cas1-Cas2与多种类型DNA的复合物的晶体结构,发现了Cas1-Cas2识别外源入侵DNA分子机制,揭示了外源核酸片段的长度是如何确定的,同时也解释了该阶段中的核心蛋白Cas1和Cas2各自的功能,该成果为揭示原核生物这一新的抵御病毒及遗传物质的入侵的机制奠定了重要的理论基础(Wang et al.,Cell,2015) 解析了嗜热菌Argonaute(TtAgo)和5磷酸化引导DNA(gDNA)和一系列靶点DNA三元复合物的晶体结构,在结构生物学水平阐明了细菌的Agos蛋白指导导向DNA双链切割靶标DNA双链的机制,这一发现在分子生物学水平也证明了细菌通过Argonaute蛋白介导的DNA干扰机制来对抗转座子和可移动的遗传原件(Sheng et al.,PNAS,2014) 解析了AcrF3以及AcrF3-Cas3复合物的结构,阐述了AcrF3在对抗CRISPR/Cas系统发挥的作用,揭示了病毒与细菌在长期进化中形成的相互拮抗的作用机制(Wang et al.,Cell Research,2016)。曾获得第十三届“中国青年女科学家奖”等奖励和荣誉。  汤富酬,现为北京大学生命科学学院BIOPIC中心研究员。1994 - 1998 , 本科毕业于北京大学,1998 - 2003 在北大获得细胞生物学博士学位,2004 - 2010,英国剑桥大学Gurdon研究所,博士后, 2010年回国在北京大学组建实验室,2015 - 现在 ,北大-清华生命科学联合中心PI。主要从事人类早期胚胎发育的单细胞功能基因组学研究。在国际上率先系统发展了单细胞功能基因组学研究体系,并利用这一技术体系对人类早期胚胎发育进行了深入、系统的研究,揭示了人类早期胚胎DNA去甲基化过程的异质性以及其他关键特征,发现了人类早期胚胎中基因表达网络的重要表观遗传学调控机理,为人们提供了一个全面分析人类早期胚胎DNA甲基化调控网络的研究框架,加深了对人类原始生殖细胞的发育以及表观遗传重编程过程的认识。现已发表论文40多篇,被同行引用3000多次。其中20多篇论文是以通讯(或者共同通讯)作者身份发表在Cell,Nature,Science,Cell Stem Cell,Cell Research,Genome Research,Genome Biology等期刊上。其中两项工作获评2014年度中国科学十大进展,2015年度中国科学十大进展,以及2015年度生命科学领域十大进展。  许琛琦,1977年12月生,中科院上海生命科学院生物化学与细胞生物学研究所研究员,所长助理。长期从事分子免疫学研究,揭示了脂质分子对免疫应答的调控机制,并且发展了基于脂代谢调控的肿瘤免疫治疗方法。发现细胞质膜中的酸性磷脂通过静电相互作用屏蔽关键受体的功能位点,从而维持T细胞的静息态 而钙离子可以直接与酸性磷脂结合并中和其负电荷,引起受体活化,从而调控T细胞的活化态。这种脂质分子的调控机制也适用于B细胞和肺癌细胞。近年来开创性地开展了脂质代谢与肿瘤免疫的交叉研究,发现了肿瘤免疫治疗的新靶点-胆固醇酯化酶ACAT1,并且证明了ACAT1抑制剂的抗肿瘤功能。以第一作者或通讯作者在Cell、Nature、Nature Review Immunology、J Exp Med和Nature Communication等国际知名杂志发表多篇学术论文。获得中科院百人计划(2010)、国家杰出青年基金(2014)、国家万人计划“青年拔尖人才”(2015)、全国优秀科技工作者、上海市优秀学术带头人、中科院青年科学家奖、上海市科学技术进步奖、上海青年科技英才、邹承鲁奖励基金杰出研究论文奖、明治生命科学杰出奖等人才项目和荣誉。  杨茂君,1975年出生于山东,2003年获中国协和医科大学博士学位(师从王琳芳院士,2001年10月进入清华大学饶子和院士实验室从事SARS蛋白酶晶体结构方面的研究),之后于美国西南医学中心从事博士后研究。清华大学首批tenure系列终身教授(2013-),清华-北大生命科学联合中心研究员(2011-)。2008年回国以来,杨茂君教授一直致力于综合运用结构生物学、生化与分子生物学等方法,研究与人类健康密切相关的重大疾病的发病机理及特异性抑制剂的筛选与设计,在细胞感应外界信号以及物质跨膜转运、蛋白质翻译后修饰调控等领域取得了一系列重大研究成果,以通讯作者身份在Nature(2012,2015,2016),Mol Cell(2010),Genes Dev (2014),PNAS(2012,2015)等国际知名期刊发表论文20余篇。曾获得霍英东基础研究奖励(2009)、教育部新世纪优秀人才支持计划(2010)、茅以升北京青年科技奖(2013)、药明康德生命化学研究奖(2013)、谈家桢生命科学创新奖(2016)和国家杰出青年基金(2016)等多项荣誉与奖励。人才培养方面,到目前为止实验室培养的所有博士研究生(5人)毕业时全部获得了清华大学或清华-北大生命联合中心优秀毕业生。其中第一个博士生冯越毕业后被直接特聘为北京化工大学副教授 三人次获得北京市优秀毕业生称号 两人获得清华大学优秀毕业生。  陈大华,博士,研究员,博士生导师 中国科学院动物研究所干细胞与生殖生物学国家重点实验室副主任,模式动物与干细胞生物学研究组组长。2005年中国科学院“百人计划”引进海外杰出人才,2008年国家基金委杰出青年获得者,科技部国家重大科学研究计划“原始生殖细胞发生和性腺发育的机制研究”首席科学家,现任干细胞与生殖生物学国家重点实验室副主任。1991年毕业于安徽农业大学,1999年毕业于中国科学院植物研究所获博士学位。1999年至2003年分别在美国肯塔基大学和德克萨斯大学西南医学中心从事博士后研究,2003年至2005年在西南医学中心分子生物系任Research Instructor。2005年回国后,实验室主要以果蝇和小鼠等模式动物为模型,开展干细胞不对称分裂的遗传和分子机制以及真核生物转录和翻译调控机制等方面的研究。目前主要研究干细胞与微环境信号相互作用的机制,TGF-beta/BMP和Hh等信号转导途径在生殖细胞发育过程中的作用,以及泛素介导的蛋白降解等途径在生殖干细胞命运调控中的作用。近年来实验室分别在Cell、 Developmental Cell、PLoS Biology、Nature Communications、Development、Human Molecular Genetics和PLoS Genetics等遗传和发育主流杂志上发表一系列文章。目前实验室承担科技部生殖发育重大计划、973、干细胞先导专项、国家基金委重点和杰青等项目。近年来最杰出的工作是在果蝇中鉴定到了DNA上m6A甲基化修饰的去甲基化酶,这一工作发表在2015年Cell。  周荣斌, 1980年5月生(生命科学领域目前唯一一名80后“杰青”),中国科学技术大学教授。主要从事炎症及炎症性疾病的发病机制和干预策略研究,近年来在NLRP3炎症小体的致病、活化和调控及靶向NLRP3炎症小体的疾病干预机制研究方面取得了多项研究成果:1)率先发现NLRP3炎症小体在2型糖尿病(T2D)中的致病作用并证明靶向NLRP3炎症小体干预T2D的可行性 2)揭示NLRP3炎症小体的关键内源性调控机制,发现神经递质多巴胺能通过其受体DRD1及下游信号通路抑制NLRP3炎症小体并改善神经炎症和外周炎症 3)揭示线粒体损伤是NLRP3炎症小体活化的关键因素,发现RNA病毒可通过RIP1-RIP3复合物诱发线粒体损伤及NLRP3炎症小体活化。以第一作者或通讯作者论文在Nature、Cell、Nat Immunol、Immunity、J Exp Med、PNAS等国际知名杂志发表多篇学术论文。 获得国家杰出青年基金、科技部中青年科技创新领军人才、中组部青年拔尖人才支持计划、中国青年科技人才奖、第十四届中国青年科技奖、第二届树兰医学青年奖、2015年度药明康德生命化学奖等人才项目和荣誉。  胡海岚,博士、教授、博士生导师、浙江大学求是特聘教授、浙江大学神经科学研究中心执行主任 2015年长江学者特聘教授获得者,第十二届中国青年女科学家奖获得者,国家杰出青年基金获得者,中科院百人计划获得者及赛诺菲优秀学者奖获得者等等 担任国际神经科学学会SFN程序委员会委员,中国神经科学学会理事,浙江省神经科学学会理事,中国动物学会动物行为学专业委员会特邀理事,中国国家自然科学基金评委,Neuron及Science杂志特邀审稿人。胡海岚教授于1996年获得北京大学学士学位 1996-1997年,于加州大学旧金山分校,担任研究助理 2002年,于加州大学伯克利分校获得神经生物学博士学位 2003-2008年,先后在美国弗吉尼亚大学、冷泉港实验室/加州大学圣地亚哥分校做博士后研究 2008-2015年,于中科院神经科学研究所任研究员 2015年至今,受聘于浙江大学求是高等研究院/医学院神经科学研究。胡海岚教授在情绪和社会行为的神经生物学基础这一脑科学前沿方向取得了一系列令人瞩目的成果:首次揭示内侧前额叶的神经活动在社会等级行为中的重要作用 阐明情绪因素如何影响学习和记忆的分子和细胞学机制 在抑郁症神经环路和病理机制的研究方向上也取得了关键的进展。  蓝斐,教授,博士生导师。1999年于上海复旦大学生物化学系获学士学位, 2002年获得复旦大学分子肿瘤学硕士学位,2008年获得美国哈佛大学细胞发育博士学位。博士期间在表观遗传甲基化可逆调控方向做出大量突出贡献,多篇论文发表在顶级期刊上,毕业时获得哈佛医学院院长提名嘉奖。博士毕业后,作为首位创始员工,受邀加入全球首批表观遗传制药公司(美)Constellation Pharmaceuticals,主要目标定位于将表观遗传学的科研成果转化成为有药用价值的产品,特别是在肿瘤和免疫疾病方面。在该公司,作为核心技术员工,参与大量公司组建工作并主导了多个药物研发项目,对表观遗传靶向性治疗的进展和前景有着极强的把握力。2012年11月辞去美国的职位,全职受聘于复旦大学,入选中组部第四批“青年千人计划”(2012年11月),并同月荣获上海高校特聘教授(“东方学者”2012)称号。回国后,蓝斐教授的主要科研方向将拓宽到新兴的非组蛋白表观遗传修饰的生物学意义及其调控机理,并揭示表观遗传异常在肿瘤及其它疾病发生过程中的作用,为抗肿瘤药物靶标的发现以及最终成药提供理论和实验依据。 蓝斐教授作为蛋白去甲基化领域的主要开辟者主导并参与发现了已知的21类去甲基化酶中的16类,包括第一个去甲基化酶LSD1,以及之后的4大类JMJC去甲基化酶家族的发现和功能研究。此外,他还首次发现了未甲基化赖氨酸的识别机理。这些开创性的工作不仅为表观遗传学甲基化标记的动态调控提供了大量的实验证据,并大大完善了甲基化生物学调控的理论体系。为了更好的理解疾病表观遗传学并获得转化医学的宝贵经验,蓝斐教授在博士毕业后接受了美国Constellation Pharmaceuticals的邀请,做为首位员工加盟并创建公司研发团队以及制定研发方向,在公司中多项临床前项目中做出重要贡献。现在该公司是业界公认的最具创新性的表观遗传公司。蓝斐教授发表SCI论文20余篇,作为第一和共同第一作者发表过3篇Nature和Cell文章,他的科研和创新成果还用于3项国际专利申请。  魏文胜,北京大学生命科学学院研究员(2007-),北京大学生物医学集成创新研究所(BIOPIC) 研究员(2014-),北大-清华生命科学联合中心(CLS)研究员(2015-),北京未来基因诊断高精尖创新中心(ICG)研究员(2016-)。长期致力于发展基因组编辑技术与高通量功能基因组学,以及在此基础上研究癌症、感染等重大疾病的分子机制。近期成果包括:首次发现艰难梭菌毒素受体 完成对TALE蛋白识别非修饰及修饰DNA碱基的完全解码 开发了基于CRISPR/Cas9系统的基因敲除文库及高通量功能性筛选平台 完成多种病毒侵染人源宿主重要靶位点的筛选和功能鉴定 建立了基因组大片段删除技术用于高通量筛选研究长片段非编码RNA(lncRNA)等。以第一作者或通讯作者在Cell、Nature、Nat Biotechnology、PNAS、Cell Research、Elife等国际知名杂志发表多篇学术论文。获得北京大学生命科学学院最受欢迎教师奖(2010)、北京大学东宝奖教金(2012)、The Roche Chinese Young Investigator Award(2014)、Bayer Investigator Award(2014)、北京大学郑昌学教学优秀奖(2015)、科学中国人年度人物(2016)、谈家桢生命科学创新奖(2016)等多个奖项和荣誉。  附:“谈家桢生命科学奖”简介  一、设立背景  为了促进我国生命科学、医学、药学及相关领域的科技进步和产业发展,促使生物技术产业的领军人物不断涌现,由国家科技部批准、联合基因集团出资设立、上海复星医药(集团)有限公司赞助,上海市生物医药行业协会承办的“谈家桢生命科学奖”正式启动。  设立单位联合基因集团1997年发源于复旦大学,由毛裕民教授、谢毅教授带领复旦大学生命科学学院的一批教师和博士、硕士研究生发起组建。由100万起步,迄今已经形成资产超过60亿、拥有30多家企业(两家为香港主板上市)的以基因技术为主的高科技产业集团。