当前位置: 仪器信息网 > 行业主题 > >

丹酚酸单甲酯

仪器信息网丹酚酸单甲酯专题为您提供2024年最新丹酚酸单甲酯价格报价、厂家品牌的相关信息, 包括丹酚酸单甲酯参数、型号等,不管是国产,还是进口品牌的丹酚酸单甲酯您都可以在这里找到。 除此之外,仪器信息网还免费为您整合丹酚酸单甲酯相关的耗材配件、试剂标物,还有丹酚酸单甲酯相关的最新资讯、资料,以及丹酚酸单甲酯相关的解决方案。

丹酚酸单甲酯相关的资讯

  • 【新案例】重氮乙酸乙酯微反应连续流新工艺
    重氮乙酸乙酯是重要的合成片段,在有机合成中具有非常重要的作用,主要应用在C-H键的插入反应和不饱和键上的环化反应。 重氮乙酸乙酯在路易斯酸催化剂的存在下,与醛发生的C-H键插入反应具有十分重要的应用价值,因为产物 β-酮酸乙酯是多种原料药的中间体。 重氮乙酸乙酯试剂在加热情况下会引起分解和爆炸,还会自动分解出有毒物质,储存和运输都需要特别注意。 目前重氮乙酸乙酯的生产主要采用间歇釜式滴加工艺,即向釜内反应体系滴入亚硝酸钠水溶液,由于该滴加过程伴随着剧烈的热量释放,若不能及时有效地移走这些热量,将会造成局部飙温,导致产物分解,严重时甚至引起安全事故。 与传统釜式反应器相比,微通道反应器 面积/体积比提高了上千倍,反应传热快速且稳定,避免局部温度过高造成爆炸。 此外,由于采用连续化操作方式,生成的产物能够及时移出反应器进行冷却处理,从而最大限度地避免产物分解。 本文将向读者介绍今年6月份常州大学张跃教授研究团队发表在《现代化工》上的“重氮乙酸乙酯的连续合成工艺研究”研究成果。 该研究以甘氨酸乙酯盐酸盐和亚硝酸钠、硫酸为原料,合成重氮乙酸乙酯,采用微通道连续流反应器系统研究重氮乙酸乙酯的连续合成工艺。该工艺提高了产品收率并具有系统结构简单、操作简便、安全性高、易于自动化控制等优点。 研究介绍 一、微通道反应器模块结构通道反应系统由一系列特定的模块以及连接件组成,通过微通道模块、连接配件、物料输送装置的组合,形成适用于本反应的反应器系统。二、实验步骤1. 在室温下,将甘氨酸乙酯盐酸盐溶于定量的水记为原料1。2. 按照物料配比将亚硝酸钠溶于水记为原料2。3. 再按照物料配比将浓硫酸配制成5% 硫酸记为原料3。4. 在进行实验前将原料1和原料3混合在一起记为混合原料,待换热器系统温度稳定后,混合原料与原料2分别通过质量计量泵进入预冷模片,在2股物料分别充分预冷后,进入反应区中进行重氮化反应。5. 产物从出口连续出料,系统运行稳定后取样进行分析检测。反应装置及流程如图2所示。三、反应条件研究 研究者对重氮乙酸乙酯的微通道连续合成工艺多个影响因素进行了考察,探究亚硝酸钠用量、反应温度、酸用量和停留时间对反应的影响,研究过程分别如下图。最终研究者获得了该合成工艺的最佳条件:取用 n(甘氨酸乙酯盐酸盐):n(亚硝酸钠):n(5%硫酸) = 1 : 1.1 : 2,反应停留时间120 s,反应体系温度为10℃,此时收率可达92.8%。结果讨论与小结 研究者成功应用微通道反应器进行重氮乙酸乙酯的合成,大大缩短了反应时间,扩大工艺条件选择区间,实现对重氮化反应的有效控制,增加了安全系数,提高了反应效率并得到较高的收率 从乙酸乙酯的重氮化反应工艺研究过程来看,连续流技术充分发挥了其技术优势 连续流微反应器持液量小、高效的传热传质特点,保证了反应快速平稳的进行及反应安全性 康宁反应器无缝放大的优势为后续工业化应用提供了研究基础 该工艺可以实现重氮乙酸乙酯的连续化生产,为在其它反应中该产物现制现用提供了可能性,降低了储存和运输的安全风险 参考文献[1]岳家委,辜顺林,刘建武,朱佳慧,李孟金,张跃,严生虎.重氮乙酸乙酯的连续合成工艺研究[J].现代化工,2021,41(06):205-208.
  • 国家标准化管理委员会关于开展2023年《食品添加剂 三聚甘油单硬脂酸酯》等强制性国家标准复审工作的通知
    国家发展改革委、教育部、工业和信息化部、公安部、民政部、自然资源部、生态环境部、住房城乡建设部、农业农村部、国家卫生健康委、应急管理部、国家林草局、国家疾控局、国家矿山安监局、国家药监局办公厅(办公室、综合司):为规范强制性国家标准管理,有序推进强制性国家标准复审工作,推动标准复审常态化和制度化,依据《标准化法》和《强制性国家标准管理办法》(以下简称《管理办法》)有关要求,开展2023年强制性国家标准复审工作,有关事项通知如下:一、复审标准范围截至2023年底,实施满5年或距上次复审满5年的强制性国家标准,纳入本次复审范围,已提出修订项目或已列入修订计划的除外,拟开展复审的标准清单见附件1。未列入附件1中的标准也可根据需要纳入复审范围。二、标准复审内容根据《标准化法》及《管理办法》相关规定,从标准的适用性、规范性、时效性和协调性等方面进行复审,复审内容主要包括以下方面:(一)标准的适用性。标准涉及的产品、过程或服务是否已被淘汰,已被淘汰的,应给出“废止”的结论。标准的适用范围是否详细具体,能够覆盖新产品、新工艺、新技术或新服务,适用范围不够具体或不能覆盖新情况的,应给出“修订”的结论。标准规定的内容是否符合强制性标准的制定范围,属于超范围制定的,应给出“修订”(修订转化为推荐性国家标准)或“废止”的结论。(二)标准的规范性。标准技术内容是否可验证、可操作,若技术内容存在不可验证、不可操作的情况,或者标准中未规定证实方法,应给出“修订”的结论。标准是否为全文强制,若标准为条文强制,应给出“修订”的结论。(三)标准的时效性。与产业发展实际水平和健康、安全、环保最新需求相比,标准技术指标及要求是否需要提升,若因标准的指标缺失或要求过低可能导致安全事故或存在较大安全风险,应给出“修订”的结论。与国际国外最新技术法规或标准相比,是否与国际标准或法规主要技术指标一致,若不一致,原则上应给出“修订”的结论。标准的规范性引用文件是否现行有效,若引用的标准已废止或注日期引用的标准已更新,应给出“修订”的结论。(四)标准的协调性。如出现标准与现行相关法律法规、部门规章、其他强制性国家标准或国家产业政策不协调、不一致的情况,应给出“修订”的结论。三、标准复审工作安排标准复审工作分三个阶段开展:(一)第一阶段:工作组复审阶段。组织起草部门可成立复审工作组或委托有关全国专业标准化技术委员会成立复审工作组,开展强制性国家标准复审工作。复审工作组针对附件1中的具体标准,依据标准复审内容,通过问卷调查、标准实施情况统计分析、企业调研、专家论证等方式,开展标准复审,形成每一项标准的《强制性国家标准复审工作报告》(附件2)。(二)第二阶段:专家论证阶段。组织起草部门组织召开专家论证会,对复审工作组形成的《强制性国家标准复审工作报告》进行论证,给出最终的复审结论。(三)第三阶段:材料报送阶段。组织起草部门于2023年11月30日前,将《强制性国家标准复审结论汇总表》(附件3)和各项标准的《强制性国家标准复审工作报告》报送国家标准委。同时,在强制性国家标准制修订子系统中填报各标准的复审信息和报告。四、复审结论的处理国家标准委对组织起草部门报送的复审结论审核后,按照复审结论类别进行分类处理,具体如下:1. 复审结论为“废止”的标准,将通过全国标准信息公共服务平台向社会公开征求意见,并以书面形式征求该强制性国家标准的实施监督管理部门意见。无重大分歧意见或者经协调一致的,我委将以公告形式废止该强制性国家标准。2. 复审结论为“修订”的标准,组织起草部门应在报送复审结论时同步提出修订项目。国家标准委将按照强制性国家标准的立项程序进行办理。3. 复审结论为“继续有效”的标准,将通过全国标准信息公共服务平台向社会告知标准的复审时间。联系人:市场监管总局标准技术司 付允 陈如意联系方式:010-82262614,010-82262616邮箱:chenruyi@samr.gov.cn国家标准技术审评中心 叶子青联系方式:010-65007855邮箱:yezq@ncse.ac.cn附件:1. 2023年复审标准清单2. 强制性国家标准复审工作报告3. 强制性国家标准复审结论汇总表国家标准化管理委员会2023年8月3日(此件公开发布)附件下载国标委发〔2023〕40号-2023年强标复审通知-附件.doc相关标准如下:序号标准编号标准名称主管部门1GB 13510-1992食品添加剂 三聚甘油单硬脂酸酯国家卫生健康委2GB 14891.1-1997辐照熟畜禽肉类卫生标准国家卫生健康委3GB 14891.3-1997辐照干果果脯类卫生标准国家卫生健康委4GB 14891.4-1997辐照香辛料类卫生标准国家卫生健康委5GB 14891.5-1997辐照新鲜水果、蔬菜类卫生标准国家卫生健康委6GB 14891.7-1997辐照冷冻包装畜禽肉类卫生标准国家卫生健康委7GB 14891.8-1997辐照豆类、谷类及其制品卫生标准国家卫生健康委8GB 1986-2007食品添加剂 单、双硬脂酸甘油酯国家卫生健康委9GB 1253-2007工作基准试剂 氯化钠工业和信息化部10GB 1254-2007工作基准试剂 草酸钠工业和信息化部11GB 1257-2007工作基准试剂 邻苯二甲酸氢钾工业和信息化部12GB 12593-2007工作基准试剂 乙二胺四乙酸二钠工业和信息化部13GB 13735-2017聚乙烯吹塑农用地面覆盖薄膜工业和信息化部14GB 15346-2012化学试剂 包装及标志工业和信息化部15GB 19105-2003过氧乙酸包装要求工业和信息化部16GB 19107-2003次氯酸钠溶液包装要求工业和信息化部17GB 19109-2003次氯酸钙包装要求工业和信息化部18GB 21178-2007自反应物质和有机过氧化物分类程序工业和信息化部19GB 28670-2012制药机械(设备)实施药品生产质量管理规范的通则工业和信息化部20GB 21175-2007危险货物分类定级基本程序国家标准委21GB 28932-2012中小学校传染病预防控制工作管理规范国家疾控局22GB 15213-2016医用电子加速器 性能和试验方法国家药监局23GB 2024-2016针灸针国家药监局24GB 9706.14-1997医用电气设备 第二部分:X射线设备附属设备安全专用要求国家药监局25GB 9706.21-2003医用电气设备 第2部分:用于放射治疗与患者接触且具有电气连接辐射探测器的剂量计的安全专用要求国家药监局26GB 11767-2003茶树种苗农业农村部27GB 13078-2017饲料卫生标准农业农村部28GB 18133-2012马铃薯种薯农业农村部29GB 19169-2003黑木耳菌种农业农村部30GB 19170-2003香菇菌种农业农村部31GB 19171-2003双孢蘑菇菌种农业农村部32GB 19172-2003平菇菌种农业农村部33GB 20802-2017饲料添加剂 蛋氨酸铜络(螯)合物农业农村部34GB 21034-2017饲料添加剂 蛋氨酸羟基类似物钙盐农业农村部35GB 21694-2017饲料添加剂 蛋氨酸锌络(螯)合物农业农村部36GB 22489-2017饲料添加剂 蛋氨酸锰络(螯)合物农业农村部37GB 22548-2017饲料添加剂 磷酸二氢钙农业农村部38GB 22549-2017饲料添加剂 磷酸氢钙农业农村部39GB 23386-2017饲料添加剂 维生素A棕榈酸酯(粉)农业农村部40GB 29382-2012硝磺草酮原药农业农村部41GB 29384-2012乙酰甲胺磷原药农业农村部42GB 34456-2017饲料添加剂 磷酸二氢钠农业农村部43GB 34457-2017饲料添加剂 磷酸三钙农业农村部44GB 34458-2017饲料添加剂 磷酸氢二钾农业农村部45GB 34459-2017饲料添加剂 硫酸铜农业农村部46GB 34460-2017饲料添加剂 L-抗坏血酸钠农业农村部47GB 34461-2017饲料添加剂 L-肉碱农业农村部48GB 34462-2017饲料添加剂 氯化胆碱农业农村部49GB 34463-2017饲料添加剂 L-抗坏血酸钙农业农村部50GB 34464-2017饲料添加剂 二甲基嘧啶醇亚硫酸甲萘醌农业农村部51GB 34465-2017饲料添加剂 硫酸亚铁农业农村部52GB 34466-2017饲料添加剂 L-赖氨酸盐酸盐农业农村部53GB 34467-2017饲料添加剂 柠檬酸钙农业农村部54GB 34468-2017饲料添加剂 硫酸锰农业农村部55GB 34469-2017饲料添加剂 β-胡萝卜素(化学合成)农业农村部56GB 34470-2017饲料添加剂 磷酸二氢钾农业农村部57GB 6141-2008豆科草种子质量分级农业农村部58GB 7293-2017饲料添加剂 DL-α-生育酚乙酸酯(粉)农业农村部59GB 7294-2017饲料添加剂 亚硫酸氢钠甲萘醌(维生素K3)农业农村部60GB 7298-2017饲料添加剂 维生素B6(盐酸吡哆醇)农业农村部61GB 7300-2017饲料添加剂 烟酸农业农村部62GB 7301-2017饲料添加剂 烟酰胺农业农村部63GB 9454-2017饲料添加剂 DL-α-生育酚乙酸酯农业农村部64GB 9840-2017饲料添加剂 维生素D3(微粒)农业农村部65GB 9847-2003苹果苗木农业农村部66GB 13458-2013合成氨工业水污染物排放标准生态环境部67GB 19430-2013柠檬酸工业水污染物排放标准生态环境部68GB 21523-2008杂环类农药工业水污染物排放标准生态环境部69GB 21903-2008发酵类制药工业水污染物排放标准生态环境部70GB 21904-2008化学合成类制药工业水污染物排放标准生态环境部71GB 21905-2008提取类制药工业水污染物排放标准生态环境部72GB 21906-2008中药类制药工业水污染物排放标准生态环境部73GB 21907-2008生物工程类制药工业水污染物排放标准生态环境部74GB 21908-2008混装制剂类制药工业水污染物排放标准生态环境部75GB 21909-2008制糖工业水污染物排放标准生态环境部76GB 3544-2008制浆造纸工业水污染物排放标准生态环境部
  • 科学家利用冷冻电镜图估算蛋白质中氨基酸残基质量
    美国普渡大学Daisuke Kihara课题组的最新研究利用冷冻电镜图完成了对蛋白质模型中残基局部质量的估计。相关论文8月11日发表于《自然—方法学》。  研究人员研发了一种方法,可识别冷冻电镜图中氨基酸残基的潜在错误分配,包括沿其他正确主链轨迹的残基移位。该算法名为DAQ,可计算局部密度对应于不同氨基酸、原子和二级结构的可能性,通过深度学习评估蛋白质结构模型中氨基酸分配与该算法评估的一致性。当DAQ应用于蛋白质数据库中源自相同密度图的不同模型结构时,在较新版本的模型中观察到DAQ得分明显提高。DAQ还可以在冷冻电镜图的大量沉积蛋白质结构模型中发现潜在的错误分配。  相关论文信息:DOI:10.1038/s41592-022-01574-4
  • 逆境之战:调控钾/氮协同转运分子机制被发现
