当前位置: 仪器信息网 > 行业主题 > >

羟乙基砜苯胺

仪器信息网羟乙基砜苯胺专题为您提供2024年最新羟乙基砜苯胺价格报价、厂家品牌的相关信息, 包括羟乙基砜苯胺参数、型号等,不管是国产,还是进口品牌的羟乙基砜苯胺您都可以在这里找到。 除此之外,仪器信息网还免费为您整合羟乙基砜苯胺相关的耗材配件、试剂标物,还有羟乙基砜苯胺相关的最新资讯、资料,以及羟乙基砜苯胺相关的解决方案。

羟乙基砜苯胺相关的资讯

  • 采用LCMSMS技术分析环境中的苯胺和联苯胺
    苯胺类化合物为芳香胺的代表,指苯胺分子中的氢原子被其它功能团取代后形成的一类化合物。苯胺及其衍生物是重要的化工原料和中间体。环境中苯胺类及其衍生物的排放源主要来源于印染染料、油墨、制药、橡胶、炸药、涂料、农药和塑料等工业废水。苯胺类化合物具有很高的毒性,其中一些具有明显的致癌作用,是我国规定优先控制的污染物。随着现代工农业的发展,苯胺类化合物在环境中排放与残留量日趋增多,对环境以及人们的身体健康所产生的危害日益严重。因此,建立环境样品中苯胺类和联苯胺类化合物的测定方法十分重要。环境标准《HJ 1048-2019 水质17种苯胺类化合物的测定液相色谱-三重四极杆质谱法》,为环境介质中苯胺类化合物的测定提供技术保障和法规依据。珀金埃尔默公司采用QSight LC-MS/MS液质联用系统,建立应对环境样品中苯胺类的分析方案。本方法中,苯胺类、联苯胺类化合物均获得了优异的线性关系(R20.994),该方法的苯胺类和联苯胺类化合物检出限为0.01~0.5μg/L。PerkinElmer LX50 UHPLC-QSight系列三重四级杆液质联用仪欲了解更详细的实验方法,欢迎扫码下载完整的应用报告。扫描上方二维码即可下载资料
  • 填补土壤苯胺检测空白---LCMSMS苯胺新标准6月正式实施
    HJ 1210-2021《土壤和沉积13种苯胺类和2种联苯胺类化合物的测定 液相色谱-三重四极杆质谱法》,主要适用于土壤和沉积物中苯胺和联苯胺化合物的测定,在今年6月1日正式实施。 标准为首次发布标准,标准的发布实施为《土壤环境质量 建设用地土壤污染风险管控标准(试行)》(GB 36600-2018)等土壤风险管控标准作支撑,并填补了我国土壤和沉积物中苯胺类和联苯胺类化合物监测分析方法标准的空白,在建设用地土壤风险管控、土壤污染修复在监测上提供强大支持。 作为参与标准制定的验标单位之一,岛津有从前处理到检测方法一系列完善的解决方案。 应用解决方案 在土壤检测上,岛津除了满足新标准检测外,还提供在分析监测上土壤检测解决方案,包括LC、GC、IC、 AA、ICP、ICPMS、XRF、 GCMS、LCMS等丰富完善的色谱、光谱、质谱仪器,还与国家环境分析测试中心的Smart SIM有机物分析数据库,为土壤检测提供更为便利的分析。 岛津秉承着为了人类和地球的健康的公司经营思想,一直致力于土壤检测分析,提供土壤检测整体解决方案,为土壤监测与环境保护提供助力。 本文内容非商业广告,仅供专业人士参考。
  • 山西耗资8.5亿监控系统未监测到苯胺泄露
    诸多媒体关注山西苯胺泄露事故   山西8.5亿自动监控系统为何失效   8.68吨有毒化工中间体苯胺,要泄漏到海河水系的浊漳河,威胁到下游邯郸、安阳饮用水水源,至少需要突破分流阀、每2小时一次的例行排查、在线实时监控系统和突发环境事件应急预案这4道软硬件“阀门”。但它做到了。   《第一财经日报》记者探访山西长治“1231”苯胺泄漏事故泄漏源发现,事故之所以酿成并造成较大影响,因为上述四道“阀门”都是松动的。   受污染水源被倾倒山沟   昨日下午,在位于长治市下辖潞城市黄牛蹄乡的事故发生地,本报记者看到,数十名身着蓝色制服的山西省潞安天脊煤化工厂(下称“天脊化工”)工作人员,正在一处通向浊漳河的水渠中,用铁锹和铁镐将已冻结的渠水敲碎,装入编织袋内集中堆放。据工作人员称,会有卡车来把这些被污染的冰体运走,但不清楚运到何处。半米深的水渠里,渠水已全部冰封,而铺设的鹅卵石也使得清理工作变得相当费力。   苯胺的泄漏,在这里留下了相当多的痕迹。渠道内随处可见为了吸附苯胺而喷洒的石灰粉。越接近浊漳河的地方,石灰粉也就越多。   在此次被用来截留受污染水体的黄牛蹄水库,记者看到抽水车不断地将水库内留存的污水抽走,身穿天脊化工母公司——潞安集团工作服的工作人员正用仪器丈量水库受污染的面积。   据长治市官方说法,将对被污染水源做无害化处理,记者采访得知,这些水都被倾倒在距天脊化工排污口不远的山沟里。   在公路旁一个洼地内,工作人员也在清除冰块,这里的冰层甚至比渠道里的还要厚,当地村民称,在事故处置时,这片洼地曾被用作临时蓄水池。   据科普网站科学松鼠会提供的信息,苯胺是一种重要的化工中间体,可用于生产聚氨酯泡沫塑料、农业化学品、合成染料、抗氧化剂、橡胶稳定剂、除草剂、清漆和炸药等。它同时是一种有毒物质,食入、吸入或皮肤接触都可能引起中毒。苯胺会损害在血液中运输氧气的血红蛋白,导致高铁血红蛋白血症等中毒症状。中毒者可能出现头晕、头痛、心跳不规律、抽搐、昏迷甚至死亡。   此次泄漏事故发生后,浊漳河下游安阳市境内岳城水库、红旗渠等部分水体有苯胺、挥发酚等因子检出和超标 主要依赖岳城水库供水的邯郸市出现大面积停水。   浊漳河是山西上党地区最大的河流,流域内不仅有辛安泉饮用水水源二级保护区,还有水上漂流的旅游项目。浊漳河流域面积11196平方公里,与清漳河合流成为漳河干流,其至岳城水库以上流域面积18100平方公里。岳城水库是邯郸市两大水源之一,邯郸市城区人口则超过100万。   排水排污管道仅靠分流阀分隔   调查称,此次苯胺泄漏的直接原因是天脊化工苯胺罐区的一个分流阀未关闭。   据新华社报道,天脊化工的苯胺罐区是一个由两米高的围墙围起来的封闭区域,进出需要通过一座类似天桥的铁架翻越围墙。   在苯胺罐区有一根管道分别与雨水处理池和事故池相连,下雨天,通往雨水处理池的阀门打开,罐区的雨水经由地形引导流入管道进入雨水处理池后排入浊漳河 不下雨时,这道阀门是关闭的,一旦发生苯胺泄漏,苯胺将会通过管道进入事故池。   但2012年12月31日7:40以前,尽管天未下雨,通往雨水处理池的管道阀门却是松开的。这直接导致当日38.68吨苯胺流入通向浊漳河的水渠,后者30吨被成功截留。   天脊化工工作人员对本报称,该公司规定,对苯胺灌区每2小时进行一次例行检查,事故正是于当日7:40排查时被发现的。但该工作人员无法确认具体的泄漏时间,以及其他工作人员此前是否做过检查。   2013年1月6日晚,“1231”苯胺泄漏事故应急指挥部召开媒体通气会,宣布事故的4名直接责任人——天脊方元公司总经理陈建温、安全生产副总经理任勇杰、储运车间主任程新生、副主任宋涛已被撤职。待事故调查结束后,再进一步追究相关人员责任。   耗资8.5亿监控系统无作用?   姑且不论排水和排污管道仅以一个阀门分隔这一设计是否合理,以及例行检查是否存在疏漏,即使是发现泄漏后的有关方面的处置,也存在诸多争议之处。   根据山西省2011年制定的《山西省突发环境事件应急预案》,山西省政府应当在当天就接到报告并上报。   按照官方说法,山西省环保厅直到事故发生后第5天的1月5日才得知情况。但本报记者调查得知,天脊化工已安装了直通山西省环保厅的“在线实时监控系统”,如果这一系统正常工作,山西省环保厅本应能够实时监控到事故的发生。   公开资料显示,山西省环保厅早在2006年就成立了“全省污染源自动监控系统”建设领导组,由环保厅长担任组长。2008年3月,总投资8.5亿多元的全国第一个“监控合一”的省级污染源自动监控中心在山西建成并投入使用。   安装该系统的企业的排污数据,将通过GPRS无线网络VPN专网,实时地发送到山西省环保厅的监控室内,如果数据排放超标或净化设施运行不太正常的时候,监控室设在污染源的在线监控系统控制柜,给企业实施相关的控制功能,如强制停电等。   本报查阅山西省环保厅官网发现,天脊化工恰恰是山西省环保厅负责监管的自动监控企业之一。   在1月7日上午召开的发布会上,长治市市长张保称因对污染危害性估计不足,“未及时向省政府上报有关信息”,并作出道歉。   而本报记者致电山西省环保厅,询问为何在此次事故中,这套总投资8.5亿、号称全国领先的“污染源自动监控系统”未能起到防范并及时发现事故的作用,得到的答复是“此问题须由目前在长治市的厅领导回答”。   新闻背景:山西苯胺泄漏事故致河北邯郸大面积停水
  • 8种苯胺类物质的同时测定
    苯胺类化合物是一种重要的有机化工原料, 环境中所含苯胺类化合物主要来自化工、医药等产生的工业废水,苯胺类物质一般毒性较大,在我国被列为环境重点监测污染物。 此次日立参考国家环境保护标准《 水质 苯胺类化合物的测定 液液萃取/液相色谱法(征求意见稿)》,使用Primaide 高效液相色谱仪配置二极管阵列检测器对8种常见的苯胺类物质进行了测定。8种苯胺类物质实现了良好的分离,方法检出限远低于标准要求值,能够满足测定需要。 图为. 色谱测定条件 图为. 标准品的色谱图(浓度各20 mg/L) 图为. 标准品的色谱图(浓度各20 mg/L) 图为. 苯胺类化合物定量波长仪器配置 : Primaide 1110 泵,1210 自动进样器,1310 柱温箱,1430 二极管阵列检测器■ 线性■重复性(浓度20.0 mg/L,n=6) 在苯胺类化合物浓度为2.0 ~ 100 mg/L范围内,所有成分均得到了R2 ≥ 0.9995的良好线性关系,重复性也得到了良好的结果。■检出限和测定限 与国家标准的结果相比,本方法不仅改善了各成分的分离效果,并且各成分的检出限和测定限均低于标准值,能够满足测定需求,充分体现日立Primaide加二极管阵列检测器的高灵敏度的特性。关于日立Primaide高效液相色谱仪的详情,请见链接:https://www.instrument.com.cn/netshow/SH102446/Product-C0102-0-0-1.htm ?