该奖是在生命科学领域由企业设立的第一个奖项,也是联合基因集团在树立生物技术领域的品牌后,回馈社会的一种方式。  赞助单位上海复星医药(集团)股份有限公司成立于1994年,1998年8月在上海证券交易所挂牌上市,是在中国医药行业处于领先地位的上市公司。复星医药专注现代生物医药健康产业,在研发创新、市场营销、并购整合、人才建设等方面形成竞争优势的大型专业医药健康产业集团。复星医药奉行可持续发展的原则,始终怀着感恩的心态,将履行社会责任纳入到企业发展的长期战略。  二、设奖宗旨  2008年,谈家桢先生迎来他的百年诞辰。谈先生是我国现代遗传学奠基人之一,是中国现代杰出的科学家和教育家。他将毕生献给了遗传学事业,为遗传学研究培养了大批优秀人才,建立了中国第一个遗传学专业,创建了第一个遗传学研究所,组建了第一个生命科学院。  该奖的设立旨在秉承谈先生对生命科学事业的奉献精神,促进生命科学研究成果产业化,激励我国生命科学工作者不断创新。  三、承办单位  谈家桢生命科学奖由上海市生物医药行业协会承办。上海市生物医药行业协会成立于2002年12月,是由上海市生物医药企业和相关大学、科研院所等单位自愿结成的社会团体。协会会员涵盖现代生物技术和医药领域从研发、生产到流通等整个产业链,现有会员单位205家,会员产业规模已超过2700亿,行业覆盖率达75%以上,具有较强的行业代表性。协会是中国社会组织首批最高荣誉获得者,2004年被中国民政部授予“全国先进民间组织” 其后被评为“中国社会组织评估等级五A”、“五星级社会组织党组织”和“工人先锋号”。  四、评选机构:  奖项评选机构由奖励委员会和评审专家委员会组成。奖励委员会由生物技术领域具有高尚道德情操、精深学术造诣、热心科技奖励事业的国内科技权威和著名学者组成。奖励委员会聘请的评审专家经过奖励委员会批准、颁发聘任书后,独立行使职能、负责评选工作。  五、奖励对象:  在中华人民共和国境内从事生命科学事业做出成就的科学家、教授,以及取得创新研究成果的青年学者 对生命科学科技成果产业化过程有突出贡献的人士。  六、奖项设置:  “谈家桢生命科学奖”下设“谈家桢生命科学成就奖”、 “谈家桢生命科学产业化奖” 和“谈家桢生命科学创新奖”三个奖项,每年奖励费用为人民币110万元:其中奖励“谈家桢生命科学成就奖”2名,各奖励人民币25万元 “谈家桢生命科学产业化奖”2名,各奖励人民币10万元 “谈家桢生命科学创新奖”8名,各奖励人民币5万元。  七、评选程序  谈家桢生命科学奖每年评奖一次,参照国际惯例,遵循“公平、公开、公正”的原则,按提名推荐、资格认定、初评、终评、颁奖的程序进行。  经奖励委员会核准的国内外高校、研究院所和企业、国内相关学科领域的著名专家、学术权威、主管领导和学科带头人为推荐人。奖励委员会委员每人每年可提出两名被推荐人,其他推荐人每人每年可提出一名被推荐人,向奖励委员会推荐。也欢迎有突出成就的个人通过自荐方式参加评选。  推荐材料经谈家桢生命科学奖管理办公室进行形式审查认定后,由评审专家进行初评(函评),对各位申请人打分并对申请人给出评价,申请人函评分数高于该奖项所有申请人函评平均分(含)以上者,进入谈家桢生命科学奖评审专家委员会评审。  谈家桢生命科学奖评审专家委员会举行全体会议进行评审,逐一审核进入复评申请人材料并进行评议,以记名方式进行评分,去除一个最高分和一个最低分后,按平均得分高低顺序排位,“谈家桢生命科学成就奖”取得分前二位,“谈家桢生命科学产业化奖”取得分前二位(如果产业化奖空缺,将把名额递补给创新奖),“谈家桢生命科学创新奖”取得分前八位,分别产生“谈家桢生命科学成就奖”、 “谈家桢生命科学产业化奖”和“谈家桢生命科学创新奖”候选人。 评审专家委员会评审后产生的“谈家桢生命科学成就奖”、 “谈家桢生命科学产业化奖”和“谈家桢生命科学创新奖”候选人名单,经相关网站和媒体公示十五天无异议者,方可提交奖励委员会进行终评。  谈家桢生命科学奖奖励委员会召开终评会议,会议须有谈家桢生命科学奖奖励委员会半数以上委员参加方能举行。并逐一审核每位候选人材料并进行评议,以记名投票方式确定获奖者,提名的谈家桢生命科学奖候选人须获得在场的奖励委员会委员三分之二以上票数同意,方可批准为本年度“谈家桢生命科学成新奖”、 “谈家桢生命科学产业化奖” 和“谈家桢生命科学创新奖”获得者。  八、评审原则  谈家桢生命科学奖的申报、评审和授奖,遵循“公开、公平、公正”的原则,不受任何组织或个人的非法干涉。
  • 澳大利亚集团公司CBH选用波通公司的降落数值仪,受益匪浅!
    澳大利亚集团公司CBH选用波通公司的降落数值仪,受益匪浅! CBH集团公司是澳大利亚最大的谷物组织,日前宣布自从增加购买使用降落数值仪后,获得几百万澳元的收益。 在这样一个收获的季节,雨水的破坏时有发生,使用降落数值仪对收入的谷物进行彻底的检测可以将谷物从单一货载里分级,哪些是饲料用,哪些是一般常用,哪些是制粉等级的。这是简单的目视检测或者从粮仓里抽样检测都无法达到的效果。 下面是CBH集团公司11月14日发表的新闻的原文,也可以通过链接进入其网站。 更多关于降落数值仪信息请查看此链接: please click here. 更多关于CBH的信息请查看: please click here.» 降落数值仪检测为谷物增值数百万(CBH新闻,2011年11月14日发布)。 谷物种植者今年收获的季节收益增长了7.5百万美金,主要归因于CBH集团采用降落数值仪准确检测收入的谷物中受雨水损伤的谷物。 CBH从收获季节开始就在受暴风雨影响严重的地区现场启用80多套降落数值仪,高峰期使用量甚至达到100多套。 根据西澳大利亚谷物行业官方承认的小麦收购标准以及西澳大利亚谷物交易标准,任何批次被检测受发芽损害的谷物都归类为饲料级谷物,除非降落数值仪检测结果推翻此结果。 通过使用降落数值仪,CBH可以将饲料级的受损谷物升级为正常使用级别的谷物甚至是APW和H2制粉级别的谷物 CBH总经理Colin Tutt说:逐批采用降落数值仪检测,根据检测结果可以确保最佳的分类,排除视觉上认为是发芽损伤的谷物。这是让可能成为饲料级别的谷物升级为更高价值的制粉级别谷物的唯一方法。 Mr Tutt说:&ldquo 到目前为止,CBH已经检测了3500批次的货物,预计价值达到7.5百万美金。 考虑到我们只有10%的机会进入到预期的收获,因此很明显潜力很大。&rdquo Mr Tutt说&ldquo 降落数值仪检测每批货物的时间需要5-10分钟,而这额外的时间在忙碌的收购现场确实令人沮丧,但是我们劝谷物种植者这个耐心的等待是值得的,因为饲料级别的谷物和更高级别的谷物的价值是不同。 我们的降落数值仪现场为种植者提升谷物的价值,这正是他们种植谷物所希望的,我们的目标是不要降低任何看上去有发芽受损的谷物成饲料级别的,然而当大面积的谷物受到气候恶化的影响时就会增加我们的难度。&rdquo CBH客户质量经理Dr Richard Williams说:&ldquo 损伤的谷物含有破损的淀粉和蛋白成分,会导致最终产品质量变差。使用受损的面粉制作的面包皮黑,里面发粘,严重时面包里面有空洞;而使用受损的面粉制作的面条会发粘,煮的时候容易断裂。&rdquo 他继续说:&ldquo CBH的管理计划是将逐批检测和现场监测结合以达到对小麦交货时的最佳分级从而保持WA在小麦供货质量上的的良好声誉&rdquo 。
  • 应用丨N-二甲基亚硝胺检测前处理解决方案
    亚硝酸盐在腌肉中转化为亚硝酸,极易生成致癌性物质:N-亚硝胺类化合物。在适宜的条件下,亚硝酸盐与胺类发生亚硝基化作用,最终生成N-二甲基亚硝胺。N-二甲基亚硝胺广泛存在于啤酒、肉制品及鱼类腌制品等食品和环境中,可溶于水、乙醇、乙醚、二氯甲烷,用于制造二甲基肼,是国际公认的毒性较大的污染物,具有肝毒性和致癌性。2023年9月25日,国家卫生健康委员会发布了85项食品安全国家标准和3项修改单(卫健委2023年第6号公告),其中就有GB5009.26-2023《食品中N-亚硝胺类化合物的测定》。此次增加QuEChERS-气相色谱-质谱/质谱法(第二法),QuEChERS方法相较于其他前处理方法操作更简单,更容易实现批量前处理,试剂使用量更少,更环保。 样品前处理步骤提取 干制品称取5g于50mL离心管(RC-50004M,50mL尖底) 加入5mL水,振荡混匀(鲜样品称取10g置于50mL离心管中) 加入N-二甲基亚硝胺内标中间液(1μg/mL)50μL,向其准确加入10mL乙腈 MTV3000多管涡旋混合仪2500rpm,涡旋振荡2min,置于-20℃冰箱冷冻20min 取出后加入1颗陶瓷均质子(RC-5003C)以及提取盐包(RC-50106M,内含4g硫酸镁和1g氯化钠) 置于V20垂直振荡器,1300rpm振荡2min 置于冷冻离心机中,转速9000r/min,10℃离心5min 上清液待净化净化 量取5mL水加入15mL净化管(RC-15164M含有150mgHLB-2粉末或RC-15165M,含有1gHolipid) 置于MTV 3000多管涡旋混合仪,2500rpm 涡旋混匀,立即加入5mL待净化上清液涡旋振荡1min 取出置于冷冻离心机,9000r/min,10℃离心5min 待除水除水 取上述待除水净化液加入15mL除水净化管中(RC-15166M,含有1.6g硫酸镁和0.4g氯化钠) 置于MTV3000多管涡旋混合仪,2500rpm涡旋振荡2min 置于冷冻离心机中,转速9000r/min,10℃离心5min 取上层有机相经0.22μm微孔滤膜过滤后 上机测定前处理仪器及耗材推荐Raykol V20垂直振荡器 振荡方式:垂直振荡 振荡速度:500-1800rpm 振幅:32mm样品数量:50mL*20,15mL*38,100mL*10,2mL*52等,96孔板*6,可定制 7寸彩色触摸屏,实时显示速度、工作时间及倒计时等 预约启动,预约时间0-840minRaykol MTV3000多管涡旋混合仪 振荡方式:偏芯振荡 振荡速度:最高速度3000rpm 操作简单,适配各种管架 7寸彩色触摸屏,实时显示速度、工作时间及倒计时等耗材RC-50004M50mL螺口尖底管,PP材质,25支/包,2包RC-50106M萃取盐包:4g MgSO4+1g NaCl,50/盒RC-5003C陶瓷均质子,用于50mL萃取管,100个/瓶RC-15164M15mL净化管:150mg HLB-2,25支/盒RC-15165M15mL净化管:1g Holipid,25支/盒RC-15166M15mL净化管:400mg NaCl+1600mg MgS04, 50支/盒
  • 国家基因检测技术应用示范中心正式启动 博奥生物集团成为大赢家
    p style=" TEXT-ALIGN: center LINE-HEIGHT: 1.75em" img title=" hNUr-fxrqhas0005323.jpg" src=" http://img1.17img.cn/17img/images/201604/insimg/343626a1-2449-4f56-90fa-6e2149295a23.jpg" /   /p p style=" TEXT-ALIGN: center LINE-HEIGHT: 1.75em" 国家基因检测技术应用示范中心建设正式启动   /p p style=" LINE-HEIGHT: 1.75em" & nbsp & nbsp & nbsp & nbsp 4月22日,国家基因检测技术应用示范中心建设项目在北京经济技术开发区启动,标志着涉及中国27省(市、自治区、计划单列市、生产建设兵团)、人口覆盖超过70%的基因建设项目进入操作阶段。 /p p style=" LINE-HEIGHT: 1.75em"   这是国家发改委首次把基因产业作为战略性新兴产业的大规模支持举措。在2015年6月发布的《国家发展改革委关于实施新兴产业重大工程包的通知》中提到,“将支持拥有核心技术、创新能力和相关资质的机构,采取网络化布局,率先建设30个基因检测技术应用示范中心,以开展遗传病和出生缺陷基因筛查为重点,推动基因检测等先进健康技术普及惠民,引领重大创新成果的产业化。” /p p style=" LINE-HEIGHT: 1.75em"   政府出台系列支持政策,从国家战略层面上推动基因产业发展,是此次基因检测技术应用示范中心建设的一大特点,国家发改委要求,“主管部门应批复项目资金申请报告,地方政府应提供政策支持并出具相关证明文件。”据悉,地方政府将提供政府采购相关基因检测、纳入医保和补贴房租等政策支持。 /p p style=" LINE-HEIGHT: 1.75em"   博奥生物集团成为示范中心建设项目的大赢家,旗下共有16家第三方医学检验所位列名单中,在与亦庄生物医药园共同承办的启动仪式上,北京博奥医学检验所总裁张治位博士与19位来自地方政府、医院及产业界的代表当场签订了合作共建协议。 /p p style=" LINE-HEIGHT: 1.75em"   作为16家示范中心建设单位的博奥医学检验所,也首次公布了其六大平台、五大领域的建设规划。 /p p style=" LINE-HEIGHT: 1.75em"    span style=" COLOR: rgb(0,112,192)" strong 示范中心由来 /strong /span /p p style=" LINE-HEIGHT: 1.75em"   基因检测技术应用示范中心来源于“新兴产业重大工程包”。 /p p style=" LINE-HEIGHT: 1.75em"   2015年6月,国家发改委发布《关于实施新兴产业重大工程包的通知》(发改高技[2015]1303号),提到将基因检测技术纳入到六大重点工程领域之一,即“新型健康技术惠民工程”中。 /p p style=" LINE-HEIGHT: 1.75em"   健康产业之所以被列入重点工程,是因为“新兴产业对经济增长、产业结构调整发挥非常重要的作用。”国家发改委高技术产业司司长綦成元在新闻发布会上解释,2015年前5个月,新兴产业重点规模以上企业的利润增长达到20%,远高于工业平均水平。 /p p style=" LINE-HEIGHT: 1.75em"   具体至基因产业,据BBC RESERCH统计,从2007年的7.94亿美元增长到2013年的45亿美元,年复合增长率33.5%,预计未来几年依旧会保持快速增长,2018年将达到117亿美元,年复合增长率21.1%。 /p p style=" LINE-HEIGHT: 1.75em"   经过多年发展,目前中国已有400-500家基因公司,几乎每周都有新公司诞生,产业繁荣景象初现端倪。在监管层面,从2014年12月22日,国家卫计委批准第一批高通量基因测序技术临床应用试点单位开始,高通量测序在中国进入规范化阶段。 /p p style=" LINE-HEIGHT: 1.75em"   在此背景下,国家发改委决定采取“先试点、后示范、第三方考评”的方式推动新兴产业工程包的实施。 /p p style=" LINE-HEIGHT: 1.75em"   从文件细节可以看出,并非所有基因公司和所有检测项目都能获得重点支持,而是选择那些拥有合法资质与核心技术的第三方医学检验机构,并且重点支持目前成熟应用的出生缺陷、遗传病等领域。 /p p style=" LINE-HEIGHT: 1.75em"   “支持拥有核心技术、创新能力和相关资质的机构,采取网络化布局,率先建设30个基因检测技术应用示范中心,以目前相对成熟的遗传性耳聋和唐氏综合征等遗传性疾病基因筛查为重点,推进基因检测技术在遗传性疾病、肿瘤、心脑血管疾病和感染性疾病等重大疾病防治上的应用。” /p p style=" LINE-HEIGHT: 1.75em"   文件中提及的“资质”,即主管单位国家卫计委批准的试点单位和国家食品药品监督管理总局颁发的医疗器械注册证,包括个体化医学检测、NIPT(产前筛查与诊断)、肿瘤诊断与治疗、遗传病诊断、植入前胚胎遗传学诊断五大类试点,以及基因测序仪、配套试剂等医疗器械注册证。博奥生物是目前唯一“六证”齐全的基因公司(工程中心)。 /p p style=" LINE-HEIGHT: 1.75em"   今年3月是文件精神的落地月,一个月中,先是发布《十三五“规划”纲要》:基因组学和医疗器械被纳入未来五年计划实施的100个重大项目之中 接着,国家发改委办公厅批复第一批共27个省市(自治区)申报的基因检测技术应用示范中心的建设方案,并明确了时间表:2015-2017年分三批共计建设30个左右示范中心。 /p p style=" LINE-HEIGHT: 1.75em"    span style=" COLOR: rgb(0,112,192)" strong 为什么是博奥? /strong /span /p p style=" LINE-HEIGHT: 1.75em"   4月22日,示范中心建设的启动仪式在北京博奥医学检验所所在地——亦庄生物医药园召开,来自国家发改委高技术产业司、清华大学、北京经济技术开发区,以及全国多地政府、发改委、卫计委、医院的领导以及专家学者参加了此次启动仪式,博奥成为示范中心建设的大赢家。 /p p style=" LINE-HEIGHT: 1.75em"   在示范中心名单中,博奥检验所包揽其中16家,启动会上,北京博奥医学检验所总裁张治位博士与19位来自地方政府、医院及产业界的代表当场签订了合作共建协议。 /p p style=" LINE-HEIGHT: 1.75em"   北京博奥医学检验所的母公司是博奥生物集团,后者的另一个名称为生物芯片北京国家工程研究中心,掌舵人是中国工程院院士程京。 /p p style=" LINE-HEIGHT: 1.75em"   博奥生物的诞生颇具传奇色彩,2000年2月29日,国务院及各部委召开“国务院办公厅第十次科技讲座”,程京在演讲中呼吁,中国应加大在生物芯片方面的投入,尽快建立国家级工程研究中心。 /p p style=" LINE-HEIGHT: 1.75em"   7个月后,在国务院、发改委、科技部、教育部、卫生部及北京市领导的支持下,清华大学、中国医学科学院、军事医学科学院和华中科技大学四家顶尖机构联合成立了博奥生物集团暨生物芯片北京国家工程研究中心,涉足生物芯片及相关试剂耗材、仪器设备、软件数据库、生命科学服务、临床检验服务等五个系列。 /p p style=" LINE-HEIGHT: 1.75em"   到2016年,博奥生物已走过16个年头,据介绍,起源于清华大学生物系地下室的博奥生物,已成立5个研究院、5家子公司的集团化运营框架,成长为员工数量近3000人、今年收入将超过15亿元的生物集团公司。 /p p style=" LINE-HEIGHT: 1.75em"   发改委文件中提及的重点支持检测项目——遗传性耳聋基因筛查和唐氏综合征基因筛查,博奥生物拥有这两个项目的全套具有自主知识产权的获证仪器试剂和相关资质。 /p p style=" LINE-HEIGHT: 1.75em"   以遗传性耳聋筛查为例,截止至2016年4月15日,全国由政府采购进行的新生儿耳聋基因芯片检测总数已达138万人,筛查出新生儿耳聋基因突变携带率高达4.4%,药物性耳聋突变3377人,突变率为2.5‰,可避免近4万人因不当用药致聋,节省近240亿元医疗支出。 /p p style=" LINE-HEIGHT: 1.75em"   对此,相关专家计算,“耳聋基因筛查具有非常高的效益,投入产出比达到1比7.2(1元投入产生7.2元效益),远远高于2015年国民经济投入产出比5比1(1元投入产生0.2元效益)的水平。” /p p style=" LINE-HEIGHT: 1.75em"   另一项重点支持的唐氏综合征基因筛查,据张治位介绍,博奥生物集团旗下公司已完成了20万例检测。针对染色体异常,还开发出了国标上最全的芯片检测技术,一次检测可筛查509种染色体异常疾病。 /p p style=" LINE-HEIGHT: 1.75em"   随着示范中心建设的启动,博奥生物也首次公布了其建设规划:六大平台、五大领域。 /p p style=" LINE-HEIGHT: 1.75em"   据悉,示范中心将建设生物芯片、高通量测序、毛细管电泳测序、荧光定量PCR、串联质谱、染色体核型分析等六大高端检测技术平台 将基因检测技术应用于出生缺陷及遗传病、肿瘤、心脑血管疾病、感染性疾病等重大疾病的个体化诊断和靶向治疗,以及个人基因组检测和基因身份证等新领域。 /p p br/ /p
  • CEM Discover 2.0:微波技术下的惰性反应环境
    01 引言 微波加热技术在众多合成转化中得到了应用,这些转化包括纳米材料组装、聚合反应以及小分子合成。1-3几乎任何传统的加热转化都可以适应微波辐射,包括那些使用敏感的合成单元和过渡金属催化剂的反应。4微波加热的好处包括减少废物产生、提高产品纯度以及缩短反应时间。图1:从二苄基取代的醛亚胺(或二苯甲酮取代的酮亚胺)生成2-氮杂烯丙基阴离子微波辐射所带来的提高的反应速率使得快速反应优化和化合物库筛选成为可能。当与自动进样器配件配合使用时,如 CEM 的 Discover® 2.0 配备 12 位或 48 位自动进样器,可以同时准备多个实验并排队依次运行,从而进一步提高了生产效率。然而,对于使用敏感试剂的实验来说,自动进样器的成功应用依赖于反应容器在排队等待和反应后保持惰性气氛的能力。为了证明 Discover® 2.0 的 10 毫升和 35 毫升容器保持惰性气氛的能力,进行了一项使用2-氮杂烯丙基阴离子的研究。2-氮杂烯丙基阴离子是通过二苄基取代的醛亚胺(和二苯甲酮取代的酮亚胺)去质子化生成的(图1),由于其在胺组装中的实用性而受到了广泛关注。5-8 形成后,2-氮杂烯丙基阴离子呈现出鲜艳的颜色(通常是紫色),并且在淬灭后变为无色透明(图2)。这种显著的颜色变化使得可以方便地观察容器的气氛条件。图2:2-氮杂烯丙基阴离子溶液在形成时呈现鲜艳的颜色(通常为紫色),在淬灭后变为无色透明 02 材料与方法 试剂双(三甲基硅基)氨基钾(KHMDS)和无水四氢呋喃(THF)均购自西格玛奥德里奇(Sigma Aldrich,密苏里州圣路易斯)。α-苯基-N-(亚苄基)苯甲胺(醛亚胺)根据已建立的文献步骤制备5,所用到的二苄胺、苯甲醛、硫酸钠、二氯甲烷和己烷均购自西格玛奥德里奇(Sigma Aldrich,密苏里州圣路易斯)。程序5暴露于大气中在预热至 180°C 的干燥 10 毫升反应容器中,配备搅拌磁子,加入α-苯基-N-(亚苄基)苯甲胺(亚胺,27.1毫克,0.100毫摩尔,1.00等量)和双(三甲基硅基)氨基钾(KHMDS, 21.9毫克,0.110毫摩尔,1.10等量)。然后,向反应容器中加入无水四氢呋喃(THF, 2.0毫升),并将溶液在室温下搅拌,直至深紫色溶液变为无色(使用35毫升反应容器的实验操作相同,但反应规模加倍)。穿刺硅胶帽在预热至 180°C 的干燥 10 毫升反应容器中,配备搅拌磁子,加入α-苯基-N-(亚苄基)苯甲胺(亚胺,27.1毫克,0.100毫摩尔,1.00等量)和双(三甲基硅基)氨基钾(KHMDS, 21.9毫克,0.110毫摩尔,1.10等量)。然后,用一个带有聚四氟乙烯衬垫的硅胶帽密封小瓶,并用氮气冲洗。迅速用一个新的、未被针刺的聚四氟乙烯衬垫硅胶帽替换原来的帽子,并通过注射器(20G)向反应容器中加入无水四氢呋喃(THF, 2.0毫升)。将溶液在室温下搅拌,直至深紫色溶液变为无色(使用35毫升反应容器的实验操作相同,但反应规模加倍)。未穿刺的硅胶帽在预热至 180°C 的干燥 10 毫升反应容器中,配备搅拌磁子,加入α-苯基-N-(亚苄基)苯甲胺(亚胺,27.1毫克,0.100毫摩尔,1.00等量)和双(三甲基硅基)氨基钾(KHMDS, 21.9毫克,0.110毫摩尔,1.10等量)。然后,用一个带有聚四氟乙烯衬垫的硅胶帽密封小瓶,并用氮气冲洗。在氮气冲洗的同时,通过注射器向反应容器中加入无水四氢呋喃(THF, 2.0毫升),并迅速用一个新的、未被针刺的聚四氟乙烯衬垫硅胶帽替换原来的帽子。将溶液在室温下搅拌,直至深紫色溶液变为无色(使用35毫升反应容器的实验操作相同,但反应规模加倍)。带穿刺硅胶帽的微波加热在预热至 180°C 的干燥 10 毫升反应容器中,配备搅拌磁子,加入α-苯基-N-(亚苄基)苯甲胺(亚胺,27.1毫克,0.100毫摩尔,1.00等量)和双(三甲基硅基)氨基钾(KHMDS, 21.9毫克,0.110毫摩尔,1.10等量)。然后,用一个带有聚四氟乙烯衬垫的硅胶帽密封小瓶,并用氮气冲洗。迅速用一个新的、未被针刺的聚四氟乙烯衬垫硅胶帽替换原来的帽子,并通过注射器(20G)向反应容器中加入无水四氢呋喃(THF, 2.0毫升)。然后将容器放入Discover 2.0微波腔体中,将溶液加热至 100°C。加热 20分 钟后,让溶液冷却至室温并继续搅拌,直至深紫色溶液变为无色(使用 35 毫升反应容器的实验操作相同,但反应规模加倍)。未穿刺硅胶帽的微波加热在预热至 180°C 的干燥 10 毫升反应容器中,配备搅拌磁子,加入α-苯基-N-(亚苄基)苯甲胺(亚胺,27.1毫克,0.100毫摩尔,1.00等量)和双(三甲基硅基)氨基钾(KHMDS, 21.9毫克,0.110毫摩尔,1.10等量)。然后,用一个带有聚四氟乙烯衬垫的硅胶帽密封小瓶,并用氮气冲洗。在氮气冲洗的同时,通过注射器向反应容器中加入无水四氢呋喃(THF, 2.0毫升),并迅速用一个新的、未被针刺的聚四氟乙烯衬垫硅胶帽替换原来的帽子。然后将容器放入 Discover® 2.0 微波腔体中,将溶液加热至 100°C。加热 20 分钟后,让溶液冷却至室温并继续搅拌,直至深紫色溶液变为无色(使用35毫升反应容器的实验操作相同,但反应规模加倍)。03 结果2-氮杂烯丙基阴离子溶液在形成后 4-6 分钟内暴露于大气中搅拌时会被淬灭。正如所预期的,当2-氮杂烯丙基阴离子溶液在惰性气氛(无水无氧)下搅拌时,2-氮杂烯丙基阴离子的寿命大大延长(表1)。虽然使用了穿刺硅胶帽,但在室温下,35 毫升容器中的2-氮杂烯丙基阴离子持续了 1 小时,而在 10 毫升容器中则持续了 4 小时。在 100°C 加热 20 分钟后,使用穿刺硅胶帽的两个容器都能够使2-氮杂烯丙基阴离子溶液维持更长时间:35 毫升容器为 1.5 小时,而 10 毫升容器则超过 6 小时。