    近几年以来,中国在植物学领域实现了质的飞跃,其植物学研究成果占到了全球的20%以上,随着国家对于基础科学研究的重视,一大批优秀的成果脱颖而出。本期介绍的这篇论文就是重要代表之一。中国农业大学武维华院士/王毅教授课题组、李继刚教授课题组和德国明斯特大学J?rg Kudla教授课题组合作完成了拟南芥转录因子MYB59调控低钾条件下K+/NO3-转运的分子机制研究。2019年2月,Plant Cell在线发表了题为“The tranion factor MYB59 regulates K+/NO3-translocation in the Arabidopsis response to low K+stress”的研究论文。该研究揭示了拟南芥转录因子MYB59应答养分胁迫环境,并调控钾和氮协同运输的分子机制。同时,Plant Cell编委还针对该研究内容发表了题为“It' s an uphill battle: The MYB59-NPF7.3 regulatory module and its role in nutrient transport”的专评。钾和氮是植物生长发育所必需的大量元素,直接影响植物的生长发育以及作物的产量和品质。K+在酶促反应、渗透调节、电荷平衡等方面都起着重要的作用,而N则是碳化合物的组成成分,构成了氨基酸、蛋白质、核苷酸等物质。长期的农业生产实践早已证明,按适当比例施用钾肥和氮肥可以显著提高肥料的吸收利用效率。已有的研究报道显示,钾和氮的吸收和转运是协同进行的,但其分子调控机制仍不明确。课题组实验室前期研究发现,拟南芥硝酸根转运体NRT1.5不仅负责NO3-从根向冠的转运,同时还影响K+从根部向冠部的运输过程。因此,NRT1.5很可能是钾和氮协同运输的重要组分。已有研究表明钾缺乏抑制NRT1.5的转录,说明NRT1.5的转录能够响应环境中钾浓度变化,但低钾抑制NRT1.5转录的调控机制尚属未知。本论文工作证明了MYB59是NRT1.5的正向转录调控因子,低钾可通过抑制MYB59的转录及促进MYB59蛋白的降解进而抑制NRT1.5的转录,最终调节拟南芥中钾和氮的协同转运过程。通过表型筛选获得一个拟南芥低钾敏感突变体lks3。离子含量测定结果显示,低钾条件下MYB59突变体的根部积累了更多的K+和NO3-,而冠部的K+和NO3-含量降低,说明MYB59调控K+和NO3-从根向冠的转运过程。实验结果还表明,低钾处理可以同时抑制MYB59及NRT1.5的转录水平。而半体内蛋白降解实验结果表明,低钾处理后MYB59.3蛋白被快速降解。本论文研究结果表明,MYB59是NRT1.5的正向转录调节因子。在正常钾条件下,MYB59促进NRT1.5的转录,进而促进拟南芥中K+和NO3-从根向冠的协同运输过程。低钾胁迫时,MYB59的转录水平和蛋白水平均被下调,结果使NRT1.5的转录被抑制,K+和NO3-从根向冠的协同转运也随之受抑。论文研究工作证明了MYB59和NRT1.5这一转录调控通路在植物响应环境钾亏缺、调控钾/氮协同转运及根冠分配方面有重要作用。 拟南芥通过MYB59-NPF7.3调控机制应答和调节外部K+/NO3-水平在该研究论文中,86Rb+ 吸收实验被用来分析K+的吸收,86Rb+ 同位素作为示踪剂被珀金埃尔默的MicroBeta液闪仪定量检测,珀金埃尔默助力中国科学家取得更大成绩。文章链接1.http://www.plantcell.org/content/early/2019/02/13/tpc.18.006742.http://www.plantcell.org/content/early/2019/02/13/tpc.19.00032关于珀金埃尔默:珀金埃尔默致力于为创建更健康的世界而持续创新。我们为诊断、生命科学、食品及应用市场推出独特的解决方案,助力科学家、研究人员和临床医生解决最棘手的科学和医疗难题。凭借深厚的市场了解和技术专长,我们助力客户更早地获得更准确的洞见。在全球,我们拥有12500名专业技术人员,服务于150多个国家,时刻专注于帮助客户打造更健康的家庭,改善人类生活质量。2018年,珀金埃尔默年营收达到约28亿美元,为标准普尔500指数中的一员,纽交所上市代号1-877-PKI-NYSE。了解更多有关珀金埃尔默的信息,请访问www.perkinelmer.com.cn。
  • 日立LA8080蛋白水解法&生理体液法分析氨基酸
    氨基酸是组成生物体中蛋白质的基本单元,主要以下列两种形式存在:一种是以结合态存在于肽和蛋白质中,被称为标准氨基酸,这类氨基酸约有20种,分析这类氨基酸的方法被称为“蛋白水解法(标准分析法)”;另一种是以游离态存在于生理体液(如血浆,尿液等)、食品(如肉制品,饮料等)中,这些氨基酸包含氨基酸代谢物和前体,被称为游离氨基酸,因其直接影响食品的口感与风味,近年来备受关注。游离氨基酸比标准氨基酸的种类丰富,至今已知主要有约40种,分析这类氨基酸的方法被称为“生理体液法”。高效液相色谱柱后衍生法是氨基酸分析最常用的方法,一般通过色谱柱分离后,进行柱后衍生再测定。茚三酮柱后衍生法是通过离子交换色谱柱分离氨基酸后,与茚三酮试剂混合发生化学反应(显色),可在可见光区进行检测,此方法可靠性与稳定性高,被广泛应用。下面使用日立全自动氨基酸分析仪LA8080,分别采用蛋白水解法&生理体液法测定样品中的标准氨基酸和多种游离氨基酸。缓冲液和衍生试剂可使用市售配件,适用于品质管理等常规分析。蛋白水解(PH)法日立全自动氨基酸分析仪LA8080采用长寿命高理论塔板数3 μm分离柱,可在30 min内实现标准氨基酸分离度全部大于1.2分离。并且通过调整洗脱程序,还可把分析时间从30 min更进一步缩短到24 min,实现氨基酸的超高速分析。生理体液(PF)法日立全自动氨基酸分析仪LA8080采用第三代衍生技术—TDE3,填充高效热传导材料,提高传热效率,检出限进一步提高到2.5 pmol,使用寿命是第二代的2.5倍。从上述结果中可见,对于复杂的生理体液,LA8080仍然能够实现高灵敏度和分离度的检测。日立全自动氨基酸分析仪LA8080采用日立独家的长寿命高灵敏度的第三代TDE3尖端衍生技术,以及长寿命高理论塔板数3 μm分离柱使氨基酸的分析进入超高速全自动分析的时代。
  • 喜讯 |首批水杨酸氨氮的CCEP认证花落朗石
    近日,首批由中环协(北京)认证中心颁发的氨氮在线监测仪(水杨酸法)《中国环境保护产品认证证书》(即CCEP证书)花落朗石。又一次的权威认可不仅是朗石实力的有力证明,也是给朗石客户的“定心丸”——行业先进的朗石产品将持续为您想要的稳定、准确的监测保驾护航。朗石氨氮在线监测仪(水杨酸法)朗石氨氮水质自动在线监测仪(水杨酸法)是朗石独立创新研发的,采用国家标准方法《水杨酸分光光度法》的检测原理,结合双光路检测技术,适用于地表水(河流、湖泊、水库)、饮用水源地以及自来水管网等,能快速、准确、简单、经济地测定水质中氨氮的浓度。
  • 沃特世7月26日“胆汁酸-肠道菌群互作在肝病中的发现与应用”网络讲座即将启动
    日期: 2018年7月26日时间: 14:00 – 16:00地点: 网络讲座语言: 简体中文 胆汁酸代谢的调控是肝细胞的主要功能之一。在各种理化因素所导致的肝损伤模型中,胆汁酸代谢异常是肝脏病变的基本特征。胆汁酸由胆固醇为原料在肝细胞中合成产生,合成后的胆汁酸与甘氨酸或牛磺酸结合,形成结合型胆汁酸并分泌在胆囊中储存。 现代研究表明,胆汁酸还是重要的信号调节分子,游离型和结合型胆汁酸可以激动转录因子Farnesoid X receptor(FXR),而FXR不仅对胆汁酸的合成、分泌与转运具有重要的调节作用,而且在糖、脂和能量代谢调节中扮演重要角色。 本讲座将详细阐述胆汁酸的肝肠循环,以肝炎、肝纤维化、肝硬化和肝癌为例论述血清胆汁酸的显著提高与人的肝脏疾病直接相关,最后以胆汁酸-肠道菌群之间对话出错导致肝癌的发生作综述。 讲座概要: 1.详细阐述胆汁酸的肝肠循环2.论述血清胆汁酸的显著提高与人类肝脏疾病的直接关系3.综述胆汁酸-肠道菌群之间对话出错可导致肝癌的发生 主讲者:王洋 博士(麦特绘谱生物科技(上海)有限公司技术支持) 毕业后就职于麦特绘谱(上海)科技有限公司,致力于开发和推广代谢组学技术方法(LC-MS/MS、 GC-TOF/MS),精通代谢组学技术在生物医药领域尤其是肝病研究及中医药研究中的应用,在代谢组学科研课题和项目设计上实战经验丰富,多次协助客户成功申请国家及地方的基金。 登录沃特世官网并搜索“胆汁酸-肠道菌群互作在肝病中的发现与应用”即可进行注册报名。 此网络讲座免费报名参加。您只需要使用一台链接网络的电脑即可参加。收到您的注册信息后我们会筛选并在讲座前通过电子邮件给您发送讲座登录链接。为了确保您成功接收邮件,请尽量避免使用网易邮箱(163.com&126.com)注册,谢谢!
  • 凯氏定氮法检测脱脂奶粉中蛋白质的含量
    蛋白质是复杂的含氮有机化合物,分子量很大,大部分高达数万至数百万,分子的长链从数纳米至100nm,它们由20种氨基酸通过酰胺键以一定的方式结合,并具有一定的空间结构,所含的主要化学元素为C、H、O、N,在某些蛋白质中还含有P、Cu、Fe、I等元素,但氮的相对丰度基本稳定,是区别于其它有机化合物的主要标志。不同蛋白质的氨基酸构成比例及方式不同,所以各种蛋白质其含氮量也不同。一般蛋白质含氮量平均为16%,即1份氮素相当于6.25份蛋白质,此即蛋白质系数。 意大利VELP凯氏定氮仪在环保节能方面具有性能, 的蒸汽发生器和钛冷凝器,蒸馏滴定同步进行,分析速度快,冷却水用量仅0.5升/分钟,降低能耗从而节约了成本。因此该仪器被广泛应用于各类蛋白质检测的实验研究。 测定脱脂奶粉中蛋白质的含量,对掌握其营养价值和品质的变化,保障人体健康,合理配料,为乳制品深加工提供数据十分重要,此外,蛋白质分解产物对乳制品的色、香、味都有一定作用,所以测定具有深远意义。
  • Science重磅:纳米孔直接测序蛋白质,精度高达100%,还可识别氨基酸修饰
    蛋白质是构成生物体的主要成分,同时也是生命活动的主要承担者。具有生物学功能的蛋白质往往具有特定的空间结构,而蛋白质结构在多个层级上被定义,其中一级结构,即氨基酸的种类和排列,最为重要,它可以决定蛋白质的高级结构。但一直以来,想要直接读取蛋白质的一级结构是十分困难的,在大多数情况下,科学家们会根据基因序列和氨基酸密码子表来“破译”蛋白质的氨基酸序列。然而,由于转录后修饰和翻译后修饰的存在,破译结果并非完全正确,甚至与真实的氨基酸序列有很大差异。2021年11月4日,荷兰代尔夫特理工大学的研究人员在 Science 期刊上发表了题为:Multiple rereads of single proteins at single–amino acid resolution using nanopores(利用纳米孔在单氨基酸分辨率下对单蛋白质进行多次重读)的研究论文。该研究利用纳米孔测序技术成功扫描并读取单个蛋白质的氨基酸序列:线性化的DNA-肽复合物缓慢通过一个微小的纳米孔,根据电流的变化和强度,研究人员就能读取相关的蛋白质信息内容,直接对蛋白质的氨基酸序列进行测序。蛋白质是生命活动的主要承担者。事实上,所有生物的蛋白质都是由大约20种不同的氨基酸组成的长肽链,就像项链上有不同种类的珠子一样。遗憾的是,目前的蛋白质测序方法价格昂贵,而且不能检测许多稀有蛋白质。近年来发展起来的纳米孔测序技术,已经能够直接扫描和排序单个DNA分子。如今,这篇发表在Science 上的研究表明,我们完全可以以类似于DNA纳米孔测序的方式直接读取蛋白质的氨基酸序列。本研究的通讯作者 Cees Dekker 教授表示:在过去的30年里,基于纳米孔的DNA测序已经从一个想法发展成为一个实际的工作设备,并成功开发了商业化的便携式纳米孔测序仪,服务于价值数十亿美元的基因组测序市场。在我们的论文中,我们将纳米孔的概念扩展到单个蛋白质的读取。这可能会对基础蛋白质研究和医学诊断产生重大影响。牛津纳米孔开发的纳米孔基因测序仪直接读取氨基酸序列对于如何利用纳米孔读取肽链中的单个氨基酸的特征,这篇论文的第一作者 Henry Brinkerhoff 博士打了一个形象的比喻:“想象一下,一个肽链中的氨基酸链就像一条项链,上面有不同大小的珠子。然后,你打开水龙头,慢慢地把项链送入下水道,也就是纳米孔。如果在某个时间点是一颗大珠子,它会堵塞下水道,那里面的水也就成了涓涓细流。相反,如果是一颗小珠子,那么下水道剩余的空隙就会比较大,水流也更大。”用纳米孔肽阅读器直接读取氨基酸序列因此,通过这项技术,研究人员可以非常精确地测量纳米孔的电流大小,并以此推测相应的氨基酸种类。更关键的是,这个过程并不会影响肽链的完整性,因此我们能够一次又一次地读取单个肽链,然后对所有数据进行拟合,从而以基本上100%的准确率获得肽链的序列组成。解旋酶(红色)拖动连接了多肽(紫色)的 DNA 分子(黄色),使其缓慢通过纳米孔(绿色),从而通过读取电信号(橙色高亮)表征多肽的氨基酸序列。条形码般的识别精度为了进一步验证这项技术的准确性,研究人员改变了肽链的某个氨基酸,然后能够检测到显著差异的电信号,表明该技术是极其灵敏的。事实上,这项新技术在识别单个蛋白质和绘制它们之间的细微变化方面非常强大,打个形象的比方——就像超市的收银员通过扫描条形码来识别每个产品一样。这也可能为未来的蛋白质从头测序提供新的途径。纳米孔肽阅读器可以区分单氨基酸替代的单肽Henry Brinkerhoff 博士表示:这项方法可能为未来蛋白质测序奠定基础,但就目前来说,蛋白的从头测序仍然是一个巨大的挑战。我们仍然需要大量描述来自不同序列的电信号,以便创建一个对应电信号和蛋白质序列的“密码表”。但即便如此,该研究已经能够成功分辨蛋白质序列中的单个氨基酸的改变,这无疑是一项重大进步,也将产生许多直接应用。看见生物学的“暗物质”https://www.science.org/doi/10.1126/science.abl4381
  • 单颗粒ICP-MS助力复合氧化物铁酸锰(MnFe₂O₄) 纳米材料诱导番茄提早开花的分子机制研究
    原创 飞飞 赛默飞色谱与质谱中国关注我们,更多干货和惊喜好礼 刘莉ENMs 在农业生产中,开花时间直接控制着果实数量和质量,提早开花通常伴随着高授粉率,意味着营养周期更短,可以最大限度地减少非生物迫害(例如气候变化与干旱)对农业生产的不利影响。如何控制开花时间也被认为是“植物科学的100个重要问题”之一。人工纳米材料(ENMs)在提高农业生产方面显现出巨大潜力。ENMs的小尺寸效应能使它们跨越生物屏障(植物气孔大小约为10~100μm),通过叶面或根部扩散至植物脉管系统,从而提高作物水分利用、增加养分吸收、诱导抗氧化、增强光合作用和促进开花等代谢过程,最终显著提升农业生产力。目前已陆续有文章报道了ENMs对高等植物生殖生长,包括开花过程的影响,然而ENMs诱导作物生殖生长改变的机制,尤其是初始植物激素的信号传送和代谢机制仍不清楚。江南大学环境与土木工程学院Le Yue,Yan Feng等以复合铁酸锰(MnFe2O4)ENMs和番茄作为研究对象,围绕 ①MnFe2O4 ENMs进入番茄叶片并促进光合电子传递的潜力;② MnFe2O4 ENMs对赤霉素(GA)的调节作用和对开花基因表达的诱导作用;③ 番茄果实产量和品质的采后变化等方面展开了深入研究,为揭示ENMs对作物生殖生长的作用机制提供了重要认知。相关研究的成果发表在ACS NANO期刊。 (点击查看大图) 01单颗粒ICP-MS的应用单颗粒ICP-MS技术是一项新兴的纳米颗粒检测技术,可以用于ENMs在植物体内的富集转化和迁移研究。相对于TEM、SEM、DLS等ENMs的传统表征手段,单颗粒ICP-MS(SP-ICP-MS)可以快速、同时获得ENMs的成分、粒径分布、颗粒浓度及离子浓度等参数信息,目前已越来越多地被应用于各种ENMs的表征研究。 (点击查看大图) 本研究使用了赛默飞iCAP TQ SP-ICP-MS分析技术,测定了叶片表面、角质层和内部叶片片段中的MnFe2O4ENMs的含量,明确了ENMs的有效接触和吸收规律;测定了番茄果实中的ENMs的含量,探究了铁(Fe)在果实中可能的存在形式。 (点击查看大图) 02番茄叶片ENMs的测定通过去离子水浸泡和涡流的方式回收叶片表面的ENMs。收集的溶液用“surface”表示,将经过水洗的叶片转移到35%(v/v)HNO3中,静置15min,以溶解角质层,收集的溶液用“cuticle”表示,剩余的叶片组织以“interior”表示。对于叶片内部,取 25 mg 的叶片组织,用去离子水清洗3次,然后在 3 mL 20mM 2-(N-吗啉代) 乙烷磺酸 (MES) 缓冲液 (pH=5.0) 中均质。随后在每份均匀混合物中加入 2 mL 5% 的离析酶 R-10,在 37 ℃ 下将混合物振荡 24 小时。沉淀 1 小时后,将上清液通过 0.45 μm 的滤膜,并用去离子水稀释。surface和cuticle溶液经0.45 μm滤膜过滤并用去离子水稀释。研究发现,经过ENMs处理的叶片中,Fe 和 Mn 的含量均明显高于未经处理的对照组(喷洒等量的去离子水)(下图a和c)。虽然在角质层的分离过程中使用 HNO3 会减少角质层溶液中的ENMs数量,但经过 MnFe2O4 ENMs处理后的叶片表面、角质层和内部的ENMs数量还是明显高于对照组(下图d),这表明 MnFe2O4 ENMs会在番茄叶片中累积。 (点击查看大图) 03番茄果实中ENMs的测定利用SP-ICP-MS 测定了番茄果实中的ENMs,发现MnFe2O4 ENMs很少能进入番茄果实,说明MnFe2O4 ENMs处理不会造成果实的健康风险。 (点击查看大图) 04结论 // 通过iCAP TQ SP-ICP-MS分析技术准确分析了番茄植株叶片和果实中的MnFe2O4ENMs含量,可为探究ENMs在植物体内的转化、迁移和富集规律提供精确的数据支撑。 参考文献:[1] Yue L, Feng Y, Ma C, et al. Molecular mechanisms of early flowering in tomatoes induced by manganese ferrite (MnFe2O4) nanomaterials[J]. ACS nano, 2022, 16(4): 5636-5646.[2] Vidmar J. Detection and characterization of metal-based nanoparticles in environmental, biological and food samples by single particle inductively coupled plasma mass spectrometry[M]//Comprehensive analytical chemistry. Elsevier, 2021, 93: 345-380.如需合作转载本文,请文末留言。