  • 山西苯胺泄漏事件进展:又发现挥发酚超标
    据中国之声《新闻纵横》1月9日报道,山西长治天脊煤化工集团苯胺泄漏事故发生进入第10天。从事故责任人初步处理意见发布,到环境监测信息公布,直至向公众道歉,这两天,事故应急处理指挥部举动频频。   在山西长治,天脊煤化工集团究竟是一家怎样的企业?公众更想知道,这次污染事故是不是偶发?作为污染的制造者,会为此承担怎样的责任?   沿天脊集团厂区东墙向南,不出两公里,微子镇王都庄村的房屋和玉米地隔河相望。听记者在打听"天脊集团",有村民主动到话筒前说起来。   村民:你看房子上的灰,红瓦都成黑的了。白衣服搭那一会就成黑的衣服了。   村民们说,这些灰都是附近的大型煤化工企业天脊集团带来的,而比灰尘更让他们苦恼的,是水污染给庄稼带来的影响。   村民:庄稼就呛死了,庄稼收影响很大。有的树也死了,很厉害。   经过村民的指点,记者才发现,在村子房屋和玉米地之间的,并不是自然河道,而是一条深达三四米的整齐渠道,下面流淌的水泛着微黄色,站远些也能闻到刺鼻气味。村民们说不清里面排的是什么,但顺着渠道向上走,可以发现它直通天脊集团罐区外墙。村民们说,这就是天脊常年排废水的地方。   村民:"环保事故应急水池"仅为应付检查 污水常年"直达"浊漳河   从村边的渠道向南走,一个方形水泥池显得很醒目,"环保事故应急水池"的牌子挂在朝向路口的方向。正从王都庄村走出来的岳爱斌说起这个池子时笑起来。   岳爱斌:地下管道就是我们修的。秋天上冻后才完工。就是应付领导检查,来了有蓄水池。实际哗哗,每天都流,都是流的臭水,你没见那臭水……等不检查的时候,这些污水就顺着渠道去了黄牛蹄水库,从黄牛蹄水库往下就到辛安村,从辛安村到了浊漳河往河南方向走了。   他解释说,平时这个水池是不用的,无论寒暑,臭水都从村口一泻而下,一路留到浊漳河。尽管在排污渠和浊漳河汇流处已经没有这么明显的气味,但辛安庄村口的人们也对这条排污渠有着类似的抱怨。   记者:化肥厂的水常年在这儿流?   辛安庄村民:对,常年!   记者:是天脊集团的?   辛安庄村民:就是污水嘛!   苯胺泄漏涉事企业仍未停产 2012年废气超标近半年   按照天脊集团公开的阐述,他们的企业环评是合格的,日常排放物是达标的。只是这个24小时机器轰鸣的厂区,想进入也是十分困难的。   天脊集团保安:你们去接待中心,让他们带你们进,接待记者的。其他一般人员车辆都不可以进。   记者:企业还在正常生产是么?   天脊集团保安:是。   但有更多来山西省环保厅发布的公开资料显示,天脊煤化工集团股份有限公司在2012年第一、二季度全省环保不达标生产重点企业名单中都榜上有名,也曾因废气污染物超标排放,被环保部门责令停止违法行为并处罚款。去年第二季度,天脊集团更被发现废气排放超标2.4倍。   在潞城市的东半部,几乎到处都有"天脊"的影子,天脊医院、天脊宾馆、天脊游泳馆,天脊的巨大生产设备日夜运转,似乎也证明着它对这个地方的巨大影响。   媒体曝苯胺泄漏12月26日已发生 山西未主动上报   因为这次苯胺泄漏事故,天脊集团党委书记王俊彦在新闻通气会上公开致歉,但记者再联系他试图采访,又有了另外的说法。   记者:您好,请问是王书记么?   王俊彦:不是吧。   记者:您是王俊彦书记么?   王俊彦:什么事儿?   记者:我是中央人民广播电台的记者。是想请问您一下咱们厂子苯胺泄漏的事情,这两天有什么处理的进展么?   王俊彦:哦,你问这个,这个我们向上面汇报了,上面领导们也下来调查了解了,再一个,情况也越来越好了。   王书记迅速挂断电话,只留下"越来越好"的说法。昨天下午,山西省召开全省安全生产紧急电视电话会议,省政府发布消息说潞安天脊煤化工董事长王光彪、长治市市长张保就本次环境污染事件作刻检查,表示痛定思痛,全面整改,诚恳接受上级部门的处分和处理。   在潞城市中华东大街上,"天脊集团欢迎您"的巨型标语横跨马路上方,到这座小城的记者这几天突然多起来。   山西省代省长李小鹏昨天表示要严格事故问责,无论涉及到哪一层、涉及到什么人,都要依法依纪依规严肃追究责任。 李小鹏代表山西省政府责令潞安天脊煤化工集团全面停产整顿。今天,事故发生已过十天,有媒体说泄漏事故12月26日已经发生,山西并未主动上报,有媒体问,明明泄漏的是苯胺,下游检出的挥发酚从何而来?天脊集团的污染隐患是否能借此根除?公众期待答案。   邯郸主水源地岳城水库检测报告完成 苯胺污染却出现苯胺、挥发酚同时超标   1月5日接到山西方面苯胺泄露事故的通报后,昨天(8日),邯郸市终于完成了主要水源地岳城水库的全面检测报告。经环保部专家论证,岳城水库水质符合饮用水水源标准。   水源地没有被污染,总算让人松了口气。刚才我们的记者也指出,在昨天的检测中,距离岳城水库三四公里外的三个点位,检测出苯胺、挥发酚超标。山西天脊集团发生的是苯胺泄露事故,那么挥发酚是哪来的?目前上游的污染物究竟到了哪里?   邯郸市环保局总工程师侯日升昨天明确:根据检测结果,岳城水库没有检测出目标污染物。   侯日升:最后监测结果是库区内水样中,苯胺、挥发酚未检出,但是上游的三个点位,挥发酚和苯胺都超标,苯胺超标5倍左右,挥发酚超标6到13倍。   与环保局的说法稍有出入,国家环境应急专家组专家张晓健透露,在岳城水库的上游以及水库内的一些点位,检测出了目标污染物之一挥发酚。   张晓健:整个库里边,水库的主体,苯胺所有的点都没有检出,挥发酚有检出,但是属于国家的二类水源,地表水三类都可以作为饮用水水源。   据介绍,1月4日邯郸方面在漳河上游发现死鱼,环保部门立即取样检测,1月5日凌晨,检测结果表明挥发酚严重超标,而山西方面1月5日向邯郸通报泄漏的污染物却是苯胺。   张晓健:当时死鱼肯定是有问题了,但是什么污染物不清楚,所以测了很多,最后发现挥发酚指标超标一百多倍,在跨省界面,所以就跟山西交涉,山西最后就答复了是苯胺。   专家:苯胺污染源确定为山西天脊集团 挥发酚来源尚未找到   一起苯胺泄漏事故,为何检测出挥发酚超标?张晓健分析,苯胺超标的污染源可以确定是山西天脊集团,但特征污染物中挥发酚的来源尚未找到。   张晓健:挥发酚是个指标,测定实际很多中酚都能够表征为挥发酚。这次事故最后的原因还没确定,还有一个挥发酚的排放,是山西天脊,还是有其他排放源?因为这个地方上游有很多焦化企业,都有可能,现在正对所有企业进行排查。   12月31日从上游泄漏的污染物目前到了哪里?经环保部专家论证,污染物主体没有进入岳城水库。   张晓健:第一个,肯定是流到了河北河南的境内了,但是第二点来说,这些污染物大部分,污染物主体没有进入岳城水库。   张晓健认为:山西苯胺泄漏事故符合重大污染事故的标准,可启动赔偿机制,但事故定性还需要最终的调查结论。本次泄漏事件对地下水的影响尚待评估。   张晓健:重大污染事件是这样,一个是跨省边界,这个肯定有了,第二影响到地级市的正常供水,这个也有。地下水和地表水都是水,还互相充,地下水是地表水补充进去的,所以肯定会受到影响,但是这个影响会有多大,后期现在也在开始进行这种评估。   邯郸市自来水公司总工程师胡新春承诺,将采取最严格的水质管理制度,保证居民喝上放心水。   胡新春:举个例子,比如对挥发酚,由原每月一次,改为每四小时一次,另外对铁西水厂的常规检验,由每天一次增至每小时一次。
  • 新规来了 | 谱育科技 LC-MS/MS助您轻松应对土壤和沉积物中苯胺类和联苯胺类的检测
    苯胺具有较强的生物毒性,大范围使用及违规排放会带来土壤污染、生物累积、环境挥发等严重问题,对生态环境乃至人体健康产生不利的影响。2021年,生态环境部发布《HJ1210-2021 土壤和沉积物苯胺类和联苯胺类的测定液相色谱-三重四级杆质谱法》,将于2022年6月1日起实施。相较于以往的GC-MS法,液相色谱-三重四级杆质谱法(LC-MS/MS)具有更优异的灵敏度、更准确的定性定量、更抗基质干扰等优势。 EXPEC 采用谱育科技 EXPEC 5210 LC-MS/MS 液相色谱-三重四极杆质谱联用仪,结合全自动固相萃取仪、氮吹平行浓缩仪等样品前处理设备,建立了从土壤和沉积物中13 种苯胺类和 2 种联苯胺类化合物的应用方案。该方案从前处理到分析仪器检测、数据分析全面涵盖,轻松应对土壤中苯胺检测挑战。EXPEC 5210EXPEC 5210 LC-MS/MS 是谱育科技在"国家重大科学仪器设备开发专项"支持下,研制的具有自主知识产权的三重四极杆串联质谱仪,具有卓越的灵敏度,优异的稳定性,突出的可扩展性和更佳的性价比,广泛应用于食品安全、医学检测、生物医药和环境检测等领域,同时具有数千种化合物标准库和丰富的应用方法库。EXPEC 520 氮吹平行浓缩仪 具有处理样品批量大、无需人员看守、环保、安全等特点,提高实验室人员效率,减少氮气损耗节约实验室成本,而且更大限度地减轻了有毒有害溶剂对实验人员的伤害。EXPEC 570 全自动固相萃取仪 可自动完成固相萃取全过程(柱活化、上样、柱淋洗、柱干燥、柱洗脱等),自动完成柱切换等功能,实现批量化样品的处理。实验部分仪器:ULC 510超高效液相色谱仪(具体配有二元超高压输液泵、超高压自动进样器(含冷却功能)、柱温箱)、EXPEC 5210 三重四极杆串联质谱仪。液相和质谱条件:样品前处理:参考标准《HJ1210-2021 土壤和沉积物苯胺类和联苯胺类的测定液相色谱-三重四级杆质谱法》的前处理方法进行处理。典型谱图与标准曲线采用上述仪器方法获得15种苯胺色谱图如下:标准对照品的典型谱图13种苯胺及2种联苯胺的线性系数r均在0.999以上。部分物质标准曲线图如下:以标准曲线最低点(其中3-硝基苯胺浓度为1 ng/ml,其余目标物浓度为0.5 ng/ml),计算所得各目标物检出限和定量限,均优于标准检出限要求。小结
  • 快速灵敏,坚实可靠 | QSight LC-MS/MS轻松应对土壤和沉积物中苯胺类和联苯胺类化合物的测定
    GB 36600-2018《土壤环境质量建设用地土壤污染风险管控标准(试行)》于2018年正式实施,是我国开展土壤污染防治的重要支撑技术文件。该标准规定了保护人体健康的建设用地土壤污染风险筛选值和管制值,以及监测、实施与监督要求。其中苯胺作为45项基本项目之一,是建设用地初步调查阶段土壤污染风险筛选的必测项目。Tips:苯胺类化合物是指苯胺分子中的氢原子被其它功能团取代后形成的一类化合物。环境中苯胺类及其衍生物的排放源主要来源于印染染料、油墨、制药、橡胶、炸药、涂料、农药和塑料等工业废水。苯胺类化合物具有很高的毒性,其中一些具有明显的致癌作用,是我国规定的优先控制污染物。关于苯胺的标准测定问题按照GB36600-2018土壤环境质量标准表3推荐的检测方法,土壤中苯胺按照《土壤和沉积物半挥发性有机物的测定气相色谱-质谱法》(HJ834)来进行检测,而HJ834方法中并没有“苯胺”参数,给检测工作带来一定困扰。据权威解释:实验室按《合格评定化学分析方法确认和验证指南》(GB/T27417-2017)、《环境监测分析方法标准制修订技术导则》(HJ168-2010)和《土壤和沉积物半挥发性有机物的测定气相色谱-质谱法》(HJ 834-2017)相关要求做好方法验证,确保方法检出限、测定下限、选择性、线性范围、测量范围、基体效应影响、准确度、精密度和测量不确定度等满足GB36600-2018苯胺风险筛选值和管制值要求的基础上,可以使用HJ 834-2017开展土壤中苯胺的监测工作。HJ 1210-2021《土壤和沉积物13种苯胺类和2种联苯胺类化合物的测定液相色谱-三重四极杆质谱法》首次发布,明确规范了土壤和沉积物中苯胺类和联苯胺类化合物的测定方法,并将自2022年6月1日起实施。“土壤或沉积物中苯胺类和联苯胺类目标化合物,在碱性条件下提取,经净化、浓缩、定容后,用液相色谱-三重四极杆质谱仪分离检测。根据保留时间和特征离子定性,内标法定量。”土壤样品成份复杂、基体干扰因素多、调查样品量大,与常规环境样品分析相比更具挑战。珀金埃尔默QSight三重四极杆液质联用仪,灵敏稳定、坚实可靠,该系统具有独特专利的HSID自清洁技术,应对各种复杂的土壤和沉积物基质样品分析时,无需清洗维护,不损失灵敏度,即可完成大量样品的分析,节省维护时间及成本。PerkinElmer LX50 UHPLC-QSight系列三重四级杆质谱仪灵敏稳定,不惧污染同轴高温加热离子源,提高离子化效率创新的加热诱导脱溶剂和层流离子传输技术,提高灵敏度的同时免于维护超快正负模式切换时间,大幅提高工作效率新立式三重四级杆质谱仪,极大节省空间QSight LC-MS/MS应对土壤和沉积物中苯胺和联苯胺类化合物的测定分析解决方案采用QSight LC-MS/MS液质联用系统,成功建立了土壤和沉积物中15种苯胺类和联苯胺类化合物的分析方案,根据保留时间及离子比率进行快速准确定性,其检出限完全满足HJ1210-2021标准中的检测限量要求,轻松应对日常检测分析要求。PerkinElmer LX50 UHPLC参数色谱柱:Quasar SPP C18,2.1×100mm,2.6μm柱温:35℃流速:0.3mL/min进样量:10μLTime/minA/%B/%水(0.01%甲酸)甲醇(0.01%甲酸)0.09552.09555.070307.05959.05959.295512.0955表1 苯胺类和联苯胺类化合物液相色谱梯度洗脱表质谱参数采用PerkinElmer QSight 210三重四极杆液质联用系统进行分析,离子源参数见表2。离子源ESI+喷雾电压120雾化气
  • 山西苯胺泄漏事故致河北邯郸大面积停水
    图为邯郸市民在超市抢购矿泉水。 图为因店内饮用水售一空,一邯郸市民只能采购牛奶和苏打水。   河北省邯郸市人民政府5日夜间通报称,接山西省有关部门通报,由于漳河上游浊漳河山西境内发生了事故性污染物排放,该市政府决定停止从岳城水库供水,改为全部由羊角铺地下水源地供水,由于单水源供水管网压力较低,造成部分市区供水困难。   据了解,岳城水库属国家直管的特大型水库,位于磁县境内,水质为国家地表水Ⅱ类水体,水质综合污染指数2.25,水质良好,是邯郸两个水源地之一。铁西水厂水源即取自岳城水库,经过56.5公里输水管线自流进入水厂。供水能力为20万立方米/日。   邯郸市自来水公司一负责人5日晚透露,邯岳(邯郸—岳城)输水管线岳城水库取水口自14时许关闭,造成该市铁西水厂停止运行。该自来水公司另一三堤水厂独自承担起全市的城市供水重担。由于水压偏低等问题,部分区域市民用水受到影响。就此次停水造成停水面积及影响人数正在统计中。   邯郸市人民政府通报称,其他使用岳城水库、东武仕水库及漳河水的地方,人畜不可直接饮用 用于灌溉的,需等到有关部门通知后方可使用。   由于尚未得到恢复供水时间通知,邯郸市民纷纷走出家门购买饮用水。记者在市内光明路“美食林”超市大宗商品销售处了解到,1个小时内该超市卖出80多件19升桶装水。而在邯郸市春风小区,一位高姓居民说,她下来发现小区里的矿泉水早已卖光,只能买牛奶和苏打水备着。记者21时又来到龙湖公园一大型超市,该超市工作人员介绍说,饮用水已销售一空。   邯郸市最大超市“美食林”企划部邓小林介绍说,该超市已经敞开供应饮用水,现在他们已调动全体采购人员联系货源,如发生缺货他们将第一时间从周边县市进货。(马继前)   ★山西苯胺泄漏污染河水 事隔五日才出现报告   2012年12月31日早7时40分,事故发生,山西省环保厅1月5日获知消息,中间间隔了5天时间。根据2012年3月山西通过的《山西省突发事件应对条例》第三十条规定:较大以上和暂时无法判明等级的突发事件发生后,县(市、区)人民政府应当及时报告,设区的市人民政府、省人民政府有关部门和单位应当在两小时内报告省人民政府。【详细】   ★山西长治苯胺泄漏事故初步核查泄漏8.7吨苯胺   记者从山西潞安天脊“1231”应急指挥部了解到,经过初步核查,位于长治市潞城市境内的山西天脊煤化工集团股份有限公司苯胺泄漏事故苯胺泄漏量约为8.7吨。
  • 生态环境部发布《土壤和沉积物 13种苯胺类和2种联苯胺类化合物的测定 液相色谱-三重四极杆质谱法》等5项国家生态环境标准