当使用未穿刺的硅胶帽时,尤其成功,无论加热程序和容器大小如何,2-氮杂烯丙基阴离子都被维持了 6 小时以上。表1:不同大气和温度条件下2-氮杂烯丙基阴离子的寿命实验微波加热时间阴离子猝灭:10 ml 容器阴离子猝灭:35 ml 容器暴露于大气中N/A6 min4 min穿刺硅胶盖N/A4 h1 h未穿刺硅胶盖N/A6+ h6+ h穿刺硅胶盖+微波20 min,100℃6+ h1.5 h未穿刺硅胶盖+微波20 min,100℃6+ h6+ h04 结论Discover® 2.0 10 毫升和 35 毫升容器能够维持惰性气氛超过 6 小时。虽然使用穿刺硅胶帽的容器在室温下静置和/或搅拌时可能会降低效果,但在微波辐射后,这种影响被抵消了。然而,使用未穿刺硅胶帽的容器能够保持敏感合成子和试剂的寿命,无论加热程序如何。这种能力促进了敏感反应条件与自动进样技术的配合使用,从而提高了工作流程效率和生产力。参考文献(1)Zhu, Y.-J. Chen, F. Chem. Rev. 2014, 114, 6462–6555.(2)Kempe, K. Becer, C. R. Schubert, U. S. Macromolecules 2011, 44, 5825–5842.(3)Hayes, B. L. Aldrichimica ACTA 2004, 37, 66–76.(4)Lahred, M. Moberg, C. Hallberg, A. Acc. Chem. Res. 2002,35, 717–727.(5)Li, K. Weber, A. E. Malcolmson, S. J. Org. Lett. 2017, 19,4239–4242.(6)Wu, Y. Hu, L. Li, Z. Deng, L. Nature 2015, 523, 445–450.(7)Zhu, Y. Buchwald, S. L. J. Am. Chem. Soc. 2014, 136,4500–4503.(8)Chen, Y.-J. Seki, K. Yamashita, Y. Kobayashi, S. J. Am.Chem. Soc. 2010, 132, 3244–3245.
  • 博奥生物二代测序仪获准上市
    2015年2月12日,国家食品药品监督管理总局对博奥生物集团研制生产的BioelectronSeq 4000基因测序仪和胎儿染色体非整倍体(T21、T18、T13)检测试剂盒(半导体测序法)分别颁发了医疗器械注册证。   BioelectronSeq 4000基因测序仪通过生物电子芯片对核苷酸聚合反应中的酸碱度信号进行检测,用于人脱氧核糖核酸(DNA)测序,以检测基因的序列变化。该仪器可在临床上与此次由国家食品药品监督管理总局同时批准的体外诊断试剂以及仪器配套的专用生物信息分析软件配合使用,适用于胎儿染色体21三体、18三体、13三体的非整倍体检测。   胎儿染色体非整倍体(T21、T18、T13)检测试剂盒(半导体测序法)用于定性检测孕周为12-24周的高危、单胎孕妇外周血血浆中胎儿游离脱氧核糖核酸(DNA),通过分析样本中胎儿游离DNA的21号、18号及13号染色体数量的差异,对胎儿染色体非整倍体疾病21-三体综合征(唐氏综合征)、18-三体综合征(爱德华综合征)和13-三体综合征(帕托综合征)进行产前辅助诊断。   博奥生物集团是我国集成医疗(疾病的预测、预防和个体化治疗)领域的领军型企业,自2000年成立以来开发和推出了大量高水平的生物芯片创新性产品与服务,在科技部863和卫计委重大专项支持下构建了一套基于生物芯片的核酸提取、基因扩增、直至微阵列杂交测序和微流控测序的完整的分子诊断技术平台,为我国基因检测技术进入世界先进行列做出了重要贡献。   BioelectronSeq 4000基因测序仪、   胎儿染色体非整倍体(T21、T18、T13)检测试剂盒(半导体测序法)   BioelectronSeq 4000基因测序仪医疗器械注册证   胎儿染色体非整倍体检测试剂盒医疗器械注册证
  • 韦布首次探测到关键碳分子
    一组国际科学家使用美国国家航空航天局的詹姆斯韦布空间望远镜,首次在太空中探测到重要的碳化合物(CH_3^+),该分子也被称为“甲基阳离子”,其有助形成更复杂的碳基分子。碳化合物构成了所有已知生命的基础,因此,最新研究对于科学家进一步了解生命在地球上如何繁衍生息至关重要,也有望为系外生命搜索提供线索。相关研究刊发于26日出版的《自然》杂志。研究团队在一个年轻的恒星系统d203-506内的一个原行星盘中,探测到了该甲基阳离子,d203-506位于距离地球约1350光年的猎户座星云中。研究团队成员、法国巴黎萨克雷大学的马丁杜拉梅尔表示,探测到这种碳化合物不仅验证了韦布令人难以置信的灵敏度,还证实了CH_3^+在星际化学中的重要性。虽然d203-506中的恒星是一颗小红矮星,但该系统受到附近年轻大质量恒星发出的强紫外线的轰击。科学家们认为,大多数原行星盘都会经历一段如此强烈的紫外线辐射期,因为恒星往往会成群结队形成,其中通常包括产生紫外线的大质量恒星。杜拉梅尔解释称,通常紫外线辐射会破坏复杂的有机分子,鉴于此,CH_3^+的发现令人惊讶。他们估计,紫外线辐射实际上可能为CH_3^+的形成提供了必要的能量来源。一旦CH_3^+形成,它就会促进额外的化学反应,形成更复杂的碳分子。此外,他们在d203-506中看到的分子与来自典型的原行星盘的分子截然不同,尤其是他们没有发现任何水的迹象。该研究主要作者、法国国家科学研究中心奥利弗伯尔尼指出,最新研究清楚地表明,紫外线辐射可完全改变原行星盘的化学性质,它可能在生命起源的早期化学阶段发挥了关键作用。
  • 莱伯泰科欢迎新老朋友到新奥尔良参观莱伯泰科Pittcon展台
    一年一度的世界**的分析仪器展将于2008年3月3日到3月6日在新奥尔良市举行。莱伯泰科继2006年奥兰多,2007年芝加哥后,第三次出席这一仪器盛会。莱伯泰科将组成强大的参展团,莱伯泰科美国、欧洲、香港和中国将分别派出销售人员参加此次展会,届时将展出高效液相色谱仪、紫外/可见分光光度计、DigiBlock智能样品处理器、循环冷却器、微控数显电热板等实验室分析仪器及设备。 莱伯泰科的展台号码是4258,欢迎到新奥尔良参加Pittcon的新老朋友莅临我们的展台参观,莱伯泰科展台将是你停留和休息的地方。 此次Pittcon展会是新奥尔良水灾后**次到这儿来举行。这个美国南方的城市将带给来参加Pittcon的每个人新的风貌,新的气息和新的美丽。
  • Pittcon 2008跟踪报道之四-莱伯泰科国际团队聚会新奥尔良
    screen.width-300)this.width=screen.width-300" 此次来到新奥尔良参加Pittcon 2008的莱伯泰科国际团队有莱伯泰科美国、莱伯泰科欧洲、莱伯泰科香港(亚洲)和莱伯泰科中国公司的8位市场和销售人员。不少人一年未见面,能在新奥尔良聚会大家都很高兴。聚会期间大家对2007年中国大陆以外的国际市场的销售情况进行了回顾和总结,对2008年各自地区市场宣传和开拓进行了交流,同时还交流了各自2008年的销售目标。 screen.width-300)this.width=screen.width-300" 大家一致认为2007年莱伯泰科在国际市场上的销售额增长很快,知名度也得到快速提升。2008年将会继续保持2007年的增长速度,部分产品的销售额,特别是水循环产品的销售额将在2008年达到或超过中国市场的销售额。大家希望莱伯泰科加强在北美和南美市场上的开拓,进一步健全顾客服务和维修服务体系,加大市场宣传推广力度。 screen.width-300)this.width=screen.width-300"
  • 港澳主持和参与14个项目获2012年度国家科技奖
    2012年度国家科学技术奖励大会18日在北京人民大会堂举行,由香港、澳门地区单位主持完成和参与完成的14个项目,分别获得国家自然科学奖、国家科学技术进步奖。   国家科学技术奖励工作办公室介绍说,港澳地区参与国家科技奖励的热情持续高涨,优秀成果不断涌现。香港、澳门各有一项主持完成的项目,获得2012年度国家科技奖励。   香港城市大学杨彤完成的“守恒律组和玻尔兹曼方程的一些数学理论”项目,被授予国家自然科学奖二等奖。   由澳门特别行政区推荐、澳门主持完成的“抗关节炎中药制剂质量控制与药效评价方法的创新及产品研发”项目,被授予国家科技进步奖二等奖,其主要完成单位包括澳门科技大学、湖南正清制药集团股份有限公司、香港浸会大学。   另有香港大学、香港中文大学、香港浸会大学、香港城市大学、香港科技大学、香港理工大学等参与完成的12个项目获得国家科技奖。   国家科技奖励每年评选颁奖一次,目前共设有国家最高科学技术奖、国家自然科学奖、国家技术发明奖、国家科学技术进步奖和中华人民共和国国际科学技术合作奖5个奖项,2012年度共有7位科技专家和330个项目获奖。
  • 甲基化成肿瘤检测新靶标?五种新型DNA甲基化酶检测技术进展揭秘
    DNA甲基化是哺乳动物基因组中最常见的表观遗传事件之一,即DNA中核苷酸与甲基基团的共价修饰[2]。DNA甲基化与人的生命进程有着密不可分的关系。细胞的增殖与分化、染色体完整性的维护或者X染色体的活性等等都离不开DNA甲基化的控制,DNA甲基化流程在胚胎发育中是无处不在的[1]。如果DNA甲基化进程出现异常,会导致生物体出现各种各样的疾病以及身体的生长缺陷或生理紊乱。DNA与蛋白质之间的相互作用如果出现异常,会影响基因的表达,从而引起人体内肿瘤的发生或者肿瘤的转移,这一切的源头都是DNA甲基化进程出现异常的结果[3]。DNA甲基化酶是肿瘤治疗靶点DNA甲基化酶是一种修饰酶,经常与限制性内切酶一同出现。在真核生物基因组以及原核生物基因组中,普遍存在DNA甲基化酶维持以及催化DNA甲基化过程的现象。DNA甲基化酶被广泛认为是一种治疗靶点以及预测生物甲基化过程的标志物,在单细胞水平上准确灵敏地检测DNA甲基化酶对于肿瘤医学上的临床诊断以及临床治疗甚至是生物学研究有着至关重要的作用。根据甲基化的核苷酸和位置被分为三组,即腺嘌呤的甲基化、胞嘧啶的4-N甲基化和胞嘧啶的5-C甲基化。所有已知的DNA甲基化酶在其甲基化过程中以s-腺苷甲硫氨酸作为甲基供体。最常见的DNA甲基化不仅发生在胞嘧啶嘧啶环5-C位置的CpG位点上,还发生在对称四核苷酸5’-G-A-T-C-3’ 中腺嘌呤环的6-N位置[4,5]。传统DNA甲基化酶检测方法有局限 DNA甲基化酶活性的高灵敏度检测在基因调控、表观遗传修饰、临床诊断和治疗等方面具有重要意义。传统用于检测DNA甲基化酶活性的方法包括高效液相色谱法(HPLC)[6], 聚合酶链反应(PCR)[7],凝胶电泳[8],高效毛细管电泳(HPCE)[9],以及使用同位素标记的s-腺苷甲硫氨酸甲基化检测[10,11]。尽管这些技术在实验室实践中被证明是有用的,但它们具有局限性。例如,大多数技术不仅使用笨重昂贵的设备,而且需要复杂的样品制备和数据分析所需的大量时间。同位素标记等技术是有效的,但它们往往需要费力的样品制备、同位素标记、复杂的设备和大量的DNA,使得它们不适合在医护点使用。所以,DNA甲基化酶活性检测迫切需要简单、便携、高灵敏度和低成本的检测方法。在最近的技术进步中,许多替代的DNA甲基化酶活性测定方法,如放射法、比色法、荧光法、电化学法等已被提出。此外,其中许多与纳米材料或酶结合,以显著提高它们的敏感性。放射法、蛋白质纳米孔等新型检测技术兴起 放射法:同位素标记作为最早检测DNA甲基化酶活性的方法之一,早期广泛应用于检测DNA甲基化酶和DNA甲基化的活性[12,13]。在由DNA甲基化酶催化的甲基化过程中,同位素标记的甲基部分转移到DNA上,从而赋予甲基化的DNA放射性。这种放射性可以很方便地用闪烁计数器或放射自显像仪来检测。可惜的是,放射性试剂的介入是限制这种试验在中央实验室进行的最大缺点。对无辐射DNA甲基化酶活性检测的研究导致了甲基化特异性PCR[14]、HPCE[9]和HPLC等替代品的发展[7,14],而甲基化特异性PCR被认为是较好的方法。尽管非放射性,上述DNA甲基化酶活性检测需要庞大且通常昂贵的设备,冗长且耗时的样品制备和数据分析,以及繁琐的检测方案,这在临床实践中也比较难以实现全覆盖。比色法:比色法用于DNA甲基化酶活性检测依赖于颜色变化的目视观察或与DNA甲基化酶相关的吸收光谱的光谱测量。它们具有成本低、简单、可移植性和在某些情况下无需仪器的优点。虽然紫外-可见光谱法可以量化DNA,但甲基化和未甲基化DNA在紫外-可见吸收特性上的低灵敏度和不显著差异基本否定了紫外-可见光谱法直接检测DNA甲基化酶活性[15~17]。金纳米粒子:金纳米粒子(AuNPs)由于其表面的等离子体共振吸收的高消光系数且强依赖于粒子间距离,在DNA甲基化酶活性检测的比色法研究中引起了广泛关注。如图1 所示,金纳米粒子表面包覆有双链DNA (ds-DNA),其中一条链包含DNA甲基化酶识别序列和5’-硫醇末端。