  • 莱伯泰科微波蛋白水解技术助力标准开发,开启氨基酸分析新时代!
    ‍‍‍‍‍‍‍‍‍‍在最新发布的标准方法 《NY/T3870-2021硒蛋白中硒代氨基酸的测定》中,采用了ETHOS UP微波蛋白质水解系统,HPLC-AFS法检测硒蛋白中硒代氨基酸。‍‍ETHOS UP微波蛋白质水解系统的使用,大大提高了蛋白质的水解效率,彻底改变了氨基酸分析中样品前处理的现状,开启了氨基酸分析的新时代!‍‍‍‍‍‍ 在氨基酸的测定中,提取水解技术一直是制约整个分析过程的关键环节。传统酸解法需要在烘箱中110℃水解22小时,还需要手动充氮气创造惰性环境,整个流程不但非常耗时、操作繁琐,而且研究发现,在长时间的盐酸水解过程中,多种不稳定的氨基酸,如硒代氨基酸、含硫氨基酸、色氨酸等,几乎完全被破坏。而ETHOS UP微波蛋白质水解系统的应用,将传统需要22个小时的蛋白质水解过程缩短到20-40分钟,避免了传统酸水解法水解时间长、硒代氨基酸在水解过程中不稳定的技术难题。全自动化抽真空通氮气,避免了繁琐的手动操作过程,让实验人员进一步领略到了自动化设备带来的便利。‍‍‍‍‍‍微波蛋白质水解系统‍‍‍‍ETHOS UP微波蛋白质水解系统技术特点☆ 高效微波加热方式,将传统需要22个小时的蛋白质水解过程缩短到20-40分钟,大幅提高工作效率;☆ 全自动化抽真空通氮气,确保氨基酸不会发生氧化降解,避免了繁琐的手动操作过程;☆ 高温高压单反应水解腔,一个水解腔可同时处理25个样品,确保完全一致的反应温度和压力,与传统的处理方式相比,保证样品处理的一致性;☆ 高精度的数字温度控制程序,直接控制反应液体温度,整个水解过程反应条件精确控制,标准化自动化的工作程序。改变了传统烘箱水解不能精确反应和控制样品液体温度的缺陷;☆ 样品可直接放在 HPLC样品瓶中水解,无需转移。
  • Supelco脂肪酸及脂肪酸甲酯分析产品用户回馈活动
    Supelco脂肪酸及脂肪酸甲酯分析产品促销 --为您提供一站式脂肪酸甲酯分析服务 2010年8月1日--2010年10月31日 活动规则: 1.凡在活动期间购买指定促销产品单次订单金额达10,000元,可获赠价值300元North face登山包一个或等值折扣 2.凡在活动期间购买指定促销产品单次订单金额达15,000元,可获赠价值600元伊莱克斯早餐吧一台或等值折扣 3.凡在活动期间购买指定促销产品单次订单金额达25,000元,可获赠价值1500元Ipod touch一台或等值折扣 脂肪酸/脂肪酸甲酯分析专用柱 Sigma-Aldrich/SUPELCO提供全面的脂肪酸分析气相色谱毛细管柱,满足您的各种需求。 SPTM-2560柱(强极性氰丙基硅氧烷类毛细管柱), 可最大程度地分离顺反异构脂肪酸甲酯,完全符合GB5413.27-2010,GB5413.36-2010等国标和USP G5方法,并且是AOAC方法996.06和 AOCS 方法Ce 1h-05指定用柱; SPTM-2380柱(强极性氰丙基硅氧烷类毛细管柱), 用于顺反异构、双键位置异构的脂肪酸甲酯分离,符合USP G48方法; SLB-IL100柱(强极性离子液体固定相毛细管柱), 可最大程度地分离顺反异构脂肪酸甲酯,是SP-2560和SP-2380柱的很好补充。 OmegawaxTM柱(聚乙二醇),用于不同碳链长度和不同饱和度(特别是omega-3和omega-6)的脂肪酸甲酯(FAMEs)的分离,符合USP G16方法,并且是AOAC方法991.39和 AOCS 方法Ce 1b-89指定用柱; Equity® -1柱(非极性聚二甲基硅氧烷),用于不同沸点的脂肪酸甲酯(FAMEs)分离,符合USP G1、G 2和G 9方法; NukolTM 柱(改性聚乙二醇),用于自由脂肪酸( Free Fatty Acids)的分析,符合USP G25和35方法; Discovery银离子交换SPE小柱 Discovery 银离子交换SPE小柱, 利用特有的技术将银离子(Ag+)嵌入SCX(磺酸基阳离子交换)载体上。在正相洗脱条件下,银离子(Ag+)仅对脂肪酸甲酯的双键有吸附作用,具体表现为: · 饱和的脂肪酸甲酯(无双键),不吸附,最快流出; · 顺式的双键,吸附作用比反式的强。反式的先流出,顺式的后流出; · 双键越多,吸附作用越强。双键少的先流出,双键多的后流出。 脂肪酸及脂肪酸甲酯标准品 Sigma-Aldrich/SUPELCO提供全面的脂肪酸及脂肪酸甲酯标准品, 质量保证&mdash SUPELCO品牌值得信赖,每个标准品均有分析证书(Certificate of Analysis) 品种齐全&mdash 从C 1到C 31一应俱全; 形式多样&mdash 纯品、溶液型,单标、混标全有; 特别是SUPELCO专有的37种脂肪酸甲酯混标(47885-U),涵盖了大部分常用脂肪酸甲酯标准品,完全符合国标GB5413.27-2010,深受广大用户喜爱! 衍生化反应瓶及反应加热器 反应瓶,内为锥形,容易移取微量样品,厚壁硼酸盐玻璃,配有Teflon/红橡胶垫,空心盖,可高压灭菌或离心。反应加热器,有两档温控范围可调节:室温~100℃,和75℃~ 150 ℃;有两种加热模块可选,一种是8孔的,适合3mL及5mL反应瓶;一种是12孔的,适合1mL及2mL反应瓶。衍生化试剂及衬管 衍生化试剂 Sigma-Aldich/SUPELCO 提供种类齐全的GC衍生化试剂,如:酯化试剂、硅烷化试剂、酰化试剂等。在脂肪酸的分析中,除了自由脂肪酸可以直接GC测定,其它脂肪酸必须要甲酯化之后才可以GC检测。三氟化硼甲醇溶液,就是最通用的脂肪酸甲酯化的试剂。并且大部分SUPELCO品牌的衍生化试剂,随货附有产品规格说明书,其中包括性质、特点、典型的衍生化步骤、机理、毒性、有害性和稳定性等信息,对于使用非常有帮助。 去活玻璃衬管 杯型玻璃衬管可以增加高分子量化合物在进样口的挥发,提高分辨力,降低进样口岐化。
  • 国家市场监督管理总局批准发布《氨基酸产品和添加剂预混合饲料中赖氨酸、蛋氨酸和苏氨酸含量的测定》等431项推荐性国家标准和2项国家标准修改单
    国家市场监督管理总局(国家标准化管理委员会)批准《液压传动连接 金属管接头 第1部分:24°锥形》等431项推荐性国家标准和2项国家标准修改单,现予以公告。国家市场监督管理总局 国家标准化管理委员会2023-08-06附件相关标准如下:序号标准编号及标准名称代替标准号实施日期1GB/T 20706-2023 可可粉质量要求GB/T 20706-20062024-03-012GB/T 20705-2023 可可液块及可可饼块质量要求GB/T 20705-20062024-03-013GB/T 22427.7-2023 淀粉黏度测定GB/T 22427.7-20082024-03-014GB/T 26174-2023 厨房纸巾GB/T 26174-20102024-09-015GB/T 42957-2023氨基酸产品和添加剂预混合饲料中赖氨酸、蛋氨酸和苏氨酸含量的测定2024-03-016GB/T 42762-2023 杯壶类产品通用技术要求2024-03-017GB/T 42821-2023 贝类包纳米虫病诊断方法2024-03-018GB/T 15000.5-2023 标准样品工作导则 第5部分:质量控制样品的内部研制2023-08-069GB/Z 42962-2023 产业帮扶 猪产业项目运营管理指南2023-08-0610GB/Z 42963-2023 产业帮扶 竹产业项目运营管理指南2023-08-0611GB/T 42893-2023 电子商务交易产品质量监测实施指南2023-12-0112GB/T 41247-2023 电子商务直播售货质量管理规范2023-10-0113GB/T 42958-2023 肥料产品使用说明编写指南2024-03-0114GB/T 42954-2023 肥料中植物生长调节剂的测定 气相色谱-质谱联用法2024-03-0115GB/T 42955-2023 肥料中总氮含量的测定 杜马斯燃烧法2024-03-0116GB/T 27021.12-2023 合格评定 管理体系审核认证机构要求第12部分:协作业务关系管理体系审核与认证能力要求2023-08-0617GB/T 27000-2023 合格评定 词汇和通用原则GB/T 27000-20062023-08-0618GB/T 1270-2023 化学试剂 六水合氯化钴(氯化钴)GB/T 1270-19962024-03-0119GB/T 667-2023 化学试剂 六水合硝酸锌(硝酸锌)GB/T 667-19952024-03-0120GB/T 669-2023 化学试剂 硝酸锶GB/T 669-19942024-03-0121GB/T 686-2023 化学试剂 丙酮GB/T 686-20082024-03-0122GB/T 684-2023 化学试剂 甲苯GB/T 684-19992024-03-0123GB/T 9722-2023 化学试剂 气相色谱法通则GB/T 9722-20062024-03-0124GB/T 603-2023 化学试剂 试验方法中所用制剂及制品的制备GB/T 603-20022024-03-0125GB/T 649-2023 化学试剂 溴化钾GB/T 649-19992024-03-0126GB/T 678-2023 化学试剂 乙醇(无水乙醇)GB/T 678-20022024-03-0127GB/T 26176-2023 家用和类似用途豆浆机GB/T 26176-20102024-03-0128GB/T 42812-2023 连作障碍土壤改良通用技术规范2024-03-0129GB/T 29344-2023 灵芝孢子粉采收及加工技术规范GB/T 29344-20122024-03-0130GB/T 22638.11-2023 铝箔试验方法 第11部分:力学性能的测试2024-03-0131GB/T 42916-2023 铝及铝合金产品标识2024-03-0132GB/T 22648-2023 铝塑复合软管、电池软包用铝箔GB/T 22648-20082024-03-0133GB/T 42817-2023 农产品产地土壤改良剂使用技术规范2024-03-0134GB/T 42819-2023 农产品产地重金属污染土壤钝化通用技术规程2024-03-0135GB/T 29490-2023 企业知识产权合规管理体系 要求GB/T 29490-20132024-01-0136GB/T 42936-2023 设施管理 过程管理指南2023-08-0637GB/T 42931-2023 设施管理 基准比较分析指南2023-08-0638GB/T 42935-2023 设施管理 信息化管理指南2023-08-0639GB/T 14699-2023 饲料 采样GB/T 14699.1-20052024-03-0140GB/T 42959-2023 饲料微生物检验 采样2024-03-0141GB/T 22260-2023 饲料中蛋白质同化激素的测定 液相色谱-串联质谱法GB/T 22260-20082024-03-0142GB/T 13882-2023 饲料中碘的测定GB/T 13882-20102024-03-0143GB/T 8381.3-2023 饲料中林可胺类药物的测定 液相色谱-串联质谱法GB/T 8381.3-20052024-03-0144GB/T 42956-2023饲料中泰乐菌素、泰万菌素、替米考星的测定 液相色谱-串联质谱法2024-03-0145GB/T 13883-2023 饲料中硒的测定GB/T 13883-20082024-03-0146GB/T 13093-2023 饲料中细菌总数的测定GB/T 13093-20062024-03-0147GB/T 12956-2023 卫生间配套设备要求GB/T 12956-20082024-03-0148GB/T 10510-2023 硝酸磷肥、硝酸磷钾肥GB/T 10510-20072024-03-0149GB/T 42828.1-2023 盐碱地改良通用技术 第1部分:铁尾砂改良2024-03-0150GB/T 42828.2-2023 盐碱地改良通用技术 第2部分:稻田池塘渔农改良2024-03-0151GB/T 42828.3-2023 盐碱地改良通用技术 第3部分:生物改良2024-03-0152GB/T 13217.7-2023 油墨附着力检验方法GB/T 13217.7-20092024-03-0153GB/T 42944-2023 纸、纸板和纸制品 有效回收组分的测定2024-03-0154GB/T 42945-2023 纸浆 细小纤维质量分数的测定2024-03-0155GB/T 42943-2023 纸浆模塑制品技术通则2024-03-0156GB/T 42748-2023 专利评估指引2023-09-0157GB/T 22461.1-2023 表面化学分析 词汇 第1部分:通用术语及谱学术语GB/T 22461-20082024-03-0158GB/T 27921-2023 风险管理 风险评估技术GB/T 27921-20112023-08-0659GB/T 27914-2023 风险管理 法律风险管理指南GB/T 27914-20112023-08-0660GB/T 7139-2023 塑料 氯乙烯均聚物和共聚物 氯含量的测定GB/T 7139-20022024-03-01
  • 现货!维生素B12、胆碱、丁香酚、叶酸等36项食品安全国标新发布,阿尔塔标品同步更新!