    为支撑相关水污染物排放标准、土壤风险管控标准实施与重点流域水生态监测,服务固体废物处理处置,近日,生态环境部发布《土壤和沉积物 13种苯胺类和2种联苯胺类化合物的测定 液相色谱-三重四极杆质谱法》(HJ 1210-2021)、《固体废物 无机元素的测定 波长色散X射线荧光光谱法》(HJ 1211-2021)、《水质 可吸附有机卤素(AOX)的测定 微库仑法》(HJ 1214-2021)、《水质 浮游植物的测定 滤膜-显微镜计数法》(HJ 1215-2021)、《水质 浮游植物的测定 0.1 ml计数框-显微镜计数法》(HJ 1216-2021)等5项国家生态环境标准。  《土壤和沉积物 13种苯胺类和2种联苯胺类化合物的测定 液相色谱-三重四极杆质谱法》(HJ 1210-2021)为首次发布,适用于土壤和沉积物中13种苯胺类和2种联苯胺类化合物的测定,支撑《土壤环境质量 建设用地土壤污染风险管控标准(试行)》(GB 36600-2018)等土壤风险管控标准实施。本标准的发布实施填补了我国土壤和沉积物中苯胺类和联苯胺类化合物监测分析方法标准的空白,可为建设用地土壤风险管控、土壤污染修复提供监测技术支撑。  《固体废物 无机元素的测定 波长色散X射线荧光光谱法》(HJ 1211-2021)为首次发布,适用于污泥、污染土壤、粉煤灰、烟尘、尾矿废石和冶炼炉渣等固体废物中16种无机元素和7种氧化物的测定,支撑《农用污泥污染物控制标准》(GB 4284-2018)、《水泥窑协同处置固体废物环境保护技术规范》(HJ 662-2013)等标准实施。与已有固体废物无机元素的监测分析方法标准相比,本标准适用范围增加了污泥、污染土壤等介质,前处理方法简单、分析速度快,有助于提高分析效率。  《水质 可吸附有机卤素(AOX)的测定 微库仑法》(HJ 1214-2021)为首次发布,适用于地表水、地下水、生活污水和工业废水中可吸附有机卤素(AOX)的测定,支撑《污水综合排放标准》(GB 8978-1996)等实施。与《水质 可吸附有机卤素(AOX)的测定 微库仑法》(GB/T 15959-1995)相比,本标准调整了适用范围,细化了校准、样品测定和结果表示等内容,增加了干扰和消除、质量保证与质量控制等内容,更好地满足生态环境监测实际工作需要。  《水质 浮游植物的测定 滤膜-显微镜计数法》(HJ 1215-2021)、《水质 浮游植物的测定 0.1 ml计数框-显微镜计数法》(HJ 1216-2021)均为首次发布,适用于地表水中浮游植物的测定。浮游植物是水生生物的组成部分,作为一个重要的营养级代表,是水生态监测中不可缺少的内容。浮游植物密度也是地表水水质表征、水华预警等的重要指标之一。上述两项标准作为地表水中浮游植物的监测方法,可为开展水生态监测,服务流域生态环境保护工作提供支撑。  上述五项标准的发布实施,进一步完善了生态环境监测标准体系,将为规范开展生态环境监测工作,为深入打好污染防治攻坚战提供相关监测方法支撑。
  • 应对水质监测新标准,赛默飞苯胺类和硝基酚类液质分析
    应对水质监测新标准,赛默飞苯胺类和硝基酚类液质分析方法“交钥匙”啦关注我们,更多干货和惊喜好礼水质监测珍惜水资源,保护水环境。水质监测是保护水资源的基本手段之一,是水资源保护科学研究的基础,对水污染控制和维护水环境健康十分重要。苯胺类和硝基酚类化合物是水体中优先控制污染物,生态环境部发布的国家环境标准《水质 苯胺类化合物测定》(HJ1048-2019)和《水质 4种硝基酚类化合物测定》(HJ1049-2019)于2020年4月24日正式实施。标准监测范围包括地表水,地下水,生活污水及各种各样的工业废水。 苯胺和硝基酚类化合物都是重要且常用的化工原料,作为原材料或中间体被广泛应用。在生产和使用过程中,会随工业废水的排放对环境造成污染,使地表水等受到污染。苯胺类物质具特殊的气味,一般难溶于水,而易溶于有机试剂,易挥发,结构稳定,对人体的危害高,少量苯胺就能引起急性中毒,其中一些苯胺类化合物可以快速透过皮肤或呼吸道系统进入体内,造成溶血性贫血,损害肝脏引起中毒性肝炎,对肾功能造成损害等。硝基酚类化合物为淡黄色或黄色晶体,微溶于水,可溶于乙醇,乙醚,氯仿等有机溶剂。硝基酚对人和哺乳动物都有毒性,在生物体内易被酶转化为亚硝基和羟胺基衍生物,这些衍生物可生成正铁血红蛋白或亚硝基胺,前者能与氧结合,后者是致癌物。因此,2019年10月,生态环境部发布了水质17种苯胺类化合物和水质4种硝基酚类化合物测定液相色谱-三重四极杆质谱法的两个检测标准。 赛默飞全新一代三重四极杆液质联用仪Thermo Scientific™ TSQ系列应对国家环境保护标准水质监测,建立的方法灵敏度高、专属性强、稳定性好,为水质中苯胺类和硝基酚类化合物风险监控提供有效的支持。赛默飞针对苯胺类和硝基酚类化合物的水质检测解决方案01 建立了基于Thermo Scientific™ TSQ Quantis™ 三重四极杆串联质谱仪分析17种苯胺类物质的检测方法 表1 17种苯胺类化合物信息(点击查看大图) 方法选用C8柱(Thermo Scientific™ Hypersil GOLD™ 150x3mm, 3μm),以0.02%甲酸水溶液为流动相水相,以0.02%甲酸甲醇为流动相有机相,流速为0.4 mL/min,柱温为35℃。采用ESI源正离子模式进行 SRM扫描。 1、邻苯二胺;2、苯胺;3、对甲苯胺;4、联苯胺;5、邻甲氧基苯胺;6、邻甲苯胺;7、2,4-二甲基苯胺;8、4-氯苯胺;9、4-硝基苯胺;10、2,6-二甲基苯胺;11、2-萘胺;12、3-氯苯胺;13、2-硝基苯胺;14、2-甲基-6乙基苯胺;15、2,6-二乙基苯胺;16、3,3-二氯联苯胺;17、3-硝基苯胺。图1 17种苯胺类物质提取离子流图(点击查看大图) 实验进行了详细的方法学验证,基于Thermo Scientific™ TSQ Quantis™ 建立的水质中苯胺类化合物检测方法不仅具有优异的灵敏度和线性范围,同时专属性高,具备良好的重现性。 02 建立了基于Thermo Scientific™ TSQ Fortis™ 三重四极杆串联质谱仪分析4种硝基酚类物质的检测方法 表2 4种硝基酚化合物信息(点击查看大图) 方法选用C18柱(Thermo Scientific™ Hypersil GOLD™ 100x2.1mm, 1.9μ),0.01%乙酸水溶液和甲醇为流动相梯度洗脱,流速0.3 mL/min,柱温35℃。采用ESI源负离子模式SRM扫描方式检测。 图2 4种硝基酚类化合物和内标色谱图(点击查看大图) 实验进行了详细的方法学验证,四种硝基酚化合物定量限优于标准的检测要求,重现性和线性关系优异。并且本方法专属性强,适用于水质中硝基酚类污染物的检测。 结语预防水污染,保护水资源,赛默飞全新一代三重四极杆液质联用仪以其优异的性能有效应对环境检测相关法规。更多环境解决方案,请继续关注赛默飞官方微信平台。 如需合作转载本文,请文末留言。扫描下方二维码即可获取赛默飞全行业解决方案,或关注“赛默飞色谱与质谱中国”公众号,了解更多资讯+了解更多的产品及应用资讯,可至赛默飞色谱与质谱展台+网址https://www.instrument.com.cn/netshow/sh100244/
  • 山西长治苯胺泄漏事件污染监测数据存矛盾
    1月5日下午,山西省政府接到报告称:2012年12月31日7时40分,位于长治市潞城市的潞安天脊煤化工集团苯胺罐区因输送软管破裂发生泄漏,随浊漳河流出省外,经过初步核查泄漏量约8.7吨。   为何事故发生5天之后才向公众通报?泄漏危害程度如何?污染是否得到控制?本报多路记者赶赴现场进行了调查。   1月6日,记者在天脊集团泄漏苯胺的排污渠看到,河渠已经干涸,渠道上洒满石灰粉,在河口处许多装满活性炭的麻袋筑起了一道“碳坝”。   苯胺库区门口,立有三块蓝色信息警示牌,标明“苯胺:重大危化品,危害等级:二类”。库区保安严阵以待,拒绝记者进入,称“非本单位车辆、人员,没有领导的通知一概不准进入”。   6日晚,记者从事故处置工作组了解到,目前4名直接责任人已被初步处理,天脊方元公司总经理陈建温、安全生产副总经理任勇杰、储运车间主任程新生、副主任宋涛被撤职,待事故调查结束后,再进一步追究相关人员责任。   第一次事故报告与第二次“续报”相差5天   泄漏事故是否存在瞒报迟报?   据天脊化工“12 31”事故处置工作组6日晚8时通报:2012年12月31日事故发生后,长治市政府和企业当即启动应急预案,责令企业立即停产,在浊漳河及支流共设置八道活性炭过滤泄漏物拦截坝,对污染物进行吸附清理,长治市环保局和企业分别在入河口、实会断面、红旗渠、王家庄、青年洞等处设立八个监测点位,每2小时取水1次,对氨氮、化学需氧量、苯胺等项目开展应急监测。   但是,1月5日上午,天脊集团才“续报”了苯胺泄漏的进一步情况。经初步核查,当时泄漏总量约为38.7吨,发现泄漏后,有关方面同时关闭管道入口出口,黄牛蹄干涸水库截留了30吨的苯胺,约有8.7吨苯胺排入浊漳河。   按照相关法规规定,长治市政府立即将续报情况上报山西省政府,省政府第一时间上报国务院。同时,迅速向河北邯郸、河南安阳两市通报了情况。   为何事故发生5日后天脊集团才“续报”泄漏情况?究竟第一次事故报告情况与第二次“续报”之间存在多大差距和水分?该事故是否存在瞒报、迟报情况?   受事故处置工作组委托的山西省环保厅总工程师刘大山表示,对此事故可能存在的瞒报、迟报情况,调查组目前正在调查,并将及时通报调查情况。   山西通报称岳城水库“未发现污染”,安阳监测出部分水体苯胺超标   污染检测数据为何存在矛盾?   据事故应急指挥部介绍,苯胺泄漏后,浊漳河出山西省界的王家庄监测点的苯胺浓度一度达到国家标准的720倍。经全力清理,截至6日2时,王家庄监测点浓度已下降到国家标准的34倍。   6日晚,事故处置工作组表示,国家有关部门已现场对岳城水库入库、库中、坝前、出库断面进行全面采样和检测,结果表明目前岳城水库水质尚未发现苯胺类有机物污染。   截至发稿,记者并未获悉关于邯郸市岳城水库目前水质情况的监测结果。   而安阳市方面的监测结果显示,安阳市境内岳城水库、红旗渠等部分水体有苯胺、挥发酚等因子检出和超标,庆幸的是,安阳市第五水厂岳城水库蓄水口水样各项指标正常。   同样是针对岳城水库的检测,为何河南省对水库苯胺、挥发酚等因子检出和超标,而山西省介绍的国家有关部门检测“尚未发现苯胺类有机物污染”?   对此,6日晚的新闻发布会上,事故处置工作组未能作出解释回答。   泄漏5日后才被告知   流域群众身体安全是否受到影响?   长治市市长张保介绍,此次苯胺泄漏事故,平顺县和潞城市28个村、2万多人受到影响,但由于浊漳河水在当地不是饮用水源,主要用于农田灌溉及牲畜用水,长治市人畜饮水安全并未受到影响,当地也未出现抢购饮用水的情况。   而受此事故影响,造成大面积停水的邯郸市许多居民还是担心水质受影响。1月6日上午,记者联系了邯郸一名市民陈女士,她告诉记者,从6日凌晨开始,家中已恢复供水,但因是污染物排放导致的停水,她表示很担心。   河水中的苯胺是否会对人体造成危害?对此,中国环境科学院院长夏青介绍,一方面是看排放总量,8.7吨苯胺折纯有多少流入了河里 第二,苯胺入水后浓度是不断发生变化的,污染水源能否饮用,一切以水质断面的浓度和取水口测定的浓度值为准。   6日晚的新闻发布会上,事故处置工作组对各媒体提出的问题进行了搜集,表示将在7日根据进一步的调查情况给出详细回答。
  • 山西苯胺泄漏污染河水-LabTech解决方案
    中广网北京1月6日消息,据中国之声《新闻纵横》报道,昨天(5日)下午5时左右,邯郸市市区突发大面积停水事故。事故原因是邯郸接山西省有关部门通报,漳河上游浊漳河山西境内发生了事故性污染物排放。目前,邯郸市的水质检测报告尚未出炉,政府提醒民众暂时不要饮用漳河水。初步调查的结果是一个装有苯胺的罐发生了泄漏。 苯胺是一种被广泛应用的化工原料,可用作染色、生产农药,作为炸药中的稳定剂、汽油中的防爆剂等。对环境有危害,对水体可造成污染。人体若吸入或接触,会造成溶血性贫血和肝、肾损害等。针对于水(河流、生活饮用水、地表水等)中的苯胺检测,莱伯泰科公司已有成熟的应用文章《利用全自动固相萃取系统实现水中苯胺的萃取》,利用固相萃取SPE-DEX4790和LC600高效液相色谱仪形成整体解决方案。 应用文章点击下载:《利用全自动固相萃取系统实现水中苯胺的萃取》
  • 沧县地下水苯胺超标70多倍 涉事工厂被拆除
    4月7日,在河北沧县小朱庄建新化工厂,工人在拆除厂房设备。   据央视报道 经过专家组调查,河北沧县小朱庄红色地下水最严重的区域,苯胺含量超标70多倍。   沧县政府邀请了国家环保部、清华大学的环保专家对当地的水质进行了抽样和初步检测,检测结果显示,小朱庄村养鸡厂内井水苯胺为每升7.33毫克,超出饮用水标准每升0.1毫克70多倍。   据现场的专家清华大学环境系教授张晓健说:“排污沟的土和残液,苯胺浓度都很高。肯定是超标排放,这是个多年的老问题。”专家介绍,至于水中是否还含有其他有害物质,需要进一步检测。   目前,企业正在拆除厂区内的生产设备,并表示将全额承担后续的环境污染治理费用。建新化工常务副总陈学为说:“我代表公司,对由此给村民、给社会、给政府造成的影响,给大家道歉。”   当地已经组织人员抽取排污沟里的超标水,并用土筑坝截流。沧县环保部门承认,监管不到位。
  • 二苯胺盐酸盐促销
    货号:CFEQ-4-120052-0025 二苯胺盐酸盐,&ge 99.0%,4℃保存 25g 报价:860.00元 促销价: 688元 促销截止日期:2012.3.31 上海安谱科学仪器有限公司 地址:上海市斜土路2897弄50号海文商务楼5层 [200030] 电话:86-21-54890099 传真:86-21-54248311 网址:www.anpel.com.cn 联系方式:shanpel@anpel.com.cn 技术支持:techservice@anpel.com.cn
  • 邯郸涉县浊漳河水域检测出苯胺超标 未公布超标数额
    6日下午,河北省邯郸市环保局透露,邯郸市环保部门5日在对涉县浊漳河进行水质检测时发现苯胺、挥发酚等因子超标,但邯郸市环保部门未公布具体超标数额。由于涉县紧邻山西长治,此次超标或与长治苯胺泄露有关。   据邯郸市环保局负责人表示,因处理及时得当,浊漳河涉县水域暂未发现死鱼死禽现象。邯郸环保部门将继续开展全天候监控和持续跟踪监测。   涉县位于晋冀豫三省交界处,浊漳河、清漳河在该县合漳乡合流。由于涉县人畜饮用水多为深水井,地下水源供水,所以没有发生断水现象。目前,该县正在加紧对漳河沿线村庄水井、水质情况进行统计、调查。   苯胺是一种被广泛应用的化工原料,可用作染色、生产农药,作为炸药中的稳定剂、汽油中的防爆剂等。对环境有危害,对水体可造成污染。人体若吸入或接触,会造成溶血性贫血和肝、肾损害等。
  • 环保部答复:土壤污染状况调查扩大化、苯胺的检测方法等问题