在DNA甲基化酶存在的情况下,如图1 B 所示,DNA甲基化酶被共价标记在ds-DNA中碱基环的6-C位置,因为在5-N位置缺乏一个质子阻止了β-消除,甲基化的DNA不能被核酸外切酶 ExoⅠ剪切,因此金纳米粒子仍然均匀地分散在溶液中 [18]。从而实现DNA甲基化酶活性的检测。结果表明,在526 nm处,金纳米粒子聚集物的吸光度与DNA甲基化酶的活性呈2 ~ 32 U / mL的线性关系,检出限为0.5 U/ mL。图1. (A)基于ABP的比色生物传感器的示意图(B) DNA甲基化酶的检测机制 荧光法:荧光指吸收激发荧光团的光,以促进电子从基态到激发态,电子迅速地回到激发态的最低能级,然后当电子最终返回基态时,发出波长较长的光。与其他DNA甲基化酶活性测定法相比,荧光法检测DNA甲基化酶活性的优点是检测过程简单,灵敏度高,但其复杂的光学性能限制了其在集中实验室的应用[19~20]。图2. 基于外切酶的靶循环的DNA甲基化酶活性检测原理图电化学法:电化学生物分析技术的发展一直是现代分析化学研究的热点之一。电化学法用于DNA甲基化酶分析包括测量电流、电压、电荷和电阻等电量,以反映DNA甲基化酶的活性。与许多其他类型的DNA甲基化酶活性的检测相比,它们具有低成本、高灵敏度、执行现场监测的能力以及非常适合微型化和集成微制造技术的优点[22~23]。Zhi-Qiang Gao等人在2014年报道了一种简单、高灵敏度的DNA甲基化酶电化学活性测定方法。该方法采用电催化氧化抗坏血酸(AA)的信号放大手段,通过一个螺纹插层N,N -2(3-丙基咪唑)-1,4,5,8-萘二酰亚胺(PIND)电催化氧化还原Os(bpy)2Cl+ (PIND-Os),包含5’-CCGG-3’ 对称序列的ds-DNA首先固定在金电极上。然后用DNA甲基化酶孵育电极,经过酶催化特定CpG二核苷酸的甲基化,然后用识别5’-CCGG-3’ 序列的限制性内切酶 Hpa II 剪切酶处理电极,从而实现DNA甲基化酶活性检测的目的[24]。图3. DNA甲基化酶活性的检测原理示意图蛋白质纳米孔:蛋白质纳米孔检测技术是在单分子水平上以低成本、无标签和高通量的方式研究生物分子的检测技术。近年来,纳米孔技术正从生物传感的角度进行研究[25]。应用于核酸特征鉴定、化学反应过程的测量、蛋白质分析、疾病相关蛋白状态的检测以及酶动力学的研究等[26]。α-溶血7素是一种蛋白质纳米孔,它自发地插入到脂质双层膜中,形成一个纳米孔[27]。当一个带电分子在外加电势下通过蛋白质纳米孔时,它会引起离子电流的瞬态变化,电流变化事件被记录下来。被分析物可以通过当前电流发生的频率进行量化,特征电流信号则可以揭示被分析物的各种特征[28~30]。该检测方法不需要对DNA探针进行任何化学修饰,既方便又节约成本,减少了样品消耗。 图4. 用于分析DNA甲基化酶活性的纳米孔试验的示意图 在过去的十几年中,DNA甲基化酶活性的检测取得了重大进展。有几种方法有希望可在临床检测,使得该方法在用于癌症诊断、预后和治疗方面显示出了希望。比色法依赖于颜色变化的目视观察或与DNA甲基化酶相关的吸收光谱的光谱测量,具有成本低、简单、可移植性和在某些情况下无需仪器的优点,但是检出限相对较高。荧光法检测DNA甲基化酶活性的检测过程简单,检出限相对理想,但其复杂的光学性能以及昂贵的仪器设备限制了其在生活中的应用。电化学法由于需要构建较复杂的反应电极材料而使得其在临床上受到了一定的限制。蛋白质纳米孔的检测方法不需要对DNA探针进行任何化学修饰,既方便又节约成本,减少了样品消耗,检出限相对较为理想,并且已经成功应用于人类血清样本。这类检测可能最终为常规DNA甲基化酶活性的检测和分子诊断打开大门,为疾病的管理和诊断带来新的前景。 作者:王家海、骆 乐 作者简介:王家海,博士,教授,硕士生导师/博士生导师,广州大学化学化工学院;分析化学专业;主要研究领域为“基于核算纳米结构为信号传导载体的纳米孔传感器”;在核酸探针和仿生纳米孔两方面开展了一系列分子识别的工作,也为将来进一步开展分析化学研究打下了坚实的基础,期间积累了多种前沿分析方法和技术:仿生纳米孔制备和检测;微纳米加工技术;核酸探针人工合成技术。参 考 文 献 [1] 陈晓娟,闫少春,邵国,等.人DNA甲基化转移酶的分类及其功能[J].包头医学院学报,2014,30(04):136-138.[2] Das PM, et al. DNA methylation and cancer[J]. Clin. Oncol. 2004 22: 4632-4642.[3] Jurkowska RZ, et al. Structure and function of mammalian DNA methyltransferases[J]. ChemBioChem 2011 12: 206-222.[4] Lee GE, et al. DNA methyltransferase 1-associated protein (dmap1) is a co-repressor that stimulates DNA methylation globally and locally at sites of double strand break repair[J]. Biol. Chem. 2010 285: 37630-37640.[5] Liu SN, et al. Assay Methods of DNA Methylation and Their Applications in Cancer Diagnosis and Therapy[J]. Chinese J.Anal. Chem. 2011 39: 1451-1458.[6] Boye E, et al. Quantification of dam methyltransferase in Escherichia coli[J]. Bacteriol. 1992 174: 1682-1685.[7] Eads CA, et al. CpG island hypermethylation in human colorectal tumors is not associated with DNA methyltransferase overexpression[J]. Cancer Res. 1999 59: 2302-2306.[8] Bergerat A, et al. Allosteric and catalytic binding of s-adenosylmethionine to escherichia coli DNA adenine methyltransferase monitored by 3H NMR[J]. Proc. Natl. Acad. Sci. U. S. A. 1991 88: 6394-6397.[9] Fraga MF, et al. Rapid quantification of DNA methylation by high performance capillary electrophoresis[J]. Electrophoresis 2000 21: 2990-2994.[10] Yokochi T, et al. DMB (dnmt-magnetic beads) assay: measuring DNA methyltransferase activity in vitro[J]. Methods Mol. Biol. 2004 287: 285-296.[11] Adams RLP, et al. Microassay for DNA methyltransferase[J]. Biochem. Bioph. Methods 1991 22: 19-22.[12] Jurkowska RZ, et al. DNA methyltransferase assays[J]. Methods Mol. Biol. 2011 791: 157-177.[13] Pradhan S, et al. Recombinant human DNA (cytosine-5) methyltransferase [J]. Biol. Chem. 1999 274: 33002-33010.[14] Herman JG, et al. Methylation-specific PCR: a novel PCR assay for methylation status of CpG islands[J]. Proc. Natl. Acad. Sci. U. S. A. 1996 93: 9821-9826.[15] Kattenhorn, L. M. Korbel, G. A. Kessler, B. M. Spooner, E. Ploegh, H. L. Mol. Cell 2005, 19, 547−557.[16] Mosammaparast, N. Shi, Y. Annu. Rev. Biochem. 2010, 79, 155−179.[17] Barglow, K. T. Cravatt, B. F. Angew. Chem., Int. Ed. 2006, 45, 7408−7411.[18] Wu Z, et al. Activity-based DNA-gold nanoparticle probe as colorimetric biosensor for DNA methyltransferase/glycosylase assay[J]. Anal. Chem. 2013 85: 4376-4383.[19] Zhu, C. Wen, Y. Peng, H. Long, Y. He, Y. Huang, Q. Li, D. Fan, C. Anal. Bioanal. Chem. 2011, 399, 3459−3464.[20] Chen, F. Zhao, Y. Analyst 2013, 138, 284−289.[21] Xing XW, et al. Sensitive detection of DNA methyltransferase activity based on exonuclease-mediated target recycling[J]. Anal. Chem. 2014 86: 11269-11274.[22] Wu, H. Liu, S. Jiang, J. Shen, G. Yu, R. Chem. Commun. 2012, 48, 6280−6282[23] Wang, M. Xu, Z. Chen, L. Yin, H. Ai, S. Anal. Chem. 2012, 84, 9072−9078[24] Deng H, et al. Highly sensitive electrochemical methyltransferase activity assay[J]. Anal. Chem. 2014 86: 2117-2123.[25] Howorka, S. Siwy, Z. Nanopore Analytics: Sensing of Single Molecules. Chem. Soc. Rev. 2009, 38, 2360−2384.[26] Song, L. Hobaugh, M. R. Shustak, C. Cheley, S. Bayley, H. Gouaux, J. E. Structure of Staphylococcal α-Hemolysin, a Heptameric Transmembrane Pore. Science 1996, 274, 1859−1865.[27] Lin, L. Yan, J. Li, J. Small-Molecule Triggered Cascade Enzymatic Catalysis in Hour-Glass Shaped Nanochannel Reactor for Glucose Monitoring. Anal. Chem. 2014, 86, 10546−10551.[28] Li, J. Yan, H. Wang, K. Tan, W. Zhou, X. Anal. Chem. 2007, 79, 1050−1056.[29] Wood, R. J. Maynard-Smith, M. D. Robinson, V. L. Oyston, P. C. F. Titball, R. W. Roach, P. L. PLoS One 2007, 2, e801−e801.[30] Wood, R. J. McKelvie, J. C. Maynard-Smith, M. D. Roach, P. L. Nucleic Acids Res. 2010, 38, e107−e107.[31] Jinghong Li, et al. Nanopore-based, label-free, and real-time monitoring assay for DNA methyltransferase activity and inhibition[J]. Anal. Chem. 2017 89: 13252−13260.