    ‍近日,国家卫生健康委、市场监管总局根据《中华人民共和国食品安全法》的规定,发布了《食品安全国家标准 食品添加剂 丁香酚》(GB1886.129-2022)等36项食品安全国家标准和3项修改单,以贯彻落实食品安全“最严谨的标准”要求。新标准将于2023年6月30日起正式实施。此次制定、修订既充分考虑了群众健康权益,也兼顾了食品产业发展需求。‍主要内容■《食品添加剂 丁香酚》(GB1886.129-2022)等11项食品添加剂质量规格标准■《食品营养强化剂 L-抗坏血酸钾》(GB1903.55-2022)等9项食品营养强化剂质量规格标准■《食品中污染物限量》(GB2762-2022)1项污染物标准■《食品中叶酸的测定》(GB5009.211-2022)等9项检验方法标准作为国内一家标准物质专业研发企业,新标准出台后,阿尔塔科技研究团队迅速响应,更新了相应的标准品及解决方案以匹配最新食品安全标准,现向广大实验室提供以下标准物质解决方案,为食品检测实验室工作顺利开展保驾护航。部分标准品信息参见表格,全部现货供应!更多产品信息请致电垂询!标准配套部分混标:
  • 丹麦禁止幼儿食品包装添加双酚A
    2010年3月30日消息,为了防止化学物质对儿童脑部发育造成的伤害,丹麦颁布了对幼儿食品包装接触材料使用双酚A(BPA)的临时禁令。   食品安全专家指出,低浓度的该物质就会影响儿童的学习能力,所以政府决定颁布该禁令,作为对0-3岁的儿童的一项预防措施。   从2010年7月1日起,凡是出售含有双酚A的婴儿奶瓶、杯子和婴儿包装食品,将被视为违法。食品和农业部门等将有3个月的时间做出相应调整。   此项国家禁令,将作为临时法令,针对3岁及以下的儿童,直到新的研究表明低剂量的双酚A对婴幼儿神经系统发育没有影响。   禁令中,不仅包括奶瓶、杯子和0到3岁食用的食品包装,还涵盖了如母乳代用品、婴幼儿混合替代用品(No 1504 2007.12.13)和婴幼儿食品制造(No 355 1998.6.17)在丹麦的市场秩序。
  • 大连化物所:基于nMS表征影响蛋白质结构的分子机制
    近日,连化物所生物分子结构表征新方法研究组(1822组)王方军研究员、刘哲益副研究员团队与西南交通大学封顺教授团队合作,利用我所自主搭建的高能紫外激光解离—串联质谱仪器,揭示了质子化氨基酸侧链的正电荷在电喷雾离子化过程中影响蛋白质结构的分子机制,为质谱精确表征蛋白质高级结构提供了参考。非变性质谱(nMS)是研究蛋白质及其复合物组成和高级结构的前沿质谱技术。在nMS分析中采用生物兼容溶液和非变性电喷雾离子化将蛋白质从液相转移至气相并保持高级结构和相互作用。然而带正电荷的质子化氨基酸侧链在失去水分子的溶剂化稳定作用后,会与空间接近的蛋白骨架羰基形成氢键,通过分子内溶剂化稳定侧链正电荷。虽然有报道通过离子迁移—质谱检测到了分子内溶剂化引起的蛋白质碰撞截面积变化,但是对其发生的具体位点和引起结构变化的区域仍然缺乏有效分析手段进行精确表征。在本工作中,研究团队利用我所自主搭建的高能紫外激光解离—串联质谱仪器和蛋白质光解离质谱数据处理软件系统,通过蛋白质紫外光解离碎片离子的价态分布和位点解离碎片产率分析,探测到肌红蛋白带电残基侧链分子内溶剂化的具体位点,以及对蛋白质结构影响的区域位置。团队系统表征了不同价态(质子化数目)下的蛋白质结构差异,发现高电荷价态下蛋白质气相结构易受分子内溶剂化效应的影响而偏离溶液态结构,低电荷蛋白质离子的气相结构更加接近溶液状态。研究团队进一步证明,冠醚18C6与蛋白质带电侧链的络合主要发生在溶液中,随后在电喷雾离子化过程中起到稳定蛋白质结构的作用。紫外激光解离质谱分析揭示冠醚主要结合在蛋白质离子的高电荷密度区域,通过阻断带电侧链的分子内溶剂化使蛋白质气相结构更加接近溶液状态。相关研究结果展示了高能紫外激光解离质谱在同时获取蛋白质序列和动态结构信息中的显著优势,为nMS表征中蛋白质溶液结构的保持和高效表征提供了重要的理论和技术参考。近年来,我所王方军和肖春雷研究员通过交叉学科联合创新攻关,在大连相干光源搭建了高能紫外激光解离—串联质谱实验线站,兼容50-150nm极紫外自由电子激光和193nm准分子激光解离模式,已在多肽(Anal. Chim. Acta,2021)、蛋白质(Cell Chem. Biol.,2022)、金属团簇(J. Phys. Chem. Lett.,2020;Sci. China Chem,2022)等大分子体系的解离和结构表征中取得了系列研究成果。相关研究成果以“Ultraviolet Photodissociation Reveals the Molecular Mechanism of Crown Ether Microsolvation Effect on the Gas-Phase Native-like Protein Structure”为题,于近日发表在《美国化学会志》(Journal of the American Chemical Society)上。该工作的共同第一作者是我所1822组联合培养硕士研究生周伶强和刘哲益。
  • 首张蛋白粉备案凭证发放 蛋白粉保健食品迎来“备案时代”
    近日,保健食品蛋白粉首张备案凭证、蛋白粉复配产品首张备案凭证相继发放。这是自2023年6月市场监管总局发布保健食品原料目录以来,以大豆分离蛋白、乳清蛋白为原料的产品获得的首批国产保健食品备案凭证。此次将植物蛋白和动物蛋白同时纳入保健食品原料目录,主要面向蛋白质缺乏免疫力低下人群,提升了保健食品人群使用的针对性,有效限制产品夸大宣传。此外,针对这两种蛋白类原料设定的技术要求,在严格遵守食品安全底线的同时,提高了其中的蛋白质含量指标,均达到了优质蛋白原料标准,确保为蛋白质缺乏的人群提供优质蛋白产品。2023年,市场监管总局密集出台多项保健食品相关新法规新政策,激发了产业创新发展活力。据了解,为推动保健食品原料目录制定工作,市场监管总局会同国家卫生健康委、国家中医药局发布的《保健食品原料目录 大豆分离蛋白》《保健食品原料目录 乳清蛋白》自2023年10月1日起施行。于是,也就出现了当前的以大豆分离蛋白、乳清蛋白为原料的产品获得首批国产保健食品备案凭证这一现象。若是具体到成分,乳清蛋白是从牛奶中分离出的氨基酸中浓缩而成的,氨基酸含量和比例高,备受运动营养界推崇,它也成了市场上抗阻训练补充剂的明星产品。这也使得“蛋白粉”至今都被默认为是乳清蛋白。和乳清蛋白是相比,大豆蛋白是植物蛋白和全草本提取物。两个原料目录的发布是市场监管总局对保健食品行业规范化的引领和支持,既为企业提供了更多的备案选择,也为行业创新发展注入了新的动力,突破了以往单一原料备案的模式,允许蛋白质与营养物质复配备案,为企业提供更广泛的研发空间,推动市场上的蛋白粉类保健食品品种变得更加丰富,消费者的选择也更为多元。市场监管总局表示,截至2023年11月底,我国具有国家标准的补充营养素类产品已基本纳入备案管理,有1500余家企业获得保健食品备案登录账号,备案企业已覆盖了国内31个省、自治区、直辖市和新疆生产建设兵团。获得了保健食品备案凭证的产品已达到17000余个,其中功能类产品3300余个,满足了消费者对维生素C、辅酶Q10类产品的需求,为消费者带来了更多质高价优的保健食品。
  • 新年首发 | 月旭新品:Xtimate® GPC-GLY,单双硬脂酸甘油酯专用柱
    单双硬脂酸甘油酯是化妆品的原料之一,是食品糖果的添加剂,是药物软膏的增稠剂,是塑料行业中的脱模剂、增塑剂、抗静电剂,是乳胶分散剂及合成石蜡的配合剂。它是万能的辅料,也是检验人员最不愿意见到的辅料,多少厂家的色谱柱败在它的含量测定项目下。月旭科技的研发团队在无数个夜以继日,卧薪尝胆后,又一次为广大客户推出了检测辅料的利器:Xtimate® GPC-GLY。这是一根全新的GPC凝胶色谱柱Xtimate® GPC-GLY是月旭公司的专有开发产品,它基于高度交联且全多孔的高性能苯乙烯-二乙烯基苯共聚物。Xtimate® GPC-GLY填料的孔径分布窄,并且具有较长的使用寿命和出色的柱效。这是为检测单双硬脂酸甘油酯而打造的色谱柱中国药典四部-单双硬脂酸甘油酯含量测定单双硬脂酸甘油酯应用案例色谱柱:Xtimate® GPC-GLY,单双硬脂酸甘油酯专用柱(2支串联使用)。流动相:四氢呋喃;检测温度:RID40℃;柱温:40℃;流速:1.0ml/min;进样量:40μl。各位小伙伴们心动不如行动,赶快来订购吧!