    1.关于土壤现状监测点位如何选择的回复来信:  根据土壤导则要求污染影响型建设项目,二级要求监测柱状样和表层样,三级要求监测表层样。如果建设项目场地已经硬底化,该如何如何选取监测点?是需要把已经硬底化的场地破坏还是另外选取监测点?回复:  根据建设项目实际情况,如果项目场地已经做了防腐防渗(包括硬化)处理无法取样,可不取样监测,但需要详细说明无法取样原因。 2.关于土壤破坏性监测问题的回复来信:  一家木工喷漆企业租用其他厂的部分厂房,一层做木工,二层做喷漆(油性+水性)。按土壤导则规定,起码是土壤二级评价,需要在占地范围内布设3个柱状样,1个表层样。而厂区内部无绿化,场地均采用水泥硬化,请问占地范围内可否不进行土壤监测?回复:  根据建设项目实际情况,如果项目场地已经做了防腐防渗(包括硬化)处理无法取样,可不取样监测,但需要详细说明无法取样原因。 3.关于土壤污染状况调查扩大化问题的回复来信:  郑州市生态环境局在执行《中华人民共和国土壤污染防治法》中的问题,希望得到你的回应。在实际工作中郑州市生态环境局对所有用途变更为住宅、公共管理与公共服务用地的全部进行土壤污染状况调查,包括原来是农用地征收为国有土地后只要是规划用途为住宅、公共管理与公共服务用地在土地收储前全部进行土壤污染状况调查,每宗地的调查费用都在几十万元,增加了用地企业的负担。我通过郑州市市长信箱反映这种土壤检测扩大化的问题,郑州市生态环境局回复是:他们与省生态环境厅与部有关单位沟通并咨询法律人士,按照《中华人民共和国土壤污染防治法》第五十九条要求,只要用途变更为住宅、公共管理与公共服务用地的全部进行土壤污染状况调查。而我理解对于农用地征收为国有土地不用做土壤污染状况调查,即使需要做土壤污染状况调查也应该是生态环境局组织调查,费用由政府负担。希望部长给个明确的回复:是用途变更为住宅、公共管理与公共服务用地的全部进行土壤污染状况调查,还是只对建设用地土壤污染风险管控和修复名录中的地块和土壤污染重点监管单位生产经营用地用途变更为住宅、公共管理与公共服务用地需要进行土壤污染状况调查。 回复:  一、农用地变更为住宅、公共管理与公共服务用地的,应当开展土壤污染状况调查 根据《中华人民共和国土壤污染防治法》《关于贯彻落实土壤污染防治法 推动解决突出土壤污染问题的实施意见》(环办土壤〔2019〕47号),用途变更为住宅、公共管理与公共服务用地的,变更前应当按照规定进行土壤污染状况调查。住宅用地、公共管理与公共服务用地之间相互变更的,原则上不需要进行调查,但公共管理与公共服务用地中环卫设施、污水处理设施用地变更为住宅用地的除外。二、土壤污染状况调查遵循分阶段调查的原则 根据《建设用地土壤污染状况调查技术导则》(HJ25.1-2019),土壤污染状况调查分阶段开展。其中,第一阶段土壤污染状况调查是以资料收集、现场踏勘和人员访谈为主的污染识别阶段,原则上可不进行现场采样分析。若第一阶段调查确认地块内及周围区域当前和历史上均无可能的污染源,则认为地块的环境状况可以接受,调查活动可以结束。4.关于请教土壤中苯胺的检测方法的回复来信:  按照新的土壤环境质量标准即《土壤环境质量 建设用地土壤污染风险管控标准(试行)》(GB36600—2018),表3推荐的检测方法,土壤中苯胺要按照《土壤和沉积物 半挥发性有机物的测定 气相色谱-质谱法》(HJ834)来进行检测分析,但HJ834该标准方法中并没有“苯胺”该参数,请问未来是否会有针对这个问题的解决方案? 回复:  为配套《土壤环境质量 建设用地土壤污染风险管控标准(试行)》(GB 36600-2018)实施中苯胺的测定,我部正在组织制订《土壤和沉积物 苯胺类和联苯胺类的测定 液相色谱-三重四极杆质谱法》。目前,该标准已公开征求意见。在该标准发布实施之前,实验室按《合格评定 化学分析方法确认和验证指南》(GB/T27417-2017)、《环境监测分析方法标准制修订技术导则》(HJ168-2010)和《土壤和沉积物半挥发性有机物的测定 气相色谱-质谱法》(HJ 834-2017)相关要求做好方法验证,确保方法检出限、测定下限、选择性、线性范围、测量范围、基体效应影响、准确度、精密度和测量不确定度等满足GB36600—2018苯胺风险筛选值和管制值要求的基础上,可以使用HJ 834-2017开展土壤中苯胺的监测工作。5.关于农用地变更用途是否需要做土壤污染检测问题的回复来信:  非污染和疑似污染的农用地变更为住宅公共管理,公共服务设施的,是否需要开展土壤污染检测。回复:  一、农用地变更为住宅、公共管理与公共服务用地的,应当开展土壤污染状况调查 根据《中华人民共和国土壤污染防治法》《关于贯彻落实土壤污染防治法 推动解决突出土壤污染问题的实施意见》(环办土壤〔2019〕47号),用途变更为住宅、公共管理与公共服务用地的,变更前应当按照规定进行土壤污染状况调查。住宅用地、公共管理与公共服务用地之间相互变更的,原则上不需要进行调查,但公共管理与公共服务用地中环卫设施、污水处理设施用地变更为住宅用地的除外。二、土壤污染状况调查遵循分阶段调查的原则 根据《建设用地土壤污染状况调查技术导则》(HJ25.1-2019),土壤污染状况调查分阶段开展。其中,第一阶段土壤污染状况调查是以资料收集、现场踏勘和人员访谈为主的污染识别阶段,原则上可不进行现场采样分析。若第一阶段调查确认地块内及周围区域当前和历史上均无可能的污染源,则认为地块的环境状况可以接受,调查活动可以结束。6.关于农田土壤监测45项因子评价标准怎么选的回复来信:  在环境影响评价中开展土壤环境质量背景监测时,针对调查评价范围内每种土壤类型设定的监测点,应对GB36600表1所列45项因子进行监测。如果环评阶段监测点设置在农田,监测45项因子,但是农用地风险管控标准中因子不全,是只评价标准中所含因子,还是参照建设用地风险管控标准去评价? 回复:  建设项目环境影响评价中开展土壤环境质量现状监测,目的一是了解或掌握调查评价范围内土壤环境现状,为后续相关工作奠定基础,二是确保建设项目用地土壤环境质量符合国家或者地方有关土壤污染风险管控标准。根据《环境影响评价技术导则 土壤环境(试行)》(HJ 964-2018)对现状监测因子的要求,“基本因子为GB 15618、GB 36600中规定的基本项目,分别根据调查评价范围内的土地利用类型选取”。因此,农林之外的其他建设项目开展环境影响评价中的土壤环境现状监测,对于需要监测基本因子的监测点位,其基本因子根据下表所列标准的基本项目选取:7.关于咨询土壤导则里两个问题的回复来信:  咨询一下生态环境部2018年9月13日发布的《环境影响评价技术导则 土壤环境(试行)》里面的两个问题 1、土壤导则中“6.2.2.2 建设项目所在地周边的土壤环境敏感程度分为敏感、较敏感、不敏感,判别依据见表3.”想咨询一下,“建设项目周边”里的“周边”是否指的是项目红线范围内邻近的区域?还是根据“表5”中的现状调查范围确定,还是有其他定义的方法?2、土壤导则中“7.4.3 现状监测点数量要求”中的“表6 现状监测布点类型与数量”里面提到的“柱状样点”怎么理解?1个柱状样点是否包含了分别从0~0.5m、0.5~1.5m、1.5~3m处及3m以下取的样本?回复:  一、土壤导则里中“周边”指建设项目可能影响的范围,应在工程分析基础上,识别建设项目影响类型与污染途径,结合建设项目所在地的气象条件、地形地貌、水文地质条件等判定。二、针对土壤导则表6中的柱状样点为建设项目占地范围内的深层取样,取样深度由建设项目可能影响的垂向深度范围确定,非固定值,表注中的 “b柱状样通常在0-0.5 m、0.5-1.5m、1.5-3 m分别取样,3 m以下每3 m取1个样,可根据基础埋深、土体构型适当调整。”应根据土体构型,选取最具代表性的土层进行取样。
  • 欧盟修订二苯胺在部分商品中的最大残留限量
    2013年8月13日,据欧盟网站消息,欧盟发布(EU)No772/2013号委员会条例,就二苯胺(diphenylamine)在部分动植物产品中的最大残留限量修订(EC)No396/2005号法规附录II、III、V。   本法规自发布之日起第20天生效,并于2014年3月2日实施。   更多详情参见:http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2013:217:0001:0027:EN:PDF
  • 国家药监局关于修订羟乙基淀粉类注射剂说明书的公告
    国家药监局关于修订羟乙基淀粉类注射剂说明书的公告(2022年第72号)根据药品不良反应评估结果,为进一步保障公众用药安全,国家药品监督管理局决定对羟乙基淀粉类注射剂(包括羟乙基淀粉20氯化钠注射液、羟乙基淀粉40氯化钠注射液、高渗氯化钠羟乙基淀粉40注射液、羟乙基淀粉200/0.5氯化钠注射液、高渗羟乙基淀粉200/0.5氯化钠注射液、羟乙基淀粉130/0.4氯化钠注射液、羟乙基淀粉130/0.4电解质注射液)说明书内容进行统一修订。现将有关事项公告如下:  一、上述药品的上市许可持有人均应依据《药品注册管理办法》等有关规定,按照羟乙基淀粉类注射剂说明书修订要求(见附件),于2022年12月2日前报国家药品监督管理局药品审评中心或省级药品监督管理部门备案。  修订内容涉及药品标签的,应当一并进行修订,说明书及标签其他内容应当与原批准内容一致。在备案之日起生产的药品,不得继续使用原药品说明书。药品上市许可持有人应当在备案后9个月内对已出厂的药品说明书及标签予以更换。  二、药品上市许可持有人应当对新增不良反应发生机制开展深入研究,采取有效措施做好药品使用和安全性问题的宣传培训,指导医师、药师合理用药。  三、临床医师、药师应当仔细阅读上述药品说明书的修订内容,在选择用药时,应当根据新修订说明书进行充分的获益/风险分析。  四、患者用药前应当仔细阅读药品说明书,使用处方药的,应严格遵医嘱用药。  五、省级药品监督管理部门应当督促行政区域内上述药品的药品上市许可持有人按要求做好相应说明书修订和标签、说明书更换工作,对违法违规行为依法严厉查处。  特此公告。
  • 2012羟乙基淀粉(HES) 专题培训课程通知
    尊敬的用户: 您好!非常感谢您一直以来对美国怀雅特技术公司的支持,为了协助您更好的使用仪器开展工作,诚邀您参加2012年07月27日举办的 羟乙基淀粉(HES)专题培训课程,现将具体安排通知如下: 一、培训时间 2012年7月27日,共计1天。 二、培训日程安排 日 期 培 训 内 容 07月26日 报 到 07月27日 1. 静态光散射技术基本理论(MALS); 2. dn/dc与Optilab T-rEX/RID; 3. SOP解析:MALS & Optilab T-rEX/RID; 1. 光散射色谱联用技术(SEC-MALS)基本原理; 2. SOP解析:SEC-MALS; 3. SEC-MALS实践&数据处理与分析 三、培训地点 北京 四、培训费用 1500.00元/人;(含培训费及资料;工作餐(中餐));其他费用自理。 五、报名截止日期 2012年06月06日下午17:00(注: 报名截止日期后将不再受理培训报名); 六、联系人及联系方式 联系人:兰先生 ; Email:lanjing@wyatt.com.cn 电 话:010-82292806; 传 真:010-82290337 如您有意参加培训,敬请您于2012年06月06日17:00之前将以下回执单(HES下载)传真至010-82290337或者发送至lanjing@wyatt.com.cn,我们会根据回执回复顺序安排培训,并电话与您取得联系。
  • 食药总局提醒关注含羟乙基淀粉类药品安全风险
    新国家食品药品监督管理总局26日发布通报,提醒关注含羟乙基淀粉类药品对严重脓毒血症患者的肾损伤及死亡率增加风险。   含羟乙基淀粉类药品为血容量补充药,主要用于预防和治疗各种原因造成的低血容量,包括失血性、烧伤性及手术中休克等、血栓闭塞性疾患等。   近期,欧盟、美国、加拿大等国外药品管理部门就含羟乙基淀粉类药品对特定健康条件患者的肾损伤及死亡率增高风险陆续发布了多项风险控制措施。在我国收集到的羟乙基淀粉类药品不良反应报告中,用药原因主要为手术中或手术后补充血容量、失血性低血流量、脑梗塞、外伤、烧伤等 仅有1例用药原因为感染性休克,未发现有明显的使用风险。   为确保用药安全,食品药品监管总局针对其安全性问题再次进行了分析和评估。评估认为,含羟乙基淀粉类药品常见不良反应包括寒战、过敏性休克、呼吸困难、胸闷、高热/发热、过敏样反应、皮疹、肾功能损害等,在特定健康条件的患者中存在着死亡率升高、肾损害及过量出血等风险。   食品药品监管总局表示,将统一修改含羟乙基淀粉说明书。建议医务人员和患者应充分重视此类药品的安全性问题,详细了解含羟乙基淀粉类药品的禁忌症、不良反应、注意事项、相互作用。在治疗前,医生应询问患者的既往病史(如严重脓毒血症、肝肾功能障碍、凝血功能异常等),将可能存在的安全性隐患告知患者,在增加剂量或调整治疗方案时,应密切关注患者的不良反应发生情况。同时,医务人员应根据患者的健康条件,权衡利弊后谨慎使用。如在使用过程中患者出现肾功能异常、凝血机制异常等不良事件,应及时处置。
  • 季胺化反应的发展及P-SAX季胺盐高分子聚合物的使用场景
    季铵盐中由于含有季铵基甚至有的还含有双键,故可以和诸多的不饱和单体共聚,在水溶液中带正电荷,生成阳离子型或两性离子型水溶性聚合物,很容易吸附于固一液或固一气界面上而被用作絮凝剂、抗静电剂、导电纸涂层及油田化学剂。另外,在现代社会中,表面活性剂的应用日趋广泛。季按盐类表面活性剂具有重要的用途,此外也可被用作柔软剂、抗静电剂、颜料分散剂、矿物浮选剂和沥青乳化剂、金属缓蚀剂及相转移催化剂等,在纺织印染、塑料加工、医疗卫生、日用化工、石油化工、金属加工等行业得到广泛应用。能够合成季铵盐的反应就是季胺化反应。过去几年,大部分是通过简单的合成反应获得季铵盐,例如:○ 在乙酸乙酯作溶剂的条件下与三乙胺混合加热、回流、搅拌进行季胺化反应得到三乙基对(邻)硝基苄基氯化铵;○ 以N-乙基苯胺为原料,经羟乙基化、氯乙基化、季铵化合成N-苯基-N-乙基氨基乙基三甲基氯化铵;○ 通过γ-氯丙基甲基硅氧烷—二甲基硅氧烷共聚物和N,N-二甲基苄基胺的季铵化反应合成了带有苄基二甲基γ-硅丙基氯化铵侧基的聚硅氧烷;○ 用雌二醇经溴乙基化、咪唑乙基化、季铵化和水解反应,合成一类新型的取代苯甲基雌甾咪唑鎓盐;○ 由1,3,5-三甲基-2,4,6-三(咪唑甲基)苯与1,3,5-三(溴甲基)苯直接合成了洞状咪唑鎓环番3(C30H33N63+Br-33H2O)等。P-SAX季铵盐高分子聚合物就是Welchrom® P-SAX固相萃取小柱中主要的填料原料,其聚合物的合成方法就是会用到季胺化的反应方法。P-SAX是一种混合型阴离子交换反相吸附剂,对酸性化合物具有高的选择性和灵敏度。Welchrom® P-SAX固相萃取小柱设计用于克服传统高分子聚合物基质混合型固相提取吸附剂的局限性。它是一种在pH0~14范围内稳定的混合型强阴离子交换、水可浸润性合物吸附剂。现在可使用可靠的固相提取来检测、确认或定量各种样品基质中的酸性化合物及其代谢物。利用Welchrom® P-SAX固相萃取小柱的选择性和稳定性,可通过固相提取步骤从复杂的样品中将分析物分成两部分:酸性化合物和碱性/中性化合物。分流提取物可通过多种分析方法或多种联用分析技术(LC/MS和GC/MS)进行分析。Welchrom® P-SAX固相萃取小柱广泛应用于净化不同基质如血清、尿液、塑料制品或者食品中的酸性和中性化合物,如奶粉及奶制品中三聚氰酸的检测。
  • 赛默飞发布在线固相萃取—双三元液相色谱(DGLC-UV)分析水中9 种苯胺类化合物的解决方案
    2014年7月8日,上海 ——科学服务领域的世界领导者赛默飞世尔科技(以下简称:赛默飞)近日发布在线固相萃取——双三元液相色谱(DGLC-UV)分析水中9 种苯胺类化合物的解决方案。苯胺类化合物是一种重要的有机化工原料和化工产品。环境中所含的苯胺类化合物主要来自于各种化工、染料、制药等工业废水中,一般毒性较高,少量就能引起人体中毒,其对环境的污染一直被人们所关注,美国、日本等国把苯胺类列入主要监测项目或优先监测污染物的黑名单。在我国苯胺类化合物也被列为环境中的重点污染物,并制定了最高容许排放浓度。DGLC双三元液相色谱系统 由于水体中苯胺的含量一般比较低,因此目前常用的苯胺分析方法,如HPLC、GC 和分光光度法等,均需要对大体积的水样进行前处理,后进行检测,操作比较繁琐。《GB/T 5750.8-2006 生活饮用水标准检验方法有机物指标》中采用GC 和重氮偶合分光光度法测定生活饮用水及水源水中的苯胺,其中,GC 方法需前处理10L 水样,对水样中苯胺的最低检测限为20μg/L;分光光度法需处理25 mL 水样,最低检测限为80μg/L。《水和废水监测分析方法(第四版)》中采用分光光度法和HPLC 法分别测定了5 种苯胺类化合物,检测限为0.5 ~ 1.5μg/L。赛默飞新解决方案采用双三元在线固相萃取—液相色谱法,水样只需简单过滤,即可进样。本方法直接进样2.5 mL,检出限即可达0.05 ~ 0.2μg/L。下载应用文章请点击:http://www.instrument.com.cn/netshow/SH100650/down_331133.htm 关于赛默飞世尔科技赛默飞世尔科技(纽约证交所代码:TMO)是科学服务领域的世界领导者。公司年销售额170亿美元,在50个国家拥有员工约50,000人。我们的使命是帮助客户使世界更健康、更清洁、更安全。我们的产品和服务帮助客户加速生命科学领域的研究、解决在分析领域所遇到的复杂问题与挑战,促进医疗诊断发展、提高实验室生产力。借助于Thermo Scientific、 Life Technologies、 Fisher Scientific 和 Unity? Lab Services四个首要品牌,我们将创新技术、便捷采购方案和实验室运营管理的整体解决方案相结合,为客户、股东和员工创造价值。欲了解更多信息,请浏览公司网站:www.thermofisher.com。赛默飞世尔科技中国赛默飞世尔科技进入中国已超过30年,在中国的总部设于上海,并在北京、广州、香港、台湾、成都、沈阳、西安、南京、武汉等地设立了分公司,员工人数超过3800名。为了满足中国市场的需求,现有8家工厂分别在上海、北京、广州和苏州运营。我们在全国共设立了6个应用开发中心,将世界级的前沿技术和产品带给国内客户,并提供应用开发与培训等多项服务;位于上海的中国创新中心结合国内市场的需求和国外先进技术,研发适合中国的技术和产品;我们拥有遍布全国的维修服务网点和特别成立的中国技术培训团队,在全国有超过2000名专业人员直接为客户提供服务。我们致力于帮助客户使世界更健康、更清洁、更安全。欲了解更多信息,请登录www.thermofisher.cn。