  • 奥yun会,我们在行动
    近期冬奥会的热度刷爆朋友圈,吸引着quan世界的目光。期间,xing奋剂检测结果异常的新闻也让我们痛心,本着“希望运动员干净地完成每一场比赛,拿干净的金牌”的愿景,今天我们就来聊一聊xing奋剂检测的那些事。xing奋剂在体育界不特指某一类具有兴奋作用的药物,而是在竞技体育中禁止使用的所有物质和方法的统称。xing奋剂的使用不仅损害奥林匹克精神,破坏竞技比赛公平的原则,而且严重危害运动员身体健康,因此对运动员进行xing奋剂检测是ao运会非常重要的一项内容。在北京冬奥会上,干血点检测shou次成为常规xing奋剂检测手段。干血点(指将一滴血滴在专用卡纸上,干燥后形成的斑点)即DBS(Dried Blood Spot)与传统的血检方式相比,DBS依从性高,损伤极小,可操作性强,由于血液滴在卡纸上迅速变成固态,因此也更加安全稳定,方便后期的运输和储存。赛默飞世尔科技致力于帮助客户使世界更健康,更清洁,更安全。Transcend DSX-1系统包括干斑自动进样器和TurboFlow-超高压液相色谱仪,能实现干基质点样本的全自动流式化合物解析、在线样品净化,Transcend DSX-1结合三重四极杆质谱构建了一整套完善的xing奋剂检测方案(见图1),该系统可以快速定量多种干斑基质中qu马多(一种合成阿片类药物,具有中枢镇痛作用,广泛用于缓解急性或慢性疼痛)及其代谢物(O-去甲基qu马多,N-去甲基qu马多),测试的干斑基质包括尿液、血液、血清、唾液和水(作为标准基质),以同位素内标进行内标定量,定量参数如表1所示,干血斑样本在分析前、后的对比图和典型干血斑定量下限浓度点的色谱图见(图2),该方法在各种基质中的线性范围为5-400ng/mL。图1 Transcend DSX-1 系统结合 TSQ Altis 质谱(点击查看大图)表1qu马多(Tramadol)、O-去甲基qu马多(O-desmethyltramadol)、N-去甲基qu马多(N-desmethyltramadol)和对应三个同位素内标(Tramadol-13C-d3、O-desmethyltramadol-d6、N-desmethyltramadol-d3)的定量参数(点击查看大图)图2 干血斑样本在分析前、后的对比图和典型干血斑定量下限浓度点的色谱图(点击查看大图)TurboFlow在线样本净化技术UHPLC搭载TurboFlow技术实现全自动在线样本净化和色谱分离,其中用到了两根色谱柱,分别是Cyclone-P(0.5×50mm)和biphenyl分析柱(3×50mm,2.6μm)。TurboFlow方法配置为“Focus”模式,在待测物进入分析柱之前,优化好的溶剂填充管路,以有效洗脱TurboFlow柱上的分析物,整个分析过程和通路走向分为以下四步(图3):1样本载入TurboFlow色谱柱2从TurboFlow柱上洗脱分析物并将其转入分析柱3分析物在分析柱上分离,同时冲洗TurboFlow柱4平衡分析柱、TurboFlow柱以及管路图3 TurboFlow在线样本净化(点击查看大图)该方法用到的流动相组成和梯度设置详见下表2。表2 液相条件(点击查看大图)zui后,附上我们给冬奥会的献礼——赛默飞zui新推出的高分辨公安司法方法包,内含使用指南和指导使用的视频,各位Orbitrap用户可扫以下二维码填写仪器序列号进行方法包申请~PS: 扫码填写以下表单也可即刻获取【xing奋剂检测方案应用原文】如需合作转载本文,请文末留言。这样的应用图书馆不来了解一下?点击进入小程序完成注册即刻抽取盲盒好礼
  • 李灵军合作成果:mNeuCode支持精氨酸二甲基化的靶向蛋白质组分析
    大家好,本周为大家分享一篇发表在Analytical Chemistry上的文章,mNeuCode Empowers Targeted Proteome Analysis of Arginine Dimethylation1,文章的通讯作者是威斯康星大学麦迪逊分校的李灵军教授和国家蛋白质科学中心的常乘、贾辰熙教授。  蛋白质精氨酸甲基化是一种广泛存在于真核生物中且相对保守的翻译后修饰,参与包括RNA加工、DNA修复、染色体组织、蛋白质折叠和基因表达在内的多种生物学过程。蛋白质精氨酸二甲基化在生物过程和人类疾病中发挥着重要作用,但与此同时,精氨酸二甲基化的相对丰度和化学计量通常很低,并且表现出较宽的动态变化范围,这些问题都给分析带来了巨大的挑战。在这篇文章中,作者设计了一种用于二甲基精氨酸代谢标记的mNeuCode标签,并开发了一个名为NeuCodeFinder的软件工具,用于在MS全扫描中筛选NeuCode信号,从而能够在蛋白质组范围内对蛋白质二甲基化进行靶向LC-MS/MS分析。作者将该方法应用到HeLa细胞精氨酸二甲基化的全蛋白质组分析中,证实了该方法的有效性:在70种蛋白质上鉴定到176个精氨酸二甲基化位点,其中38%是新位点。  图1 用于细胞培养代谢标记的mNeuCode的化学设计。含有由稳定同位素标记的甲硫氨酸和精氨酸的不同组合的mNeuCode-I(红色)和mNeuCode-II(蓝色)分别用于两组细胞培养。同位素标记的甲硫氨酸经过代谢转化为甲基供体S-腺苷甲硫氨酸(AdoMet ),随后由蛋白质精氨酸甲基转移酶(PRMT)催化转移到精氨酸侧链的甲基上。细胞裂解后,将两种样品混合并制备用于高分辨率LC-MS分析。含有二甲基精氨酸的肽的NeuCode同源物被解析后,将显示出43 mDa的质量差异并作为诊断峰。  图2 基于mNeuCode的精氨酸二甲基化靶向蛋白质组分析。(A)NeuCodeFinder从高分辨率质谱数据中筛选NeuCode同位素峰对的工作流程。从原始数据文件中提取全扫描质谱。单峰被配对以形成NeuCode等值线簇。最终的NeuCode对列表与提取的离子色谱(XIC)值一起导出。(B)靶向LC-MS/MS分析的工作流程,包括样品制备、富集以及MS1和MS2分析。  在mNeuCode-I标记组中,使用含有正常L-精氨酸和同位素标记L-蛋氨酸[D3]的培养基 在mNeuCode-Ⅱ标记组中,则使用同位素标记的L-精氨酸[15N4]和L-甲硫氨酸[13C]进行培养(图1)。收集两组全细胞蛋白提取物并等量混合,蛋白经还原烷基化与酶切后,得到的肽段通过StageTip分级分离和HILIC tip富集,以提高样品肽段的识别率。处理的样品先进行LC-MS全扫描,通过作者的自制软件NeuCodeFinder生成包含列表,此包含列表用于辅助进一步的平行反应监测(PRM)模式分析(图2)。    图3 已鉴定的精氨酸甲基化位点的生物信息学分析。(A)鉴定的精氨酸二甲基化位点和(B)精氨酸二甲基化蛋白质。橙色柱表示未报道的精氨酸二甲基化位点或蛋白质。绿色柱表示只有单甲基化是已知的,但是二甲基化还没有报道。(C)韦恩图显示,通过使用胰蛋白酶和镜像胰蛋白酶作为消化试剂,从两组实验中鉴定的精氨酸二甲基化位点。(D)蛋白质上位点数目的分布。每个蛋白质上精氨酸二甲基化位点的数量显示在饼图周围,蛋白质的数量列在饼图中。鉴定的精氨酸-二甲基化蛋白质的(E) GO富集和(F)KEGG途径分析。(G)使用STRING数据库将二甲基化蛋白质映射到蛋白质相互作用网络上。综合得分 0.4。(H)已鉴定的精氨酸二甲基化位点中-6和+6氨基酸残基的序列标志。  通过对数据结果的分析,最终共鉴定到70种蛋白质上的176个精氨酸二甲基化位点,其中37-38%的精氨酸二甲基化位点是新的修饰位点,29%的精氨酸二甲基化蛋白没有被报道过,这证明了mNeuCode方法的有效性。与常规的鸟枪法蛋白质组学策略所获得的数据相比,mNeuCode方法在鉴定低丰度精氨酸二甲基化肽方面具有独特的优势,并且能够补充许多传统鸟枪法蛋白质组学所无法鉴定到的精氨酸二甲基化位点。对mNeuCode方法鉴定到的精氨酸二甲基化蛋白进行生物信息学分析后,发现这些蛋白质主要与RNA的加工、剪接和稳定性相关,参与了RNA的代谢过程。  图4 FAM98A上精氨酸二甲基化位点的突变抑制了细胞迁移。(A)通过蛋白质印迹检测FAM98A在HeLa细胞中敲除和重建的效果。用siFAM98A-1和siFAM98-2沉默HeLa细胞,然后用Flag标记的WT或突变的FAM98A质粒重建。Anti-FAM98A显示内源性FAM98A的干扰。Anti-Flag显示外源FAM98A的重建。(B)图像和(C)柱状图显示了HeLa细胞的细胞迁移。  FAM98A是一种微管相关蛋白,与结直肠癌和非小细胞肺癌的增殖有关。有研究者发现FAM98A是PRMT1的底物,但未能确定确切的甲基化位点。而在作者的研究结果中,成功鉴定到FAM98A上五个新的精氨酸二甲基化位点。为了验证这些二甲基化位点是否参与细胞迁移的调节,作者使用FAM98A敲除和FAM98A WT或突变重建细胞系进行了伤口愈合试验。将HeLa细胞的FAM98A基因敲除后,分别用WT或突变的flag-FAM98A重建FAM98A沉默细胞,其中突变的flag-FAM98A将二甲基化位点R351、R360、R363、R371和R375突变为赖氨酸以抑制甲基化。实验结果显示,当FAM98A基因被敲除时,细胞的迁移能力受到抑制,WT FAM98A的重建挽救了FAM98A敲除导致的细胞迁移缺陷,但是突变型FAM98A的重建却不能挽救。该结果证实了FAM98A上的二甲基化位点在细胞迁移中起到的作用。  总之,在这篇文章中作者发明了一种mNeuCode方法,并开发了NeuCodeFinder软件,使得能够以全蛋白质组的方式进行精氨酸二甲基化的靶向MS/MS分析。实验结果证明了mNeuCode技术对于精氨酸二甲基化的靶向蛋白质组分析的能力和有效性,并证实HeLa细胞FAM98A上新的精氨酸二甲基化位点在细胞迁移调节中的功能,有助于更好地理解癌症发展的潜在机制,为蛋白质组分析的方法学提供了新的思路。  撰稿:梁梓欣  编辑:李惠琳  文章引用:mNeuCode Empowers Targeted Proteome Analysis of Arginine Dimethylation  李惠琳课题组网址www.x-mol.com/groups/li_huilin  参考文献  Wang, Q., Yan, X., Fu, B., Xu, Y., Li, L., Chang, C., & Jia, C. (2023). mNeuCode Empowers Targeted Proteome Analysis of Arginine Dimethylation. Analytical chemistry
  • 解密“N-二甲基亚硝胺”,浅谈基因毒性杂质