  • 国家药监局关于发布消肿片中松香酸检查项和复方龙胆碳酸氢钠片中土大黄苷检查项2项补充检验方法的公告
    根据《中华人民共和国药品管理法》及其实施条例的有关规定,《消肿片中松香酸检查项补充检验方法》《复方龙胆碳酸氢钠片中土大黄苷检查项补充检验方法》经国家药品监督管理局批准,现予发布。特此公告。附件1消肿片中松香酸检查项补充检验方法(BJY 202111)【检查】松香酸照高效液相色谱法(中国药典2020年版通则0512)测定。色谱条件与系统适用性试验以十八烷基硅烷键合硅胶为填充剂;以乙腈-0.1%甲酸(70:30)为流动相;检测波长为241nm。理论板数按松香酸峰计算应不低于3000。对照溶液的制备(临用新制)取松香酸对照试剂适量,精密称定,加乙醇制成每1ml含2µg的溶液,作为对照试剂溶液。另取11-羰基-β-乙酰乳香酸对照品适量,精密称定,加乙醇制成每1ml含2µg的溶液,作为参照溶液。供试品溶液的制备取本品10片,研细,取0.2g,精密称定,精密加入乙醇20ml,称定重量,超声处理20分钟,放冷,再称定重量,用乙醇补足减失的重量,摇匀,滤过,取续滤液,即得。测定法分别精密吸取供试品溶液、对照试剂溶液与参照溶液各10µl,注入液相色谱仪,记录色谱图。结果判断供试品色谱中,在与松香酸对照试剂溶液色谱峰保留时间相应的位置上不得出现相同的色谱峰。若出现保留时间相同的色谱峰,采用二极管阵列检测器比较相应色谱峰的紫外-可见吸收光谱,吸收光谱应不同(松香酸对照试剂色谱峰在241nm显示最大吸收);若吸收光谱相同,且该色谱峰的峰面积值大于11-羰基-β-乙酰乳香酸参照溶液色谱峰的峰面积值,则视为阳性检出。备注:必要时,可采用高效液相色谱-质谱联用方法进行验证。起草单位:连云港市食品药品检验检测中心复核单位:江苏省食品药品监督检验研究院广州市药品检验所附件2复方龙胆碳酸氢钠片中土大黄苷检查项补充检验方法(BJY 202112)【检查】土大黄苷(1)取本品细粉适量,约相当于大黄原生药0.1g,加甲醇10ml,超声处理20分钟,滤过,取滤液1ml,加甲醇至10ml,作为供试品溶液。另取土大黄苷对照品,加甲醇制成每1ml含10μg的溶液,作为对照品溶液(临用新制)。照薄层色谱法(中国药典2020年版通则0502)试验,吸取对照品溶液与供试品溶液各5μl,分别点于同一聚酰胺薄膜上,以甲苯甲酸乙酯丙酮甲醇甲酸(30:5:5:20:0.1)为展开剂展开,取出,晾干,置紫外光灯(365nm)下检视。供试品色谱中,在与对照品色谱相应的位置上,不得显相同的亮蓝色荧光斑点。(2)照高效液相色谱法(中国药典2020年版通则0512)测定。色谱条件与系统适用性试验 以十八烷基硅烷键合硅胶为填充剂;以乙腈-水(20:80)为流动相;二极管阵列检测器,检测波长为328nm,柱温30℃。理论板数按土大黄苷色谱峰计算应不低于3000,土大黄苷峰与相邻峰之间的分离度应符合要求。对照品溶液的制备(临用新制) 取土大黄苷对照品适量,精密称定,加甲醇制成每1ml含60μg的溶液,即得。供试品溶液的制备 取本品20片,研细,取约相当于大黄原生药0.1g,精密称定,精密加入甲醇25ml,称定重量,超声处理60分钟,放冷,再称定重量,用甲醇补足减失的重量,摇匀,滤过,取续滤液,即得。测定法 分别精密量取供试品溶液和对照品溶液各10μl,注入液相色谱仪,记录色谱图。结果判定 供试品色谱中,在与土大黄苷对照品色谱峰保留时间相应的位置上应不得出现相同的色谱峰。若出现保留时间相同的色谱峰,则采用二极管阵列检测器比较相应色谱峰的紫外-可见吸收光谱,吸收光谱应不同(土大黄苷对照品色谱峰在219nm和325nm波长处有最大吸收);若吸收光谱相同,则视为阳性检出。备注:必要时可采用高效液相色谱-质谱联用方法进行验证。起草单位:青海省药品检验检测院复核单位:甘肃省药品检验研究院陕西省食品药品检验研究院
  • 蛋白质测序技术发展漫谈(续)——基于荧光、纳米孔的单分子蛋白质测序
    前文回顾(点击查看):蛋白质测序技术发展漫谈(上篇);蛋白质测序技术发展漫谈(中篇);蛋白质测序技术发展漫谈(下篇)前面描述了目前成熟的蛋白质测序方法,并对最流行的基于质谱的蛋白质测序方法进行了综述。非质谱依赖的蛋白质测序手段,除了几十年前发展的基于Edman降解法通过气相或液相色谱测序的方法,最近热门领域的方法主要包括基于荧光或纳米孔的单分子蛋白质测序,代表了未来的发展方向。基于纳米孔单分子蛋白质测序方法纳米孔测序(nanopore sequencing)法是借助电泳驱动力使待测单个分子逐一通过纳米孔,通过检测纳米孔截面的电流变化来实现对序列的测定。纳米孔测序最初在1996年被提出,通过膜通道检测多核苷酸序列,也就是单分子DNA的测序[1]。随着使用纳米孔对单分子DNA测序技术的逐渐成熟[2-5],纳米孔技术也被应用在单分子蛋白质的鉴定上。对于DNA来说,其二级结构和电荷相对比较一致,它的聚合物比较容易处理,而且仅由四种碱基组成,单分子DNA测序比较简单。相比之下,蛋白质分子由20种氨基酸组成,并且蛋白的电荷和疏水性多变,还存在大量的二级和三级结构,因此基于纳米孔技术对蛋白质的鉴定要比DNA困难很多[6]。当前的基于纳米孔对蛋白质分析的主要探索方向是通过寡核苷酸适配子或抗体等亲和分子对纳米孔进行功能化,当蛋白质或肽段分子通过纳米孔时,由于不同氨基酸在纳米孔附近的结合或通过会引起不同幅度的电流变化,基于这些变化就可以确定氨基酸的种类,从而逐个得到所测蛋白质或肽段的序列信息(图1)。图 1 借助纳米孔的横向电流检测单分子蛋白质[2]牛津大学的Hagan Bayley[7]团队将单个α-血溶素蛋白孔插入两侧带有电极的膜中,磷酸化的蛋白质在DNA寡核苷酸的牵引下展开,并穿过纳米孔,通过记录纳米孔的电流变化区分出了202个磷酸化蛋白质的4种不同亚型,但无法鉴定蛋白质的一级结构。Francesco[8]团队将蛋白质或氨基酸吸附在金纳米星上,并施加电等离子体力将粒子推进并约束在金纳米孔内,利用金纳米星与金纳米孔壁之间的单个热点,实现了单分子表面增强拉曼散射(SERS)探测,用于检测氨基酸,并且可以分辨仅含有两个不同氨基酸的单个多肽分子抗利尿激素和催产素。Cao等[9]通过单个定点突变,在具有锥形识别位点的耻垢分枝杆菌孔蛋白A(MspA)的纳米孔内腔中引入了甲硫氨酸,从而将该反应有目的的移植到了MspA纳米孔最尖锐的识别位点,并观测到了相应的单分子反应信号。该纳米孔可以引入更多的离子电流,从而放大检测信号,其狭窄的识别位点则提供了更高的空间分辨率,大大削弱了周围氨基酸的干扰,从而拓宽生物纳米孔的单分子检测功能,有望推进基于孔道的单分子蛋白质测序研究。Ouldali[10]研究团队研发出了一种新型气溶素纳米孔,此纳米孔借助将氨基酸附着在聚阳离子载体上,使氨基酸在纳米孔上停留时间变长,并检测其通过纳米孔时电流的变化,最终可识别出组成蛋白质的15种氨基酸,也能检测到组成蛋白质的其余5种氨基酸的电流变化,但是无法对其进行区分。虽然只是对氨基酸进行识别,但作者设想通过对蛋白或者肽段末端氨基酸逐个降解,利用纳米孔技术鉴定从末端释放出来的氨基酸,从而对蛋白质或肽段序列进行测定。Zhao[11]等将一对金属电极分隔在约2nm的孔洞旁,当氨基酸线性穿过这种纳米孔的时候,每一个氨基酸都会完成一个回路,并反馈出相应的电信号,常见的20种氨基酸在通过纳米孔时都可以产生电信号。有的氨基酸需通过大约50种不同信号特征被鉴定,但绝大多数的氨基酸仅需要不到10个信号特征被鉴别。这种方法不仅能够高可信度的鉴定氨基酸,还能区分翻译后修饰的氨基酸(肌氨酸)及其前体(甘氨酸)、区分同分异构体的亮氨酸与异亮氨酸、区分对应对映异构体的氨基酸镜像分子L-天冬酰胺和D-天冬酰胺。此技术被应用于对两条由四个氨基酸组成的短肽(GGGG 和GGLL)进行测序,单分子短肽穿过纳米孔,孔道两边电极记录每个氨基酸通过时产生的电信号,通过测序算法,识别代表不同氨基酸的特征信号,从而得到短肽的序列。基于纳米孔单分子蛋白测序目前还属于初步发展阶段,除了需要根据电信号准确区分组成蛋白质的氨基酸以外,另一个关键是设计可一次拉动一个蛋白质或氨基酸穿过纳米孔的“马达”。为了让蛋白质或肽段顺利穿过纳米孔,研究者们在蛋白质一端添加了一串带有负电的氨基酸或者一段短DNA,用氨基酸或DNA链拉动蛋白质,可以使一些蛋白质打开折叠并顺利穿过纳米孔,但另一些复杂折叠的蛋白需要更多拉力,于是研究者在引导序列上添加了可以打开折叠的ClpX的识别位点[12]。这个系统能够将简单折叠的目标蛋白牵引过纳米孔,但对于折叠非常紧密的蛋白质仍要使用变性剂来打开折叠。基于纳米孔技术对单分子肽段或蛋白质测序目前还停留在对氨基酸鉴定和对短肽的区分阶段,还不能实际应用于对蛋白质的测序。虽然纳米孔测序具有高通量、对样品需求量少的优点,但是现有的纳米孔过大,失去了对氨基酸的区分能力,同时蛋白质分子通过孔道过快,加大了对信号读取难度;其次由于需要将蛋白的三级和二级结构破坏掉,纳米孔道需要能够耐受非常苛刻的化学和力学条件;第三,由于蛋白带电不均匀,控制其穿孔的速率也非常困难。所以目前的方法还不能准确的测得蛋白质的序列,基于纳米孔的单分子蛋白质测序技术还有很大的发展空间。基于荧光的单分子蛋白质测序方法基于荧光的单分子蛋白质测序同纳米孔测序一样,都可以对极少量蛋白质样品进行检测,其原理是先将蛋白质酶解成肽段,对肽段中特定氨基酸选择性标记不同的荧光基团[13],对不同氨基酸上的荧光进行观察,从而确定肽段部分氨基酸序列,再将这些序列与蛋白质组序列比对,即可确定肽段的来源蛋白(图2)。图 2 基于荧光的单分子蛋白测序流程[14]。Ginkel[15] 和Yao [16]都利用ClpXP蛋白酶辅助对肽段进行选择性荧光标记,可对序列中的赖氨酸和半胱氨酸进行标记,通过Förster共振能量转移依次读出被标记的肽段的氨基酸的信号。Swaminathan[14] 将蛋白质酶解成肽段,再将肽段固载到玻璃片上[17],使用特定荧光基团分别对肽段中的赖氨酸和半胱氨酸选择性标记,通过Edman降解技术对固载的肽段进行降解,每次降解后都使用全内反射荧光(TIPF)显微镜进行观测。如果被标记的赖氨酸和半胱氨酸在Edman降解中从肽段N端释放出来,被标记的以上两种氨基酸的位置就会被检测到。同时还发展了用于监测单个肽荧光强度的图像处理算法,并对误差源进行分类和建模,可以测得序列中部分氨基酸的信息。将测得的部分序列与参考蛋白质组序列比对,即可确定肽段的来源蛋白,通过与蛋白质组序列比对,可以鉴定到在人源蛋白质组中的绝大多数蛋白质。基于荧光单分子蛋白测序技术主要有三方面难点,一方面在于目前仅能对赖氨酸和半胱氨酸等几种氨基酸进行特异性荧光基团的标记,无法对所有氨基酸都进行标记;第二个难点是Edman降解是在强酸或强碱的环境中进行,对这些荧光基团的稳定性要求很高;第三个难点是对后期图像处理有较高的要求,如果序列中每个氨基酸都标记上不同的荧光基团,且发光峰易交叠难分辨,这给荧光处理算法带来了难度。因此,基于荧光的单分子蛋白测序技术虽然可以对极微量蛋白质样品分析,但目前仅能测得部分氨基酸序列,对蛋白质全序列的测定目前尚不能实现。[1] Kasianowicz J J, Brandin E, Branton D, et al. Characterization of individual polynucleotide molecules using a membrane channel [J]. Proceedings of the National Academy of Sciences, 1996, 93(24): 13770-13773.[2] Branton D, Deamer D W, Marziali A, et al. The potential and challenges of nanopore sequencing [J]. Nanoscience and technology: A collection of reviews from Nature Journals, 2010: 261-268.[3] Laver T, Harrison J, O’neill P, et al. Assessing the performance of the oxford nanopore technologies minion [J]. Biomolecular detection and quantification, 2015, 3: 1-8.[4] Karlsson E, Lärkeryd A, Sjödin A, et al. Scaffolding of a bacterial genome using MinION nanopore sequencing [J]. Sci Rep, 2015, 5(1): 1-8.[5] Huang S, Romero-Ruiz M, Castell O K,et al. High-throughput optical sensing of nucleic acids in a nanopore array [J]. Nature nanotechnology, 2015, 10(11): 986-991.[6] Nivala J, Marks D B, Akeson M. Unfoldase-mediated protein translocation through an α-hemolysin nanopore [J]. Nat Biotechnol, 2013, 31(3): 247-250.[7] Rosen C B, Rodriguez-Larrea D, Bayley H. Single-molecule site-specific detection of protein phosphorylation with a nanopore [J]. Nat Biotechnol, 2014, 32(2): 179.[8] Huang J, Mousavi M, Giovannini G, et al. Multiplexed Discrimination of Single Amino Acid Residues in Polypeptides in a Single SERS Hot Spot [J]. Angewandte Chemie 2020, 59(28): 11423-11431.[9] Cao J, Jia W, Zhang J, et al. Giant single molecule chemistry events observed from a tetrachloroaurate (III) embedded Mycobacterium smegmatis porin A nanopore [J]. Nature communications, 2019, 10(1): 1-11.[10] Ouldali H, Sarthak K, Ensslen T, et al. Electrical recognition of the twenty proteinogenic amino acids using an aerolysin nanopore [J]. Nat Biotechnol, 2020, 38(2): 176-181.[11] Zhao Y, Ashcroft B, Zhang P, et al. Single-molecule spectroscopy of amino acids and peptides by recognition tunnelling [J]. Nature nanotechnology, 2014, 9(6): 466-473.[12] Nivala J, Mulroney L, Luan Q, et al. Unfolding and Translocation of Proteins Through an Alpha-Hemolysin Nanopore by ClpXP [M]. Nanopore Technology. Springer. 2021: 145-155.[13] Hernandez E T, Swaminathan J, Marcotte E M, et al. Solution-phase and solid-phase sequential, selective modification of side chains in KDYWEC and KDYWE as models for usage in single-molecule protein sequencing [J]. New J Chem, 2017: 462-469.[14] Swaminathan J, Boulgakov A, Hernandez E, et al. Highly parallel single-molecule identification of proteins in zeptomole-scale mixtures [J]. Nat Biotechnol, 2018, 36(11): 1076-1082.[15] Ginkel J V, Filius M, Szczepaniak M, et al. Single-molecule peptide fingerprinting [J]. Proceedings of the National Academy of Sciences, 2018, 115(13): 3338-3343.[16] Yao Y, Docter M, Ginkel JV, et al. Single-molecule protein sequencing through fingerprinting: computational assessment [J]. Phys Biol, 2015, 12(5): 055033.[17] Howard C, Floyd B, Bardo A, et al. Solid-Phase Peptide Capture and Release for Bulk and Single-Molecule Proteomics [J]. ACS Chem Biol, 2020, 15(6): 1401-1407.作者简介:中国科学院大连化学物理研究所 单亦初副研究员1997年于中国科学技术大学获理学学士学位。2002年于中国科学院大连化物所获理学博士学位。2002年10月至2009年5月在德国马普协会马格德堡研究所、美国德克萨斯大学医学院及澳大利亚弗林德斯大学工作。2009年7月应聘到中国科学院大连化物所任副研究员。主持多项研究课题,包括国家重点研发计划子课题、国家自然科学基金面上项目等。已在Analytical Chemistry、Journal of Proteome Research、Journal of Chromatography A等杂志发表论文近80篇。主要研究方向包括蛋白质组鉴定和蛋白质组相对及绝对定量、蛋白质翻译后修饰富集和鉴定、蛋白质组末端肽富集和鉴定、蛋白质相互作用分析、蛋白质全序列从头测定及药物靶蛋白筛选。(本文经授权发布,仅供读者学习参考)专家约稿招募:若您有生命科学相关研究、技术、应用、经验等愿意以约稿形式共享,欢迎邮件投稿或沟通(邮箱:liuld@instrument.com.cn )。