  • 5G电光调制解调器核心部件:王家海教授团队在有机电光材料取得系统性进展
    近年来,人们在居住、工作、休闲和交通等各种不同场景的多样化业务需求推动着新一轮的光子革命。其中,以5G无线通讯为主,对于信息高速传输的需求已经渗透到大数据、机器学习、远程医疗及自动驾驶等领域,使信息突破时空限制进行智能互联。而光子作为载体的信息处理传输材料可以很好的解决传输速率慢的问题,因此制备出高速、低耗能和易于工业化生产的电光材料,从而实现高速率的数据中心光互连,成为学术界和工业界亟待解决的关键问题。在传统的商业化电光材料的研究中,主要是以无机材料铌酸锂作为代表。然而传统铌酸锂材料所制成的电光调制器的信号质量、带宽、半波电压、插入损耗等关键性能参数的提升逐渐遭遇瓶颈,电光系数低,晶体生长、加工困难、体积庞大且与CMOS工艺不兼容等。与无机材料和电子为载体的微电子材料相比,光子为载体的二阶非线性有机电光材料具有电光系数高、光学损伤阈值高、响应速度快、制备过程更易于生产,具有良好的热稳定性、成本低以及选择范围广等优点,并能易与半导体微电子器件实现集成,故而有很大的应用前景。然而有机非线性光学材料运用到商业化的电光调制器等领域也面临着技术瓶颈(难以满足Telecordia GR-468-CORE standards 标准),如何获得兼具大的电光系数(r33值)、光热稳定性、极化取向稳定性的有机电光发色团仍然是行业的难点。1. 高性能交联型有机电光材料的研究针对有机电光材料的研究难点,王家海教授团队首次提出了二元交联材料的基解决方案:将可以交联的蒽和丙烯酸酯基团修饰到发色团QLD1-QLD4的电子给体和电子桥上,发色团在电场的作用下发色极化取向,温度进一步升高,交联反应发生,以网状聚合物的形式固定住已经取向的发色团分子,光热稳定性大幅提升。此外,由于没有小分子/聚合物交联剂的存在,发色团含量高达100wt%,电光系数大幅提升。交联后,QLD1/QLD2和QLD2/QLD4薄膜的电光活性非常高,r33的最大值分别为327 pm/V和373 pm/V, 这是目前文献报告的最高值。经Diels-Alder反应后,其电光薄膜的玻璃化转变温度从~90°C增加至185°C,这高于任何其他纯发色团膜。在85℃退火后,99.63%的r33初始值可保持500 h以上,这些材料具有超高的电光活性和长期长期极化取向稳定性,为有机电光材料的器件化和商业化提供了可能。图 1 电光材料QLD1-QLD4的分子结构该成果发表在化学顶级刊物 Chemical Science, 2022, 13, 13393-13402文章链接 https://pubs.rsc.org/en/content/articlelanding/2022/sc/d2sc05231h图 2 发色团数密度与极化效率的关系图;b)长期稳定性测试结果。2. 基于新型双给体的有机非线性光学材料的研究 研发了一种基于(N-乙基-N-羟乙基)苯胺衍生物的可修饰性双给体,并首次将其应用于非线性光学材料。在发色团的给体 和桥上分别引入三个隔离基团,用于减少分子之间的静电相互作 用,从而提高极化效率。基于此,我们开发了一系列非线性光学 发色团 BLD1-4,它们具有相同的双(N-乙基-N-羟乙基)苯胺基 给体、TCF 或 CF3–TCF 受体,和异佛尔酮衍生桥。密度泛函理 论计算表明,这四个发色团由于给体具有强大的给电子能力,比 传统的非线性光学发色团的一阶超极化率更大。纯发色团 BLD1– BLD4 的极化膜由于发色团的大空间位阻和大的一阶超极化率从而展现出非常高的极化效率。含有发色团 BLD3 的纯发色团膜在1310nm 处获得了超高的 r33 值(351pm/V)和极化效率(3.50±0.10 nm2 V-2)。大的电光系数使这些新的给体为有机非线性光学材料提 供了很有价值的参考。图 3 发色团 BLD1-4 的结构图 4 发色团 BLD1-4 的极化效率曲线该成果发表在材料刊物 Materials Chemistry Frontiers, 2022, 6,1079-1090.文章链接 https://pubs.rsc.org/en/content/articlelanding/2022/qm/d1qm01577j3. 树枝状有机电光材料的研究图 5 发色团 C1-C3 的结构 开发出具有大电光系数和高稳定性的电光材料,一直是这个领域最具挑战性的话题。一系列基于相同的双(N,N-二乙基)苯胺给体、三亚乙基二氢呋喃受体和异佛尔酮衍生桥的发色团 C1-C3 被合成开发出来。与含有单发色团的树枝状材料 C1 进行比较,我们合成了双枝发色团分子 C2 和三枝发色团分子 C3。这是第一次将双(N,N-二乙基) 苯胺基给体用于 CLD 型发色团和多发色团系统。与 C1 发色团相比, C2 和 C3 多发色团具有更高的电光性系数和玻璃化转变温度。纯发色团 C2 的薄膜上在 1310 nm 处取得了大的 r33 系数 (180 pm/V)和极化效率(1.94±0.08 nm2 V-2),已经实现在。此外,树枝状分子 C2 的玻璃化转变温度高达 122℃。该材料具有良好的稳定性和大的电光系数,具有良好的应用前景。图 6 发色团 C1-C3 的 DSC 曲线该成果发表在材料刊物 Materials Chemistry Frontiers, 2021, 5, 8341-8351文章链接 https://pubs.rsc.org/en/content/articlelanding/2021/qm/d1qm01337h4. 自组装型有机电光材料的研究我们已经开发了一系列自组装的树枝状电光材料。通过在发色团的给体和桥部分引入芳香树枝状化合物(HD)、三氟苄基树枝状化合物、五氟苯基树枝状化合物和蒽环,合成了四种交联型树枝状化合物H1、H2、H3 和 HLD1。此外,还合成了含有三枝化三氟苄基的多发色团 H4。基于 HD-PFD/HD-AH/TFD-TFD 的π-π相互作用使得这些分子可以进行超分子自组装的,以最大限度地减少发色团的偶极-偶极相互作用,并在高负载密度下最大限度地提高发色团的极化效率。 对于分别含有发色团 1:1 H1:H3、1:2 H3:HLD1 和 H4 的纯电光膜,已经实现了高 r33 值(328、317 和 279 pm/V)。此外,发色团的长期取向稳定性也得到了改善。在室温下 1000 小时后,自组装型电光薄膜的初始电光系数仍然保持在 95%以上。图 7 发色团 H1-H4 以及 HLD1 的结构该成果发表在材料刊物 Dyes and Pigments, 2022, 202, 110283.文章链接 https://www.sciencedirect.com/science/article/pii/S0143720822002054图 8 发色团 H1-H4 以及 HLD1 的极化效率与分子数密度的关系图团队负责人简介王家海,广州大学化学化工学院教授、研究生和博士后导师,2008年5月美国University of Florida化学系毕业,师从Charles R. Martin;2008年5月至2009年1月,美国约翰霍普金斯大学化学生物工程系博士后,从事微纳米器件加工课题,致力于智能器件的设计及其应用性能的探讨;2009年1月至2014年8月,分别在中科院苏州纳米所和长春应用化学研究所任副研究员,从事体外诊断纳米孔检测相关的技术开发。2014年10月加入山东大学,任研究员,从事氢能源催化剂材料的开发。2017年至今加入广州大学,百人计划教授。入选中国科学院首批促进会会员,广州市高层次青年后备青年人才,全球顶尖十万科学家之一。目前团队研究方向包括能源催化材料、锂电池、生物化学传感器、纳米孔单分子计数器和5G通讯。代表性成果发表在Advanced Materials、Biosensor and Bioelectronics、J. Am. Chem. Soc.、Nano Letters 等国际著名期刊上。
  • 2022年4月份将要实施的那些标准
    2022年4月份将要实施的标准2022年4月份将要实施的科学仪器及检测相关的国家标准仅有8条。但将要实施的行业标准较多,一共有99条,其中主要包括轻工、气象、环境、机械、化工、卫生医药等。另外还有20条与仪器及检测相关的团体标准也将实施。需要相关标准的,点击链接即可下载收藏↓国家标准GB/T 41072-2021 表面化学分析 电子能谱 紫外光电子能谱分析指南 GB/T 10782-2021 蜜饯质量通则 GB/T 19702-2021 体外诊断医疗器械 生物源性样品中量的测量 参考测量程序的表述和内容的要求 GB/T 10781.1-2021 白酒质量要求 第1部分:浓香型白酒 GB/T 39849-2021 无损检测仪器 超声衍射声时检测仪 性能测试方法 GB/T 39948-2021 食品热力杀菌设备热分布测试规程 GB/T 10781.11-2021 白酒质量要求 第11部分:馥郁香型白酒 GB/T 39945-2021 罐藏食品热穿透测试规程 行业标准交通标准JT/T 1386.10-2022 海事电子证照 第10部分:危险化学品水路运输从业资格证书 JT/T 316-2022 货运挂车产品质量检验评定方法 JT/T 1411-2022 天然气营运货车燃料消耗量限值及测量方法 气象标准QX/T 636—2022 气候资源评价 气候生态环境 QX/T 637—2022 气候预测检验 热带气旋 QX/T 638—2022 气候预测检验 热带大气季节内振荡 QX/T 639—2022 中国雨季监测指标 东北雨季 QX/T 640—2022 气象业务综合监视数据要求 QX/T 641—2022 称重式电线横向积冰自动观测仪 QX/T 642—2022 自动标准气压发生器技术要求 QX/T 643—2022 气象用水电解制氢设备操作规范 QX/T 644—2022 气象涉氢业务设施建设要求 QX/T 645—2022 风电机组测风资料质量审核与订正 QX/T 646—2022 雷电防护装置检测资质认定现场操作考核规范 QX/T 41—2022 空气质量预报 食品 轻工标准JJF 1070.3-2021 定量包装商品净含量计量检验规则 大米 QB/T 5636-2021 品牌培育管理体系实施指南 食品行业 QB/T 2968-2021 口腔清洁护理用品 牙膏中锶含量测定的方法 QB/T 2623.10-2021 肥皂试验方法 肥皂中甘油含量的测定 QB/T 5638-2021 口腔清洁护理用品 牙膏中叶绿素铜钠盐含量的测定高效液相色谱法 QB/T 1915-2021 阳离子表面活性剂 脂肪烷基三甲基卤化铵及脂肪烷基二甲基苄基卤化 铵 QB/T 5656-2021 油墨中苯类溶剂含量测定方法 QB/T 5637-2021 口腔清洁护理用品羟基磷灰石 牙膏用 QBT 5636-2021品牌培育管理体系实施指南 食品行业(报批征求意见稿) 有色金属YS/T 3042-2021 氰化液化学分析方法 金量的测定 YS/T 3041.1-2021 火试金法测定金属矿石、精 矿及相应物料中银量的 校正方法 第 1 部分:全流程回收率法 YS/T 3041.2-2021 火试金法测定金属矿石、精 矿及相应物料中银量的校正 方法 第 2 部分:熔渣和灰 皿回收法 YS/T 3041.3-2021 火试金法测定金属矿石、精 矿及相应物料中银量的校正 方法 第 3 部分:熔渣回收 和灰吹校准法 环境标准HJ 1230—2021 工业企业挥发性有机物泄漏检测与修复 技术指南 HJ 1189-2021 水质 28种有机磷农药的测定 气相色谱-质谱法 HJ 1190-2021 水质 灭菌生物指示物(枯草芽孢杆菌黑色变种)的鉴定 生物学检测法 HJ 1191-2021 水质 叠氮化物的测定 分光光度法 HJ 1192-2021 水质 9种烷基酚类化合物和双酚A的测定 固相萃取/高效液相色谱法 化工标准HG/T 5912-2021 导电胶粘剂 HG/T 5911-2021 LED 照明器件用加成型有机硅密封胶 HG/T 5913-2021 高分子防水卷材用热熔压敏胶粘剂 HG/T 5914-2021 无衬纸铝箔压敏胶粘带 HG/T 5915-2021 热成像银盐打印胶片 HG/T 5916-2021 照相化学品 防灰雾剂2,5-二羟基-5-甲基-3-(4-吗啉基)-2-环戊烯-1-酮 HG/T 5918-2021 电池用硫酸钴 HG/T 5919-2021 电池用硫酸镍 HG/T 5920-2021粗碳酸锰 HG/T 5931-2021 肥料增效剂 腐植酸 HG/T 5932-2021 肥料增效剂 海藻酸 HG/T 5933-2021 腐植酸有机无机复混肥料 HG/T 5934-2021 黄腐酸中量元素肥料 HG/T 5935-2021 黄腐酸微量元素肥料 HG/T 5936-2021 腐植酸碳系数测定方法 HG/T 5937-2021 腐植酸与黄腐酸含量的快速 测定方法 HG-T 5938-2021 腐植酸肥料中氯离子含量的 测定自动电位滴定法 HG/T 5917-2021 黑白感光材料涂层溶解测定方法 HG/T 5921-2021 碳化法工业重铬酸钠 HG/T 2427-2021 肥料级氰氨化钙 HG/T 5939-2021 肥料级聚磷酸铵 HG/T 5941-2021 稳定同位素13C标记的辛酸 HG/T 5942-2021 稳定同位素15N标记的氨基 酸 HG/T 5943-2021 C.I.分散红152 HG/T 5944-2021 液体C.I.直接红254 HG/T 5945-2021 液体C.I.