    2018年中旬,长春长生的疫苗案还未彻底了结,缬沙坦原料药事件让N-二甲基亚硝胺(NDMA)又一次上了热搜。 时至今日,风波犹存,欧盟范围内对所有沙坦类药物进行审查。之后EMA通报,分别在印度药企Hetero Labs和Aurobindo Pharma生产的氯沙坦及厄贝沙坦原料药中,同样发现了含量极低的亚硝胺类化合物。美国FDA 仍在继续评估含缬沙坦的药物,并将获得的新信息持续更新「召回范围内的药物清单」和「不在召回范围内的药物清单」。 “治病”?“致病”!众所周知,药品是特殊的商品,它可以预防、治疗、诊断人的疾病。近年来,多种新药例如PD1/PD-L1免疫抑制剂的问世,让攻克癌症不再是梦想。 同时,药品的副作用及其安全性很大程度上决定其使用效果,有时不仅不能“治病”,还可能“致病”,甚至危及生命安全,所以药品生产商和监管部门对药品追溯和管理承担着不可或缺的责任。 揭开“基因毒性杂质”真面目NDMA是亚硝胺化合物的一种,而亚硝胺化合物、甲基磺酸酯、烷基-氧化偶氮等又均为常见的基因毒性杂质。基因毒性杂质(或遗传毒性杂质, Genotoxic Impurity, GTI)一般指能直接或间接损伤细胞DNA,产生致突变和致癌作用的物质,具有致癌可能或者倾向。 基因毒性杂质向来受到了严格的监控,2006年爆发甲磺酸奈非那非(维拉赛特锭)事件后,欧洲药品管理局( EMA)随即颁布了《基因毒性杂质限度指南》,人用药品注册技术要求国际协调会议(ICH)与美国食品与药品监督管理局( FDA)出台了相应的法规,中国国家食品药品监督管理总局也密切跟踪国际药品质量控制技术要求,不断完善现有药典收载技术指南,包括方法学验证、药品稳定性评价指导原则以及药品基因毒性杂质评价技术指南等。 药物合成、纯化和储存运输(与包装物接触)等过程中,多个环节均有产生或有可能产生基因毒性杂质。在工艺研究中采用“避免-控制-清除(ACP)”的策略能够最大限度减少基因毒性杂质对原料药物的影响,从而快速灵敏的监测分析手段变得尤为重要。 这时候,飞飞在此!今天赛默飞借助全新一代LC-QQQ技术,让我们一起助力“解密N-二甲基亚硝胺”。 赛默飞针对药品中基因毒性杂质液质检测解决方案 飞飞芳基磺酸酯类基因毒性解决方案Thermo Scientific™ 全新液相色谱三重四极杆质谱TSQ Fortis™ 平台建立了检测8种磺酸酯类的方法(苯磺酸酯类3个、对甲苯磺酸酯类3个、1,5-戊二醇单苯磺酸酯、 1,5-戊二醇二苯磺酸酯)。本方法灵敏度高、专属性强、稳定性好,可以满足各药企对此类基因毒性杂质的检测要求,可为基因毒性杂质风险监控提供有效的技术支持。结果如下:图1. 8种芳基磺酸酯提取离子流图(点击查看大图) 图2. 部分化合物标准曲线图(点击查看大图) 可以看出实验建立了三重四极杆液质联用仪(TSQ Fortis)分析8种芳基磺酸酯类的检测方法。实验结果表明,基于Thermo Scientific™ TSQ Fortis™ 建立的检测方法不仅具有优异的灵敏度和线性范围,同时具备良好的重现性。本方法可用于芳基磺酸酯类基因毒性化合物的日常分析检测。 飞飞N-亚硝基类基因毒性解决方案Thermo Scientific™ TSQ Fortis™ 针对基因毒性物质10个N-亚硝基化合物建立了稳定灵敏的分析方法。该方法在电喷雾离子化(ESI)条件下即可进行有效检测分析,试验结果优异,该方法稳定,快速,满足日常微量基因毒性物质N-亚硝胺类化合物的分析要求。图3. 10个N-亚硝基化合物的色谱图(5ng/mL)(点击查看大图) 图4. 部分化合物标准曲线图(点击查看大图) 从上图中可以看出建立的方法灵敏,快速和稳定性,色谱峰形良好,同时具备优异的重现性,可以满足药品中日常分析N-亚硝基类基因毒性杂质的检测要求。 飞飞总结语此次的应用案例就分享到这里了,不过难道只有这些?不!后续赛默飞更会带来应对基因毒性杂质的多平台解决方案,令“NDMA们” 无所遁形,敬请期待!扫描下方二维码即可获取赛默飞全行业解决方案,或关注“赛默飞色谱与质谱中国”公众号,了解更多资讯
  • 欧盟禁止进口含二甲基甲酰胺的鞋和家具
    据波兰媒体报道,自今年5月1日起,欧盟将禁止进口含有二甲基甲酰胺(DMF)的鞋和家具产品。欧盟称该物质吸收潮湿空气后会引发过敏反应。外界认为此举主要针对中国。
  • 陕西普洛帝再创佳绩,华能系统中标再添新篇
    在今日的公司新闻中,我们欣然宣布,陕西普洛帝测控技术有限公司(以下简称“普洛帝”)再次在激烈的竞争中脱颖而出,成功中标华能系统的全自动颗粒度仪项目。这一喜讯不仅彰显了普洛帝在业界的卓越实力,也为公司的发展注入了新的活力。普洛帝作为业界知名的设备提供商,一直以来都致力于为客户提供高效、稳定、可靠的产品和服务。此次中标,是普洛帝技术实力和服务品质的又一次有力证明。公司团队凭借丰富的经验、精湛的技术和卓越的服务,赢得了华能系统的认可与信赖。 中标项目对普洛帝来说具有重要意义。这不仅意味着公司在电力领域的市场份额进一步扩大,更体现了公司在技术创新和服务质量方面的持续提升。普洛帝将继续秉承“客户至上、质量第一”的宗旨,为客户提供更加优质的产品和服务,助力华能系统实现更高效、更绿色的能源利用。 此次中标也是普洛帝团队共同努力的结果。公司上下齐心协力,克服了诸多困难和挑战,最终取得了这一来之不易的胜利。我们为团队的辛勤付出和卓越成就感到骄傲和自豪。 展望未来,普洛帝将继续深耕能源领域,不断追求卓越和创新。我们将以更加饱满的热情和更加专业的态度,为客户提供更加优质的产品和服务,为实现绿色、低碳、可持续的能源发展目标贡献自己的力量。让我们共同期待普洛帝在未来创造更加辉煌的业绩!
  • 莱伯泰科参展2015美国新奥尔良PITTCON分析仪器展
    2015年3月9日匹兹堡分析仪器展 (Pittcon 2015) 于美国新奥尔良市隆重拉开序幕。莱伯泰科作为第十次参加这一世界**分析仪器展会的供应商之一,派出由美国和香港公司共同组成的强大阵容。 莱伯泰科展出的新产品HPSE高效溶剂萃取系统引起了美国,南美,欧洲以及亚洲用户的浓厚兴趣。溶剂管理柱膜通用固相萃取系统Sepaths UP,多通道快速浓缩仪MULTIVAP以及水循环,消解仪,旋蒸等产品继续受到分销商和最终用户的广泛关注。
  • 科学家开发出精氨酸二甲基化蛋白质组分析新方法
    近日,中国科学院大连化学物理研究所生物分离分析新材料与新技术研究组研究员叶明亮团队和上海有机化学研究所生物与化学交叉研究中心研究员刘聪团队合作,将硼酸化学引入到甲基化蛋白质组分析方法中,并巧妙利用精氨酸残基上不同修饰基团的位阻差异,实现高效的精氨酸二甲基化肽段富集,显著提高了蛋白质甲基化的分析能力;利用此新方法,系统分析了蛋白质分相过程中精氨酸二甲基化的变化,揭示了此类修饰的发生会降低蛋白质的分相能力。  蛋白质精氨酸甲基化是一种调控蛋白质功能的重要翻译后修饰,与较多疾病的发生发展相关。研究表明,精氨酸二甲基化会影响一些神经退行性疾病相关蛋白的液-液相分离,以及相分离所驱动的无膜细胞器的产生。然而,受限于目前精氨酸二甲基化蛋白质组分析技术覆盖率不足,这类研究仅聚焦于少数几个蛋白,尚未系统性探究精氨酸甲基化对蛋白质相分离的影响。  本研究发现,不同甲基化修饰的精氨酸残基在与邻二酮类化合物反应时,由于位阻不同,反应活性差异巨大。合作团队据此设计了一种精氨酸二甲基化肽段的富集方法:先利用环己二酮选择性的封闭无修饰精氨酸残基,随后利用丙酮醛选择性的在二甲基化精氨酸残基上修饰顺式邻二羟基,从而使得硼酸材料可以选择性的富集精氨酸二甲基化肽段。相比传统的免疫亲和富集方法,该方法拥有较强的精氨酸二甲基化肽段富集能力,特别是在鉴定RG/RGG序列上的精氨酸二甲基化位点方面有更高的灵敏度。合作团队将该方法应用于分析蛋白质相分离过程中精氨酸甲基化的变化,发现包括G3BP1,FUS,hnRNPA1、KHDRBS1在内的一些与无膜细胞器或神经退行性疾病相关的蛋白质上的精氨酸二甲基化程度发生了显著变化;系列实验验证发现,精氨酸甲基化会显著降低这些蛋白质的分相能力,且上述蛋白质组分析中鉴定到变化的甲基化位点是调控蛋白质相分离的关键因素。本工作开发了基于化学反应的精氨酸二甲基化蛋白质组分析方法,并利用这一方法揭示了精氨酸二甲基化对蛋白质液-液相分离具有重要的调控作用。  叶明亮团队致力于蛋白质磷酸化、糖基化、甲基化等翻译后修饰分析新方法的研究,发展了基于可逆酶促化学标记的O-GlcNAc糖肽无痕富集方法,克服了标记基团对糖肽质谱检测的干扰,实现了O-GlcNAc糖基化的高灵敏分析(Angew. Chem. Int. Edit.);利用不同糖肽的同一肽段骨架具有相似碎裂规律的特点,发展出基于“模式识别”的肽段序列鉴定新方法,实现了谱图拓展,显著提高了N-链接位点特异性糖型的鉴定灵敏度,并可发现未知的糖链及糖链修饰(Nat. Commun.)。  相关研究成果以Global profiling of arginine dimethylation in regulating protein phase separation by a steric effect-based chemical-enrichment method为题,发表在《美国国家科学院院刊》(PNAS)上。研究工作得到国家重点研发计划、国家自然科学基金、大连化物所创新基金等的支持。
  • “中国青年女科学家奖”及“未来女科学家计划”开始评选
    中国科协关于开展第十三届中国青年女科学家奖、2016年度“未来女科学家计划”候选人推荐工作的通知  各全国学会、协会、研究会,各省、自治区、直辖市科协,新疆生产建设兵团科协,有关高校科协:  为激励广大女性科技工作者的创新创造热情,引导广大女性科技工作者积极投身创新型国家建设伟大实践,中华全国妇女联合会、中国科学技术协会、中国联合国教科文组织全国委员会、欧莱雅(中国)有限公司决定共同举办第十三届中国青年女科学家奖评选活动,并实施2016年度“未来女科学家计划”。第十三届中国青年女科学家奖以及2016年度“未来女科学家计划”项目候选人的推荐工作由中国科协组织开展,现就有关事项通知如下:  一、第十三届中国青年女科学家奖  (一)评选范围和条件  1.热爱祖国,遵纪守法,具有“献身、创新、求实、协作”的科学精神及“自尊、自信、自立、自强”的时代精神,学风正派   2.在基础科学或生命科学领域取得重大发现、重大成果   3.不超过45周岁(1971年5月31日及以后出生)的中国女性科技工作者   评选范围不含工程技术领域及涉密领域。  (二)奖励人数  奖励人数不超过10名,其中至少1名在西部地区工作。  (三)推荐渠道及推荐名额  1.各有关全国学会、协会、研究会可推荐本学科领域的候选人1-2名   2.各省、自治区、直辖市科协可推荐本地区的候选人3-5名   3.各有关高校科协可推荐本校候选人1名   4.香港、澳门特别行政区候选人由有关机构各推荐2-3名   5.中国青年女科学家奖专家提名委员会提名。  二、2016年度“未来女科学家计划”  (一)评选范围和条件  1.热爱祖国,遵纪守法,诚实守信,尊师重教,具有良好的学风和道德品质,勤奋学习,刻苦钻研,表现出较强的科研能力和发展潜力   2.从事基础科学或生命科学领域研究工作,研究项目涉及动物(如实验用脊椎动物)和化妆品研究的不在此列   3.不超过35周岁(1981年5月31日及以后出生)的中国女性科技工作者   4.目前为在读博士生或在站博士后   5.具有拟利用本计划资助开展的科研项目,且该项目须于2017年开始研究,研究的持续时间不少于12个月。  (二)支持人数  本次支持人数不超过5名,并择优推荐其中1名参加“世界最具潜力女科学家”项目评选。  (三)推荐渠道及推荐名额  1.各有关全国学会、协会、研究会可推荐本学科领域的候选人1名   2.各省、自治区、直辖市科协可推荐本地区的候选人1-2名   3.各有关高校科协可推荐本校候选人1名   4.香港、澳门特别行政区候选人由有关机构各推荐2-3名   5.中国青年女科学家奖专家提名委员会提名。  三、推荐工作要求  (一)每位被推荐人需明确参评中国青年女科学家奖或“未来女科学家计划”,不得两个项目同时参与评选。  (二)坚持“公开、公正、公平、择优”原则,拓宽推荐渠道,严格评选条件,保证评选质量。  (三)中国青年女科学家奖推荐人选要注重向长期在科研和生产第一线以及西部欠发达地区工作的优秀青年女科技工作者倾斜,被推荐人的成果贡献以在国内作出的为主,应为主要完成人或主要贡献人 “未来女科学家计划”项目推荐人选既要注重目前已承担的科研工作取得的成果及表现出的科研潜力,更要注重拟申请资助项目的创新性。  (四)候选人推荐材料是评审的主要依据,要简明扼要、突出重点。非学术性报纸、刊物、网络的有关报道不作为证明材料,非学术任(兼)职、非科技类奖项不得填入推荐表相关栏目。电子版材料与相应的纸质版材料必须保持一致。  (五)推荐单位和候选人要自觉恪守科学道德和学术规范,推荐材料要客观、准确、完整,对于材料填报不实和有其他学术不端行为者,经查实,均按程序取消评选资格或撤销获奖和资助资格,并记录在案。如候选人被投诉,推荐单位及候选人所在单位应进行调查核实并提供书面调查材料和结论性意见。  (六)候选人推荐材料不得涉及国家秘密,并出具候选人所在单位关于非涉密的证明。材料违反保密规定的,取消被推荐资格。  