  • 岛津亮相第十二届国际氨基酸、多肽与蛋白质大会
    8月1日至5日,来自全世界的氨基酸、多肽与蛋白质研究领域的资深学者齐聚在北京国际会议中心,出席&ldquo 第十二届国际氨基酸、多肽与蛋白质大会(12th iCAAP)&rdquo ,围绕着Bioinformatics,Sulfur Amino Acids,Brain Protection,Glycation,Polyanubes&Transglutaminases,Vesicular Transporters,Redox,Translation & Diseases,Nutrition,Neuroscience,Metabolomics,,Immunochemistry,Peptides,Synthesis & Analysis,Plant Amino Acid,Taurine,Proteomics,Oxidation等的最新进展与未来发展方向展开了热烈的学术交流。本次盛会由奥地利维也纳大学,北京大学,《Amino Acids》编辑委员会,中国预防医学会,中国抗癌协会,中国解剖学会,中国生理学会,中国病理学会等国内外知名学术机构共同举办。 会议现场 岛津公司积极参与本次盛会,向与会专家展示了岛津在生命科学领域的强大实力。岛津公司拥有从基因组、蛋白质、代谢组解析直到最新的分子成像解析的尖端技术,这些广泛的解析技术强有力地全面支持着微生物研究。岛津公司以丰富的产品系列和技术,为在医药、食品、化学、能量、环境、临床、卫生等多个领域从事微生物研究的用户提供解决方案。 在本次大会上,岛津公司分析仪器事业部,生命科学与临床医学部,应用经理赵宁伟先生经希腊国家研究基金会的推荐,应邀在此次大会上向各位专家学者,发表了名为《Saramis: A New Era in the Clinical Applications of MALDI mass spectrometry》的学术报告。在报告中,赵宁伟先生向与会者介绍了岛津MALDI-TOF结合生物梅里埃的SARAMIS数据库进行临床微生物鉴定的技术,并详实地剖析了其快速,高通量,无需复杂的样品前处理和大量的化学试剂等特点。与会代表们仔细聆听了赵先生的学术报告,并对岛津的MALDI-TOF微生物鉴定技术表现了浓厚的兴趣,报告结束后纷纷向赵宁伟先生咨询其具体情况。 迄今为止,生物梅里埃在全球细菌学市场占据首席,市场占有率高达24%;并为全球第二大感染性疾病诊断厂家,占全球13.5%的市场。鉴于岛津MALDI-TOF卓越的性能和出色的稳定性,2010年生物梅里埃公司与岛津宣布战略性合作,结合岛津的MALDI-TOF和自身开发的微生物数据库,商业化鉴定微生物学细菌质谱系统。 另外,赵宁伟先生和生命科学与临床医学部的应用专家黄成才先生共同撰写的一篇题为《Rapid Genus- and Species-Specific Identification of clinically important bacteria by MALDI-TOF in a routine laboratory》已经被《Amino Acids》接受,该工作由中国疾控中心传染病预防控制所的岛津合作实验室协助完成。《Amino Acids》由Gert Lubec教授(英国皇家科学院院士)于1991年创立,2011年最新发布的SCI影响因子为4.1分,为蛋白质多肽领域的国际名刊。 岛津公司作为一个拥有135年历史的世界知名分析仪器产商,长期致力于生命科学分析技术的研发,不间断地以更新更出色的科学仪器为生命科学的发展贡献出自己的力量。在这一过程中,曾经涌现出像2002年诺贝尔化学奖获得者田中耕一先生这样为推进生命科学研究的发展而做出卓越贡献的岛津员工。 关于岛津 岛津国际贸易(上海)有限公司是(株)岛津制作所为扩大中国事业的规模,于1999年100%出资,在中国设立的现地法人公司。 目前,岛津国际贸易(上海)有限公司在中国全境拥有12个分公司,事业规模正在不断扩大。其下设有北京、上海、广州分析中心;覆盖全国30个省的销售代理商网络;60多个技术服务站,构筑起为广大用户提供良好服务的完整体系。 岛津作为全球化的生产基地,已构筑起了不仅面向中国客户,同时也面向全世界的产品生产、供应体系,并力图构建起一个符合中国市场要求的产品生产体制。 以&ldquo 为了人类和地球的健康&rdquo 为目标,岛津人将始终致力于为用户提供更加先进的产品和更加满意的服务。 更多信息请关注岛津公司网站www.shimadzu.com.cn。
  • 海关总署发布《进出口化妆品中生育酚及α-生育酚醋酸酯的测定》等37项行业标准
    现发布《鲁氏耶尔森氏菌检测技术规范》等37项行业标准(目录见附件)。被代替标准《化妆品中生育酚及α—生育酚醋酸酯的检测方法 高效液相色谱法》(SN/T 1496—2004)自新标准实施之日起废止。本次发布的标准文本可通过中国技术性贸易措施网站(http://www.tbtsps.cn)标准栏目查阅。特此公告。附件:《鲁氏耶尔森氏菌检测技术规范》等37项行业标准目录.xls海关总署2023年12月29日附件 《鲁氏耶尔森氏菌检测技术规范》等37项行业标准目录序号标准编号标准名称替代标准号实施日期1SN/T 5665—2023鲁氏耶尔森氏菌检测技术规范2024-7-12SN/T 1496—2023进出口化妆品中生育酚及α-生育酚醋酸酯的测定SN/T 1496—20042024-7-13SN/T 5326.4—2023进出口食品化妆品专业分析方法验证指南 第4部分:分子生物学方法2024-7-14SN/T 5487—2023十足目虹彩病毒1感染检疫技术规范2024-7-15SN/T 5562.1—2023海关实验室数字化管理规范 第1部分:总则2024-7-16SN/T 5562.2—2023海关实验室数字化管理规范 第2部分:组织管理2024-7-17SN/T 5562.3—2023海关实验室数字化管理规范 第3部分:数据管理2024-7-18SN/T 5562.4—2023海关实验室数字化管理规范 第4部分:架构管理2024-7-19SN/T 5562.5—2023海关实验室数字化管理规范 第5部分:数据控制和信息管理2024-7-110SN/T 5562.6—2023海关实验室数字化管理规范 第6部分:数据分析管理2024-7-111SN/T 5562.7—2023海关实验室数字化管理规范 第7部分:服务方管理2024-7-112SN/T 5562.8—2023海关实验室数字化管理规范 第8部分:安全管理2024-7-113SN/T 5570—2023进出口铁合金归类化验2024-7-114SN/T 5574—2023进口油品固体废物属性鉴别规程2024-7-115SN/T 5619.1—2023进出口医用防护用品安全项目技术规范 第1部分:通则2024-7-116SN/T 5619.2—2023进出口医用防护用品安全项目技术规范 第2部分:防护口罩2024-7-117SN/T 5619.3—2023进出口医用防护用品安全项目技术规范 第3部分:儿童口罩2024-7-118SN/T 5619.4—2023进出口医用防护用品安全项目技术规范 第4部分:防护服2024-7-119SN/T 5619.5—2023进出口医用防护用品安全项目技术规范 第5部分:一次性隔离衣2024-7-120SN/T 5619.6—2023进出口医用防护用品安全项目技术规范 第6部分:手套2024-7-121SN/T 5619.7—2023进出口医用防护用品安全项目技术规范 第7部分:防护帽2024-7-122SN/T 5619.8—2023进出口医用防护用品安全项目技术规范 第8部分:无纺布2024-7-123SN/T 5644.1—2023出口食品中农用化学物质的快速检测方法 拉曼光谱法 第1部分:总则2024-7-124SN/T 5644.2—2023出口食品中农用化学物质的快速检测方法 拉曼光谱法 第2部分:孔雀石绿和结晶紫2024-7-125SN/T 5644.3—2023出口食品中农用化学物质的快速检测方法 拉曼光谱法 第3部分:恩诺沙星和环丙沙星2024-7-126SN/T 5644.4—2023出口食品中农用化学物质的快速检测方法 拉曼光谱法 第4部分:多菌灵2024-7-127SN/T 5644.5—2023出口食品中农用化学物质的快速检测方法 拉曼光谱法 第5部分:噻菌灵2024-7-128SN/T 5644.6—2023出口食品中农用化学物质的快速检测方法 拉曼光谱法 第6部分:腈菌唑2024-7-129SN/T 5644.7—2023出口食品中农用化学物质的快速检测方法 拉曼光谱法 第7部分:毒死蜱2024-7-130SN/T 5644.8—2023出口食品中农用化学物质的快速检测方法 拉曼光谱法 第8部分:三唑磷2024-7-131SN/T 5644.9—2023出口食品中农用化学物质的快速检测方法 拉曼光谱法 第9部分:地虫硫磷2024-7-132SN/T 5644.10—2023出口食品中农用化学物质的快速检测方法 拉曼光谱法 第10部分:亚胺硫磷2024-7-133SN/T 5668—2023水禽圆环病毒感染检疫技术规范2024-7-134SN/T 5681—2023工业单羧脂肪酸含量的测定 气相色谱法2024-7-135SN/T 5706—2023化妆品微生物检验方法 大肠埃希氏菌检验2024-7-136SN/T 5742—2023鱼类及其制品中金枪鱼、鳕鱼和虹鳟鱼成分快速检测方法 PCR—试纸条法2024-7-137SN/T 5754—2023进口货物固体废物属性鉴别方法 对苯二甲酸2024-7-1
  • 蛋白质-小分子相互作用分析技术进展与应用——限制性蛋白水解-质谱分析技术
    阐明小分子(包括内源性代谢物和外源性化合物)如何发挥调控作用的关键问题之一是小分子的靶标发现和验证,即蛋白质-小分子相互作用研究。蛋白质与小分子的相互作用模式既有较稳定的共价结合,也有瞬时的弱相互作用。如何灵敏、高效地捕获并解析多种类型的蛋白质-小分子相互作用是分析难点。目前,蛋白质-小分子相互作用的分析策略大致可分为两类:一是靶向相互作用研究,以蛋白质(或小分子)为中心,发现并验证与之相互作用的小分子(或蛋白质);二是非靶向相互作用研究,全面识别多种蛋白质-小分子的相互作用轮廓。应用的具有分析技术包括:表面等离子体共振技术(surface plasmon resonance,SPR)、氢氘交换质谱分析技术(hydrogen deuterium exchange mass spectrometry,HDX MS)、限制性蛋白水解-质谱分析技术(limited proteolysis-mass spectrometry,LiP-MS)、蛋白质热迁移分析技术(cellular thermal shift assay,CESTA)和药物亲和反应靶标稳定性分析技术(Drug affinity responsive target stability,DARTS)等。本期介绍限制性蛋白水解-质谱分析技术(LiP-MS)的原理、技术流程和其在蛋白质-小分子相互作用研究中的应用。1. 原理LiP-MS技术最初由瑞士苏黎世联邦理工学院的Paola Picotti课题组建立 [1] :利用小分子结合蛋白后相较于原蛋白产生蛋白质空间构象和位阻的变化,经蛋白酶切后形成差异肽段,液质联用分析识别和鉴定差异肽段,基于差异肽段推测蛋白质与小分子的相互作用位点。2. 技术流程在非变性条件下提取蛋白,以保留蛋白活性和空间结构。先使用低浓度(1:100, w/w)蛋白酶K在较低温度(25℃)下短时间内(5 min)对蛋白-小分子复合物进行有限的蛋白酶切。蛋白与小分子结合后,相互作用位点存在空间位阻,从而避免被蛋白酶K切割,由此产生差异肽段。随后进行蛋白变性和胰酶酶切,蛋白质组分析识别和鉴定差异肽段,基于差异肽段所处位置预测蛋白质与小分子的相互作用位点(图1)。图1 限制性蛋白水解-质谱分析(LiP-MS)技术流程 [2]3. 试验试剂和分析仪器3.1 蛋白抽提:可依据实际目的和细胞类型选择不同的细胞/组织裂解液,如RIPA、N-PER、M-PER等,进行细胞/组织蛋白抽提,获得的细胞/组织全蛋白提取物可直接与目标小分子共孵育。3.2 蛋白酶切:关键的蛋白酶切试剂,例如蛋白酶K、胰酶等均有市售。3.3 分析仪器:目前多种类型的液相色谱-高分辨质谱联用仪均可用于蛋白质组学分析,已应用于LiP-MS的高分辨质谱仪包括,布鲁克、赛默飞、沃特世和SCIEX等品牌的飞行时间质谱、轨道阱质谱和傅里叶变换离子回旋共振质谱等。4. 应用实例研究人员基于LiP-MS技术在大肠杆菌中探索多种内源性代谢物和蛋白的相互作用模式 [1],先采用凝胶过滤法除去大肠杆菌全蛋白提取物中的内源性代谢物,获得大肠杆菌全蛋白;随后将大肠杆菌蛋白与20个中心碳代谢相关的关键内源性代谢物(三磷酸腺苷、二磷酸腺苷、烟酰胺腺嘌呤二核苷酸、磷酸烯醇式丙酮酸、6-磷酸葡萄糖、果糖-1,6-二磷酸、丙酮酸、谷氨酰胺、甲硫氨酸等,见图2A)分别共孵育。基于LiP-MS流程发现,上述20个内源性代谢物可与大肠杆菌中1678个蛋白发生潜在相互作用,其中1447个相互作用是首次发现的(图2B)。作者将所发现的相互作用与在线数据库BRENDA对比(主要涉及酶的功能和代谢通路等信息),证明LiP-MS技术能够准确地识别已报道的蛋白-内源性代谢物相互作用,假阳性率低于6 %。图2 20个与中心碳代谢相关的关键内源性代谢物(图A)及其在大肠杆菌中发生相互作用的蛋白数量(图B)[1]参考文献:[1] Piazza, I., Kochanowski, K., Cappelletti, V., Fuhrer, T.,Noor, E., Sauer, U., Picotti, P. A map of protein-metabolite interactions reveals principles of chemical communication. Cell, 2018, 172(1-2), 358-372.[2] Pepelnjak M, Souza N D, Picotti P. Detecting Protein–Small Molecule Interactions Using Limited Proteolysis–Mass Spectrometry (LiP-MS). Trends in Biochemical Sciences, 2020, 45(10), 919-920.