直接蓝290 HG/T 5909-2021 美罗培南合成催化剂化学成分分析方法 HG/T 5910-2021 双金属负载型聚醚多元醇合成催化剂化学成分分析方法 HG/T 4701-2021 电池用磷酸铁 HG/T 4133-2021 工业磷酸二氢铵 HG/T 4132-2021 工业磷酸氢二铵 HG/T 2568-2021 工业偏硅酸钠 HG/T 5922-2021 工业氰氨化钙 HG/T 5923-2021 化纤用二氧化钛 HG/T 5924-2021 废(污)水处理用生物膜载体 HG/T 3926-2021 水处理剂 2-羟基膦酰基乙酸(HPAA) HG/T 5925-2021 水处理用生物药剂 硝化菌剂 HG/T 5926-2021 水处理用生物药剂 反硝化菌剂 HG/T5927-2021 生物化学试剂 L-白氨酸(L-亮氨酸) HG/T 5928-2021 生物化学试剂 L-胱氨酸 HG/T 5929-2021 化学试剂 色谱用一水合庚 烷磺酸钠 HG/T 5930-2021 化学试剂 色谱用一水合辛烷磺酸钠 HG/T 5946-2021 1-(3-磺酸苯基)-3-甲基-5-吡唑酮 HG/T 5947-2021 1-(4-磺酸苯基)-3-甲基-5-吡唑酮 HG/T 5948-2021 1-(4-甲基苯基)-3-甲基-5-吡唑啉酮 HG/T 5949-2021 红色基KD(3-氨基-4-甲氧基-苯甲酰替苯胺) HG/T 5950-2021 色酚AS-IRG(4-氯-2,5-二甲氧基乙酰乙酰苯胺) HG/T 5951-2021 邻甲氧基乙酰乙酰苯胺 HG/T 5952-2021 邻氯乙酰乙酰苯胺 HG/T 5953-2021 纺织染整助剂 涤棉一浴皂洗剂 净洗效果的测定 HG/T 5954-2021 纺织染整助剂产品中异噻唑啉酮类化合物的测定 机械交通标准JB/T 14223-2021 无损检测仪器充电式交流磁轭探伤仪 JB/T 14155-2021 偏轴菲涅尔透镜 JB/T 14156-2021 投影光学非球面超短焦物镜 JB/T 14140-2021 食品机械 化糖设备 JB/T 14141-2021 食品机械 调配设备 JB/T 14142-2021 淀粉降解母粒生产线 JB/T 14144-2021 夹心软糖生产线 JB/T 14145-2021 全自动花色硬糖生产线 JB/T 4297-2021 泵产品涂漆 技术条件 JT/T 1393—2021 船舶压载水指示性分析取样与检测要求 卫生医药标准WS/T 787-2021 国家卫生信息资源分类与编码管理规范 WS/T 788—2021 国家卫生信息资源使用管理规范 WS/T 789—2021 血液产品标签与标识代码标准 YY/T 1416.5—2021 一次性使用人体静脉血样采集容器中添加剂量的测定方法 第5部分:甘氨酸 YY/T 1416.6—2021 一次性使用人体静脉血样采集容器中添加剂量的测定方法 第6部分:咪唑烷基脲 YY/T 1465.7—2021 医疗器械免疫原性评价方法 第7部分:流式液相多重蛋白定量技术 YY/T 1735-2021 丙型肝炎病毒抗体检测试剂(盒)(化学发光免疫分析法) YY/T 1771-2021 弯曲-自由恢复法测试镍钛形状记忆合金相变温度 YY/T 1772-2021 外科植入物 电解液中电偶腐蚀试验方法 YY/T 1775.1-2021 可吸收医疗器械生物学评价 第1部分:可吸收植入物指南 YY/T 1776-2021 外科植入物聚乳酸材料中丙交酯单体含量的测定 团体标准DB12/T 3027-2022 液氨贮存使用单位环境风险防控技术规范 T/CSTM 00470-2022生物炭膨润土复合污水处理剂 T/CSTM 00469-2022 生物炭凹凸棒石土壤重金属钝化剂 T/CPCIF 0168-2021 水中亚硝酸盐、硝酸盐、氨氮的快速检测试剂盒 T/GZSXH 02-2022 饮用天然泉水 T/CIESC 0033-2022 工业用四氢糠醇 T/CIESC 0032-2022 工业用丙二酸二乙酯 T/CIESC 0031-2022 工业用氰乙酸乙酯 T/CIESC 0030-2022 工业用N-乙基吡咯烷酮 T/CIESC 0029-2022 工业用原甲酸三乙酯 T/CIESC 0028-2022 工业用羟乙基甲基纤维素 T/CIESC 0027-2022 工业用乙基纤维素 T/JATEA 001-2022 农田地膜残留量调查与监测DB11/T 374-2021 水生动物疫病检测实验室管理规范 DB11/T 455-2021 动物疫病紧急流行病学调查技术规范 DB11/T 456-2021 动物防疫员防护技术规范 DB11/T 1000.2-2021 企业产品标准编写导则 第2部分:主要技术内容 DB51/T 2874-2022 检验检测机构保护客户秘密实施指南 DBS33/ 3013-2022 食品安全地方标准 酥饼生产卫生规范 DB31 2026-2021 食品安全地方标准 预包装冷藏膳食生产经营卫生规范 Get√小技巧:在仪器信息网APP里,可以免费下载上述标准→↓扫码到APP免费下载目前仪器信息网资料库 有近70万篇资料,内容涉及检测标准、物质检测方法/仪器应用、仪器操作/仪器维护维修手册、色谱/质谱/光谱等谱图。资料库每月有近20万人访问,上万人下载资料,诚邀您分享手头上的资源,与人分享于己留香!
  • 基于“借氢机制(氢转移)”,通过胺与醇的C-N偶联合成有机胺
    1. 文章信息标题:Single Pd-Sx Sites In Situ Coordinated on CdS Surface as Efficient Hydrogen Autotransfer Shuttles for Highly Selective Visible-Light-Driven C-N Coupling页码:4481-4490(2022),DOI:https://doi.org/10.1021/acscatal.2c004332. 文章链接Single Pd-Sx Sites In Situ Coordinated on CdS Surface as Efficient Hydrogen Autotransfer Shuttles for Highly Selective Visible-Light-Driven C-N Coupling3. 期刊信息期刊名:ACS CatalysisISSN:2155-54352021年影响因子:13.084分区信息:中科院1区Top;JCR分区(Q1)涉及研究方向:光催化4. 作者信息: 首要作者是香港中文大学(深圳)理工学院博士后钮峰。通讯作者为香港中文大学(深圳)理工学院涂文广教授、周勇教授和邹志刚院士。文章简介: 随着工业的发展与进步,有机胺广泛应用于农业、医药、家居、军工等领域,其合成在工业生产中有着越来越明显的重要性。基于“借氢机制(氢转移)”,通过胺与醇的C-N偶联被认为是一种较为绿色的合成有机胺的理想路径。这一过程主要包含醇的脱氢、亚胺的生成以及亚胺的加氢这三个主要步骤。其中醇的脱氢是整个反应的决速步骤。然而,基于这一机制,在热催化合成有机胺的过程中存在一些缺点:(1)醇的脱氢决速步骤需要较苛刻的条件(高温高压);(2)易发生过度偶联,使得产物分布广,不利于分离;(3)反应中使用的催化剂多为高负载量的负载型贵金属催化剂(如Ru/Al2O3、Pd/Al2O3、Rh/Al2O3等),成本较高。因此,开发出高效低成本的催化剂具有一定的挑战性。近年来,利用光氧化还原技术实现常温常压条件下有机胺的合成引起了广泛的关注。研究者们通常采用一些贵金属有机配合物分子进行均相催化反应,但反应后催化剂难以进行分离,在实际工业生产中难以大规模应用。而采用传统的半导体光催化剂进行多相催化反应,则可以有效解决这一难题。然而仅仅依靠半导体本身的催化能力,很难达到较高的催化活性,实际应用过程中往往需要通过负载一些助催化剂或表面修饰来提高催化性能。近些年,单原子催化被认为是较有前景的领域。单原子催化剂由于其独特的电子结构和较高的原子利用效率而表现出优异的催化活性,被广泛应用于光催化水分解制氢、二氧化碳还原、固氮和有机物降解等领域。因此,我们课题组设计开发了一种单原子光催化剂CdS-Pd,该催化剂可以有效地用于可光催化苯甲醇和苯胺的C-N偶联反应,获得具有工业应用价值的二级胺。同时反应过程中释放出清洁能源氢气。这一工作将为温和条件下实现C-N偶联反应提供一种新的途径。文章DOI : https://doi.org/10.1021/acscatal.2c00433原文链接:Single Pd-Sx Sites In Situ Coordinated on CdS Surface as Efficient Hydrogen Autotransfer Shuttles for Highly Selective Visible-Light-Driven C-N Coupling
  • “约惠 · 开学礼”——限量优品 · 破限超值享
    货号品名规格cas包装价格a105340-100mln-胺丙基吗啉98%123-00-2100ml原价 ¥ 339优品价 ¥ 67.8(2折)a105340-25mln-胺丙基吗啉98%123-00-225ml原价 ¥ 98优品价 ¥ 29.4(3折)a105340-500mln-胺丙基吗啉98%123-00-2500ml原价 ¥ 999优品价 ¥ 199.8(2折)a110337-100gamberlite® ira-410(cl) 离子交换树脂氯型9002-26-0100g原价 ¥ 119优品价 ¥ 47.6(4折)a110337-2.5kgamberlite® ira-410(cl) 离子交换树脂氯型9002-26-02.5kg原价 ¥ 1199优品价 ¥ 359.7(3折)a110337-500gamberlite® ira-410(cl) 离子交换树脂氯型9002-26-0500g原价 ¥ 399优品价 ¥ 119.7(3折)a140032-1kg活性氧化铝&phi 4mm-6mm,干燥剂用1302-74-51kg原价 ¥ 119优品价 ¥ 47.6(4折)a140032-5kg活性氧化铝&phi 4mm-6mm,干燥剂用1302-74-55kg原价 ¥ 399优品价 ¥ 119.7(3折)b103070-100ml双(2-乙基己基)己二酸酯99%103-23-1100ml原价 ¥ 49优品价 ¥ 24.5(5折)b103070-2.5l双(2-乙基己基)己二酸酯99%103-23-12.5l原价 ¥ 599优品价 ¥ 179.7(3折)b103070-25ml双(2-乙基己基)己二酸酯99%103-23-125ml原价 ¥ 49优品价 ¥ 24.5(5折)b103070-500ml双(2-乙基己基)己二酸酯99%103-23-1500ml原价 ¥ 169优品价 ¥ 50.7(3折)b107662-1kg2,4-二枯基酚97%2772-45-41kg原价 ¥ 795优品价 ¥ 238.5(3折)d105632-100ml2,4-二甲基苯胺99%95-68-1100ml原价 ¥ 119优品价 ¥ 47.6(4折)d124510-100ml2-[2-(二甲基氨基)乙氧基]乙醇98%1704-62-7100ml原价 ¥ 179优品价 ¥ 35.8(2折)d124510-2.5l2-[2-(二甲基氨基)乙氧基]乙醇98%1704-62-72.5l原价 ¥ 1990优品价 ¥ 597(3折)d124510-25ml2-[2-(二甲基氨基)乙氧基]乙醇98%1704-62-725ml原价 ¥ 89优品价 ¥ 26.7(3折)d124510-500ml2-[2-(二甲基氨基)乙氧基]乙醇98%1704-62-7500ml原价 ¥ 639优品价 ¥ 127.8(2折)d124512-100mln,n-二甲基亚二丙基三胺99%10563-29-8100ml原价 ¥ 199优品价 ¥ 59.7(3折)d124512-2.5kgn,n-二甲基亚二丙基三胺99%10563-29-82.5kg原价 ¥ 2269优品价 ¥ 680.7(3折)d124512-500mln,n-二甲基亚二丙基三胺99%10563-29-8500ml原价 ¥ 799优品价 ¥ 239.7(3折)d128096-100mln,n-二甲基丙酰胺98%758-96-3100ml原价 ¥ 927优品价 ¥ 139.05(1.5折)d128096-25mln,n-二甲基丙酰胺98%758-96-325ml原价 ¥ 259优品价 ¥ 38.85(1.5折)d128096-500mln,n-二甲基丙酰胺98%758-96-3500ml原价 ¥ 2600优品价 ¥ 390(1.5折)e113066-100ml2-乙基己氧基丙胺99%5397-31-9100ml原价 ¥ 198优品价 ¥ 39.6(2折)e113066-500ml2-乙基己氧基丙胺99%5397-31-9500ml原价 ¥ 797优品价 ¥ 159.4(2折)e113066-5l2-乙基己氧基丙胺99%5397-31-95l原价 ¥ 4782优品价 ¥ 956.4(2折)f107841-100g邻氟苯胺99%348-54-9100g原价 ¥ 398优品价 ¥ 79.6(2折)f107841-2.5kg邻氟苯胺99%348-54-92.5kg原价 ¥ 3699优品价 ¥ 739.8(2折)f107841-25g邻氟苯胺99%348-54-925g原价 ¥ 119优品价 ¥ 35.7(3折)f107841-500g邻氟苯胺99%348-54-9500g原价 ¥ 1168优品价 ¥ 233.6(2折)g116212-1l甘油色谱级,&ge 99.5%56-81-51l原价 ¥ 899优品价 ¥ 89.9(2折)g116212-4l甘油色谱级,&ge 99.5%56-81-54l原价 ¥ 2183优品价 ¥ 218.3(2折)g116212-500ml甘油色谱级,&ge 99.5%56-81-5500ml原价 ¥ 492优品价 ¥ 49.2(1折)h122457-1ln-(2-羟乙基)乙二胺-n,n&prime ,n&prime -三乙酸 三钠盐 溶液~41% in h2o (t)139-89-91l原价 ¥ 499优品价 ¥ 149.7(3折)h122457-250mln-(2-羟乙基)乙二胺-n,n&prime ,n&prime -三乙酸 三钠盐 溶液~41% in h2o (t)139-89-9250ml原价 ¥ 159优品价 ¥ 47.7(3折)h122457-5ln-(2-羟乙基)乙二胺-n,n&prime ,n&prime -三乙酸 三钠盐 溶液~41% in h2o (t)139-89-95l原价 ¥ 1690优品价 ¥ 507(3折)i105925-100ml异丁酸异丁酯98%97-85-8100ml原价 ¥ 129优品价 ¥ 38.7(3折)i105925-2.5l异丁酸异丁酯98%97-85-82.5l原价 ¥ 1259优品价 ¥ 251.8(2折)i105925-500ml异丁酸异丁酯98%97-85-8500ml原价 ¥ 359优品价 ¥ 71.8(2折)k131664-1kg硅藻土助滤剂,烧成品,中位粒径:22.2&mu m91053-39-31kg原价 ¥ 119优品价 ¥ 47.6(4折)k131664-5kg硅藻土助滤剂,烧成品,中位粒径:22.2&mu m91053-39-35kg原价 ¥ 479优品价 ¥ 143.7(3折)k131665-1kg硅藻土助滤剂,融剂烧成品,中位粒径:25.4&mu m68855-54-91kg原价 ¥ 119优品价 ¥ 47.6(4折)k131665-5kg硅藻土助滤剂,融剂烧成品,中位粒径:25.4&mu m68855-54-95kg原价 ¥ 479优品价 ¥ 143.7(3折)k131666-1kg硅藻土助滤剂,融剂烧成品,中位粒径:27.0&mu m68855-54-91kg原价 ¥ 119优品价 ¥ 47.6(4折)k131666-5kg硅藻土助滤剂,融剂烧成品,中位粒径:27.0&mu m68855-54-95kg原价 ¥ 479优品价 ¥ 143.7(3折)k131667-1kg硅藻土助滤剂,融剂烧成品,中位粒径:29.3&mu m68855-54-91kg原价 ¥ 119优品价 ¥ 47.6(4折)k131667-5kg硅藻土助滤剂,融剂烧成品,中位粒径:29.3&mu m68855-54-95kg原价 ¥ 479优品价 ¥ 143.7(3折)k131668-1kg硅藻土助滤剂,融剂烧成品,中位粒径:30.2&mu m68855-54-91kg原价 ¥ 119优品价 ¥ 47.6(4折)k131668-5kg硅藻土助滤剂,融剂烧成品,中位粒径:30.2&mu m68855-54-95kg原价 ¥ 479优品价 ¥ 143.7(3折)k137726-1kgradiolite® hp 200助滤剂,酸洗烧成品,中位粒径:21.1&mu m91053-39-31kg原价 ¥ 499优品价 ¥ 149.7(3折)k137726-5kgradiolite® hp 200助滤剂,酸洗烧成品,中位粒径:21.1&mu m91053-39-35kg原价 ¥ 1899优品价 ¥ 569.7(3折)k137729-1kgradiolite® hp 1600助滤剂,酸洗融剂烧成品,中位粒径:24.5&mu m68855-54-91kg原价 ¥ 499优品价 ¥ 149.7(3折)k137729-5kgradiolite® hp 1600助滤剂,酸洗融剂烧成品,中位粒径:24.5&mu m68855-54-95kg原价 ¥ 1899优品价 ¥ 569.7(3折)m102210-100g1-(4-叔丁基苯基)-3-(4-甲氧基苯基)-1,3-丙二酮98.0%(t)70356-09-1100g原价 ¥ 529优品价 ¥ 105.8(2折)m102210-25g1-(4-叔丁基苯基)-3-(4-甲氧基苯基)-1,3-丙二酮98.0%(t)70356-09-125g原价 ¥ 219优品价 ¥ 