四、报送材料要求  (一)推荐工作材料  推荐情况报告1份,内容包括推荐人选产生方式、专家评审情况以及确定推荐的人选等,单位负责同志签字并加盖推荐单位公章。电子版发邮箱。  (二)候选人材料  报送的推荐材料包括电子材料和书面材料。  1.电子材料  电子材料通过中国青年女科学家奖推荐及评审管理系统(http://qnnkxjj.cast.org.cn)报送。请各推荐单位用分配的“推荐单位用户名、密码”登陆系统,按照要求组织候选人用“候选人注册密码”注册并登陆后进行网络填报,填报中注意选择拟推荐的类别。“推荐单位用户名、密码,候选人注册密码”另行发送。请于2016年7月31日前完成网络填报工作。  2.中国青年女科学家奖候选人书面材料  (1)《第十三届中国青年女科学家奖候选人推荐表》一式10份,其中原件1份,复印件9份,请勿另附封面。使用中国青年女科学家奖推荐及评审管理系统将电子材料报送成功后,继续使用该系统打印《推荐表》。  (2)附件材料1套,包括代表性论文(不超过3篇)、主要科技成果目录以及被引用、技术鉴定、知识产权、技术应用、所获奖项等相关证明材料。专著(不超过1本)可另附。  (3)候选人所在单位出具的非涉密证明。  3.“未来女科学家计划”候选人书面材料  (1)《2016年度“未来女科学家计划”候选人推荐表》一式10份,其中原件1份,复印件9份,请勿另附封面。使用中国青年女科学家奖推荐及评审管理系统将电子材料报送成功后,继续使用该系统打印《推荐表》。  (2)博士生请提供研究生院出具的在读证明,需写明专业及拟毕业时间 博士后请提供博士学位证书及工作协议。  (3)候选人所在单位(学校)出具的非涉密证明。  请于2016年8月15日前完成书面材料报送,以收到为准,请留出足够的寄送时间。  五、联系方式  中国科协组织人事部具体负责中国青年女科学家奖、“未来女科学家计划”评选的组织工作,中国科协培训和人才服务中心负责网上填报和上传信息指导及材料接收工作。  中国科协培训和人才服务中心  联 系 人:张玮琳 石 敏  联系电话:(010)68788768  通讯地址:北京市复兴路3号中国科技会堂404室  电子邮箱:qnnkxjj@cast.org.cn  中国科协组织人事部  联 系 人:刘 洋 姚振清  联系电话:(010)68526144 68578091  附件:1.第十三届中国青年女科学家奖候选人推荐表.docx   2.2016年度未来女科学家计划候选人推荐表.docx   3.推荐单位用户名、密码,候选人注册密码.docx  中国科协  2016年6月7日
  • 粤港澳交叉科学中心在东莞松山湖成立
    p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201812/uepic/9e7c31f8-7a04-4df1-a94f-4adb92d4665a.jpg" title=" W020181205311361116385.jpg" alt=" W020181205311361116385.jpg" / /p p style=" line-height: 1.5em text-align: center " & nbsp & nbsp & nbsp & nbsp 11月24日,松山湖材料实验室粤港澳交叉科学中心揭牌 br/ /p p style=" line-height: 1.5em text-align: center " img src=" https://img1.17img.cn/17img/images/201812/uepic/dfe77ded-e9a2-4025-a7d2-94729debcc53.jpg" title=" W020181205311361447347.jpg" alt=" W020181205311361447347.jpg" style=" line-height: 1.5em text-align: center " / /p p style=" line-height: 1.5em "   松山湖材料实验室已于今年4月25日揭牌。目前一期的1.7万多平方米的办公区正在装修中,进驻的10个团队预计近期就可以在里面开展实验工作。 /p p style=" line-height: 1.5em "    strong ■聚 焦 /strong /p p style=" line-height: 1.5em "   11月24日,松山湖材料实验室粤港澳交叉科学中心揭牌成立,将打造具有国际影响力的学术交流和合作研究平台。松山湖材料实验室理事长、中国科学院院士王恩哥到场致辞,并为相关专家授聘书 国家自然科学基金委副主任、中国科学院院士谢心澄,中国科学院副秘书长、前沿科学与教育局局长、院士高鸿钧,东莞市委书记、市人大常委会主任梁维东,东莞市委副书记、市长肖亚非,广东省科技厅副厅长郑海涛,东莞市委常委、松山湖高新技术产业开发区党工委书记黄少文等出席活动。 /p p style=" line-height: 1.5em "   出席活动的还有20多位中国、美国、德国、加拿大等国家科学院的院士,国内多所大学的校长、副校长,多家研究所所长以及相关部门、机构的专家代表。 /p p style=" line-height: 1.5em "    strong 以材料科学为核心推动多学科交叉发展 /strong /p p style=" line-height: 1.5em "   松山湖材料实验室由东莞市政府、中国科学院物理研究所和中国科学院高能物理研究所共建,是广东首批4家省实验室之一,总体规划1200亩,首期计划投资经费超过50亿元。2018年4月25日,松山湖材料实验室在东莞挂牌成立。实验室定位于成为有国际影响力的新材料研发南方基地、未来国家物质科学研究的重要组成部分、粤港澳交叉开放的新窗口及具有国际品牌效应的粤港澳科研中心。 /p p style=" line-height: 1.5em "   该实验室计划打造公共技术平台、前沿科学研究、创新样板工厂以及粤港澳交叉科学中心四大核心板块。其中,粤港澳交叉科学中心依托实验室,联合国内外各大学、中国科学院、国家自然科学基金委等机构,吸取国际类似研究机构的成功经验,邀请国际一流学者进行中长期或短期访问,以持续深入的科学研讨会为主,打造系列知名国际会议和讲习班,旨在建成高水平、长期、稳定的学术交流和合作研究的平台。 /p p style=" line-height: 1.5em "   该中心将以材料科学为核心,面向生命、能源、先进制造、人工智能等多学科交叉,持续关注国内外相关科学前沿和最新动态,为学科交叉融合提供创新思想和成果源泉。 /p p style=" line-height: 1.5em "   此外,该中心未来将面向社会开放,宣传和普及材料科学及相关学科交叉所形成的各种成果,锻造先进的科学文化基础,促进和培养更多的优秀年轻人才投身于前沿研究 保持与政府、企业、高校和科研院所良好的合作关系,为实验室发展提供战略咨询,并引领中国乃至世界交叉学科的发展。 /p p style=" line-height: 1.5em "    strong 东莞正加快向“科技引领产业”转变 /strong /p p style=" line-height: 1.5em "   东莞市委副书记、市长肖亚非代表东莞市委市政府致辞时表示,建设松山湖材料实验室,是东莞全力打造具有全球影响力的国家创新型城市的重要一环。粤港澳交叉科学中心的建成挂牌,标志着实验室建设进入了一个新的阶段,也预示着实验室将以更加开放的姿态走向全国、走向世界。 /p p style=" line-height: 1.5em "   肖亚非表示,近年来,东莞深入推进创新驱动发展升级版行动计划,目前已与北大、清华等高校共建了32家新型研发机构,中国散裂中子源去年已经开始运营,南方光源也有望落户东莞。 /p p style=" line-height: 1.5em "   目前东莞全市拥有国家高新技术企业4058家,今年有望突破4500家,总数居广东省地级市第一。东莞正加快实现从“科技支撑产业”向“科技引领产业”、从“分散式创新”向“协同式全域创新”、从“服务自身发展为主”向“支撑国家重大战略需求”三个转变。 /p p style=" line-height: 1.5em "   肖亚非表示,当前,国家正大力推进粤港澳大湾区、广深港澳科技创新走廊等重大战略。广东省对东莞明确提出了建成具有全球影响力的先进制造基地、国家级粤港澳台创新创业基地、华南科技成果转化中心三大定位。东莞将对照这些目标要求,重点规划建设面积达53平方公里的中子科学城,全力推动松山湖材料实验室等加快建设,更好地发挥对东莞乃至全省、全国创新驱动发展和产业转型升级的支撑引领作用。 /p p style=" line-height: 1.5em "    strong 将为人才开展交流和合作搭建平台 /strong /p p style=" line-height: 1.5em "   “珠三角一直处于改革开放的前沿,经过多年的发展,已经成为了世界的制造中心,并聚集了一系列国际知名高校和大批高水平的学者、专家。在东莞建设材料实验室、粤港澳交叉科学中心,正是为了更好地利用粤港澳地区在产业、高校等方面的优势,推动我国的基础研究发展。”松山湖材料实验室理事长、中科院院士王恩哥表示,粤港澳交叉科学中心的揭牌,标志着松山湖材料实验室建设又迈出了重要的一步。在地方党委政府的支持下,在广大专家的指导下,松山湖材料实验室粤港澳交叉科学中心将有望成为粤港澳科技领域的亮丽名片。 /p p style=" line-height: 1.5em "   在科学研究中,人才的交流发挥着重要的作用。粤港澳交叉科学中心的成立,将为人才开展交流和合作搭建平台。王恩哥表示,未来,松山湖材料实验室和粤港澳交叉科学中心将通过利用好广东、香港、澳门的高校资源和工业发展等优势,在全国培养科研人才、开展前沿的科学研究等方面发挥积极的作用,同时,也将推动我国基础研究的发展。 /p p style=" line-height: 1.5em "   松山湖材料实验室目前建设进展如何?据王恩哥介绍,松山湖材料实验室是广东首批4家省级实验室之一。虽然项目启动还不足一年,但各项工作推进非常快,基建设计正在全面开展。同时,今年以来,实验室还吸引了10个全球顶尖创新研发团队加入,其中4个来自中国科学院物理研究所,6个来自于高校、科研院所。 /p p style=" line-height: 1.5em "   松山湖材料实验室未来将如何与散裂中子源、南方光源等大科学装置进行互动?王恩哥表示,近年来,我国启动建设了一大批大科学装置,这给极端条件下开展科学研究提供了支撑和保障。但建设大科学装置只是开展科学研究的第一步,如何用好大科学装置、推动科学研究出成果才是关键。而材料实验室,正是用好大研究成果、推动成果转换的一个平台。 /p p style=" line-height: 1.5em "    strong ■延伸阅读 /strong /p p style=" line-height: 1.5em " strong   建设科学中心意义何在? /strong /p p style=" line-height: 1.5em "   在人类科学发展的历史上,科学中心的成立对于促进科学的发展起到了非常重要的作用。 /p p style=" line-height: 1.5em "   如上个世纪初,丹麦成立了以著名的理论物理学家玻尔为中心的玻尔研究所,吸引了世界各国最活跃的学者前来访问,大家还聚集到一起讨论最前沿的学术问题。自由的学术环境和活跃的交流气氛,使得玻尔研究所成为全球大师云集的理论物理研究中心,并形成了著名的哥本哈根学派,产生了一大批划时代的学术思想和创新成果,对原子物理和量子力学的发展和完善起到了十分重要的作用。量子物理的研究,为世界范围的半导体工业革命和信息技术的发展奠定了理论基础。 /p p br/ /p
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制