  • Nature发表!单颗粒冷冻电镜技术助力中国科学家阐明生长素极性运输的分子机制
    近日,浙江大学团队联合湖北大学,实现了植物生长素极性运输研究的重大突破,让植物向性这一百年科学难题的关键一环得以解决,为生长素极性运输的进一步调控打下基础。 近日,相关论文发布在 Nature 上。担任共同通讯作者的浙江大学医学院生物物理系长聘副教授/附属第四医院双聘教授郭江涛 表示:“对于弄清楚 PIN 蛋白(pin-formed protein)介导生长素转运的分子机制,学界早已翘首以盼,而该工作终于揭晓这一机制。这为开发基于结构靶向 PIN 家族蛋白的新型小分子抑制剂奠定了基础。这些抑制剂既能作为工具,去研究生长素的极性运输机理;也可作为农业除草剂,助力于作物改良。”图 | 浙江大学研究团队主要成员合影。前排左起:郭逸蓉、张素芬、张艳、苏楠楠、竺爱琴、杨帆 ;后排左起:周晨羽、叶繁、郑绍建、郭江涛 、常圣海同时,作为共同作者单位的湖北大学,也借此迎来该校第一篇 Nature 论文。审稿人评价称:本文报道了一个重要的结构,为植物生长素运输提供了新的研究思路;这些发现是开创性的,真正为 PIN 蛋白的功能提供了新的见解,从而为研究打开了许多新的途径。此外,PIN 蛋白与胆汁酸/钠转运蛋白的结构也存在有趣的相似性,这可能有助于更好地理解 PIN 蛋白的起源及其转运机制。另据悉,通过比对拟南芥其他生长素转运蛋白序列,课题组发现生长素转运位点是保守的,这种保守性也会延伸到其他的植物物种中。因此,可以认为此次研究结论,也能被推广到其他植物中。近日,相关论文以《拟南芥生长素转运蛋白 PIN3 的结构与机制》(Structures and mechanisms of the Arabidopsis auxin transporter PIN3 )为题发表在 Nature 上[1]。图 | 相关论文(来源:Nature)共同通讯作者分别为郭江涛 、浙江大学医学院生物物理学系研究员杨帆 、以及湖北大学生命科学学院&省部共建生物催化与酶工程国家重点实验室吴姗 教授。郭江涛 团队的博士后苏楠楠、杨帆 课题组的博士生竺爱琴、以及吴姗 团队的博士生陶鑫为论文共同一作。PIN 蛋白在拟南芥中介导生长素极性运输机制据介绍,生长素对植物的生长发育起核心调控作用。一般来讲,低浓度的生长素促进生长,高浓度的生长素抑制生长。生长素主要合成部位是在芽、幼嫩的叶和发育中的种子,然后被运输到作用部位。其中,生长素调控植物生长发育与其在植物各个组织中的不对称分布有着密切的关系。而这种不对称分布,主要由于在细胞与细胞之间的生长素运输具有一定的方向性,这也被称为生长素极性运输(Polar Auxin Transport,PAT)。那么,PIN 蛋白缘何能导致植物具有向光性?植物的向光性,是指植物受到单侧光的刺激而引起的生理弯曲现象。而植物体内生长素的不对称分布,和这种向光性息息相关。生长素在植物体内运输有两条途径:一是通过韧皮部完成长距离运输的非极性运输;二是需要转运蛋白参与的单方向极性运输。其中,对于生长素的不对称分布,极性运输起着关键作用。PIN 蛋白可以将生长素转运至细胞外。PIN 蛋白在细胞膜上的极性定位,决定着植物体内生长素极性分布,从而会导致植物的向光性。至于为何要采用拟南芥作为研究对象?郭江涛 表示,拟南芥作为模式植物,其基因组已于 2000 年由国际拟南芥基因组合作联盟完成测序,是第一个实现全序列分析的植物基因组。目前,人们已在 30 多种植物中鉴定出了不同数量的 PIN 基因。作为模式植物,拟南芥中有 8 个 PIN 蛋白成员(PIN1-PIN8)。学界在这方面的生物学功能研究,也比针对植物其他物种的研究更透彻,这能帮助该团队更好地认识 PIN 蛋白的生化、生理以及遗传等特征。同时,鉴于本研究旨在研究植物生长素的极性运输机制,因此其选择拟南芥为研究对象。据介绍,生长素极性运输主要依赖于三种膜定位转运体:AUX/LAX 家族蛋白、 PIN-FORMED 家族蛋白和 ABCB 家族蛋白。通过调控这些家族蛋白,植物可以调节生长素的极性运输和分布。研究发现,拟南芥 PIN 与 ABCB 蛋白可以共同定位。而通过酵母双杂交和免疫共沉淀的实验表明,PIN 和 ABCB 蛋白存在直接的物理互作。PIN蛋白在极性胚胎发育和器官形成等需要定向生长素极性运输的过程中其决定作用,而 ABCB 则在顶端组织生长素转运及长距离运输中起重要作用,二者在调控生长素的转运上具有一定的独立性。AUX 蛋白为生长素转入蛋白,PIN 蛋白为生长素外排蛋白。它们通过协同工作,一起维持植物体生长素平衡。(来源:郭江涛 课题组)解析三个高分辨率冷冻电镜结构本研究最开始且关键的一环是课题选择,首先通过大量的文献调研,课题组确定了研究对象——PIN 蛋白。PIN 蛋白是生长素转运蛋白,在植物的生长素极性运输方面发挥了巨大作用。因此,研究人员希望通过结构生物学的手段解释PIN蛋白介导的生长素极性运输的分子机制。而拟南芥 PIN 蛋白家族被分为两个亚家族,一类是定位在质膜上的 long PINs (PIN1–PIN4、PIN6 和 PIN7),另一类是定位在内质网上的 short PINs (PIN5 和 PIN8),这两大家族通过共同工作,一起维持着植物生长素的内稳态。研究中,该团队首先对 7 个 AtPINs (AtPIN1–5, AtPIN7–8)进行表达纯化筛选,最终选择 AtPIN3 作为研究对象。原因在于,AtPIN3 与其他 long AtPINs 有至少 54% 的序列同源性,可作为 PIN 家族结构和功能分析的模型。随后,通过哺乳动物细胞 HEK293 外源表达系统、对 PIN 蛋白进行过表达并纯化后,课题组得到了均一且稳定的蛋白样品。借助单颗粒冷冻电镜技术,该团队解析了三个高分辨率冷冻电镜结构,分别处于三种状态:PIN 蛋白未结合底物状态、底物 IAA 结合状态以及抑制剂 NPA 结合状态。接下来是功能实验验证阶段。研究团队建立了体外放射性 3H-IAA 转运实验体系,针对底物 IAA 与抑制剂 NPA 结合位点突变体的生长素转运活性和抑制活性,进行相关的测试。随后又通过表面等离子体共振技术,测试底物 IAA 与抑制剂 NPA 结合位点突变体分别与 IAA 和 NPA 的结合能力。然后,通过功能实验的多重验证,课题组阐明了 PIN 转运蛋白对 IAA 的识别和转运机制,以及抑制剂 NPA 抑制生长素转运的分子机制。最终解释了 PIN 蛋白介导的生长素极性运输的分子机制。(来源:郭江涛 课题组)将探索开发新型农药除草剂在整个研究过程中,研究人员遇到了很多困难。AtPIN3 二聚体的分子量仅为 140 kd,蛋白颗粒取向优势严重,从结构上来看几乎只有跨膜区,这对冷冻电镜数据处理带来了极大的挑战。郭江涛 表示:“从拿到均一稳定的蛋白样品到拿到较好的密度图,经历了大半年的时间。我们通过尝试改善蛋白颗粒的取向优势问题,采用不同的电镜数据处理方法,总结经验,最终得到高分辨率结构。”AtPIN3 与底物 IAA 复合物结构的解析,同样是本研究的一大难点。由于 IAA 与 AtPIN3 亲和力相对较弱,研究团队在前后多次对 AtPIN3 与 IAA 的复合物样品进行单颗粒冷冻电镜数据收集,但是 IAA 的密度一直不是很清晰,这让其无法准确判断 IAA 与 AtPIN3 准确的结合模式。后来,通过提高样品中 IAA 的浓度、更换蛋白样品缓冲液体系、更换冷冻电镜样品载网、制样条件、以及改善样品进孔问题,课题组终于成功拿到复合物高分辨结构。(来源:郭江涛 课题组)通过功能实验对 IAA 和 NPA 的作用机制进行验证也是本研究的难点之一。建立一个准确有效的检测生长素转运的实验体系,对他们来说是一个全新的尝试,经过不断摸索学习总结,最终也成功建立了放射性 3H-IAA 外排实验体系。“从最开始的困难重重到最后柳暗花明的整个研究过程中,我们认识到做研究要有决心,有破釜沉舟的勇气,始终要有把工作做到极致的信念,有做世界最一流工作的信念。”郭江涛 总结称。后续,其计划以 PIN 蛋白为靶点筛选新型小分子抑制剂,并通过体外放射性 3H-IAA 转运实验体系对小分子进行功能验证,也将通过冷冻电镜技术手段解析复合物结构,并在此基础上对筛选的小分子化合物进行优化,进而开发新型除草剂农药。
  • 反式脂肪酸甲酯混标(13组分,C14-C22) 标准品促销
    货 号: CDDE-GLC-481-B-100MG 中文名称: 反式脂肪酸甲酯混标(13组分,C14-C22) 标准品 英文名称: GLC Reference Standard (Fatty acid methyl ester) GLC-481-B(13 components,C14-C22) 型 号: 100mg (-20℃保存) 品 牌: NU-CHEK 产品类别: 标准品 价格: 2400.00 促销价: 2160.00 促销时间: 2011年1月4日-2011年2月4日 促销价:2160 促销时间:2011年1月4日-2011年2月4日 了解更多产品请进入安谱公司网站 http://www.anpel.com.cn/
  • 全新上线!曼哈格氨基酸/神经递质/儿茶酚胺检测试剂盒(液相色谱-串联质谱法)
    今日,曼哈格和博莱克联合研发生产的蛋白质氨基酸/神经递质/儿茶酚胺检测试剂盒(液相色谱-串联质谱法)隆重推出。本次推出的3套kit是建立在高效液相色谱质谱平台上,可针对实验动物和人体血样、尿样中的20种蛋白质氨基酸、12种神经递质和6种儿茶酚胺进行精准定量检测。检测试剂盒检测指标▣ 20种蛋白质氨基酸Asparagine天冬酰胺proline脯氨酸Histidine组氨酸Tyrosine酪氨酸Serine丝氨酸Methionine甲硫氨酸Glycine甘氨酸Lysine赖氨酸Glutamine谷氨酰胺Valine缬氨酸Arginine精氨酸Isoleucine异亮氨酸Aspartic acid天冬氨酸Leucine亮氨酸Glutamic acid谷氨酸Phenylalanine苯丙氨酸Threonine苏氨酸Tryptophan色氨酸Alanine丙氨酸Cysteine半胱氨酸▣ 12种神经递质Norepinephrine去甲肾上腺素γ-Aminobutyricacid4-氨基丁酸Metanephrine甲氧基肾上腺素Octopamine章鱼胺Epinephrine肾上腺素Tyramine酪胺Dopamine多巴胺Agmatine胍丁胺Serotonin5-羟色胺Methoxytyramine甲氧酩胺Tryptamine色胺Histamine组胺▣ 6种儿茶酚胺Normetanephrine甲氧基去甲肾上腺素Epinephrine肾上腺素Norepinephrine去甲肾上腺素Dopamine多巴胺Metanephrine甲氧基肾上腺素Methoxytyramine甲氧酪胺产品优势
  • 新华网:奶粉含反式脂肪酸报道系抹黑打击内地乳业
    近日政府部门对国产及外资品牌奶粉的一系列动作又再引发新争端!记者获悉,近日遭国家发改委反垄断调查的外资奶粉,被指已出手反击,而反击手段即为暗中操作中国香港媒体委托实验室进行奶粉检测,声称中国贝因美[-0.19% 资金 研报]、圣元等颇受欢迎的国产品牌奶粉产品含有反式脂肪成分,并引述专家指“婴儿不宜饮用”。   不过,昨日圣元和贝因美等奶粉厂家均澄清,这一检测结果既符合国家相关标准,又符合国际标准,长期食用对婴幼儿的健康并无影响。有厂家指出,这是外资奶粉的反击手段。   昨晚,新华网发表评论称,香港某报在发改委刚启动洋奶粉反垄断调查之际抛出“反式脂肪酸”的“冷饭”,系“抹黑打击内地乳业”。   食药总局称婴幼儿配方乳粉反式脂肪酸含量符合国标   据报道,检测结果显示贝因美冠军宝贝俱乐部、圣元优博等数款婴儿配方奶粉样本中,每100克奶粉含有0.4克至0.6克反式脂肪(又称反式脂肪酸)。尽管该报道称“该三种奶粉的反式脂肪含量尚未超出内地和国际安全标准”,但也有香港专家表示,香港家长应作出“明智选择”,不要让婴幼儿食用含有反式脂肪酸的奶粉。广东省知名乳业专家王丁棉表示,由于婴儿器官处在发育阶段,过多摄入反式脂肪酸会增加肾功能的压力,导致其他不良症状。   新快报记者昨日分别致电贝因美和圣元相关负责人,他们均表示国家及国际上对于婴幼儿奶粉中反式脂肪酸占总脂肪含量的标准皆限定为不得超过3%,因此奶粉质量完全合格,消费者完全可以安心食用。   昨日,贝因美公司公关部相关负责人向本报记者发来邮件称,贝因美公司产品未添加任何反式脂肪酸,但因奶牛等反刍动物的生理特点因素,其乳中本身就含有反式脂肪酸,婴幼儿配方奶粉以生牛乳及精炼植物油等作为原料生产,由于含有乳脂,产品中会存在少量的反式脂肪酸,且符合国家和国际标准,消费者可以放心购买及食用。   圣元奶粉公司董事长兼CEO张亮还在新浪微博上以调侃口吻回应网友质疑,称“0.4是很好的水平呀!有谁能做到更好?”   王丁棉及其他资深奶粉行业内人士都表示,只要反式脂肪酸含量是在国家标准范围内的奶粉,可以放心食用,在安全性上并不存在问题。   昨日新华社记者从国家食品药品监督管理总局了解到,近几年来,国家食品安全监管部门一直把婴幼儿配方乳粉作为食品安全风险监测和风险排查的重点产品,共监测15007个婴幼儿配方乳粉样品,其中对10187个样品开展了总脂肪酸和反式脂肪酸的监测。   监测结果表明,国产婴幼儿配方乳粉中反式脂肪酸的检测值为0.019g-0.574g/100g,最高含量均不超过总脂肪酸的3%,符合国家和国际相关标准。同时,也对197个进口婴幼儿配方乳粉样品开展了检测,所有样品均含有反式脂肪酸,检测值为0.024g-0.367g/100g。   洋奶粉未检出反式脂肪酸是因不含动物脂肪?   香港某报的报道中还提到,检测结果显示,由美赞臣和惠氏生产的两款奶粉产品(在香港和内地均有出售)不含反式脂肪酸。   对于此事,圣元奶粉公司董事长张亮在微博上指出,“婴儿需要均衡的脂肪结构,动物脂肪和植物脂肪缺一不可,但是,动物脂肪中会存在微量反式脂肪。设计配方奶粉有两条路线,一个是完全脱掉奶油使用植物油,优点是成本低廉不含反脂,但它失去了必须胆固醇 另一个是保留部分奶油追求营养均衡,缺点是含微量反脂(即反式脂肪酸),生产成本高。”张亮称,奶油价格是植物油的5倍。   资深奶粉行业人士分析称,张亮所发微博的言下之意是,美赞臣、惠氏这些外资奶粉使用的是价格低廉的植物油,虽然不含反式脂肪酸但少了必须胆固醇这一营养。   业内人士指出,此次事件很有可能与近期洋奶粉遭反垄断调查,而国产奶粉却受国家扶持加紧并购有关。此次涉事的国产品牌奶粉企业中,也有相关负责人直接指出,“这是外资奶粉反击的手段”。   昨晚,新华网发表评论称,香港某报在发改委刚启动洋奶粉反垄断调查之际,迫不及待地抛出所谓3罐国产奶粉含反式脂肪、2罐进口奶粉不含的文章,就是在中国乳业正处于逐步恢复声誉和消费信心的关键阶段,利用内地公众对婴幼儿奶粉的高度关注和敏感,对反式脂肪不了解,制造非理性恐慌,其抹黑竞争对手,打击我国乳业的恶劣动机,是昭然若揭的。评论呼吁媒体和广大消费者要保持一份清醒和理性,一方面要高度重视食品安全,另一方面对那些抹黑国产奶粉的谣言,也要给予坚决批驳和回击。