43.8(2折)m102210-500g1-(4-叔丁基苯基)-3-(4-甲氧基苯基)-1,3-丙二酮98.0%(t)70356-09-1500g原价 ¥ 1980优品价 ¥ 396(2折)m106454-100ml3-甲基-2-丁烯-1-醇98%556-82-1100ml原价 ¥ 289优品价 ¥ 86.7(3折)m106454-2.5kg3-甲基-2-丁烯-1-醇98%556-82-12.5kg原价 ¥ 1999优品价 ¥ 599.7(3折)m106454-25ml3-甲基-2-丁烯-1-醇98%556-82-125ml原价 ¥ 129优品价 ¥ 38.7(3折)m106454-500ml3-甲基-2-丁烯-1-醇98%556-82-1500ml原价 ¥ 599优品价 ¥ 179.7(3折)m112702-100g三氯乙酸甲酯99%598-99-2100g原价 ¥ 379优品价 ¥ 75.8(2折)m112702-25g三氯乙酸甲酯99%598-99-225g原价 ¥ 109优品价 ¥ 32.7(3折)m112702-500g三氯乙酸甲酯99%598-99-2500g原价 ¥ 1390优品价 ¥ 278(2折)m140030-1kg13x分子筛3mm-5mm,干燥剂用63231-69-61kg原价 ¥ 119优品价 ¥ 47.6(4折)m140030-5kg13x分子筛3mm-5mm,干燥剂用63231-69-65kg原价 ¥ 399优品价 ¥ 119.7(3折)m140788-1kg氯化镁99%,水分&le 5%7786-30-31kg原价 ¥ 89优品价 ¥ 35.6(4折)m140788-5kg氯化镁99%,水分&le 5%7786-30-35kg原价 ¥ 319优品价 ¥ 95.7(3折)p131345-1kg聚(乙二醇)-block-聚(丙二醇)-block-聚(乙二醇)average mn ~2,9009003-11-61kg原价 ¥ 899优品价 ¥ 269.7(3折)p131345-250g聚(乙二醇)-block-聚(丙二醇)-block-聚(乙二醇)average mn ~2,9009003-11-6250g原价 ¥ 379优品价 ¥ 75.8(2折)p131345-5kg聚(乙二醇)-block-聚(丙二醇)-block-聚(乙二醇)average mn ~2,9009003-11-65kg原价 ¥ 2999优品价 ¥ 899.7(3折)s112495-2kg马铃薯淀粉粉末9005-25-82kg原价 ¥ 199优品价 ¥ 59.7(3折)s112495-500g马铃薯淀粉粉末9005-25-8500g原价 ¥ 59优品价 ¥ 29.5(5折)s112495-5kg马铃薯淀粉粉末9005-25-85kg原价 ¥ 398优品价 ¥ 119.4(3折)s112992-100g草酸锶95%814-95-9100g原价 ¥ 59优品价 ¥ 29.5(5折)s112992-500g草酸锶95%814-95-9500g原价 ¥ 199优品价 ¥ 79.6(4折)s140418-100g硅油 ap 200200 mpa.s, neat(25 ° c)63148-58-3100g原价 ¥ 499优品价 ¥ 49.9(1折)s140418-2.5kg硅油 ap 200200 mpa.s, neat(25 ° c)63148-58-32.5kg原价 ¥ 4999优品价 ¥ 499.9(1折)s140418-500g硅油 ap 200200 mpa.s, neat(25 ° c)63148-58-3500g原价 ¥ 1699优品价 ¥ 169.9(1折)s140419-100g硅油 ap 10001000 mpa.s, neat(25 ° c)63148-58-3100g原价 ¥ 459优品价 ¥ 45.9(1折)s140419-2.5kg硅油 ap 10001000 mpa.s, neat(25 ° c)63148-58-32.5kg原价 ¥ 4799优品价 ¥ 479.9(1折)s140419-500g硅油 ap 10001000 mpa.s, neat(25 ° c)63148-58-3500g原价 ¥ 1599优品价 ¥ 159.9(1折)t111457-100g&alpha ,&alpha ,&alpha -三氯甲苯99%98-07-7100g原价 ¥ 88优品价 ¥ 26.4(3折)t111457-2.5kg&alpha ,&alpha ,&alpha -三氯甲苯99%98-07-72.5kg原价 ¥ 659优品价 ¥ 131.8(2折)t111457-500g&alpha ,&alpha ,&alpha -三氯甲苯99%98-07-7500g原价 ¥ 189优品价 ¥ 56.7(3折)t124565-100mln,n,n,n-四甲基-1,6-己二胺99%111-18-2100ml原价 ¥ 169优品价 ¥ 33.8(2折)t124565-25mln,n,n,n-四甲基-1,6-己二胺99%111-18-225ml原价 ¥ 89优品价 ¥ 26.7(3折)t124565-500mln,n,n,n-四甲基-1,6-己二胺99%111-18-2500ml原价 ¥ 699优品价 ¥ 139.8(2折) 货号品名规格cas包装价格a127209-10mgazd4547&ge 99%1035270-39-310mg原价 ¥ 999优品价299.7(3折)a127209-50mgazd4547&ge 99%1035270-39-350mg原价 ¥ 3199优品价959.7(3折)a127209-5mgazd4547&ge 99%1035270-39-35mg原价 ¥ 599优品价119.8(2折)a127694-10mgavl-29298%1202757-89-810mg原价 ¥ 1359优品价407.7(3折)a127694-50mgavl-29298%1202757-89-850mg原价 ¥ 4999优品价1499.7(3折)a127694-5mgavl-29298%1202757-89-85mg原价 ¥ 849优品价169.8(2折)a129545-1gamiloride hcl dihydrate&ge 98%17440-83-41g原价 ¥ 599优品价119.8(2折)a129545-5gamiloride hcl dihydrate&ge 98%17440-83-45g原价 ¥ 1999优品价399.8(2折)a129598-250mgazaperone&ge 99%1649-18-9250mg原价 ¥ 2299优品价459.8(2折)a129598-50mgazaperone&ge 99%1649-18-950mg原价 ¥ 729优品价145.8(2折)a129661-25galverine citrate&ge 99%5560-59-825g原价 ¥ 1390优品价278(2折)a129661-5galverine citrate&ge 99%5560-59-85g原价 ¥ 369优品价73.8(2折)a129740-1gazathioprine&ge 98%446-86-61g原价 ¥ 269优品价80.7(3折)a129740-25gazathioprine&ge 98%446-86-625g原价 ¥ 2699优品价809.7(3折)a129740-5gazathioprine&ge 98%446-86-65g原价 ¥ 829优品价248.7(3折)b125827-10mgbalaglitazone&ge 98%199113-98-910mg原价 ¥ 2999优品价599.8(2折)b125827-50mgbalaglitazone&ge 98%199113-98-950mg原价 ¥ 6999优品价1399.8(2折)b125827-5mgbalaglitazone&ge 98%199113-98-95mg原价 ¥ 1699优品价339.8(2折)b126947-100mgbx-795&ge 97%702675-74-9100mg原价 ¥ 6899优品价689.9(1折)b126947-10mgbx-795&ge 97%702675-74-910mg原价 ¥ 999优品价99.9(1折)b126947-50mgbx-795&ge 97%702675-74-950mg原价 ¥ 3999优品价399.9(1折)b127317-10mgbrivanib (bms-540215)&ge 98%649735-46-610mg原价 ¥ 1518优品价303.6(2折)b127317-50mgbrivanib (bms-540215)&ge 98%649735-46-650mg原价 ¥ 5999优品价1199.8(2折)b127317-5mgbrivanib (bms-540215)&ge 98%649735-46-65mg原价 ¥ 909优品价181.8(2折)b127687-10mgbaricitinib&ge 99%1187594-09-710mg原价 ¥ 1899优品价189.9(1折)b127687-50mgbaricitinib&ge 99%1187594-09-750mg原价 ¥ 5699优品价569.9(1折)b127687-5mgbaricitinib&ge 99%1187594-09-75mg原价 ¥ 1299优品价129.9(1折)b129311-250mgbutoconazole nitrate&ge 99%64872-77-1250mg原价 ¥ 1999优品价399.8(2折)b129311-50mgbutoconazole nitrate&ge 99%64872-77-150mg原价 ¥ 599优品价119.8(2折)b129359-100mgbalofloxacin98%127294-70-6100mg原价 ¥ 399优品价119.7(3折)b129359-500mgbalofloxacin98%127294-70-6500mg原价 ¥ 1099优品价219.8(2折)b129410-10mgbesifloxacin hcl&ge 99%405165-61-910mg原价 ¥ 469优品价140.7(3折)b129410-250mgbesifloxacin hcl&ge 99%405165-61-9250mg原价 ¥ 4988优品价997.6(2折)b129410-50mgbesifloxacin hcl&ge 99%405165-61-950mg原价 ¥ 1469优品价293.8(2折)b129905-10mgbosutinib (ski-606)&ge 99%380843-75-410mg原价 ¥ 479优品价95.8(2折)b129905-50mgbosutinib (ski-606)&ge 99%380843-75-450mg原价 ¥ 1690优品价338(2折)b129949-10mgbiapenem&ge 99%120410-24-410mg原价 ¥ 439优品价131.7(3折)b129949-50mgbiapenem&ge 99%120410-24-450mg原价 ¥ 1349优品价269.8(2折)b132988-1gboc-d-tic-oh98%115962-35-11g原价 ¥ 649优品价129.8(2折)b132988-5gboc-d-tic-oh98%115962-35-15g原价 ¥ 2190优品价657(3折)c125082-25mgchir-99021&ge 98%252917-06-925mg原价 ¥ 3299优品价989.7(3折)c125082-5mgchir-99021&ge 98%252917-06-95mg原价 ¥ 899优品价179.8(2折)c125274-1gcilnidipine&ge 99%132203-70-41g原价 ¥ 599优品价119.8(2折)c125274-5gcilnidipine&ge 99%132203-70-45g原价 ¥ 1990优品价398(2折)c125754-100mgcleviprex&ge 99%167221-71-8100mg原价 ¥ 1190优品价119(1折)c125754-25mgcleviprex&ge 99%167221-71-825mg原价 ¥ 559优品价83.85(1.5折)c125754-500mgcleviprex&ge 99%167221-71-8500mg原价 ¥ 3480优品价348(1折)c125911-10mgcediranib&ge 98%288383-20-010mg原价 ¥ 799优品价159.8(2折)c125911-50mgcediranib&ge 98%288383-20-050mg原价 ¥ 2790优品价837(3折)c126438-100mgcalcipotriol&ge 98%112965-21-6100mg原价 ¥ 6799优品价2039.7(3折)c126438-10mgcalcipotriol&ge 98%112965-21-610mg原价 ¥ 1299优品价389.7(3折)c126438-50mgcalcipotriol&ge 98%112965-21-650mg原价 ¥ 4599优品价1379.7(3折)c127044-10mgcal-101&ge 99%870281-82-610mg原价 ¥ 799优品价159.8(2折)c127044-50mgcal-101&ge 99%870281-82-650mg原价 ¥ 2590优品价518(2折)c127870-10mgcarfilzomib&ge 99%868540-17-410mg原价 ¥ 1899优品价379.8(2折)c127870-50mgcarfilzomib&ge 99%868540-17-450mg原价 ¥ 4580优品价1374(3折)c127870-5mgcarfilzomib&ge 99%868540-17-45mg原价 ¥ 1190优品价238(2折)c129563-10gchlorquinaldol&ge 98%72-80-010g原价 ¥ 209优品价83.6(4折)c129563-50gchlorquinaldol&ge 98%72-80-050g原价 ¥ 899优品价359.6(4折)c129710-100mgchir-99021 (ct99021) hcl&ge 98%252917-06-9100mg原价 ¥ 7299优品价2189.7(3折)c129710-25mgchir-99021 (ct99021) hcl&ge 98%252917-06-925mg原价 ¥ 2999优品价899.7(3折)c129710-5mgchir-99021 (ct99021) hcl&ge 98%252917-06-95mg原价 ¥ 729优品价218.7(3折)c129902-1gcefoperazone&ge 98%62893-19-01g原价 ¥ 469优品价93.8(2折)c129902-25gcefoperazone&ge 98%62893-19-025g原价 ¥ 3999优品价799.8(2折)c129902-5gcefoperazone&ge 98%62893-19-05g原价 ¥ 1399优品价279.8(2折)c129921-10mgconivaptan hcl&ge 99%168626-94-610mg原价 ¥ 799优品价79.9(1折)c129921-250mgconivaptan hcl&ge 99%168626-94-6250mg原价 ¥ 6980优品价1396(2折)c129921-50mgconivaptan hcl&ge 99%168626-94-650mg原价 ¥ 2590优品价518(2折)c137735-10mgcrizotinib&ge 99%877399-52-510mg原价 ¥ 699优品价69.9(1折)c137735-50mgcrizotinib&ge 99%877399-52-550mg原价 ¥ 1999优品价399.8(2折)d125351-100mgdutasteride&ge 99%164656-23-9100mg原价 ¥ 3999优品价799.8(2折)d125351-10mgdutasteride&ge 99%164656-23-910mg原价 ¥ 798优品价159.6(2折)d125351-50mgdutasteride&ge 