  • 欧盟通过禁用富马酸二甲酯草案
    1月29日,欧盟成员国通过了“保证含有富马酸二甲酯的消费品不会投放欧洲市场”的决议草案。目前,该决议仍处于欧洲议会审查阶段,预计将在5月1日前正式生效。   草案明确规定,如果消费品或其部件中富马酸二甲酯的含量超过了0.1毫克/千克,或者产品本身已声明了其富马酸二甲酯的含量,就将被认定为“含有富马酸二甲酯”的产品,其将禁止进入欧盟市场流通和销售。   富马酸二甲酯(简称DMF)通常被用作防腐防霉剂产品,常用于皮革、鞋类、纺织品等的生产、储存、运输中。但从去年10月起,欧盟方面就陆续通报了多起因消费者接触含有富马酸二甲酯的鞋、皮沙发等而产生皮肤过敏、急性湿疹及灼伤的案例,使其受到了广泛关注。欧盟也在此后进行了研究和分析,并最终出台了上述草案及限量标准。   在欧盟草案通过之前,法国、比利时已采取了具体措施,禁止进口和销售含富马酸二甲酯的鞋和座椅。西班牙也出台规定,禁止任何接触到皮肤的产品含有富马酸二甲酯。而且,自去年年底开始,已有多批中国产品因富马酸二甲酯含量超标被法国等国扣留。   富马酸二甲酯在国内产品中的应用十分广泛,相当多的鞋类、皮革家具及家纺等产品都会在包装中放入含该成分的防潮袋,用于防潮防霉。而在我省,温州、海宁等地的皮革类产品是传统的外贸出口产品,仅温州一地,其2008年鞋类产品出口就达到了2.76亿美元。纺织品更是浙江的出口优势产品,每年约有400亿的出口量。上述出口产品占了欧盟市场相当大的份额。更让人担心的是,据资料显示,由于富马酸二甲酯具有毒性低、抑菌能力强、抑菌种类多、不受环境影响等特点,还被广泛用于食品、粮食、饲料、化妆品、烟草等防腐防霉及保鲜,因此,欧盟此次对所有含有富马酸二甲酯的消费品颁布禁令,势必将给我省相关行业带来很大的不利影响。   面对该禁令的巨大挑战,检验检疫部门提醒相关出口企业应及时进行调整,换用更为环保和健康的防潮防霉产品,以符合草案的要求,并积极与国外客户进行沟通,减少草案对产品出口的影响。近期,检验检疫部门也将对辖区内的相关企业加强检验和监管,避免不合格产品运至欧盟后,造成更大的经济和声誉上的损失。
  • 淀粉中凯氏氮标准测定方法的改善
    1.国际标准相关测定方法《ISO 3188-1978 淀粉及其衍生物氮含量测定滴定法》详细测定实验过程如下: 1.1原理在催化剂存在下,用硫酸裂解淀粉及其衍生物,然后碱化反应产物,并进行蒸馏使氨释放。同时用硼酸溶液收集,再用已标定的硫酸溶液滴定,得到硫酸体积耗用数即能转化成氮含量。1.2试剂和材料在测定过程中,只可使用分析纯的试剂和蒸馏水,或至少纯度相当的水。1.2.1 浓硫酸:96%(m/m)、ρ20为1.84g/mL。1.2.2氢氧化钠溶液:40%(m/m)、ρ20为1.43g/mL。1.2.3 硼酸溶液:20g/L。1.2.4催化剂:由97g硫酸钾和3g无水硫酸铜组成。1.2.5 硫酸:约0.02mol/L或0.1mol/L的标准溶液。1.2.6指示剂:由二份在50%(V/V)乙醇溶液中的中性甲基红、冷饱和溶液与一份在50%(V/V)乙醇溶液中浓度为0.25g/L亚甲蓝溶液混合而成。配制之后贮入棕色玻璃瓶内。1.3仪器和设备1.3.1 天平:感量为 1mg。1.3.2 定氮蒸馏装置。1.3.3 自动凯氏定氮仪。1.4分析步骤1.4.1试样处理:所测样品应充分混合,放在密封干燥的容器内。对葡萄糖浆,在混合前应先除去表层约5mm。对块状样品必须研磨,使之全部过筛,不留下剩余样品。1.4.2取样:样品量称取至多为10g样品,精确至0.0001g,然后倒入干燥凯氏烧瓶内,注意不要将样品沾在瓶颈内壁上。对粘状或糊状样品,则可用一个小玻璃盛器或不产生氮的铝片纸或塑料上称重,或氮含量已知的盛器,盛品留在瓶内,如盛器产生氮的话,应做空白测定后折算。1.4.3消煮:加入催化剂10g,并用量筒加入体积为4倍样品重量计算的毫升浓硫酸。轻轻摆动烧瓶,混合瓶内样品,直至团块消失,样品完全湿透,加入防沸物(如玻璃珠)。烧瓶放到消化架上,装上排气装置,开始加热裂解。小心加热液体,使之逐渐沸腾,待液体澄清后继续加热1小时。2.化验室试验方法(国标检测方法改善后测定方法)2.1仪器设备2.1.1分析天平2.1.2 JKZ10-恒温加热消煮炉(济南精密)2.1.3JK9870全自动凯氏定氮仪(济南精密)2.2试样处理:①、使用滴管称取约2g左右的淀粉样品,15ml浓硫酸,2g左右的催化剂(硫酸铜硫酸钾),静置半小时。②、放置于消煮炉上,正常升温至100℃(开始变黑)。③、100℃持续10分钟,升至150℃(完全变黑,并开始出现泡沫)。④、升温至200℃过程中,同时加入10滴30%的过氧化氢溶液。⑤、200℃稳定5分钟,加入10滴30%的过氧化氢溶液。⑥、升至250℃,同时加入10滴30%的过氧化氢溶液。⑦、稳定10分钟,升至300℃,同时加入5滴30%的过氧化氢溶液。⑧、稳定10分钟,升至400℃,同时加入5滴30%的过氧化氢溶液。⑨、间隔10分钟加入5滴30%的过氧化氢溶液,直至溶液中固体(黑色泡沫)完全溶解。 ⑩、等待溶液变为透明的蓝绿色时继续加热1小时。2.3测定:消解完之后将样品冷却至室温,即可使用凯氏定氮仪(济南精密 JK9870)测定凯氏氮含量,得到的氮含量乘以相对应的系数可得到蛋白质的含量。3.本化验室实验方法与国标方法的改善之处①. 消解过程使用消煮炉缓慢升温,控制消解过程炭化的黑色泡沫附着在管壁,以减小对测定结果的影响②. 消解过程加入双氧水来减弱炭化产生的泡沫,以加快消煮的效率 4.改善方法的解释与方法的论证数据4.1.消化过程控制升温速率以及加入双氧水加快消化速率样品当中含有大量的含碳化合物,故在消化时候加入浓硫酸以后加热时产生碳化,会有黑色泡沫出现,由于消煮炉配套使用的消化管管径相比于标准方法中定氮烧瓶较细,极易出现黑色泡沫附着在消化管管壁,导致样品的消化不完全。降低升温速率会减弱浓硫酸碳化样品的程度,减少黑色泡沫的出现,进而降低消化时的误差出现。而双氧水时氧化性极强的强氧化剂,能加速样品中有机物的氧化,从而进一步减弱碳化过程黑色泡沫的产生,致使样品的消化速率进一步提升,加速样品的消解,缩短样品的消化时间。以下表格是针对加入双氧水消化和未加双氧水消化的样品消化时间、氮含量测定结果的比对:序号重量g双氧水加入碳化黑色泡沫情况消化耗时氮含量%11.8882否严重4h0.036322.0153否严重4h0.035831.9067否严重4h0.035841.8384是明显减弱3.5h0.036351.7305是明显减弱3.5h0.037361.8376是明显减弱3.5h0.0372备注:滴定稀硫酸浓度0.0678mol/L 消解催化剂:15ml浓硫酸硫酸铜硫酸钾(1:10)混合指示剂2g上述数据说明消化过程加入双氧水对测定结果没有影响,能明显加快消解的速率,减弱碳化过程黑色泡沫的产生,从而避免了黑色泡沫附着在消化管管壁,进而减少了消化过程的误差,增加了实验结果的稳定性。5.改善方法实验数据的准确性论证为了验证改善优化后方法的准确性,选取了不同凯氏氮含量的淀粉分别使用优化后的方法(使用济南精密JK9870)和国标方法进行对比,对比数据如下表所示: 样品名称凯氏氮检测结果/%平均值偏差/%国标方法改善优化后方法样品10.0360.035两种方法的平均值偏差为0.42%样品20.0290.028样品30.0410.042样品40.0500.051样品50.0270.029样品60.0240.024样品70.0320.031由以上表格数据可以整理归纳出,改善优化(使用JK9870凯氏定氮仪)后的实验方法与国标方法检测结果偏差在0.5%以内,检测结果没有明显差异。6.使用凯氏定氮仪(济南精密 JK9870)与传统手工滴定法的对比论证使用凯氏定氮仪测定样品中蛋白质(凯氏氮)含量,更能与消煮炉的消化高效的结合起来,相比传统的手工滴定法结果更稳定,误差更小,尤其是待测样品数量较多时,凯氏定氮仪来测定更适合改善优化后实验方法。为了验证凯氏定氮仪的检测结果准确性,采用了同一样品相同的消解方法,消解完成后定容取等量体积的样品稀释液分别使用凯氏定氮仪(济南精密 JK9870)和传统手工滴定法(国标方法)进行样品蛋白质含量的检测。检测数据如下表所示:样品序号蛋白质检测结果/%JK9870法测试手工滴定法测试10.17810.179420.18190.181330.17750.176940.18630.183850.17630.176960.17860.1816上表数据可以看出使用凯氏定氮仪(济南精密 JK9870)和传统手工滴定法(国标方法)进行淀粉样品蛋白质含量的检测时检测结果的偏差微乎其微,检测结果没有明显差异,并且使用凯氏定氮仪(济南精密 JK9870)检测起来效率更高滴定更快,能够加快实验进程。采用改善优化后的化验室实验方法进行氮含量、蛋白质含量的检测时,双氧水催化剂的使用更能加快消煮的速度,更能减弱碳化现象,有效的促进了消煮淀粉样品,消化后的样品不需要定容即可直接使用凯氏定氮仪(济南精密 JK9870)测定,并且检测结果和国标方法对比无差异,准确度高,改善优化后的实验方法可作为淀粉凯氏氮含量、蛋白质含量检测的通用方法。7.改善优化后实验方法的要点淀粉类样品的凯氏氮、蛋白质含量检测,最重要的环节是淀粉样品消化过程,消煮过程控制好升温速率,适量加入双氧水来加快消煮能更好更快速的完成消煮实验。选择采用凯氏定氮仪(济南精密 JK9870)测定相比传统的标准方法测定更方便,加快实验的效率。
  • 皮尔卡丹质量门曝行业潜规则:检测企业说了算
    1978年,皮尔卡丹作为一位旅游者第一次进入中国。他穿着毛料大衣走在北京街头,吸引了诸多中国人。那时后的一段时间,皮尔卡丹是奢侈品的代名词。然而时至今日,因为种种原因,皮尔卡丹也不复往昔,甚至被质疑产品质量存在问题。   有消费者近日表示,其以5984元购买的皮尔卡丹女士皮衣被检测出辅料皮革撕裂力不达标,检测单位为中国商业联合会旗下北京远东正大商品检验有限公司。   此事引发了消费者对皮尔卡丹服装质量的质疑。   事发后,皮尔卡丹方也出示了一份检测报告,显示被检样品黑色羊皮革的撕裂力合格,检验单位是中国纺织工业联合会检测中心。   同一批次皮衣两次检测结果却截然相反,到底是什么原因造成的?这背后是否有更深层次的问题存在?   检测机构否认与企业有利益关联   北京白领时装有限公司设计总监付奎告诉法治周末记者,导致该种结果可能存在以下两种原因:“一是一件皮衣并非所有部分的撕裂力都相同。比如一只羊身上的皮可能不够做一件衣服,我们裁剪时根据每张羊皮的大小来进行裁剪,而且每张羊皮的好的部分比如背部,我们一般都用在正前或者正背后的地方即所说的主料位置,而不好的部分比如肚子上的皮我们会用在腋下位置或者别的辅料位置,所以每个地方检测结果不一样是很正常的。二是时装为了时尚一点,也可能使用两种以上的皮料,主要部位用的叫主料,另外的可能就叫辅料。”   浙江理工大学服装营销系主任任力也认为:“现在大家追求的皮料是既轻薄又柔软,又有弹力。作为时装,有时为了时尚,为了柔软、轻薄、飘逸等,可能会做很多处理,这样肯定会影响皮革的撕裂力。”   任力还表示,有些代理商为了追求高利润,可能会在生产代理的品牌产品时偷偷地加一点假货来赚钱,这样也可能会导致这种结果。但是目前国内绝大多数厂家,特别是一些知名品牌,没有必要在这些方面来做手脚赚钱,这么做是得不偿失的。   也有人认为,检测机构作出的检测报告可能不客观,因为有些检测机构和厂家存在利益关系。   对于此种说法,法治周末记者联系中国纺织工业联合会检测中心,该中心否认与皮尔卡丹方存在利益关系。   服装行业的检测潜规则   皮尔卡丹女装中国总代理、北京东方绮丽服饰有限责任公司销售部经理孙彩虹在接受媒体采访时解释称,之所以出现上述截然相反的报告结果,主要原因是服装企业送检的样本均为主面料,而消费者此次选择检测的对象是辅料,但服装行业质量标准中并没有强制要求送检辅料,并称“送检主料是服装行业的惯例”。   针对“行业惯例是只送检主料”的说法,法治周末记者试图联系皮尔卡丹方面予以核实,但截至发稿,仍未得到回应。不过这一说法得到了国家纺织制品质量监督检验中心和中国纺织工业联合会检测中心的认可。   国家纺织制品质量监督检验中心一位负责人告诉法治周末记者:“我们对于送检样品没有要求,企业送什么,我们就检测什么,这是企业的自主选择。至于选择哪些材料进行检测及检测哪些指标,也是企业说了算,因为企业要交纳检测费。”   中国纺织工业联合会检测中心相关负责人也介绍说:“企业根据信赖度来自主选择检测机构。因为牵涉到费用问题,我们一般是让客户指定他要求检测的项目,同时我们也会告诉企业,某些地方是应该要检测的,你要不要做。至于做不做,也是企业说了算。”   当记者问及“有没有企业为了省钱,对于强制要求检测项目不做检测”时,中国纺织工业联合会检测中心相关负责人表示,规定要检测的项目企业一般都会检测,因为商场管理很严格,如果不检测企业会很麻烦。   北京市大翰律师事务所律师杨健认为:“如果检测样品、检测机构都由企业自主选择,检测结果就不够权威。一般商家找的单位都是与其有合作的协议单位。要真正做到检测的公平公正,必须有一个权威机构参与进来,选择一个与消费者和企业都无利益关系的检测机构来进行检测,这样作出的检测结果才更有说服力。”   一位不愿透露姓名的业内人士表示,作为服装的组成部分,不管是主料还是辅料,都应该纳入被检测对象,如果仅凭“行业惯例”,只检测主料,不检测辅料,那检测后的服装进入市场,其存在的质量隐患可想而知,国家应该制定更为详细的检测标准,将辅料也作为强制性检测对象。   行业法律法规需完善   出现消费者质疑产品质量的情况,皮尔卡丹方面会如何处理?法治周末记者试图通过电话、传真、电子邮件等多种方式联系皮尔卡丹方面,但至今没有得到任何回复。   不过据了解,北京西单商场已经下架该款皮衣。   付奎认为,如果皮尔卡丹把这个事情处理好,比如积极给顾客相应的解释,及时修改或者更换,对皮尔卡丹自身的影响不会太大。   杨健也表示,只要有投诉,厂家就应该有个态度和立场,应该把事情查清楚,给顾客作出一个满意的解释。他认为未来皮尔卡丹首先要保障产品质量,加强管理,对于质量达不到要求的加盟者、合作者,要取缔、终止合作,其次要提高售后服务。   “服装行业相关的法律规范具有一定的滞后性,在服装行业里,国家只有对厂家的服务行为、消费者保护等方面加强规范,制定相关细化规则才能提高服装行业的整体水平,减少服装质量纠纷。”杨健说。   任力也赞同这种说法:“目前皮装标准太简单。不同类型的皮装应有不同的质量标准。服装的变化性很强,用以前的规范作为检测标准是不合理的,相关法律法规亟需完善。”
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制