99%164656-23-950mg原价 ¥ 2499优品价499.8(2折)d125841-10mgdarunavir98%206361-99-110mg原价 ¥ 779优品价155.8(2折)d125841-50mgdarunavir98%206361-99-150mg原价 ¥ 2299优品价459.8(2折)d125841-5mgdarunavir98%206361-99-15mg原价 ¥ 459优品价137.7(3折)d125851-10mgdalcetrapib&ge 97%211513-37-010mg原价 ¥ 3299优品价659.8(2折)d125851-50mgdalcetrapib&ge 97%211513-37-050mg原价 ¥ 9999优品价2999.7(3折)d125851-5mgdalcetrapib&ge 97%211513-37-05mg原价 ¥ 1899优品价379.8(2折)d125951-10mgdarapladib&ge 98%356057-34-610mg原价 ¥ 1799优品价539.7(3折)d125951-50mgdarapladib&ge 98%356057-34-650mg原价 ¥ 6999优品价2099.7(3折)d125951-5mgdarapladib&ge 98%356057-34-65mg原价 ¥ 999优品价199.8(2折)d126658-10mgdeferasirox&ge 99%201530-41-810mg原价 ¥ 799优品价159.8(2折)d126658-50mgdeferasirox&ge 99%201530-41-850mg原价 ¥ 2590优品价518(2折)d126677-10mgdapt&ge 98%208255-80-510mg原价 ¥ 799优品价159.8(2折)d126677-25mgdapt&ge 98%208255-80-525mg原价 ¥ 1599优品价319.8(2折)d126677-50mgdapt&ge 98%208255-80-550mg原价 ¥ 2599优品价519.8(2折)d126677-5mgdapt&ge 98%208255-80-55mg原价 ¥ 499优品价99.8(2折)d127636-10mgdolutegravir (gsk1349572)&ge 99%1051375-16-610mg原价 ¥ 1199优品价239.8(2折)d127636-50mgdolutegravir (gsk1349572)&ge 99%1051375-16-650mg原价 ¥ 3599优品价1079.7(3折)d127636-5mgdolutegravir (gsk1349572)&ge 99%1051375-16-65mg原价 ¥ 799优品价159.8(2折)d128003-100mgdexpramipexole&ge 98%104632-28-2100mg原价 ¥ 2199优品价659.7(3折)d128003-10mgdexpramipexole&ge 98%104632-28-210mg原价 ¥ 499优品价149.7(3折)d128003-50mgdexpramipexole&ge 98%104632-28-250mg原价 ¥ 1199优品价359.7(3折)d129411-25gdiclofenac diethylamine&ge 99%78213-16-825g原价 ¥ 2490优品价498(2折)d129411-5gdiclofenac diethylamine&ge 99%78213-16-85g原价 ¥ 899优品价179.8(2折)d129475-1gdroperidol&ge 98%548-73-21g原价 ¥ 1199优品价479.6(4折)d129475-250mgdroperidol&ge 98%548-73-2250mg原价 ¥ 489优品价195.6(4折)d129475-50mgdroperidol&ge 98%548-73-250mg原价 ¥ 189优品价56.7(3折)d129478-250mgdexlansoprazole&ge 97%138530-94-6250mg原价 ¥ 1999优品价399.8(2折)d129478-50mgdexlansoprazole&ge 97%138530-94-650mg原价 ¥ 599优品价119.8(2折)d129504-100mgdecoquinate&ge 97%18507-89-6100mg原价 ¥ 289优品价57.8(2折)d129504-1gdecoquinate&ge 97%18507-89-61g原价 ¥ 829优品价165.8(2折)d129627-10gdoxylamine succinate&ge 99%562-10-710g原价 ¥ 1299优品价389.7(3折)d129627-50gdoxylamine succinate&ge 99%562-10-750g原价 ¥ 3999优品价1199.7(3折)d129627-5gdoxylamine succinate&ge 99%562-10-75g原价 ¥ 729优品价218.7(3折)d129758-10mgdorsomorphin 2hcl&ge 98%1219168-18-910mg原价 ¥ 989优品价197.8(2折)d129758-50mgdorsomorphin 2hcl&ge 98%1219168-18-950mg原价 ¥ 3299优品价989.7(3折)d129758-5mgdorsomorphin 2hcl&ge 98%1219168-18-95mg原价 ¥ 599优品价119.8(2折)d129795-100mgdapivirine (tmc120)&ge 98%244767-67-7100mg原价 ¥ 8999优品价899.9(1折)d129795-25mgdapivirine (tmc120)&ge 98%244767-67-725mg原价 ¥ 2999优品价299.9(1折)d129795-5mgdapivirine (tmc120)&ge 98%244767-67-75mg原价 ¥ 759优品价151.8(2折)
  • 爆炸级反应安全化!炸药中间体苦味胺的连续合成
    苦味胺作为关键中间体用于合成DATB、TATB等高能材料,在染料行业被用于制备2,4,6-三硝基苯肼的前体。Scheme1: 对硝基苯胺一步硝化法制苦味胺&bull 先前苦味胺的合成主要是通过邻/对位硝基苯胺的再硝化得到(scheme1),但是硝酸会氧化氨基导致收率下降。有报道称,苦味胺可通过苦味酸和尿素(摩尔比1:3)在173℃@36hr 条件下合成得到,但收率仅有88%。这条路线的风险主要是高温和较长反应时间带来的潜在过程安全风险。截至目前,文献中报道大规模生产苦味胺的工艺具有很大的安全风险且难以放大。&bull 微反应器为此反应提供了机会,在微反应器中,极佳的传热和传质效率可以大大缩短反应的停留时间,在任何时间点上都只有很少量的原料、中间体和产物,对于高能材料而言可显著提升反应的安全性。来自印度的Ankit Kumar Mittal等人开发了一种从对硝基甲醚到苦味胺的连续合成路线(scheme2)。Scheme2: 对硝基苯甲醚两步法制苦味胺&bull 首先进行了step-1的条件筛选和优化,分别优化了不同的温度、停留时间和硝酸用量(Table1):Table1: step1连续合成条件筛选和优化 &bull 根据实验结果,选择硝酸用量2.5e.q.,温度80℃,停留时间2.5min,此条件下中间体TNAN含量最高且杂质苦味酸含量相对较少。&bull Step-1放大至16ml盘管中生产,15min可以得到6.27gTNAN,相当于25g/hr的产量,分离收率90%,纯度99%。&bull 同时做了step-1的连续流和釜式工艺的结果对比,釜式75min仅能达到25%收率,而连续流2.5min就可以达到90%的收率(Table2):Table2: step-1釜式和连续流工艺对比&bull 随后进行了step-2的条件筛选和优化,NH3 用量5.e.q.,温度70℃,停留时间30s,苦味胺纯度100%(Table3):Table3: step-1连续合成条件筛选和优化 &bull Step-2放大由于受到设备(10ml盘管)自身参数的限制,选择了60℃和1min的停留时间,15分钟可以拿到6.68g产品,相当于26g/hr的产能,纯度99%。Scheme3: step-2放大&bull 总结:&bull 1. 使用微反应器成功开发了苦味胺的连续合成工艺,产能26g/hr&bull 2. 两步的条件都很温和,可以在优化后的条件下成功放大&bull 3. 该工艺可以安全、经济地进行苦味胺的工业化生产&bull 4. 后续结合自动监控装置可以更有效地保障工艺的安全性和稳定性参考文献:An Asian Journal Volume 18 Issue 2 Pages e202201028Journal---------------------------------------------------------------------------------------------------------------------集萃微反应创新中心: 打造微通道反应器定制开发、绿色合成工艺研发、化工连续化与自动化生产技术、化工在线检测与在线数据处理平台;提供连续化、自动化、智能化生产技术、化工高效分离技术、副产物的高效回收与综合利用、在线检测与大数据收集等,实现化学合成生产过程 “连续化、微型化、信息化、智能化”。如您有连续流工艺开发、转化方面的需求,欢迎联系我们!
  • 日本加强对中国产羽衣甘蓝中六氯苯的监控检查
    2013年8月15日,日本厚生劳动省医药食品局食品安全部监视安全课发布食安输发0815第1号:加强对中国产羽衣甘蓝中六氯苯的监控检查,取消对中国产乌龙茶中苯胺灵除草剂的强化监控检查。   根据2013年度进口食品等的监控检查计划,按2013年3月29日发布的食安输发0329第3号(最终修正:2013年8月14日发布的食安输发0814第9号),对中国产生鲜羽衣甘蓝实施检查时,发现其违反了食品卫生法。因此,将对其残留农药六氯苯的监控检查频率提高到30%。具体如下记: 强化检查日期 国家 检查对象 检查项目 2013年7月10日 中国 羽衣甘蓝及其加工品(限简单加工) 残留农药(六氯苯)   同时,根据迄今为止的检查结果,取消对中国产乌龙茶中苯胺灵除草剂、尼日利亚产芝麻籽中黄曲霉毒素的强化监控检查。   来源:http://www.forth.go.jp/keneki/kanku/syokuhin/tsuuchi/2013/8/15_1.pdf   【原标题】日本加强对中国产羽衣甘蓝中六氯苯的监控检查,取消对中国产乌龙茶中苯胺灵除草剂的强化监控检查
  • 食品补充检验方法《植物源性食品中奥克巴胺的检测》解读
    一、目的和依据奥克巴胺也叫章鱼胺,因首次于章鱼唾液中发现而得名,是一种天然的β3-肾上腺素能受体激动剂,具有对-羟苯-β-羟乙胺的化学结构,是去甲肾上腺素的同类物。世界反兴奋剂组织《世界反兴奋剂条例国际标准禁用清单》(WADA清单)中明确将其列为赛内禁用物质。研究表明奥克巴胺在水果、蔬菜、肉、奶和鱼等食品中被检出,然而,目前关于食品中奥克巴胺的研究和监测多关注动物源食品,对植物源食品关注较少。研究发现,奥克巴胺在柑橘类植物源性食品及相关制品中被广泛检出。此外,在某些保健食品或膳食补充剂中可能非法添加奥克巴胺用于减肥。适量的奥克巴胺对人体的健康有益,但过量摄入会引起人体的内分泌紊乱和新陈代谢失衡,引起诸如头痛、恶心、心悸、血压变化、血糖不稳、呼吸紊乱等反应,严重的还会危及生命。目前国内关于奥克巴胺的检测标准仅有GB 5009.208-2016《食品安全国家标准 食品中生物胺的测定》,其仅适用于酒类、调味品、水产品以及肉类,不包含柑橘类水果及其制品等植物源性食品,我国尚无适用植物源性食品中奥克巴胺检测的国家标准,无法满足大型赛事食源性兴奋剂防控及日常监管需求。为避免食用含奥克巴胺浓度较高的柑橘类水果及制品、保健食品或膳食补充剂给运动员带来兴奋剂检出风险,降低对人民群众身体健康的不良影响,北京市食品检验研究院制定了BJS202211《植物源性食品中奥克巴胺的检测》方法。二、在食品监管实际中的应用BJS202211《植物源性食品中奥克巴胺的检测》适用于柑橘类(柑橘、橙子、柚子)及其制品(橘子汁、橙子汁、柚子汁)中奥克巴胺含量的测定,可用于柑橘等植物源性食品中奥克巴胺分布情况、本底含量等情况的系统调研活动,用以在大型赛事过程中加强柑橘类及果汁制品中奥克巴胺的内部控制。该检测方法的制定可为食品安全监管提供技术支撑,对减少运动员兴奋剂检出风险具有重要意义。三、先进性和创新性本次是对《植物源性食品中奥克巴胺的检测 液相色谱-串联质谱法》的首次制定。试样中的奥克巴胺经1%甲酸50%乙腈溶液提取、固相萃取净化后,采用液相色谱-串联质谱仪进行分离和测定,内标法定量。由于食品基质中组分复杂,本方法引用了内标,可使基质效应得以矫正,使其具有更好的适用性,从而极大提高分析结果的准确度、精密度和方法的可靠性。使用的液相色谱-质谱联用技术是近年来广泛使用的检测技术,由于其准确、高效和高灵敏度,符合目前食品安全检测所追求的快速高效的要求。该方法填补了奥克巴胺在植物源食品中无检测方法标准的空白,对柑橘及其制品中奥克巴胺含量的检测,可以建立奥克巴胺的防控规范,避免运动员的误食风险,为供赛食品供应渠道把关筛选工作提供了技术支撑,为大型体育赛事供应食品食源性兴奋剂防控工作提供了技术手段。四、操作注意事项实验操作中需要注意的要点如下:1.称取样品后加入内标,再进行提取净化操作,在前处理步骤之前加入内标可以更好地校正前处理带来的目标物损失;2.由于内标离子(139.193.1)对附近存在较强的基质干扰,在选择色谱柱及流动相条件时,应着重考察此内容;3.试样中奥克巴胺的测定值超曲线范围时,须重新进行测定,建议适量减少称样量,并通过增加提取液、复溶液体积等方式,对样品进行重新测定。在此过程中,要注意对稀释倍数进行准确的计算,使最终溶液中内标含量与标准溶液上样浓度保持一致,使其上机浓度在线性范围内再进行定量。
  • 蜂蜜打假有利器——Copure蜂蜜检测专用柱
    蜂蜜打假有利器——Copure蜂蜜检测专用柱 蜂蜜的主要成分为果糖、葡萄糖和水。目前市场出现的假蜂蜜中常常添加大量糖浆,含有较多寡糖成分。通过检测蜂蜜样品中的是否出现寡糖,能快速、可靠地鉴别常规掺假蜂蜜。一、实验目的本实验以固相萃取法对市售蜂蜜进行样品前处理,联合薄层色谱,检测蜂蜜中的寡糖成分,以此鉴定蜂蜜是否掺假。该方法可准确鉴别常规掺假蜂蜜,简单可靠,并能减少有机溶剂的使用量。二、实验目标物寡糖。三、参考标准《中华人民共和国药典2015版一部蜂蜜》。四、实验材料Biocomma? CopureTM蜂蜜检测专用柱。蜂蜜样品4份,分别购自深圳不同超市。五、实验方法1.样品处理取样品 2 g,置烧杯中,加入10 mL水彻底溶解。2、SPE柱净化(1)活化:25 mL水,过柱速度1秒/滴。(2)上样和洗脱:当液面到达柱面上2 mm,在真空泵的吸引下,使溶液通过柱子,待液面下降到柱面以上2 mm时 ,用7%乙醇25 mL淋洗,弃去淋洗液。再用50%乙醇10 mL洗脱,收集洗脱液。(3)重新溶解:置65 ℃水浴中减压浓缩至干,残渣加30 %乙醇1 mL使之溶解,作为供试品溶液。3、薄层色谱条件薄层板:硅胶G 薄层板展开剂:正丙醇-水-三乙胺(60 : 30 : 0.7)点样量:3 uL显色剂:苯胺-二苯胺-磷酸的混合溶液(取二苯胺l g,苯胺1 mL,磷酸5 mL,加丙醇至50mL,混匀)显色方法:喷以显色剂,105 ℃加热至斑点显色清晰,在日光下检视。供试品色谱中,在与对照品相应位置的下方,应不得显斑点。六、实验结果对4种不同来源的蜂蜜进行检测,结果表明,4号种蜂蜜Rf低于麦芽五糖迁移位置,表明该蜂蜜中含有掺假糖浆,为假蜂蜜。 注:1、2、3号为真蜂蜜,Rf大于0.35,4号为假蜂蜜,Rf小于0.35。综合表明,该方法及材料能够准确鉴别真假蜂蜜。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制